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The Lamport diagram is a pervasive and intuitive tool for informal reasoning about “happens-before” rela-
tionships in a concurrent system. However, traditional axiomatic formalizations of Lamport diagrams can be
painful to work with in a mechanized setting like Agda. We propose an alternative, inductive formalization —
the causal separation diagram (CSD) — that takes inspiration from string diagrams and concurrent separation
logic, but enjoys a graphical syntax similar to Lamport diagrams. Critically, CSDs are based on the idea that
causal relationships between events are witnessed by the paths that information follows between them. To
that end, we model “happens-before” as a dependent type of paths between events.

The inductive formulation of CSDs enables their interpretation into a variety of semantic domains. We
demonstrate the interpretability of CSDs with a case study on properties of logical clocks, widely-used mech-
anisms for reifying causal relationships as data. We carry out this study by implementing a series of inter-
preters for CSDs, culminating in a generic proof of Lamport’s clock condition that is parametric in a choice of
clock. We instantiate this proof on Lamport’s scalar clock, on Mattern’s vector clock, and on the matrix clocks
of Raynal et al. and of Wuu and Bernstein, yielding verified implementations of each. The CSD formalism and
our case study are mechanized in the Agda proof assistant.
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1 INTRODUCTION

Causality — the principle that an effect cannot precede its cause — is of central importance in con-
current and distributed systems. It undergirds every protocol for strengthening message-passing
communication models beyond asynchrony, and it allows the concept of a sequence of actions or
flow of messages to be well-defined in the first place. Verification of properties related to causality,
such as the causal consistency of data stores [Lesani et al. 2016; Gondelman et al. 2021] or the
causal order of message delivery [Nieto et al. 2022; Redmond et al. 2023], inevitably requires the
modeling of some notion of “history” — for instance, a per-process log of received messages in
receipt order — against which causally-sensitive properties can be judged. These representations
of history originate in the process model of Lamport [1978] and its associated happens-before rela-
tion, a concrete representation of causal relationships amongst events in a system. In this model,
a history is given by a sequence of primitive events for every participating process, together with
a visibility relation pairing events across processes (as with pairs of send and receive events). The
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happens-before relation is derived from this data, as the transitive closure of the process sequences
together with the visibility relation.

Lamport-style models of executions are intuitive, elegant, and ubiquitous. However, they are
typically characterized purely axiomatically rather than inductively. While this makes them well-
suited to traditional pencil-and-paper proofs, our experience has been that applying them to mech-
anized proof is a considerable struggle. Axiomatic, set-theoretic models do not always translate
cleanly into constructive type theory, and the resulting encodings may not take the best advan-
tage of the tools at hand. The resulting representations of history lead to tedious and ad-hoc proofs,
due to the need to reason about causality as a derived notion rather than a fundamental one. How-
ever, by baking causal information more deeply into the data model of histories, we can obtain a
causally-directed induction principle that eliminates much of the tedium.

To that end, in this paper we develop a novel inductive representation of history — tailored to
the needs of verification in a mechanized setting — in which causal information is immediately
at hand. We propose causal separation diagrams (CSDs), which are intended to serve as a drop-in
replacement for existing Lamport-style models of history, such as when considering a program or
protocol in terms of its possible execution histories. Where Lamport-style histories must be proved
acyclic to be physically meaningful, CSDs are automatically acyclic by construction.

Verification by interpretation. A CSD represents a particular execution of a program (or pro-
tocol). As a means of representing executions, CSDs are not tied to any particular verification
methodology. To verify properties of the program as a whole, we can reason in aggregate about
the executions that can arise from running it, in the same way Lamport-style executions are com-
monly used. However, since CSDs are presented as an inductively-defined dependent data type, it
is natural to give compositional interpretations of CSDs into other data types. This interpretabil-
ity suggests a particular approach to verification in which the building blocks of executions are
interpreted as proof steps, then composed along their causal structure.

As a demonstration of the interpretability of CSDs, we consider the verification of logical
clocks, a common class of devices for reifying causal information into a system at runtime [Ray-
nal and Singhal 1996]. In particular, the clock condition [Lamport 1978] is an essential property
of logical clocks, assuring that two causally-ordered events are assigned like-ordered timestamps.
We mechanically verify the clock condition for a broad class of logical clocks, including Lam-
port clocks [Lamport 1978], vector clocks [Mattern 1989; Fidge 1988; Schmuck 1988], and matrix
clocks [Wuu and Bernstein 1984; Raynal et al. 1991], by giving a series of interpreters for CSDs. This
interpretation-based approach to verification would be awkward and difficult without an inductive
data structure that accounts for causality; but with CSDs, it becomes natural and straightforward.

In summary, the main contributions of this paper are as follows:

e Causal separation diagrams (CSDs). After presenting informal intuitions in Section 2, we
describe a new formal diagrammatic language for reasoning about executions of concurrent
systems (Section 3). CSDs are inspired by Lamport diagrams — a well-established visual lan-
guage for expressing the behavior of distributed systems — but they are inductively defined,
which makes them amenable to interpretation into many semantic domains.

Interpreting CSDs. We present interpretations of CSDs into three semantic domains:

— Into types: We define an interpretation of CSDs into the domain of causal paths (Section 4).
Causal paths are a proof-relevant analogue of Lamport’s happens-before relation, where
any given path inductively describes a particular flow of information.

— Into functions: We define an interpretation of CSDs into a domain of clocks; that is, func-
tions that compute a logical timestamp at every event (Section 5). Our interpretation is
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Fig. 1. An assortment of Lamport diagrams from the literature. In these examples, time flows from top to
bottom [Ellis and Gibbs 1989; Weil et al. 2006; Mathur et al. 2022], from left to right [Castro and Liskov
1999; Lesani et al. 2016], or, rarely, from bottom to top [Lamport 1978], and parallel through-lines represent
processes, threads, or spatially-separated sites, while arrows represent communication between them.

parametric in the particular choice of logical clock, so long as it is realizable as an abstract
data type with increment and merge operations (Section 5.1).

- Into proofs relating types and functions: We relate the above interpretations via a
third interpretation of CSDs into proofs that clocks respect causality (Section 6). This yields
a proof of Lamport’s clock condition for any realizable clock whose timestamps increase
with successive operations.

o Applying CSDs: verified logical clocks. Finally, we instantiate our interpretations on the
clocks of Lamport, Mattern, Raynal et al., and Wuu and Bernstein, yielding mechanically ver-
ified implementations of each (Section 7). In particular, we give the first (to our knowledge)
mechanized proofs of the clock condition for both matrix clocks.

All of our contributions are mechanized in the Agda proof assistant, and have been included in
our open-source library for working with CSDs, available at https://github.com/lsd-ucsc/csds.

2 FROM INFORMAL DIAGRAMS TO FORMAL MODELS

Lamport diagrams’ are a ubiquitous device for visualizing causal relationships over space and time;
see Figure 1 for a diverse selection spanning six decades of computing literature. In a Lamport dia-
gram, logically-separate processes evolve over time along straight through-lines: their actions are
represented as dots (or similar) on a given process line, and their communications yield arrows
crossing laterally between process lines. Importantly, causal relationships are reduced to simple
geometric paths: two points in space and time are causally ordered if, and only if, they are con-
nected by a forward path along the diagram.

As illustrations, Lamport diagrams are by nature informal. To support formal reasoning about
concurrent systems, we need formal models that capture the same scenarios displayed by these

Lamport diagrams go by many names, including time diagrams, spacetime diagrams, sequence diagrams, and more. While
Lamport [1978]’s analysis of causality in the context of distributed systems was an early use of such diagrams, it appears
to not have been the first in the published literature; the oldest we have found is via Le Lann [1977].
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Fig. 2. An example Lamport diagram.

diagrams. Lamport [1978] presented the following model, a natural generalization of sequential
processes to multiple participants.

Definition 2.1 (Lamport execution [Lamport 1978]). A Lamport execution is:

e A set P of processes, each of which is a sequence of atoms called actions?; together with
o A set M of messages, each of which is an ordered pair of actions across two processes (the
message’s associated “send” and “receive” actions).

Definition 2.2 (Happens-before [Lamport 1978]). Given a Lamport execution, the happens-before
relation on actions, written a; < ag, is the transitive closure of the execution’s set of messages
together with the total orders given by each process.

By tradition, executions for which happens-before is not a (strict) partial order (i.e. fails to be
asymmetric) are excluded from consideration, as these indicate a failure of causality.

The data of a Lamport execution can be visualized by a Lamport diagram. For example, the
Lamport diagram in Figure 2 depicts an execution involving three processes, p;, p2, and ps, each
having performed a few actions. Some of the actions in this execution are causally ordered: we see
that a; < a4 since a; and a4 are the send and receive actions of message m, and a4 < as because
they occur in sequence on p,. Therefore, by transitivity, a; < as. We also have that a3 < a4 and
as < az, among other relationships. However, a; and a3 are not related by happens-before, nor are
a4 and ay; such pairs are said to be concurrent (or causally independent).

It is also possible to go the other way, taking a Lamport diagram and formalizing the scenario
it displays as a Lamport execution. Therefore, we can consider the diagram to come first, with
the derivation of a formal execution from an informal diagram serving as an origin story for the
formal model itself. We can rederive the traditional execution by first splitting a diagram along
spatial boundaries — separating the process lines from one another — and then separating the
sequential actions along each process line by temporal boundaries. Doing so for the diagram in
Figure 2 yields the decomposition in Figure 3(a). However, we could also have begun by laying
down a sequence of temporal boundaries — demarcating global steps over the entire system — and
only then separating the atomic steps within each global step by spatial boundaries. This approach
might yield the decomposition in Figure 3(b).

Both decompositions yield a partition of the diagram into graphical tiles; and it is precisely the re-
lationships between these tiles, witnessed by the dataflow lines passing between them, which must
be captured formally. In the traditional decomposition in Figure 3(a), tiles may be related across
both temporal and spatial boundaries. Process orders record the relationships across temporal

2We avoid the traditional term “event”, for now, because the causal relation we define in Section 4 only indirectly relates
actions. A causal order ought to be defined on “events”; so we reserve that term and speak of “actions” here instead.
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Fig. 3. Two ways to decompose the Lamport diagram of Figure 2 into “tiles”. On the left (a), we split first along
spatial boundaries (dashed red lines), yielding individual processes, and then along temporal boundaries
(solid blue lines). On the right (b), we split first along temporal boundaries, yielding consistent cuts, and
then along spatial boundaries.

boundaries, while messages record relationships across spatial boundaries.’ This data, comprising
a traditional formal execution, is sufficient to capture all information presented in the diagram.

