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ABSTRACT

Let P be a bounded polyhedron defined as the intersection of the non-
negative orthant R’} and an affine subspace of codimension m in R™. We
show that a simple and computationally efficient formula approximates
the volume of P within a factor of 4™, where v > 0 is an absolute con-
stant. The formula provides the best known estimate for the volume of

transportation polytopes from a wide family.

1. Introduction

The problem of efficient computation (approximation) of the volume of a poly-
tope, and, more generally, of a given convex body has attracted a lot of atten-
tion; see, for example, [GK18] for a survey. The most successful approach is
via Markov Chain Monte Carlo randomized algorithms; see [Ve05] for a survey.
In particular, randomized algorithms allow one to approximate the volume of
a polytope in R™ within relative error ¢ > 0 in time polynomial in n and ¢!,
The polytope can be defined as the convex hull of a finite set of points or as
the intersection of halfspaces, or by a membership oracle, in which case the
algorithms extend to the class of all “well-conditioned” convex bodies.
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Deterministic algorithms enjoyed less success. For a general convex body
B C R™, the only available polynomial time algorithm approximates volume

O(n) using an approximation of B by an ellipsoid; see [G488].

within a factor of n
For B defined by a membership oracle, this approximation factor is basically
the best possible (up to some logarithmic terms) that can be achieved in de-
terministic polynomial time. More precisely, it is shown in [BF87] that with N
queries to the membership oracle, one cannot deterministically estimate the
volume better than within a factor of (yn/In N)™/2, where v > 0 is an absolute
constant. A deterministic algorithm approximating the volume within a factor
of 20(") in 20(") time, which matches the above mentioned lower bound, is con-
structed in [DV13]. For a convex body B C R™ defined by a membership oracle,
for any 0 < € < 1, the algorithm from [Dal5], see also [DV13], approximates
vol B within a factor of (14 €)™ in O((1/€)°(™) time, almost matching a lower
bound that follows from [BF88]; see also [B+89], [CP88] and [G189].

If P is a polytope defined as the convex hull of a set of points or as the
intersections of halfspaces, deterministic algorithms in principle may turn out to
be as powerful as randomized ones, but so far the approximation ratio achieved
in deterministic polynomial time is the same as for general convex bodies. We
remark that if P C R” is a polytope defined as the convex hull of n + O(1)
points or as the intersection of n+ O(1) halfspaces, then vol P can be computed
exactly in polynomial time, in the former case by a triangulation into n®™
simplices and in the latter case by a dual procedure of expressing P as a signed
linear combination of n®®) simplices; see [GK18] and [La91]. If P is defined
by a system of linear inequalities with rational coefficients, then even to write
vol P as a rational number, one may need the number of bits that is exponential
in the size of the input [La91]. For polytopes P defined by a system of linear
inequalities with a totally unimodular matrix of integer coefficients, as well as
for polytopes defined as convex hulls of sets of rational points, the problem
of computing vol P exactly is #P-hard [DF88]. Of course, for special classes
of polytopes, such as parallelepipeds, there can be computationally efficient
explicit formulas.

In this paper, we consider the class of polyhedra P defined as the intersection
of the non-negative orthant R’ and an affine subspace in R". In coordinates,
P is defined by a system of linear equations Az = b, where A is an m X n ma-
trix, = is an n-vector of variables and b is an m-vector, and inequalities z > 0,
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meaning that the coordinates of x are non-negative. We assume that m < n,
that rank A = m and that P has a non-empty relative interior, that is, contains
a point z with all coordinates positive. Hence dim P = n — m and we measure
the (n —m)-dimensional volume of P in its affine span with respect to the Eu-
clidean structure inherited from R™. We also assume that P is bounded, that
is, a polytope. Generally, any (n — m)-dimensional polyhedron with n facets
can be represented as the intersection of R’} and an affine subspace of codi-
mension m. Furthermore, many interesting polyhedra, such as transportation
polytopes (see, for example, [DK14]) are naturally defined in this way.

