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Nodal topological superconductivity in nodal-line semimetals
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We analyze possible nodal superconducting phases that emerge from a doped nodal-line semimetal. We
show that nodal-line superconducting phases are favored by interactions mediated by short-range ferromagnetic
fluctuations or Hund’s coupling. It is found that the leading pairing channels are momentum-independent,
orbital-singlet and spin-triplet. In the pairing state, we show that the Bogoliubov-de Gennes Hamiltonian hosts
a pair of topologically protected nodal rings on the equators of the torus Fermi surface (FS). Using a topological
classification for gapless systems with inversion symmetry, we find that these nodal rings are topologically
nontrivial and protected by integer-valued monopole charges ν = ±2. In the scenario of pairing driven by
ferromagnetic fluctuations, we analyze the fate of superconductivity in the magnetically ordered phase. Based on
Ginzburg-Landau free energy analysis, we find the energetically favored superconducting state is characterized
by the coexistence of two pairing orders whose d vectors are perpendicular to the magnetization axis M with
their phases unfixed. In this case, each nodal loop in the pairing state splits into two, carrying a ±1 monopole
charge. For bulk-boundary correspondence, these nodal rings enclose flat-band Majorana zero modes on top and
bottom surface Brillouin zones with distinct Z-valued topological invariants.

DOI: 10.1103/PhysRevB.108.224503

I. INTRODUCTION

Topological semimetals have recently attracted intense re-
search interest in condensed matter physics. These systems
harbor gapless band structures within the three-dimensional
(3D) bulk Brillouin zone, with a vanishing density of states,
and are often topologically protected by specific crystalline
symmetries. Depending on the codimension of the gapless
region, the band crossing can form either nodal points [1,2] or
nodal lines [3–22]. The line nodes can form rings [8–13,15–
18], chains [16–18], links [19,20] and other composite struc-
tures [13,21,22]. In the absence of spin-orbit coupling, the
nodal rings can be further classified into Weyl or Dirac loops
depending on the absence or presence of spin degeneracy.

Nodal-line semimetals (NLSMs) are naturally interesting
platforms for the interplay between correlation effects and
nontrivial topology [23–29]. In particular, many recent the-
oretical studies have uncovered routes toward novel gapped
and nodal topological superconductivity from topological
semimetals [27–40]. In doped Weyl semimetals [35,36] and
Dirac semimetals [37–40], nodal topological superconducting
phases have been studied extensively. In the latter system
where crystalline symmetry plays an important role for the
normal state topology, it was found that topological nodal
pairing also requires crystalline symmetry and only appear for
certain unconventional pairing symmetries [39,40].

Recently, experimental studies have led to the discovery
of superconductivity within nodal-loop semimetals [41–50],
while for many of them the pairing symmetry remains to be
elucidated. For such systems, much of the theoretical interest
has focused on fully gapped pairing phases with unconven-
tional pairing symmetry that displays first- and higher-order
topology protected by crystalline symmetries [27–31]. In this
work we focus on nodal pairing phases from a doped NLSM

with a Dirac loop. Such Dirac loop structures have been re-
ported in Ca3P2 [12], Cu3N [13], CaAgP, and CaAgAs [14].

Our key findings are that doped Dirac-loop semimetals host
line-nodal pairing phases with B1u pairing symmetry of the
D2h group, which are momentum-independent, orbital-singlet,
and spin-triplet. We study both the pairing mechanism of
these orders and their topological classification. We show that
short-ranged ferromagnetic fluctuations, as well as Hund’s
coupling favor these pairing orders as leading superconduct-
ing instabilities. The pairing orders are described by a d
vector, which is degenerate. These pairing orders support a
pair of gapless superconducting nodal rings. Despite the sim-
ilarity to the nodal rings in the normal state, we show that
they are characterized by different topological indices. The
nodal rings are protected by particle-hole, inversion, and a
composite time-reversal symmetry, which is a product of the
physical time-reversal and a spin rotation. The Bogoliubov-
de Gennes (BdG) Hamiltonian belongs to the CI + I class
according to the AZ + I table in Ref. [51], which classifies
the topological charges of gapless nodes in centrosymmetric
systems. By directly computing the topological invariant, we
show that the superconducting nodal rings found in this sys-
tem are protected by nontrivial monopole charges ν = ±2.

The topological stability of the nodal rings can be illus-
trated by adding symmetry-allowed perturbation terms. In the
physical context, we consider the fate of the pairing phases
when the ferromagnetic order, whose short-ranged fluctua-
tions mediates superconductivity, becomes long-range. We
show via a Ginzburg-Landau analysis that in the presence
of a magnetic moment M, the leading pairing instability is
towards a coexistence of two pairing orders. The two pairing
orders belong to the Bu irreducible corepresentation of the
magnetic point group No. 8.4.27 [52], and are identical to the
pairing orders in the paramagnetic phase with d ⊥ M with
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their relative phase is fixed at π
2 . This can be understood as

a fully spin-polarized pairing state on the “larger” toroidal
Fermi surface while the “smaller” Fermi surface does not fa-
vor superconductivity. As the temperature lowers, both Fermi
surfaces are gapped (albeit incompletely), and in the BdG
spectrum each of the nodal loops in the paramagnetic phase
splits into two. To understand their topological properties, we
note that while the magnetic order breaks time-reversal sym-
metry and spin-rotation symmetry, it preserves their product,
i.e., the composite time-reversal symmetry that we use for the
CI topological classification. Indeed, a direct evaluation of the
topological invariant shows that each nodal loop now carries
a monopole charge ν = ±1. Furthermore, we find that the
topological invariant ν within class CI + I can be interpreted
as the difference of the topological invariants of two fully
gapped 1D subsystem separated by the superconducting nodal
rings. This is demonstrated in the energy spectrum with open
boundary condition along z direction, and the corresponding
surface Brillouin zones host flat-band Majorana zero modes
enclosed by the superconducting nodal rings.

The rest of this manuscript is organized as follows. In
Sec. II, we discuss the normal state Fermi surface of doped
NLSMs. In Sec. III, we use Fierz identity to determine that
from either ferromagnetic fluctuations or Hund’s coupling, the
leading pairing channels are both s-wave orbital-singlet and
spin-triplet pairings. The superconducting critical temperature
is also derived for these pairing channels. In Sec. IV, we show
that these pairings get projected onto the torus Fermi surfaces
and exhibit a pair of nodal rings on the equator due to the
nontrivial pseudospin textures. In Sec. III A, we investigate
the leading pairing channel in the presence of a ferromag-
netic order using a Ginzburg-Landau free energy analysis. In
Sec. VI, we analyze the topological protection of nodal-ring
superconducting orders in both paramagnetic and ferromag-
netic phases as well as the bulk-boundary correspondence and
summarize our results in Sec. VII.

