l.)

Check for
Updates

HasChor: Functional Choreographic Programming for All
(Functional Pearl)

GAN SHEN, University of California, Santa Cruz, USA
SHUN KASHIWA, University of California, Santa Cruz, USA
LINDSEY KUPER, University of California, Santa Cruz, USA

Choreographic programming is an emerging paradigm for programming distributed systems. In choreo-
graphic programming, the programmer describes the behavior of the entire system as a single, unified pro-
gram — a choreography — which is then compiled to individual programs that run on each node, via a com-
pilation step called endpoint projection. We present a new model for functional choreographic program-
ming where choreographies are expressed as computations in a monad. Our model supports cutting-edge
choreographic programming features that enable modularity and code reuse: in particular, it supports higher-
order choreographies, in which a choreography may be passed as an argument to another choreography, and
location-polymorphic choreographies, in which a choreography can abstract over nodes. Our model is imple-
mented in a Haskell library, HasChor, which lets programmers write choreographic programs while using the
rich Haskell ecosystem at no cost, bringing choreographic programming within reach of everyday Haskellers.
Moreover, thanks to Haskell’s abstractions, the implementation of the HasChor library itself is concise and
understandable, boiling down endpoint projection to its short and simple essence.

CCS Concepts: » Software and its engineering — Concurrent programming structures; Functional
languages.

Additional Key Words and Phrases: Choreographic programming, freer monads

ACM Reference Format:

Gan Shen, Shun Kashiwa, and Lindsey Kuper. 2023. HasChor: Functional Choreographic Programming for
All (Functional Pearl). Proc. ACM Program. Lang. 7, ICFP, Article 207 (August 2023), 25 pages. https://doi.org/
10.1145/3607849

1 INTRODUCTION

A distributed system consists of a collection of nodes that operate independently and communicate
by message passing. One of the challenges of programming distributed systems is the need to
reason about the implicit global behavior of the system while writing the explicit local programs
that actually run on each node. While running independently, nodes must exchange messages in
a carefully executed dance: every message sent from one node must be expected by its recipient,
or we risk deadlock.

The emerging paradigm of choreographic programming [Montesi 2013; Carbone and Montesi
2013; Cruz-Filipe and Montesi 2020; Cruz-Filipe et al. 2022; Hirsch and Garg 2022] helps to address
this challenge by making the global behavior of the system explicit. In the choreographic paradigm,
the programmer describes the behavior of a distributed system as a single, unified program: a
choreography. One choreography is then compiled to multiple individual programs that run on

Authors’ addresses: Gan Shen, University of California, Santa Cruz, USA; Shun Kashiwa, University of California, Santa
Cruz, USA; Lindsey Kuper, University of California, Santa Cruz, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART207

https://doi.org/10.1145/3607849

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0006-0947-9531
HTTPS://ORCID.ORG/0009-0001-3665-0182
HTTPS://ORCID.ORG/0000-0002-1374-7715
https://doi.org/10.1145/3607849
https://doi.org/10.1145/3607849
https://orcid.org/0009-0006-0947-9531
https://orcid.org/0009-0001-3665-0182
https://orcid.org/0000-0002-1374-7715
https://doi.org/10.1145/3607849
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607849&domain=pdf&date_stamp=2023-08-31

207:2 Gan Shen, Shun Kashiwa, and Lindsey Kuper

each node, via a compilation step called endpoint projection [Carbone et al. 2007, 2012]. If endpoint
projection is sound, the resulting distributed system enjoys a guarantee of deadlock freedom [Qiu
et al. 2007; Carbone and Montesi 2013]: by construction, every message sent will be paired with
a corresponding receive. Furthermore, choreographies are amenable to whole-program analyses
that can potentially rule out large classes of bugs. However, choreographic programming — and
in particular functional choreographic programming — is still in its infancy, with the only existing
functional choreographic language designs [Hirsch and Garg 2022; Cruz-Filipe et al. 2022] so far
lacking any practically usable implementation.

In this paper, inspired by the potential of functional choreographic programming, we present a
programming model in which choreographies are expressed as computations in a monad. We im-
plement our model entirely as a Haskell library, which we call HasChor. Thanks to its embedding
in Haskell, HasChor naturally supports cutting-edge choreographic programming features that en-
able a high level of abstraction. HasChor programmers have access to all of Haskell’s rich ecosys-
tem, making functional choreographic programming viable for practical software development.
Furthermore, we find that Haskell’s abstractions are a great fit for implementing the HasChor
library itself, enabling a concise, understandable implementation of choreographic programming.

We make the following specific contributions:

e A monad for choreographic programming. Our main contribution is a new model for chore-
ographic programming based on a monad and implemented as a Haskell library (Section 3).
While choreographic programming (and functional choreographic programming) is not new,
HasChor is to our knowledge the first practically usable implementation of functional chore-
ographic programming (that is, implemented in a general-purpose programming language,
rather than in a proof assistant or on paper), and the first to be based on a monad. HasChor
supports higher-order choreographies and location-polymorphic choreographies, both features
that enable modularity and code reuse.

o A case study for practical functional choreographic programming. As a case study, we use
HasChor to implement a standard of the distributed systems literature: a replicated, in-
memory key-value store (Section 4). We build up the implementation in stages, showing
how higher-order choreographies and location polymorphism enable a high level of abstrac-
tion in our key-value store implementation. Our experience carrying out this case study
suggests that HasChor is a practically usable implementation of functional choreographic
programming. It can be installed just like any Haskell library, compiled just like any Haskell
program, and can use any Haskell tools for development and debugging, bringing choreo-
graphic programming within reach of everyday Haskellers.

o An understandable implementation of choreographic programming. Finally, we contribute ev-
idence that functional programming makes choreographic programming itself straightfor-
ward to implement (Section 5). The core implementation of the HasChor library is less than
150 lines of code.! We find that functional programming abstractions make it especially
straightforward to implement endpoint projection, the central concept of choreographic
programming. In fact, HasChor’s concise implementation of endpoint projection helped us
grasp the essence of choreographic programming; we hope it will do the same for readers.

We have published the HasChor implementation and a collection of example programs, includ-
ing all of the examples from this paper, at github.com/gshen42/HasChor.

IThe optional HTTP backend adds another roughly 100 lines.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

https://github.com/gshen42/HasChor

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:3

1 buyer :: Network IO (Maybe Day) 1 seller :: Network IO ()

2 buyer = do 2 seller = do

3 send title "seller" 3 title <- recv "buyer"

4 price <- recv "seller" 4 send (priceOf title) "buyer"
5 if price <= budget 5 decision <- recv "buyer"

6 then do 6 if decision

7 send True "seller" 7 then do

8 date <- recv "seller" 8 send (deliveryDate title) "buyer"
9 return (Just date) 9 else do

10 else do 10 return ()

1 send False "seller"

12 return Nothing

Fig. 1. The bookseller protocol implemented as individual programs

1 bookseller :: Choreo I0 (Maybe Day @ "buyer")
2 bookseller = do
3 title’ <- (buyer, title) ~> seller

4 price <- seller ‘locally' \un -> return (priceOf (un title'))
5 price’ <- (seller, price) ~> buyer

6 decision <- buyer ‘locally‘ \un -> return (un price’ <= budget)
7

8 cond (buyer, decision) \case

9 True -> do

10 date <- seller ‘locally' \un -> return (deliveryDate (un title'))
11 date’ <- (seller, date) ~> buyer

12 return (Just date')

13 False -> do

14 return Nothing

Fig. 2. The bookseller protocol implemented as a choreography

2 A TOUR OF CHOREOGRAPHIC PROGRAMMING IN HASCHOR

In this section, we give a tour of choreographic programming with a series of examples and in-
troduce its key ideas through the lens of HasChor. We do not provide extensive explanations of
language constructs in HasChor, but will point to sections in the rest of the paper where they are
formally introduced.

2.1 The Bug-Prone Bookseller

As an example of the kind of bug that choreographic programming is designed to prevent, consider
a well-known example from the literature: the “bookseller” protocol [Carbone et al. 2007, 2012;
Honda et al. 2008; World Wide Web Consortium 2006]. The first version of the protocol that we
will consider involves an interaction between two participants: a seller and a (would-be) buyer.
The protocol begins with the buyer sending the title of a book they want to buy to the seller. The
seller replies with the book’s price, and the buyer checks if the price is within their budget. If the
buyer can afford the book, they inform the seller and get back a delivery date; otherwise, they tell
the seller they will not buy the book.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

207:4 Gan Shen, Shun Kashiwa, and Lindsey Kuper

Figure 1 shows an implementation of the bookseller protocol as individual programs. We call
these programs network programs and they are written in the Network monad (Section 5.4) pro-
vided by HasChor. The buyer has a particular title :: String and a budget :: Int in mind,
and the seller has priceOf :: String -> Int and deliveryDate :: String -> Day func-
tions for looking up the price of a book and the date on which a book can be delivered. Network
programs interact with each other by sending messages with send and receiving them with recv.
The send function takes as arguments a message of a serializable type (such as a book title on
line 3 of the buyer, or a Bool on lines 7 and 11 of the buyer) and a destination location (such
as "seller" on lines 3, 7, and 11 of the buyer), and transmits the message to the destination via
some as-yet-unspecified transport mechanism. The recv function takes a location as its argument,
blocks until a message has arrived from the specified location via the transport mechanism, and
then returns the message.

