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Scientific Computing with Diffractive Optical Neural

Networks

Ruiyang Chen, Yingheng Tang, Jianzhu Ma, and Weilu Gao*

Diffractive optical neural networks (DONNSs) are emerging as high-throughput
and energy-efficient hardware platforms to perform all-optical machine learning
(ML) in machine vision systems. However, the current demonstrated applica-
tions of DONNSs are largely image classification tasks, which undermine the
prospect of developing and utilizing such hardware for other ML applications.
Herein, the deployment of an all-optical reconfigurable DONNs system for
scientific computing is demonstrated numerically and experimentally, including
guiding two-dimensional quantum material synthesis, predicting the properties
of two-dimensional quantum materials and small molecular cancer drugs, pre-
dicting the device response of nanopatterned integrated photonic power splitters,
and the dynamic stabilization of an inverted pendulum with reinforcement
learning. Despite a large variety of input data structures, a universal feature
engineering approach is developed to convert categorical input features to
images that can be processed in the DONNs system. The results open up new
opportunities for employing DONNSs systems for a broad range of ML

design,”! and scientific computing,'®”

but performing ML tasks on hardware
systems requires substantial energy and
computational resources. The fundamental
quantum mechanics limit leads to a bottle-
neck of reducing energy consumption and
simultaneously increasing the integration
density of electronic circuits to catch up
with the increasing scale of modern
large-scale ML models.®*! Optical architec-
tures, such as optical implementations of
matrix-vector multipliers,’**? reservoir
computing,***! and extreme learning
machines,'®'”! are emerging as promising
high-throughput and energy-efficient ML
hardware accelerators by leveraging the
parallelism and low static energy consump-
tion of a fundamentally different particle,

applications.

1. Introduction

Machine learning (ML) has demonstrated state-of-the-art
performance in a variety of applications, such as computer
vision,? medicine,® finance,” autonomous engineering
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photon, for computing.81?!

In particular, free-space diffractive opti-
cal neural networks (DONNs) that are able
to host millions of computing neurons and
form deep neural network architectures

can optically perform ML tasks through the spatial light modu-
lation and optical diffraction of coherent light in multiple diffrac-
tive layers.[?**®! Prior demonstrations have shown the capability
of DONNS systems to recognize input images directly in the opti-
cal domain. Hence, employing DONNs instead of conventional
imaging optical components in machine vision systems can
reduce the backend electronic processing burden. However,
the demonstrated applications of DONNSs systems are largely
straightforward image classification tasks, which undermine
the prospect of developing and utilizing such hardware for other
ML applications.

Here, we numerically and experimentally demonstrate the
deployment of an all-optical reconfigurable DONNs system for
high-throughput and energy-efficient scientific computing,
including guiding two-dimensional (2D) quantum material syn-
thesis, predicting the properties of 2D quantum materials and
cancer drugs, predicting the device response of nanopatterned
integrated photonic power splitters, and the dynamic stabiliza-
tion of an inverted pendulum with reinforcement learning
(RL). Despite a large variety of input data structures in these
diverse applications, we develop a universal feature engineering
approach to convert categorical input features to binary images
that can be processed in the DONNs system. In contrast to other
DONNs s systems, the trained models can be directly deployed to
electrically controlled diffractive layers in our DONNs system so
that the system can be on-demand reconfigured for different ML

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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tasks instantaneously. Our results open up new opportunities for
employing DONN systems for a broad range of ML applications.

2. Results

Figure 1 and Figure S1, Supporting Information show the sche-
matic and photo of the all-optical reconfigurable DONNs experi-
mental setup that we recently demonstrated in the study of Chen
et al.*® The system consists of four cascaded liquid-crystal spatial
light modulators (SLMs) with the first SLM encoding input
images and the other three SLMs forming reconfigurable diffrac-
tive layers. Multiple polarizers and half-waveplates are employed
to configure the operation modes of SLMs. Specifically, the input
image SLM operates in intensity modulation mode, and images
are formed in the binary light intensity transmittance under
coherent visible laser illumination. The SLMs for diffractive
layers operate in phase modulation mode and the gray levels
of each diffractive pixel in all diffractive layers are optimized
so that coherent input images can be converged to one of the
predefined regions on a detector array. Each detector region
can represent a variety of categorical output features in different
application scenarios. More details on the experimental setup can
be found in the Experimental Section. Our system has several
unique advantages. Through system-specific diffraction model-
ing, device-specific physics-aware training, and precise optical
alignment, the in silico-trained models can be directly and accu-
rately deployed to the hardware system. Furthermore, all input
images and diffractive layers represented by SLMs can be in situ
adjusted through external electrical control signals. Hence, the
following different ML tasks can be instantaneously executed
in our DONN s system without rebuilding or modifying any phys-
ical components.

