Deep-learning Model Extraction through
Software-based Power Side-channel

Xiang Zhang!, Aidong Adam Ding?, Yunsi Fei!
'Department of Electrical and Computer Engineering, 2Department of Mathematics
Northeastern University, Boston, MA, USA
{zhang.xiangl, a.ding, y.fei} @northesatern.edu

Abstract—Deep learning (DL) techniques have been increasingly
applied across various applications, facing a growing number
of security threats. One such threat is model extraction, an
attack that steals the Intellectual Property of DL models, either
by recovering the same functionality or retrieving high-fidelity
models. Current model extraction methods can be categorized
as learning-based or cryptanalytic, with the latter relying on
model queries and computational methods to recover parameters.
However, these are limited to shallow neural networks and are
computationally prohibitive for deeper DL models.

In this paper, we propose leveraging software-based power
analysis, specifically the Intel Running Average Power Limit
(RAPL) technique, for DL model extraction. RAPL allows us to
measure power leakage of the most popular activation function,
ReLU, through a software interface. Consequently, the ReLU
branch direction can be leaked in the software power side-channel,
a vulnerability common in many state-of-the-art DL frameworks.
We introduce a novel methodology for model extraction Algorithm
from input gradient assisted by side channel information. We
implement our attack on the oneDNN framework, the most
popular library on Intel processors. Compared to prior work,
our model extraction, assisted by the software power side-channel,
only requires 0.8% of the queries to retrieve a 5-layer MLP. We
also successfully apply our method to a common Convolutional
Neural Network (CNN) - Lenet-5. To the best of our knowledge,
this is the first work that extracts CNN models with more than 5
layers based solely on queries and software.

Index Terms—Model Extraction, RAPL Power Side-Channel,
Input Gradient

I. INTRODUCTION

Deep learning has been widely applied in various application
domains. However, deep neural network (DNN) models and
implementations are facing increasing threats. The DNN model,
including the structure, hyperparameters, and parameters, is
becoming valuable intellectual property (IP) and adversaries
aim to steal the IP [1]-[3].

In this paper we focus on model extraction, a common
IP-stealing attack. Generally, there are three types of model
extraction: learning-based model extraction and cryptanalytic
model extraction. Learning-based model extraction is training
an approximate model by querying inputs and corresponding
outputs. Cryptanalytic model extraction is analyzing DNN
model inputs and outputs by traditional statistical and cryptan-
alytic methods. Comparing to learning-based model extraction,
cryptanalytic model extraction is more apparent because of the
black-box attribute of machine learning approaches. Previous

This work was supported in part by National Science Foundation under
grants CNS- 2212010 and SaTC-1929300.

cryptanalytic model extraction work [4], [5] recover the oracle
model with high fidelity, i.e., achieving functional equivalence.
They are software methods, and rely on well-guided queries
to find witnesses, which are model inputs that make the input
to the ReLU activation function of a neuron zero, and then
calculate the model parameters based on the witnesses.

The shortcoming of the previous software methods [4], [5]
is their scalability to deeper and more complex models. This
is because they only use controlled inputs to query the model
and check the logits (the model outputs) so as to find a witness.
Howeyver, their methods are unable to associate the witness with
a specific neuron directly and therefore result in exponential
computational complexity.

In this work, we propose the use of a software-based
power analysis tool, the Running Average Power Limit (RAPL)
technique, to facilitate the extraction of deep learning models.
This tool enables us to directly measure the power leakage of
the ReLU function via the RAPL software interface, thereby
obtaining the branch direction. Coupled with an innovative
model extraction algorithm that relies on input gradients from
activation patterns, we can accelerate the model extraction
process. By collecting output from queries and RAPL results,
we can recover model parameters and apply them in a rapid
and efficient model extraction algorithm. In comparison with
previous work, our approach to model extraction, assisted
by software power side-channels, requires significantly fewer
queries.

This paper contributes to the field in the following ways:

« Firstly, we conduct a comprehensive analysis of all ReLU
implementations in modern Machine Learning (ML)
frameworks, including Pytorch, Tensorflow, oneDNN, and
Darknet. We find that all these implementations are sus-
ceptible to software-based power side-channel attacks.

o Secondly, we present a practical and accurate method to
extract the model activation pattern from the software-
based side channel.

o Lastly, we develop a model extraction algorithm, which
hinges on the output from queries and their corresponding
activation patterns. Our approach leverages the activation
pattern data gathered from the software-based power side-
channel, considerably reducing the number of required
queries and facilitating the process of model extraction.

The rest of this paper is arranged as follows. In Section II, we
provide an introduction to power side-channels and the process

of DNN model extraction. Next, in Section III, we discuss
the role of the software power side-channel in the context of
DNN model activation functions. Our novel model extraction
algorithm is then presented in Section IV. Finally, we evaluate
our method and discuss the results in Section V.

II. BACKGROUND

In this section, we first introduce background of DNN model
extraction and software-based power side-channel. We then
present various machine learning frameworks and their ReL.U
implementations.

A. Deep Neural Network Model Extraction

Deep neural network model extraction is a type of attack
which aims at recovering the oracle model. Most of prior
works are focusing on accuracy, i.e., the extracted has similar
performance as the oracle over the entire dataset. However,
Jagielski etc. [4] argue that fidelity is equally important to
accuracy, where fidelity measures the agreement on any in-
put data. They have extracted 2-layer Multi-layer Perceptrons
(MLP) with high accuracy and high fidelity. In general, model
extraction is classified into two types:

1) Learning-based model extraction: Learning-based model
extraction works by submitting queries to the oracle model
and using machine learning on the query results to gen-
erate an approximate copy. This method is particularly
beneficial when dealing with large neural networks, where
a more detailed extraction process might be impractical
due to the model’s size. In general, learning-based model
extraction can achieve high accuracy, as demonstrated by
several studies [6], [7]. Some works even aim for high
fidelity [4], i.e., extracted results not only work similarly
to the original model but also closely mirror its internal
structure and parameters. However, it’s worth noting that a
learning-based extraction may result in a model that, while
functionally similar to the oracle model, has a different
structure and parameters. This distinction could impact the
model’s behavior in edge cases or when presented with
data that differ from the original training set.

