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Carboxylic Acids as Double Aryl Group Donors for Biaryl Synthesis
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The synthesis of biaryl compounds by employing carboxylic acids as double aryl group donors is reported. Naturally

present and benign carboxylic acids have been applied as double aryl group donors by sequential decarbonylations for the
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construction of unsymmetrical biaryls. This method represents an orthogonal approach for the synthesis of valuable biaryl
compounds. Aryl carboxylic acids were first converted to aryl boronic esters via palladium-catalyzed decarbonylative

borylation. Next, aryl boronic esters were transformed to aryl boronic acids via hydrolysis. Biaryl compounds were

generated through decarbonylative coupling between aryl carboxylic acids and aryl boronic acids. Broad substrate scope

and excellent functional group tolerance have been demonstrated. Furthermore, a range of pharmaceutical motifs can be

readily engaged in excellent yields by this approach. The present method successfully achieves the synthesis of highly

valuable biaryls using readily available and inexpensive carboxylic acids as a single class of precursors to access cross-

coupling synthons of central importance to the synthetic community.

Introduction

The biaryl motif is a structural architecture of central
importance in chemical synthesis.13 The importance of biaryl
compounds is underscored by the fact that biaryls have found
key applications in medicine, agriculture and materials science,
affecting the quality of life and societal well-being.13 The
synthesis of biaryls have represented an important endeavor
in the development of chemical methodologies.l> Among
methods available, at present, Suzuki—-Miyaura cross-coupling
represents the most powerful and reliable approach to the
synthesis of biaryl compounds.

The two essential raw precursors for the Suzuki—Miyaura
cross-coupling are aryl halides and aryl boronic acids. Aryl
boronic acids for industrial synthesis are routinely prepared by
the borylation of aryl halides to generate aryl boronic esters,
which are then hydrolyzed to furnish aryl boronic acids.! Thus,
aryl halides are two-fold essential raw precursors deployed for
the Suzuki—Miyaura cross-couplings. However, aryl halides are
not naturally present in nature, and are typically synthesized
by electrophilic halogenation of aromatic hydrocarbons
through the Friedel-Crafts reaction. Thus, the traditional
sequence of preparing biaryls through the Suzuki—Miyaura
cross-coupling involves four steps: 1) Friedel-Crafts
halogenation of aromatic hydrocar-bons to prepare aryl
halides, 2) the borylation of aryl halides to furnish aryl boronic
esters, 3) the hydrolysis of aryl boronic esters to afford aryl
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boronic acids, 4) the reaction of aryl boronic acids with aryl
halides to synthesize biaryls. Furthermore, there are safety
concerns involving the use of halogens, which pose certain
safety hazards. The prepared aryl halides also entail toxicity
risks. The development of methods for the synthesis of biaryls
using benign and naturally present substrates that can replace
aryl halides and can be easily employed under the powerful
Suzuki—Miyaura cross-coupling regimen is highly desirable
from the societal, industrial and academic standpoints.

Carboxylic acids are readily available and inexpensive raw
precursors, which are naturally present in nature.®7 Following
the wide use of aryl halides in cross-coupling reactions,->
chemists turned their attention to carboxylic acids as cross-
coupling substrates, which led to the development of
decarboxylative cross-coupling reactions of carboxylic acids.®
Compared to aryl halides, the advantages of carboxylic acids
are plentiful, including their stability, non-toxicity and
orthogonality.® However, despite advantages of carboxylic
acids over aryl halides, there are several major drawbacks of
the decarboxylative cross-coupling reaction mode of carboxylic
acids. Most notably, decarboxylative cross-couplings of
carboxylic acids typically feature narrow substrate scope and
poor functional group tolerance. In general, only ortho-
functionalized carboxylic acid substrates or substrates
containing  strongly electron-withdrawing groups
compatible.® In addition, decarboxylative cross-coupling
reactions of carboxylic acids generate aryl nucleophiles and
require oxidants in the cross-coupling with aryl boronic acids.8
At present, there are very few examples where carboxylic
acids are used as double aryl group donors to achieve the
synthesis of biaryl compounds.®10 These methods are limited
by the synthesis of symmetrical biaryls, specific substitution
patterns, limited substrate scope and functional group
tolerance, and are not viable for the synthesis of broadly
useful biaryl compounds.
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A. Source of aryl boronic acids and its application in Suzuki-Miyaura reactions
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Figure 1. The synthesis of biaryls using carboxylic acids.