The state of affairs for our alternative decomposition in Figure 3(b) is notably different. First,
information flows between tiles only at temporal boundaries; spatial boundaries only separate
causally-independent actions which cannot influence each other. Intuitively, it takes time to move
through space — spatial boundaries separate actions which may as well occur simultaneously, so
the propagation of information from one place to another can only occur across temporal bound-
aries. However, this also means that differing quantities of state can leave a global step than enter
it: a process may consume a message to decrease the quantity of data floating around, or emit a
message to increase the quantity of data. Without bracing ourselves against the suggestive global
geometry of fixed parallel lines for each process, we cannot even distinguish process state from
message state: a global step simply transforms one configuration of separated state into another.
Because of this indistinguishability, instead of referring to “processes” and “messages” we will
refer only to sites: a site is a place where state exists, encompassing both processes and messages.

Second, we could have drawn different temporal boundaries — different consistent cuts — and
found a different decomposition. Consistent cuts [Mattern 1989; Chandy and Lamport 1985] are
of fundamental importance to the analysis of concurrent systems, as they model the realizable
global states of a system. Thus, the formal representation for a diagram will embed a choice of
consistent cuts; and as we will find in Sections 5 and 6, working with global information from the
start enables simpler proof methods for reasoning about concurrent systems.*

Process lines can be recovered as chosen paths spanning the diagram — that is, a chosen total
order of actions, just as in the traditional execution. These path essentially names pieces of state as
they evolves over time; any state not on some path is, morally, a message. We can even interpret
this in a shared-memory setting: the configuration of sites along a consistent cut describe a shared
heap, with each individual site modeling an exclusive region of memory. A global step then updates
the heap, claiming regions by merging them and releasing regions by splitting them apart.

Figure 4 illustrates this notion of sites in more detail for our example. The shaded global step
on the left has three incoming sites and five outgoing sites, so we might compactly say it has type

3Depending on the execution being visualized, we may need to draw message-lines passing through tiles which neither send
nor receive them; an effective visualization would be decidedly non-planar. Nonetheless, we consider that the relationship
remains one of passing through the spatial medium.

4We expect there to be a means of algebraically transforming a CSD to manipulate which consistent cuts it embeds; this
would then yield a completely syntactic account of consistent cuts. However, we defer this to future work.
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Fig. 4. Global steps in our example diagram, with a site implied everywhere a cut intersects the diagram.

3 =3 5 (“three to five”). The next two global steps have types 5 =3 3 and 3 =3 3, respectively.
Adjacent global steps must “match up” the sites on their incident site configurations; but during a
global step, sites may be joined with or forked from others.

In Section 3, we will describe a novel formal model for concurrent executions based on these
observations. However, we can already see the shape this formalization must take:

e Since we have essentially transposed the sequential and concurrent boundaries compared to
the traditional formalization, our formal data will consist of a sequence of global steps acting
over separated state.

e Each global step will decompose into a collection of concurrent, atomic steps, no two of
which act over the same site — data flowing into and out of a global step must flow through
precisely one of its constituent atomic steps. These steps include individual local actions a;,
but also include fork actions (which split one site into two) and join actions (which fuse two
sites into one).

e A causal relationship between actions a; ~» a; will be witnessed by a sequence (or path) of
atomic steps, running forward from a; to a,, such that adjacent steps share a site.

Our unification of messages and processes into sites makes our formalization “natively” suited
for reasoning about shared-memory concurrent systems as well as distributed systems. While
Lamport diagrams can effectively visualize shared-memory systems as well as distributed ones,
Lamport’s formal executions are not well suited for the shared-memory domain, since processes
and messages are often not the right abstractions. With CSDs, we have a diagrammatic syntax and
a formal model that fit both domains.

3 SYNTAX AND SEMANTICS OF CAUSAL SEPARATION DIAGRAMS

In Section 2 we discussed the intuitions behind causal separation diagrams (CSDs), and how they
arise from Lamport diagrams. In this section we give a formal treatment of CSDs as terms of an
inductive data type, and develop a concept of semantic interpretations of CSDs that we will make
heavy use of in later sections.

3.1 Site Configurations

Recall from Section 2 that Lamport diagrams can be decomposed into a sequence of global steps,
where each adjacent pair of steps meets at a collection of sites called a site configuration (or just
configuration). The configuration at the start of a global step describes the state of the sites before
that step takes place, while the configuration at the end describes the state of the sites after the
step. The diagram as a whole also starts and ends on a pair of configurations — namely, the starting
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configuration of its first step, and the ending configuration of its last step. A formally-defined CSD
will have type Iy =3 I3, where I} and I, are bounding configurations — the configurations the
diagram begins and ends on, respectively. Site configurations are themselves terms, so I1 =3 I}
will be a dependent type. (In fact, nearly every type we define will be dependent.)

Definition 3.1 (Site configurations). Let r be a universe of types with products. Then a site config-
uration I is a binary tree with leaves drawn from 7, i.e., a term of the following grammar:

r=rerl | [7]

TI=TX7T | ...

The leaf constructor [—] gives the type of some state that is isolated at one site, while the spatial
product ® models a kind of separating conjunction’, giving the type of state that is spatially dis-
tributed over multiple sites. For instance, if the type universe r includes naturals N and booleans B,
then [NXB] ® [B] is a configuration with two sites, one carrying a pair of a natural and a boolean,
and the other carrying a single boolean.

The spatial product ® is like a “lifted” version of the local product x; and like the local product,
we will wish to treat ® as associative and commutative. Since reordered/rebalanced binary trees
are syntactically distinct terms, however, we introduce a type of permutations ¢ : I} =~ I} to
mediate between equivalent configurations.

Definition 3.2 (Sites). The type Site(T'), defined recursively over the structure of configuration T,
is the type of paths from the root of I' to each of its leaves:

Site([7]) =T
Site(T; ® I3) = Site(T}) + Site(T3)

Definition 3.3 (Permutations of sites (~)). The type of permutations I} ~ I} is an equivalence rela-
tion on site configurations, defined so that its elements o correspond to type-preserving bijections
Site(I}) — Site(I}). By abuse of notation, we denote by o (and o~ }) the bijection witnessed by .

In Definition 3.2, T is the unit type (with single value o), and + gives sum types (with injections
inj, and inj, ). For example, the type of sites for ([N] ® [B]) ® [B] is (T + T) + T. To address the
site of type N, we write the term inj, (inj,(e)), which tells us we can isolate this site by focusing
along the left-hand subtrees of this configuration.

3.2 Causal Separation Diagrams

From Section 2, we know that CSDs have two forms of composition: sequential composition and
concurrent composition.’ Just as conjunctive normal form makes Boolean formulae easier to work
with, we will restrict concurrent composition to appear only under sequential composition. Every
CSD, then, has two layers: an outer list modeling sequencing, and an inner tree modeling concur-
rency. To separate these layers, we give them distinct symbols: a diagram x : I} =3 T} is a diagram
proper, and can be composed sequentially, while a diagram x : I} —o I} is a global step, and can
be composed concurrently. These are morally both diagrams — a global step is just a diagram in
the process of being built — and we will generally not distinguish between them.

5Separating conjunction is a logical connective found in separation logic, where two properties of heaps can be conjoined
if a heap can be split into two factors, one of which satisfies one property and one of which satisfies the other. A site
configuration can thus be thought of as a particular factorization of a distributed heap.

Some readers will recognize the syntax of CSDs as a (free) symmetric monoidal category. We will have more to say about
categorical connections in Section 9; for now, we acknowledge the connections but proceed concretely.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 113. Publication date: April 2024.



113:8 Jonathan Castello, Patrick Redmond, and Lindsey Kuper

Definition 3.4 (Causal separation diagrams (33)). A causal separation diagram is a sequence of
global steps (see Definition 3.5, next), constructed according to the following rules:
x:I]:}I“g y:rz—org
id: T33T (x;y): 1 3T

The id and sequencing (;) constructors play the same roles, respectively, as “nil” and “cons” do for
inductive lists. We take our sequences to grow to the right (a “snoc” list) from an initial id seed,
and moreover require that adjacent global steps be compatible: if a step ends on one configuration,
the following step must begin on the same configuration.

Definition 3.5 (Global steps (—)). A global step is a binary tree of atomic steps, constructed ac-
cording to the rules below:

x: I} oI y:T] — T

(xlly):L®I] = L®T, fork : [t x '] — [7] ® [7’]
o : Fl = FZ
permo: T} oI, tick : [71] — [2] join: [7] ® [7'] — [t X ']

The atomic steps tick, fork, join, and perm describe the elementary ways in which sites can
be transformed over time. The concurrence (||) operator fuses two global steps into one. Since
the two steps must operate over distinct configurations, no atomic step can share a site with any
concurrent step. Thus, just as ® acts like a separating conjunction, || acts like the concurrency rule
of concurrent separation logic. (We discuss future work following this analogy in Section 9.)

The perm constructor transforms a configuration into any equivalent configuration according
to the type of permutations = of Definition 3.3. It will be convenient to have shorthand for three
special cases of perm:

e noop : I' — T'is a step over the identity permutation;
e swap : [7] ® [t'] —o [7'] ® [r] is a step commuting two sites; and
e assoc: [ ® (I ® I3) — (I1 ® I3) ® I} is a step reassociating a configuration.

The tick constructor models any arbitrary local transformation of state. For instance, a tick of
type [N] — [N x B] might describe an action which prepares a (boolean) message depending on
the current (numeric) state. We deliberately leave the local transformations unconstrained to avoid
parameterizing CSDs over yet another type. Concrete information about each individual tick can
instead be associated to a CSD by way of labeling, which we will discuss in Section 3.3.

The fork and join constructors reify the connection between spatial and local products alluded
to in Section 3.1. If we have a local pair of state at one site — for instance, a pair [NXB] of numeric
state and prepared message — we can spatially separate its components onto two sites with fork.
Conversely, state distributed over two sites can be fused into a local product on one site with join.
Therefore, these steps are our analogues of the send/receive actions found in Lamport executions.