2.1. 2D Quantum Material Synthesis

Although 2D quantum materials have been under extensive
research because of their unique properties®®*? and chemical
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vapor deposition (CVD) has become a scalable and controllable
synthesis approach,!*’ exploring the overwhelming parameter
space in CVD process to find optimal synthesis conditions leads
to numerous empirical, highly uncertain, time-consuming, and
expensive experimental trials. Recently, ML models have shown
great potential to substantially accelerate the exploration.[®**]
Here, we employ the DONNs system to predict whether mono-
layer molybdenum disulfide (MoS,), one type of 2D quantum
material, can be synthesized by given certain process parameters.

Figure 2a displays the schematic of the CVD synthesis of
monolayer MoS, with multiple synthesis process parameters,
such as feed gas flow and heating temperature profile. We utilize
the experimental dataset reported in the study of Tang et al.*”!
There are seven synthesis process parameters, which include
both discrete numerical and Boolean values. For example, the
ramp time has 13 discrete values, and whether adding sodium
chloride salt is presented as True or False. To represent these
categorical process parameters as the input images for the
DONNSs system, we develop a one-hot feature engineering
approach. The value of each parameter is expressed as a vector
with only one element showing one and the rest showing zero,
and the vectors for all parameters are concatenated as a 2D
matrix. The obtained matrix is further reshaped and resized to
a 100 x 100 image. A threshold-based binarization is applied
on resized images for the DONNs system processing. The pixels
with the value one in obtained images correspond to the largest
transmittance in the input SLM and those with the value zero
correspond to the smallest transmittance. The threshold is
adjusted for different applications to have enough light transmis-
sion and detector signal-to-noise ratio. The obtained images are
processed by the DONNs system and two regions on the camera
represent two categorical output values, which are “can grow
(Yes)” and “cannot grow (No)”.

The input images produced from the training dataset through
our developed feature engineering approach are used to train the
SLM diffractive layers in the DONNs system. Figure 2b shows
the simulation camera output image, intensity distribution in
two camera regions, and confusion matrix using the images from
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Figure 1. Schematic of the all-optical reconfigurable DONNs system. The first (leftmost) SLM encodes input images that are generated from input
features by one-hot feature engineering. The second to fourth SLMs form three reconfigurable diffractive layers. Input images generated by shining
coherent light can be converged into multiple predefined regions on the output camera due to spatial light modulation and optical diffraction from
optimized diffraction layers. Each detector region represents a categorical output label.

Adv. Intell. Syst. 2023, 5, 2300536 2300536 (2 of 8)

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

1pUOD) puE SWLA I, aY1 238 “[$707/L0/10] U0 Areiqr auruo Adfim ‘Yein JO Ansioatun £q 9£500€20T ASIB/Z001°0 1/10p/wod KojimATeqr[oul[uo//:sdny woly papeojumod ‘1 ‘€20z ‘LISHOrIT

:sdny)

111

19}/ K[ 1m " K.

QSUAIIT SUOWIO)) dATIEAL) d]qeat[dde ay) Aq pauIdA0S a1e SI[OILIE () AN JO SN 10§ AIRIQIT dUIUQ AD[IA UO (SUOIP


http://www.advancedsciencenews.com
http://www.advintellsyst.com

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

www. advmtellsyst com

(a) Heat (b) Simulation 0.93 (©) Experiment 0.81
|oooooooooooo| : .
Gas[ [ : : )
- g =7 No Yoo | gos LN |50
L 5 o B £ .
[ecoco00000000 0-00~07 : :&
.0- 0.0
Synthesis process parameters (one-hot) Cannot Can : : Cannot Can
I T Grow Grow Grow Grow
Labels Labels
EEEEEEEEE EEEEEEEE S )
(I ITITITITITIITITITT] Simulation (Acc. = 82%) Experiment (Acc. = 77%)
{||||||||||||||IZI:E|
CCITTT T WTTITTTT1T71] Camnot, 47 6 Cannot | 5
- Grow —  Grow
Reshaped and 2 3
resized image - 3
1 2 3
BNy DONNs T ocan] s R .
Hardware Grow Grow |
ly.
# Cannot Can Cannot Can
Can grow (Yes) or Grow Grow Grow Grow
0 Cannot grow (No) Sim. Label Meas. Label

