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Abstract— Studies involving the group predator behavior of
wolves have inspired multiple robotic architectures to mimic
these biological behaviors in their designs and research. In this
work, we aim to use robotic systems to mimic wolf packs' single
and group behavior. This work aims to extend the original
research by Weitzenfeld et al [7] and evaluate under a new
multi-robot robot system architecture. The multiple robot
architecture includes a 'Prey' pursued by a wolf pack consisting
of an 'Alpha' and 'Beta’ robotic group. The Alpha Wolf" will be
the group leader, searching and tracking the 'Prey.' At the same
time, the multiple Beta "Wolves' will follow behind the Alpha,
tracking and maintaining a set distance in the formation. The
robotic systems used are multiple raspberry pi-robots designed
in the USF bio-robotics lab that use a combination of color
cameras and distance sensors to assist the Beta '"Wolves' in
keeping a set distance between the Alpha "Wolf" and
themselves. Several experiments were performed in simulation,
using Webots, and with physical robots. An analysis was done
comparing the performance of the physical robot in the real
world to the virtual robot in the simulated environment.

Index Terms—Wolf Packs, Computer Vision, Webots

[. INTRODUCTION

Many animals dwell in groups developing
cooperative behaviors that can improve their survival [1].
There exists extensive research on animal collaboration and
cooperation. For example, Ranjbar et al. [8] explore the
coordination of social insects like honey bees and ants to mimic
foraging and pheromone signaling in robotics. A similar work
by Novitzky et al. [9] explores the behaviors of honey bees and
the ability of the beet to communicate through dances and
actions.

Animal collaboration, such as wolf pack hunting, can
result in more effective preying as a group than individually
[1]. Animal collaboration can take many forms, from multiple
animals working together having similar individual behaviors
to those showing complementary behaviors, performing
distinct individual roles [2]. Several hunters working together
through collaboration and coordination gain the ability to take
down larger prey where individuals would fail. This paper
analyzes wolf pack hunting behavior, where individualistic
behavior demonstrates linear and simplistic movements. In
contrast, small packs show geometric size formations, such as
polygons, with more behavioral differentiation between
members, resulting in more complex group dynamics [3].
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Our work uses a combination of lab-designed robots
and an open-source robot simulator, Webots, to develop and test
robot behaviors and formations. This work is inspired by
Weitzenfeld et al. [7].

Figure 1: USF Biorobotics Lab “Hambot” that was used as a basis for physical
robot development and tests. The alpha wolf robots are in red while the beta
wolf robots are in green. Robot scale is 1ft height with 1ft diameter.

II. RELATED WORK

Multi-robot systems have been developed for a variety of
environments, including air, land and underwater [4]. Multi-
robot systems extend the idea of swarm intelligence, where, for
example, Liu and Liu [6], define specifications for small-sized
robots using the high-energy realization of an energy-efficient
hardware architecture that supports complex formations in a
distributed robotic system. The system's neural network learns
the behaviors of other agents within the process and maps the
state of the system, providing pose information on all agents
with respect to the center agent within the formation [6]. In
Pierson et al. [10] authors describe work on controlling a group
of dog-inspired robots to direct a herd of uncooperative sheep-
like robots to a target goal. The objects in the experiment can be
biological or robotic; however, the object must be capable of
responding to dog-like robots. The work by DeCastro et al [5],
describes a robotic controller team that can perform high-level
assignments for capturing actuation and locomotion to match
the behavior needed for reactive and sensor events. The
overarching goal for the work is to ensure that motion planning
is collision-free between the multiple robots and dynamic
obstacles.



III. MODEL

The wolf pack hunting model described in the paper
extends prior work by Weitzenfeld et al [7]. The multi-robot
system architecture consists of four robots representing one
“alpha” wolf (the leader) and three “beta” wolves (the
followers). The alpha wolf leads the hunt for prey, while the
beta wolves follow the alpha while maintaining a hunting
formation. The model is based on a small pack organization,
having the benefit of providing greater precision and control of
the hunting formation, when compared to collective hunting
packs of greater size that can result in more individualistic
behavior and less cooperation and cohesion [1].