Although a traditional Lamport diagram treats send and receive actions as state-modifying ac-
tions, we factor them into two separate steps: a Lamport-style send is realized as a tick followed
by a fork, and a Lamport-style receive is realized as a join followed by a tick.” This factorization
allows us to treat all modifications of local state uniformly via tick, which helps us greatly when
associating concrete operations to each tick (Section 3.3).

Figure 5 depicts the tick, fork, join, noop, swap, and assoc atomic steps graphically. These
tiles can be freely composed along like boundaries (that is, solid blue lines compose with solid blue

"To obtain a legitimate CSD from Figure 3(b), we would need to extract the implicit tick from each send and receive action.
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Fig. 5. Atomic steps of a CSD, depicted as graphical tiles. The noop, swap, and assoc tiles characterize the
more general perm atomic step.

lines, and dashed red lines compose with dashed red lines) to construct whole diagrams, so long
as any sequenced pair of diagrams agree on the arrangement of sites crossing between them. For
instance, consider the CSD given by the term id; (tick || fork);assoc;(join || noop). As a (snoc)-list,
this CSD begins from an empty diagram (id) to which successive global steps are appended (with ;).
Each constituent global step is built up as a concurrent composition of atomic steps (with ||). We
can better display the structure of this CSD diagrammatically:

We begin on some site configuration [71] ® [7, X 73], and perform a tick on the first site and a fork
on the second site to reach configuration [7]] ® ([72] ® [73]), where 7] is the result type of the tick.
With assoc, we then rebalance the configuration into ([7]] ® [72]) ® [73], so that the following
step can join the first two sites (while leaving the third alone with noop). This CSD thus ends on
configuration [7] X 73] ® [r3]. Since the type 7, ends up migrating from one site to another, this
CSD might describe a message sent from one process to another.

Abuses of notation. Since CSDs are lists of global steps, we can define a version of concurrent
composition that acts over entire CSDs by zipping them together (with noop padding if their
lengths are mismatched) and composing each pair. Likewise, we can sequentially extend a CSD by
another CSD using the equivalent of a concat operator. Rather than allocate new symbols to these
binary operators, we will abuse notation, letting || and ; stand in for them.

In our Agda mechanization, the indexed types =3 and —o are unified in a type with an auxiliary
index over {Seq, Par}. Throughout the rest of this paper, we take advantage of this technical con-
trivance to define single functions that can pattern-match through both sequential and concurrent
layers of a CSD, instead of defining a separate function for each layer.

3.3 Labeled CSDs

Recall that a tick step is meant to model a local transformation of state. However, up to this point,
there is no way to specify what that local transformation actually is for each tick. If we only have
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one transformation in a given setting, we can interpret each tick as that specific transformation.
But this is clearly too much of a limitation — most systems can do more than one thing!

While we could parameterize CSDs over a type of actions (and construct each tick with a choice
of action), this would complicate the type signature of CSDs, and introduce data for which the CSD
itself is simply a carrier. Instead, we follow the pattern of container types [Altenkirch and Morris
2009], in which the places where data can be held are characterized separately from the assignment
of data to those places. For example, the generic type of lists List(T) can be factored into two parts:
a Peano natural n : N and an assignment Fin(n) — T of values to indices. The Peano natural n
describes a particular shape of list (with zero playing the role of the empty list, and the successor
constructor playing the role of list consing), while Fin(n) characterizes the positions within a list
of that shape. The assignment Fin(n) — T then fills those positions with concrete values.

Definition 3.6 (The type of ticks). For a CSD X, the type Tick(X) has precisely one value for every
tick in X, and is defined recursively over the structure of X:

Tick(tick) =T

Tick(fork) =1

Tick(join) =1

Tick(perm o) = L Tick(id) =1

Tick(x || y) = Tick(x) + Tick(y) Tick(x ; y) = Tick(x) + Tick(y)
Here, L is the empty type, T is the unit type (with only value o), and + gives sum types (with
injections inj,, inj, ).

Definition 3.7 (Labeled CSDs). A T-labeling f : Tick(X) — T assigns a value of type T to every

tick in X. A T-labeled CSD, written (X, f) : I} 3T, isa diagram together with a T-labeling.

Given a labeled CSD, we can restrict its labeling to a subdiagram by pre-composing with the left
or right injection for sums. For instance, the prefix of the labeled CSD ((x ; y), f) can be obtained
as (x, f o inj,). In the base case, we end up with (tick, ® = v) — precisely a tick annotated with a
value. This makes labeled CSDs an excellent solution for specifying the behavior of each tick.

In a traditional execution (Definition 2.1), every local action comes with some information built
in — not what the action is, but who performed it. This is because every action occurs on a particular
process’s total order. Although CSDs do not treat process lines specially, we can include this same
information by positing a type Pid of process identifiers, and working in terms of Pid-labeled CSDs.

3.4 Semantic Interpretations of CSDs

The construction of the Tick type in Definition 3.6 is our first example of an interpretation of
CSDs: we assigned some type to each atomic step, and described how sequential and concurrent
composition act over those types to yield a type for larger diagrams. This pattern is emblematic
of denotational semantics: “the meaning of the composition is the composition of the meanings.”

By itself, the CSD representation is not much use; its utility comes from its interpretability.

Definition 3.8 (Semantic interpretations). A semantic interpretation (or semantics, or interpreta-
tion) of CSDs is a function (Iy = I;) — F(I3,I:) mapping each CSD to a semantic domain F
indexed by site configurations.’

8This compositionality principle appears to be folklore in denotational semantics; we cannot find a canonical source. It
dates at least to Frege, in the context of natural languages.

9The domain F ought to be a symmetric monoidal category, with an interpretation being a functor from = to F. However,
we neither prove nor require that =3 be such a category — although we are eager to make such connections in the future.
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In the case of Tick, we take F(—, —) to be the universe of types, Type, without dependence on the
particular bounding configurations. Much of the rest of this paper will be devoted to the construc-
tion and analysis of additional interpretations, following the landmarks given in the introduction:

o In Section 4, we give a semantics in F(I',I;) = Site(I;) — Site(I;) — Type, a domain of
types ~» whose elements py2 : s; ~» s, are causal paths between sites at the boundaries
of the diagram. This yields a proof-relevant analogue of Lamport’s happens-before relation,
where a path gives concrete evidence for why its endpoints are causally related.

¢ In Section 5, we give a semantics in F(I3,I;) = Valuation(I7) — Valuation(I;), a domain
of functions C, parametric in a choice of logical clock. A valuation v : Valuation(I}) is an
assignment Site(I7) — Time of timestamps to each site; so functions C compute timestamps
C, on I, from timestamps v on I7.

e In Section 6, we give a semantics in F(I',I3) = Vs s2. (51 w 52) = (Vv. v(s1) < Cy(s2)), a
domain of proofs relating the first two interpretations via Lamport’s clock condition.!’ The
resulting proof is constructed modularly, by composing proofs over atomic steps into proofs
over whole diagrams, and is parametric in a choice of logical clock.

Our target domains (happens-before, logical clocks, and the clock condition) are all pre-existing
concepts in the literature. However, the interpretations sketched above only directly relate points
on the beginning and ending boundaries of a diagram, while these concepts traditionally speak of
points interior to a diagram. To bridge this gap, we provide a general, two-phase recipe for building
interpretations.

e First we define a “spanning” interpretation, restricting the target domain to relationships
between the initial and final sites of a CSD. These interpretations are typically easy to im-
plement recursively over the structure of a CSD. For the causal paths of Section 4, this will
yield a domain of “spanning paths” giving causal relationships only between the sites on the
boundary of a diagram.

o Next we define an “interior” interpretation, extending the first interpretation to include rela-
tionships between points on the interior of a diagram X. For causal paths, an “interior path”
will be a spanning path across any subdiagram of X, so our interpretation will relate sites in
any of the site configurations visited by X.

The interpretations presented in Sections 4 to 6 all follow this same recipe.

4 THE INDUCTIVE TYPE OF CAUSAL PATHS

In this section we develop a notion of causal order within CSDs that captures the potential flows
of information through a concurrent system. These flows are traditionally visualized in Lamport
diagrams as geometric paths, reducing causality to a kind of connectivity between two points in
space and time. We take these paths seriously as bona fide data: the type of causal paths is defined
by a semantic interpretation of CSDs, following the pattern established in Section 3.4. This results
in a causal relation that is proof-relevant: rather than the mere fact that “e; happens before e,”
observed in traditional executions, we have concrete (and potentially multiple) paths p : e; > e;.
Such witnesses become extremely useful in proof by induction, including those we present in
Section 6 for logical clocks.

10Although it looks like Tj and T are not used in this domain, we are using the > and C obtained from the other two
interpretations, which very much do depend on the given configurations.
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Fig. 6. In this diagram, the bolded paths identify distinct witnesses to the causal relationship between initial
site sp and final site s4.

4.1 Spanning Paths

We first restrict our attention to causal relationships between sites in the bounding configurations
of a diagram, which we will hereafter call bounding sites. In Section 4.2, we will extend these
relationships to sites on any configuration visited by a diagram.

Definition 4.1 (Spanning relations). A spanning relation between configurations I3, I} is a type
family Site(I}) — Site(Iz) — Type taking a pair of sites to a type of relationships between them.

If ~» is a spanning relation, an element of type s; ~» s, describes a potential flow of information
between sites s; and s;. Because information might take one of many branching and converging
paths en route between any pair of sites, s; ~»» s, may have multiple distinct values. This makes
spanning relations proof-relevant: knowing that s; ~» s, means knowing why that fact is true.

Given two spanning relations ~»; and ~»,, we can compose them sequentially or concurrently.
Sequential composition is standard relational composition (o): we have a path across the sequence
of two spanning relations if we have paths across each individually that meet at some common
site. Concurrent composition is a disjoint sum (+): we have a path across the concurrence of two
spanning relations if we have a path across either individually.

Every CSD induces a spanning relation modeling the concrete ways information can flow from
one side of the diagram to the other. These are precisely the paths that the Lamport diagram makes
evident graphically.