2) Cryptanalytic model extraction: Cryptanalytic model ex-
traction seeks to recover an exact copy of the oracle model,
aiming to reproduce its outputs with high fidelity across
all possible inputs from the dataset. This is generally more
challenging than learning-based model extraction because
it involves recovering parameters one by one, similar to the
byte-by-byte key recovery process in cryptanalytic attacks.
Carlini et al. [5] were among the first to formalize DNN
model extraction as a cryptanalytic problem. They devised
special inputs that put the model execution in a certain
state and used equation solving to recover the model
parameters. Their work focused on the ReLU activation
function, which is the most commonly used in modern
DNNSs. Other researches [8], [9] also aim to extract model
parameters with the help of side-channel information.
These methodologies illustrate the varying strategies that
can be utilized to achieve high fidelity model extraction.

Cryptanalytic model extraction has inherent drawbacks:
specifically, its utility diminishes as the complexity and depth
of the neural network increase, with the number of necessary
queries rising exponentially. This is primarily due to the chal-
lenges in linking a specific input (referred to as a witness) to
the corresponding neuron or layer in a critical state.

In our research, we’ve addressed this limitation through a
two-pronged approach, namely, leveraging a software power
side-channel and implementing an input gradient-based model
extraction method. The side-channel provides valuable insights
into the activation pattern of each layer in the neural network. In
addition, the new model extraction method we’ve developed has
consistent complexity across different layers, helping us reduce
the number of queries significantly for model extraction.

B. Power Side-channel and Running Average Power Limit
(RAPL)

Power side-channel analysis has been a popular and effective
attack against cryptographic implementations [10]. It leverages
the data dependence of power consumption of CMOS circuits
to retrieve the secret. Over the past decade, many attacks
and countermeasures have been proposed on various cipher
systems. However, collecting power traces from a victim system
relies on hardware equipment and proximity/contact with the
device. Modern Intel processors have incorporated Running
Average Power Limit (RAPL) technique which includes on-
chip power sensors and corresponding Model-specific Registers
(MSRs) [11]. Software interfaces are provided for users to
read the accumulated energy consumption of various power
domains. Recently, Lipp et al. [12] have utilized RAPL to
perform software-based power side-channel analysis. It is
demonstrated that RAPL has sufficient resolution for practical
power attacks on common ciphers, including the RSA algorithm
in Mbed TLS and AES-NI implementations. To measure the
power consumption of target instructions, they employ the zero-
stepping and single-stepping [13] in Intel SGX enclave to repeat
instruction executions. Our work utilizes RAPL power analysis
of DNN model execution to extract the model.

The Intel RAPL technique provides four power domains for
both measuring the energy consumption and throttling them at
run-time [11].

e Package (PKG): measures the energy consumption of the
entire processor, including all cores, the integrated GPUs
and last level cache and memory controller.

e Power Plane 0 (PPy): measures energy consumption of
all cores.

e Power Plane 1 (PP;): measures energy consumption of
on-chip GPUs.

e DRAM: this domain measures energy consumption of the
DRAM.

Intel SGX (Software Guard Extensions) is an instruction
set extension to provide Trusted Execution Environment (TEE)
for both code and data [14]. The SGX-Step [13] is an attack
framework to control instruction execution in SGX through in-
terrupts. In particular, Zero-stepping can repeat an instruction
while Single-stepping moves on to the next instruction. We

use these mechanisms to run instructions repetitively in order
to magnify the power consumption of a specific piece of code,
similar to the prior work [12].

C. ReLU Activation and its Implementation

Contemporary deep learning frameworks are furnished with
all vital elements that aid in building specialized deep neural
networks. A critical component of these networks is the activa-
tion function, which imparts non-linear properties to the model,
enabling it to learn from complex data. Prominent among these
activation functions is the Rectified Linear Unit (ReLU) [15].
ReLU is the most frequently utilized activation function in deep
learning, renowned for its simplicity and efficiency. The ReLU
function is defined as a piece-wise linear function, as follows:

0 =<0
x x>0

ReLU(z) = {

For easy usability, frameworks such as Pytorch [16] and Ten-
sorflow [17] are the frond-end to accept Python programs for
model configurations. For high efficiency, frameworks such as
Darknet [18] for embedded systems and Intel oneDNN [19]
for general-purpose systems are C/C++ based and provide the
back-end. Pytorch and Tensorflow are integrated with oneDNN
for outputting efficient DNN models on Intel processors. Our
RAPL-based power side-channel attack targets the common
oneDNN library while Darknet is also vulnerable to power side-
channel attacks.

There are several variants of ReLU activations, including
Exponential Linear Unit (ELU) [20] and Leaky ReLU and
Parametric ReLU (PReLU) [21]. They are all implemented with
similar functions in modern DNN frameworks, as shown below:

f(x)z{““ "l

X x>0

« is a special multiplier for the negative branch. For the targeted
oneDNN library, Listing 3 shows the ReLU implementation
in C with a conditional branch that has two clauses. alpha
is usually set to zero. Listing 4 shows the assembly code,
where two jump instructions (ja and jmp) form two branches
clauses in ReLU. Such imbalanced branch clauses consume
different power and form a power side-channel. For Darknet,
Listing 1 gives the ReLU implementation. Although it does not
contain a conditional branch, as shown in Listing 2, the power
consumption is dependent on whether x > 0 or not, leaking
the direction of the ReLU function in the power side-channel.