II. LATTICE MODEL

A lattice model Hamiltonian for a nodal-ring semimetal is
given by [30]

H0(k) = (6 − t1 − 2 cos kx − 2 cos ky − 2 cos kz )σzs0

+ 2t2 sin kzσxs0 − µσ0s0, (1)

where σi(si ) denotes the ith Pauli matrix representing the or-
bital (spin) degrees of freedom and the implicit tensor product
(i.e., σ0 ⊗ s0) is assumed. In Eq. (1), (6 − t1) represents the
difference of on-site energies between two orbitals and the
momentum-dependent part of the first term denotes the dif-
ference of nearest-neighbor intraorbital hoppings. The second
term in Eq. (1) is the nearest-neighbor interorbital hopping
along ẑ direction and µ is the chemical potential. Here we
neglect the term ϵ(k)σ0s0 in the dispersion which does not
influence the normal state topology. For 0 < t1 < 4, H0(k)
displays a nodal ring (kz = 0, cos kx + cos ky = 2 − t1/2) in
the 3D Brillouin zone at half filling (µ = 0). When t1 is
continuously tuned from positive to negative, the nodal ring
shrinks to a point and annihilates itself. For finite but small
doping (|µ| < t1), the nodal ring inflates into a toruslike Fermi

FIG. 1. A schematic toruslike Fermi surface from H0(k) with
parameters t1 = 2.46, t2 = 0.5 and µ = 1.2.

surface (FS), shown in Fig. 1. Every point on the FS is twofold
degenerate.

The Hamiltonian in Eq. (1) preserves inversion and time-
reversal symmetry

ÎH0(k)Î−1 = H0(−k), (2)

T̂ H0(k)T̂ −1 = H0(−k), (3)

where Î = σz and T̂ = σzK (K is the complex conjugate
operator). H0(k) also preserves SU(2) spin-rotation symmetry
due to the absence of spin-orbit coupling, and hence T̂ 2 =
+1. Correspondingly, H0(k) belongs to class AI + I [51] and
the nodal ring is robust against symmetry-preserved pertur-
bations due to the Berry phase π of a Wilson loop which
interlocks with the nodal ring [53]. Different from a Weyl
loop, due to time-reversal symmetry, here the nodal-ring is
fourfold degenerate and is dubbed a “Dirac loop” [12–17].

III. PAIRING MECHANISM

In this section, we analyze superconducting instabilities
mediated by two similar types of interactions: short-range
ferromagnetic fluctuations and the interorbital Hund’s cou-
pling. We find that both pairing mechanisms favor s-wave,
orbital singlet, and spin-triplet channels. In Sec. IV, we show
that these pairing channels exhibit a pair of superconducting
nodal rings which is attributed to the nontrivial FS pseudospin
textures.

A. Ferromagnetic fluctuations

We consider a short-range ferromagnetic fluctuation
among all orbitals [diagrammatically shown in Fig. 2(a)],

Hferro = V0

∫
dpdkc†(p)σ0s⃗ c(k) · c†(−p)σ0s⃗ c(−k), (4)

where c†(p) = [ψ†
p,+,↑, ψ†

p,+,↓, ψ†
p,−,↑, ψ†

p,−,↓] is a four-
component fermionic creation operator and V0 < 0. Here ±
represents the orbital degree of freedom and ↑↓ labels the
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FIG. 2. Diagrammatic representations of (a) ferromagnetic spin
fluctuations and (b) ferromagnetic fluctuations converted to Cooper
pairing channels. Solid lines represent fermionic propagators. The
single-wavy line in (a) denotes the interaction V0 while the double
wavy-line in (b) denotes the interaction V0/4 after applying the Fierz
identity. The vertices in (b) contain a spin-triplet part (s⃗ isy) which is
not shown in the figure.

spin. This interaction can be decomposed into different orbital
and spin pairing channels separately by means of the Fierz
identity [54,55] (also see Appendix A) and we find

c†(p)σ0s⃗ c(k) · c†(−p)σ0s⃗ c(−k)

= 1
4

∑

a=0,x,y,z
b=x,y,z

c†(p)σaiσy ⊗ sbisy[c†(−p)]T

× [c(−k)]T(σaiσy)† ⊗ (sbisy)†c(k). (5)

The result in Eq. (5) shows that ferromagnetic fluctuations
naturally favor spin-triplet pairings [31,56,57]. Note that we
approximately set the scattering amplitude in Fig. 2(a) to
be a constant V0 which does not contribute to momentum
transfer due to the short-range behavior of the ferromagnetic
fluctuation. Moreover, the Pauli exclusion principle imposes
constraints on the pairing function, &k = −&T

−k. Hence
the leading pairing channel is expected to be momentum-
independent, orbital-singlet, and spin-triplet. After neglecting
the orbital-triplet channels in Eq. (5), the interaction in Eq. (4)
can be rewritten as

Hint = V0

4

∫
dpdkc†(p)iσy ⊗ s⃗ isy[c†(−p)]T

· [c(−k)]T(iσy ⊗ s⃗ isy)†c(k), (6)

diagrammatically shown in Fig. 2(b). The critical temperature
of these orbital-singlet and spin-triplet pairing channels in the
paramagnetic phase can be derived from a normal state FS in-
stability, which is captured by the linearized gap equation [58]

1 = −V0T
4

∑

k

Tr
[
σys j isyG0(k)σy(s j isy)†GT

0 (−k)
]
, (7)

where k ≡ (k,ωn) and ωn = (2n + 1)πT is the fermionic
Matsubara frequency. G0(k) is the normal state Green’s func-
tion G0(k) = [iωn − H0(k)]−1 and j = x/y/z denotes three
distinct spin-triplet pairing channels. The critical temperatures
for three spin-triplet channels are the same by SU(2) spin-
rotation symmetry, hence we only consider one particular spin
index (e.g., sx) throughout the rest of this subsection. In order
to explicitly evaluate the critical temperature, we write down
a k · p continuum model for a nodal-ring semimetal [9,10,59]

from Eq. (1)

H0(k) =
(

k2
x + k2

y

m∗ − t1

)

σz + vzkzσx − µ, (8)

where m∗ is the effective mass and vz is the Fermi velocity
along z direction. To further simplify the notation, we set
kp ≡ (k2

x + k2
y )/m∗ − t1 and replace kz → vzkz for now (vz is

resumed in the expression of density of states). The normal
state Green’s function is

G0(k) = (iωn + µ)σ0 + kpσz + kzσx

(iωn + µ)2 − k2
p − k2

z
. (9)

The integrand in Eq. (7) is simplified to

Tr
[
σysxG0(k)σysxGT

0 (−k)
]

= 2Tr
[

(iωn + µ)σ0 − kpσz − kzσx

(iωn + µ)2 − k2
r

× (−iωn + µ)σ0 + kpσz − kzσx

(−iωn + µ)2 − k2
r

]

=
4
(
ω2

n + µ2 − k2
p + k2

z

)
[
(iωn + µ)2 − k2

r

][
(−iωn + µ)2 − k2

r

] , (10)

where kr ≡
√

k2
p + k2

z and the frequency summation in Eq. (7)
yields

T
∑

n

Tr
[
σysxG0(k)σysxGT

0 (−k)
]

= 4
∫

C

dz
2π i

f (z)
−z2 + µ2

[
(z + µ)2 − k2

r

][
(−z + µ)2 − k2

r

] , (11)

where f (z) = 1/(eβz + 1). There are four roots in the de-
nominator z1,2 = ±kr − µ, z3,4 = ±kr + µ. Note that the mo-
mentum integral

∑
k ≡ m∗

8π2vz

∫
k dkpdkz is performed within a

narrow region around the Fermi surface (kr = µ), which is
even for both kp and kz. Assume an energy cutoff ωc around
FS, we obtain z1 ∈ [−ωc,ωc] and z2 ≃ −2µ. After applying
residue theorem, Eq. (7) becomes

1 ≃ −V0

4

∑

k

(
1
2

tanh βz1
2

z1
+ 3

2

tanh βz2
2

z2

)

≃ −V0

4
N (0)

2

∫ ωc

−ωc

dϵ
tanh βϵ

2

ϵ

≃ −V0

4
N (0) log

ωc

T
, (12)

where the density of states at Fermi energy N (0) is derived by
noting that the total number of states below the FS is

m∗

8π2vz

∫

kr!µ

dkpdkz = m∗

8π2vz
πµ2 = m∗µ2

8πvz
, (13)

hence

N (0) = d
dµ

m∗µ2

8πvz
= m∗|µ|

4πvz
. (14)
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FIG. 3. Diagrammatic representation of Hund’s coupling.

