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Abstract— Studies involving the group predator behavior of 
wolves have inspired multiple robotic architectures to mimic 
these biological behaviors in their designs and research. In this 
work, we aim to use robotic systems to mimic wolf packs' single 
and group behavior. This work aims to extend the original 
research by Weitzenfeld et al [7] and evaluate under a new 
multi-robot robot system architecture. The multiple robot 
architecture includes a 'Prey' pursued by a wolf pack consisting 
of an 'Alpha' and 'Beta' robotic group. The Alpha Wolf' will be 
the group leader, searching and tracking the 'Prey.' At the same 
time, the multiple Beta 'Wolves' will follow behind the Alpha, 
tracking and maintaining a set distance in the formation. The 
robotic systems used are multiple raspberry pi-robots designed 
in the USF bio-robotics lab that use a combination of color 
cameras and distance sensors to assist the Beta 'Wolves' in 
keeping a set distance between the Alpha "Wolf" and 
themselves. Several experiments were performed in simulation, 
using Webots, and with physical robots. An analysis was done 
comparing the performance of the physical robot in the real 
world to the virtual robot in the simulated environment. 
Index Terms—Wolf Packs, Computer Vision, Webots 

 
I.    INTRODUCTION 
 

Many animals dwell in groups developing 
cooperative behaviors that can improve their survival [1]. 
There exists extensive research on animal collaboration and 
cooperation. For example, Ranjbar et al. [8] explore the 
coordination of social insects like honey bees and ants to mimic 
foraging and pheromone signaling in robotics. A similar work 
by Novitzky et al. [9] explores the behaviors of honey bees and 
the ability of the beet to communicate through dances and 
actions. 

Animal collaboration, such as wolf pack hunting, can 
result in more effective preying as a group than individually 
[1]. Animal collaboration can take many forms, from multiple 
animals working together having similar individual behaviors 
to those showing complementary behaviors, performing 
distinct individual roles [2]. Several hunters working together 
through collaboration and coordination gain the ability to take 
down larger prey where individuals would fail. This paper 
analyzes wolf pack hunting behavior, where individualistic 
behavior demonstrates linear and simplistic movements. In 
contrast, small packs show geometric size formations, such as 
polygons, with more behavioral differentiation between 
members, resulting in more complex group dynamics [3]. 

 

Our work uses a combination of lab-designed robots 
and an open-source robot simulator, Webots, to develop and test 
robot behaviors and formations. This work is inspired by 
Weitzenfeld et al. [7]. 

 

 
Figure 1: USF Biorobotics Lab “Hambot” that was used as a basis for physical 
robot development and tests. The alpha wolf robots are in red while the beta 
wolf robots are in green. Robot scale is 1ft height with 1ft diameter. 
 

II.    RELATED WORK 
 

Multi-robot systems have been developed for a variety of 
environments, including air, land and underwater [4]. Multi-
robot systems extend the idea of swarm intelligence, where, for 
example, Liu and Liu [6], define specifications for small-sized 
robots using the high-energy realization of an energy-efficient 
hardware architecture that supports complex formations in a 
distributed robotic system. The system's neural network learns 
the behaviors of other agents within the process and maps the 
state of the system, providing pose information on all agents 
with respect to the center agent within the formation [6]. In 
Pierson et al. [10] authors describe work on controlling a group 
of dog-inspired robots to direct a herd of uncooperative sheep-
like robots to a target goal. The objects in the experiment can be 
biological or robotic; however, the object must be capable of 
responding to dog-like robots. The work by DeCastro et al [5], 
describes a robotic controller team that can perform high-level 
assignments for capturing actuation and locomotion to match 
the behavior needed for reactive and sensor events. The 
overarching goal for the work is to ensure that motion planning 
is collision-free between the multiple robots and dynamic 
obstacles. 



 
III.    MODEL 

 

The wolf pack hunting model described in the paper 
extends prior work by Weitzenfeld et al [7]. The multi-robot 
system architecture consists of four robots representing one 
“alpha” wolf (the leader) and three “beta” wolves (the 
followers). The alpha wolf leads the hunt for prey, while the 
beta wolves follow the alpha while maintaining a hunting 
formation. The model is based on a small pack organization, 
having the benefit of providing greater precision and control of 
the hunting formation, when compared to collective hunting 
packs of greater size that can result in more individualistic 
behavior and less cooperation and cohesion [1]. 

 

 
Figure 2: Hunting in smaller packs allows for greater cohesion and 
collaboration. 
 