Listing 2: Darkent ReLU in as-

sembly
Listing 1: Darknet ReLU | pxor %xmml,%xmm1
relu (x) movaps Jexmm1, %oxmm?2
movss

{return xx (x>0);} |0xf63(%rip),%xmml

cmpltss %xmm0,%xmm?2
// End andps Jexmm?2, %oxmm1
mulss Joxmm1, %oxmmQ

cvtss2sd %xmm0,%xmmO

Listing 3: oneDNN Listing 4: oneDNN ReLU in assembly

ReLU 71e3ed: movaps %$xmm3, $xmmé
relu(x, alpha |71e3f0: movaps %xmm4, $xmmO
) 71e3f3: add $0x18, %rsp
71e3f7: retqg
{return ce e
71e455:
(x > 0)°? ucomiss O0xN (%rip) , $xmmO
7led5c: Jja 7le3ed
% 71ledbe: movaps Ssxmm3, $xmm4é
x*alpha; } 71e461l: mulss Sxmml, $xmm4
// End 71e465: jmp 71e3f0

D. ReLU Activation Pattern and Input Gradient

In a ReLU-based model, the direction of ReLU plays a
critical role in the forward pass. The activation pattern of
a ReLU neuron network is represented as vectors that reveal
the direction of the ReLU condition: A; = [ai1, a2, - . -, G,]
for the i-th layer with h; neurons. Here, for the j-th ReL.U
neuron on the i-th layer, a;; = 1 indicates activation (i.e. it has
positive output because its input value is greater than 0) while
a;; = 0 indicate its inactivation.

The Input gradient is a concept that illustrates how minute
variations in the input can impact the output of a model. It
serves as a crucial tool for understanding model behavior [22],
implementing adversarial attacks [23], [24], and visualizing
features [25], [26]. In this work, we use Ij, to denote the input
gradient vector consisting of derivatives of the network output
Y with respective to the k-th component of the input vector
X = [z1,...,%,]. In other words, the input gradient Ij is the
k-th row of the Jacobian matrix for the network.

Using side-channel measurements, we can obtain the acti-
vation pattern. We propose a fast and efficient way of recover
the DNN ways through comparison of the input gradients for
special pairs of inputs following certain activation patterns.

III. RELU BRANCH DETECTION VIA RAPL LEAKAGE

In this section, we analyze the ReLU branch execution
through RAPL side-channel leakage. The root cause of leakage
is the two conditions of a ReLU execution vary in energy con-
sumption, which can be read through RAPL registers. We use
energy consumption and power consumption interchangeably
if the measuring duration is fixed. The software power side-
channel not only leaks the ReLU direction, but also allows us
to locate the neuron with the specific ReLU.

A. Attacker Model

We consider an attack scenario where the victim model
is running in Intel SGX enclaves for confidentiality protec-
tion [14], as the OS can be malicious too. The attacker only
knows the structure of the DNN model as many are commonly
used, but has no knowledge of the model parameters with
the enclave protection. The attacker also knows which deep
learning framework is in use, such as Pytorch or Tensorflow.
The adversary can only query the model and can access Intel
RAPL’s MSRs.

B. Experimental Setup and the RAPL Power Side-channel on
ReLU

Our experimental platform is a workstation with Intel i7-
7700 processor (KabyLake architecture) and Ubuntu 18.04.1.
The Linux kernel version is 5.4.0. In this work, we observe
PP, (power consumptions of the cores), because computations
including the ReLU branch execution are only on cores. In
our test machine, the PP, energy consumption updating rate
is around 50 ps, similar to the prior work [12].

However, such an update rate is insufficient to capture the
energy consumption difference of the ReLLU function execution
under two different conditions. We design experiments to repeat
ReLU executions long enough to magnify the power side-
channel. We read the RAPL MSRs before and after the repeated
ReLU functions to measure the energy consumption.

As we discussed in Section II-C, the ReLU implementations
are different in different frameworks. For the oneDNN imple-
mentation shown in Listing 3, the negative value of x will
result in more energy consumption due to the floating point
multiplication (alpha * x). Fig. 1 shows the kernel distribution
estimation of ReLLU branches (repeat ReLU instructions for 10B
times) energy consumptions, where positive and negative stand
for z > 0 and = < 0, respectively.

ReLU negative branch

c ReLU positive branch
© 0.08
T
£
% 0.06
A1}
>
S 0.04 /\
c
[93
e /\/ \
o 0.02
IS
3 /

0.00

180 200 220 240 260 280
Energy Consumption (J)

Fig. 1: Kernel Distribution Estimation of Energy Consumption

(in J) of ReLUs in oneDNN

Similarly for the Darknet implementation, Fig. 2 shows that
we can identify the positive or negative branch distinctly, and
interestingly the negative branch still consumes more energy
even though it is multiplied with zero.