Figure 2. 2D quantum materials synthesis. a) Schematics of the CVD synthesis of MoS, monolayer flakes and the one-hot feature engineering of categorical
input process parameters. The reshaped and resized images can be processed in the DONNs system to predict whether MoS; can be grown or not given
process parameters. b) Simulation and c) experimental camera output images, intensity distributions in two camera regions, and confusion matrices.

the test dataset. More details on the one-hot input feature image
processing for training and test datasets can be found in the
Experimental Section. The simulation results confirm the feasi-
bility of employing the DONNSs system to guide MoS, synthesis
and the obtained accuracy 82% is comparable to the accuracies
obtained using standard ML models, such as multilayer percep-
tron (MLP) and XGBoost decision tree.*”) Figure 2c shows the
corresponding experimental results, which further validate and
agree well with simulation results. More simulation and
experimental results can be found in Figure S2, Supporting
Information.

2.2. Material and Molecule Properties

The first-principles calculations to solve Schrodinger equations,
such as density-functional theory (DFT), provide a powerful tool
for obtaining accurate structure—property relationship of materi-
als. However, such calculations are time-consuming and compu-
tationally intensive. Hence, searching for suitable materials for
certain applications in an astronomical chemical space is chal-
lenging. Smart navigation by leveraging ML models***% and
established databases, such as for 2D quantum materials,%>"
can accelerate the exploration process. Here, we employ the
DONNS system to predict the properties of 2D quantum materi-
als in the Computational 2D Materials Database (C2DB)
library.®® One input branch shown in Figure 3a depicts the
workflow. The input features only consist of atomic structure
information, such as constitute atoms, and any features calcu-
lated from DFT are explicitly excluded. These input features
are converted to the input images for the DONNs system through
the one-hot feature engineering approach as described before.

Figure 3b summarizes the simulation and experimental out-
put images and corresponding intensity distributions of utilizing
the DONNS system to predict whether 2D quantum materials are
stable or not, are direct bandgap materials or not, and magnetic
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or not, when atomic structures are given. The number of mate-
rials with distinct properties is balanced in both training and test
datasets. The output labels are created following the study of
Sorkun et al.”? Three different DONNs models are trained to
predict three properties. More details about the setup of training
and test input images and output labels can be found in the
Experimental Section. The obtained accuracies from simulations
for three properties are 86%, 73%, and 78%, respectively. These
values are comparable to those obtained using standard MLP
models as reported in the study of Sorkun et al.®? The experi-
mental results in Figure 3b further validate the simulation
results, although with slightly lower accuracies. More simulation
and experimental data, as well as confusion matrices, can be
found in Figure S3 and S4, Supporting Information.

Furthermore, one of the most striking findings of cancer biol-
ogy is the extreme genetic heterogeneity among cancer patients.
The heterogeneity of tumor genomes poses a fundamental chal-
lenge in choosing cancer drugs in the clinic. Recently, ML has
been promising in predicting the clinical response of cancer
drugs only based on the patients’ genome mutation.”*>
Here, we employ the DONNs system for the prediction of such
biological datasets. Specifically, we focus on three experimental
datasets of small molecular drugs, including PD0325901, refa-
metinib, and selumetinib.”® They are all MEK inhibitors that
target different cancer types and have different side effects.
Instead of directly converting the input features of genome muta-
tion into the input images for the DONNs system, a feature
reduction technique is first utilized, as shown in Figure 3a.
More details can be found in the Experimental Section.