Figure 2: unting in -maller packs allows for grater cohes
collaboration.
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The collective hunting method proposed in this work is
based on the following basic assumptions:

1. Wolf hunting groups are composed of a group leader
(alpha wolf robot) and at least one follower (beta wolf
robot).

2. Beta wolf robots form around the alpha, trying to keep a
constant angle and distance between themselves and the
alpha wolf robot.

3. Every wolf robot uses only visual information to evaluate
its environment, determining positions, angles, velocities,
and behaviors.

4. Movement speeds are established as a baseline and
fluctuate based on the alpha's or target's position in
relation to the beta wolf robot.

5. The tests are completed in a controlled environment with
a minimal number of obstacles, designed to facilitate low
noise conditions.

A.  Physical Robot Systems

The physical robot implementations are based on
Raspberry PIs [11], as shown in Figure 1. The robots include
actuators and sensors, such as distance sensors, IMU’s, wheel
motors, and cameras, comparable to those included in the
Webots implementation. The robot includes visual perception
libraries with functionality for perceiving information relative
to other robots or objects.

B. Webots Simulation

Webots [12] is an open-source robot simulator that allows
the design of complex environments on custom robots. Webots
includes built-in object and color recognition. Once
recognized, object's size and position can be easily obtained, as

illustrated in Figure 3.

Figufe 3: Webots has built-in object recognition that provides relative position,
relative orientation, size, position on the image, size on the image, and color.

Webots allows for the incorporation of multiple robots and
objects of different shapes and sizes, and different layouts that
can quickly be adjusted, as illustrated in Figure 4.

Figure 4: This is an example of an environment with adjustable obstacles and
robot positions.

C. Image Processing

The robot image processing system performs object and
color recognition to identify the target "Prey", “Alpha” and
“Beta” wolf robots, as described in Figure 5. The image
processing system receives the object contours to compute
distances between the robot and the object. Using these shapes,
the system returns X and Y coordinate values along with the
bounding box H (height) and W (width) to provide an
approximate object size. The angular values keep the beta wolf
robots in formation behind the alpha wolf robot.
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Figure 5: The block diagram illustrates camera image processing. The blob



thread reads an image and converts it from RGB to HSV. Objects are
recognized by color and contour. Small colored objects or other items too far
away are removed by the perception system.
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Figure 6: The beta wolf robot attempts to keep a constant distance between
themselves and the alpha robot using the X angle values by adjusting their
velocities and orientations. The illustration is based on the original work by
Weitzenfeld et al [7].

Beta wolves try to maintain a constant distance from the
alpha wolf, while forming a pack centered around the alpha
wolf, as shown in Figure 6. Movement direction is represented
by black arrows, while arrows in white, labeled vision range,
represent the visual range with a horizontal FOV (Field of
View) of 62.2 degrees and vertical FOV of 48.8 degrees, as
shown in Figure 7.

Beta wolves follow the alpha's movement and adjust their
velocity in response to the change in direction, creating a fixed
target position angle (the vision-range median). Eq. 1 and 2
describe the relative positioning of beta wolf in relation to the
alpha wolf. The alpha robot's position, represented by (r), is
derived from the current alpha angle (0) subtracted from the
initial alpha angle (60). The relative area size (o) of the alpha
robot (see Equation 2) is calculated based on the perceived
height (h) multiplied by the perceived width (w).

T‘=9—90
a=hxw
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An initial velocity of 0.25 inch per sec was given to the
physical robots, with the velocity constantly adjusted (see
equation 3). An initial velocity is given so we have a base robot
speed; 0.25 was chosen so the robots can perform controlled
tests at a slower speed. An adjustment value (adj) is set to 0,
and the new position (r), calculated in equation 1, is converted
into an abs value and divided by 1000 (see equation 4).