The collective hunting method proposed in this work is 
based on the following basic assumptions: 
1. Wolf hunting groups are composed of a group leader 

(alpha wolf robot) and at least one follower (beta wolf 
robot). 

2. Beta wolf robots form around the alpha, trying to keep a 
constant angle and distance between themselves and the 
alpha wolf robot. 

3. Every wolf robot uses only visual information to evaluate 
its environment, determining positions, angles, velocities, 
and behaviors. 

4. Movement speeds are established as a baseline and 
fluctuate based on the alpha's or target's position in 
relation to the beta wolf robot. 

5. The tests are completed in a controlled environment with 
a minimal number of obstacles, designed to facilitate low 
noise conditions. 

 
A. Physical Robot Systems 

 
The physical robot implementations are based on 

Raspberry PIs [11], as shown in Figure 1. The robots include 
actuators and sensors, such as distance sensors, IMU’s, wheel 
motors, and cameras, comparable to those included in the 
Webots implementation. The robot includes visual perception 
libraries with functionality for perceiving information relative 
to other robots or objects. 
 

B. Webots Simulation 
 

Webots [12] is an open-source robot simulator that allows 
the design of complex environments on custom robots. Webots 
includes built-in object and color recognition. Once 
recognized, object's size and position can be easily obtained, as 

illustrated in Figure 3.  
 

     
Figure 3: Webots has built-in object recognition that provides relative position, 
relative orientation, size, position on the image, size on the image, and color. 
 

Webots allows for the incorporation of multiple robots and 
objects of different shapes and sizes, and different layouts that 
can quickly be adjusted, as illustrated in Figure 4. 

 

 
Figure 4: This is an example of an environment with adjustable obstacles and 
robot positions. 
 

C. Image Processing 
 

The robot image processing system performs object and 
color recognition to identify the target "Prey", “Alpha” and 
“Beta” wolf robots, as described in Figure 5. The image 
processing system receives the object contours to compute 
distances between the robot and the object. Using these shapes, 
the system returns X and Y coordinate values along with the 
bounding box H (height) and W (width) to provide an 
approximate object size. The angular values keep the beta wolf 
robots in formation behind the alpha wolf robot.  
 

  
Figure 5: The block diagram illustrates camera image processing. The blob 



thread reads an image and converts it from RGB to HSV. Objects are 
recognized by color and contour. Small colored objects or other items too far 
away are removed by the perception system. 
 

 
Figure 6: The beta wolf robot attempts to keep a constant distance between 
themselves and the alpha robot using the X angle values by adjusting their 
velocities and orientations. The illustration is based on the original work by 
Weitzenfeld et al [7]. 
 

Beta wolves try to maintain a constant distance from the 
alpha wolf, while forming a pack centered around the alpha 
wolf, as shown in Figure 6. Movement direction is represented 
by black arrows, while arrows in white, labeled vision range, 
represent the visual range with a horizontal FOV (Field of 
View) of 62.2 degrees and vertical FOV of 48.8 degrees, as 
shown in Figure 7. 

 
Beta wolves follow the alpha's movement and adjust their 

velocity in response to the change in direction, creating a fixed 
target position angle (the vision-range median). Eq. 1 and 2 
describe the relative positioning of beta wolf in relation to the 
alpha wolf. The alpha robot's position, represented by (r), is 
derived from the current alpha angle (θ) subtracted from the 
initial alpha angle (θ0). The relative area size (α) of the alpha 
robot (see Equation 2) is calculated based on the perceived 
height (h) multiplied by the perceived width (w). 

 
 𝑟 = 𝜃 − 𝜃!     (1)  
𝛼 = ℎ ∗ 𝑤     (2) 
 
An initial velocity of 0.25 inch per sec was given to the 

physical robots, with the velocity constantly adjusted (see 
equation 3). An initial velocity is given so we have a base robot 
speed; 0.25 was chosen so the robots can perform controlled 
tests at a slower speed.  An adjustment value (adj) is set to 0, 
and the new position (r), calculated in equation 1, is converted 
into an abs value and divided by 1000 (see equation 4). 
 
 𝑣! = 0.25, 𝑣 = 𝑣! ± 𝑎𝑑𝑗   (3) 
 𝑎𝑑𝑗 = (𝑎𝑑𝑗 − 𝑎𝑏𝑠(𝑟))/1000  (4)  
 

A division of 1000 is applied for a gradual velocity adjustment 
to avoid jerky transitions.   