Even in a simple protocol like this one, it is easy to introduce a bug that will lead to a deadlock.
For example, suppose that the implementor of buyer forgets to write send True seller on line
7. Then both buyer and seller will be stuck: the seller will wait forever on line 5 for a decision
from the buyer, while the buyer will wait forever on line 8 for a date from the seller.

2.2 The Choreographic Approach

As a first example of choreographic programming in HasChor, Figure 2 shows the implementation
of the bookseller protocol as a single choreography. The choreography expresses the interaction
between locations (Section 3.1) — in this case, buyer and seller — from an objective, global point
of view, like the script of a play [Giallorenzo et al. 2021]; in HasChor, choreographies are written
in the Choreo monad (Sections 3.3 and 5.3). The bookseller choreography returns a value of type
Maybe Day @ "buyer", which is a located value (Sections 3.2 and 5.2) that represents a value of
type Maybe Day at the "buyer" location.?

One of the hallmarks of choreographic programming is a single language construct that takes
the place of both send and recv. For example, send title "seller" (from line 3 of the buyer
in Figure 1) and recv "buyer" (from line 3 of the seller in Figure 1) are replaced in Figure 2 by
line 3 of the choreography:

title’ <- (buyer, title) ~> seller
where (~>) is the HasChor construct that represents communication between two locations. Here,
title represents the title sent by the buyer, while title' represents the title received by the
seller. Locations can also perform local actions by using the locally function, which takes as
arguments a location and a local computation (in this case, an I0 computation) with access to a
special un function that can unwrap located values into normal values for use with other Haskell
functions. For example, on line 4 of Figure 2, the seller looks up the price of the book by doing a
local computation.

The choreography in Figure 2 also illustrates the use of cond, another HasChor construct. The
cond language construct implements knowledge of choice, a distinctive feature of choreographic
languages [Carbone and Montesi 2013; Hirsch and Garg 2022; Giallorenzo et al. 2020]. To under-
stand the intuition for cond, notice how in the programs in Figure 1, the buyer must explicitly
inform the seller of its decision to buy the book or not, by calling either send True seller or
send False seller, with the corresponding recv on line 5 of seller. This explicit synchroniza-
tion is necessary in the non-choreographic implementation of the protocol to make the seller’s
send (or lack thereof) of the book’s delivery date match up with a recv (or lack thereof) on the
buyer’s side. In HasChor, on the other hand, the cond language construct takes care of inserting the

2Do not confuse the @ symbol with type application. Throughout this paper, the @ symbol always refers to located values.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:5

1 bookseller :: (Int @ "buyer" -> Choreo I0 (Bool @ "buyer"))
2 -> Choreo IO (Maybe Date @ "buyer")

3 bookseller mkDecision = do

4 title’ <- (buyer, title) ~> seller

5 price <- seller ‘locally' \un -> return (priceOf (un t))
6 price’ <- (seller, price) ~> buyer

7 decision <- mkDecision p

8

9 cond (buyer, decision) \case

10 True -> do

1 date <- seller ‘locally' \un -> return (deliveryDate (un t))
12 date' <- (seller, date) ~> buyer

13 return (Just date’)

14 False -> do

15 return Nothing

16

17 mkDecisionl :: Int @ "buyer" -> Choreo I0 (Bool @ "buyer")
18 mkDecisionl p = do

19 buyer ‘locally® \un -> return (un p <= budget)

20

21 mkDecision2 :: Int @ "buyer" -> Choreo I0 (Bool @ "buyer")
22 mkDecision2 p = do

23 price’'’ <- (buyer, price') ~> buyer2

24 contrib <- buyer2 ‘locall® \un -> return (un price’' / 2)

25 contrib' <- (buyer2, contrib) ~> buyer

26 buyer ‘locally' \un -> return (un p <= un contrib' + budget)

Fig. 3. A higher-order version of the bookseller choreography with changes to Figure 2 highlighted

necessary synchronization automatically. We describe cond in more detail, along with the Choreo
monad and the rest of the HasChor API, in Section 3.

2.3 Higher-Order Choreographies and Location Polymorphism

While the simple bookseller example suffices to illustrate the concept of a choreography, it is
only the beginning of what is possible. Carbone and Montesi [2013] use choreographies to imple-
ment a two-buyer bookseller protocol, in which a second buyer, say, buyer2, contributes half of
the book’s price to the budget. We can implement this two-buyer protocol in HasChor by adding
a little additional communication to the one-buyer choreography in Figure 2, for instance, by re-
placing line 6 of Figure 2 with

price’'’ <- (buyer, price') ~> buyer2

contrib <- buyer2 ‘locally‘' \un -> return (un p' / 2)

contrib’ <- (buyer2, contrib) ~> buyer

decision <- buyer ‘locally® \un -> return (un p <= un contrib’ + budget)
Indeed, it is a strength of choreographies that protocols involving three or more parties are straight-
forward to express.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

207:6 Gan Shen, Shun Kashiwa, and Lindsey Kuper

1 bookseller :: Proxy a -> Choreo I0 (Maybe Day @ a)
2 bookseller buyer = do
3 title’ <- (buyer, title) ~> seller

4 price <- seller ‘locally‘' \un -> return (priceOf (un title'))
5 price’ <- (seller, price) ~> buyer

6 decision <- buyer ‘locally' \un -> return (un price’' <= budget)
7

8 cond (buyer, decision) \case

9 True -> do

10 date <- seller ‘locally' \un -> return (deliveryDate (un t))
11 date’' <- (seller, date) ~> buyer

12 return (Just date)

13 False -> do

14 return Nothing

Fig. 4. A location-polymorphic version of the bookseller choreography with changes to Figure 2 highlighted

However, we can do still better. Recent work on choreographic programming proposes higher-
order choreographies [Giallorenzo et al. 2020; Hirsch and Garg 2022; Cruz-Filipe et al. 2022]. Hirsch
and Garg motivate the need for higher-order choreographies by pointing out that the one-buyer
protocol and the two-buyer protocol share a common pattern that can be abstracted out: in each
case, the buyer makes a decision to buy or not buy via some process, potentially involving com-
munication. With higher-order choreographies, this decision process can be implemented as a
sub-choreography, which can then be passed as an argument to the main choreography, enabling
code reuse. Figure 3 shows the implementation of such a higher-order bookseller. The bookseller
function takes a sub-choreography of type Int @ "buyer" -> Choreo I0 (Bool @ "buyer").
Lines 17-19 of Figure 3 implement the single-buyer bookseller, equivalent to what we saw earlier
in Figure 2, as the function mkDecision1, while lines 21-26 of Figure 3 implement the two-buyer
bookseller as the function mkDecision2.

Another feature that raises the abstraction level of choreographic languages is location polymor-
phism [Giallorenzo et al. 2020]. As a motivating example, rather than implementing the bookseller
protocol in a way that is specific to a particular buyer, we might instead wish to implement a
book-selling service to which an arbitrary buyer may connect. With location polymorphism, we
can write a choreography that abstracts over the buyer as shown in Figure 4, again enabling code
reuse and a higher level of abstraction. Here, the bookseller takes an argument of type Proxy a’,
which could be any location.

Neither higher-order choreographies nor location polymorphism are new contributions of
HasChor (see Section 6 for a discussion of related work). However, HasChor is to our knowledge
the first practical functional choreographic programming framework to support these features.
Still, we cannot claim too much credit: a happy consequence of our implementation approach is
that both higher-order choreographies and location polymorphism “just work” in HasChor, be-
cause we inherit support for higher-order and polymorphic programming from the host language.

2.4 Endpoint Projection

The central concept of the choreographic programming paradigm — and the technology that makes
choreographies viable as a programming language — is endpoint projection (EPP) [Qiu et al. 2007;

3We use Proxy a to represent a type-level location, which we will explain in more detail in Section 3.1.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:7

Mendling and Hafner 2005; Carbone et al. 2007, 2012]. A choreography like that in Figure 2 is
already useful as a way of specifying the global behavior of a protocol. However, if we wish to
actually run the protocol in a distributed fashion, then we must have a way of extracting from the
global choreography the individual network programs that will run at the buyer’s and the seller’s
respective endpoints and make explicit calls to send and recv, like the programs in Figure 1. This
is precisely what EPP does. While EPP may sound complicated, Haskell’s high-level abstractions
— in particular, the freer monad [Kiselyov and Ishii 2015] — let us boil EPP down to its short
and simple essence, with an implementation in just a few lines of code. We describe HasChor’s
implementation of EPP, along with other HasChor internals, in Section 5.

Finally, to run the collection of projected programs produced by EPP, HasChor needs a message
transport backend to actually implement sending and receiving, whether by HTTP, TCP, or mes-
senger pigeon. Here, again, the freer monad abstraction helps us: because freer monads separate
the interface and implementation of an effectful computation, HasChor supports swappable back-
ends that implement a given interface. Users of HasChor may implement their own backend or
use the default HTTP backend that the HasChor framework provides.