Together with the linearized gap equation, the critical temper-
ature is found to be

Tc = ωc exp
(

− 16πvz

m∗|µV0|

)
, (15)

It is important to emphasize that our theory is within the
weak-pairing regime, which is inapplicable to the half-filling
case (µ = 0) where the density of states vanishes. As a con-
sequence, a strong pairing mechanism is necessary to ensure
a superconducting instability at half-filling, which is beyond
the scope of our work.

B. Hund’s coupling

In this subsection, we analyze the pairing orders from
Hund’s coupling, which is an effective local ferromagnetic
coupling between different orbitals [60,61]. Following the
Feynman diagram in Fig. 3, the Hund’s coupling is expressed
as

HHunds = VH

∫
dpdkc†(p)

σ0 + σz

2
⊗ s⃗ c(k)

· c†(−p)
σ0 − σz

2
⊗ s⃗ c(−k), (16)

where VH < 0. Compared with Eq. (5), the spin channel de-
composition from Fierz identity is the same as ferromagnetic
fluctuations, both being spin-triplet. Nevertheless, the orbital
part decomposition is different (details in Appendix A),

c†(p)
(σ0 + σz )

2
⊗ s⃗ c(k) · c†(−p)

(σ0 − σz )
2

⊗ s⃗ c(−k)

= 1
8

∑

{i, j}
a=x,y,z

c†(p)σiiσy ⊗ saisy[c†(−p)]T

× [c(−k)]T(σ j iσy)† ⊗ (saisy)†c(k), (17)

where the summation of indices {i, j} runs over four dif-
ferent combinations {0, 0}, {z, 0}, {0, z}, {z, z} such that the
orbital parts of scattering vertices in Eq. (17) are {iσy, iσy},
{σx, iσy}, {iσy, σx}, and {σx, σx}. Similar to the case of fer-
romagnetic fluctuations, Hund’s coupling is also an effective
short-range interaction, thus the pairing function should be
momentum-independent. Accordingly, the only possible or-
bital part decomposition in Eq. (17) is {iσy, iσy} in compliance
with the Pauli exclusion principle. The pairing interaction
from Hund’s coupling has the same form as Eq. (6), which
confirms that s-wave orbital-singlet and spin-triplet pairing

channels are also attractive mediated from Hund’s coupling.
The derivation of the critical temperature is similar, and one
only needs to replace V0 by VH/2 in Eq. (15),

Tc = ωc exp
(

− 32πvz

m∗|µVH |

)
. (18)

C. Other interactions

Apart from the attractive interactions mentioned above, we
also investigate the effects from repulsive Hubbard interac-
tions

HHubbard = U
∑

i,σ

niσ↑niσ↓ + U ′
∑

i,s,s′

σ ̸=σ ′

niσ sniσ ′s′ , (19)

where U,U ′ > 0 denote on-site and extended Hubbard re-
pulsions, i is unit cell index in real space and niσ s ≡ c†

iσ sciσ s
is the density operator. We find that the on-site intraorbital
repulsion U has no corrections to the orbital-singlet and
spin-triplet channels. On the other hand, the extended term
U ′ has a destructive contribution to the orbital-singlet chan-
nels. Given our focus on the scenarios where ferromagnetic
fluctuations or Hund’s coupling becomes dominant, we can
justifiably neglect the contributions from the subdominant
extended Hubbard term.

IV. NODAL-RING SUPERCONDUCTIVITY

In this section, we show that s-wave orbital-singlet and
spin-triplet pairing orders exhibit a nodal gap structure on the
equators of the torus FS. In order to verify the gap nodes, we
project the pairing orders onto the torus FS since the pairing
instability comes from electronic states near FS [54]. We note
that the periodic parts of the Bloch wave function |±, k⟩ of
the normal state Hamiltonian H0(k) in Eq. (8) are given by

H0(k)|±, k⟩ = ε±,k|±, k⟩, (20)

with energies ε±,k = ±
√

k2
p + k2

z − µ. Without loss of gener-
ality, we assume a positive and small µ which satisfies 0 <
µ < t1. The Fermi surface is a torus given by k2

p + k2
z = µ2

and the Bloch state on FS is

|+, k⟩ = 1
√

2µ(µ − kp)

[
−kz

kp − µ

]
. (21)

In Fig. 4, we plot orbital pseudospin textures on the FS
contour at ky = 0 (real spins lack nontrivial polarizations
so we suppress them). The orbital-singlet pairing order
c†

k(i&σy)(c†
−k )T considered in Eq. (6) can be projected onto

the FS as [54]

&FS(k) = ⟨+, k|i&σy(|+,−k⟩∗) = &kz

µ
, (22)

which exhibits two superconducting nodal rings located at
kz = 0. The vanishing pairing amplitudes on the equators can
also be deduced from the orbital pseudospin textures on FS
shown in Fig. 4: i&σy is a pseudospin singlet state, while the
electronic states with opposite momentum at kz = 0 possess
the same pseudo-spin polarizations. Therefore, electrons at
kz = 0 cannot form Cooper pairs in the orbital-singlet chan-
nels. This leads to a pair of superconducting nodal rings at the
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FIG. 4. Pseudospin textures on FS at ky = 0 with parameters
t1 = 2.46, t2 = 0.5 and µ = 1.2. The blue curves represent the cross
sections of FS on the ky = 0 plane and the black arrows denote
pseudospin orientations.

equators of the torus Fermi surface (see Fig. 5). The afore-
mentioned nodal-ring superconductivity is a common feature
for all three spin-triplet pairing channels in the paramagnetic
phase.