Definition 4.2 (Spanning paths). The type family Span(X) of spanning paths through a CSD X :
I'1 3 I} is a spanning relation, and is defined inductively over the structure of X:

Span(tick) =As; 8. T

Span(fork) =As;s,. T

Span(join)  =As;s,. T

Span(perm o) = Asy s;. (s2 = 0(s1)) Span(id) = As; s2. (52 = 51)

Span(x || y) = Span(x) +Span(y)  Span(x;y) = Span(y) o Span(x)
When X is understood, we write s; ~» s, to mean Span(X)(sy, s2).

The tick, fork, and join steps are interpreted trivially into the unit type T, because those steps
have precisely one path for every opposing pair of bounding sites: join, for instance, relates two
input sites to one output site, and information on both inputs will flow into the single output.
Meanwhile, id relates a configuration to itself (so only matching indices are connected by paths);
and perm o relates inputs to outputs according to the permutation of sites performed by o.

For example, the CSD depicted in Figure 6 goes from configuration s; ®s; to configuration s3 ®s4.
Because s; is causally related to s4 by two distinct paths, the type s, ~» s4 has two inhabitants.
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4.2 Interior Paths

Next, we will extend our spanning relation between bounding sites to a relation on all points of
interest within a diagram. To do this, we need to refer not only to sites in the bounding configu-
rations of X, but on any site configuration visited by X. A CSD with a sequence of N global steps
visits N + 1 site configurations: one at the start of the diagram, and one at the end of each global
step. Hence, an event will be a choice of site configuration in a diagram, together with a choice of
site within that configuration.

Definition 4.3 (Cuts). The type Cut(X) of cuts within a diagram X : I} =3 I’ has one inhabitant
for every site configuration visited by X, and is defined recursively over the structure of X. The
associated function cut(—) picks out the site configuration for each index of Cut(X).

Cut(id) =T cut(e) =1,
Cut(x;y) = Cut(x)+ T cut(inj,(t)) = cut(t) cut(inj, (o)) =T,

Definition 4.4 (Events). The type Event(X) of events in a diagram X is the type of points in
spacetime consisting of a temporal coordinate (a cut) together with a spatial coordinate (a site):

Event(X) = (t : Cut(X), s : Site(cut(t)))

This order of coordinates inverts the convention for events in a traditional execution, where we
first select a process (a spatial coordinate) and then select an action occurring on that process (a
temporal coordinate). In our figures (such as Figure 6), events exist wherever a line modeling the
flow of data (in black) intersects a consistent cut (in blue).

Care should be taken not to confuse events with actions. In the traditional model of executions,
an “event” is modeled by a local action — the equivalent of our tick. However, since an action is
effectively a discontinuous, instantaneous change to state, this leads to questions about what the
state of a system is “at” a local action: Has the action actually happened yet or not? Is the action
included in its own causal history? These ties are usually broken by interpreting events to occur
either slightly before or slightly after an action — and sometimes both, depending on context. We
prefer not to conflate these concepts in the first place: for us, an event is no more than a point in
space at a point in time, with no presumption that it is special in any particular way.

Next, we need a way to describe paths between any two events. For any two cuts in a CSD, we
can consider the global steps between them as a subdiagram. Then a path between two events is no
more than a path spanning the subdiagram between their cuts. Order matters, however: if a CSD
passes through distinct cuts t1, £, (in that order), the subdiagram “from ¢, to ¢;” does not really exist
— at least not in the expected sense. To preclude such inversions, we will define subdiagrams only
over legal intervals.

Definition 4.5 (Intervals). The interval t; - - - t, between cuts t1, t; in a diagram X is the type with
a (unique) inhabitant ¢, if and only if X visits #; no later than t,.

Definition 4.6 (The subdiagram over an interval). The subdiagram over an interval t;5 : t; - - s,
denoted during(t1,), is the CSD consisting of the global steps appearing strictly between cuts #1, ¢,
in a diagram X.

Since CSDs are effectively (snoc-)lists at the top level, using during(—) is akin to using the
common list functions drop and take: we drop everything after both cuts, then take everything
that remains after the first cut.

Finally, we can obtain a causal relation between events:

Definition 4.7 (Causal relations). For a diagram X, a causal relation is a type family Event(X) —
Event(X) — Type taking every pair of events to a type of relationships between them.
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Definition 4.8 (Causal paths). The type family ~» of causal paths (sometimes interior paths)
through a diagram X is a causal relation. The inhabitants of e; ~» e, are (dependent) pairs consist-
ing of an interval between the events together with a spanning path under that interval:

(t1,81) > (t2,82) = (t1z 2 t1 -+ - ta, P12 : Span(during(ti2))(s1, 52))

We consistently pun ~» to mean either spanning paths or causal paths depending on whether
its arguments are sites or events. Similar liberties will be taken (and acknowledged) with the in-
terpretations of Sections 5 and 6.

The causal relation ~» enjoys reflexivity'', antisymmetry, and transitivity, making it a partial
order. As a proof-relevant type, reflexivity arises from the existence of unit paths, and transitivity
arises from the composition of paths — which is, moreover, strictly associative. Unlike traditional
executions (Definition 2.1), antisymmetry is guaranteed by construction for every CSD: it is impos-
sible to introduce a causal loop because state flows only forward in time. Proofs of these properties
can be found in our Agda development; we elide them here for brevity.

An order on actions. Here and in Section 2, we were careful to distinguish the actions related by
happens-before from the spacetime coordinates we call events. Nonetheless, the two notions are
closely related: every local action a has a pair of associated events e’, e, before and after it. We can
use these events to act as proxy for the actions in our system to recover an irreflexive order on
actions: a; < a; if and only if ej,, ~» ef;j. For example, in Figure 6, we have a; < a,, since e}, > ef, .
Because of this correspondence, we speak only of events in what follows — we can always choose

a suitable event to stand in for any action of interest.

5 INTERPRETING CSDS INTO LOGICAL CLOCKS

In this section (and Sections 6 and 7) we apply CSDs to the analysis of logical clocks, a common
class of devices for reifying causal information into a concurrent system at runtime. As Lamport
[1978] observed, we often cannot rely on physical timekeeping to coordinate agents in a concur-
rent system: one agent’s clock may drift relative to the others, and messages may take variable (or
unbounded) amounts of time to propagate from sender to recipient. Logical clocks solve this prob-
lem by measuring time against the occurrence of intentional actions of the agents in the system.

In the setting of Lamport [1978], alogical clock (or just clock) is a global assignment of partially-
ordered values (called timestamps) to actions in a concurrent execution. Figure 7 gives examples
of these assignments for two widely used logical clocks: the scalar clock [Lamport 1978] and the
vector clock [Mattern 1989; Fidge 1988], which respectively use scalar and vector timestamps. We
will discuss the specifics of these clocks in more detail in Section 7, along with matrix clocks [Wuu
and Bernstein 1984; Raynal et al. 1991].

In our setting, a clock will assign a timestamp to every event in a CSD. Just as in Section 4.2, we
can assign timestamps to actions by choosing an adjacent event to represent that action.

We will use a common formulation of clocks as implementations of an abstract data type with
local increment and merge operations [Raynal and Singhal 1996], and we bridge this local character-
ization of clocks into a global assignment of timestamps via interpretation. We begin by justifying
this choice of formulation; then, just as in the case of causal paths (Section 4), we construct an in-
terpretation of CSDs X : I 3 I}, into a spanning domain, in which an assignment of timestamps
(or “valuation”) on the sites of I; is updated into a valuation on I;. We conclude by extending this
interpretation to an interior domain, which will assign timestamps to all events within a diagram.

Unlike Lamport’s happens-before, our ~» is reflexive. Since reflexive and irreflexive partial orders are in one-to-one
correspondence, the choice largely comes down to a matter of preference.
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Fig. 7. An example execution with an assignment of timestamps by the (a) Lamport clock and (b) vector
clock.

5.1 Realizable Clocks

In practical implementations, a logical clock is realized as a data structure, instantiated by each
agent in a concurrent system, that tracks the passage of (logical) time from the perspective of
that agent. The timestamp associated to any action is that displayed by the clock of the agent
when it performed the action. The archetypal logical clock is the scalar clock of Lamport [1978],
in which every agent’s clock maintains a single monotonically-increasing integer. To ensure that
every action occurs at a later “time” than those that occur causally prior, the scalar clock increments
with each action, and updates to the maximum of its timestamp and that of any message received
at that agent. This property — that causally-related actions have like-ordered timestamps — is so
important that it is called the clock condition, and is required of any prospective logical clock.

While we can always build a global assignment of timestamps from a system of clock replicas,
we cannot always go in the reverse direction: a clock in the global sense may not be realizable as a
data structure. For instance, given an execution with n actions, if C[—] is a monotone assignment
of integer timestamps to this execution, then so is C[—]+n. But an agent early in the execution has
no knowledge of how many actions will occur in total: any prediction it makes may be invalidated
depending on what transpires in the future. So even if C[—] can be realized as a system of local
clock instances, C[—] + n certainly cannot be.

We restrict our attention to such realizable clocks, as these make up the majority of clocks in
the literature.'® Following Raynal and Singhal [1996], we treat logical clocks as an abstract data
type (ADT) with two operators, increment and merge. In addition, we assume a type Act of actions
performable by any agent in the system.

Definition 5.1 (Clocks as an ADT). A logical clock is a type Time together with

e a family of operations increment, of type Time — Time for every a : Act,
e an operation LI (pronounced merge) of type Time X Time — Time.

Moreover, Time must be preordered by a relation <, such that for all timestamps t, t; : Time,
the above operations are inflationary:

IA

e t; < increment,(t;),
e t; < (t; Uty),and
o 1 < (L Uty).

12Because our causal relation o is reflexive, our formulation of the clock condition does not guarantee that causally-related
actions have distinct timestamps. We see this as a feature, not a bug: a clock need not tick for every local action, only those
actually related to its purpose. Given knowledge about which actions are relevant, a strictly-increasing clock condition can
be proved by the same methods of Section 6.

13 Actually, we are not directly aware of any unrealizable clocks as such; though offline analyses of recorded execution
traces might make good use of them.
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The increment, operation advances the clock’s time depending on what the action a is. For
instance, a vector clock maintains an index for every agent, and it increments a different index
depending on which agent performed the action. Since a CSD doesn’t carry information about the
provenance of an action, we take the elements of Act to include that information themselves.'*

The merge operation advances the clock’s time to any time after the two given timestamps. This
operation is used when an agent receives a message decorated with the sender’s timestamp: by
merging the sender’s timestamp with the recipient’s timestamp, any action occuring from that
point on is guaranteed to have a timestamp no less than than anything in its causal history.