3 THE HASCHOR API

In this section, we present the API of HasChor for writing and executing choreographies. This
section is oriented toward the user of HasChor and describes how to use the constructs provided
by the library, while Section 5 provides an exposition of how these constructs are implemented.
HasChor can be viewed as an embedded domain-specific language for choreographic program-
ming in Haskell. The programming model it provides is typed, functional, higher-order, and poly-
morphic. To fully support all these features, we require a number of language extensions from the
Glasgow Haskell Compiler. In particular, we use the GHC2021 [GHC Team 2023] set of language
extensions, and additionally, we use DataKinds and GADTs extensively.

HasChor’s API design is influenced by a variety of choreographic and multitier [Weisenburger
et al. 2020] languages, such as Pirouette [Hirsch and Garg 2022], Choral [Giallorenzo et al. 2020],
ML5 [Murphy et al. 2007], and ScalaLoci [Weisenburger et al. 2018]; we discuss these and other
related works in Section 6.

3.1 Locations

Choreographic programming abstracts nodes in a distributed system as locations. These locations
are treated atomically, and we assume location equality is decidable, so we can distinguish different
locations. In HasChor, we define a type alias LocTm for locations, which we represent as Strings.
Because we also need locations to show up in types for located values (which we describe next in
Section 3.2), we also define type-level locations as Symbols (which are type-level Strings).

type LocTm = String -- term-level location
type LocTy = Symbol -- type-level location

To provide a type-level location at the term level, we use the standard Proxy datatype. For example,
the buyer in the bookseller choreography we saw in Figure 2 is defined as a Proxy of type
Proxy "buyer":

buyer :: Proxy "buyer"
buyer = Proxy -- a term-level proxy for a type-level location

3.2 Located Values

Since choreographic programming provides a global view of distributed programming, values at
different locations will show up in the same choreography, which would make it possible for a

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

207:8 Gan Shen, Shun Kashiwa, and Lindsey Kuper

location to access a value that doesn’t reside on it, if we are not careful. To avoid this problematic
behavior, HasChor annotates each value with the location where it resides and ensures that only
that location can access it. We call these annotated values located values, and write their types as
a @ 1, which represents a value of type a at location 1.

Located values are not immediately usable. To use a located value in a choreography, the
value must first be “unwrapped” to a normal value by applying an unwrap function of type
forall a. a @ 1 -> ato it. Crucially, HasChor needs to ensure that only location 1 is allowed
to unwrap an a @ 1 to a and use it. To accomplish this, we leave the definition of located values
opaque to the user, and only provide access to the unwrap function in a safe manner through the
Choreo monad.

3.3 The Choreo Monad

The programming model of HasChor is structured around a monad, Choreo. In HasChor, chore-
ographies are computations of type Choreo m a:

type Choreo m a

instance Functor (Choreo m)
instance Applicative (Choreo m)
instance Monad (Choreo m)

Choreo computations are parameterized by a user-supplied local monad m. HasChor assumes that
each location participating in a choreography of type Choreo m a can run local computations of
type m a. The user can choose the local monad as they wish, with the only requirement being that
the local monad needs to subsume IO, i.e. being an instance of MonadIO, as each node should be
able to send and receive messages. For example, the bookseller choreography in Figure 2 has
type Choreo 10 (Maybe Day).

As mentioned above, a Choreo computation can be thought of as a program in an embedded DSL
for choreographic programming in Haskell. This embedded DSL supports three primitive language
constructs: locally, for carrying out local computations at a location; (~>), for communication
between locations, and cond, for choreographic conditionals. We describe each of the language
constructs in more detail below.

3.3.1 Local Computation. The locally function is for doing local computation at a given location.
It takes a location 1 and a local computation of type m a and returns a value of type a located at 1:
locally :: Proxy 1 -> (Unwrap 1 -> m a) -> Choreo m (a @ 1)

The type of locally’s second argument calls for some additional explanation. The local computa-
tion is given an unwrap function of type Unwrap 1, which is an alias for forall a. a @ 1 -> a.
The unwrap function allows the local computation to unwrap values located at 1 in the context, but
not values located at any other locations. For example, the seller in the bookseller choreography
in Figure 2 uses the following code to look up the price of the book:

price <- seller ‘locally' \un -> return (priceOf (un t))
The seller first unwraps the book title t that it receives, and then calls priceOf on it and returns

the result.

3.3.2 Communication. A choreographic language must have a language construct for communi-
cation between a sender and a receiver. The (~>) function takes a pair of the sender’s location and
a value of type a located at the sender, and a receiver’s location, and returns a value of the same
type a but located at the receiver:

(~>) :: (Proxy 1, a @1) -> Proxy 1' -> Choreom (a @1")

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:9

For example, the seller in the bookseller choreography in Figure 2 uses the following code to
communicate the price of the book that it locally computed to the buyer:

price’ <- (seller, price) ~> buyer

Here, price’ has type Int @ "buyer", which represents the price the buyer receives.

For convenience, HasChor also provides a derived operation (~~>) that combines locally and
(~>). The (~~>) function carries out a local computation at a sender and then communicates the
result to a receiver. It takes as arguments a pair of the sender’s location and a local computation
of typem a, and a receiver’s location. Like (~>), it returns a value of type a located at the receiver.
(~~>) has a straightforward implementation in terms of locally and (~>):

(~~>) :: (Proxy 1, Unwrap 1 -> m a) -> Proxy 1' -> Choreom (a @ 1")
(~~>) (1, ¢ 1' = do

x <= 1 ‘locally' c

1, x) »>1'

For example, the seller in the bookseller protocol can use (~~>) to combine looking up the price
of the book and communicating that price to the buyer:

p <- (seller, \un -> return (priceOf (un t))) ~~> buyer

3.3.3 Conditionals. In choreographic programming, when one node in a system makes a choice
such as taking one or another branch of a conditional, other nodes need to be informed of the
choice in case it affects their communication pattern in the code that follows. For example, in the
bookseller protocol, the buyer’s decision to buy or not buy the book must be communicated to
the seller (as in the send True seller and send False seller calls in buyer of Figure 1). In a
choreography, this would amount to writing a (~>) expression in every branch of the conditional,
which would be tedious for the programmer. HasChor therefore provides a cond language con-
struct that inserts the necessary communication automatically. cond takes as its arguments a pair
of a location and a scrutinee at that location, and a function describing the follow-up choreogra-
phies depending on the scrutinee, and returns one of the follow-up choreographies.

cond :: (Proxy 1, a @ 1) -> (a -> Choreo m b) -> Choreo m b

We have already seen an example use of cond in the bookseller choreography, on lines 8-14 of
Figure 2. In that example, the scrutinee expression is decision, which must be one of True or
False. While in the bookseller choreography the scrutinee happens to be of type Bool, in general
the scrutinee in a cond expression may be of any type a.

HasChor’s cond makes a different design decision from most choreographic languages: typi-
cally [Hirsch and Garg 2022; Giallorenzo et al. 2020], choreographic languages require the pro-
grammer to manually send synchronization messages in the branches of a conditional expression,
to notify other locations about the decision that was made. For example, in Pirouette [Hirsch and
Garg 2022], endpoint projection is undefined if a choreography neglects to include these synchro-
nization messages. In HasChor, on the other hand, the location where the conditional expression
is evaluated will automatically broadcast the result to all locations. This implementation strategy
can make using conditionals a bit easier for users, at the cost of potentially adding unnecessary
communication (for instance, by sending the result to locations whose behavior is not affected by
it). We discuss this trade-off in more detail in Section 6.

3.4 Running Choreographies

To run a choreographic program in a distributed fashion, we must project it to a collection of net-
work programs that run individually at each node. The HasChor API provides a runChoreography

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

207:10 Gan Shen, Shun Kashiwa, and Lindsey Kuper

1 main :: I0 O
2 main = do
3 [loc] <- getArgs

4 case loc of

5 "buyer" => runChoreography cfg bookseller "buyer"

6 "seller" => runChoreography cfg bookseller "seller"

7 _ -> error ("Unknown location: " ++ loc)

8 return ()

9 where

10 cfg = mkHttpConfig [("buyer", ("alice.some-school.edu", 3000))
11 , ("seller", ("bookstore.haskell.org", 4000))]

Fig. 5. Deploying the bookseller choreography of Figure 2 with HasChor’s HTTP backend

function that, given a choreography and a location name, projects the choreography to a network
program at the specified location using endpoint projection, and then runs the network program:

runChoreography :: Backend config => config -> Choreo m a -> LocTm -> m a

We defer further discussion of network programs and HasChor’s implementation of endpoint pro-
jection to Section 5. As the type of runChoreography shows, it also requires the user to provide
a backend configuration config, which must be an instance of the Backend type class. To run a
network program that is the result of endpoint projection, HasChor needs a message transport
backend to actually handle sending and receiving of messages. A backend configuration specifies
how locations are mapped to network hosts and ports, and provides a runNetwork function that
runs a network program at a specific location using some message transport mechanism.

While users are free to implement their own message transport backends, HasChor comes with
an HTTP-based backend out of the box. The HasChor API function mkHttpConfig constructs an
instance of Backend that can be passed to runChoreography.

Putting these pieces together, Figure 5 gives an example of using runChoreography to project
the bookseller choreography of Figure 2 to a network program at each node, and then run the
resulting network program at each node using HasChor’s HTTP backend.