V. FATE OF SUPERCONDUCTIVITY IN THE
FERROMAGNETIC PHASE

When ferromagnetic fluctuations become long-ranged, the
system may develop a ferromagnetic order below the Curie
temperature. Here we investigate the fate of pairing orders in

FIG. 5. Two superconducting nodal rings (red) on the equators
of the torus Fermi surface.

the presence of ferromagnetism. The normal state Hamilto-
nian becomes

H ′
0(k) = (6 − t1 − 2 cos kx − 2 cos ky − 2 cos kz )σzs0

+ 2t2 sin kzσxs0 − µσ0s0 − Mzσ0sz, (23)

where we assume the magnetization along z axis. The Fermi
surface is split into two spin-polarized sectors by the mag-
netic order [12]. The interplay between the ferromagnetic
order and spin-triplet superconductivity depends on the rel-
ative orientations between the magnetization and d vectors of
superconducting order parameters. The matrix forms of order
parameters describing ferromagnetism and superconductivity
are σ0(M · s) and iσy(d · s)isy (we are using the conventional
definition of d vector for spin-triplet p-wave pairings here,
although the d vector is independent of k). To be specific, we
denote the orbital-singlet and spin-triplet pairing orders by

&xiσysxisy for dx component,

&yiσysyisy for dy component,

&ziσyszisy for dz component. (24)

In order to determine the favored pairing channel, we per-
form a Ginzburg-Landau (GL) free energy analysis. Without
loss of generality, we choose M = (0, 0, Mz ). Including the
quadratic order term in d and the lowest-order coupling be-
tween superconducting orders and a preformed ferromagnetic
order M, the GL free energy can be generally expressed as
[62]

F (d, d∗) = α(T − Tc)d · d∗ + iγ M · (d × d∗), (25)

where α > 0 and Tc is the critical temperature given in
Eq. (15). The three spin-triplet orders share the same Tc in
the absence of ferromagnetism. When T < Tc, the negative
prefactor of the first term supports a finite order parameter
|d| ̸= 0. The coefficient γ in Eq. (25) can be evaluated from
the Feynman diagram calculation in Appendix B, giving rise
to γ = −N (0)/µ. Since γ < 0, the leading pairing channel
has a relative phase π/2 between dx and dy components. This
can be verified from the second term in Eq. (25)

iγ M · (d × d∗) = iγ Mz(dxd∗
y − dyd∗

x )

= γ Mz|dx||dy|(iei(αx−αy ) − iei(αy−αx ) )

= 2γ Mz|dx||dy| sin(αy − αx ), (26)

where αx(αy) is the phase factor carried by the dx(dy) com-
ponent. In order to minimize the free energy, we obtain
αy − αx = π/2. Therefore, d ∝ (1, i, 0) and the Cooper pair
carrys a z-component total spin Sz = +1. To understand this,
we recall that m = id × d∗ is the magnetic moment of the
Cooper pair in spin-triplet pairing channels. The second term
in Eq. (25) is nothing but the potential energy of a magnetic
dipole placed in an external magnetic field M. The spin po-
larizations of the Cooper pair and the ferromagnetic order are
aligned with each other so as to minimize the potential energy.
This pairing state is an analogy of the superfluid 3He-A1
phase.

As the temperature is further lowered, the emergence of
a subdominant pairing channel is anticipated. The secondary
transition depends on the quartic order terms: (d · d∗)2,
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|d · d|2 and (d × d∗)2, which are not included in Eq. (25).
With the primary pairing channel already identified, it is more
straightforward to evaluate the quartic order terms in the free
energy from the following transformations

&a = dx − idy, &b = dx + idy, &z = dz, (27)

where &a is the amplitude of | ↑↑⟩ spin pairing which denotes
the primary channel and &b denotes | ↓↓⟩ spin pairing. The
GL free energy is

F (&a,&b,&z ) = −α′(|&a|2 + |&b|2 + 2|&z|2)

− |γ |Mz

2
(|&a|2 − |&b|2)

+ βa|&a|4 + 4β̃|&a|2|&z|2, (28)

where α′ ≡ −α(T − Tc)/2 > 0 and βa = β̃ = β/4 =
N (0)/(16π2T 2) (see details in Appendix B). We have
included only quadratic order terms in &b and &z in the free
energy above, which are sufficient to determine the secondary
phase transition. Note that the term |&a|2|&b|2 does not
show up in the free energy because it couples fermions from
different spin sectors. In order to determine the secondary
pairing channel, one needs to check the sign change of
two quadratic order terms |&b|2 and |&z|2. Based on this
reasoning, we set

−α′ + |γ |Mz

2
= 0, (29)

which is the condition for the prefactor of |&b|2 to vanish. The
free energy in Eq. (28) becomes

F (&a,&z ) = −|γ |Mz|&a|2 + β

4
|&a|4

+ (−|γ |Mz + β|&a|2)|&z|2. (30)

The magnitude of the primary order |&a| can be determined
by setting ∂F/∂&a = 0, which yields |&a|2 = 2|γ |Mz/β.
Therefore, the prefactor of |&z|2 term is

−|γ |Mz + β|&a|2 = |γ |Mz > 0, (31)

which indicates that &z has not developed yet. Therefore the
&b pairing channel is favored compared with &z.

For a finite magnetic order M, the free energy analysis
fails because higher-order terms in M (e.g., M2, M3, · · · )
are not negligible. In general, one needs a non-perturbative
method to analyze the interplay between ferromagnetism and
superconductivity. Nevertheless, we argue here that the story

is qualitatively the same as that for a small M, i.e., &a is the
primary order and &b is secondary while &z is disfavored. The
underlying reason is as follows: &zσysx pairs electrons from
two Fermi surfaces with opposite spins, which is negligible
compared with intra-FS equal-spin pairing terms in the weak
pairing regime. Also, the FS with |↑↑⟩ spin polarization has a
greater density of states, thus favoring &a compared with &b.

VI. TOPOLOGY OF THE NODAL-RING
SUPERCONDUCTING ORDERS

A. Paramagnetic phase

To analyze the topological properties of the aforemen-
tioned s-wave orbital-singlet and spin-triplet pairing channels,
we write down the BdG Hamiltonian of the superconducting
nodal-ring system in the mean field regime

HBdG(k) =
[

H0(k) −&⃗ · iσys⃗ isy

−&⃗† · (iσys⃗ isy)† −HT
0 (−k)

]
, (32)

where the second quantized Hamiltonian is H =
1
2

∫
k -†

kHBdG(k)-k and the Nambu spinor is defined as
-k = [cT(k), c†(−k)]T.

In the paramagnetic phase, due to the spin degeneracy, the
BdG Hamiltonian can be decoupled into two identical copies
of four-band models, each given by

HBdG(k) = (6 − t1 − 2 cos kx − 2 cos ky − 2 cos kz )σzτz

+ 2t2 sin kzσxτ0 − µσ0τz + &σyτy, (33)

where τi is the ith Pauli matrix in the Nambu space and τ0
is the identity. HBdG(k) preserves inversion and time reversal
symmetry, and additionally, particle-hole symmetry (P̂) and
chiral symmetry (Ŝ)

ÎHBdG(k)Î−1 = HBdG(−k),

T̂ HBdG(k)T̂ −1 = HBdG(−k),

P̂HBdG(k)P̂−1 = −HBdG(−k),

ŜHBdG(k)Ŝ−1 = −HBdG(k), (34)

where Î = σzτz, T̂ = σzτzK, P̂ = τxK and Ŝ ≡ iP̂T̂ = σzτy.
Moreover, Eq. (33) preserves three mirror symmetries M̂x =
1, M̂y = 1 and M̂z = σzτz, which characterizes the Hamilto-
nian by D2h point group symmetry. The corresponding pairing
function &σys⃗ isy with three distinct d vectors all belong to the
B1u irreducible representation [31].