We present a deterministic polynomial time algorithm which approximates
the volume of such a polytope P within a factor of ¥™, where v > 0 is an
absolute constant (for m large enough, one can choose v = 4.89). In fact,
our algorithm is basically a formula. The only “non-formulaic” part of our
algorithm consists of solving some standard convex optimization problem on P,
namely finding its “analytic center”; see [Re88]. After that, we only need to
compute two m x m determinants, which, as is well-known, can be accomplished
in O(m?) time. While the approximation factor 4™ looks big compared to 1+ ¢
achieved by randomized algorithms, it appears to be the best achieved to date
by a deterministic polynomial time algorithm for many interesting classes of
polytopes, such as transportation polytopes. Since the algorithm is basically a
formula, it allows one to analyze how the volume changes as P evolves inside its
class, which turns out to be important for studying some statistical phenomena
related to contingency tables, cf. [D+20]. The approximation factor looks more
impressive when n > m, which is indeed the case for many interesting classes of
polytopes. Note that if we dilate a d-dimensional polytope by a factor of (1+¢),
its volume gets multiplied by (1 + €)¢. This has implications for evaluating the
volume ratio defined by

o= ()"

where B is the maximum volume ellipsoid inscribed in P. This quantity plays
a fundamental role in geometric functional analysis [Pi89], [A+15]. As the
volume of B can be efficiently calculated (see [GK18] and references therein),
we can approximate the volume ratio within a factor of 1+ o(1) in deterministic
polynomial time when n > m.
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2. The main result and some applications

2.1. THE SETUP. Let A = (a;;) be an m X n matrix, let b = (81,...,8m) be an
m-vector, and suppose that the polyhedron P C R" is defined by the system of
equations
(2.1.1) > aig=p fori=1,...,m

j=1

and inequalities
(2.1.2) & >0 forj=1,...,n.

We assume that m < n and that rank A = m, in which case the system (2.1.1)
defines an (n — m)-dimensional affine subspace.

Suppose that P has a non-empty relative interior, that is, contains a point
z = (&,...,&,) where & > 0 for j = 1,...,n, and is also bounded, that is,
a polytope. Thus P is an (n — m)-dimensional bounded polyhedron and our
goal is to estimate its volume vol P relative to the Euclidean structure inherited
from R™ by the affine subspace defined by (2.1.1).

We define a function f: R} — R by

T)=n In¢;
(2.1.3) f@) +; ¢

where z = (§1,...,&,) and & >0 forj=1,...,n
and consider the following optimization problem:

(2.1.4) Find z € P such that f(z) = max fx).
zE

The function f is strictly concave and hence the maximum point z can be found
efficiently (in polynomial time); see [NN94]. Also, the point z = ((1,...,(n) is
unique and satisfies (; > 0 for j = 1,...,n, see [BH10]. In fact, the point z
was at the very source of interior-point methods in optimization [Re88] under
the name of the analytic center of P. We note that if the symmetry group
of P is sufficiently rich, we can determine z without solving the optimization
problem (2.1.3)—(2.1.4), as z must be invariant under all permutations of the
coordinates £1,...,&, that map P onto itself.
Now we can state our result.
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THEOREM 2.2: Let A be m X n matrix of rank A = m < n, let b be an m-
vector and suppose that the polyhedron P defined by the system (2.1.1)—(2.1.2)
is bounded and has a non-empty relative interior. Let z = ((1,...,(,) be the
analytic center of P defined as the solution to the optimization problem (2.1.3)—
(2.1.4). Let B be the m x n matrix obtained by multiplying the j-th column
of A by (; forj=1,...,n and let

f(oy Vet AAT Vdet AAT
—e =1 Cn .
Vdet BBT Vdet BBT
(1) Let ag be the necessarily unique number in the interval (0,1) satisfying

1
2T

Then

E(A,b)

—+o0
/ (1452 200 ds=1, ap~0.7148659168.
1

vol P < (\/Oéo

)mg(A,b) < (1.19)E(A, b).