An important caveat about HasChor’s support for higher-order choreographies is that it lacks
separate compilation for higher-order choreographies. That is, in HasChor a higher-order choreog-
raphy cannot be projected by itself, but must be applied to an argument choreography at projection
time. For example, if we wished to project the higher-order choreography of Figure 3 to network
programs, we would need to apply bookseller to one of mkDecision1 or mkDecision2 before
calling runChoreography. Other higher-order choreographic languages, such as Pirouette [Hirsch
and Garg 2022] and Choral [Giallorenzo et al. 2020], do not have this limitation.

For testing and debugging purposes, HasChor users may also wish to run a Choreo computation
directly, without the use of EPP. To that end, HasChor provides a runChoreo function, which has
type Choreo m a -> m a, and interprets a choreography as a non-distributed, single-threaded
program. We can view runChoreo as giving a semantics to choreographies directly, rather than
in terms of endpoint projection. From a verification perspective, runChoreo can be thought of
as a specification of how choreographies should behave, and correctness of endpoint projection
becomes a question of whether the projected collection of network programs faithfully implements
the specification. We will discuss the implementation of runChoreo further in our discussion of
HasChor internals in Section 5.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:11

4 BEYOND BOOKSELLERS: A REPLICATED IN-MEMORY KEY-VALUE STORE

In this section, we showcase the features of HasChor by using it to implement a standard of dis-
tributed systems: a replicated in-memory key-value store. We build up the implementation in
stages, starting first with a simple client-server architecture (Section 4.1), and then a primary-
backup replication approach (Section 4.2). Next, we show how we can use HasChor’s higher-order
choreographies to abstract over the previous two implementations (Section 4.3). Finally, we show
how we can use HasChor’s location polymorphism to abstract out repeated code in the primary-
backup implementation (Section 4.4).

The full implementations of all our examples are available at github.com/gshen42/HasChor.
Along with the key-value store examples that we describe in this section, these include an im-
plementation of Diffie-Hellman key exchange [Diffie and Hellman 1976], a two-phase commit
protocol [Gray 1978; Lampson and Sturgis 1979], and a distributed merge sort.

4.1 A Simple Client-Server Key-Value Store

As a first step, we begin with a simple client-server architecture for our key-value store. The
client sends requests to the server, and the server handles requests and sends responses back to
the client. Figure 6 shows the HasChor implementation of the client-server key-value store. The
server stores pairs of Strings as a Map inside a mutable IORef as its State. It supports two kinds
of Requests: Put, to set a given key-value pair, and Get, to look up the value associated with a
specified key. The server uses Maybe String as its response: for Put, it sends back the value it
put; for Get, it sends back the corresponding value or Nothing if it is not present. The core of
the implementation is the kvs choreography, which describes one instance of the client-server
interaction. When kvs is invoked, the client first sends the request to the server (line 9). Then,
the server calls handleRequest to process the request, updates the server state as needed, and
generates a response (line 10). Finally, the server sends the response to the client (line 11).

The entry point for the key-value store is mainChoreo (lines 22-32), which initializes the server
state to the empty Map and then enters an infinite loop. Inside the loop, the program reads a com-
mand from the client’s terminal by calling readRequest (omitted for brevity), then calls kvs to
process the request. After the client prints the response, it goes back to the beginning of the loop
and waits for the user to make another request.

To run the key-value store choreography, we use the main function shown in Figure 7. The call
to mkHttpConfig sets up HasChor’s HTTP backend, specifying a hostname and port number for
each of the two locations (lines 9 and 10). The program takes a location name as a command-line ar-
gument and starts the choreography. Assuming the built executable is called kvs, with kvs server
running, a client can interact with the key-value store from the command line:

$ kvs client
GET hello

> Nothing

PUT hello world
> Just "world"
GET hello

> Just "world"

4.2 A Replicated Key-Value Store
Now that we’ve seen a simple key-value store, let us consider how we can implement a ubiqui-

tous feature of distributed systems: data replication. The implementation in Section 4.1 had only

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

https://github.com/gshen42/HasChor

207:12 Gan Shen, Shun Kashiwa, and Lindsey Kuper

1 type State = Map String String
2 data Request = Put String String | Get String
3 type Response = Maybe String

5 kvs :: Request @ "client"

6 -> IORef State @ "server"

7 -> Choreo I0 (Response @ "client")

s kvs request state = do

9 request’ <- (client, request) ~> server

10 response <- server ‘locally' \un -> handleRequest (un request’') (un state)
1 (server, response) ~> client

13 handleRequest :: Request -> IORef State -> IO Response
14 handleRequest request state = case request of

15 Put key value -> do

16 modifyIORef state (Map.insert key value)

17 return (Just value)

18 Get key -> do

19 state <- readIORef state

20 return (Map.lookup key state)

21

22 mainChoreo :: Choreo IO ()

23 mainChoreo = do

24 state <- server ‘locally' _ -> newIORef Map.empty
25 loop state

26 where

27 loop :: IORef State @ "server" -> Choreo I0 ()
28 loop state = do

29 request <- client ‘locally’ _ -> readRequest
30 response <- kvs request state

31 client ‘locally' \un -> do putStrLn ("> " ++ show (un response))
32 loop state

Fig. 6. The choreography for the client-server key-value store

one server, so if the server fails, we lose all the stored data. Replication mitigates this risk by
creating multiple copies of data and distributing them across multiple locations.

A classic replication approach is primary-backup replication [Alsberg and Day 1976]. In primary-
backup replication, we designate one node to be the primary, with which clients interact, and all
other nodes to be backup nodes, with which the primary interacts. To begin with, we will consider
a simple primary-backup configuration with only one backup. Both the primary and the backup
store a full copy of the data. The client sends requests to the primary, and in the case of a Get
request, the backup need not be involved at all; the primary can respond to the request using
its own copy of the data. In the case of a Put request, the client forwards the request on to the
backup, which applies the change to its own state and then sends back an acknowledgment to the
primary. After receiving the acknowledgment from the backup, the primary applies the update to

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:13

1 main :: I0 O
2 main = do
3 [loc] <- getArgs

4 case loc of

5 "client" -> runChoreography cfg mainChoreo "client"

6 "server" -> runChoreography cfg mainChoreo "server"

7 _ -> error ("Unknown location: " ++ loc)

8 where

9 cfg = mkHttpConfig [("client", ("alice.some-school.edu", 3000))
10 , ("server", ("big-cloud-service.com", 4000))]

Fig. 7. Deploying the key-value store choreography with HasChor’s HTTP backend

1 kvs :: Request @ "client"

2 -> (IORef State @ "primary", IORef State @ "backup")
3 -> Choreo I0 (Response @ "client")

4+ kvs request (primarySt, bkupSt) = do

5 request’ <- (client, request) ~> primary

6 cond (primary, request') \case

7 Put _ _ -> do

8 req <- (primary, request') ~> backup

9 ack <- (backup, \un -> handleRequest (un req) (un bkupSt)) ~~> primary
10 return ()

11 Get _ -> return ()

12 response <- primary ‘locally' \un ->

13 handleRequest (un request') (un primarySt)

14 (primary, response) ~> client

Fig. 8. The choreography for the primary-backup key-value store with changes to Figure 6 highlighted

its own state and finally sends a response back to the client. Therefore the client does not receive
a response until both replicas have applied the update.*

Figure 8 shows an updated version of the kvs choreography that uses primary-backup replica-
tion.’ As with the simple client-server setup that we saw in Figure 6, kvs takes a client request
as its first argument. However, because the choreography now needs to keep track of states on
primary and backup, it takes a pair of replica states as its second argument.

Our use of cond in Figure 8 illustrates HasChor’s support for scrutinees of arbitrary type instead
of just Bool, as discussed in Section 3.3.3. In the function passed to the cond expression, we pattern-
match on the variants of Request. If the request is a Put, it must be forwarded to the backup, but
Get requests do not need to be passed to the backup, and are handled solely by the primary.

After the cond has run its course, the primary handles the client request, be it Put or Get, by
calling handleRequest, and then communicates the response to the client.

4We can contrast this approach with another common design in which the primary eagerly acknowledges the client’s Puts
while asynchronously sending an update to the backups, which trades off strong consistency among replicas in exchange
for lower request latency.

SOther parts of the code are the same except that the configuration also needs to provide a mapping for backup.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

207:14 Gan Shen, Shun Kashiwa, and Lindsey Kuper

1 type ReplicationStrategy a =
2 Request @ "primary" -> a -> Choreo I0 (Response @ "backup")

4 null :: ReplicationStrategy (IORef State @ "primary")
s null request primarySt =
6 primary ‘locally‘' \un -> handleRequest (un request) (un primarySt)

s primaryBackup ::
9 ReplicationStrategy (IORef State @ "primary", IORef State @ "backup")
10 primaryBackup request (primarySt, bkupSt) =

11 cond (primary, request) \case

12 Put _ _ -> do

13 req <- (primary, request') ~> backup

14 ack <- (backup, \un -> handleRequest (un req) (un bkupSt)) ~~> primary
15 return ()

16 Get _ -> return ()

17 primary ‘locally' \un -> handleRequest (un request) (un primarySt)

Fig. 9. A type that characterizes replication strategy, with examples of no (null) and primary-backup
(primaryBackup) replication strategies

1 kvs :: Request @ "client"

2 -> a -> ReplicationStrategy a

3 -> Choreo I0 (Response @ "client")

4+ kvs request states replicationStrategy = do

5 request’ <- (client, request) ~> primary

6 response <- replicationStrategy request’' states
7 (primary, response) ~> client

Fig. 10. Key-value store choreography that takes a replication strategy, with changes to Figure 6 highlighted

4.3 Abstracting over Replication Strategies: Higher-Order Choreographies

So far, we've seen two versions of our key-value store: one with no replication, and the other
with primary-backup replication. Comparing the kvs choreographies in Figures 6 and 8, we see
a common pattern: both choreographies take a request on the client and state(s) on the server,
handle the request, and return the response on the client. Indeed, from the client’s perspective, the
behavior of the key-value store should be indistinguishable, regardless of what backups are being
done or not done on the server’s side.