The BdG quasiparticle spectrum can be directly solved
from the Hamiltonian in Eq. (33)

E (k) = ±
√

f 2(k) + 4t2
2 sin2 kz + µ2 + &2 ± 2

√
f 2(k)(µ2 + &2) + 4µ2t2

2 sin2 kz, (35)

where f (k) = (6 − t1 − 2 cos kx − 2 cos ky − 2 cos kz ). By
setting E (k) = 0, a pair of gapless nodal rings can be found
at kz = 0, cos kx + cos ky = 2 − t1/2 ±

√
µ2 + &2/2 ≃ 2 −

t1/2 ± µ, which resides at two equators of the torus Fermi sur-
face (≃ comes from weak pairing assumption & ≪ µ). This

result is consistent with the projected gap found in Eq. (22),
where we find the gap vanishing at kz = 0.

The two superconducting nodal rings are found to be ro-
bust against perturbations that preserve the symmetries listed
in Eq. (34). Therefore, these gapless rings must carry some
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nontrivial topological charges which prevent them from be-
ing gapped. To check the robustness of the two nodal rings,
we first notice that (T̂ Î )2 = +1 and (P̂Î )2 = −1, hence
HBdG(k) belongs to CI + I class in the AZ + I table for clas-
sifying inversion symmetric Hamiltonians with band structure
nodes proposed in Ref. [51]. There are two topological
charges associated with the CI class, i.e., elements of the first
and second homotopy groups π1(MCI) and π2(MCI), where
MCI = U(n)/O(n) is the classifying topological space relevant
for CI. The π2 monopole charge is trivial in our case, meaning
that the nodal ring can shrink to a point and annihilate itself
by continuously tuning the model parameters. Pertaining to
the present case, we only focus on the effect of a nontrivial π1
charge when the Fermi surface topology do not change. In the
presence of the chiral symmetry Ŝ , the flattened Hamiltonian
Hflat(k) can be deformed into an off-diagonal form

Hflat(k) =
[

q(k)
q†(k)

]
, (36)

and the π1 charge can be captured by the phase winding
number of the q(k) matrix along an arbitrary closed path S1

which interlocks with the nodal ring

π1(MCI) = i
2π

∮

S1
dk · Tr[q†(k)∇kq(k)] ∈ Z. (37)

To calculate the winding number associated with each
nodal ring, we follow Ref. [63] to derive q(k). For a generic
BdG Hamiltonian with chiral symmetry

HBdG(k) =
[

H0(k) &(k)
&†(k) −HT

0 (−k)

]
, (38)

we can always unitarily transform it into an off-diagonal form

H̃BdG(k) = V HBdG(k)V †

=
[

H0(k) + iT &†
k

H0(k) − iT &†
k

]
, (39)

where T is the unitary part of the time reversal operator and

V = 1√
2

[
I iT
I −iT

]
. (40)

Since the weak pairing &k is only turned on around the Fermi
surface, the matrix elements of T &†

k between different bands
are negligible. Therefore, we can use the Bloch states of H0(k)
to expand the off-diagonal matrix

H0(k) + iT &†
k ≃

∑

n

(εn,k + iδn,k )|n, k⟩⟨n, k|. (41)

The matrix elements δn,k are

δ±,k ≡ ⟨±, k|T &†
k|±, k⟩ = ±&kz

kr
, (42)

which are consistent with the projected gap onto the FS in
Eq. (22). Correspondingly, the off-diagonal matrix q(k) in the
flattened Hamiltonian Hflat(k) is given by

q(k) =
∑

n

eiθn,k |n, k⟩⟨n, k|

=
∑

n

εn,k + iδn,k

|εn,k + iδn,k|
|n, k⟩⟨n, k|. (43)

FIG. 6. Sketch of the path S1. It winds around the inner nodal
ring in a counter clockwise direction.

Note that & ≪ µ, so we obtain eiθ−,k ≃ −1 and thus

q(k) ≃ eiθ+,k |+, k⟩⟨+, k| − |−, k⟩⟨−, k|. (44)

Only the first term contains a relevant contribution to the
phase winding, so we safely set q(k) = eiθ+,k |+, k⟩⟨+, k| and
the π1 charge is

π1(MCI) = − 1
2π

∮

S1
dk · ∇kθ+,k = − 1

2π
θ+,k

∣∣∣∣
f

i
, (45)

where i and f represents the starting and ending point of the
path S1. We can choose a circular path S1 at ky = 0, where
the two nodal rings become four symmetric nodal points at
±kx1,±kx2 with kx1 ≃ √

m − µ and kx2 ≃ √
m + µ. S1 inter-

locks kx1 in a counterclockwise direction shown in Fig. 6.
From Eq. (43) we obtain

eiθ+,k =
kr − µ + i &kz

kr[
(kr − µ)2 + &2k2

z
k2

r

]1/2 . (46)

Along S1, the phase θ+,k changes as

θ+,k : π → π

2
→ 0 → −π

2
→ −π . (47)

According to Eq. (45), the topological charge of the inner
superconducting nodal ring is determined as

π1(MCI) = − 1
2π

[θ+,k( f ) − θ+,k(i)] = 1. (48)

Similar calculations show that the charge for the outer nodal
ring is −1. Spin indices were suppressed throughout the cal-
culations above, hence the winding number should be +2
for the inner nodal ring and −2 for the outer nodal ring
after counting the spin degeneracy. Due to the nontrivial and
opposite π1 charges carried by the pair of nodal rings, both
top and bottom surface Brillouin zones corresponding to the
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TABLE I. List of representative pairing orders, irreducible corep-
resentations, and their corresponding characters of three orbital-
singlet and spin-triplet pairing channels in magnetic point group No.
8.4.27.

Pairing order Irrep Î = σz Ĉ2z = isz M̂z = iσzsz

&aσy(s0 + sz ) Bu − − +
&bσy(s0 − sz ) Bu − − +
&zσysx Au − + −

BdG Hamiltonian in Eq. (33) contain flat-band Majorana zero
modes enclosed by the projections of the pair of nodal rings
onto the surfaces [29,34].

B. Ferromagnetic phase

In the presence of ferromagnetism, the symmetry of the
system is lowered to the magnetic point group No. 8.4.27
[52]. The unitary crystalline symmetries of the normal state
Hamiltonian in Eq. (23) are inversion Î = σz, two-fold ro-
tation with respect to z axis Ĉ2z = isz and mirror operation
with respect to xy plane M̂z = iσzsz. As a result, the pairing
orders with d ⊥ M belong to the Bu irrep while the order
with d ∥ M belongs to Au. Their transformation properties
are listed in Table. I. From the energetic analysis in Sec. V,
we have concluded that the favored pairing states are those
with d vectors perpendicular to the magnetization axis. In
this subsection, we only analyze the topological properties for
d ⊥ M.

The Bu pairing channels (d ⊥ M) correspond to the mixed
equal-spin pairing states. In order to preserve the U(1) spin
rotation with respect to z axis, the phases of two equal-spin
pairing gaps &aσy(s0 + sz ) and &bσy(s0 − sz ) do not couple
to each other from the GL free energy analysis in Sec. V.
Therefore, we generally assume that the two pairing orders
(spin are aligned as |↑↑⟩ and |↓↓⟩) carry arbitrary phases α
and θ . The corresponding BdG Hamiltonian is

H⊥
BdG(k) = (6 − t1 − 2 cos kx − 2 cos ky − 2 cos kz )σzs0τz

+ 2t2 sin kzσxs0τ0 − µσ0s0τz − Mzσ0szτz

+ &aσy
s0 + sz

2
(τx cos α + τy sin α)

+ &bσy
s0 − sz

2
(τx cos θ + τy sin θ ), (49)

where the inversion (Î = σzτz) and particle-hole symmetries
(P̂ = τxK) are the same as the paramagnetic phase.