In contrast, decarbonylative cross-coupling of carboxylic
acids represents an exceedingly robust reaction mode, where
the powerful Pd(0)/Pd(ll) cycle shows the inherent broad
substrate scope and excellent functional group tolerance.
Most crucially, carboxylic acids applicable to decarbonylative
cross-coupling are not limited to substrates with ortho-
substituents or substrates with strongly electron-withdrawing
groups, which results in broad compatibility of diverse aryl
carboxylic acids to this reaction mode.11

In 1998, de Vries and co-workers reported decarbonylative
cross-coupling of carboxylic acid anhydrides with olefins
establishing the first decarbonylative Heck reaction.122
Afterwards, this reaction was extended to in situ activation of
carboxylic acids.12® These methods were based on precedents
in decarbonylative 8-hydride elimination of alkyl carboxylic
acids.13-14 |n 2013, the Shi group reported rhodium-catalyzed
aryla-tion of aromatic hydrocarbons via C-H bond activation
using carboxylic acids as aryl donors.1> It was not until 2018
that decarbonylative borylation of carboxylic acids was
reported, marking the first time carboxylic acids were used as
coupling reagents for the formation of carbon—heteroatom
bonds via decarbonylative pathway.’® In 2019, the first
decarbonylative arylation of carboxylic acids was reported,
which represented a general and practical method for the
synthesis of biaryls using carboxylic acids as arylating
reagents.l” Thereafter, a series of methods to generate
carbon—carbon and carbon—heteroatom bonds through
decarbonylative cross-coupling of carboxylic acids were
developed.18-24

Based on our interest in decarbonylative cross-coupling, we
envisioned the use of carboxylic acids as double aryl donors to
synthesize biaryl compounds. The specific steps of this
approach involve 1) decarbonylative borylation of carboxylic
acids to generate aryl borate esters, 2) hydrolysis of aryl
borate esters to furnish aryl boronic acids, and 3)
decarbonylative  Suzuki—-Miyaura cross-coupling of the
generated aryl boronic acids with carboxylic acids to generate
biaryls. Noteworthy features of this approach involve 1) the
use of benign carboxylic acids that are naturally present and

2 | J. Name., 2012, 00, 1-3

orthogonal to aryl halides, 2) the first use of carboxylic acids as
double aryl functional group donors for the synthesis of biaryl
compounds, and 3) broad functional group tolerance, including
functionalization of pharmaceutical motifs that can be readily
synthesized via the present approach.

Results and Discussion

The decarbonylative borylation of carboxylic acids was first
investigated using benzoic acid (1a) and
bis(pinacolato)diborane (2a) as model substrates (Table 1). The
use of base was first screened, and we found that 4-
(dimethylamino)pyridine (DMAP) is the optimal base for this
reaction (entries 1-3). Furthermore, various phosphine ligands
were evaluated (entries 3-14), and we found that DPPP,
XantPhos and DPPB gave the highest conversion under the
tested conditions. The effect of temperature was also
investigated (entries 15-16), and we determined that the
reaction can still maintain 71% vyield at 120 °C under these
conditions.

Table 1. Optimization of borylation of carboxylic acids.?

[Pd] (3 mol%)
ligand (6 mol%)

Ph—CO,H + B,pin, Ph=Bpin
base, Piv,0
1a, 1.0 equiv 2a, 1.5 equiv dioxane, 160 °C, 15 h 3a