HasChor’s support for higher-order choreographies lets us exploit this commonality and factor
out the details of replication from kvs. To begin with, we define a ReplicationStrategy type
as shown in Figure 9, whose values describe the details of how the primary should replicate data;
since different replication strategies might keep track of different types of server state, we use a
type variable a to represent the type of the server state.

The simple client-server key-value store from Section 4.1 does no replication, with the primary
solely handling the request. We define this strategy as null, as shown in Figure 9.

On the other hand, the primary-backup key-value store from Section 4.2 needs the more sophis-
ticated replication strategy primaryBackup as shown in Figure 9, which forwards Put requests

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:15

1 doBackup :: Proxy a -> Proxy b

2 -> Request @ a -> IORef State @ b

3 -> Choreo IO (Response @ a)

4+ doBackup locA locB request state = do

5 cond (locA, request) \case

6 Put _ _ -> do

7 request’ <- (locA, request) ~> locB

8 (locB, \un -> handleRequest (un request’') (un state)) ~~> locA
9 return ()

10 Get _ -> return ()

Fig. 11. doBackup location-polymorphic choreography

1 doubleBackup ::

2 ReplicationStrategy

3 (IORef State @ "primary", IORef State @ "bkupl", IORef State @ "bkup2")
4+ doubleBackup request (primarySt, backup1St, backup2St) = do

5 doBackup primary bkupl request backup1St

6 doBackup primary bkup2 request backup2St

7 primary ‘locally‘' \un -> handleRequest (un request) (un primarySt)

Fig. 12. A double-backup replication strategy

to the backup. Of course, further implementations of ReplicationStrategy are possible, but for
now, these two versions suffice for our example.

Finally, we modify kvs to a function that takes a replicationStrategy argument, and call
replicationStrategy to process each request, as shown in Figure 10. This refactored version
of the kvs choreography describes the simple communication pattern between the server and
the client, involving just two uses of (~>). With the details of the replication strategy abstracted
away, the new version of kvs makes it easy to see what a key-value store does, as far as clients are
concerned: it accepts requests and produces responses.

When invoking the higher-order version kvs from the entry point, we pass a concrete replication
strategy. That is, in the mainChoreo function in Figure 6, the call to kvs on line 30 would become
kvs request state null if we don’t want a backup, or kvs request state primaryBackup if
we do. (In the latter case, we would also need to update mainChoreo to initialize the server state
to the empty Map on both the primary and the backup.)

4.4 Abstracting over Backup Nodes: Location Polymorphism

What’s better than one backup? How about two? In production environments, one primary and
one backup may not be enough to satisfy data durability requirements. Indeed, distributed data
storage systems such as Hadoop default to a replication factor of three [Shvachko et al. 2010].
Therefore, we might wish to implement a double-backup replication strategy for our key-value
store. This strategy is similar to the primary-backup approach of Section 4.3, but it replicates data
to two backup locations to further improve durability.

A naive implementation of double-backup replication would repeat the part of the choreography
that forwards the request from the primary to the backup, using the same code for forwarding to

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

207:16 Gan Shen, Shun Kashiwa, and Lindsey Kuper

the second backup. However, with HasChor’s location polymorphism, we can abstract away the
shared logic into a location-agnostic choreography.

Figure 11 defines a doBackup choreography that involves two abstract locations: 1ocA and locB.
doBackup takes a request at 1ocA and state at 1ocB as arguments, examines the type of the request
at locA, and handles the request at 1ocB if it is a Put request.

The doubleBackup function in Figure 12 implements our double-backup replication strategy us-
ing doBackup. It calls doBackup twice with different backup locations, bkup1 and bkup2. We could
also refactor primaryBackup to call doBackup once, and we can easily extend it to any number of
backup locations. We could further generalize our approach to support replication strategies with
different topologies, such as chain replication [van Renesse and Schneider 2004].

5 IMPLEMENTATION

In this section, we turn our attention to the implementation of the HasChor library itself. The
implementation is centered around two monads: Choreo (Section 5.3), for choreographies, and
Network (Section 5.4), for network programs. Both monads are implemented as a freer monad in-
stantiated with an effect signature that describes the effectful operations the monad provides, so
we begin with a short primer on freer monads (Section 5.1). We also discuss our implementation
of located values (Section 5.2). Finally, we present our implementation of endpoint projection (Sec-
tion 5.5), the central concept of choreographic programming that links up Choreo and Network.

5.1 Freer Monads
We start with the freer monad [Kiselyov and Ishii 2015], which is defined as follows:

data Freer f a where
Return :: a -> Freer f a
Do :: fb-> (b ->Freer f a) -> Freer f a

A freer monad Freer f a represents an effectful computation that returns a result of type a. The
parameter f :: % -> * is an effect signature that defines the effectful operations allowed in the
computation. Return r denotes a pure computation that returns a value r of type a. Do eff k
denotes an effectful computation: the first argument eff :: f b is the effect to perform, and
it returns a result of type b; the second argument k :: b -> Freer f a is a continuation that
specifies the rest of the computation given the result of the performed effect.

The first advantage of using freer monads is that they free us from defining boilerplate monad
instances. Freer f is a monad given any effect signature f:

instance Monad (Freer f) where
return = Return

(Return r) >>= f = f r
(Do eff k) >>= f = Do eff (k >=> f)

The monadic return simply corresponds to the Return constructor. The monadic bind operator
directly applies the follow-up monadic computation to a pure computation or chains together the
follow-up monadic computation with the continuation of the effectful computation.®

The second advantage of using freer monads is that they separate the interface and imple-
mentation of effectful computations. A freer monad by itself doesn’t assign any meaning to ef-
fects; it merely accumulates them as a term. To interpret effects in a freer monad, we define an
interpFreer function that interprets the effects in a freer monad in terms of another monad:

%The (>=>) operator is the Kleisli composition and has type (a => m b) => (b -=> m ¢) -> a -> m c.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:17

interpFreer :: Monad g => (forall a. f a -> g a) -> Freer f a -> g a
interpFreer handler (Return r) = return r
interpFreer handler (Do eff k) = handler eff >>= interpFreer handler . k

An effect handler, of type forall a. f a -> g afor some monad g, maps effects described by f
to monadic operations in g. interpFreer takes such an effect handler and folds it over a freer
monad: for Return r, we simply return r in the monad without using the effect handler; for
Do eff k, we use the effect handler handler to interpret the effect eff, then bind the result to
the continuation k and recursively interpret the result of running the continuation.

To use an effectful operation in the freer monad, we lift it into the monad by wrapping the effect
in the Do constructor with Return as the continuation:

toFreer :: f a -> Freer f a
toFreer eff = Do eff Return

We use Freer to define the Network and Choreo monads, as we’ll see in the following sections.

5.2 Located Values

Before discussing the implementation of the Choreo monad and endpoint projection, let’s first
take a look at how located values are implemented, as we will use them to introduce those two
concepts. A located value a @ 1 represents a value of type a located at location 1:

data a @ (1 :: LocTy) = Wrap a | Empty
a @ 1 has two constructors, Wrap and Empty. Wrap represents a located value from location 1’s
point of view — it’s just a value of type a. Empty represents a located value from locations other
than 1’s point of view — it’s empty to them, and they should never try to access it.

Internally, we provide two functions wrap and unwrap to create and use a located value:

wrap :: a ->a @1

wrap = Wrap

unwrap :: a @1 -> a
unwrap (Wrap a) = a
unwrap Empty = error "Should never happen for a well-typed choreography!"

The wrap function simply calls the Wrap constructor. The unwrap function unwraps a located value.
It is erroneous to unwrap an empty located value, as this represents a location accessing a value
that doesn’t reside on it. As a result, the unwrap function cannot be directly exposed to users.
Instead, users access it through the argument of type Unwrap 1 in the function passed to locally
(Section 3.3.1). When using unwrap internally, we carefully avoid unwrapping an empty value.