5.2 Update Functions

Given a logical clock, our goal is to derive a global assignment of timestamps to events for any CSD.
Following the pattern in Section 3.4, we first restrict our attention to an assignment of timestamps
to the bounding sites of an Act-labeled diagram X : T} At T,

Intuitively, we will want to interpret every (tick,a) as an increment, operation, and every
(join, ®) as a merge over the input timestamps. An Act-labeled CSD is then an expression arrang-
ing any number of clock operations on timestamps into a one-shot, compound operation over an
entire configuration of clocks. In other words, every Act-labeled CSD yields a function mapping
an assignment of timestamps on its input sites to an assignment of timestamps on its output sites.

Definition 5.2 (Valuations). The type of valuations on T, written Valuation(T'), is the type of func-
tions v : Site(I') — Time assigning a timestamp to each site in T".

Definition 5.3 (Update functions). For every logical clock, the interpretation [—] of Act-labeled
CSDs X : I} A T, into update functions of type Valuation(T;) — Valuation(T) is defined as:

[tick, e — a] = Av. A—. increment,(v(e))

[fork, —] = Av. A—. v(e)
[join, —] = Av. A—. v(inj,(e)) Ll v(inj,(e))
[perm o, -] =Av.voo™! [id, -] =Av.v

ey fi + full =[x £ + [y, £y sy fe+ £yl = [y, fyll o [x. £]
When the diagram X is understood, we will write C, [s] to mean [X](v)(s).

Because a tick transforms a valuation on one site into a valuation on one site, it serves as a
very thin wrapper around increment,. The new valuation can ignore its argument, because there
is only one input to a tick. Likewise, fork ignores its argument because both outputs receive their
timestamp from the same input site, and join merges both input sites onto the single output site.

In contrast, the perm constructor doesn’t manipulate any timestamps directly. Instead, any
given site is translated by the permutation ¢ into an index on the input valuation: the requested
timestamp is just one of those in the input. The id constructor behaves similarly.

Finally, sequential and concurrent composition each combine the evaluation functions from
each subdiagram. Sequential composition is given by the usual composition of functions (o); and
concurrent composition is given by the usual pairing of two functions over a sum type (+). We
abuse pattern-matching notation somewhat by writing f; + f, on the left-hand side, where we
would otherwise write simply f and compose its uses with the appropriate injection.

14 Alternatively, we can take Act to be the type of process identifiers, so that any agent may increment any index of the
clock — even one not intended to track that agent. Section 7.1 develops this perspective in more depth.
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Fig. 8. The execution from Figure 7 as a CSD, with Lamport timestamps assigned to events.

5.3 Clock Functions

The interpretation of Definition 5.3 only tells us what timestamps a system terminates on, not
the timestamps along the way. To obtain the latter, we must extend our function C, to accept
any event (Definition 4.4), not just output sites. That is, we want a function C : Valuation(I}) —
(Event(X) — Time), computing an assignment of timestamps to all events given an initial assign-
ment of timestamps.

Following Section 4.2, we will select a subdiagram with the event of interest on its boundary.
The timestamp at an event is then one of the timestamps on which that subdiagram terminates.

Definition 5.4 (The subdiagram before a cut). The subdiagram before a cut t, denoted before(t), is
the CSD consisting of the global steps appearing strictly before the cut ¢ in a diagram X.

Definition 5.5 (Clock function). For every choice of logical clock and Act-labeled diagram X, the
clock function C of type Valuation(I'1) — (Event(X) — Time) is given by

Col(,9)] = [before(t)] (v)(s).

We consistently pun C, to mean either the update function (Definition 5.3) or the clock function
depending on whether its argument is a site or an event.

Figure 8 depicts the execution from Figure 7 as a CSD, with timestamps assigned to events
according to the Lamport clock, given a starting valuation of zeroes and using the interpretation
in Definition 5.3. As discussed in Section 4.2, we can associate timestamps to actions rather than
events just by selecting one of the neighboring events for each action to represent it. In this case,
convention suggests adopting the timestamp of the event immediately following each action.

6 RELATING CAUSAL PATHS TO CLOCKS

In Section 4, we introduced an interpretation into paths e; ~» e,, giving a proof-relevant causal
order on events; and in Section 5, we introduced a family of interpretations into clock functions
C,[-], giving an assignment of timestamps to events. In this section, we will relate these two
interpretation via a third, ultimately yielding a proof of the clock condition: if e; ~» e;, then
Cyle1] < Cylez]. Following the recipe in Section 3.4, we will again begin with a spanning proof
relating paths and timestamps on the bounding sites, then extend to an interior proof relating paths
and timestamps on all events.

6.1 Inflationarity of Update Functions

The clock condition relates any two events in a diagram: if e; ~ es, then C,[e;] < Cy[ez]. If we
restrict our attention to sites sy, s; at the start and end of the diagram, respectively, then C,[e;]
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reduces to simply v(s;), because the diagram before an initial site is the empty diagram id. This
leads us to the following statement:

THEOREM 6.1 (THE UPDATE FUNCTION IS INFLATIONARY). Fix a choice of logical clock, and let X
be an Act-labeled CSDT; =32 T, with an initial valuation v : Valuation(I;). Then the clock’s update
function C is inflationary on causally related sites:

V(sy : Site(I7)) (s : Site(I3). (s; > s3) — (v(s1) < Cy[s2]).

This property is an analogue of the inflationary property satisfied by the clock operations of
Definition 5.1: if an output can be influenced by an input, then the output must be bounded below
by the input. In some ways, it would be surprising if Theorem 6.1 didn’t hold of C, as it is built
entirely from inflationary clock operations. Our proof will be built in kind, composing proofs over
atomic steps to yield proofs for entire diagrams. We sketch the proof at a high level here; the details
are available in our Agda development.

e The proof for a tick step uses the fact that the clock’s increment operator is inflationary:
t < increment,(t) for every action a and timestamp t. This is true by construction for any
clock implementing Definition 5.1.

e The proof for a join step uses the fact that the clock’s LI operator is inflationary on both
arguments: both t; < (#; U t;) and £, < (#; U ;) for every pair of timestamps t;, t,. Again,
this is definitionally true.

e The proof for a fork step uses the fact that the clock’s ordering relation is reflexive: we simply
copy the input timestamp onto both outputs, so the actual values are unchanged. Indeed, this
is true of perm and id, too: all outputs are precisely the same as the (unique) inputs they are
causally related to.

o The proof for a sequential composition (;) uses the fact that the clock’s ordering relation is
transitive. If we have a path through an intermediate site, where the time at the intermediate
site is bounded below at the input and bounded above at the output, we must use transitivity
to obtain a direct relationship between the input and output.

o The proof for a concurrent composition requires no information about the clock; however,
the proof-relevance of our causal relation plays an essential role. We know that s; and s, are
causally ordered because we were given a specific path witnessing the fact; and any given
path through a concurrent composition is a path wholly through one concurrent half of the
diagram or the other. Thus, we can simply dispatch to whichever sub-proof applies to the
path at hand.

Somewhat surprisingly, nowhere do we require antisymmetry: even though partial orders are
traditionally used in logical clocks, preorders are enough. This proof also holds for every CSD, even
those not reflecting a well-behaved system. All we require is that updates are inflationary — the
clock condition is not actually sensitive to what those updates are, or who performs them. This
reveals a clean separation between clocks as ADTs and the protocols they are employed in; the
clock condition is solely concerned with the ADT itself.

6.2 Monotonicity of Clock Functions

Just as in Sections 4.2 and 5.3, we need to be a little creative to leverage Theorem 6.1 into a proof
of the full clock condition. The key insight is that, if we have a path of type e; ~» e, and an initial
valuation v, we can run the clock’s update function on the subdiagram before e;. The resulting
valuation is an initial valuation for the subdiagram between e; and e,, on which we can apply
inflationarity. Once more, we leave the finer details to our Agda implementation.
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THEOREM 6.2 (THE CLOCK FUNCTION IS MONOTONIC). Fix a choice of logical clock, and let X be an
Act-labeled CSD Ty =32 Ty with an initial valuation v : Valuation(T}). Then the clock function C is
monotonic on causally related events:

V(e; ey : Event(X)). (e; » e3) — (Cyle1] < Cylez]).

Theorem 6.2 tells us that every logical clock implementing the clock ADT of Definition 5.1 must
necessarily satisfy the clock condition. Notably, this theorem applies to all CSDs, even those that
may be produced by clock implementations that may be incorrect in certain ways (e.g. a process
incrementing the wrong component of a timestamp). That is, the clock condition holds by virtue
of its interface as an abstract data type, not merely in the context of a well-behaved client program.
In Section 7, we will actually instantiate these results on several clocks from the literature.

7 VERIFIED LOGICAL CLOCKS

In Sections 4 to 6, we developed a framework for reasoning about causal relationships and logical
clocks, culminating in a generic proof of the clock condition for implementations of the standard
clock abstract data type. In this section we apply our results to several well-known clocks: Lam-
port’s scalar clock [1978], Mattern’s vector clock [1989], Raynal et al.’s matrix clock [1991], and
Wuu and Bernstein’s matrix clock [1984]. Implementations of these clocks are included in our
Agda development, each with an instantiation of our generic proof of the clock condition.

Although there is only one “scalar” clock and “vector” clock in common use, there are two
distinct “matrix” clocks with two-dimensional timestamps. The clock of Raynal et al., like the others
we discuss, merges timestamps strictly pointwise; in contrast, the clock of Wuu and Bernstein
additionally merges a row at one index into a row at another, yielding a noncommutative merge
operator. To avoid confusion, we will refer to the former as the RST clock, and the latter as the Wuu-
Bernstein clock. We will have more to say about the characteristics of the Wuu-Bernstein clock in
Section 7.2; for now, we restrict our attention to the scalar, vector, and RST clocks.