(2) We have
QF( m;rQ)

VOLP > s 522 4 9y EA D)

(3) For any 0 < € < 1/2, there is vy(e) > 0 such that
1 m
vol P > exp{—v(e)v/mIn*(m + 1)}( ) E(A,b)
\/271‘6

> exp{—y(e)v/mIn*(m + 1)}(0.24)™E (A, b).
Some remarks are in order. Using the standard bound
(2.2.1) L(t) > V2t~ 2¢™ fort > 1,

we conclude that the right hand side of the formula in Part (2) decreases with m
roughly as

( ;2 )mE(Avb) ~ (0.14)™E(A,b).

The lower bound in Part (3) is asymptotically stronger, although it contains a
constant which may render it weaker than the bound of Part (2) for smaller m.
In addition, the proof of Part (2) is rather elementary, whereas the proof of
Part (3) relies on the recent breakthrough by Chen [Ch21] and Klartag and
Lehec [KL22] in thin shell estimates, although the same asymptotic behavior
in the ( \/217T€)m term could be achieved by using earlier and weaker, but still
highly non-trivial bounds from [K107].
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We also note that the estimate £(A,b) scales properly when the polyhedron
is dilated: if b — 7b for 7 > 0, then

2> TZ

and
E(A, b)) =" "ME(A,D).

2.3. GAUSSIAN APPROXIMATION. It was proved in [BH10] that if some analytic
conditions on A and z are satisfied, we have asymptotically

el \/det AAT e G Vdet AAT
(2m)™/2 \/det BBT ~ (2m)™/% \/det BBT
as m and n grow. The right hand side of (2.3.1) is called in [BH10] the maxi-
mum entropy Gaussian approximation. Under typical circumstances those

(2.3.1) vol P =

analytic conditions require, in particular, that m = O(y/n) and that the coor-
dinates (3,...,(, of the analytic center z of P are roughly of the same order.
We explain the name and the intuition behind this formula in Section 3.1. The
estimate of Theorem 2.2 is much cruder, but its validity doesn’t depend on the
particulars of A and b or the relations between m and n. We note that to un-
derstand some statistical phenomena related to contingency tables [D+20], it is
important to understand the behavior of the volume of P when the coordinates
(1, ..,y have decidedly different orders of magnitude.

Example 2.4 (simplex): Suppose that m = 1, so P is defined by a single linear
equation

it tanky =0
together with the inequalities

& >0 forj=1,...,n

Since we assume that P is bounded and with a non-empty relative interior, we
must have 8 > 0 and a; > 0 for j = 1,...,n. Since £(A,b) scales correctly
when b is scaled, b — 7b for 7 > 0, we further assume that § = n. Then for
the analytic center z = ((1,...,(,), we have

1
(2.4.1) ¢ = forj=1,...,n
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and hence
s VA
aq - apy/n
On the other hand,
nlag - ay
By Stirling’s formula
n! =n"e "V2rn(l + o(1)) asn —s oo,
and hence the Gaussian approximation is asymptotically exact as n — oo.

Example 2.5 (2-way transportation polytopes): Let us fix positive integers k
and [, a k-vector of positive real numbers r = (p1,...,px) and an l-vector of
positive real numbers ¢ = (71, ...,7;) such that

k l
2:5.) So=Y
i=1 j=1

We consider the set T'(r, ¢) of k x | non-negative real matrices with row sums r
and column sums c. In other words, T'(r, c) is defined in the space RF*! = R¥
of k x | matrices x = (&;;) by the equations
! k
(252) Y &y=p; fori=1,...k and » & =9 forj=1,...,1
j=1 i=1
and inequalities
& >0 forall 7.
It is not hard to see that T'(r, ¢) is a polyhedron of dimension (k — 1)(I — 1). Be-
cause of the balance condition (2.5.1), which is necessary and sufficient for 7'(r, ¢)
to be non-empty, the equations (2.5.2) are not linearly independent, and to
bring them into the form required by Theorem 2.2 it suffices to drop precisely
one equation from the list. The polyhedron T'(r,c) is called a 2-way trans-
portation polytope with margins r and ¢, see [DK14], and its volume was
investigated, in particular, in [CM09], [Ba09], [BH12] and [B+23].
By symmetry, it follows that for the analytic center z = ((;;) we have