Note that while the magnetic order breaks both time-
reversal symmetry T = iσzsyK and spin rotation symmetry, it
preserves their composite T ′ = σzK we used to identify the CI
classification. However, the pairing orders in general breaks
T ′ due to the complex phases of &a,b. This can be remedied
by a phase rotations in Nambu space for each of the two spins,
and the modified time-reversal symmetry is

T ′′ = σz

[
s0 + sz

2
e−iατz + s0 − sz

2
e−iθτz

]
K, (50)

FIG. 7. Superconducting nodal rings of Bu pairing channels in
the presence of ferromagnetism. The π1 charges of the nodal rings
are +1, +1, −1, and −1 from inside to outside.

which satisfies T ′′H⊥
BdG(−k)T ′′−1 = H⊥

BdG(k) and
(T ′′I )2 = +1.

We emphasize that the T ′′ symmetry exists for arbitrary
phases α and θ . Consequently, the eight-band BdG Hamil-
tonian (49) belongs to class CI + I as well and it describes
two decoupled superconducting orders on the spin-polarized
Fermi surfaces equivalent to the Hamiltonian in Eq. (33), both
supporting topologically protected nodal rings on the equators
shown in Fig. 7. The π1 charges defined in Eq. (37) are both
+1 for two inner nodal rings and −1 for two outer nodal rings.
Since the topological charge is an integer quantity, nodal rings
with the same sign will not pair-annihilate when the ferromag-
netic order is turned off.

The nodal-loop superconductivity can be further verified
by solving the BdG spectrum of Eq. (49) and subsequently
setting E (k) = 0. Upon doing so, we find four nodal loops at

kz = 0, cos kx + cos ky = 2 − t1
2

± 1
2

√
(µ + Mz )2 + &2

a

for sz = +1, (51)

kz = 0, cos kx + cos ky = 2 − t1
2

± 1
2

√
(µ − Mz )2 + &2

b

for sz = −1. (52)

For bulk-boundary correspondence, these nodal rings en-
close flat-band Majorana zero modes on top and bottom
surfaces of the lattice Hamiltonian in Eq. (49) depicted in
Fig. 8. Moreover, the number of surface Majorana zero modes
is determined by a Z-valued topological invariant carried by
the effective 1D Hamiltonian H1D

BdG(kz ) by fixing kx and ky
in Eq. (49). For notational simplicity, we set α = θ = 0 and
&a = &b (Strictly speaking, one should set &a > &b since
&a is the leading instability. Nevertheless, we claim that this
choice only modifies the positions of the pair of nodal rings
on the “smaller FS” in Fig. 7, which does not influence the
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FIG. 8. (a) Energy spectrum of H⊥
BdG(k) in Eq. (49) versus kx at ky = 0. The open boundary condition along z direction with lattice sites

Nz = 300 is adopted in the spectrum. Red dots denote the positions of bulk superconducting nodal rings. (b) Topological regions on top
(bottom) surface BZ. The yellow region denotes N1D = 2, cyan regions denote N1D = 1 and blue regions denote N1D = 0. Majorana zero
modes and the corresponding density profiles are plotted for (c) kx1 = 0.65 and (d) kx2 = 1.05. We have set α = θ = 0 and &a = &b = 0.2.
Other model parameters are set to be {t1, t2, µ, Mz} = {1, 0.5, 0.5, 0.3}.

topology discussed below), yielding

H1D
BdG(kz ) = (m − 2 cos kz )σzs0τz + 2t2 sin kzσxs0τ0

− µσ0s0τz − Mzσ0szτz + &aσys0τx, (53)

where m ≡ 6 − t1 − 2 cos kx − 2 cos ky. The π1 charges
(winding numbers) identified for the 3D Hamiltonian
H⊥

BdG(k) within class CI + I can be interpreted as the “dif-
ference” of the topological invariants of two fully gapped 1D
subsystem H1D

BdG(kz ) separated by the superconducting nodal
rings, namely

π1(MCI) = N>
1D − N<

1D, (54)

where ≶ denotes the region inside (outside) the correspond-
ing nodal ring and vice versa. From deforming the loop
S1 (along which the π1 charge is defined) into two straight
lines that cross the 1D BZ along kz, we can determine
distinct Z-valued 1D winding numbers N1D for H1D

BdG(kz ) (de-
tails in Appendix C). The topological invariants are found
to be N1D = 2 for the annulus region enclosed by two su-
perconducting nodal rings located on the “small” FS while
N1D = 1 for two other annulus regions between the “small”
and “large” FS.

We numerically solve the energy spectrum in Fig. 8(a)
by introducing open boundary condition along z, where we

found flat-band Majorana zero modes enclosed by the bulk
superconducting nodal rings projected on the surface. The
1D topological invariants found above are also numerically
verified in Figs. 8(c) and 8(d). A schematic picture of the
topological regions on the top and bottom surface BZs is
illustrated in Fig. 8(b). We note that the surface flat-band
Majorana zero modes discussed in our work are different from
the Weyl-loop superconducting phases in Refs. [29,34]. In our
Dirac-loop case, there is an extra N1D = 2 region with two
surface Majorana zero modes coming from two spin-polarized
sectors. While the N1D = 2 region also appears in a Weyl-
loop superconducting model in Ref. [34], the origin there is
different from ours since the spin degrees of freedom are not
considered in Ref. [34].

We briefly comment on the case for Au pairing symmetry
(d ∥ M) in Appendix D, where we find two toriodal Bo-
goliubov Fermi surfaces that are topologically unstable. This
pairing order explicitly breaks time-reversal symmetry and
the system belongs to C + I class in Ref. [51]. This class
lacks a nontrivial π0 topological charge, which is necessary
to stabilize a nodal surface in 3D BdG spectrum. Due to the
larger gapless regions in the BdG spectrum, the Au chan-
nel is suppressed, consistent with the energetic analysis in
Sec. V.
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VII. SUMMARY

In this work, we analyzed the energetic and topological
properties of nodal superconductivity induced by ferromag-
netic spin fluctuations or Hund’s coupling in Dirac-loop-type
nodal-line semimetals. The favored Cooper pairing chan-
nels are found to be momentum-independent, orbital-singlet
and spin-triplet, which belongs to the B1u representation of
the point group D2h. In the weak-pairing regime, we cal-
culated the critical temperatures in the paramagnetic phase.
From the pseudospin textures on the torus Fermi sur-
face, three spin-triplet pairing channels all exhibit a pair
of nodal rings, which are topologically protected by a Z-
valued charge ν = ±2 within class CI + I from the AZ + I
table [51].