7.1 Classifier Clocks

The scalar, vector, and RST clocks all follow a similar template: we classify actions by some domain-
specific criterion, then maintain a count of observed actions for every class.

e The scalar clock classifies all actions into one single, universal class. Its timestamp consists
of a single natural number, assessing a lower bound on the total number of actions that have
occurred prior.

e The vector clock classifies actions based on who performed them, i.e. by actor. Its timestamp
consists of a vector of natural numbers — or, equivalently, a function assigning a natural to
every actor.

e The RST clock classifies actions based on subject and object: that is, every action is performed
by some subject against some object. For Raynal et al. [1991], these actions are the submis-
sion of messages, where every message has both a sender (the subject) and a recipient (the
object). The RST clock’s timestamp is thus a table counting messages sent between any two
actors — or, equivalently, a function assigning a natural to every pair of actors.

Surprisingly, these clocks turn out to be structurally identical, differing only in their indexing
classes I. In all cases, timestamps are maps I — N ordered pointwise; the increment operation
increments the value for a chosen class i € I by one; and the merge of two timestamps is their
pointwise maximum. From elementary properties of natural numbers, this pointwise order is a
preorder, and both operations are inflationary. Thus, we model all three clocks with one imple-
mentation, which we call a classifier clock, parametric in a classification function giving each
action its class.
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By instantiating Definition 5.5 and Theorem 6.2 on the classifier clock, we obtain a global as-
signment of timestamps for every CSD, together with a proof that this assignment is monotone
(i.e., the clock condition).

COROLLARY 7.1 (CLOCK CONDITION FOR CLASSIFIER CLOCKS). Every classifier clock whose opera-
tions increment, and U are inflationary satisfies the clock condition.

When specialized to sender-recipient classes (that is, indices Pid x Pid), this yields the first
mechanized proof (to our knowledge) of the clock condition for the RST clock.

7.2 Tensor Clocks

The Wuu and Bernstein [1984] clock differs from the others in that it merges a row at the sender’s
index into a row at the recipient’s, in addition to the usual pointwise merge. This merge operation
is noncommutative, since it depends on which timestamp is considered the sender’s, and which is
considered the recipient’s.

Kshemkalyani [2004] constructs a whole tensor clock hierarchy of clocks with noncommutative
merge, where a general index (c, 01, 02, ...) models information of the form “o; knows that o,
knows that ... ¢ occurred at least N many times” These clocks model a kind of transitive knowl-
edge: if one agent observes some population of actions, and they send a message to another agent,
then the recipient transitively observes that same population of actions. The Wuu and Bernstein
clock falls out as a special case of the tensor clock hierarchy'”, and it — along with all other tensor
clocks — satisfies the clock condition via theorem 6.2 despite noncommutative merge.

CoROLLARY 7.2 (CLOCK CONDITION FOR TENSOR CLOCKS). Every tensor clock whose operations
increment, and Ll are inflationary satisfies the clock condition.

We have implemented and verified the clock condition for the Wuu-Bernstein clock in our frame-
work. However, the noncommutative merge operation poses some theoretical problems for the
model of interpretation we developed in Section 5, which interprets the join atomic step into the
clock’s merge operator. We want to treat join as commutative (up to isomorphism), as with the
products of sets or types. Therefore, an interpretation via Definition 5.3 of join into a noncommu-
tative merge operator would take equivalent CSDs to non-equivalent update functions. That said,
since all such update functions are increasing, our proof of the clock condition in Theorem 6.2 still
holds — there is no pair of equivalent CSDs for which the clock condition holds on one but not
the other. Nonetheless, we hope to construct a more adequate interpretation that accounts for the
full tensor clock hierarchy in the future.

8 RELATED WORK

MSCs and their semantics. Message sequence charts (MSCs) [ITU-T 2011] are a diagrammatic
language for representations of message-passing computations, widely used by practitioners and
researchers (e.g., Lohrey and Muscholl [2004]; Alur et al. [2000]; Bollig et al. [2021]; Di Giusto et al.
[2023], as a small sampling). MSCs are closely related to Lamport diagrams, being defined in terms
of straight-line processes and messages crossing between them. There have been various efforts to
formalize MSCs or MSC-like diagrammatic languages, including the MSC standard itself [ITU-T
2011] and others [Schétz et al. 1996], and investigations of the semantics of MSCs [Ladkin and Leue
1993; Broy 2005; Alur et al. 1996; Mauw and Reniers 1994; Gehrke et al. 1998]. However, we are
not aware of any formalizations of MSCs that define them inductively, as we have defined CSDs.

15The vector clock also appears as a member of the tensor clock hierarchy, though it exists as something of a base case —
unlike higher tensor clocks, its merge is commutative.
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Alur et al. [1996] note that MSCs admit “a variety of semantic interpretations”, seemingly similar
in spirit to our interpretations of CSDs. However, Alur et al.’s interpretations yield refinements of
causal order - for example, they note that the meaning of a given MSC may depend on the choice
of network model and fault model (e.g., whether message loss or reordering are possible). While
we give an interpretation of CSDs into a causal order, our range of possible semantic domains is
greater: we also give interpretations into computable functions and into proofs.

Mechanized reasoning about clocks and causality in concurrent systems. In distributed systems,
the notion of causal ordering arises in a myriad of settings, including causally consistent data
stores [Ahamad et al. 1995; Lloyd et al. 2011], distributed snapshot protocols [Mattern 1989; Acharya
and Badrinath 1992; Alagar and Venkatesan 1994], causal message delivery protocols [Birman and
Joseph 1987a; Schiper et al. 1989; Birman and Joseph 1987b; Birman et al. 1991], and conflict-free
replicated data types (CRDTs) [Shapiro et al. 2011]. In shared-memory systems, the need to reason
about causality arises in the setting of data race detection for multithreaded programs [Poznian-
sky and Schuster 2003; Flanagan and Freund 2009]. It is typical for such applications to use logical
clocks of one kind or another to reify causal information.

There are several mechanically verified implementations of distributed algorithms that use logi-
cal clocks [Lesani et al. 2016; Gondelman et al. 2021; Nieto et al. 2022; Redmond et al. 2023]. These
proof developments focus on verifying properties of those higher-level algorithms (such as causal
consistency of replicated databases [Lesani et al. 2016; Gondelman et al. 2021], convergence of
CRDTs [Nieto et al. 2022], or safety of causal message broadcast [Nieto et al. 2022; Redmond et al.
2023]), and they (implicitly or explicitly) take the clock condition as an axiom. Our mechanized
proof of the clock condition is generic for any clock that can be realized by a system of runtime
replicas — in other words, a clock defined in terms of standard “increment” and “merge” functions.

The only other work that we are aware of on mechanized verification of the clock condition
itself is by Mansky et al. [2017], whose work focuses on the verification of dynamic race detection
algorithms. As part of their larger proof development, Mansky et al. proved in Coq that vector
clocks precisely characterize the causal order. That is, they proved not only the clock condition
for vector clocks, as we do here, but also the inverse clock condition: if e;’s timestamp is less than
e;’s timestamp, then e; causally precedes e;. Unlike the (forward) clock condition, the inverse
clock condition depends on the particular protocol governing use of the clock: a process must not
increment an index owned by another process. While we verified the clock condition for a whole
class of clocks, we do not yet attack protocol-dependent properties like the inverse clock condition,
though we hope to do so eventually.

Formal models for reasoning about protocols. Talupur and Tuttle [2008] introduce message flows
as a methodology for formal reasoning about distributed protocols. They observe that execution
diagrams, such as Lamport diagrams and message sequence charts, need not be limited to informal
reasoning on whiteboards, but can be taken seriously as mathematical objects. That has been our
intention with CSDs, as well. More recently, Mora et al. [2023] present a verification methodology
based on message chains, which reveal causal structure in executions of distributed systems, al-
lowing protocol designers to reason about system behavior at a high level of abstraction. Message
flows and message chains could likely be modeled as inductive paths in our formalism. CSDs pro-
vide a rich model of executions on which these verification techniques could potentially be built
more easily.

The Logic of Events (LoE) of Bickford [2009] builds on a Lamport-style model of executions
in support of analysis and synthesis of distributed programs given an event-based specification.
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The EventML system [Rahli et al. 2017] builds on LoE by (among other contributions) incorpo-
rating a process model for implementations satisfying LoE formulae, as well as a high-level lan-
guage (the titular “EventML”) that lowers to both LoE and their process model. A key capability
of EventML is its generation of inductive properties characterizing the behavior of an EventML
program specification, supporting local reasoning about operations in terms of causally-available
inputs. In comparison, CSDs provide an inductive model of single-run executions that each depict
one possible behavior. While CSDs also emphasize induction, our induction is structural over the
CSD itself, while EventML / LoE formulae appear to be inductive in the sense of a property over a
well-founded set: a property that holds at one time will hold at all prior times. In principle, CSDs
might be given interpretations into a domain of inductive properties; but EventML’s inductive
properties describe whole programs (i.e. a whole class of runs), where induction over CSDs pro-
ceeds over individual runs. Nonetheless, we hope to investigate connections with program- and
protocol-level properties in the future, at which point a connection with LoE and EventML might
become more apparent.

Separation logics. Separation logics [Reynolds 2002] are program logics for reasoning about the
correct use of resources — concrete resources such as memory, but, excitingly, also logical re-
sources such as permissions and execution history. Concurrent separation logics [O’Hearn 2007]
enable such reasoning about concurrent programs. The literature on separation logics and concur-
rent separation logics is too vast to summarize here, although O’Hearn [2019] offers an accessible
introduction and Brookes and O’Hearn [2016] give an overview of important developments. CSDs
are heavily inspired by concurrent separation logic, but we have not yet pursued a program logic
based on CSDs. Wickerson et al. [2013]’s ribbon proofs, a diagrammatic proof system based on
separation logic, could be an inspiration for future work in this direction.

Separation logic has been used in the service of reasoning about causality. Gondelman et al.
[2021] and Nieto et al. [2022] both use the Aneris concurrent separation logic framework [Krogh-
Jespersen et al. 2020], itself built on the Iris [Jung et al. 2018] framework, to verify the correctness
of distributed systems in which causality is a central concern. However, the Aneris framework
does not offer any particular support for reasoning about causality. In fact, we are not aware
of program logics or verification frameworks that are specifically intended for reasoning about
causality, which is perhaps surprising, considering the importance of causality in concurrent sys-
tems. Rather than reasoning about causal relationships as logical resources, as one would do when
using Iris or Aneris, causality in a CSD-based proof system would manifest in the structure of the
proof itself.