Gij = plz provided vy = --- =

and

Gij = ’ij provided p; = -+ = pg.
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Some margins are of a particular interest. If k = [ and p; = v; = 1 for
all ¢ and j, which we write as r = ¢ = 1, we get the polytope of k x k doubly
stochastic matrices, also known as the Birkhoff or Birkhoff-von Neumann
polytope; cf. [DK14]. In this case, Canfield and McKay [CMO09] obtained an
asymptotic formula for the volume as kK — co:

volT(1,1) = (2t~ ;k(k_l)z exp {:1)) + k2}(1 +o(1)).

By symmetry, the analytic center of T'(1,1) is the matrix Z = ({;;) with
1
i = for all 7, j.
Cij i or all 7,7

Note that the formula differs from the Gaussian approximation (2.3.1) by a
factor of e'/3. In [BH12], this factor was interpreted as the Edgeworth cor-
rection in the Central Limit Theorem, and so corrected Gaussian approxima-
tion asymptotic formula was extended for all “tame” margins, where k£ and [
grow proportionately, and all coordinates (;; of the analytic center are within
a constant factor of each other.

One can observe a curious phase transition destroying the tameness of margins
somewhat unexpectedly. Suppose that £k = [ and that

prL=+ "=pp_1=71=...=Y-1= L
It is not hard to show that if we choose
Pk =7 = 2 — € for some small € > 0
then the entries of the analytic center satisfy
mgx(ij =0(k™) ask — oco.
However, if we choose
Pk =Yk = 2+ € for some small € > 0,
then the (i entry becomes large:
Cri > 0 for some 6 = d(e) > 0.

This and similar phase transitions are investigated in [D+20]. Their existence
may serve as an indication that volT(r, ¢) cannot be estimated too closely by a
smooth analytic expression as the margins r and ¢ vary even mildly. The formula
of Theorem 2.2 approximates vol T'(r, ¢) within a factor of exp{O(k +1)} and it
appears to be the only known formula where the bound on the approximation
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factor does not depend on the numerics of the margins r and c. It also provides
the best known approximation for the volume of a generic 2-way transportation

polytope.

Example 2.6 (3-way planar transportation polytopes): For an integer r > 0 we
consider the polytope P, of all r x r x r arrays (tensors) X = (&;;,) satistying
the equations

Zfz‘jkil for j,k=1,...,r, Zgijkzl fori,k=1,...,r
=1 j=1

(2.6.1) i,
and Zgijk =1 fori,j=1,...,r
k=1
and inequalities
& >0 for all 4,7, k.

The polytope P, is known as a 3-way planar transportation polytope; see
[DK14]. One can also consider 3-way axial transportation polytopes ob-
tained by fixing sums over 2-dimensional coordinate sections of the array; some-
how, those turn out to have a simpler structure than P,. The linear equations
(2.6.1) are not independent, and it is not hard to check that dim P, = (r — 1)3.

As is well known, the vertices of the Birkhoff polytope of Section 2.5 are the
permutation matrices. The integer vertices of P, correspond to Latin squares,
but there are plenty of non-integer vertices [LL14] and the arithmetic of their
coordinates can vary wildly [Gr92]. By symmetry, the analytic center Z = (k)
of P, satisfies

1
Cijk = for all 7, j, k.
r
Theorem 2.2 implies that up to a factor of VTQ for some absolute constant v > 0,

the volume of P, is approximated by e’ == Hence we obtain an asymp-
totically exact estimate

(2.6.2) Invol P, =7* — (r —1)%Inr + O(r?) asr — oc.
It appears that (2.6.2) is the best estimate of the volume of P, to date.

In the rest of the paper, we prove Theorem 2.2. In Section 3, we collect some
preliminaries. In Section 4, we prove the upper bound of Part (1). In Section 5,
we prove the lower bound of Part (2), and in Section 6, we prove the lower
bound of Part (3).
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3. Preliminaries

3.1. THE MAXIMUM ENTROPY DENSITY. Recall that a real-valued random vari-
able X has the standard exponential distribution if the density px (¢) of X
satisfies

et ift>0
px(t) = ,
0 if t <O0.