——— ReLU negative branch

0.0020 RelLU positive branch

on

o o
o o
S S
o o

/\

20000 21000
Energy Consumption (J)

0.0005

Kernel Density Estimati

0.0000

18000 19000 22000 23000

Fig. 2: Kernel Distribution Estimation of Energy Consumption
(in J) of ReLUs in Darknet

C. Automatic Repeating with SGX-Step

The previous results are obtained for plain repetitions of
instructions (put in a loop). To automate repeated executions
of selected ReLU functions, we adopt the SGX-Step technique
similar to the prior work [12]. Fig. 3 shows the Energy Kernel
Distribution Estimation of oneDNN ReLU implementation in

Intel SGX enclaves, while only repeated for 10M times. Com-
pared to the results shown in Fig. 1, the power consumption is
much higher, even though for 1000 times less repetitions. This
is due to the power overhead of SGX enclaves, including heavy
cryptographic operations and memory accesses. Note the two
distributions have more overlap, and the positions of them are
opposite to those in Fig. 1: here the positive branch execution
consumes more energy. We attribute this to complex operations
in SGX.

Although the power side-channel is weaker in SGX (because
of the overlap), it still exists for ReLU executions. We set
1348J as the threshold to distinguish the two distributions.
With such a threshold, we have 10% inaccuracy for the negative
branch and 7% inaccuracy for the positive branch. We keep
measuring one neuron three times and average the energy con-
sumption. The error rate drops to 0.1%, and we can guarantee
the correctness of branch’s direction.

—— ReLU negative branch
/\ ReLU positive branch
§ 0.10 / \
£ 008
7 / \
> 0.06
2
o 0.04
: / \
T 0.02
c
5 / S N
0.00

1320 1330 1340 1350 1870

Energy Consumption (J)

1360

Fig. 3: Kernel Distribution Estimation of Energy Consumption
of ReLU repeating 10M in oneDNN in Inte] SGX

IV. INPUT GRADIENT-BASED MODEL EXTRACTION

In this section, we present a efficient method for extracting
model parameters of deep neural networks, including multi-
layer perceptrons (MLPs) and convolutional neural networks
(CNNs), based on input gradient and the RAPL-based power
side channel.

Previous methods focused on identifying witnesses, which is
the input values to the network that correspond to ReL.U critical
points. These witnesses were then used to recover weights
through algebraic equations. Using the RAPL side-channel,
we can find the witness faster with much fewer queries. Also
since we can use RAPL side-channel to obtain the network’s
activation patterns, we recover the weights through simpler
algebraic equations using input gradients. Overall, our approach
offers a more efficient and effective means of extracting model
parameters from deep neural networks.

A. Terminology

Previous works have introduced methods for querying the
model and inferring the parameters from corresponding inputs
and outputs [4], [5]. Attackers can use any types of inputs,
whether real or arbitrary, and feed them to the oracle model to
obtain the outputs. This type of model extraction is known as
query-based model extraction.

To find the witness for a target ReLU neuron, the previous
works search for a pair of queries with inputs very close to
each other and differs in the activation of this neuron. Then the

witness is known for precision up to the difference between this
pair of inputs. We will utilize similar pairs of queries, called
Flip Pairs, whose two inputs lead to different activation for
the target ReLU neuron but have the same activation pattern
for all other neurons in the network. The flip pairs usually can
be found for precision much lower than required for the witness
search, thus can be found faster.

We propose a fast way to recover the weights through
comparison of the input gradients for two inputs in a flip pair.
The input gradient can be calculated by comparing the outputs
for two queries with the same activation pattern. We call a
pair of queries with the same activation pattern as Activation-
Inclusive Pair, and a pair of queries with different activation
patterns as Activation-Exclusive Pair. For example, all flip pairs
are activation-exclusive pairs.

B. General Model Extraction Framework

A property of the input gradient is that it only depends on
the activation pattern A and the weights W but not the biases
B. Thus we recover the weights and biases in separate steps.
Firstly, we find input gradients for using methods described in
the later section IV-C2. Secondly, by comparing input gradients
of flip pairs, we easily find the last layer weights up to a
positive multiplicative constant. As shown in prior works [4],
[5], recovering weights in each layer up to an unknown positive
multiplicative constant is sufficient to recover a network that
is functionally equivalent to the original network. Thirdly,
knowing weights in later layers, we iterate the process layer
by layer to recover weights for earlier layers. Lastly, with the
recovered weights, we can build equations from the input and
output of flip pairs to recover the biases.

We illustrate the model extraction process on a toy example
described next.

1) A Toy Example and Notations: We illustrate our algo-
rithm using a toy example. Here we introduce the example and
notations. Figure 4 shows the 3-4-5-2 MLP of four layers with
heights (hg, h1, ho, h3) = (3,4,5,2). That is, the MLP has a
3-dimensional input X = [x1, 2, x3], two hidden layers with 4
and 5 ReLU neurons respectively, and the 2-dimensional output
Y = [y1,y2]. The output Y (X)

= [[[(XW1+B1)*A1(X)|[W2+Ba]xAx(X)|[W3+B3 (1)

Input Layer

Hidden Layers

Output Layer

Fig. 4: An Example of Weights Recovery in MLP

The weight matrices for the three layers are Wy, Wy and
W3 of sizes respectively 3 x 4, 4 x 5 and 5 x 2. We denote
w;jk as the weight connecting to the k-th neuron in the i-th
layer from the j-th neuron in the prior (¢ — 1)-th layer. For
example, the first layer weight matrix W1 is

w111 Wiz Wiz Wii4
Wi21 Wi22 Wi23 Wi24
w131 Wi32 Wi133 Wi34

The Jacobian matrix consists of all input gradient vectors
as row vectors: J = [I7 . IJ IT]T here. For a MLP using
identity activation function, which is a simple linear system,
the Jacobian is simply the product of the weights matrices of
each layer: J = Wy - Wy --- Wp for a network with depth
D. For a MLP with ReLLU neurons, an inactivate ReLU zeros
out the connected weights in the gradient, thus

J:(Wl*Al)-“(WD,l*AD,l)'WD (2)

where * denotes the broadcasting operation so that W; x A; =
[Wi,la ceey Wi,hi] * [ai,la ceey ai,hi] = [Wivlai’l, cony Wi’hiai,hi].
Here W, ; denotes the j-th column of the weight matrix W.
Notice that all neurons in last output layer are not ReLU type,
and are always activated. Thus the last layer weights are not
modified by any activation vector in the Jacobian formula (2).
The input gradient Ij, is the k-th row of the Jacobian matrix:

I = (WipxAp)- (WoxAg)--- (Wp_1xAp_1)-Wp. (3)
For the toy example, the third input gradient would be I3 =
(Wis x A1)(Wa * Ag)W3 = ([wiz1, wisz, wi3s, Wizs] *
Al)(WQ * AQ)W3.