 

     
Figure 7: The figure illustrates the physical robot’s FOV. 
 

D. Behaviors 
 

Alpha Wolf Robot. The alpha wolf behavior is determined by 
three states: Wander, Pursuit, Catch, as illustrated in Figure 8. 
Corresponding pseudo code is shown in Figure 9. 

a) Wander: This state is initiated if the alpha robot has no 
view of the prey. The alpha robot will maneuver 
around the environment performing simple obstacle 
avoidance until the prey comes back into view. Once 
that occurs, the alpha robot will transition into a pursuit 
behavior.  

b) Pursuit: In this state, the alpha robot makes a pursuit 
towards the prey, continually adjusting its movement 
relative to the prey’s current position. During the 
pursuit mode, if the alpha robot loses sight of the prey, 
then the alpha robot will enter wandering. 

c) Catch: This state results from the alpha robot being 
within a set range from the prey. Once this happens, 
the alpha will complete its behavior, unless the prey 
starts moving. 

 

 
Figure 8:   The alpha wolf performs state transitions based on the stimulus from 
its environments meeting the conditions for a state change. The state changes 
vary between Wander, Pursuit, and Catch. 
 



 
Figure 9: The pseudo code describes the alpha robot state transitions in 
response to different visual perceptions.  
 
Beta Wolf Robot: The beta robot has four states: Wander, 
Pursuit, Formation, and Catch, as illustrated in Figure 10. 
Corresponding pseudo code is shown in Figure 11. 

a) Wander: This state is initiated if the beta robot does 
not have a visual on the alpha robot or the prey. This 
will lead to wandering behavior. If the prey is found 
first, the beta robot will transition into pursuit mode. 
The beta will transition into formation mode if the 
alpha robot is found first. 

b) Pursuit: In this state, the beta moves toward the prey, 
continually adjusting its movement based on its 
current position. During pursuit mode, if the beta 
robot loses sight of the prey, the beta robot will enter 
the Wander behavior. If the beta robot perceives the 
alpha robot, it will continue pursuing the Alpha robot 
until it is within a set range and transitioning into 
formation mode. 

c) Formation: This state is responsible for making the 
beta robot keep a constant distance and angle from the 
alpha robot and a safe distance from the other beta 
robots. The angle is determined by the initial starting 
position of the beta robot in proximity to the alpha. 
Using the initial angle (X coordinate), the beta robot 
stays at that angular position independent of 
directional movement. If a beta robot were to start in 
wandering mode, the initial angle would be 
determined when the beta robot reached a set distance 
from the alpha robot. If the beta robots were to lose 
sight of the alpha robot, they would move into 
Wander mode. If the beta robot perceives the prey, the 
beta robot would only initiate catch mode if the prey 
is within a set distance. 

d) Catch: This state results from the beta robot being 
within a set range of the prey. Once this happens, the 
beta robot will maintain its current position until the 
prey begins to move again. 

 
Figure 10: The Beta wolf performs state transitions based on the stimulus from 
its environments meeting the conditions for a state change. The state changes 
vary between Wander, Pursuit, Catch, and Formation. 
 

 
Figure 11: The pseudo code describes the behavioral algorithm for the beta robot 
and for transitioning between states. 
 

IV.   EXPERIMENTS AND RESULTS 
 

The robot experiments had success in the ability to 
transition between states and perform the assigned behavioral 
task. The tests were conducted in three major events: 
1. One beta robot followed behind the alpha robot pursuing 

the target. The beta robot and alpha robot are given initial 
positions, as shown in Figure 12 (left).  

2. Three beta robots followed behind one alpha robot, 
pursuing the target. The three beta robots had an initial 
position behind the alpha robot, as shown in Figure 12 
(right).  

3. One beta robot followed behind the alpha robot, pursuing 
the prey (in blue). In contrast to the previous two test cases, 
two beta robots have a random starting position, not directly 
behind the alpha robot.  

 



  
Figure 12: (Left) The figure shows the initial setup for one alpha robot and one 
beta robot. (Right) The figure shows the initial setup with three beta robots and 
one alpha robot.  
 
The overall task goal is for the beta robots to remain in 
formation while following the alpha robot to the prey, while 
minimizing formation deviation. If there is deviation in the 
formation, it should only be when the beta robot perceives the 
prey and is within a range of three feet. 
 

