
Suzuki–Miyaura Cross-Coupling of Amides by N–C Cleavage Mediated by Air-Stable, Well-Defined [Pd(NHC)(sulfide)Cl₂] Catalysts: Reaction Development, Scope and Mechanism

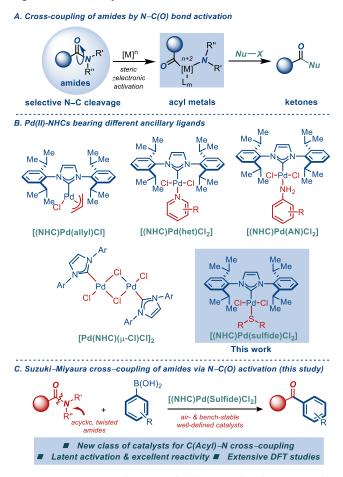
Shiyi Yang,[†] Xiang Yu,[†] Yaxu Liu,[§] Michele Tomasini,^{‡,⊥} Lucia Caporaso,[⊥] Albert Poater,*,[‡] Luigi Cavallo,^{⊥,¶} Catherine S. J. Cazin,[§] Steven P. Nolan*,[§] and Michal Szostak*,[†]

†Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States †Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, Campus Montilivi, 17003 Girona, Catalonia, Spain

¹Department of Chemistry, University of Salerno, Via Ponte don Melillo, 84084, Fisciano (SA), Italy ¶King Abdullah University of Science & Technology, KAUST Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia §Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium

Supporting Information

ABSTRACT: The Suzuki-Miyaura cross-coupling of amides by selective N–C acyl bond cleavage represents a powerful tool for constructing biaryl ketones from historically inert amide bonds. These amide bond activation reactions hinge upon efficient oxidative addition of the N–C acyl bond to Pd(0), however, in contrast to the well-researched activation of aryl halides by $C(sp^2)$ –X oxidative addition, very few studies on the mechanism of C(acyl)–N bond oxidative addition and catalyst effect have been reported. Herein, we report a study on $[Pd(NHC)(sulfide)Cl_2]$ catalysts in amide N–C bond activation. These readily prepared, well-defined, air- and moisture-stable Pd(II)–NHC catalysts feature SMe_2 (DMS = dimethylsulfide) or $S(CH_2CH_2)_2$ (THT = tetrahydrothiophene) as ancillary ligands. The reaction development, kinetic studies and reaction scope are presented. Extensive DFT studies were conducted to gain insight into the mechanism of C(acyl)–N bond oxidative addition and catalyst activation. We expect that $[Pd(NHC)(sulfide)Cl_2]$ precatalysts featuring sulfides as well-defined, readily accessible ancillary ligands will find application in C(acyl)–X bond activation in organic synthesis and catalysis.


1. Introduction

In the past five years, tremendous progress has been achieved in activation of amide bonds by transition metals. 1 3 Once regarded as chemically inert due to the amide resonance ($n_{N}\rightarrow\pi^{*}_{C=0}$ barrier to rotation, 15-20 mol/kcal), 4 the activation of amide N–C acyl bonds has experienced a paradigm shift through ground-state-destabilization mechanism 5 that enables amides to participate in a broad range of generic cross-coupling reactions under mild conditions (Figure 1a). $^{1.2}$ This amide bond reactivity platform has captured significant attention due to the prevalence of amides in drug discovery research, agrochemistry, natural

products, organic materials and biochemistry, where amides constitute the most common functional groups across various facets of academic and industrial research.^{6,7}

The activation of amide C(acyl)–N bonds hinges upon efficient oxidative addition of the N–C acyl bond to Pd(0) (Figure 1a, box),¹ however, in contrast to the well-researched activation of aryl halides by C(sp²)–X oxidative addition, very few studies focusing on the mechanism of C(acyl)–N bond oxidative addition and catalyst effect have been reported. While early studies used Pd–phosphine and Ni–NHC catalysts for amide bond activation,8-10 later research has

demonstrated that Pd-NHC complexes represent a privileged class of catalysts for amide N-C bond activation.^{1,4,11}

Figure 1. (a) Cross-coupling of amides by N–C(0) bond activation; (b) Pd(II)–NHCs bearing different ancillary ligands; (c) this study: Suzuki-Miyaura cross-coupling of amides via N–C(0) activation using [Pd(NHC](sulfide)Cl₂] complexes.

This class of catalysts heavily benefits from the availability of well-defined, air- and moisture-stable Pd(II)-NHC precursors, which render amide bond cross-coupling operationally-simple and applicable for a broad range of chemists. 11,12 The strong σ-donation and availability of various NHC ligands with differentiated steric properties facilitate oxidative addition of the C(acvl)-N amide bonds. The wellestablished functional group tolerance and broad applicability of Pd catalysis in cross-coupling enables to expand the scope of the reactions to more sensitive amide bonds using Pd(II)-NHCs. 11,12 To date, several classes of Pd(II)-NHCs bearing different ancillary throw-away ligands¹³ enabling activation to catalytically-active monoligated NHC-Pd(0) have been established as effective in amide bond cross-coupling, including allyl-based ligands, 14 heterocycle-based ligands,15 aniline-based ligands16 and halide-bridged dimers,17 [(NHC)Pd(R-allyl)Cl], [(NHC)Pd(het)Cl₂], [(NHC)Pd(AN)Cl₂], [(NHC)Pd(μ -Cl)Cl]₂.¹⁴⁻¹⁷ To ensure broad applicability of amide bond cross-coupling, it is imperative that new classes of catalysts be identified and the mechanism of oxidative addition of C(acyl)-N amide bonds investigated (Figure 1b).

Herein, we report a study on $[Pd(NHC](sulfide)Cl_2]$ complexes in amide N-C bond activation (Figure 1C). These

readily prepared, well-defined, air- and moisture-stable Pd(II)–NHC complexes feature SMe_2 (DMS = dimethylsulfide) and $S(CH_2CH_2)_2$ (THT = tetrahydrothiophene) as ancillary ligands. The reaction development, kinetic studies and reaction scope are presented. The catalysts display latency in cross-coupling. Extensive density functional theory (DFT) studies were conducted to gain insight into the mechanism of C(acyl)–N bond oxidative addition and catalyst activation in the cross-coupling. We expect that $[Pd(NHC](sulfide)Cl_2]$ precatalysts featuring sulfides as well-defined, readily accessible ancillary ligands will find application in C(acyl)–X bond activation in organic synthesis and catalysis.

2. Results and Discussion

Design. Considering the key effect of stabilizing ancillary ligands in Pd(II)–NHC precatalysts observed in previous studies by our groups, 11–14,18 we were attracted to Pd(II)–NHC complexes bearing *S*-stabilizing ligands.

In general, there are several factors that should be considered when designing new well-defined Pd(II)–NHC catalysts for cross-coupling. In most cases, the activity is a balance between the catalyst stability, rate of activation, accessibility of anologues with different ancillary ligands, ease of synthesis and stabilization of the catalytically-active monoligated Pd(0)–NHC by recoordination of the ancillary ligand. In this conext, the most reactive Pd(II)–NHC catalysts discovered to date are suppored by bridged chloro dimers, [(IPr)Pd(μ -Cl)Cl]₂, while the catalysts supported by allyl ligands, [(IPr)Pd(cin)Cl], are more stable. Furthermore, catalysts supported by heterocycles, [(IPr)Pd(3-Cl-py)Cl₂], [(IPr)Pd(AN)Cl₂], activate less readily, however, they benefit from the ease of synthesis and re-coordination of the nitrogen ligands to Pd(0).¹⁴⁻¹⁷

To ensure the broad applicability of Pd(II)–NHC complexes for cross-coupling, catalysts must be easy to prepare, have low cost of a possibly modular assembly and be airstable. In the domain of Pd(II)–NHCs, the stabilization is afforded by the ancillary throw-away ligand, which should be readily removed during the activation step to Pd(0)–NHC, yet provide high bench- and air-stability of Pd(II)–NHC complexes. 11,12 [Pd(NHC](sulfide)Cl2] complexes bearing DMS and THT ligands are readily prepared from NHC salts and Pd(sulfide)Cl2 using K2CO3 as a weak base on gram scale (Scheme 1). 18 DMS and THT are broadly available from the industrial synthesis on scale as scenting materials.

Our initial optimization is summarized in Table 1. *N*-Boc/Ph amide was selected as a model substrate because this class of ground-state-destabilized amides enables direct activation of common 1° and 2° amides through site selective *N*-tert-butoxycarboxylation of benzamides.
^{1a,b} This class of amides features decreased amidic resonance (RE = 7.2 kcal/mol, RE = resonance energy) in the presence of moderate twisting of amide bond (τ = 29.1°; χ_N = 8.4°, Winkler-Dunitz distortion, τ = twist angle, χ_N = N pyramidalization angle). The acyl Suzuki cross-coupling has been selected as a model reaction due to the importance of biaryl ketone products in organic synthesis and the availability of protocols enabling comparison of the reactivity with the present class of catalysts.