For a specific input X, Figure 4 shows the activation pattern
(the red colored weights are on the activated paths) with values
A =[A A

= [[an, a12, 013, a14], [a21, a22, 423, 424, 025]]

[0,1,1,0],[0,1,0,1,0]]

The biases of each layer in the toy example are respectively
a1l x4 vector By, al x5 vector Bg and a 1 x 2 vector Bs.
Notice that, while the biases are involved in calculation for the
network output Y, they do not affect the input gradients. Thus
we will first solve the weights for comparing the input gradients
for flip pairs, and then finds the biases at last.

C. Recovering the Last Layer Weights

In this section, we will detail the method to recover the values
of the weights for last layer, illustrate the procedure on the
toy example. As mentioned before, the main idea is that the
difference between the input gradients of a flip pair provide
the weights values. Thus we broke the method description
into following parts: 1) Activation Analysis which describes
how to retrieve the activation patterns from the side-channel
measurements; 2) Input Gradient Calculation describes how
to calculate the input gradient through an activation-inclusive
pair; 3) Flip Pair Searching describes the search algorithm for
a flip pair targeting a neuron on ¢-th layer; 4) Weight Recovery
describes the recovery of weight values by comparing input
gradients of a flip pair.

1) Activation Analysis: As described in Section III, we can
use the side-channel measurement of the energy consumption
to tell if each ReLU is activated. Table I displays a series of
energy readings taken during querying. Each row represents
the ReLU energy consumption of a specific ReLU neuron.
With a threshold of 1348.J, neurons 2 and 3 have high energy
consumption exceeding the threshold. Hence, we know that
neurons 2 and 3 are active while the other three neurons are
inactive,resulting in the activation vector [0, 1, 1, 0, 0]. Checking
all ReLUs’ energy consumption during the DNN execution this
way, we get the activation pattern of the whole network.

TABLE I: Example of Energy Consumption of oneDNN Rel.U
in Intel SGX
l Index H Energy Consumption (J) l Binarized Energy P ‘

1 1333.94464111 0
2 1354.78417969 1
3 1355.43255615 1
4 1336.60076904 0
5 1333.91168213 0

Algorithm 1: Calculate Input Gradient

Input : M-dimensional Input Vector
X = [z1,22,%3,...,%,] € Input dataset S;
Model M contains /C neurons with ReLU;
Small positive perturbation J;
Output: The input gradient Iy for z; at input X;
N -dimensional Output Vector
Y = [y1,92, Y3, > Unls
Pick x; for adding perturbation
2 X = [I17.’E2,1‘3, ..
3 X' = [1’1,%2,%3, ..
x =z +9
4 Query the model and record the corresponding
activation vector set A

-

B xm]
., Ty where

s Tl L1, - -
/
5 Lps Tl 1, - -

5 Model output Y (X) with A, Y'(X) with A’
6 if A= A’ then

7 \ I=(Y-Y")/

8 end

9 else

10 ‘ d = 4/2, then repeat from Step 3.

11 end

Return: The input gradient Iy for x5 at X

2) Input Gradient Calculation: For a network with m-
dimensional input X = [z, ..., Z,,] and n-dimensional output
Y = [y1,...,Yn), we calculate the k-th input gradient I; by
Algorithm 1. We first query the model M with the input X
while also collect the vector of RAPL energy consumptions
of all ReLU activations, denoted as P. Then using the above
Activation Analysis, we get the activation pattern A from P.
Next, we perturb the input on the entry z; by a small amount
0 and check the activation pattern again with RAPL energy
consumptions. For small enough perturbation in the input, the
activation pattern remain the same, resulting in an activation-
inclusive pair of X and X’. The input gradient Ij, is calculated
through comparison of the outputs for the original input X and
for the perturbed input X’.

3) Flip Pair Searching: Here we describe the search method
for a flip pair of inputs X and X’ that have the same activation
pattern except differing in the activation of a targeted neuron.
The method is similar to part of the approach searching for
witness of the target neuron [4], [5]. For searching the witness,
using the side-channel measurements, we can start with any pair
of inputs X and X’ that differ in the activation of the target
neuron. Then there is a witness on the line segment between X
and X'. To get more precision of the witness, binary search can
be conducted to find a pair between X and X’ that is much
closer to each other but still differs in the target activation.
When the pair of inputs are very close, only the target activation
will flip but no more flip for activation of other neurons in the
network. Then this pair is also a flip pair. For easy comparison
of the input gradients in the weights recovery later, we also
search for flip pairs that only differ in one input component
x. We present the detailed steps in Algorithm 2.