For the expectation and variance, we have
EX=1 and varX =1.

Let matrix A, vector b, function f, polyhedron P and point z = ((1,...,(,) be
as in Theorem 2.2. Let aq, ..., a, be the columns of matrix A, considered as m-
vectors. Suppose further that X7, ..., X,, are independent standard exponential
random variables and let us define a random vector Y with values in R™ by

(3.1.1) Y =Y ¢Xja; =Y X;b;,
j=1

where b1, ...,b, are the columns of matrix B, as defined in Theorem 2.2. It is

proved in [BH10] that the density py at b= (51,..., 8m) can be expressed as
vol P

ef(2)v/det AAT

and that for the expectation and the covariance matrix of Y, we have

(3.1.2) py(b) =

(3.1.3) EY =b and CovY = BBT.
We also need the characteristic function of Y. For t € R™, t = (14,...,Tm), We
have

¢y () = E exp{v-1(Y. 1)} = [[ E exp{v/~1X;(b;, 1)}

Jj=1

L 1
:jl;ll 1 —/—=1(bj, 1)’

where (-, -) is the standard inner product in R™. Consequently, the density of Y’

can be recovered as

1
BLY) )= g [ ew(ovoLe }Hl—\/ 1b8)
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see also [BH10]. We will be interested only in the situations when the inte-
gral (3.1.4) converges absolutely.

Equations (3.1.1)—(3.1.4) are the only ones we need from this section for the
proof of Theorem 2.2. The rest contains some explanatory remarks.

Equations (3.1.3) and (3.1.4) are straightforward to check, while equation
(3.1.2) follows from the fact that the density of the random vector

Z=(GX1,- G Xn)

is constant on P and equal to e 7(*); see [BH10, Theorem 7]. The formal
proof easily follows from the Lagrange optimality condition for z. A more
intuitive explanation is that Z has the largest entropy among all random vectors
supported on R’ and with expectation in the affine subspace defined by the
system Ax = b, just as the standard exponential distribution has the largest
entropy among all distributions supported on R4 and with expectation 1.
Since Y is the sum of independent random variables and (3.1.3) holds, in view
of the (local) Central Limit Theorem it is not inconceivable that in the vicinity
of b, the distribution of Y can be close to a Gaussian distribution. By analyzing
the integral (3.1.4), it is shown in [BH10] that it is indeed the case under
some conditions on A and z, and hence we obtain the Gaussian approximation
formula (2.3.1). It is further shown in [BH12| that for transportation polytopes
with “tame” margins, the local Central Limit Theorem holds, albeit with the
Edgeworth correction that takes into account the 3rd and 4th moments of Y.

Example 3.2 (simplex): Let P be the simplex of Example 2.4, defined by the
equation
arli 4+t anby=n
and inequalities
& >0 forj=1,...,n
Then by (2.4.1) for the random variable Y defined by (3.1.1), we have

Y =3 GXja; =) X,
j=1 j=1

and hence Y is a random variable with gamma-density

tn—l

et fort>0
py(t) _ (n—1)!
0 for t < 0.
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We have

b=EY =n and f(z) :anhlaj,
j=1

while the formula (3.1.2) reads

nnt n"\/cn—f—-'-—f—a% Qp - Qp
py(b) = (m—1len — nlay--an e/ 4+ a2
B vol P
el Vdet AAT

3.3. [SOTROPIC AND LOG-CONCAVE DENSITIES. Recall that a non-negative mea-
surable function p : R™ — R, is called density if

/mp(x) dx = 1.