 $[Pd(NHC)(sulfide)Cl_2]$ complexes bearing IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) as NHC ligand and DMS and THT as sulfide ancillary ligands were selected for the initial screening (Chart 1). In addition, we screened a more sterically-demanding NHC analogue, IPr*, bearing 2,6-bis(benzhydryl) substitution (IPr* = 1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene) to test the effect of the increased steric bulk on the oxidative addition of the C(acyl)–N amide bond, whereas it is known that the steric environment of acyl-metals is more sensitive to changes than $C(sp^2)$ -metal centers. 11,12

Scheme 1. Facile Synthesis of [Pd(NHC](sulfide)Cl₂] Complexes

Optimization Studies. We identified conditions using K_2CO_3 as a mild carbonate base, in THF as a solvent at 60 °C that promoted the cross-coupling in 82% yield using 0.5 mol% [Pd(IPr)(DMS)Cl₂] as catalyst (Table 1, entry 1). Interestingly, the THT congener, [Pd(IPr)(THT)Cl₂], showed comparable albeit slightly lower reactivity under these conditions (Table 1, entry 2), while the bulky [Pd(IPr*)(DMS)Cl₂] was completely unreactive (Table 1, entry 3). We further established that temperature is a critical factor, with no reaction taking place at 40 °C (Table 1, entry 4), while a modest improvement in yield was observed at 80 °C (Table 1, entry 5).

This finding suggests that 60 °C is required for catalyst activation, which is an important aspect of Pd(II)-NHC precatalyst stability. Furthermore, initial screening of the effect of catalyst loading indicated that a modest increase of the reaction efficiency is observed at 1 mol% with [Pd(IPr)(DMS)Cl₂] and [Pd(IPr)(THT)Cl₂] catalysts, while [Pd(IPr*)(DMS)Cl₂] was unreactive (Table 1, entries 6-9). Importantly, we next established that the addition of water significantly improves the reaction efficiency (Table 1, entries 10-11). Under these modified conditions, the reaction yield is close to quantitative using [Pd(IPr)(DMS)Cl₂] at 60 °C (Table 1, entry 10), while the reactivity initiates at 40 °C (Table 1, entry 11 cf. entry 4). This suggests that water aids in [Pd(IPr)(DMS)Cl₂] activation to monoligated Pd(0)-NHC. Extensive screening of various bases revealed that KF, Rb₂CO₃ and K₃PO₄ promote the cross-coupling, albeit in lower yields than K₂CO₃, while other bases, such as Cs₂CO₃, Na₂CO₃, KOAc and KHCO₃ are less effective (Table 1, entries 12-18). We next evaluated different solvents and established that DME, dioxane, toluene, MeCN and EtOH were less effective (Table 1, entries 19-22), while EtOAc, and in particular, 2-MeTHF gave optimal results (Table 1, entries 23-24), likely due to better solubility of K₂CO₃ in 2-MeTHF than in THF. It is noteworthy that both of these solvents are considered environmentally-friendly and sustainable by green chemistry principles, which is an important finding considering [Pd(NHC](sulfide)Cl₂] precatalysts for amide N(acyl)-C activation. 1,6,7

Table 1. Optimization of the Reaction Conditions^a

	' -				3	
En- try	[Pd] catalyst	[Pd] loading (mol%)	Base	Solvent	<i>T</i> (°C)	Yield (%)
1^b	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	THF	60	82
2	[Pd(IPr)(THT)Cl ₂]	0.5	K_2CO_3	THF	60	80
3	[Pd(IPr*)(DMS)Cl ₂]	0.5	K_2CO_3	THF	60	0
4	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	THF	40	0
5	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	THF	80	87
6	[Pd(IPr)(DMS)Cl ₂]	0.25	K_2CO_3	THF	60	15
7	[Pd(IPr)(DMS)Cl ₂]	1.0	K_2CO_3	THF	60	85
8	[Pd(IPr)(THT)Cl ₂]	1.0	K_2CO_3	THF	60	84
9	[Pd(IPr*)(THT)Cl ₂]	1.0	K_2CO_3	THF	60	0
10^b	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	THF	40	24
11^b	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	THF	60	97
12	[Pd(IPr)(DMS)Cl ₂]	0.5	Cs_2CO_3	THF	60	17
13	[Pd(IPr)(DMS)Cl ₂]	0.5	Na_2CO_3	THF	60	8
14	[Pd(IPr)(DMS)Cl ₂]	0.5	Rb_2CO_3	THF	60	38
15	[Pd(IPr)(DMS)Cl ₂]	0.5	KF	THF	60	62
16	[Pd(IPr)(DMS)Cl ₂]	0.5	K_3PO_4	THF	60	35
17	[Pd(IPr)(DMS)Cl ₂]	0.5	KOAc	THF	60	<2
18	[Pd(IPr)(DMS)Cl ₂]	0.5	KHCO ₃	THF	60	<2
19	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	DME	60	10
20	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	Dioxane	60	25
21	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	Toluene	60	39
22	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	MeCN	60	<2
23	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	EtOH	60	<2
24	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	EtOAc	60	79
25	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	2-MeTHF	60	95
26^b	[Pd(IPr)(DMS)Cl ₂]	0.5	K_2CO_3	2-MeTHF	60	>98
27^{b}	[Pd(IPr)(DMS)Cl ₂]	0.25	K_2CO_3	2-MeTHF	60	>98
28^{b}	[Pd(IPr)(DMS)Cl ₂]	0.1	K_2CO_3	2-MeTHF	60	98
29^{b}	[Pd(IPr)(DMS)Cl ₂]	0.25	K_2CO_3	2-MeTHF	40	88
30^b	[Pd(IPr)(DMS)Cl ₂]	0.25	K_2CO_3	2-MeTHF	23	<2
31	[Pd(IPr)(DMS)Cl ₂]	0.25	K_2CO_3	2-MeTHF	60	68
32^{b}	[Pd(IPr)(THT)Cl ₂]	0.1	K_2CO_3	2-MeTHF	60	95
33^{b}	[Pd(IPr*)(DMS)Cl ₂]	0.1	K_2CO_3	2-MeTHF	60	0

^aConditions: amide **1a** (1.0 equiv), 4-Tol-B(OH)₂ (2.0 equiv), base (3.0 equiv), [Pd] (0.10-0.5 mol%), solvent (0.25 M), T, 12 h. ^bwater (5.0 equiv) as additive. $SR_2 = DMS$, $THT (SMe_2, S(CH_2CH_2)_2)$; NHC = IPr, IPr^* .

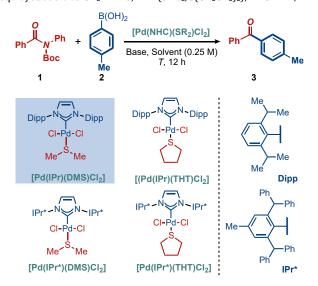
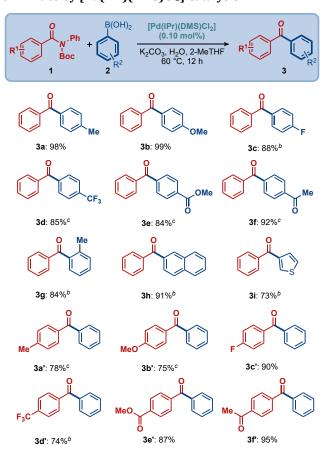
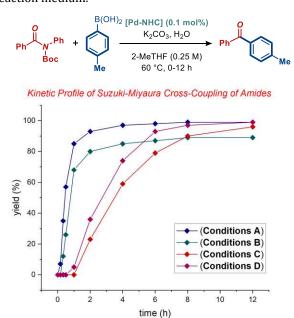



Chart 1. Structures of [Pd(NHC)(sulfide)Cl2] catalysts.

Furthermore, the addition of water had a beneficial effect on the cross-coupling using 2-MeTHF, resulting in a major improvement in the reaction efficiency (Table 1, entries 26-28). Under these conditions the cross-coupling proceeded in a close to quantitative yield at 0.1 mol% catalyst loading (Table 1, entry 28). Moreover, the reaction is initiated at 40 °C in high yield (Table 1, entry 29), suggesting that catalyst activation and/or transmetallation are more facile under these conditions. Note, however, that no reaction takes place at 23 °C (Table 1, entry 30). It is also instructive to compare the reaction efficiency at 0.25 mol% Pd loading under anhydrous conditions in 2-MeTHF (Table 1, entry 31) vs. THF (Table 1, entry 6), indicating the beneficial effect of 2-MeTHF on the amide C(acyl)-N cross-coupling using [Pd(NHC](sulfide)Cl₂], which could be useful for amide electrophiles that require strictly anhydrous conditions.

Finally, we established that $[Pd(IPr)(THT)Cl_2]$ also leads to high conversion in 2-MeTHF, while $[Pd(IPr^*)(DMS)Cl_2]$ was unreactive (Table 1, entries 32-33). This permits to establish the order of reactivity as $[Pd(IPr)(DMS)Cl_2] > [Pd(IPr)(THT)Cl_2] >> [Pd(IPr^*)(DMS)Cl_2]$.


Scheme 2. Scope of the Suzuki-Miyaura Cross-Coupling of Amides by [Pd(IPr)(DMS)Cl₂] Catalysis^a

°Conditions: amide (1.0 equiv), Ar-B(OH)₂ (2.0 equiv), K_2CO_3 (3.0 equiv), [Pd] (0.10 mol%), H_2O (5 equiv), 2-MeTHF (0.25 M), 60 °C, 12 h. b [Pd] (0.25 mol%). c [Pd] (0.50 mol%). See SI for details.