Algorithm 2: Finding Flip Pair for A Specific Neuron
Input

: M-dimensional Input Vector
X = [z1,...,%m]| € Input dataset S;
Model M contains K neurons with ReLU;
Number o;
Output: A Flip Pair X and X’ at Neuron N
1 X' =[x1,29,23,...,2),...,Tm) Where 2, = x5 + 0
2 Query the model and record the corresponding
activation pattern A

3 Model output Y (X) with A, Y'(X) with A’

4 if Bit flips in the target neuron N then

5 while Any other bit flips happened as well do

6 ‘ o = o/2 then binary searching for desired input.
7 end

8 else

9 ‘ Record the activation pattern and input/output.
10 end

11 end

12 else

13 X=X

14 Increment ¢ and repeat from Step 2.

15 end

Return: The input X and X/, their activation patterns
and outputs

4) Recovering Weights : Comparing the input gradients for
a flip pair of the j-th neuron on the second to last layer reveals
all last layer’s weights connected to this neuron. We illustrate
this on the toy example.

Say, we searched a flip pair X and X’ for the last (i.e. the
fifth) neuron on the second hidden layer, and then calculated
their second input gradients I5(X) and I»(X') respectively as
described above. Assume that the activation pattern for input
X is A(X) = [[0,1,1,0],[0,1,0,1,0]] as shown in Figure 4.
Since the flip pair only differ in the activation of the 5-th neuron
on the second hidden layer, A(X’) = [[0, 1,1, 0],[0,1,0,1,1]].
Since A1 (X) = A1(X’) and A5(X')—Ax(X) =[0,0,0,0, 1],
using equation (3), the difference of the input gradients

I,(X’) — Io(X) becomes

Wiz Ay (X)][Wa x (Az(X') — Ax(X))|W3
[WLQ * A1 (X)] [04, 047 047 04, WéS)]Wg

= [Wiax* Al(X)](Wés))Ws,s

where WEJ) denotes the j-th column of W, and 04 denotes a
4-dimensional column vector with all zero entries.

Thus the 5-th row W35 of the weight matrix Wy is
known from I5(X') — Io(X) except for an unknown constant
(W12 % Al(X)](W§5)). The sign of Io(X') — Io(X) can also
be discerned. The difference in input gradients I, (X’) — I (X)
provides insights into how the input gradients adjust due to
variations in the input X. As demonstrated in Algorithm 2,
by modifying the input entry zj;, we can alter the activation
pattern. We thus simplify it to Iy(z)) — Ix(xy). This solely
depends on the weights and activation patterns of each layer. If
we retain the same activation pattern, the relationship between
the difference in outputs AY = Y (z}) — Y () and the dif-
ference in inputs o = (z), — x)) will form a linear relationship.
For the output Y, the change can be represented as:

Y(z,) = Y(zr) = Tk(zy) — Ie(aw))(z), —ar) + Z
AY = (Ix(z},) — Ix(zk))o + Z

Here, AY represents the difference in outputs, o represents
the difference in inputs, and Z is the constant. When k& = 2,
the term Io(z}) — Iz(z2) represents the previously obtained
difference, I(X’)—I5(X), and we need to determine its sign. If
we keep the activation pattern constant and observe an increase
in the entries of AY when o increases, then the corresponding
entries of I(X')—1I5(X) are positive. Conversely, if the entires
of AY decrease, then the corresponding entries of I(X') —
I,(X) are negative.

At this point, we have successfully determined the weights
W3 5 up to an unknown positive multiplicative constant. By
repeating this procedure for all neurons in the last hidden layer,
we can derive all weights in that layer.

D. Recovering Weights of Earlier Layers

To recover the weights in earlier layers, we first generalize
the definition of the input gradients to ¢-th layer: the derivative
of the i-th layer output with respect to the k-th input compo-
nent, denoted as IE; . Thus, for a network with depth D, the
I defined before is just IéD). Similar to (3), for layers except
the last, we have

L) = (Wi Ay (Wax Ag)o (Wi Ay (4)

With the D-the layer weights Wp recovered, we can
repeat the above procedure to recover the weights of the
(D — 1)-th layer. We search for a flip pair X and X’ for
the j-th neuron on the (D — 2)-th layer. Using the fact that
I, = I,(CD) = IffD_l)WD, we can also calculate I,(CD_l)(X)
and 1°7Y(X"), from 1”)(X), 1{")(X’) and Wp. Then
the difference I,ngl)(X) - I,(CDfl)(X’) provides the weights
Wp_y ;. lteratively repeat the process, we can recovers the
weights layer by layer until all weights are recovered.

Note that most CNNs are constructed from several convolu-
tional blocks followed by a number of fully-connected layers.

These fully-connected layers can be treated as MLPs, and our
input gradient-based model extraction algorithm can be directly
applied to them. The convolutional blocks, which consist of
several convolutional layers with ReLU activation and pooling
layers, is challenging to determine which entries are selected
by the pooling layer. We adopt the similar method presented
in [5]. This method involves solving for weights from the first
layer to the last, which does not require prior knowledge of the
pooling layer patterns from earlier layers. Thus, we continue
to identify the critical points from our flip pairs using a binary
search while monitoring the RAPL.

E. Recovering Biases

To obtain the biases for each layer, we construct equations
based on the input and output of flip pairs, as opposed to
input gradients, given that the input gradients do not account
for biases in their computations. Contrary to how we recover
weights - from the last layer to the first - biases are recovered
starting from the first layer, progressing towards the last. This
method allows us to isolate and eliminate the influence of biases
from subsequent layers during the extraction process.

We denote b;; as the bias setting to the j-th neuron in the
i-th layer. Comparing the outputs for a flip pair of the
j-th neuron in the i-th layer reveals the bias b;;. From
equation (1), it is evident that the bias b;; is influenced only
by the weights W), and activation pattern Ay (X) where k >
1. This implies that, in the input-output equation, the bias is
impacted solely by the weights and activation patterns of
subsequent layers. This presents us with the opportunity to
calculate biases from the first layer up to the last layer. If we
are recovering the bias in Layer L;, we can maintain the same
activation pattern in the subsequent layers L; 1, Liyo, ..., Lp.