A density p is called centered if

/m xzp(zx) dz =0,

where we assume that the integral converges absolutely. A density p is called
isotropic if it is centered and
1 ifi=yj,
&&ip(x) doe = 7 where x = (&1,...,&m)-
R™ 0 ifi#j,
A density p: R™ — R} is called logarithmically concave or log-concave,
if it can be written as p(z) = e¥(®), where ¢ : R™ — RU {—o0} is a concave
function.
We will use the following basic fact.
Let p : R® — R, be a log-concave density, let L C R™ be a subspace and

let R® — L be the orthogonal projection. Then the push-forward density ¢
on L defined by

o(y) = /HL p(z) dz,

where Lt is the orthogonal complement of L, is also log-concave. This is a
standard corollary of the Prékopa—Leindler inequality; see, for example, [A+15,
Chapter IJ.
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3.4. TRANSFORMING THE DENSITY OF Y. From (3.1.2), we express the volume
of P as

(34.1) vol P = e/ (®)v/det AAT py (),

where py is the density of the random variable Y defined by (3.1.1). The ana-
lytic center z depends only on the affine subspace defined by the system Ax = b,
but not on a particular choice of a matrix A and vector b. If W is an in-
vertible m X m matrix, then the affine subspaces defined by systems Az = b
and A’z = b where A = WA and ¥ = Wb coincide. If we replace A
by A’ = WA and b by b’ = Wb then the matrix B gets replaced by B’ = WB,
and we have

det AAT  det A'(A")T

det BBT ~ det B/(B")T’
and hence the estimate £(A4,b) of Theorem 2.2 does not change. Furthermore,

we have

B' (BT =w(BBTYWT.
Choosing an appropriate W if needed, without loss of generality, we assume
that B satisfies

(3.4.2) BBT =1,,,

where I, is the m x m identity matrix. If (3.4.2) holds, then in view of the
formula (3.1.3), the density py_; of Y — b is isotropic. The crucial fact for us
is that py is also log-concave. Because of (3.4.2), we can identify R™ isometri-
cally with an m-dimensional subspace L in R", so that B is the matrix of the
orthogonal projection R" — L in some pair of orthonormal bases of R™ and L.
Let

e ) = exp{—37_, & &, & >0

0 otherwise

be the standard exponential density on R™. Obviously, p is log-concave. Then
py is the push-forward of p and hence is also log-concave.

4. Proof of the upper bound

In this section, we prove Part (1) of Theorem 2.2. Our approach is inspired by
Ball’s work on the volume of a section of the cube [Ba89].
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4.1. MORE PRELIMINARIES. As is discussed in Section 3.4, we assume that
matrix B satisfies (3.4.2). We define the random variable Y by (3.1.1). In view
of (3.4.1), our goal is to bound the ¢>*°-norm ||py |l of the density py of Y.
From (3.1.4), we have

1 - !
(4.1.1) vl < / (1+ (bs,)?) "4 dt.
(2m)™ ijl:ll !
For a vector a € R™, a = (aq,...,am), by a ® a we denote the m X m matrix

with the (¢, j)-th entry equal a;c;. To bound the integral in the right hand side
of (4.1.1), we will use the Brascamp - Lieb inequality in the form adapted by
Ball, see Theorem 2 in [Ba0l].

LEMMA 4.2: Let uq,...,u, be unit vectors from R™ and let \y,...,\, be
positive numbers such that

> iy @ ug) = I,
=1

where I, is the m X m identity matrix. Then, for measurable functions
fi,ooos fn: R— R4, we have

/mf[lff"(wj,@) dwél](/

— 00

—+o0

£5(6) dg) v

Next, we investigate 1-dimensional integrals.

LEMMA 4.3: For « € (0,1), let

Flo)= ! +001 220 g
(a)727r (1+ ar?)” 20 dr.

— 00

Then

(1) The function F(«) is increasing on the interval (0, 1).
(2) There is a unique «g € (0,1) such that

1

F(Oéo) = \/040 .

Numerically,

op ~ 0.7148659168.
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Proof. Let
1 1
h(r,a) = (14 ar?)" 20 = exp{ —y In(1+ arz)}.
«
Then
0 1 72 1
A(ra) = (, ,In(1+ar?) - Jexp{ = m(1+ar?)}
da (7) 202 n(l+ar?) 20(1 + ar?) P 2 n(l+ar)
and
21n(1—|—a72)— T . :( OéT)QIl( az) at
2 20(1 + at?) 202(1 4 at?)