Scope Studies. With the optimized conditions in hand, the scope of the Suzuki-Miyaura cross-coupling was briefly investigated (Scheme 2). We used $[Pd(IPr)(DMS)Cl_2]$ at 0.1 mol% loading, while in select cases the loading was increased to 0.25 or 0.5 mol% to ensure full conversion. We

found that the scope of the amide cross-coupling using [Pd(IPr)(DMS)Cl₂] is broad and includes various arylboronic acids and benzamides. As such, electronic variation on the boronic acid component is readily compatible with the method, including electron-neutral (3a), electron-rich (3b) and electron-deficient boronic acids (3c-3f). Furthermore, steric hindrance (3g) is well-tolerated by this class of catalysts. Polyconjugated aromatic (3h) and heterocyclic boronic acids (3i) could be employed as well. Importantly, these conditions are fully-compatible with electrophilic functional groups, such as esters (3e) and ketones (3f) that would be problematic using traditional hard organometallic centers. In terms of benzamide scope, the cross-coupling is also compatible with electron-neutral (3a'), electron-rich (3b') and electron-deficient amide electrophiles (3c'-3f'). Again, electrophilic functional groups are well-tolerated on the amide component, providing useful handles for functionalization (3e'-3f'). Overall, the scope of the cross-coupling mediated by [Pd(IPr)(DMS)Cl₂] compares well with other Pd(II)-NHC precatalysts, 11,12 while having the benefit of environmentally-friendly and sustainable 2-MeTHF as a reaction medium.20

Figure 2. Kinetic studies of the Suzuki-Miyaura cross-coupling of amides using $[Pd(NHC)(SR_2)Cl_2]$ precatalysts^a ^aConditions: amide (1.0 equiv), 4-Tol-B(OH)₂ (2.0 equiv), K_2CO_3 (3.0 equiv), [Pd] (0.10 mol%), H_2O (5 equiv), 2-MeTHF (0.25 M), 60 °C, 0-12 h. [Pd-NHC] = [Pd(IPr)(cin)Cl] (Conditions A), $[Pd(IPr)(3-Cl-py)Cl_2]$ (Conditions B), $[Pd(IPr)(THT)Cl_2]$ (Conditions C), $[Pd(IPr)(DMS)Cl_2]$ (Conditions D). THT = $S(CH_2CH_2)_2$; DMS = SMe_2 . See SI for details.

Kinetic Profiling Studies. We next conducted kinetic studies to investigate the effect of air- and bench-stable [Pd(IPr)(SR₂)Cl₂] complexes on amide C(acyl)–N coupling (Figure 2). Allyl-based and heterocycle-based complexes bearing the same IPr ligand, [Pd(IPr)(cin)Cl] and [Pd(IPr)(3-Cl-py)Cl₂] were selected for comparison. Interestingly, we found that both [Pd(IPr)(SR₂)Cl₂] catalysts, namely [Pd(IPr)(DMS)Cl₂] and [Pd(IPr)(THT)Cl₂] behave as latent precatalysts in the cross-coupling. Allyl- and heterocycle based catalysts, [Pd(IPr)(cin)Cl] and [Pd(IPr)(3-Cl-py)Cl₂] showed more facile activation to the active Pd(0)-

NHC under the developed conditions (1 h: [Pd(IPr)(cin)Cl], 85% yield; [Pd(IPr)(3-Cl-py)Cl₂], 68% yield), while [Pd(IPr)(DMS)Cl₂] and [Pd(IPr)(THT)Cl₂] gave no conversion (1 h: [Pd(IPr)(Me₂S)Cl₂], <5% yield; [Pd(IPr)(THT)Cl₂], <5% yield). However, after the initiation (1-2 h), both catalysts superpassed the heterocycle-based [Pd(IPr)(3-Cl-py)Cl₂] (12 h: [Pd(IPr)(DMS))Cl₂], [Pd(IPr)(THT)Cl₂], >95%), while the more reactive of the two [Pd(IPr)(DMS)Cl₂] matched the reactivity of the allyl-based [Pd(IPr)(cin)Cl] (12 h: [Pd(IPr)(DMS)Cl₂], >98%). Overall, the kinetic profiling clearly show latency and high stability of [Pd(IPr)(SR₂)Cl₂] catalysts, which may open the door for the development of latent protocols for cross-coupling. It should be noted that latent catalysts have attracted

significant attention, especially in polymer chemistry, where an extermal stimuls, such as heat, light or chemical activation, permits for switching on the reactivity and controlling the onset of a catalytic process. 19 The order of reactivity observed in the kinetic profiling studies, <code>[(IPr)Pd(\mu-Cl)Cl] > [(IPr)Pd(cin)Cl] > [(IPr)Pd(3-Cl-py)Cl_2] > [Pd(IPr)(DMS)Cl_2]</code> is consistent with the ease of activaton to the monoligated <code>Pd(0)-NHC.17a</code>

DFT Studies. Intrigued by the unusual profile of [Pd(IPr)(SR₂)Cl₂] catalysts, we conducted extensive DFT studies to gain insight into the mechanism of C(acyl)–N bond oxidative addition and catalyst effect of this class of catalysts, as well as in its pre-activation (Figure 3).

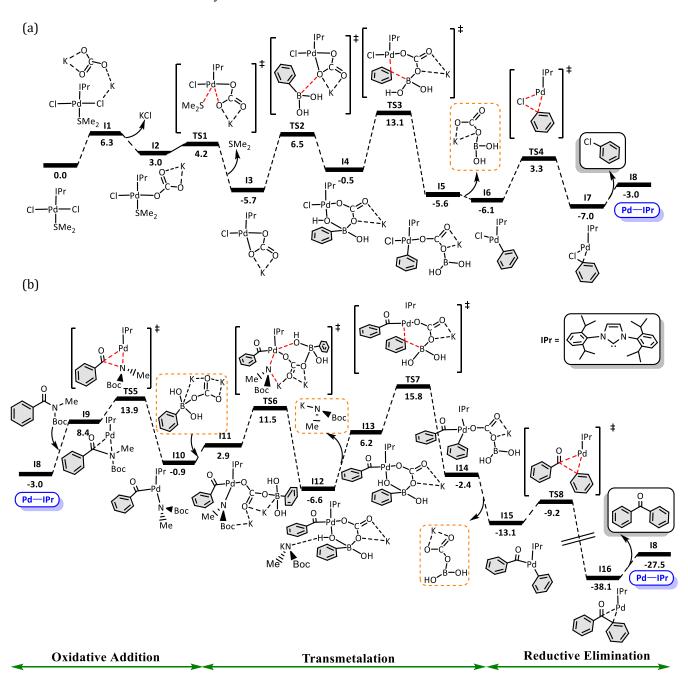


Figure 3. Reaction profile (relative Gibbs energies in kcal/mol, at the M06/Def2-TZVP \sim sdd (smd-THF)//BP86-D3/SVP \sim sdd level of theory) of (a) the activation of the Pd(IPr)SMe₂Cl₂ precatalyst and (b) Suzuki–Miyaura cross-coupling of amides by N–C Cleavage mediated by the Pd(IPr) catalytic active species (the red dotted lines indicate the bonds that break/form in the transition states).

First, the pre-catalyst exchanges a chloride ligand for KCO₃ releasing a molecule of KCl and then, SMe₂ is released overcoming a small barrier of 1.2 kcal/mol through to the transition state TS1, reaching the intermediate I3 (5.7) kcal/mol below the precursor). Then, in two successive steps, the reagent PhB(OH)₂ succeeds in transferring the aryl to the metal center, to intermediate 15, overcoming two barriers of 12.2 and 13.6 kcal/mol. First there is the formation, of a B-O bond via TS2, involving one oxygen of the anionic KCO3 moiety with the boronic acid, and subsequently the phenyl migrates from boron to palladium. Overall, both steps end up defining the rate determining state (rds) with a global barrier of only 18.8 kcal/mol.²¹ From intermediate I5, K(CO₃)B(OH)₂ is easily dissociated. From the next intermediate I6, reductive elimination allows to release Ph-Cl into solution (overcoming a barrier of 9.4 kcal/mol through **TS4**). Finally, the resulting intermediate 17 with PhCl and the metal weakly interacting each other releases PhCl to obtain the catalytically active Pd(0) species 18,21b,22 relatively unstable, but still 3.0 kcal/mol lower in energy than the pre-catalyst.

It should be noted that the pathway by which SMe2 is liberated was examined and also was the fact that it is released once a chloride has been exchanged for KCO₃, i.e. from intermediate I2. This makes the combination with a base the perfect scenario to address the formation of a Pd(0) species such as **I8**, which is fundamental in cross-coupling catalysis. In fact, the initial dissociative release of SMe₂ from the precatalyst has a kinetic cost of 20.7 kcal/mol since it requires overcoming a transition state, linked to a thermodynamic cost of 9.7 kcal/mol. Moreover, carrying out the process from an intermediate similar to I4 but with SMe2 bonded to palladium, has a kinetic cost of 17.7 kcal/mol, and likewise the unfavorable thermodynamics by 11.6 kcal/mol. Whether the SMe₂ group could transfer a methyl group to a chlorine was also examined but this process requires a kinetic cost greater than 40 kcal/mol in the most favorable case. On the other hand, we also focused on studying whether the reductive elimination, that is, the one described by TS4, can occur without the dissociation of the neutral K(CO₃)B(OH)₂ moiety so as to leave the metal partially protected. Although it would be thermodynamically favored by 3.0 kcal/mol, the kinetic barrier raises to a value of 23.1 kcal/mol, 19.4 kcal/mol more than when it occurs without $K(CO_3)B(OH)_2$.