In the presence of a ferromagnetic order, the symmetry of
the system is lowered to the magnetic point group No. 8.4.27.
We analyze Ginzburg-Landau free energy of the system which
captures the interplay between spin-triplet superconductivity
and ferromagnetism. The leading pairing state is found to
carry a relative phase π/2 between dx and dy components,
i.e., d ∝ (1, i, 0). Upon further lowering the temperature, a
subleading channel with | ↓↓⟩ spin is favored. These two
pairing orders correspond to the pairing of the two split FS’s
with opposite spins. We show that the BdG Hamiltonian be-
longs to class CI + I since it still preserves a “modified”
time-reversal symmetry which squares to +1. Therefore, the
fourfold degenerate superconducting nodal rings found from
the paramagnetic phase are split into two pairs, and the robust-
ness of nodal rings can be characterized by an integer-valued
topological invariant ν = ±1. Furthermore, the π1 charges
(winding numbers) identified within class CI + I can be inter-
preted as the “difference” of the topological invariants of two
fully gapped 1D subsystem separated by the superconducting
nodal rings. This is demonstrated in the energy spectrum with
an open boundary condition along the z direction, where we
find that the bulk superconducting nodal rings enclose flat-
band Majorana zero modes with N1D = 2 and N1D = 1 on the
top and bottom surface BZs. For d ∥ M, the BdG quasiparticle
spectrum hosts nodal surfaces in class C + I which are not
topologically protected. This pairing channel is energetically
disfavored because of the large gapless surfaces in the BdG
spectrum.

The nodal-ring superconductivity discussed in our theory
can be applied to either paramagnetic nodal-line systems
(mediated by Hund’s coupling) or ferromagnetic nodal-line
materials (mediated by ferromagnetic spin fluctuations). For
the latter case, superconductivity may appear close to onset
of ferromagnetism, although experimentally the bulk super-
conductivity is yet to be discovered. The superconducting
phase should naturally host nodal rings inherited from the
normal state. While our analysis is based on a simplified
Hamiltonian, we expect the conclusions to hold for realistic
materials so long as the corresponding symmetries are the
same. Candidate Dirac loop materials such as Ca3P2 [12],
Cu3N [13], CaAgP, and CaAgAs [14] might be promising
platforms, while future studies are necessary to investi-
gate potential superconducting phases in these and related
materials.
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APPENDIX A: FIERZ IDENTITY

1. Proof

Fierz identities are reordering relations for four-fermion
interactions: for two n × n matrices M, N , and ψi as
n-component fermionic annihilation operators, there exist ma-
trices M ′, N ′ such that

ψ†
1 Mψ2ψ

†
3 Nψ4 = ψ†

1 M ′(ψ†
3 )TψT

4 N ′ψ2, (A1)

to prove the relation in Eq. (A1), we first choose a
set of orthogonal basis of n × n Hilbert space {Qa}, a =
1, 2, 3, . . . , n2, which satisfies

Tr(QaQ†
b) = nδab, (A2)

an arbitrary n × n matrix M can be expanded as

M =
∑

a

MaQa, Ma = 1
n

Tr(MQ†
a). (A3)

Note that

ψ†
1 Mψ2ψ

†
3 Nψ4 = ψ†

1iMi jψ2 jψ
†
3kNklψ4l

= Mi jNklψ
†
1iψ

†
3kψ4lψ2 j, (A4)

where identical indices are summed over. We can further
expand

Mi jNkl =
∑

ab

Cab(Qa)ik (Q†
b)l j, (A5)

the coefficient Cab can be determined by multiplying both
sides of Eq.(A5) with (Q†

c )λi and (Qd )ρl and sum over i, l

(Q†
cM )λ j (Qd NT)ρk =

∑

ab

Cab(Q†
cQa)λk (Qd Q†

b)ρ j, (A6)

set λ = k and ρ = j and sum over λ, k, we obtain

Tr(Q†
cMQd NT) = n2

∑

ab

Cabδacδbd = n2Ccd , (A7)

therefore, the coefficient Cab is given by

Cab = 1
n2

Tr(Q†
aMQbNT), (A8)

yielding

Mi jNkl = 1
n2

∑

ab

Tr(Q†
aMQbNT)(Qa)ik (Q†

b)l j, (A9)

combining Eq. (A4) and Eq. (A9), we obtain

ψ†
1 Mψ2ψ

†
3 Nψ4

= 1
n2

∑

ab

Tr(Q†
aMQbNT)ψ†

1 Qa(ψ†
3 )TψT

4 Q†
bψ2, (A10)

hence we have proved the Fierz identity.
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2. Decompositions from ferromagnetic fluctuations

The four-fermion interaction in Eq. (4) in the main text can be decomposed into orbital and spin channels independently. Set
n = 2 and choose

σ0iσy, σxiσy, σyiσy, σziσy for orbital subspace,

s0isy, sxisy, syisy, szisy for spin subspace.

For orbital decompositions, we treat c†(p) as a two component vector in orbital space and set M = N = σ0 in Eq. (A10) to obtain

c†(p)σ0s⃗ c(k) · c†(−p)σ0s⃗ c(−k) = 1
2

∑

a=0,x,y,z

c†(p)(σaiσy) ⊗ s⃗[c†(−p)]T · [c(−k)]T(σaiσy)† ⊗ s⃗ c(k). (A11)

For spin decompositions, we treat c†(p) as a two component vector in spin space and set M = N = sx, sy, sz in Eq. (A10)
separately, yielding

c†(p)σ0sxc(k)c†(−p)σ0sxc(−k) = 1
2 (−b†

p,0bk,0 − b†
p,xbk,x + b†

p,ybk,y + b†
p,zbk,z ), (A12)

c†(p)σ0syc(k)c†(−p)σ0syc(−k) = 1
2 (−b†

p,0bk,0 + b†
p,xbk,x − b†

p,ybk,y + b†
p,zbk,z ), (A13)

c†(p)σ0szc(k)c†(−p)σ0szc(−k) = 1
2 (−b†

p,0bk,0 + b†
p,xbk,x + b†

p,ybk,y − b†
p,zbk,z ), (A14)

where we have defined b†
p,a = c†(p)σ0 ⊗ (saisy)[c†(−p)]T. After summing over three equations above, we find

c†(p)σ0s⃗ c(k) · c†(−p)σ0s⃗ c(−k) = 1
2

(
−3b†

p,0bk,0 + b†
p,xbk,x + b†

p,ybk,y + b†
p,zbk,z

)
. (A15)

Combine the results of Eq. (A11) and Eq. (A15), we obtain

c†(p)σ0s⃗ c(k) · c†(−p)σ0s⃗ c(−k) = 1
4

∑

a=0,x,y,z
b=x,y,z

c†(p)σaiσy ⊗ sbisy[c†(−p)]T × [c(−k)]T(σaiσy)† ⊗ (sbisy)†c(k), (A16)

where the first term in Eq. (A15) is neglected since only attractive channels favor superconductivity.