€)
4)

vy = 0.25,v = v, + adj
adj = (adj — abs(r))/1000

A division of 1000 is applied for a gradual velocity adjustment
to avoid jerky transitions.
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Figure 7: The figure illustrates the physical robot’s FOV.

D. Behaviors

Alpha Wolf Robot. The alpha wolf behavior is determined by
three states: Wander, Pursuit, Catch, as illustrated in Figure 8.
Corresponding pseudo code is shown in Figure 9.

a) Wander: This state is initiated if the alpha robot has no
view of the prey. The alpha robot will maneuver
around the environment performing simple obstacle
avoidance until the prey comes back into view. Once
that occurs, the alpha robot will transition into a pursuit
behavior.

b) Pursuit: In this state, the alpha robot makes a pursuit
towards the prey, continually adjusting its movement
relative to the prey’s current position. During the
pursuit mode, if the alpha robot loses sight of the prey,
then the alpha robot will enter wandering.

c) Catch: This state results from the alpha robot being
within a set range from the prey. Once this happens,
the alpha will complete its behavior, unless the prey
starts moving.
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Figure 8: The alpha wolf performs state transitions based on the stimulus from
its environments meeting the conditions for a state change. The state changes
vary between Wander, Pursuit, and Catch.



Alpha € CalldlphaClass:;
while Tiue do

Update Blob Kev-points;
if Targetdngle is 0 then
| Alpha Wander;

Else
Alpha Pursuit;
if TargetSize = MaxIarget
Alpha Catch;
end
nd

end

Figure 9: The pseudo code describes the alpha robot state transitions in
response to different visual perceptions.

Beta Wolf Robot: The beta robot has four states: Wander,
Pursuit, Formation, and Catch, as illustrated in Figure 10.
Corresponding pseudo code is shown in Figure 11.

a)

b)

d)

Wander: This state is initiated if the beta robot does
not have a visual on the alpha robot or the prey. This
will lead to wandering behavior. If the prey is found
first, the beta robot will transition into pursuit mode.
The beta will transition into formation mode if the
alpha robot is found first.

Pursuit: In this state, the beta moves toward the prey,
continually adjusting its movement based on its
current position. During pursuit mode, if the beta
robot loses sight of the prey, the beta robot will enter
the Wander behavior. If the beta robot perceives the
alpha robot, it will continue pursuing the Alpha robot
until it is within a set range and transitioning into
formation mode.

Formation: This state is responsible for making the
beta robot keep a constant distance and angle from the
alpha robot and a safe distance from the other beta
robots. The angle is determined by the initial starting
position of the beta robot in proximity to the alpha.
Using the initial angle (X coordinate), the beta robot
stays at that angular position independent of
directional movement. If a beta robot were to start in
wandering mode, the initial angle would be
determined when the beta robot reached a set distance
from the alpha robot. If the beta robots were to lose
sight of the alpha robot, they would move into
Wander mode. If the beta robot perceives the prey, the
beta robot would only initiate catch mode if the prey
is within a set distance.

Catch: This state results from the beta robot being
within a set range of the prey. Once this happens, the
beta robot will maintain its current position until the
prey begins to move again.
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Figure 10: The Beta wolf performs state transitions based on the stimulus from
its environments meeting the conditions for a state change. The state changes
vary between Wander, Pursuit, Catch, and Formation.

beta « CallBetaClass;

status « false:

while True do

Update Blob Key-points;

if AlphaAngle is 0 then

if PreyAngle is greater than 0 then

| beta.Stalk:

else

| bete.Wander:

end

else

if status is False then
Update Blob Key-points;
beta.BaseValues;
status < True;

end
bete.Formation;
end
end

Figure 11: The pseudo code describes the behavioral algorithm for the beta robot
and for transitioning between states.