A. Single Alpha and Single Beta Wolf (Preset Starting 
Formation) 

 

The single alpha and single beta robots test were consistent 
in its ability for the alpha and beta robots to transition between 
states and achieve the expected conditions. The beta robot 
maintained a constant angle and distance from the alpha robot 
regardless of motion. The beta robot can stay in place and 
rotate if the alpha robot is moving horizontally, only moving 
until the alpha robot gets outside of the accepted size range. 
Once the set size range is exceeded, the robot applies the proper 
velocity computations to get back within range of the alpha 
robot. During implementation, color object recognition caused 
multiple blobs to be detected for the red alpha robot instead of 
a singular blob. To fix this issue, a large pink cylindrical object 
was placed on the robot to allow for more precise blob 
detection. An image of this experiment is shown in Figure 13. 
 

B. Single Alpha and Multiple Beta (Preset Starting 
Formation) 

 

The single alpha and multiple beta robot test performed 
similarly to the single alpha and single beta robot test. The 
betas robots could stay in formation and make proper 
transitions between pursuing the prey, following the alpha 
robot, and wandering around the environment, attempting to 
find the alpha robot or the prey. The color recognition issue of 
detecting multiple-colored objects belonging to the same robot 
was fixed to detect only the largest object within a cluster. 
Since there was a system-imposed range on how large an object 
must be to get detected, this solved the issue of too many 
objects being detected.  

 
There were additional problems with very sudden state 

transitions. There would be times when the beta robot would 
detect the alpha robot and the prey simultaneously. Depending 
on the size of the prey object, the beta robot would sometimes 
transition to pursuit if the size of the alpha robot was too small. 

There were also issues with obstacle avoidance and returning to 
the initial formation from a pursuit stage. This issue resulted 
when beta robots would aimlessly wander. Overall, it was a 
minor concern, and the robots stayed in formation, and were 
able to avoid collisions with each other. Images of this 
experiment are shown in Figure 14 and 15. 

 

 
Figure 13: (Left) The figure shows the red cylinder object on top of the alpha 
robot in its initial pose. (Right) The figure shows the same setup but with the 
target and alpha robot two feet away from the initial position. 

 

 
Figure 14: (Left) The figure shows the alpha in its initial pose with the three 
beta robots. (Right) The figure shows the robots remaining in formation. 
 

C. Single Alpha and Multiple Beta (Random Starting 
Formation) 

 

The single alpha and multiple beta robot test were 
successful in finding the prey, as well as having the beta robot 
find and follow behind the alpha robot. A major issue resulted 
from the beta robot fixating onto the prey despite perceiving the 
alpha robot. This happened whenever the beta robot obtained 
image values of size greater than the alpha robot. There were 
also issues with the beta robots getting lost and taking more than 
1 minute (4 wandering cycles) to encounter either the alpha 
robot or the prey. More adjustments need to be made to the 
wandering behavior to better account for object finding. 

 
D. Webots Implementation vs Real World 

 
The Webots implementation of the previous tasks 

performed similarly with physical robots in relation to task 
completion. In general, the physical robots were slower to run 
due to hardware limitations including image processing for 
color recognition. Figure 16 summarizes the results for the 
single alpha and beta physical robot experiments. 

 



  
Figure 15: (Left & Right) The two figures depict the alpha robot with two beta 
robots attempting to find the prey. The alpha robot finds the prey, and the two 
beta robots follow behind it. One of the beta robots managed to find the prey 
before finding the alpha robot and stayed in that catch position. 
 

 
 

Figure 16: The table shows the adjustment values for Webots and the physical 
robots. Webots can run at a much faster speed with smoother velocity 
adjustments. The physical robot moves slower, however the performance in 
terms of adjusting velocity is comparable between the two environments.  
 

V.    DISCUSSION 
 

The current work serves as a baseline model maintaining robot 
formation, by adjusting beta robot velocities while tracking a 
single alpha robot. We tested the model with Webots and with 
real-world physical robots. Implementing the code within 
Webots demonstrated smoother velocity adjustments and 
better object detection with no noise disruption during the 
search for the alpha robot and the prey. While not as smooth as 
the Webots implementation, the physical robots could still 
perform the experimental tasks and overcome environmental 
noise. Future work will include updating the computer vision 
system from a color recognition model to an object recognition 
model. Color recognition, while quick, detects only major 
colors corresponding to either the alpha robot (in red) or the 
prey (in blue). The current work can inspire future work on 
robot swarms and mimicry of other animals, including birds, 
fish, or insects. 
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