Figure 3c summarizes the simulation and experimental
results of utilizing the DONNs system to predict whether the
PD0325901 cancer inhibitor is effective or not for different
tumor cell lines. The simulation and experimental results for
the other two drugs, Refametinib and Selumetinib, are presented
in Figure S5 and S6, Supporting Information. In addition,
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Figure 3. Material and molecule properties. a) Schematic of the workflow of predicting the properties of 2D quantum materials and cancer drugs using
the DONNSs system. The input features of 2D quantum materials can be directly converted to input feature images. The input features of human genome
mutation information that are used to predict cancer inhibitor effectiveness are first reduced through a feature reduction technique. The diffractive layers
can be in situ reconfigured to screen the different properties of various materials and molecules in a high-throughput manner. b) Simulation and experi-
mental camera output images and corresponding intensity distributions for predicting three properties, including the stability, band structures, and
magnetism of 2D quantum materials in the C2DB library. c) Simulation and experimental camera output images and corresponding intensity distri-

butions for predicting the effectiveness of PD0325901 cancer inhibitor.

confusion matrices for all three drugs are shown in Figure S7,
Supporting Information. The training and test datasets are bal-
anced. More details on the model setup can be found in the
Experimental Section. The results clearly show the feasibility
of employing the DONN s system to predict cancer drug effective-
ness and simulation and experimental results match well. Note
that it is intrinsically challenging to predict cancer drug response
and obtained accuracies are acceptable.

We would like to highlight that all trained DONNs models can
Dbe instantaneously loaded into the DONNs system because of the
system reconfigurability without the need to modify any physical
components and adaptive tuning.*® Although the used liquid-
crystal SLM for encoding input images in our DONNs system
only has a refresh rate of 60 Hz and the used CMOS camera
has a frame rate <40 frames per second, the system throughput
can be substantially improved with device innovation. For exam-
ple, an electro-optic SLM based on organic molecules can achieve
>GHz switching speed,’”) and an ultrafast camera can achieve a
trillion frames per second.P”® With these devices, the DONNs
system can potentially predict the properties of >10° materials
and molecules per second for high-throughput screening.

2.3. Photonic Device

Similarly, the full-wave electromagnetic calculations to solve
Maxwell’s equations to explore the structure—property relation-
ship of photonic devices are also time-consuming and computa-
tionally intensive. The use of ML models is also beneficial to
accelerate the exploration.’>*% Here, we demonstrate that the

Adv. Intell. Syst. 2023, 5, 2300536 2300536 (4 of 8)

DONNS system can also be used to predict device response given
its topology. Figure 4a shows the schematic of a nanopatterned
integrated photonic power splitter, which splits the power from
the input tapered waveguide (P,) into the power in two output
tapered waveguides (P; and P,). The splitter is manufactured
on a silicon-on-insulator substrate. The center component con-
necting three waveguides consists of an array of 20 x 20 grid
points. At each point, there is either a hole of various diameters
or no hole, which defines the device topology and the power split-
ting ratio Py/P,.

We resize the device topology to match the size of input
images for the DONNs system, which predicts the power split-
ting ratio with three categorical output labels 5:5, 7:3, and 9:1.
The datasets are generated from a conditional variational
autoencoder trained from a dataset calculated using full-wave
electromagnetic simulations as described in the study of Tang
et al.l®*! More details about the input image mapping and dataset
generation can be found in the Experimental Section. Figure 4b,c
shows the camera output images, intensity distributions, and
confusion matrices from simulations and experiments, respec-
tively. The obtained prediction accuracies are close to 100%.
More simulation and experimental data can be found in
Figure S8, Supporting Information.

2.4. Inverted Pendulum
An inverted pendulum is a pendulum with its center of mass

above the pivot point, which is unstable. The pivot point can
be horizontally moved back and forth through a control feedback

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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Figure 4. Photonic device. a) Schematic of the workflow of predicting the device response of nanopatterned integrated photonic power splitter on a
silicon-on-insulator platform. The hole array device topology is mapped to input images. There are three output power splitting ratios, including 5:5, 7:3,
and 9:1. b) Simulation and c) experimental camera output images, intensity distributions in two camera regions, and confusion matrices.