String diagrams. Our CSDs are inspired by the string diagrams employed in category theory,
which formally describe compositions of morphisms in a monoidal category (i.e., with a concurrent
composition operator) using a graphical syntax. The standard reference for string diagrams is Joyal
and Street [1991], though Piedeleu and Zanasi [2023] give an accessible introduction for computer
scientists. We hope to establish firmer connections between CSDs and string diagrams in future
work, e.g., by proving that CSDs form a (symmetric) monoidal category. Moreover, recent work by
Nester [2021] has described execution traces in concurrent systems using string diagrams in which
data can be transferred between tiles both in time (in the forward direction) and in space (in the
sideways direction). This contrasts with our CSDs, in which data is only transferred in time. Nester
leverages double categories to formalize these two-dimensional interfaces. It would be interesting
to investigate what a treatment of causality might look like in such a setting.

String diagrams have been applied to many domains beyond distributed systems. In quantum
computing, the ZX-calculus [Coecke and Duncan 2008] is a graphical formalism for the description
of quantum circuits, much like Lamport diagrams are a graphical formalism for distributed traces.
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The VyZX project [Lehmann et al. 2022, 2023] has mechanized the ZX-calculus as an inductive data
type, motivated (as we were) by the desire to do inductive reasoning in a mechanized setting, and to
ground their diagrams against a variety of semantics. VyZX emphasizes the application of rewrite
rules to prove equivalence of diagrams, whereas we have emphasized the connectivity between
events in a diagram. Similarly, the tape diagrams of Bonchi et al. [2023] give a graphical syntax to
set-theoretic relations. A tape diagram is a two-layer presentation of relations, with disjunction
on one layer and conjunction on another. The two-layer structure of CSDs, with global actions
over global state decomposing into local actions over local state, is reminiscent of Bonchi et al.’s
approach. We would like to explore the connections among these ideas in future work.

9 CONCLUSION

Causality is of central importance in concurrent systems, including both shared-state and message-
passing systems. In this paper, we presented causal separation diagrams (CSDs), a new formal
model of concurrent executions that is inductively defined and enjoys a diagrammatic syntax rem-
iniscent of Lamport diagrams. The inductive nature of CSDs makes them amenable to mechanized
reasoning and interpretation.

As a case study, we used CSDs to reason about logical clocks, ubiquitous mechanisms for reifying
causal information in concurrent systems. By interpreting CSDs into a variety of semantic domains,
we built up a generic proof of Lamport’s clock condition that holds for any realizable logical clock,
including the Wuu-Bernstein clock and the RST clock, neither of which were mechanically verified
previously. A proof-relevant analogue of Lamport’s happens-before relation, witnessing concrete
causal paths in an execution, plays an essential role in these proofs. Our framework and results
are available as an Agda development.

While logical clocks were a focus of this paper, we see CSDs (and interpretations of CSDs) as a
valuable reasoning tool beyond their application to logical clocks. In future work, we hope to flesh
out the connection between CSDs and symmetric monoidal categories in more detail, including
notions of equivalence and refinement for CSDs, which will hopefully yield well-behavedness
conditions for interpretations.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers of POPL ’24 and OOPSLA ’24 for their feedback, without
which our presentation would have been worse off. Discussions with Ryan Doenges, Ilya Sergey,
and the VyZX team aided our understanding of related work. Gan Shen and Simon Guo were an
early source of inspiration for our analysis of logical clocks.

This material is based upon work supported by the National Science Foundation under Grant
No. CCF-2145367. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

Arup Acharya and B.R. Badrinath. 1992. Recording distributed snapshots based on causal order of message delivery. Inform.
Process. Lett. 44, 6 (1992), 317-321. https://doi.org/10.1016/0020-0190(92)90107-7

Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. 1995. Causal memory: definitions,
implementation, and programming. Distributed Computing 9, 1 (1995), 37-49. https://doi.org/10.1007/BF01784241

Sridhar Alagar and S. Venkatesan. 1994. An optimal algorithm for distributed snapshots with causal message ordering.
Inform. Process. Lett. 50, 6 (1994), 311-316. https://doi.org/10.1016/0020-0190(94)00055-7

Thorsten Altenkirch and Peter Morris. 2009. Indexed Containers. In 2009 24th Annual IEEE Symposium on Logic In Computer
Science. 277-285. https://doi.org/10.1109/lics.2009.33

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 113. Publication date: April 2024.


https://doi.org/10.1016/0020-0190(92)90107-7
https://doi.org/10.1007/BF01784241
https://doi.org/10.1016/0020-0190(94)00055-7
https://doi.org/10.1109/lics.2009.33

113:24 Jonathan Castello, Patrick Redmond, and Lindsey Kuper

Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. 2000. Inference of Message Sequence Charts. In Proceedings of
the 22nd International Conference on Software Engineering (Limerick, Ireland) (ICSE °00). Association for Computing
Machinery, New York, NY, USA, 304-313. https://doi.org/10.1145/337180.337215

Rajeev Alur, Gerard J. Holzmann, and Doron Peled. 1996. An analyzer for message sequence charts. In Tools and Algorithms
for the Construction and Analysis of Systems, Tiziana Margaria and Bernhard Steffen (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 35-48.

Mark Bickford. 2009. Component Specification Using Event Classes. In Component-Based Software Engineering, Grace A.
Lewis, Iman Poernomo, and Christine Hofmeister (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 140-155.

K. Birman and T. Joseph. 1987a. Exploiting Virtual Synchrony in Distributed Systems. SIGOPS Oper. Syst. Rev. 21, 5 (Nov.
1987), 123-138. https://doi.org/10.1145/37499.37515

Kenneth Birman, André Schiper, and Pat Stephenson. 1991. Lightweight Causal and Atomic Group Multicast. ACM Trans.
Comput. Syst. 9, 3 (Aug. 1991), 272-314. https://doi.org/10.1145/128738.128742

Kenneth P. Birman and Thomas A. Joseph. 1987b. Reliable Communication in the Presence of Failures. ACM Trans. Comput.
Syst. 5,1 (Jan. 1987), 47-76. https://doi.org/10.1145/7351.7478

Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Etienne Lozes, and Amrita Suresh. 2021. A Unifying
Framework for Deciding Synchronizability. In 32nd International Conference on Concurrency Theory (CONCUR 2021)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 203), Serge Haddad and Daniele Varacca (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum fir Informatik, Dagstuhl, Germany, 14:1-14:18. https://doi.org/10.4230/LIPIcs. CONCUR.
2021.14

Filippo Bonchi, Alessandro Di Giorgio, and Alessio Santamaria. 2023. Deconstructing the Calculus of Relations with Tape
Diagrams. Proc. ACM Program. Lang. 7, POPL, Article 64 (Jan. 2023), 31 pages. https://doi.org/10.1145/3571257

Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent Separation Logic. ACM SIGLOG News 3, 3 (Aug. 2016), 47-65.
https://doi.org/10.1145/2984450.2984457

Manfred Broy. 2005. A semantic and methodological essence of message sequence charts. Science of Computer Programming
54, 2 (2005), 213-256. https://doi.org/10.1016/j.scic0.2004.04.003

Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation (New Orleans, Louisiana, USA) (OSDI ’99). USENIX Association, USA,
173-186.

K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining Global States of Distributed Systems. ACM
Trans. Comput. Syst. 3, 1 (Feb. 1985), 63-75. https://doi.org/10.1145/214451.214456

Bob Coecke and Ross Duncan. 2008. Interacting Quantum Observables. In Automata, Languages and Programming, Luca
Aceto, Ivan Damgard, Leslie Ann Goldberg, Magntis M. Halldorsson, Anna Ingélfsdottir, and Igor Walukiewicz (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 298-310.

Cinzia Di Giusto, Davide Ferré, Laetitia Laversa, and Etienne Lozes. 2023. A Partial Order View of Message-Passing Com-
munication Models. Proc. ACM Program. Lang. 7, POPL, Article 55 (Jan. 2023), 27 pages. https://doi.org/10.1145/3571248

C. A. Ellis and S. J. Gibbs. 1989. Concurrency Control in Groupware Systems. SIGMOD Rec. 18, 2 (June 1989), 399-407.
https://doi.org/10.1145/66926.66963

C. J. Fidge. 1988. Timestamps in message-passing systems that preserve the partial ordering. Proceedings of the 11th
Australian Computer Science Conference 10, 1 (1988), 56—66.

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise Dynamic Race Detection. In Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (Dublin, Ireland) (PLDI "09).
Association for Computing Machinery, New York, NY, USA, 121-133. https://doi.org/10.1145/1542476.1542490

Thomas Gehrke, Michaela Huhn, Arend Rensink, and Heike Wehrheim. 1998. An Algebraic Semantics for Message Sequence
Chart Documents. Springer US, Boston, MA, 3-18. https://doi.org/10.1007/978-0-387-35394-4_1

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and Lars Birkedal. 2021. Distributed Causal
Memory: Modular Specification and Verification in Higher-Order Distributed Separation Logic. Proc. ACM Program.
Lang. 5, POPL, Article 42 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434323

ITU-T. 2011. ITU Recommendation Z.120: Message Sequence Chart (MSC). https://www.itu.int/rec/T-REC-Z.120-201102-
I/

André Joyal and Ross Street. 1991. The geometry of tensor calculus, I. Advances in Mathematics 88, 1 (July 1991), 55-112.
https://doi.org/10.1016/0001-8708(91)90003-p

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. 7. Funct. Program. 28 (2018), e20. https:
//doi.org/10.1017/S0956796818000151

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.
Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In Programming Languages and Systems:
29th European Symposium on Programming, ESOP 2020, Held as Part of the European joint Conferences on Theory and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 113. Publication date: April 2024.


https://doi.org/10.1145/337180.337215
https://doi.org/10.1145/37499.37515
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/7351.7478
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14
https://doi.org/10.1145/3571257
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1016/j.scico.2004.04.003
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/3571248
https://doi.org/10.1145/66926.66963
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1007/978-0-387-35394-4_1
https://doi.org/10.1145/3434323
https://www.itu.int/rec/T-REC-Z.120-201102-I/
https://www.itu.int/rec/T-REC-Z.120-201102-I/
https://doi.org/10.1016/0001-8708(91)90003-p
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151

Inductive Diagrams for Causal Reasoning 113:25

Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Dublin, Ireland). Springer-Verlag, Berlin,
Heidelberg, 336-365. https://doi.org/10.1007/978-3-030-44914-8 13

Ajay D. Kshemkalyani. 2004. The power of logical clock abstractions. Distributed Computing 17, 2 (Aug. 2004). https:
//doi.org/10.1007/s00446-003-0105-9

Peter B. Ladkin and Stefan Leue. 1993. What Do Message Sequence Charts Mean?. In Proceedings of the IFIP TC6/WG6.1 Sixth
International Conference on Formal Description Techniques, VI (FORTE *93). North-Holland Publishing Co., NId, 301-316.