Moving on to the catalytic cycle and following the previous insights,^{21a} **I8** interacts with the amide in the intermediate **I9** as an adduct to break its C–N bond in the first step after overcoming **TS5** with a cost of 16.9 kcal/mol from **I8**. From intermediate **I10**, the boron reagent comes into play again after reacting with a base to form intermediate **I11**. The latter breaks the Pd–N bond facilitating the formation of a new bond between the metal and one hydroxyl group via **TS6**. The process requires 12.4 kcal/mol compared to **I10**. Next, from **I12**, there is the transfer of the aryl group from boron to palladium through **TS7**, but it is necessary to go through **I13** by first dissociating the newly dissociated amine together with a potassium atom. **TS7** would only

have a barrier of 9.6 kcal/mol, but it must be taken into account as it is the rds and the kinetic cost of I12 must be taken into account thus increasing this step to 22.4 kcal/mol. Thus, this is not only the rds of the catalytic cycle, but also taking into account the pre-activation, it is contrary to what is usually found for similar palladium systems, both monometallic11e,21 and bimetallic,17. With phenyl on the metal, intermediate I14 releases the neutral group K(CO₃)B(OH)₂ reaching intermediate I15, where, with a small barrier of only 3.9 kcal/mol, reductive elimination occurs to give rise to the ketone still attached to the metal as an adduct in I16. Once released, with an exoergonic thermodynamic cycle of 24.5 kcal/mol, the cost of closing the catalytic cycle in the I8 species is then 10.6 kcal/mol. It should be mentioned that the entropic contribution is not taken into account i.e. omitting the corrections of entropy and standard state of 1 M concentration in solution.²³ Nevertheless, the resulting cost would still have to be considered in the following catalytic cycle.24 and past benchmark studies led by some of us concluded that the M06/Def2-TZVP~sdd (smd-THF)//BP86-D3/SVP~sdd level of theory level of theory displays similar results.²⁵

3. Conclusions

In summary, we have reported Suzuki-Miyaura cross-coupling of amides by N–C bond activation mediated by [Pd(NHC](sulfide)Cl₂] complexes. These complexes represent a new class of readily prepared, air- and bench-stable catalysts for C(acyl)–N amide bond activation, where the stability is provided by sulfide ancillary ligands. The complexes show high reactivity in amide bond cross-coupling, enabling efficient Suzuki-Miyaura coupling at low catalyst loading. These complexes operate in environmentally-friendly and sustainable 2-MeTHF as a reaction solvent. An important feature is the latency exhibited by [Pd(NHC](sulfide)Cl₂] complexes, which could be exploited in synthetic protocols for bond activation.¹⁹ Extensive DFT studies provide insight into the mechanism of C(acyl)–N oxidative addition and catalyst activation pathways.

The catalyst stands out for the simplicity in its activation, confirming again that it is not only necessary to focus efforts on the catalytic cycle, but on pre-activation, especially for cross coupling reactions. Furthermore, here the symbiosis between the leaving group SMe_2 and the base has been verified computationally. We anticipate that sulfide-based Pd(II)-NHC catalysts will find further applications in C(acyl)-X bond activation in organic synthesis and catalysis.

4. Experimental Section

General Methods. All compounds reported in the manuscript have been previously described in literature or prepared by the method reported previously unless stated otherwise. All boronic acids are commercially available and have been purchased from Oakwood Chemical. All experiments involving palladium were performed using standard Schlenk techniques under nitrogen or argon unless stated otherwise. All solvents were purchased at the highest

commercial grade and used as received or after purification by distillation from sodium/benzophenone under nitrogen. All solvents were deoxygenated prior to use. All other chemicals were purchased at the highest commercial grade and used as received. All other general methods have been published.^{17a} ¹H NMR and ¹³C NMR data are given for all compounds in the Supporting Experimental for characterization purposes. ¹H NMR, ¹³C NMR and HRMS data are reported for all new compounds. Note: It should be noted that small-size sulfur compounds posses a characteristic smell. We have not observed any issues during the synthesis. However, care should be taken when handling odorants in well-ventillated fume hoods.¹⁸ All amides used in this study were prepared by procedures reported in the literature.¹⁷ [(IPr)Pd(cin)Cl] and [Pd(IPr)(3-Cl-py)Cl₂] precatalysts used in this study were purchased from Sigma-Aldrich. [Pd(NHC)(sulfide)Cl₂] precatalysts used in this study were prepared according to the established procedure.18

General Procedure for Optimization of the Reaction Conditions. An oven-dried vial equipped with a stir bar was charged with amide 1a (1.0 equiv), boronic acid (typically, 2.0 equiv), base (typically, 3.0 equiv), [Pd(NHC)(sulfide)Cl₂] (x mol%), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Solvent (typically, 0.25 M) and H_2O (as indicated) were added with vigorous stirring at room temperature. After stirring for 12 h, the reaction mixture was diluted with CH_2Cl_2 (10 mL), filtered, and concentrated. The sample was analyzed by 1H NMR (CDCl₃, 500 MHz) and GC-MS to obtain conversion, selectivity and yield using internal standard and comparison with authentic samples.

General Procedure for the Suzuki-Miyaura Cross-Coupling of Amides by [Pd(NHC)(sulfide)Cl₂] Catalysis. An oven-dried vial equipped with a stir bar was charged with amide (1.0 equiv), boronic acid (2.0 equiv), potassium carbonate (3.0 equiv), [Pd(NHC)(sulfide)Cl₂] catalyst (as indicated), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. 2-MeTHF (typically, 0.25 M) and H₂O (5 equiv) were added at room temperature and the reaction was vigorously stirred at 60 °C in an oil bath. After 12 h, the reaction mixture was diluted with CH₂Cl₂ (10 mL), filtered, and concentrated. The sample was analyzed by ¹H NMR (CDCl₃. 500 MHz) and GC-MS to obtain conversion, selectivity and yield using internal standard and comparison with authentic samples. Purification by chromatography on silica gel (EtOAc/hexanes) afforded the title product.

Representative Procedure for the Suzuki-Miyaura Cross-Coupling of Amides by [Pd(NHC)(sulfide)Cl2] Catalysis. 1.0 Mmol Scale. An oven-dried vial equipped with bar was charged with tert-butyl benzoyl(phenyl)carbamate (297.4 mg, 1.0 mmol, 1.0 equiv), 4-tolylboronic acid (271.9 mg, 2.0 mmol, 2.0 equiv), potassium carbonate (414.6 mg, 3.0 mmol, 3.0 equiv), [Pd(IPr)(DMS)Cl₂] (0.1 mol%, 0.65 mg), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. 2-MeTHF (4.0 mL, 0.25 M) and H₂O (90 mg, 5.0 mmol, 5.0 equiv) were added at room temperature and the reaction was vigorously stirred at 60 °C in an oil bath. After 12 h, the reaction mixture was diluted with CH_2Cl_2 (20 mL), filtered, and concentrated. The sample was analyzed by 1H NMR (CDCl₃, 500 MHz) and GC-MS to obtain conversion, selectivity and yield using internal standard and comparison with authentic samples. Purification by chromatography on silica gel (EtOAc/hexanes = 1:10) afforded the title product. Yield 98%, 192.9 mg. Characterization data are included in the section below.

Characterization Data of the Cross-Coupling Products Phenyl(4-tolyl)methanone (3a). According to the general procedure, the reaction of 1a (0.20 mmol, 59.5 mg), 4-tolylboronic acid (0.40 mmol, 54.4 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.1 mol%, 0.13 mg) and H_2O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 $^{\circ}$ C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound 3a in 98% yield (38.5 mg). White solid. 1 H NMR (500 MHz, CDCl₃) δ 7.78 (dd, J = 8.2, 1.3 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 7.8 Hz, 2H), 2.45 (s, 3H). 13 C 1 H} NMR (126 MHz, CDCl₃) δ 196.5, 143.3, 138.0, 134.9, 132.2, 130.3, 130.0, 129.0, 128.2, 21.7. The spectral data matched literature values. 26

(4-Methoxyphenyl)(phenyl)methanone (3b). According to the general procedure, the reaction of **1a** (0.20 mmol, 59.5 mg), (4-methoxyphenyl)boronic acid (0.40 mmol, 60.8 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.1 mol%, 0.13 mg) and H_2O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 °C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound **3b** in 99% yield (42.2 mg). White solid. 1 H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 8.9 Hz, 2H), 7.79 – 7.73 (m, 2H), 7.60 – 7.53 (m, 1H), 7.47 (t, J = 7.5 Hz, 2H), 6.97 (d, J = 8.9 Hz, 2H), 3.89 (s, 3H). 13 C 1 H NMR (126 MHz, CDCl₃) δ 195.6, 163.2, 138.3, 132.6, 131.9, 130.2, 129.7, 128.2, 113.6, 55.5. The spectral data matched literature values. 26

(4-Fluorophenyl)(phenyl)methanone (3c). According to the general procedure, the reaction of **1a** (0.20 mmol, 59.5 mg), (4-fluorophenyl)boronic acid (0.40 mmol, 56.0 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.25 mol%, 0.32 mg) and H_2O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 °C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound **3c** in 88% yield (35.2 mg). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.8, 5.5 Hz, 2H), 7.81 – 7.74 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.16 (t, J = 8.6 Hz, 2H). $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃) δ 195.3, 165.4 (d, J = 254.2 Hz), 137.5, 133.8 (d, J = 3.1 Hz), 132.7 (d, J = 9.1 Hz), 132.5, 129.9, 128.4, 115.5 (d, J = 21.8 Hz). The spectral data matched literature values.