5.3 The Choreo Monad

We are now ready to discuss the implementation of the Choreo monad, which represents chore-
ographies. It is defined as a Freer monad instantiated with the below ChoreoSig effect signature:

type Unwrap 1 = forall a. a @1 -> a

data ChoreoSig m a where
Local :: Proxy 1 -> (Unwrap 1 -> m a) -> ChoreoSig m (a @ 1)
Comm :: Proxy 1 -=> a @1 -> Proxy 1' -> ChoreoSig m (a @ 1')
Cond :: Proxy 1 -=> a @1 -> (a -> Choreo m b) -> ChoreoSig m b

type Choreo m = Freer (ChoreoSig m)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

207:18 Gan Shen, Shun Kashiwa, and Lindsey Kuper

ChoreoSig is parameterized by an underlying monad m that represents local computations, i.e.,
computations that are run with locally (Section 3.3.1). Each constructor of ChoreoSig corre-
sponds to one of the three main language constructs we introduced in Section 3.3. In fact, the
language constructs are merely these effects lifted into the Choreo monad:

locally :: Proxy 1 -> (Unwrap 1 -> m a) -> Choreo m (a @ 1)
locally 1 m = toFreer (Local 1 m)

(~>) :: (Proxy 1, a @1) -> Proxy 1' -> Choreom (a @ 1")
(~>) (1, a) 1" = toFreer (Comm 1 a 1")

cond :: (Proxy 1, a @ 1) -> (a -> Choreo m b) -> Choreo m b
cond (1, a) ¢ = toFreer (Cond 1 a c)

A Choreo computation can be directly executed as a single-threaded local program with the
runChoreo function:

runChoreo :: Monad m => Choreo m a -> m a
runChoreo = interpFreer handler
where

handler :: Monad m => ChoreoSig m a -> m a
handler (Local _ m) wrap <$> m unwrap

handler (Comm _ a _) return $ (wrap (unwrap a))
handler (Cond _ a ¢) runChoreo $ ¢ (unwrap a)

The runChoreo function interprets a Choreo monad as a single monadic program, with the only
intricacy being that we need to appropriately wrap and unwrap values. Local 1 mis interpreted
as just running the local computation, m, Comm s a r is interpreted as directly returning the value
being communicated, a; and Cond 1 a c is interpreted as directly applying the rest of the chore-
ography c to the scrutinee a.

5.4 The Network Monad

The Network monad represents programs with explicit message sends and receives, which we call
network programs, and is the target of endpoint projection. The Network monad relies on a message
transport backend to carry out message sends and receives, such as the HTTP backend discussed
earlier in Section 3.4. Happily, because free monads separate the interface and implementation of
an effectful computation, defining and using a new backend is as simple as defining and calling a
new interpretation function.

The Network monad is defined as a Freer monad instantiated with the following NetworkSig
effect signature:’

data NetworkSig m a where

Run :: ma -> NetworkSig m a
Send :: a -> LocTm -> NetworkSig m ()
Recv :: LocTm -> NetworkSig m a

BCast :: a -> NetworkSig m ()

type Network m = Freer (NetworkSig m)

"We assume each piece of data is an instance of Show and Read for (de)serialization and omit the instance declaration for
clarity.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:19

Like ChoreoSig, NetworkSig is also parameterized by an underlying monad m that represents local
computations. It has four constructors: Run corresponds to a local computation; Send and Recv
correspond to sending and receiving messages to and from a location, respectively; and BCast
corresponds to broadcasting a message (that is, sending to all locations). As we will see shortly in
Section 5.5, we use broadcasting to implement endpoint projection for the cond operation. We lift
the above effects into the Network monad using toFreer:

run :: m a -> Network m a
run m = toFreer (Run m)

send :: a -> LocTm -> Network m ()
send a 1 = toFreer (Send a 1)

recv :: LocTm -> Network m a
recv 1 = toFreer (Recv 1)

broadcast :: a -> Network m ()
broadcast a = toFreer (BCast a)

Network can be implemented in a variety of ways with different message transport backends.
HasChor supports this by providing a type class Backend:

class Backend config where
runNetwork :: config -> LocTm -> Network m a -> m a

A message transport backend defines a configuration type that specifies how locations are mapped
to network hosts and ports and a runNetwork function that runs a network program at a specific
location. For example, in the provided HTTP backend, runNetwork is implemented using the Ser-
vant web API library [Mestanogullari et al. 2015]. The configuration for the HTTP backend is a
map from locations to hostnames and ports, as in Figures 5 and 7. Each location runs a web server
that provides an endpoint for clients to send it messages, and puts the messages into a buffer when
it receives a message. A Send a 1 isinterpreted as calling the endpoint at location 1 with message
a, aRecv 1 is interpreted as taking a message from location 1 from the buffer, and a Bcast ais
interpreted as a sequence of Sends to all locations with message a.

5.5 Endpoint Projection

We have finally arrived at endpoint projection (EPP), the interpretation of a choreography as the
corresponding network program for a specific location. In HasChor, EPP corresponds to interpret-
ing a Choreo program as a Network program with respect to a term-level location. The function
epp implements EPP in HasChor, and it is shown in Figure 13.% The epp function calls interpFreer
with a handler that maps each effect in ChoreoSig into a monadic action in Network:

e ForeffectLocal 1 m,if the location being projected to is the same as 1, then we run the local
computation m given an unwrap function and wrap the result to a located value; otherwise
we return a Empty located value.

e For effect Comm s a r, if the location being projected to is the same as the sender’s location,
s, then we interpret it as a send of a to the receiver location r and return an Empty located
value; if it’s the same as the receiver’s location r, then we interpret it as a recv from s and
wrap the result to a located value; otherwise, we return a Empty located value.

8The function toLocTm :: forall (1 :: LocTy). Proxy 1 -> LocTmin Figure 13 turns a type-level location to a term-
level location and is defined as symbolVal from the GHC.TypelLits module.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

207:20 Gan Shen, Shun Kashiwa, and Lindsey Kuper

1 epp :: Choreo m a -> LocTm -> Network m a

2 epp ¢ 1' = interpFreer handler c

3 where

4 handler :: ChoreoSig m a -> Network m a

5 handler (Local 1 m)

6 | toLocTm 1 == 1" = wrap <$> run (m unwrap)

7 | otherwise = return Empty

8 handler (Comm s a r)

9 | toLocTm s == 1' = send (unwrap a) (toLocTm r) >> return Empty
10 | toLocTm r == 1" = wrap <$> recv (toLocTm s)

11 | otherwise = return Empty

12 handler (Cond 1 a c¢)

13 | toLocTm 1 == 1' = broadcast (unwrap a) >> epp (c (unwrap a)) 1’
14 | otherwise = recv (toLocTm 1) >>= \x -> epp (c x) 1’

Fig. 13. Endpoint projection function epp

e For effect Cond 1 a c, if the location being projected to is the same as 1, then this is the
location who’s making the decision, so it broadcasts the decision to all locations and then
continues projecting the branches of the cond expression; otherwise, the location receives a
decision and then continues projecting the branches with the received decision.

Since all effects return a located value, if the location being projected to owns the value, for exam-
ple, on lines 6 and 10 of epp, we use wrap <$> to create a located value, indicating that the value
resides on that location. Otherwise, on lines 7 and 11 of epp, we return an Empty value indicating
that the value doesn’t reside on that location.

The concise implementation of epp closely resembles previous pen-and-paper presentations of
endpoint projection [Cruz-Filipe and Montesi 2020, Fig. 9], while being executable code. Consider
the meaning of (~>), for instance: if you’re the sender, it means send; if you're the receiver, it
means recv; and if you’re neither of those, it’s a no-op. This semantics is at the heart of chore-
ographic programming, and our use of Freer lets us express it cleanly in epp, in a way that is
completely decoupled from the actual message transport backend that implements send and recv.

Not only does this decoupling make the implementation of epp elegant, it also makes HasChor
developer-friendly by not mandating any particular choice of message transport mechanism, and
instead enabling a well-defined way to plug in one’s own transport layer, using the Backend in-
terface. While our provided HTTP backend is intended for web programming, nothing else about
HasChor is specific to the web setting. Alternative backends could make HasChor a viable option
for programming in any setting in which participants communicate by message passing.

6 RELATED WORK

Choreographies emerged in the mid-2000s in the context of web services. The Web Services Chore-
ography Model [World Wide Web Consortium 2004] and Web Services Choreography Descrip-
tion Language [World Wide Web Consortium 2005] specifications aimed to establish standards for
global descriptions of the behavior of collections of communicating processes. These standardiza-
tion efforts took place with the participation of academic experts (particularly from the session
types community), and they informed and inspired research on choreographies and endpoint pro-
jection [Qiu et al. 2007; Mendling and Hafner 2005; Carbone et al. 2007, 2012; Lanese et al. 2008;

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:21

McCarthy and Krishnamurthi 2008; Corin et al. 2007], laying the foundation for practical choreo-
graphic programming; Montesi [2023] gives an overview of these developments.

While choreographies as a specification mechanism came earlier, Carbone and Montesi [2013]
pioneered the concept of a choreographic programming language with their Chor language. Car-
bone and Montesi reason about the correctness of choreographies in terms of multiparty session
types [Honda et al. 2008]. Endpoint projection is reminiscent of Honda et al. [2008]’s concept of
projection of a global type to a local type, although at the term level rather than the type level.
The related literature on session types is too vast to summarize here, but Hiittel et al. [2016] and
Ancona et al. [2016] provide good surveys.