entry catalyst ligand base yield

1 Pd(OAc)2 DPPB 77

2 Pd(OAc)2 DPPB EtsN 88

3 Pd(OAc)2 DPPB DMAP 96

4 Pd(OAc)2 DPPP DMAP 98

5 Pd(OAc)2 DPPPent DMAP 90

6 Pd(OAc)2 DPPF DMAP 90

7 Pd(OAc)2 BINAP DMAP 41

8 Pd(OAc)2 XantPhos DMAP 97

9 Pd(OAc)2 DavePhos DMAP 13

10 Pd(OAc)2 XPhos DMAP <2

11 Pd(OAc)2 SPhos DMAP 7

12 Pd(OAc)2 PCy3HBFa DMAP 29

13 Pd(OAc)2 PCyPh2 DMAP 37

14 Pd(OAc)2 PPhs DMAP 53

15b Pd(OAc)2 DPPP DMAP 88

16¢ Pd(OAc)2 DPPP DMAP 71

aConditions: 1a (1.0 equiv), 2a (1.5 equiv), Pd(OAc), (3 mol%), ligand (6 mol%),
base (1.5 equiv), Piv,0 (1.5 equiv), dioxane, 160 °C, 15 h; ¥140 °C; €120 °C.

With the optimized reaction conditions in hand, the scope of
decarbonylative borylation of carboxylic acids was investigated
(Scheme 1). As shown in Scheme 1, carboxylic acids bearing
diverse electron-neutral (3a-3c), electron-donating (3d), and
electron-deficient (3e) substituents are well tolerated in this
approach. Furthermore, substrates containing sensitive cyano
(3f), chloro (3g), ester (3h), ketone (3i) groups are compatible
with this method. Naphthyl substrates (3j—3k) could also be
converted to the desired borylation products in excellent
yields. Furthermore, sterically-hindered (3l) and heterocyclic
(3m) substrates could also be readily employed in this process.
Notably, bioactive carboxylic acids, such as found in
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Scheme 1. Decarbonylative borylation of carboxylic acids.
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Having achieved the conversion of a series of carboxylic
acids to aryl boronic esters, we next focused on the next step
to hydrolyze aryl boronic esters to aryl boronic acids (Scheme
2). We established that these obtained aryl boronic esters
could be hydrolyzed under mild conditions using NalO4/HCI.25
As shown in Scheme 2, aryl boronic esters bearing electron-
neutral (4a—4c), electron-rich (4d), and electron-withdrawing
(4e) substituents were converted to aryl boronic acids in excel-
lent yields. Substrates containing cyano (4f), chloro (4g), ester
(4h), ketone (4i) groups were well-tolerated. Naphthyl

This journal is © The Royal Society of Chemistry 20xx
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substrates (4j—4k), sterically-hindered (4l), and heterocyclic
(4m) precursors were also well-suitable. Importantly,
substrates derived from pharmaceuticals (4n—-40) were also
compatible with this mild hydrolysis approach.

Table 2. Optimization of arylation of carboxylic acids.?

[Pd] (3 mol%)
ligand (6 mol%) 7 N\

(\Nt/>;COZH * (HO)ZB@MG EtsN, H3BOg, Piv,0  N= e
1a’, 1.0 equiv 4b, 2.0 equiv dioxane, 160 °C, 151 5b

entry catalyst ligand base yield

1¢ Pd(OAC) DPPB 14

26 Pd(0AC) DPPB EtsN 22

3 Pd(0AC) DPPB EtsN 92

4 Pd(OAc): DPPB DMAP 36

5 Pd(OAc)2 DPPB pyridine 74

6 Pd(OAc): DPPB DIPEA 96

7¢ Pd(OAc): DPPB DIPEA 75

84 Pd(OAc): DPPB DIPEA 56

9 Pd(OAc): DPPP DIPEA 47

10 Pd(OAc): DPPPent DIPEA 69

11 Pd(OAc): DPPF DIPEA 35

12 Pd(OAc): BINAP DIPEA 27

13 Pd(OAc): XantPhos DIPEA 80

14 Pd(OAc): DavePhos DIPEA 5

15 Pd(OAc): XPhos DIPEA 7

16 Pd(OAc): SPhos DIPEA 6

17 Pd(0AC) PCysHBF, DIPEA 72

18 Pd(0AC) PCyPh; DIPEA 67

19 Pd(OAc): PPhs DIPEA 27

aConditions: 1a (1.0 equiv), 3b (2.0 equiv), Pd(OAc)2 (3 mol%), ligand (6
mol%), base (2.0 equiv), HsBOs (2.0 equiv), Piv20 (2.0 equiv), dioxane,
160 °C, 15 h; bwithout H3BOs; 3b (1.5 equiv), base (1.5 equiv), H3BOs
(1.5 equiv), Piv20 (1.5 equiv); 93b (1.2 equiv), base (1.2 equiv), H3BOs
(1.2 equiv), Piv20 (1.2 equiv).