We use the toy example illustrated in Figure 4. The four
layers with heights (hg, h1, ha, hs) = (3,4,5,2). So the biases
of each layer are a 1 x 4 vector B7, a 1 x 5 vector B, and
a 1 x 2 vector Bg. Once we have successfully recovered all
the weight matrices W1, W, and W3, we can use pairs of
inputs and outputs to solve the biases B = [B1, B2, B3] =
[[bn, b12, b13, b14], [b21, baa, ba3, bay, 525}, [bsl, b32]]- A flip pair
X and X’ for the last (i.e. the forth) neuron on the first
hidden layer, and calculated their first output y; and yj.
Assume that the activation pattern for the input X is A(X) =
[[0,1,1,0],[0,1,0,1,0]]. The flip pair only differ in the activ-
tion of the 4-th neuron on the first hidden layer, A(X') =
[[0,1,1,1],[0,1,0,1,0]]. Since A;{(X') — A1(X) =[0,0,0,1]
and Ay(X) = A»(X’), using equation (1), the difference of
the output Y(X') — Y(X)

= [X'[W1xA1(X)] — X[W7 x A1(X)]]

(W2 Az (X)|(W3)

+((A1(X') = Ay(X)) % B1) (W2 * Az (X))(W3)
From the given formula, B; appears to be the only unknown.
Let’s assume C(X, X', W) = [X'[W1 x A1(X')] — X[W7 *
A1 (X)]][W2 * A2(X)](W3), where C(X,X’, W) is a func-
tion that depends only on the known values X, X’, and W.
Thus, we can express y; — y1

= C(X, X', W) + (was2w321 + Waaaw3a1)b14

With the known values of X, X/, W and Y, we can deter-
mine C(X, X', W), [wa4a, w321, Wasd, w341], ¥}, and yp. This
information allows us to calculate by4. By iterating over the flip
pairs of neurons in the first hidden layer, we can recover the
biases B1 = [b117 blg, [)137 b14}.

To recover all biases, we continue this process for each
neuron in the second layer and finally, the last layer. As
such, we are able to recover the complete bias matrix, B =
[[b11,b12, b13, b1a], [ba1, b2z, bag, baa, bas), [b31, b3a]].

For the retrieval of biases in convolutional neural networks,
our proposed methodology can be effectively applied to both
the convolutional layers and the fully-connected layers. This
is feasible because there are no obstacles introduced by the

pooling layer. V. EVALUATION

In this section, we evaluate the efficacy of our RAPL-
based model extraction strategy. Our RAPL-based model ex-
traction leverages a software-based power side channel to
gather critical data about DNN model execution, specifically
the activation patterns. We integrate this activation patterns
information through an innovative model extraction algorithm
based on input gradients. This reduces the complexity of
model extraction significantly compared to previous cryptan-
alytic model extraction algorithms. As a result, our purely
software-based attack can extract significantly more complex
and larger models than prior model extraction work. A potential
countermeasure of the algorithm is neuron shuffling during
the runtime execution of deep learning models. If the ReLU
neurons execution order is randomized at the runtime, this can
prevent identification of which neuron a RAPL measurement
corresponds to, thus not allow the correct determination of the
activation pattern.

Compared to prior work [5], our weight recovery algorithm
significantly reduce the needed query complexity by utilizing
the activation patterns. Searching the flip pairs is easier than
their searching critical points, the side-channel information
allows us to focus the search on a target neuron. The prior work
using only input/output of the query can not directly decide
which neuron the critical point corresponds to. The uncertainty
about the correspondence requires much more queries to find
a critical point corresponding to the target neuron.

We compare both methods on their complexity of recovering
all weights in a network with a total of /N hidden neurons. [5]
first find many witnesses to critical points but not knowing
which neuron these critical points are for. Then to choose
critical points to a target neuron, they used trial and error
method by assuming each critical point did correspond to
the target neuron. Consistent solutions are arrived when two
critical points do correspond to the same target neuron, while
the solutions differ when not both critical points correspond
to the same neuron. For this method to work, they need to
first find a candidate set of critical points with size .S, where
S >> Nlog N, to ensure with high probability that each neu-
ron has multiple corresponding critical points in the candidate
set. In comparison, our search can be pinpointed to the target
neuron through the RAPL measurement and only NV flip pairs
are needed. Furthermore, when the depth of network grows,

the cryptanalytic method of [5] require exponentially more
precision in the search for initial layer critical points. Since
their critical points calculation depend on the extracted weights
from previous layers, any errors in those extracted weights
propagate to the next layer and compound as the analysis
progresses into deeper layers. In contrast, our flip pairs search
can be pinpointed to the target neuron with RAPL information
specific to the neuron without any precision degradation as we
progress through the layers. Thus the complexity reduction of
our method compared to [5] is more significant for a deeper
networks.