Hirsch and Garg [2022]’s Pirouette language and Cruz-Filipe et al. [2022]’s ChorA language are
the first functional choreographic programming languages. The focus of both these works is on the
semantic foundations of functional choreographic programming, rather than on practically usable
and deployable implementations. Pirouette is implemented in the Coq proof assistant and stands
out for having a fully mechanized proof of deadlock freedom. Pirouette supports higher-order
choreographic functions, but lacks support for location polymorphism. ChorA supports higher-
order choreographic functions and a limited form of location polymorphism, in which only top-
level function definitions may be location-polymorphic. In recent work, Graversen et al. [2023]
present PolyChorA, a successor to ChorA that supports full process polymorphism, i.e., process-
polymorphic lambda expressions that are usable in arbitrary expression contexts.

Currently, the most fully-realized incarnation of choreographic programming in a practical lan-
guage may be Choral [Giallorenzo et al. 2020], an object-oriented language that extends Java with
choreographic programming features. In Choral, choreographies are objects, and so Choral sup-
ports higher-order choreographies in the sense that choreographic objects may contain fields that
are themselves choreographic objects. Choral also supports location polymorphism (which it calls
role parameterization); in fact, it was by porting examples of location-polymorphic Choral code
to HasChor that we discovered that HasChor also enjoys support for location polymorphism. Fi-
nally, Choral, like HasChor, is designed to be independent of any particular message transport
mechanism. HasChor’s implementation on top of Haskell is in some ways analogous to Choral’s
implementation on top of Java, although, unlike Choral, HasChor is “just a library” and does not
require a separate compiler.

As discussed in Section 3.3.3, the design of HasChor’s cond trades off efficiency for program-
mer convenience: rather than requiring programmers to manually write synchronization code in
the branches of a conditional expression, HasChor inserts the needed communication automati-
cally. As Dalla Preda et al. [2016] observe, ensuring that all participants in a choreography remain
sufficiently “aware of the evolution of the global computation” seems to involve an efficiency/ease-
of-use trade-off in choreographic languages in general. One approach is to deem a choreography
unprojectable if the programmer forgets to write the communication code necessary for knowl-
edge of choice [Carbone et al. 2007, 2012; Hirsch and Garg 2022]. On the other hand, HasChor’s
approach of inserting communication automatically is reminiscent of the choreographic language
AIOC]J [Dalla Preda et al. 2014, 2016].

However, the HasChor approach is admittedly heavy-handed in that a cond expression results
in a broadcast to all participants in the choreography, whether or not they actually need to know
what choice was made. Previous work on choreography amendment and repair [Cruz-Filipe and
Montesi 2020; Lanese et al. 2013; Basu and Bultan 2016] involves statically analyzing choreogra-
phies and inserting only the minimum amount of communication needed. In particular, Cruz-Filipe
and Montesi [2020]’s amendment analysis is based on merging [Carbone et al. 2012]. Because of
HasChor’s rather unconventional implementation approach that involves dynamic interpretation

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

207:22 Gan Shen, Shun Kashiwa, and Lindsey Kuper

of freer monads, choreography amendment in the traditional sense would seem difficult to accom-
plish in HasChor, if not impossible. It might still be possible, though, to improve the efficiency
of HasChor’s cond by providing a way to annotate choreographies with the set of locations that
participate in them. We intend to investigate this idea further in future work.

Finally, choreographic programming is a close cousin of multitier programming [Cooper et al.
2007; Serrano et al. 2006; Murphy et al. 2007; Chlipala 2015; Serrano and Prunet 2016; Weisen-
burger et al. 2018] (see Weisenburger et al. [2020] for a comprehensive survey of the multitier
programming literature). Multitier programming emerged in response to the complexity of web
programming in the early 2000s, which required programming the tiers of an application in dif-
ferent languages (for instance, JavaScript for client-side code, Java for server-side code, and SQL
for an underlying database tier). In multitier programming, one uses a single, unified language
to program all of the tiers in the same compilation unit, with a compiler taking care of splitting
the program into deployable units in distinct languages — a technique not unlike endpoint projec-
tion. Giallorenzo et al. [2021] offer a thoughtful exploration of the evident relationship between
multitier and choreographic programming. We posit that functional choreographic languages like
HasChor could be a good platform for further investigation of this relationship; after all, many
multitier languages, such as the pioneering multitier languages Links [Cooper et al. 2007] and
Hop [Serrano et al. 2006; Serrano and Prunet 2016], Murphy et al. [2007]’s ML5, Chlipala [2015]’s
Ur/Web, and Weisenburger et al. [2018]’s ScalaLoci, are distinctly functional in nature. ML5 and
ScalaLoci in particular influenced HasChor’s API design, especially our notion of located values.

7 CONCLUSION AND FUTURE WORK

We presented HasChor, a framework for functional choreographic programming in Haskell. Our
model for choreographic programming is based on a monad, Choreo, for expressing choreogra-
phies. Our Haskell-based implementation means that we enjoy support for higher-order chore-
ographies and location-polymorphic choreographies — both recently-proposed features of choreo-
graphic languages — essentially for free. Furthermore, HasChor users have access to all of Haskell’s
libraries and tooling, bringing choreographic programming within reach of everyday Haskellers
and bringing the power of Haskell within reach of choreographic programming. Finally, HasChor
is an understandable and usable implementation of choreographic programming: our implementa-
tion, based on the freer monad, makes endpoint projection straightforward and at the same time
enables a programmer-friendly design of swappable network backends. Although HasChor relies
heavily on Haskell’s monad abstraction and flexible type system, we believe the same approach
could be applied to other languages as well.

HasChor is certainly no remedy for all the problems of distributed programming. In particular,
two of the biggest challenges of distributed programming are asynchrony, in which messages take
arbitrarily long to arrive at their destinations, and faults, in which nodes may crash and messages
may be lost entirely. HasChor — like other functional choreographic languages [Hirsch and Garg
2022; Cruz-Filipe et al. 2022] — does nothing in and of itself to address these difficulties. In future
work, we are interested in exploring the theory and practice of fault-tolerant and asynchronous
choreographic programming, building on HasChor as a basis for experimentation.

Another avenue of future work is formalizing the semantics of HasChor, so that we can ul-
timately prove the correctness of endpoint projection and guarantee deadlock freedom. Since
Choreo choreographies are directly runnable using runChoreo as well as being projectable to net-
work programs, it may be fruitful to view the direct semantics of Choreo as a specification, and
define the correctness of endpoint projection with respect to that specification.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:23

ACKNOWLEDGEMENTS

We thank Jonathan Castello, Andrew Hirsch, Fabrizio Montesi, Patrick Redmond, and the anony-
mous ICFP ’23 reviewers, all of whom gave valuable feedback that improved this paper. Patrick
Redmond also contributed significantly to the implementation of HasChor’s HTTP backend.

This material is based upon work supported by the National Science Foundation under Grant
No. CCF-2145367. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

Peter A. Alsberg and John D. Day. 1976. A Principle for Resilient Sharing of Distributed Resources. In Proceedings of the
2nd International Conference on Software Engineering (San Francisco, California, USA) (ICSE ’76). IEEE Computer Society
Press, Washington, DC, USA, 562-570.

Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils
Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,
Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2016. Behavioral Types in
Programming Languages. Foundations and Trends® in Programming Languages 3, 2-3 (2016), 95-230. https://doi.org/
10.1561/2500000031

Samik Basu and Tevfik Bultan. 2016. Automated Choreography Repair. In Fundamental Approaches to Software Engineering,
Perdita Stevens and Andrzej Wasowski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 13-30.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2007. Structured Communication-Centred Programming for Web
Services. In Programming Languages and Systems, Rocco De Nicola (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
2-17.

Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2012. Structured Communication-Centered Programming for Web
Services. ACM Trans. Program. Lang. Syst. 34, 2, Article 8 (June 2012), 78 pages. https://doi.org/10.1145/2220365.2220367

Marco Carbone and Fabrizio Montesi. 2013. Deadlock-Freedom-by-Design: Multiparty Asynchronous Global Programming.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome,
Italy) (POPL °13). Association for Computing Machinery, New York, NY, USA, 263-274. https://doi.org/10.1145/2429069.
2429101

Adam Chlipala. 2015. Ur/Web: A Simple Model for Programming the Web. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for Computing
Machinery, New York, NY, USA, 153-165. https://doi.org/10.1145/2676726.2677004

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007. Links: Web Programming Without Tiers. In Formal
Methods for Components and Objects, Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 266—-296.

Ricardo Corin, Pierre-Malo Denielou, Cedric Fournet, Karthikeyan Bhargavan, and James Leifer. 2007. Secure Imple-
mentations for Typed Session Abstractions. In 20th IEEE Computer Security Foundations Symposium (CSF’07). 170-186.
https://doi.org/10.1109/CSF.2007.29

Luis Cruz-Filipe, Eva Graversen, Lovro Lugovi¢, Fabrizio Montesi, and Marco Peressotti. 2022. Functional Choreographic
Programming. In Theoretical Aspects of Computing — ICTAC 2022, Helmut Seidl, Zhiming Liu, and Corina S. Pasareanu
(Eds.). Springer International Publishing, Cham, 212-237.