Having secured access to aryl boronic acids, we then
screened the conditions for the critical decarbonylative
arylation of carboxylic acids using 3-py-COzH carboxylic acid as
the model substrate (Table 2). We found that boric acid is an
essential additive for this reaction (entries 1-3). N,N-
Diisopropylethylamine (DIPEA) was identified as the optimal
base for this decarbonylative arylation (entries 3-6). We
established that stoichiometry is a crucial parameter for the
arylation to ensure the optimal equivalency ratio (entries 6-8).
Furthermore, different phosphine ligands were evaluated
(entries 6, 9-19), and DPPB was identified as the optimal ligand.
The first conditions (Scheme 1) are optimized for borylation,
while the second are optimized for the Suzuki coupling (Table
2). The key difference is the use of triethylamine as a base to
form more reactive acyl ammonium and boric acid.

Having identified the optimal conditions, the scope of the
biaryl synthesis via decarbonylative arylation of carboxylic
acids was next investigated (Scheme 3). As shown, aryl boronic
acid substrates bearing electron-neutral (5a-c), electron-
donating (5d), and electron-withdrawing (5e) substituents
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were well compatible with this biaryl synthesis method,
furnishing 3-pyridyl biaryls. Furthermore, aryl boronic acid
substrates containing cyano (5f), chloro (5g), ester (5h), ketone
(5i) functional groups were well-tolerated in this
decarbonylative arylation. Moreover, naphthyl (5j-5k),
sterically-hindered (51), and heterocyclic (5m) aryl boronic
acids were also well-compatible, affording the desired biaryl
products in good to excellent yields. Interestingly, quinoline-6-
carboxylic acid could also be applied to this reaction (5n),
furnishing medicinally-relevant products. Next, we extended
the scope of carboxylic acid substrates to benzoic acids. As
shown in Scheme 3, carboxylic acid substrates containing
sensitive ester (50), ketone (5p), aldehyde (5q) functional
groups were well-tolerated in this reaction, providing
electrophilic handles for further functionalization. Moreover,
carboxylic acids containing medicinally-relevant
trifluoromethyl (5r), cyano (5s) and chloro (5t) substituents
could be employed in good yields. Furthermore, naphthyl (5u—
5v) substrates were readily amenable by this approach,
furnishing conjugated biaryls. Finally, the sterically-hindered
substrate (5w) was also well-tolerated in this method.

Scheme 3. Substrate scope of arylation of carboxylic acids.
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Considering the benefits of carboxylic acids as double aryl
donors, we next evaluated the rapid application of this method
for the direct functionalization of bioactive molecules (Scheme
4A). As shown, this approach was successfully utilized for the
arylation of pharmaceuticals and natural products, such as
probenecid (5x, 5aa), adapalene (5y), febuxostat (5z) and
estrone (5ab). Crucially, this approach utilizes the inherent
presence of the carboxylic acid moiety as a synthetic handle
for decarbonylation. Furthermore, gram scale reaction has
been implemented and a high conversion has been obtained
(Scheme 4B).

Conclusions

In summary, we have reported the synthesis of biaryl
compounds using carboxylic acids as double aryl group donors.
This approach exploits sequential decarbonylations for the
synthesis of unsymmetrical biaryls. The advantages of the
method include the natural presence of carboxylic acids, their
benign properties as well as orthogonal and ready availability,
which provides an alternative approach to the traditional
synthesis of biaryls using aryl halides. The approach features
excellent functional group tolerance and broad substrate
scope, demonstrating that this method represents an efficient
pathway for the construction of biaryls using carboxylic acids
as raw substrates. The utility has been further demonstrated in
the direct functionalization of pharmaceutical molecules. This
method provides new avenues for the synthesis of biaryl
compounds using a single class of readily available and
inexpensive precursors to access cross-coupling synthons of
central importance to the synthetic community. Ongoing
studies in our laboratories are focused on the development of
one-pot decarbonylative processes of carboxylic acids and
derivatives, and these results will be reported in due course.
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Scheme 4. Versatile applications and gram scale reaction.
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