IV. EXPERIMENTS AND RESULTS

The robot experiments had success in the ability to
transition between states and perform the assigned behavioral
task. The tests were conducted in three major events:

1. One beta robot followed behind the alpha robot pursuing
the target. The beta robot and alpha robot are given initial
positions, as shown in Figure 12 (left).

2. Three beta robots followed behind one alpha robot,
pursuing the target. The three beta robots had an initial
position behind the alpha robot, as shown in Figure 12
(right).

3. One beta robot followed behind the alpha robot, pursuing
the prey (in blue). In contrast to the previous two test cases,
two beta robots have a random starting position, not directly
behind the alpha robot.



Figure 12: (Left) The figure shows the initial setup for one alpha robot and one
beta robot. (Right) The figure shows the initial setup with three beta robots and
one alpha robot.

The overall task goal is for the beta robots to remain in
formation while following the alpha robot to the prey, while
minimizing formation deviation. If there is deviation in the
formation, it should only be when the beta robot perceives the
prey and is within a range of three feet.

A.  Single Alpha and Single Beta Wolf (Preset Starting
Formation)

The single alpha and single beta robots test were consistent
in its ability for the alpha and beta robots to transition between
states and achieve the expected conditions. The beta robot
maintained a constant angle and distance from the alpha robot
regardless of motion. The beta robot can stay in place and
rotate if the alpha robot is moving horizontally, only moving
until the alpha robot gets outside of the accepted size range.
Once the set size range is exceeded, the robot applies the proper
velocity computations to get back within range of the alpha
robot. During implementation, color object recognition caused
multiple blobs to be detected for the red alpha robot instead of
a singular blob. To fix this issue, a large pink cylindrical object
was placed on the robot to allow for more precise blob
detection. An image of this experiment is shown in Figure 13.

B. Single Alpha and Multiple Beta (Preset Starting
Formation)

The single alpha and multiple beta robot test performed
similarly to the single alpha and single beta robot test. The
betas robots could stay in formation and make proper
transitions between pursuing the prey, following the alpha
robot, and wandering around the environment, attempting to
find the alpha robot or the prey. The color recognition issue of
detecting multiple-colored objects belonging to the same robot
was fixed to detect only the largest object within a cluster.
Since there was a system-imposed range on how large an object
must be to get detected, this solved the issue of too many
objects being detected.

There were additional problems with very sudden state
transitions. There would be times when the beta robot would
detect the alpha robot and the prey simultaneously. Depending
on the size of the prey object, the beta robot would sometimes
transition to pursuit if the size of the alpha robot was too small.

There were also issues with obstacle avoidance and returning to
the initial formation from a pursuit stage. This issue resulted
when beta robots would aimlessly wander. Overall, it was a
minor concern, and the robots stayed in formation, and were
able to avoid collisions with each other. Images of this
experiment are shown in Figure 14 and 15.

Figure 13: (Left) The figure shows the red cylinder object on top of the alpha
robot in its initial pose. (Right) The figure shows the same setup but with the
target and alpha robot two feet away from the initial position.

Figure 14: (Left) The figure shows the alpha in its initial pose with the three
beta robots. (Right) The figure shows the robots remaining in formation.

C. Single Alpha and Multiple Beta (Random Starting
Formation)

The single alpha and multiple beta robot test were
successful in finding the prey, as well as having the beta robot
find and follow behind the alpha robot. A major issue resulted
from the beta robot fixating onto the prey despite perceiving the
alpha robot. This happened whenever the beta robot obtained
image values of size greater than the alpha robot. There were
also issues with the beta robots getting lost and taking more than
1 minute (4 wandering cycles) to encounter either the alpha
robot or the prey. More adjustments need to be made to the
wandering behavior to better account for object finding.

D. Webots Implementation vs Real World

The Webots implementation of the previous tasks
performed similarly with physical robots in relation to task
completion. In general, the physical robots were slower to run
due to hardware limitations including image processing for
color recognition. Figure 16 summarizes the results for the
single alpha and beta physical robot experiments.
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