Luis Cruz-Filipe and Fabrizio Montesi. 2020. A core model for choreographic programming. Theoretical Computer Science
802 (2020), 38-66. https://doi.org/10.1016/j.tcs.2019.07.005

Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro. 2016. Dynamic Choreographies:
Theory And Implementation. Logical Methods in Computer Science, Volume 13, Issue 2 (April 10, 2017) Imcs:3263. (2016).
https://doi.org/10.23638/LMCS-13(2:1)2017 arXiv:arXiv:1611.09067

Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro, and Maurizio Gabbrielli. 2014. AIOCJ: A Choreographic
Framework for Safe Adaptive Distributed Applications. CoRR abs/1407.0975 (2014). arXiv:1407.0975 http://arxiv.org/
abs/1407.0975

W. Diffie and M. Hellman. 1976. New directions in cryptography. IEEE Transactions on Information Theory 22, 6 (1976),
644-654. https://doi.org/10.1109/TIT.1976.1055638

The GHC Team. 2023. 6.1.1. Controlling extensions — Glasgow Haskell Compiler 9.7.20230225 User’s Guide. https:
//ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/control.html#extension-GHC2021

Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2020. Object-Oriented Choreographic Programming. https:
//doi.org/10.48550/ ARXIV.2005.09520

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2676726.2677004
https://doi.org/10.1109/CSF.2007.29
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.23638/LMCS-13(2:1)2017
https://arxiv.org/abs/arXiv:1611.09067
https://arxiv.org/abs/1407.0975
http://arxiv.org/abs/1407.0975
http://arxiv.org/abs/1407.0975
https://doi.org/10.1109/TIT.1976.1055638
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/control.html#extension-GHC2021
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/control.html#extension-GHC2021
https://doi.org/10.48550/ARXIV.2005.09520
https://doi.org/10.48550/ARXIV.2005.09520

207:24 Gan Shen, Shun Kashiwa, and Lindsey Kuper

Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and Pascal Weisenburger.
2021. Multiparty Languages: The Choreographic and Multitier Cases. In 35th European Conference on Object-Oriented
Programming (ECOOP 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 194), Anders Moller and
Manu Sridharan (Eds.). Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl, Germany, 22:1-22:27. https:
//doi.org/10.4230/LIPIcs. ECOOP.2021.22

Eva Graversen, Andrew K. Hirsch, and Fabrizio Montesi. 2023. Alice or Bob?: Process Polymorphism in Choreographies.
https://doi.org/10.48550/ARXIV.2303.04678

J. N. Gray. 1978. Notes on data base operating systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 393-481. https:
//doi.org/10.1007/3-540-08755-9_9

Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: Higher-Order Typed Functional Choreographies. Proc. ACM Program.
Lang. 6, POPL, Article 23 (Jan. 2022), 27 pages. https://doi.org/10.1145/3498684

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In Proceedings of
the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California,
USA) (POPL °08). Association for Computing Machinery, New York, NY, USA, 273-284. https://doi.org/10.1145/1328438.
1328472

Hans Hiittel, Ivan Lanese, Vasco T. Vasconcelos, Luis Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous,
Luca Padovani, Antonio Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of
Session Types and Behavioural Contracts. ACM Comput. Surv. 49, 1, Article 3 (apr 2016), 36 pages. https://doi.org/10.
1145/2873052

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. In Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell (Vancouver, BC, Canada) (Haskell ’15). Association for Computing Machinery, New York, NY,
USA, 94-105. https://doi.org/10.1145/2804302.2804319

Butler Lampson and Howard E. Sturgis. 1979. Crash Recovery in a Distributed Data Storage System. (June 1979). https:
//www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/ This unpub-
lished paper was widely circulated in samizdat.

Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. 2008. Bridging the Gap between Interaction- and
Process-Oriented Choreographies. In Proceedings of the 2008 Sixth IEEE International Conference on Software Engineering
and Formal Methods (SEFM "08). IEEE Computer Society, USA, 323-332. https://doi.org/10.1109/SEFM.2008.11

Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. 2013. Amending Choreographies. In Proceedings 9th International
Workshop on Automated Specification and Verification of Web Systems, WWV 2013, Florence, Italy, 6th June 2013 (EPTCS,
Vol. 123), Anténio Ravara and Josep Silva (Eds.). 34-48. https://doi.org/10.4204/EPTCS.123.5

Jay McCarthy and Shriram Krishnamurthi. 2008. Cryptographic Protocol Explication and End-Point Projection. In Com-
puter Security - ESORICS 2008, Sushil Jajodia and Javier Lopez (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
533-547.

Jan Mendling and Michael Hafner. 2005. From Inter-organizational Workflows to Process Execution: Generating BPEL
from WS-CDL. In On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops, Robert Meersman, Zahir Tari,
and Pilar Herrero (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 506-515.

Alp Mestanogullari, Sénke Hahn, Julian K. Arni, and Andres Loh. 2015. Type-Level Web APIs with Servant: An Exercise
in Domain-Specific Generic Programming. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming
(Vancouver, BC, Canada) (WGP 2015). Association for Computing Machinery, New York, NY, USA, 1-12. https://doi.
org/10.1145/2808098.2808099

Fabrizio Montesi. 2013. Choreographic Programming. Ph.D. Thesis. IT University of Copenhagen. https://www.
fabriziomontesi.com/files/choreographic-programming.pdf.

Fabrizio Montesi. 2023. Introduction to Choreographies. Cambridge University Press. https://doi.org/10.1017/9781108981491

Tom Murphy, VII, Karl Crary, and Robert Harper. 2007. Type-Safe Distributed Programming with ML5. In Trustworthy
Global Computing, Third Symposium, TGC 2007, Sophia-Antipolis, France, November 5-6, 2007, Revised Selected Papers.
108-123. https://doi.org/10.1007/978-3-540-78663-4_9

Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. 2007. Towards the Theoretical Foundation of Choreography.
In Proceedings of the 16th International Conference on World Wide Web (Banff, Alberta, Canada) (WWW ’07). Association
for Computing Machinery, New York, NY, USA, 973-982. https://doi.org/10.1145/1242572.1242704

Manuel Serrano, Erick Gallesio, and Florian Loitsch. 2006. Hop: a language for programming the web 2.0. In Companion
to the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA. 975-985. https://doi.org/10.1145/1176617.1176756

Manuel Serrano and Vincent Prunet. 2016. A Glimpse of Hopjs. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming (Nara, Japan) (ICFP 2016). Association for Computing Machinery, New York, NY,
USA, 180-192. https://doi.org/10.1145/2951913.2951916

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.48550/ARXIV.2303.04678
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1145/3498684
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2804302.2804319
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.4204/EPTCS.123.5
https://doi.org/10.1145/2808098.2808099
https://doi.org/10.1145/2808098.2808099
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://doi.org/10.1017/9781108981491
https://doi.org/10.1007/978-3-540-78663-4_9
https://doi.org/10.1145/1242572.1242704
https://doi.org/10.1145/1176617.1176756
https://doi.org/10.1145/2951913.2951916

HasChor: Functional Choreographic Programming for All (Functional Pearl) 207:25

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010. The Hadoop Distributed File System. In
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). 1-10. https://doi.org/10.1109/MSST.2010.
5496972

Robbert van Renesse and Fred B. Schneider. 2004. Chain Replication for Supporting High Throughput and Availability. In
Proceedings of the 6th Conference on Symposium on Operating Systems Design & Implementation - Volume 6 (San Francisco,
CA) (OSDI'04). USENIX Association, USA, 7.

Pascal Weisenburger, Mirko Kohler, and Guido Salvaneschi. 2018. Distributed System Development with ScalaLoci. Proc.
ACM Program. Lang. 2, OOPSLA, Article 129 (oct 2018), 30 pages. https://doi.org/10.1145/3276499

Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. 2020. A Survey of Multitier Programming. ACM Comput.
Surv. 53, 4, Article 81 (sep 2020), 35 pages. https://doi.org/10.1145/3397495

The World Wide Web Consortium. 2004. WS Choreography Model Overview. https://www.w3.org/TR/ws-chor-model/

The World Wide Web Consortium. 2005. Web Services Choreography Description Language Version 1.0. https://www.w3.
org/TR/ws-cdl-10/

The World Wide Web Consortium. 2006. Web Services Choreography Description Language: Primer. https://www.w3.
org/TR/ws-cdl-10-primer/

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 207. Publication date: August 2023.

https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3397495
https://www.w3.org/TR/ws-chor-model/
https://www.w3.org/TR/ws-cdl-10/
https://www.w3.org/TR/ws-cdl-10/
https://www.w3.org/TR/ws-cdl-10-primer/
https://www.w3.org/TR/ws-cdl-10-primer/

	Abstract
	1 Introduction
	2 A Tour of Choreographic Programming in HasChor
	2.1 The Bug-Prone Bookseller
	2.2 The Choreographic Approach
	2.3 Higher-Order Choreographies and Location Polymorphism
	2.4 Endpoint Projection

	3 The HasChor API
	3.1 Locations
	3.2 Located Values
	3.3 The Choreo Monad
	3.4 Running Choreographies

	4 Beyond Booksellers: A Replicated In-Memory Key-Value Store
	4.1 A Simple Client-Server Key-Value Store
	4.2 A Replicated Key-Value Store
	4.3 Abstracting over Replication Strategies: Higher-Order Choreographies
	4.4 Abstracting over Backup Nodes: Location Polymorphism

	5 Implementation
	5.1 Freer Monads
	5.2 Located Values
	5.3 The Choreo Monad
	5.4 The Network Monad
	5.5 Endpoint Projection

	6 Related Work
	7 Conclusion and Future Work
	References