Finally, we observe that
glo)=(1+0)In(l+0)—0>0 foro >0,
since g(0) = 0 and
g (c)=In(l4+0)>0 foro>0.

Summarizing, the function o — h(7, @) is increasing for all 7 # 0 and constant
for 7 = 0. The proof of Part (1) follows.
For 0 < a < 1, we have

+oo . 1 “+oo )
VaF(a) = %a/ (1+ar®)" 2« dr = 9 / (1+0%) "2 do.
i

27 —o00 —o00

Hence as « changes from 0 to 1, the value of /aF(«) increases from 0 to +o0.
We find aq from the equation /oo F(ag) = 1, which we solve numerically. This
completes the proof of Part (2).

Recall that by,...,b, are the columns of matrix B. By || - || we denote the
standard Euclidean norm in R™.

COROLLARY 4.4: Suppose that the columns by, ...,b, of matrix B satisfy

ij ®b; =1Ipn
j=1

and that
1b; | < o for j=1,....n,
where «q is the constant of Lemma 4.3. Then

Ipy oo < ag ™2,

where Y is the random variable defined by (3.1.1).
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Proof. We use (4.1.1). Without loss of generality, we assume that b; # 0 for
j=1,...,n. Let
1
Aj = b]I> and u; = A b forj=1,...,n.
J

Hence u; are unit vectors,
n n

(4.4.1) Z Aj(u; @ uj) =1, and Z Aj =m,

j=1 j=1
where the second identity is obtained comparing the traces of matrices on both
sides of the first identity. Besides,

0<)\j§0&0 fOI'j:].,...,TL.

By (4.1.1), we have

1
50 <
vl < g0 /

(14 Xjluj, t)2) 72 dt
1

1 - NN
(27r)m/ TIC+Ai¢uy, 1)) 2 )N dt
m j:l
T[T )
< m 14+ A7%) 2N dT)
o LU
e ([ et ar)”
< (14 apr?)” 220 d7'>
eom L
1 "(27T)A17 —m/2
(2m)™ i1 sWao 0

We use Lemma 4.2 in the inequality of the third line, Part (1) of Lemma 4.3 in
the inequality of the fourth line and Part (2) of Lemma 4.3 and (4.4.1) in the
last line.

To complete the proof, we need the following standard result.

LEMMA 4.5: Let ¢,9 : R — R be densities and let p : R — Ry be their

convolution N
0= [ ole- ) dr
Then p is a density and

[Plloe < min{[[elloc, ll9lloc}
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4.6. PROOF OF PART (1) OoF THEOREM 2.2. As before, we assume that the
matrix B satisfies (3.4.2), or equivalently, the columns by, ..., b, of B satisfy

(4.6.1) > b @b =1,
j=1

where I,,, is the m x m identity matrix. Another equivalent way to write (4.6.1)
is .

> by, x)? =|jz|* for all z € R™.

j=1
In view of (3.4.1), our goal is to extend the conclusion of Corollary 4.4, without
assuming that ||b;|| < \/ap for j =1,... n.

Let Xq,...,X, be independent standard exponential random variables and

let Y be defined by (3.1.1). We proceed by induction on m. Suppose that m = 1,

Y = iquj where iﬂ? =1
j=1

j=1

SO

If we have
i) < ap forj=1,...,n,
the result follows from Corollary 4.4. If for at least one p; we have |u;| > \/ag
and for some 7 # j we have y; # 0 then applying Lemma 4.5, where ¢ = p,. x;,
1 is the density of ). ij 1iXi, and p = py, we obtain
oyl < o e = 0 < o
Y il Vewo
If p; = 0 for all ¢ # j then |u;| = 1 and
1
Vo

Iy lloo = lIpx;llo0 =1 <

Suppose now that m > 1. Let
Aj = ||bj||2 forj=1,...,n.
If
Aj<ap forj=1,...,n,

the result follows by Corollary 4.4. Otherwise, we have A\; > o for some j.
Without loss of generality, we assume that A\, > ap. From (4.6.1) it follows
that A\, < 1.
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Suppose first that A, = 1. Then from (4.6.1) we must have
(4.6.2) (bj,bp)y=0 forj=1,...,n—1.
We consider a decomposition R™ = R™ ! &R, y = (3/,7), where we identify
span(by,...,b,_1) =R™ ' and span(b,) = R.