loop to keep it balanced at the inverted position and keep it from
falling. The motion evolution and dynamic stabilization of an
inverted pendulum are canonical problems of dynamics and con-
trol theory. Not only in classical mechanics, quantum mechanical
systems, such as a many-body spin system described in the study
of Hoang et al,l*" have similar dynamic stabilization of a quan-
tum inverted pendulum. Recently, RL approaches, such as deep
Q-learning, provide fresh perspectives of solving physics tasks!®*!
and we demonstrate that the DONNs system can be used in an
RL framework to dynamically stabilize an inverted pendulum.
Figure 5a shows the schematic of the RL framework. Four
states, including the positions and accelerations of the pendulum
and base, are encoded into the input images of the DONNs using
the one-hot feature engineering approach described before. The
action space consists of moving the base left or right. The
DONNSs system is trained to take the current state as input
and generate the next-step action as output so that the pendulum
can be kept stable for as many steps as possible. Hence, the

reward function is defined as the number of steps to keep the
pendulum from falling and we choose 200 as the number of
steps to stop the training process. More details on the training
of the DONNs system can be found in the Experimental
Section. The trained DONNSs can generate actions to keep the
pendulum stable for 200 steps. Figure 5b displays two example
sets of pendulum images, DONNs input state images, simula-
tion action camera output images, and experimental camera
action output images, which confirm the feasibility of utilizing
the DONNs system for RL applications. The step evolution of
these four images is displayed in Supplementary Movie 1,
Supporting Information.

3. Discussion

We have numerically and experimentally demonstrated that the
DONNSs system can be deployed to accelerate the execution of ML

(@) Inverted pendulum (b) pendulum image State image Simulation Experiment
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Figure 5. Dynamic stabilization of an inverted pendulum through RL. a) Schematic of the RL framework to dynamically stabilize the inverted pendulum
utilizing the DONNs system. There are four states including the positions and accelerations of the pendulum and base. The action space consists of
moving the base left or right. b) Pendulum images, DONNs input feature images, simulation action camera output images, and experimental camera

action output images for two different actions.
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models in scientific computing domains, including guiding 2D
quantum material synthesis, predicting the properties of 2D
quantum materials and cancer inhibitors, predicting the device
response of nanopatterned integrated photonic power splitters,
and the dynamic stabilization of an inverted pendulum with
an RL approach. We have developed a universal feature engineer-
ing approach to convert categorical input features to images that
can be processed in the DONNs system. One limitation of the
current hardware system is the binary nature of input images
and future work can leverage the grayscale encoding to handle
complicated categorical and even continuous input features.

4. Experimental Section

Experimental Setup: The input light is from a laser diode (CPS532 from
Thorlabs, Inc.), which has a center wavelength of 532 nm and a beam
diameter ~4 mm. The distance between SLMs and the camera is 11
inches. The model number of all transmissive SLMs is LC 2012 from
HOLOEYE Photonics AG. The refresh rate is 60 Hz. The output images
are captured by a CMOS camera (CS165MU1 from Thorlabs, Inc.). The
frame rate is 34.8 frames per second and 10 frames are averaged to obtain
output images. The input image size is 100 x 100. More experimental
details can be found in our recent work.l®!

2D Quantum Material Synthesis: The dataset contains a total of 300
MoS, synthesis data. There are seven input features in the dataset, which
are the distance of sulfur outside the furnace, flow rate, reaction tempera-
ture, ramp time, reaction time, whether the substrate is placed flat or
tilted, and whether sodium chloride salt is added or not. The first five fea-
tures contain discrete real-valued numbers and the last two features are
Boolean. The detailed data structure can be found in the open-source
repository.® The output label is binary with 0 representing unsuccessful
growth (small flake size) and 1 representing successful growth (large flake
size). We randomly selected 240 data (80% data) as the training set and
the rest (20% data) as the test set. The input image size of our DONNs
system is 100 x 100 with binary gray levels and we convert input features
to DONNSs input images in the following steps. First, we encode the input
features in a one-hot fashion, where the number of input features is
changed from 7 to 81. The 1 x 81 vector is reshaped to a 9 x 9 matrix.
This binary matrix is further scaled up through interpolation to a grayscale
100 x 100 matrix, which finally becomes binary again by setting a thresh-
old. In this application, the threshold is set as 0.1.