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (July 1978),
558-565. https://doi.org/10.1145/359545.359563

Gérard Le Lann. 1977. Distributed Systems — Toward a Formal Approach. In Proceedings of IFIP Congress 1977 (Toronto,
Canada) (IFIP °77). North-Holland Publishing Co., Nld, 155-160.

Adrian Lehmann, Ben Caldwell, and Robert Rand. 2022. VyZX: A Vision for Verifying the ZX Calculus. https://doi.org/10.
48550/ARXIV.2205.05781 arXiv:2205.05781 [quant-ph]

Adrian Lehmann, Ben Caldwell, Bhakti Shah, and Robert Rand. 2023. VyZX: Formal Verification of a Graphical Quantum
Language. https://doi.org/10.48550/arXiv.2311.11571 arXiv:2311.11571 [cs.PL]

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: Certified Causally Consistent Distributed Key-Value
Stores. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY, USA, 357-370. https:
//doi.org/10.1145/2837614.2837622

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t Settle for Eventual: Scalable
Causal Consistency for Wide-Area Storage with COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (Cascais, Portugal) (SOSP ’11). Association for Computing Machinery, New York, NY, USA, 401-416.
https://doi.org/10.1145/2043556.2043593

Markus Lohrey and Anca Muscholl. 2004. Bounded MSC communication. Information and Computation 189, 2 (2004),
160-181. https://doi.org/10.1016/j.ic.2003.10.002

William Mansky, Yuanfeng Peng, Steve Zdancewic, and Joseph Devietti. 2017. Verifying Dynamic Race Detection. In
Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs (Paris, France) (Cpp 2017). Association
for Computing Machinery, New York, NY, USA, 151-163. https://doi.org/10.1145/3018610.3018611

Umang Mathur, Andreas Pavlogiannis, Hiinkar Can Tung, and Mahesh Viswanathan. 2022. A Tree Clock Data Structure
for Causal Orderings in Concurrent Executions. In Proceedings of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS °22). Association for
Computing Machinery, New York, NY, USA, 710-725. https://doi.org/10.1145/3503222.3507734

Friedemann Mattern. 1989. Virtual Time and Global States of Distributed Systems. In Parallel and Distributed Algorithms.
North-Holland, 215-226.

S. Mauw and M. A. Reniers. 1994. An Algebraic Semantics of Basic Message Sequence Charts. Comput. §. 37, 4 (01 1994),
269-2717. https://doi.org/10.1093/comjnl/37.4.269

Federico Mora, Ankush Desai, Elizabeth Polgreen, and Sanjit A. Seshia. 2023. Message Chains for Distributed System
Verification. Proc. ACM Program. Lang. 7, OOPSLA2, Article 300 (Oct. 2023), 27 pages. https://doi.org/10.1145/3622876

Chad Nester. 2021. The Structure of Concurrent Process Histories. In Coordination Models and Languages (Lecture Notes
in Computer Science), Ferruccio Damiani and Ornela Dardha (Eds.). Springer International Publishing, Cham, 209-224.
https://doi.org/10.1007/978-3-030-78142-2_13

Abel Nieto, Léon Gondelman, Alban Reynaud, Amin Timany, and Lars Birkedal. 2022. Modular Verification of Op-Based
CRDTs in Separation Logic. Proc. ACM Program. Lang. 6, OOPSLAZ2, Article 188 (Oct. 2022), 29 pages. https://doi.org/
10.1145/3563351

Peter O’Hearn. 2019. Separation Logic. Commun. ACM 62, 2 (Jan. 2019), 86—-95. https://doi.org/10.1145/3211968

Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theoretical Computer Science 375, 1 (2007), 271-307.
https://doi.org/10.1016/.tcs.2006.12.035 Festschrift for John C. Reynolds’s 70th birthday.

Robin Piedeleu and Fabio Zanasi. 2023. An Introduction to String Diagrams for Computer Scientists.
arXiv:2305.08768 [cs.LO] https://arxiv.org/abs/2305.08768

Eli Pozniansky and Assaf Schuster. 2003. Efficient On-the-Fly Data Race Detection in Multithreaded C++ Programs. In
Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San Diego, Cali-
fornia, USA) (PPoPP °03). Association for Computing Machinery, New York, NY, USA, 179-190. https://doi.org/10.1145/
781498.781529

Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. 2017. EventML: Specification, verification, and
implementation of crash-tolerant state machine replication systems. Science of Computer Programming 148 (2017), 26-48.
https://doi.org/10.1016/j.scic0.2017.05.009 Special issue on Automated Verification of Critical Systems (AVoCS 2015).

Michel Raynal, André Schiper, and Sam Toueg. 1991. The causal ordering abstraction and a simple way to implement it.
Inform. Process. Lett. 39, 6 (Sept. 1991), 343-350. https://doi.org/10.1016/0020-0190(91)90008-6

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 113. Publication date: April 2024.


https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/s00446-003-0105-9
https://doi.org/10.1007/s00446-003-0105-9
https://doi.org/10.1145/359545.359563
https://doi.org/10.48550/ARXIV.2205.05781
https://doi.org/10.48550/ARXIV.2205.05781
https://arxiv.org/abs/2205.05781
https://doi.org/10.48550/arXiv.2311.11571
https://arxiv.org/abs/2311.11571
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1016/j.ic.2003.10.002
https://doi.org/10.1145/3018610.3018611
https://doi.org/10.1145/3503222.3507734
https://doi.org/10.1093/comjnl/37.4.269
https://doi.org/10.1145/3622876
https://doi.org/10.1007/978-3-030-78142-2_13
https://doi.org/10.1145/3563351
https://doi.org/10.1145/3563351
https://doi.org/10.1145/3211968
https://doi.org/10.1016/j.tcs.2006.12.035
https://arxiv.org/abs/2305.08768
https://arxiv.org/abs/2305.08768
https://doi.org/10.1145/781498.781529
https://doi.org/10.1145/781498.781529
https://doi.org/10.1016/j.scico.2017.05.009
https://doi.org/10.1016/0020-0190(91)90008-6

113:26 Jonathan Castello, Patrick Redmond, and Lindsey Kuper

Michel Raynal and Mukesh Singhal. 1996. Logical time: Capturing causality in distributed systems. Computer 29, 2 (1996),
49-56.

Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper. 2023. Verified Causal Broadcast with Liquid Haskell. In
Proceedings of the 34th Symposium on Implementation and Application of Functional Languages (Copenhagen, Denmark)
(IFL °22). Association for Computing Machinery, New York, NY, USA, Article 6, 13 pages. https://doi.org/10.1145/
3587216.3587222

J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings 17th Annual IEEE Symposium
on Logic in Computer Science. 55-74. https://doi.org/10.1109/LICS.2002.1029817

Bernhard Schétz, Heinrich Huffmann, and Manfred Broy. 1996. Graphical development of consistent system specifications.
In FME’96: Industrial Benefit and Advances in Formal Methods, Marie-Claude Gaudel and James Woodcock (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 248-267.

André Schiper, Jorge Eggli, and Alain Sandoz. 1989. A New Algorithm to Implement Causal Ordering. In Proceedings of the
3rd International Workshop on Distributed Algorithms. Springer-Verlag, Berlin, Heidelberg, 219-232.

Frank B Schmuck. 1988. The use of efficient broadcast protocols in asynchronous distributed systems. Ph. D. Dissertation.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011. Conflict-Free Replicated Data Types. In Proceed-
ings of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems (Grenoble, France)
(588°11). Springer-Verlag, Berlin, Heidelberg, 386-400.

Murali Talupur and Mark R. Tuttle. 2008. Going with the Flow: Parameterized Verification Using Message Flows. In 2008
Formal Methods in Computer-Aided Design. 1-8. https://doi.org/10.1109/fmcad.2008.ecp.14

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos Maltzahn. 2006. Ceph: A Scalable, High-
Performance Distributed File System. In Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation (Seattle, Washington) (OSDI "06). USENIX Association, USA, 307-320.

John Wickerson, Mike Dodds, and Matthew J. Parkinson. 2013. Ribbon Proofs for Separation Logic. In Programming Lan-
guages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European joint Confer-
ences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Com-
puter Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 189-208. https://doi.org/10.1007/978-
3-642-37036-6_12

Gene T.J. Wuu and Arthur J. Bernstein. 1984. Efficient Solutions to the Replicated Log and Dictionary Problems. In Proceed-
ings of the Third Annual ACM Symposium on Principles of Distributed Computing (Vancouver, British Columbia, Canada)
(PODC ’84). Association for Computing Machinery, New York, NY, USA, 233-242. https://doi.org/10.1145/800222.806750

Received 2023-10-20; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 113. Publication date: April 2024.


https://doi.org/10.1145/3587216.3587222
https://doi.org/10.1145/3587216.3587222
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/fmcad.2008.ecp.14
https://doi.org/10.1007/978-3-642-37036-6_12
https://doi.org/10.1007/978-3-642-37036-6_12
https://doi.org/10.1145/800222.806750

	Abstract
	1 Introduction
	2 From Informal Diagrams to Formal Models
	3 Syntax and Semantics of Causal Separation Diagrams
	3.1 Site Configurations
	3.2 Causal Separation Diagrams
	3.3 Labeled CSDs
	3.4 Semantic Interpretations of CSDs

	4 The Inductive Type of Causal Paths
	4.1 Spanning Paths
	4.2 Interior Paths

	5 Interpreting CSDs into Logical Clocks
	5.1 Realizable Clocks
	5.2 Update Functions
	5.3 Clock Functions

	6 Relating Causal Paths to Clocks
	6.1 Inflationarity of Update Functions
	6.2 Monotonicity of Clock Functions

	7 Verified Logical Clocks
	7.1 Classifier Clocks
	7.2 Tensor Clocks

	8 Related Work
	9 Conclusion
	References