Phenyl(4-(trifluoromethyl)phenyl)methanone (3d). According to the general procedure, the reaction of 1a (0.20 mmol, 59.5 mg), (4-(trifluoromethyl)phenyl)boronic acid (0.40 mmol, 76.0 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.5 mol%, 0.64 mg) and H_2O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 $^{\circ}$ C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound 3d in 85% yield (42.8 mg). White solid. 1 H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 7.9 Hz, 2H), 7.81 (dd, J = 8.2, 1.3 Hz, 3H), 7.76 (d, J = 8.1

Hz, 3H), 7.63 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H). 13 C{ 1 H} NMR (126 MHz, CDCl $_{3}$) δ 195.6, 140.7, 136.7, 133.8 (d, J = 32.7 Hz), 130.2, 130.1, 128.5, 125.4 (q, J = 3.8 Hz), (q, J = 277.2 Hz). The spectral data matched literature values. 26

Methyl 4-benzoylbenzoate (3e). According to the general procedure, the reaction of **1a** (0.20 mmol, 59.5 mg), (4-(methoxycarbonyl)phenyl)boronic acid (0.40 mmol, 72.0 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.5 mol%, 0.64 mg) and H_2O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 °C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound **3e** in 84% yield (40.3 mg). White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 8.2 Hz,2H), 7.84 (d, J = 8.2 Hz, 2H), 7.80 (d, J = 0.8 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 3.97 (s, 3H). $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃) δ 196.1, 166.3, 141.3, 137.0, 133.2, 133.0, 130.1, 129.8, 129.5, 128.5, 52.5. The spectral data matched literature values. 26

1-(4-Benzoylphenyl)ethan-1-one (3f). According to the general procedure, the reaction of **1a** (0.20 mmol, 59.5 mg), (4-acetylphenyl)boronic acid (0.40 mmol, 65.6 mg), K₂CO₃ (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.5 mol%, 0.64 mg) and H₂O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 $^{\circ}$ C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:8) the title compound **3f** in 92% yield (41.4 mg). White solid. 1 H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.7 Hz, 2H), 7.87 (d, J = 8.6 Hz, 2H), 7.81 (dd, J = 8.3, 1.4 Hz, 2H), 7.63 (ddt, J = 7.9, 7.0, 1.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 2.67 (s, 3H). 13 C{ 1 H} NMR (126 MHz, CDCl₃) δ 197.5, 196.0, 141.4, 139.6, 136.9, 133.0, 130.1, 130.1, 128.5, 128.2, 26.9. The spectral data matched literature values. 26

Phenyl(2-tolyl)methanone (3g). According to the general procedure, the reaction of **1a** (0.20 mmol, 59.5 mg), 2-tolylboronic acid (0.40 mmol, 54.4 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.25 mol%, 0.32 mg) and H₂O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 °C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound **3g** in 84% yield (32.8 mg). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (dd, J = 8.3, 1.4 Hz, 2H), 7.58 (t, J = 7.4 Hz, 2H), 7.46 (t, J = 7.8 Hz, 2H), 7.39 (td, J = 7.5, 1.6 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.27 – 7.22 (m, 1H), 2.33 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 198.7, 138.6, 137.8, 136.8, 133.1, 131.0, 130.2, 130.1, 128.5, 128.5, 125.2, 20.0. The spectral data matched literature values. ²6

Naphthalen-2-yl(phenyl)methanone (3h). According to the general procedure, the reaction of $\bf 1a$ (0.20 mmol, 59.5 mg), naphthalen-2-ylboronic acid (0.40 mmol, 68.8 mg), K₂CO₃ (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.25 mol%, 0.32 mg) and H₂O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 °C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound $\bf 3h$ in 91% yield (42.4 mg). White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.27 (s, 1H), 7.95 (d, $\it J$ = 1.2 Hz, 2H), 7.92 (dd, $\it J$ = 8.0, 3.3 Hz, 2H), 7.87 (d, $\it J$ = 6.8 Hz, 2H), 7.66 – 7.59 (m, 2H), 7.56 (t, $\it J$ = 7.9 Hz, 1H), 7.52 (t, $\it J$ = 7.7 Hz, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 196.8, 137.9, 135.3, 134.9, 132.4, 132.3, 131.9, 130.1, 129.4, 128.4, 128.3, 128.3, 127.8, 126.8, 125.8. The spectral data matched literature values. ²⁶

Phenyl(thiophen-3-yl)methanone (3i). According to the general procedure, the reaction of **1a** (0.20 mmol, 59.5 mg), thiophen-3-ylboronic acid (0.40 mmol, 51.2 mg), K₂CO₃ (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.25 mol%, 0.32 mg) and H₂O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 $^{\circ}$ C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound **3i** in 73% yield (27.5 mg). White solid. 1 H NMR (500 MHz, CDCl₃) δ 7.94 (dd, J = 2.9, 1.2 Hz, 1H), 7.85 (dd, J = 8.3, 1.4 Hz, 2H), 7.63 – 7.55 (m, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.39 (dd, J = 5.0, 2.9 Hz, 1H). 13 C{ 1 H} NMR (126 MHz, CDCl₃) δ 190.0, 141.3, 138.7, 133.9, 132.3, 129.4, 128.6, 128.4, 126.2. The spectral data matched literature values.²⁷

Phenyl(4-tolyl) methanone (3a'). According to the general procedure, the reaction of **1b** (0.20 mmol, 62.2 mg), phenylboronic acid (0.40 mmol, 48.8 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.5 mol%, 0.64 mg) and H_2O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 °C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound **3a'** in 78% yield (30.7 mg). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.76 (m, 2H), 7.73 (d, J = 8.2 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 2.45 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 196.5, 143.3, 138.0, 134.9, 132.2, 130.3, 129.9, 129.0, 128.2, 21.7. The spectral data matched literature values. ²⁶

(4-Methoxyphenyl)(phenyl)methanone (3b'). According to the general procedure, the reaction of **1c** (0.20 mmol, 65.4 mg), phenylboronic acid (0.40 mmol, 48.8 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.5 mol%, 0.64 mg) and H_2O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 °C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound **3b'** in 75% yield (31.8 mg). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 8.9 Hz, 2H), 7.76 (dd, J = 8.3, 1.3 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H). $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃) δ 195.6, 163.2, 138.3, 132.6, 131.9, 130.2, 129.7, 128.2, 113.6, 55.5. The spectral data matched literature values. 26

(4-Fluorophenyl)(phenyl)methanone (3c'). According to the general procedure, the reaction of **1d** (0.20 mmol, 63.0 mg), phenylboronic acid (0.40 mmol, 48.8 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.1 mol%, 0.13 mg) and H_2O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 °C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound **3c'** in 90% yield (35.9 mg). White solid. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.8, 5.5 Hz, 2H), 7.77 (dd, J = 8.3, 1.4 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.16 (t, J = 8.6 Hz, 2H). 13 C(14 H) NMR (126 MHz, CDCl₃) δ 195.3, 165.4 (d, J = 254.0 Hz), 137.5, 133.82 (d, J = 3.1 Hz), 132.7 (d, J = 9.1 Hz), 132.5, 129.9, 128.4, 115.47 (d, J = 21.8 Hz). The spectral data matched literature values. 26

Phenyl(4-(trifluoromethyl)phenyl)methanone (3d'). According to the general procedure, the reaction of **1e** (0.20 mmol, 73.0 mg), phenylboronic acid (0.40 mmol, 48.8 mg), K₂CO₃ (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.25 mol%, 0.32mg) and H₂O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 ^oC in an oil bath, afforded after

filtration and chromatography (EtOAc/hexanes = 1:10) the title compound 3d' in 74% yield (37.2 mg). White solid. 1H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 2H), 7.81 (dd, J = 8.3, 1.4 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H). $^{13}C\{^1H\}$ NMR (126 MHz, CDCl₃) δ 195.6, 140.7, 136.8, 133.8 (d, J = 32.6 Hz), 133.1, 130.2, 130.1, 128.5, 125.4 (q, J = 3.8 Hz), 123.7 (d, J = 272.3 Hz). The spectral data matched literature values. 26

Methyl 4-benzoylbenzoate (3e'). According to the general procedure, the reaction of **1f** (0.20 mmol, 71.6 mg), phenylboronic acid (0.40 mmol, 48.8 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.1 mol%, 0.13 mg) and H_2O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 °C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:10) the title compound **3e'** in 87% yield (41.8 mg). White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 8.5 Hz, 2H), 7.84 (d, J = 8.4 Hz, 2H), 7.82 – 7.79 (m, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 3.97 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 196.1, 166.3, 141.3, 137.0, 133.2, 133.0, 130.1, 129.8, 129.5, 128.5, 52.5. The spectral data matched literature values. ²⁶

1-(4-Benzoylphenyl)ethan-1-one (3f'). According to the general procedure, the reaction of **1g** (0.20 mmol, 67.8 mg), phenylboronic acid (0.40 mmol, 48.8 mg), K₂CO₃ (0.60 mmol, 82.8 mg), [(IPr)Pd(DMS)Cl₂] (0.1 mol%, 0.13 mg) and H₂O (5.0 equiv, 18 mg) in 2-MeTHF (0.25 M, 0.8 mL) for 12 h at 60 $^{\circ}$ C in an oil bath, afforded after filtration and chromatography (EtOAc/hexanes = 1:8) the title compound **3f** in 95% yield (42.6 mg). White solid. 1 H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.2 Hz, 2H), 7.87 (d, J = 8.2 Hz, 2H), 7.81 (d, J = 7.1 Hz, 2H), 7.66 – 7.59 (m, 1H), 7.51 (t, J = 7.7 Hz, 2H), 2.67 (s, 3H). 13 C{ 1 H} NMR (126 MHz, CDCl₃) δ 197.5, 196.0, 141.4, 139.6, 136.9, 133.0, 130.1, 130.1, 128.5, 128.2, 26.9. The spectral data matched literature values.