2D Quantum Material Properties: For the prediction of all three proper-
ties, the input features are the same, which are the number of atoms per
unit cell, prototype vector, and chemical composition vector. The output
labels to represent “magnetic state”, “is stable”, and “has direct band gap”
are available in the dataset. The feature extraction from materials is the
same as the study of Sorkun et al.’? and the details can be found in
the open-source repository.””) The similar one-hot feature engineering
process as described in the previous section is applied to 1 x 144 vectors,
which are further converted to input images of the size 100 x 100 for the
DONNSs system through reshaping, resizing, and threshold-binarization
processing. The threshold is set as 0.45. We split the data into the training
and test data with a ratio of ~4:1. For the prediction of magnetic state, the
training set has 952 data and the test set has 202 data. For the prediction
of stability, the training set has 800 data and the test set has 208 data. For
the prediction of band structure, the training set has 220 data and the test
set has 52 data.

Cancer Inhibitor Effectiveness: For the effectiveness prediction of cancer
inhibitors, including PD0325901, refametinib, and selumetinib, each drug
has a totally 7798 binary input features of patients’ genome mutation.
Because of the limitation in the DONNs hardware system, we reduce
the number of features by using a linear regression model with L1 normal-
ization to extract the first 144 features. We then convert these features to a
100x100 input image for the DONNs system by reshaping a 1 x 144 vec-
tor to a 12 x 12 matrix, resizing the 12 x 12 matrix to a 100 x 100 matrix
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through interpolation, and threshold-binarization processes. The thresh-
old is set as 0.5. The output labels are denoted as real-valued numbersin a
range from 0 to 1, which represent the effectiveness of cancer inhibition.
They become binary with a threshold 0.6, meaning that any value greater
than 0.6 represents “effective” and other values represent “ineffective”.
We split the data into the training and test data with a ratio of ~4:1.
For PD0325901, there are 1465 training data and 349 test data. For refa-
metinib, there are 1329 training data and 355 test data. For selumetinib,
there are 1482 training data and 328 test data.

Integrated Photonic Beam Splitter: The center component has an area of
2.25 x 2.25 ym*. Hole spacings are 112 nm from center to center of each
hole position, and the maximum and minimum hole diameters are 77 nm
and 42 nm. If a diameter is below 42 nm, there is no hole. A conditional
variational autoencoder (CVAE) is trained using the simulation data gen-
erated full-wave electromagnetic finite-difference-time-domain calcula-
tions, as described in detail in the study of Tang et al.l®®! Here, we use
the decoder of trained CVAE to generate the device topology given the
splitting ratio. For each ratio, we generate 800 training data and 131 test
data. The device topology is represented by a 20 x 20 matrix and
each element is a floating point number to represent a normalized hole
size. The 20 x 20 matrix is then scaled up through interpolation to a
100 x 100 matrix, which then becomes binary with the threshold 0.5.

Inverted Pendulum Stabilization: Four states are the horizontal position
of the base in a range from —4.8 to 4.8, the angle between the pendulum
and the vertical position in a range from —0.418 to 0.418, the horizontal
velocity of the cart in a range from —co to +c0, and the angular velocity of
the pendulum in a range from —co to +o0. The values of the first two fea-
tures are normalized to a range from 0 to 1 through linear normalization,
and the latter two are normalized to the same range through the sigmoid
function. The normalized range is then discretized to 25 levels, which is
also the dimension of one-hot encoded feature vectors. Similar to other
demonstrations, the 100 x 100 input feature images for the DONNs sys-
tem are generated through reshaping, resizing interpolation, and binariza-
tion processes. The threshold is set as 0.01.

To facilitate the training of the DONNSs system, we first train a convolu-
tional neural networks (CNNs) model in the RL framework shown in
Figure 5a. The CNNs model has the state images generated using the
one-hot feature engineering approach as input and the next-step action
as the output. The CNN model contains three convolutional layers with
channel sizes of 1, 16, and 32, respectively. The kernel size is 5 and
the step size is 2. Each convolutional layer is followed by a batch normali-
zation layer. After the last convolutional layer, a fully connected layer is
included to reduce the feature dimension to 2 to represent two actions.
The reward function is defined as the number of steps to have a stabilized
pendulum and we choose 200 steps as the training stop criterion. When
the CNNs model is trained, it is used to perform the inference of multiple
inverted pendulum problems with different initial states, and all steps with
input images and output action are used to train the DONNs system.
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