3. Decompositions from Hund’s coupling

The Hund’s coupling interaction is given in Eq. (16) and we find that only orbital space decomposition is required.
Accordingly, we set M = (σ0 + σz )/2 and N = (σ0 − σz )/2 in Eq. (A10). The 2 × 2 orbital space is spanned {Qa} = {σaiσy} as
well. After a complete analysis, we obtain

Tr
(
Q†

aMQbNT)
=

{
1, if {a, b} = {0, 0}, {0, z}, {z, 0} or {z, z},
0, otherwise. (A17)

Therefore, we obtain

c†(p)
(σ0 + σz )

2
⊗ s⃗ c(k) · c†(−p)

(σ0 − σz )
2

⊗ s⃗ c(−k) = 1
4

∑

{i, j}
c†(p)σiiσy ⊗ s⃗[c†(−p)]T · [c(−k)]T(σ j iσy)† ⊗ s⃗ c(k), (A18)

where {i, j} is chosen from {0, 0}, {0, z}, {z, 0}, {z, z}. The spin decomposition is the same as Eq. (A15), hence we obtain the
Fierz identity relation for Hund’s coupling as follows:

c†(p)
(σ0 + σz )

2
⊗ s⃗ c(k) · c†(−p)

(σ0 − σz )
2

⊗ s⃗ c(−k)

= 1
8

∑

{i, j}
b=x,y,z

c†(p)σiiσy ⊗ sbisy[c†(−p)]T[c(−k)]T(σ j iσy)† ⊗ (sbisy)†c(k). (A19)

APPENDIX B: EVALUATIONS OF γ, βa, β̃ IN THE GINZBURG-LANDAU FREE ENERGY

From Fig. 9(a), we obtain

iγ = −T
∑

k

Tr
[
szG0(k)(−iσysz )GT

0 (−k)(−σy)†G0(k)
]

= −4iT
∑

k,n

[
(iωn + µ)2 + k2

r

]
(−iωn + µ)

[
(iωn + µ)2 − k2

r

]2[(−iωn + µ)2 − k2
r

]
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FIG. 9. Feynman diagrams relevant for the coefficients γ ,βa, β̃ in the GL free energy. Expressions of vertices are not shown in the figure.
The arrows in (b) and (c) denote the fermion spin sectors.

= −4i
∑

k

∫

C

dz
2π i

f (z)

[
(z + µ)2 + k2

r

]
(−z + µ)

[
(z + µ)2 − k2

r

]2[(−z + µ)2 − k2
r

]

≃ 4iN (0)
∫

dϵ
f ′(ϵ)
8µ

= − iN (0)
µ

. (B1)

The coefficients βa and β̃ can be distinguished by the spin vertices and symmetry factors in the Feynman diagrams shown in
Figs. 9(b) and 9(c), which are

βa =β

4
Tr[(−s+)(−s+)†(−s+)(−s+)†] = β

4
, (B2)

4β̃ =βTr[(−s+)(sx )†(sx )(−s+)†] = β, (B3)

where s+ = (s0 + sz )/2 and

β = T
∑

k

Tr
[
(iσy)GT

0 (−k)(iσy)†G0(k)(iσy)GT
0 (−k)(iσy)†G0(k)

]

= 2T
∑

k,n

(
ω2

n + µ2 − k2
p + k2

z

)2 − 4ω2
nk2

p + 4k2
z

(
µ2 − k2

p

)

[
(iωn + µ)2 − k2

r

]2[(−iωn + µ)2 − k2
r

]2

≃ 2N (0)T
∑

n

∫
dϵ

ω4
n + 4µ4

(
ω2

n + 4µ2
)2(

ω2
n + ϵ2

)2

≃ 4πN (0)T
∫ ∞

πT

dω

2πT
ω4 + 4µ4

ω3(ω2 + 4µ2)2

≃ N (0)
4π2T 2

, (B4)

where the condition πT ≪ µ is utilized throughout the calculation.

APPENDIX C: TOPOLOGICAL INVARIANT OF H1D
BdG(kz )

The topological invariant of H1D
BdG(kz ) can be evaluated

from the method discussed in Refs. [64–66],

N1D = − i
π

∫ kz=π

kz=0

dz(kz )
z(kz )

, (C1)

where z(kz ) ≡ eiθ (kz ) = detQ(kz )/|detQ(kz )| and Q(kz ) is the
off-diagonal block matrix of H̃1D

BdG(kz ), which is the original
1D BdG Hamiltonian under the rotation in Nambu space
(U = e−i π

4 τy )

H̃1D
BdG(kz ) = UH1D

BdG(kz )U † =
[

Q(kz )
Q†(kz )

]
. (C2)
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Via direct calculations, the expression of Q(kz ) is

Q(kz ) = (m − 2 cos kz )ηz + (2t2 sin kz + i&a)ηx

− (µ + Mzsz )η0, (C3)

where ηi denotes the Pauli matrices in the 2 × 2 Hilbert space
spanned by ⟨σzτz = +1|σiτ j |σzτz = −1⟩. Since Q(kz ) is diag-
onal in the spin space, the topological invariant in Eq. (C1)
can be written as N1D = N+

1D + N−
1D, where ± denotes the

eigenvalues of sz. We further note that

detQ±(kz ) =
[
(µ ± Mz )2 + &2

a − (m − 2 cos kz )2

− 4t2
2 sin2 kz − 4i&at2 sin kz

]
. (C4)

From the definition in Eq. (C1), we obtain

N+
1D =

{
1 if detQ+(0)detQ+(π ) < 0
0 if detQ+(0)detQ+(π ) > 0

. (C5)

A similar conclusion holds for N−
1D. For the nodal-line system

considered throughout this work, the Hamiltonian at kz = π
always yields detQ±(π ) < 0. After summing over the spin
indices, N1D can be generally determined as

N1D =

⎧
⎪⎪⎨

⎪⎪⎩

2 if (m − 2)2 < (µ − Mz )2 + &2
a,

1 if (µ − Mz )2 + &2
a < (m − 2)2

or (m − 2)2 < (µ + Mz )2 + &2
a,

0 otherwise.

(C6)

Since m ≡ 6 − t1 − 2 cos kx − 2 cos ky by definition, the first
inequality above represents the annulus region enclosed by
the two nodal rings on “small” FS and the second inequality
denotes two other annulus regions between the “small” and
“large” FS.

APPENDIX D: Au PAIRING CHANNEL

When the d vector is parallel to the magnetization axis, the
pairing function belongs to Au representation in the magnetic
point group listed in Table I. In this case, the system explicitly
breaks time-reversal symmetry and the BdG Hamiltonian is

FIG. 10. A pair of toroidal nodal surfaces appear on the equators
in the Au pairing channel, which can be gapped out by symmetry
preserved perturbations.

H∥
BdG(k) = (6 − t1 − 2 cos kx − 2 cos ky − 2 cos kz )σzs0τz

+ 2t2 sin kzσxs0τ0 − µσ0s0τz

− Mzσ0szτz + &zσysxτy, (D1)

which only preserves inversion (Î = σzτz) and particle-hole
(P̂ = τxK) symmetries. H∥

BdG(k) belongs to class C + I be-
cause (P̂Î )2 = −1 [51]. The quasiparticle spectrum E (k)
contains nodal surfaces that satisfy

[
f 2(k) + 4t2

2 sin2 kz − µ2 − &2
z − M2

z

]2

+ 16t2
2 &2

z sin2 kz = 4
(
µ2 + &2

z

)
M2

z , (D2)

where f (k) ≡ 6 − t1 − 2 cos kx − 2 cos ky − 2 cos kz. Equa-
tion (D2) describes a pair of toroidal Bogoliubov- Fermi
surfaces plotted in Fig. 10. Different from Refs. [67,68], the
nodal surfaces in Eq. (D2) are not topologically protected
because of the absence of Pfaffian-like topological charges in
class C + I [51]. As a simple proof, there are two p-wave
pairing terms sin kxσzτy and sin kxσzszτx which preserve both
P̂ and Î but gap out the nodal surfaces from Eq. (D1).
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