General Procedures for Kinetic Studies

Conditions A. An oven-dried vial equipped with a stir bar was charged with amide 1a (0.2 mmol), 4-methylphenyl boronic acid (0.40 mmol, 54.4 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(cin)Cl] (0.1 mol%, 0.14 mg), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. 2-MeTHF (0.25 M, 0.8 mL) and H_2O (5.0 equiv, 18 mg) were added with vigorous stirring and the vial was placed in an oil bath preheated to 60 °C. After the indicated time the reaction mixture was diluted with CH_2Cl_2 (10 mL), filtered, and concentrated. The sample was analyzed by 1H NMR (CDCl $_3$, 500 MHz) and GC-MS to obtain yield using internal standard and comparison with authentic sample 3a. Two groups of 9 parallel reactions were run and stopped at 10 min, 20 min, 30 min, 1 h, 2 h, 4 h, 6 h, 8 h and 12 h.

Conditions B. An oven-dried vial equipped with a stir bar was charged with amide 1a (0.2 mmol), 4-methylphenyl boronic acid (0.40 mmol, 54.4 mg), K_2CO_3 (0.60 mmol, 82.8 mg), $[Pd(IPr)(3-Cl-py)Cl_2]$ (0.1 mol%, 0.14 mg), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. 2-MeTHF (0.25 M, 0.8 mL) and H_2O (5.0 equiv, 18 mg) were added with vigorous stirring and the vial was placed in an oil bath preheated to 60 °C. After the indicated time the reaction mixture was diluted with CH_2Cl_2 (10 mL), filtered, and

concentrated. The sample was analyzed by 1H NMR (CDCl₃, 500 MHz) and GC-MS to obtain yield using internal standard and comparison with authentic sample $\bf 3a$. Two groups of 9 parallel reactions were run and stopped at 10 min, 20 min, 30 min, 1 h, 2 h, 4 h, 6 h, 8 h and 12 h.

Conditions C. An oven-dried vial equipped with a stir bar was charged with amide 1a (0.2 mmol), 4-methylphenyl boronic acid (0.40 mmol, 54.4 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [(IPr)Pd(THT)Cl₂] (0.1 mol%, 0.13 mg), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. 2-MeTHF (0.25 M, 0.8 mL) and H_2O (5.0 equiv, 18 mg) were added with vigorous stirring and the vial was placed in an oil bath preheated to $60\,^{\circ}$ C. After the indicated time the reaction mixture was diluted with CH_2Cl_2 (10 mL), filtered, and concentrated. The sample was analyzed by 1 H NMR (CDCl₃, 500 MHz) and GC-MS to obtain yield using internal standard and comparison with authentic sample 3a. Two groups of 9 parallel reactions were run and stopped at 10 min, 20 min, 30 min, 1 h, 2 h, 4 h, 6 h, 8 h and 12 h.

Conditions D. An oven-dried vial equipped with a stir bar was charged with amide 1a (0.2 mmol), 4-methylphenyl boronic acid (0.40 mmol, 54.4 mg), K_2CO_3 (0.60 mmol, 82.8 mg), [[IPr)Pd(DMS)Cl_2] (0.1 mol%, 0.13 mg), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. 2-MeTHF (0.25 M, 0.8 mL) and H_2O (5.0 equiv, 18 mg) were added with vigorous stirring and the vial was placed in an oil bath preheated to $60\,^{\circ}$ C. After the indicated time the reaction mixture was diluted with CH_2Cl_2 (10 mL), filtered, and concentrated. The sample was analyzed by 1 H NMR (CDCl_3, 500 MHz) and GC-MS to obtain yield using internal standard and comparison with authentic sample 3a. Two groups of 9 parallel reactions were run and stopped at 10 min, 20 min, 30 min, 1 h, 2 h, 4 h, 6 h, 8 h and 12 h.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and it's Supporting Information.

Supporting Information

¹H and ¹³C NMR spectra, computational details. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

albert.poater@udg.edu steven.nolan@ugent.be michal.szostak@rutgers.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Rutgers University, the NSF (CAREER CHE-1650766), and the NIH (R35GM133326) for generous financial support. Supplement funding for this project was provided by the Rutgers University – Newark Chancellor's Research Office. The 500 MHz spectrometer used in this study was supported by the NSF-MRI grant (CHE-1229030). A.P. is a Serra Húnter

Fellow and ICREA Academia Prize 2019, and thanks the Spanish Ministerio de Ciencia e Innovación for a project PID2021-127423NB-I00 and the Generalitat de Catalunya for project 2021SGR623. S.P.N. thanks the BOF research fund as well as the SBO projects CO2perate and D2M for financial support. C.S.J.C (G0C5423N) and S.P.N. (G0A6823N) thank the FWO for support. Y.L. thanks the CSC for a Ph.D. fellowship.

REFERENCES

- (1) For representative reviews on activation of amide bonds, see: (a) Greenberg, A.: Breneman, C. M.: Liebman, I. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science; Wiley-VCH: New York, 2003. (b) Gao, P.; Rahman, Md. M.; Zamalloa, A.; Feliciano, J.; Szostak, M. Classes of Amides That Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J. Org. Chem. 2023, DOI: 10.1021/acs.joc.2c01094. (c) Meng, G.; Zhang, J.; Szostak, M. Acyclic Twisted Amides. Chem. Rev. 2021, 121, 12746-12783. (d) Boit, T. B.; Bulger, A. S.; Dander, J. E.; Garg, N. K. Activation of C-O and C-N Bonds Using Non-Precious-Metal Catalysis. ACS Catal. 2020, 10, 12109-12126. (e) Bourne-Branchu, Y.; Gosmini, C.; Danoun, G. N-Boc-Amides in Cross-Coupling Reactions. Chem. Eur. J. 2019, 25, 2663-2674. (f) Chaudhari, M. B.; Gnanaprakasam, B. Recent Advances in the Metal-Catalyzed Activation of Amide Bonds. Chem. Asian J. 2019, 14, 76-93. (g) Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Amide activation: an emerging tool for chemoselective synthesis. Chem. Soc. Rev. 2018, 47, 7899-7925. (h) Takise, R.; Muto, K.; Yamaguchi, J. Cross-Coupling of Aromatic Esters and Amides. Chem. Soc. Rev. 2017, 46, 5864-5888.
- (2) For selected studies on amide N-C(0) cross-coupling, see: (a) Hie, L.; Nathel, N. F. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Conversion of Amides to Esters by the Nickel-Catalysed Activation of Amide C-N Bonds. Nature 2015, 524, 79-83. (b) Meng, G.; Szostak, M. General Olefin Synthesis by the Palladium-Catalyzed Heck Reaction of Amides: Sterically Controlled Chemoselective N-C Activation. Angew. Chem. Int. Ed. 2015, 54, 14518-14522. (c) Ni, S.; Zhang, W.; Mei, H.; Han, J.; Pan, Y. Ni-Catalyzed Reductive Cross-Coupling of Amides with Aryl Iodide Electrophiles via C-N Bond Activation. Org. Lett. 2017, 19, 2536-2539. (d) Yue, H.; Guo, L.; Liao, H. H.; Cai, Y.; Zhu, C.; Rueping, M. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C-O and C-C Bond Activation. Angew. Chem. Int. Ed. 2017, 56, 4282-4285. (e) Li, C.; Ling, L.; Luo, Z.; Wang, S.; Zhang, X.; Zeng, X. Deoxygenative Cross-Coupling of C(aryl)-O and C(amide)-O Electrophiles Enabled by Chromium Catalysis Using Bipyridine Ligand. ACS Catal. **2023**, 13, 3120-3130.
- (3) For representative reviews on Suzuki-Miyaura cross-couplings, see: (a) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. *Chem. Rev.* **1995**, *95*, *2457-2483*. (b) Han, F. S. Transition-Metal-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions: A Remarkable Advance from Palladium to Nickel Catalysts. *Chem. Soc. Rev.* **2013**, *42*, 5270-5298. (c) Beletskaya, I. P.; Alonso, F.; Tyurin, V. The Suzuki-Miyaura reaction after the Nobel prize. *Coord. Chem. Rev.* **2019**, *385*, 137-173. (d) Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. Recent Advances in the Suzuki-Miyaura Cross-coupling Reaction Using Efficient Catalysts in Eco-Friendly Media. *Green Chem.* **2019**, *21*, 381-405.
- (4) For a recent monograph on amide bond activation, see: Szostak, M. *Amide Bond Activation: Concepts and Reactions*; Wiley-VCH: Weinheim, **2022**.
- (5) For selected theoretical studies, see: (a) Greenberg, A.; Venanzi, C. A. Structures and Energetics of Two Bridgehead Lactams and Their N- and O-Protonated Forms: An Ab Initio Molecular Orbital Study. *J. Am. Chem. Soc.* **1993**, *115*, 6951-6957. (b) Greenberg,