Table II presents the number of queries needed to recover
weights of a whole network by our RAPL-based method versus

the prior cryptanalytic model extraction work.
TABLE II: Efficacy of our extraction attack with prior works

Number of Prior works’ Our
Architecture Parameters Queries Queries
784-32-1 25,120 21827 14], 2192 [5] [2107 (o 214.9
784-128-1 100,480 2202 4], 221.5 [5] | 211.8 {5 915.1
10-10-10-1 210 222 1271, 216 [5] 269 1o 29-2
10-20-20-1 420 225 [27], 2171 [5] 27-6 1o 210.1
40-20-10-10-1 1,110 217.8 5] 283 (o 211
80-40-20-1 4,020 2185 (5] 291 to 2119
Lenet-5 44,426 - 213.4 o 216.9

Our method, utilizing the RAPL information, reduces the
number of needed queries in every networks studied. The
improvement becomes more pronounced for deeper networks.
To retrieve a 5-layer MLP, we need 2!! queries, which is only
0.8% of 2!78 in prior work. Our method is also able to recover
weights of a commonly used CNN, Lenet-5 [28] trained on
MNIST dataset [29]. We achieve 100% fidelity on test set
(contains 10,000 samples) in 2169 queries.

VI. CONCLUSION

In this paper, we introduce a novel approach to extract
DNN models leveraging the Intel RAPL technique, a software-
based power side-channel. The RAPL power side-channel can
reveal the direction of ReLLU activations, enabling us to discern
the activation patterns and subsequently identify flip pairs for
neurons. Our input gradient-based model extraction algorithm
utilizes the activation pattern of these flip pairs in conjunction
with input-output pairs to recover all parameters in the DNN
model. This powerful combination of side-channel and algo-
rithmic approaches allows us to extract a 5-layer MLP using
only 0.8% of the queries required by previous methods.

The RAPL-based power side-channel presents an effective
means to decipher piece-wise activation functions. While we’ve
specifically discussed ReLU power leakage, this method is
applicable to any vulnerable piece-wise activation function
implementation in DNN frameworks. The RAPL-based power
side-channel is also compatible with ARM processors, which
include RAPL sensors. With an appropriate power magnifica-
tion strategy, we anticipate being able to adapt our method
to the ARM platform. Our model extraction algorithm is not
limited to our side-channel, but rather has broad applicability
to any method capable of extracting the activation pattern of
the model and recognizing the inputs and outputs. We are
optimistic about the potential for more efficient methods (or
side-channels) to leak activation patterns in the future.

(1]

[2]
[3]

[4

—_

[3]

[6

[y

(71

[8

—

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

REFERENCES

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” 2017.

N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. Brown, D. Song, U. Erlingsson, A. Oprea, and C. Raffel,
“Extracting training data from large language models,” in 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association,
Aug. 2021, pp. 2633-2650. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/carlini-extracting

M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot, “High
accuracy and high fidelity extraction of neural networks,” in Proceedings
of the 29th USENIX Conference on Security Symposium, ser. SEC’20.
USA: USENIX Association, 2020.

N. Carlini, M. Jagielski, and 1. Mironov, “Cryptanalytic extraction of
neural network models,” in Advances in Cryptology — CRYPTO 2020,
D. Micciancio and T. Ristenpart, Eds. ~ Cham: Springer International
Publishing, 2020, pp. 189-218.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in Proceedings of the
25th USENIX Conference on Security Symposium, ser. SEC’16. USA:
USENIX Association, 2016, p. 601-618.

X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding,
C. Liu, T. Sherwood, and Y. Xie, “Deepsniffer: A dnn model extraction
framework based on learning architectural hints,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
385-399. [Online]. Available: https://doi.org/10.1145/3373376.3378460
L. Batina, S. Bhasin, D. Jap, and S. Picek, “Csi nn: Reverse engineering
of neural network architectures through electromagnetic side channel,”
in Proceedings of the 28th USENIX Conference on Security Symposium,
ser. SEC’19. USA: USENIX Association, 2019, p. 515-532.

C. Gongye, Y. Fei, and T. Wahl, “Reverse-engineering deep neural net-
works using floating-point timing side-channels,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020, pp. 1-6.

M. Randolph and W. Diehl, “Power side-channel attack analysis: A review
of 20 years of study for the layman,” Cryptography, vol. 4, no. 2, p. 15,
2020.

K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in
action: Experiences in using rapl for power measurements,” ACM Trans.
Model. Perform. Eval. Comput. Syst., vol. 3, no. 2, mar 2018. [Online].
Available: https://doi.org/10.1145/3177754

M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and
D. Gruss, “PLATYPUS: Software-based Power Side-Channel Attacks on
x86,” in 2021 IEEE Symposium on Security and Privacy (SP). 1EEE,
2021.

J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical attack
framework for precise enclave execution control,” in Proceedings of the
2nd Workshop on System Software for Trusted Execution, ser. SysTEX’17.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3152701.3152706

1. Corporation, Intel Software Guard Extensions Programming Reference.
A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style- high- performance-deep- learning-library.
pdf

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,

[18]
[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

J. Redmon, “Darknet: Open source neural networks in c,” http://pjreddie.
com/darknet/, 2013-2016.

“Intel oneapi deep neural network library,” https://www.intel.com/content/
www/us/en/developer/tools/oneapi/onednn.html.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in 2015
IEEE International Conference on Computer Vision (ICCV), 2015, pp.
1026-1034.

S. Milli, L. Schmidt, A. D. Dragan, and M. Hardt, “Model reconstruction
from model explanations,” in Proceedings of the Conference on Fairness,
Accountability, and Transparency, ser. FAT* °19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 1-9. [Online].
Available: https://doi.org/10.1145/3287560.3287562

1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2015.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” 2017.

K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
2014.

D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “Smooth-
grad: removing noise by adding noise,” 2017.

D. Rolnick and K. Kording, “Reverse-engineering deep ReLU networks,”
in Proceedings of the 37th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, H. D. III
and A. Singh, Eds., vol. 119. PMLR, 13-18 Jul 2020, pp. 8178-8187.
[Online]. Available: https://proceedings.mlr.press/v119/rolnick20a.html
Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141-142, 2012.