- A.; Moore, D. T.; DuBois, T. D. Small and Medium-Sized Bridgehead Bicyclic Lactams: A Systematic ab Initio Molecular Orbital Study. *J. Am. Chem. Soc.* **1996**, *118*, 8658-8668. (c) Kemnitz, C. R.; Loewen, M. J. "Amide Resonance" Correlates with a Breadth of C-N Rotation Barriers. *J. Am. Chem. Soc.* **2007**, *129*, 2521-2528. (d) Mujika, J. I.; Mercero, J. M.; Lopez, X. Water-Promoted Hydrolysis of a Highly Twisted Amide: Rate Acceleration Caused by the Twist of the Amide Bond. *J. Am. Chem. Soc.* **2005**, *127*, 4445-4453. (e) Glover, S. A.; Rosser, A. A. Reliable Determination of Amidicity in Acyclic Amides and Lactams. *J. Org. Chem.* **2012**, *77*, 5492-5502. (f) Morgan, J.; Greenberg, A.; Liebman, J. F. Paradigms and Paradoxes: *O-* and *N-* Protonated Amides, Stabilization Energy, and Resonance Energy. *Struct. Chem.* **2012**, *23*, 197-199.
- (6) For lead references on amide bonds in drug discovery and polymer chemistry, see: (a) Roughley, S. D.; Jordan, A. M. The Medicinal Chemist's Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. *J. Med. Chem.* **2011**, *54*, 3451-3479. (b) Kaspar, A. A.; Reichert, J. M. Future Directions for Peptide Therapeutics Development. *Drug Discov. Today* **2013**, *18*, 807-817. (c) Marchildon, K. Polyamides: Still Strong After Seventy Years. *Macromol. React. Eng.* **2011**, *5*, 22-54. (d) Brunton, L.; Chabner, B.; Knollman, B. *Goodman and Gilman's The Pharmacological Basis of Therapeutics*; MacGraw-Hill: New York, 2010.
- (7) For selected examples of amide bonds in synthetic chemistry, see: (a) Yu, X.; Chen, Y.; Luo, O.; Li, Y.; Dai, P.; Xia, O.; Liu, F.; Zhang, W.-H. Selective Radical N-H Activation: The Unprecedented Harnessing of Formamide with S_8 for N-S-N Bonds Construction. Asian J. Org. Chem. 2021, 10, 771-775. (b) Sharma, S.; Buchbinder, N. W.; Braje, W. M.; Handa, S. Fast Amide Couplings in Water: Extraction, Column Chromatography, and Crystallization Not Required. Org. Lett. 2020, 22, 5737-5740. (c) Barger, C. J.; Dicken, R. D.; Weidner, V. L.; Motta, A.; Lohr, T. L.; Marks. T. J. La[N(SiMe₃)₂]₃-Catalyzed Deoxygenative Reduction of Amides with Pinacolborane. Scope and Mechanism. J. Am. Chem. Soc. 2020, 142, 8019-8028. (d) Wei, T.; Lu, S.; Sun, J.; Xu, Z.; Yang, X.; Wang, F.; Ma, Y.; Shi, Y. S.; Chen, X. Sanger's Reagent Sensitized Photocleavage of Amide Bond for Constructing Photocages and Regulation of Biological Functions. J. Am. Chem. Soc. 2020, 142, 3806-3813. (e) Gonçalves, C. R.; Lemmerer, M.; Teskey, C. J.; Adler, P.; Kaiser, D.; Maryasin, B.; González, L.; Maulide, N. Unified Approach to the Chemoselective α-Functionalization of Amides with Heteroatom Nucleophiles. J. Am. Chem. Soc. 2019, 141, 18437-18443. (f) Derosa, J.; Kleinmans, R.; Tran, V. T.; Karunananda, M. K.; Wisniewski, S. R.; Eastgate, M. D.; Engle, K. M. Nickel-Catalyzed 1,2-Diarylation of Simple Alkenyl Amides. J. Am. Chem. Soc. 2018, 140, 17878-17883.
- (8) For select reviews on NHCs, see: (a) *N-Heterocyclic Carbenes*, Nolan, S. P., Ed.; Wiley: Weinheim, **2014**. (b) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. *Nature* **2014**, *510*, 485-496. (c) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. N-Heterocyclic Carbenes in Late Transition Metal Catalysis. *Chem. Rev.* **2009**, *109*, 3612-3676. (d) Fortman, G. C.; Nolan, S. P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. *Chem. Soc. Rev.* **2011**, *40*, 5151-5169. (e) Marion, N.; Nolan, S. P. Well-defined N-heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions. *Acc. Chem. Res.* **2008**, *41*, 1440-1449. (f) Froese, R. D. J.; Lombardi, C.; Pompeo, M.; Rucker, R. P.; Organ, M. G. Designing Pd-N-Heterocyclic Carbene Complexes for High Reactivity and Selectivity for Cross-Coupling Applications. *Acc. Chem. Res.* **2017**, *50*, 2244-2253.
- (9) (a) Diez-Gonzalez, S.; Nolan, S. P. Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: A quest for understanding. *Coord. Chem. Rev.* **2007**, *251*, 874-883. (b) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Understanding the M-(NHC) (NHC = N-heterocyclic carbene) bond. *Coord. Chem. Rev.* **2009**, *253*, 687-703. (c) Dröge, T.; Glorius, F. The Measure of All Rings: N-Heterocyclic Carbenes. *Angew. Chem. Int. Ed.*

- **2010**, *49*, 6940-6952. (d) Nelson, D. J.; Nolan, S. P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. *Chem. Soc. Rev.* **2013**, *42*, 6723-6753.
- (10) (a) Clavier, H.; Nolan, S. P. Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. *Chem. Commun.* **2010**, *46*, 841-861. (b) Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L. Towards the Online Computer-Aided Design of Catalytic Pockets. *Nat. Chem.* **2019**, *11*, 872-879.
- (11) For selected reviews on Pd-NHCs, see; (a) Fortman, G. C.; Nolan, S. P. N-Heterocyclic Carbene (NHC) Ligands and Palladium in Homogeneous Cross-Coupling Catalysis: a Perfect Union. Chem. Soc. Rev. 2011, 40, 5151-5169. (b) Froese, R. D. J.; Lombardi, C.; Pompeo, M.; Rucker, R. P.; Organ, M. G. Designing Pd-N-Heterocyclic Carbene Complexes for High Reactivity and Selectiv-**Cross-Coupling** ity Applications. Acc. Res. 2017, 50, 2244-2253. For reviews on Pd-NHCs in amide N-C(O) activation, see: (c) Vemula, S. R.; Chhoun, M. R.; Cook, G. R. Well-Defined Pre-Catalysts in Amide and Ester Bond Activation. Molecules 2019, 24, 215. (d) D'Alterio, M. C.; Casals-Cruañas, È.; Tzouras, N. V.; Talarico, G.; Nolan, S. P.; Poater, A. Mechanistic Aspects of the Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. Chem. Eur. J. 2021, 27, 13481-13493.
- (12) For selected studies on Pd–NHCs in amide N–C(0) activation, see (a) Wang, C.; Rahman, M.; Bisz, E.; Dziuk, B.; Szostak, R.; Szostak, M. Palladium-NHC (NHC = N-heterocyclic Carbene)-Catalyzed Suzuki-Miyaura Cross-Coupling of Alkyl Amides. *ACS Catal.* **2022**, *12*, 2426-2433. (b) Zhou, T.; Gao, P.; Bisz, E.; Dziuk, B.; Lalancette, R.; Szostak, R.; Szostak, M. Well-defined, air- and moisture-stable palladium-imidazo[1,5-*a*]pyridin-3-ylidene complexes: a versatile catalyst platform for cross-coupling reactions by L-shaped NHC ligands. *Catal. Sci. Technol.* **2022**, *12*, 6581-6589. (c) Zhao, Q.; Meng, G.; Li, G.; Flach, C.; Mendelsohn, R.; Lalancette, R.; Szostak, R.; Szostak, M. IPr# Highly Hindered, Broadly Applicable N-Heterocyclic Carbenes. *Chem. Sci.* **2021**, *12*, 10583-10589, and references cited therein.
- (13) For representative examples on Pd-NHCs, see (a) Viciu, M. S.; Kelly, R. A., III; Stevens, E. D.; Naud, F.; Studer, M.; Nolan, S. P. *Org. Lett.* **2003**, *5*, 1479-1482. (b) Marion, N.; Ecarnot, E. C.; Navarro, O.; Amoroso, D.; Bell, A.; Nolan, S. P. (IPr)Pd(Acac)Cl: An Easily Synthesized, Efficient, and Versatile Precatalyst for C-N and C-C Bond Formation. *J. Org. Chem.* **2006**, *71*, 3816-3821 (c) Kantchev, E. A. B.; Ying, J. Y. Practical One-Pot, Three-Component Synthesis of N-Heterocyclic Carbene (NHC) Ligated Palladacycles Derived from N,N-Dimethylbenzylamine. *Organometallics* **2009**, *28*, 289-299.
- (d) Diebolt, O.; Jurčík, V.; Correa da Costa, R.; Braunstein, P.; Cavallo, L.; Nolan, S. P.; Slawin, A. M. Z.; Cazin, C. S. J. Mixed Phosphite/N-Heterocyclic Carbene Complexes: Synthesis, Characterization and Catalytic Studies. Organometallics 2010, 29, 1443-1450. (e) Sayah, M.; Lough, A. J.; Organ, M. G. Sulfination by Using Pd-PEPPSI Complexes: Studies into Precatalyst Activation, Cationic and Solvent Effects and the Role of Butoxide Base. Chem. Eur. J. 2013, 19, 2749-2756. (f) Hruszkewycz, D. P.; Balcells, D.; Guard, L. M.; Hazari, N.; Tilset, M. Insight into the Efficiency of Cinnamyl-Supported Precatalysts for the Suzuki-Miyaura Reaction: Observation of Pd(I) Dimers with Bridging Allyl Ligands During Catalysis. J. Am. Chem. Soc. 2014, 136, 7300-7316. (g) Yang, J.; Synthesis of (NHC)Pd(salicylaldimine)Cl complexes through template-directed ortho-aromatic metaloxylation of NHC-palladacycles derived from arylimines. Dalton Trans. 2017, 46, 5003-5007. For reviews on ancillary ligands for Pd precatalysts, see: (h) Shaughnessy, K. H. Development of Palladium Precatalysts that Efficiently Generate LPd(0) Active Species. Israel J. Chem. 2020, 60, 180-194. (i) Firsan, S. J.; Sivakumar, V.; Colacot, T. J. Emerging Trends in Cross-Coupling: Twelve-Electron-Based L1Pd(0) Catalysts, Their Mechanism of Action, and Selected Applications. Chem. Rev. 2022, 122, 16983-17027.

- (14) Viciu, M. S.; Germaneau, R. F.; Navarro-Fernandez, O.; Stevens, E. D.; Nolan, S. P. Activation and Reactivity of (NHC)Pd(allyl)Cl (NHC = N-Heterocyclic Carbene) Complexes in Cross-Coupling Reactions. *Organometallics* **2002**, *21*, 5470-5472. (b) Chartoire, A.; Lesieur, M.; Falivene, L.; Slawin, A. M. Z.; Cavallo, L.; Cazin, C. S. J.; Nolan, S. P. [Pd(IPr*)(cinnamyl)Cl]: An Efficient Pre-Catalyst for the Preparation of Tetra-*Ortho*-Substituted Biaryls by Suzuki-Miyaura Cross-Coupling. *Chem. Eur. J.* **2012**, *18*, 4517-4521
- (15) (a) O'Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.; Organ, M. G. Easily Prepared Air- and Moisture-Stable Pd-NHC (NHC = *N*-Heterocyclic Carbene) Complexes: A Reliable, User-Friendly, Highly Active Palladium Precatalyst for the Suzuki-Miyaura Reaction. *Chem. Eur. J.* **2006**, *12*, 4743-4748. (b) Chen, M.-T.; Vicic, D. A.; Turner, M. L.; Navarro, O. (N Heterocyclic Carbene)PdCl₂(TEA) Complexes: Studies on the Effect of the "Throw-Away" Ligand in Catalytic Activity. *Organometallics* **2011**, *30*, 5052-5056.
- (16) Xia, Q.; Shi, S.; Gao, P.; Lalancette, R.; Szostak, R.; Szostak, M. [(NHC)PdCl₂(Aniline)] Complexes: Easily Synthesized, Highly Active Pd(II)–NHC Precatalysts for Cross-Coupling Reactions. *J. Org. Chem.* **2021**, *86*, 15648-15657.
- (17) Zhou, T.; Ma, S.; Nahra, F.; Obled, A. M. C.; Poater, A.; Cavallo, L.; Cazin, C. S. J.; Nolan, S. P.; Szostak, M. [Pd(NHC)(μ -Cl)Cl]₂: Versatile and Highly Reactive Complexes for Cross-Coupling Reactions that Avoid Formation of Inactive Pd(I) Off-Cycle Products. *iScience* **2020**, *23*, 101377.
- (18) Liu, Y.; Voloshkin, V. A.; Scattolin, T.; Peng, M.; Hecke, K. V.; Nolan, S. P.; Cazin, C. S. J. Versatile and Highly Efficient trans-[Pd(NHC)Cl₂(DMS/THT)] Precatalysts for C–N and C–C Coupling Reactions in Green Solvents. *Eur. J. Org. Chem.* **2022**, e202200309.
- (19) (a) Thomas, R. M.; Fedorov, A.; Keitz, B. K.; Grubbs, R. H. Thermally Stable, Latent Olefin Metathesis Catalysts. *Organometallics* **2011**, *30*, 6713-6717. (b) Naumann, S.; Buchmeiser, M. R. Latent and Delayed Action Polymerization Systems. *Macromol. Rapid Commun.* **2014**, *35*, 682-701. (c) Monsaert, S.; Vila, A. L.; Drozdzak, R.; Van Der Voort, P.; Verpoort, F. Latent Olefin Metathesis Catalysts. *Chem. Soc. Rev.* **2009**, *38*, 3360-3372.
- (20) (a) Pace, V.; Hoyos, P.; Castoldi, L.; María, P. D.; Alcántara, A. R. 2-Methyltetrahydrofuran (2-MeTHF): A Biomass-Derived Solvent with Broad Application in Organic Chemistry. ChemSusChem 2012, 5, 1369-1379. (b) Monticelli, S.; Castoldi, L.; Murgia, I.; Senatore, R.; Mazzeo, E.; Wackerlig, J.; Urban, E.; Langer, T.; Pace, V. Recent advancements on the use of 2-methyltetrahydrofuran in organometallic chemistry. Monatsh Chem. 2017, 148, 37-48. (c) Lefferts, L.; Sheldon, R. A. Green Chemistry and Catalysis; Wiley: Weinheim, 2007. (d) Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301-312. (e) Sheldon, R. A. Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev. 2012, 41, 1437-1451. (f) Bryan, M. C.; Dillon, B.; Hamann, L. G.; Hughes, G. J.; Kopach, M. E.; Peterson, E. A.; Pourasharf, M.; Raheem, I.; Richardson, P.; Richter, D.; Sneddon, H. F. Sustainable Practices in Medicinal Chemistry: Current State and Future Directions. J. Med. Chem. 2013, 56, 6007-6021.
- (21) Examples of cross coupling reactions catalyzed by Pd complexes with higher kinetic cost of the preactivation: (a) Li, G.; Lei, P.; Szostak, M.; Casals-Cruañas, È.; Poater, A.; Cavallo, L.; Nolan, S. P. Mechanistic Study of Suzuki Miyaura Cross Coupling Reactions of Amides Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. *ChemCatChem* **2018**, *10*, 3096-3106. (b) Meconi, G. M.; Vummaleti, S. V. C.; Luque-Urrutia, J. A.; Belanzoni, P.; Nolan, S. P.; Jacobsen, H.; Cavallo, L.; Solà, M.; Poater, A.; Mechanism of the Suzuki–Miyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts. *Organometallics* **2017**, *36*, 2088-2095. (c) Gajda, R.; Poater, A.; Brotons-Rufes, A.; Planer, S.; Woźniak, K.; Grela, K.; Kajetanowicz, A. Aminomethylpyridinequinones as new ligands for

- PEPPSI-type complexes. *Arkivoc* **2021**, *part iii*, 138-156. For a recent study on accelerating oxidative addition by mechanochemistry, see: (d) Čarný, T.; Peňaška, T.; Andrejčák, S.; Šebesta, R. Mechanochemical Pd-Catalyzed Cross-Coupling of Arylhalides and Organozinc Pivalates. *Chem. Eur. J.* **2022**, *28*, e202202040.
- (22) Examples of controversial M(0) species: (a) Isbrandt, E. S.; Nasim, A.; Zhao, K.; Newman, S. G. Catalytic Aldehyde and Alcohol Arylation Reactions Facilitated by a 1,5-Diaza-3,7-diphosphacy-clooctane Ligand. *J. Am. Chem. Soc.* **2021**, *143*, 14646-14656. (b) J. Heitkämper, S. Posada-Pérez, S. Escayola, M. Solà, J. Kästner, A. Poater, A non expected alternative Ni(0) Species in the Ni-Catalytic Aldehyde and Alcohol Arylation Reactions Facilitated by a 1,5-Diaza-3,7-diphosphacyclooctane Ligand. *Chem. Eur. J.* **2023**, DOI: 10.1002/chem.202300193.
- (23) Falivene, L.; Barone, V.; Talarico, G. Unraveling the role of entropy in tuning unimolecular vs. bimolecular reaction rates: The case of olefin polymerization catalyzed by transition metals. *Mol. Catal.* **2018**, *452*, 138-144.
- (24) (a) Kozuch, S.; Shaik, S.; How to Conceptualize Catalytic Cycles? The Energetic Span Model. *Acc. Chem. Res.* **2011**, *44*, 101-110. Examples: (b) Monreal-Corona, R.; Díaz-Jiménez, A.; Roglans, A.; Poater, A.; Pla-Quintana, A. Indolizine Synthesis through Annulation of Pyridinium 1,4-Thiolates and Copper Carbenes:A Predicctive Catalysis Approach. *Adv. Synth. Catal.* **2023**, *365*, 760-766. (c) Solel, E.; Tarannam, N.; Kozuch, S. Catalysis: Energy is the measure of all things. *Chem. Commun.* **2019**, *55*, 5306-5322.
- (25) Poater, A.; Pump, E.; Vummaleti, S. V. C.; Cavallo, L. The right computational recipe for olefin metathesis with Ru-based catalysts: the whole mechanism of ring-closing olefin metathesis. *J. Chem. Theory Comput.* **2014**, *10*, 4442-4448.
- (26) Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-F.; Houk, K. N.; Newman, S. G. Palladium-Catalyzed Suzuki-Miyaura Coupling of Aryl Esters. *J. Am. Chem. Soc.* **2017**, *139*, 1311-1318.
- (27) Gautam, P.; Bhanage, B. M. Palladacycle-Catalyzed Carbonylative Suzuki-Miyaura Coupling with High Turnover Number and Turnover Frequency. *J. Org. Chem.* **2015**, *80*, 7810-7815.