From (4.6.1) and (4.6.2), we have
n—1
> by @by =Ip 1.
j=1

Let Y/ = Z?:_ll X;b; be a random vector in R™~! and let Y = X,,b, = +£X,,

be a random variable with values in R, so that Y = (Y, Y”). Then

py(y'sn) = py (¥ )py~ (n)
and applying the induction hypothesis, we obtain
—(m—1)/2 —m/2
Iy lloo = Py llocllpy = lloo = lIpylloe < ag ™72 < g™,
It remains to consider the case where

(4.6.3) ag < A, < 1.

We consider a decomposition R™ = R™~! @ R, where R is identified with
span(b,) and R™~! is identified with the orthogonal complement b;.
For j=1,...,n—1, let b; be the orthogonal projection of b; onto R™~! and
let b7 be the orthogonal projection of b; onto R. From (4.6.1) it follows that

n—1

/ /
D> V@b = In 1.
j=1

We introduce a random vector Y’ with values in R™~1 by

n—1
! /
Yi=3 Xt
=1

and a random variable Y with values in R by

n—1

Y = Xobn + Y X0,
j=1

so that Y = (Y, Y"). By the induction hypothesis, we have

(4.6.4) Py lloe < ag Y2,
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Using conditional density, for y € R™, y = (y',n) where y' € R™~! and n € R,

we write

0 if py/(y') =0,
(4.6.5) py (¥ m) = , o ,

py: (Y )py v (ly’)  if py(y') # 0.
Let

n—1
Z =3 X;b].
j=1

Since (4.6.1) and (4.6.3) hold, the matrix Z;:ll b; ® b; is invertible. Therefore,
the random vector

n—1
(Y, 2) =Y X;b;
=1

has density and hence the conditional density pz|y- exists whenever py # 0.
Now, we have Y” = Z+ X,,b,, and hence for the conditional densities we have
Pyryr =Pz|y’ * PXpbn-
Applying Lemma 4.5 with p = py»|y/, ¢ = px,p, and @ = pzjy,, we obtain

1
Vao

1
(466) ||pY”|Y’HOO < prnanOO = ||b || <
Combining (4.6.4)—(4.6.6), we conclude that

Ipylloo < ag™?.

The proof now follows from (3.4.1).

5. Proof of Part (2)

The bound of Part (2) of Theorem 2.2 will follow from some general estimate
for isotropic log-concave densities.

LEMMA 5.1: Let ¢ :R™ — R be a centered log-concave density and let H CR"
be a closed halfspace containing 0. Then

/H<p(x) dx > i.
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Proof. When ¢ is the uniform density on a convex body, the result was proved
by Griinbaum [Gr60] (with a slightly better constant depending on n and de-
creasing to 1/e as n grows). For an adaptation to general log-concave measures,
see [LVO7], [A+15, Proposition 1.5.16] or [B+14, Lemma 2.2.6].

THEOREM 5.2: Let ¢ : R™ — Ry be an isotropic log-concave density. Then
oar m+2
ﬂ-m/2e(m+2)/2(m + 2)m/2
Proof. Without loss of generality, we assume that ¢ is not constant on open
subsets of R™: a general ¢ can be approximated by a sequence of strictly log-
concave isotropic densities ¢, obtained from o(x)exp{—||z||?/n} by a scaling,
shift and linear transformation. Then the set

K={zeR™: p(x) = ¢(0)}

is convex and such that 0 € K. There is a hyperplane supporting K at 0.
Let H be the open halfspace bounded by that hyperplane and disjoint from the
interior of K. We have

(5.2.1) p(x) < p(0) forallze H

and by Lemma 5.1,

(5.2.2) 8= / ) dx >

It is clear now that ©(0) > 0. From this point on, our proof mimics that of
Proposition 10.2.5 of [A+15] that provides a lower bound for the £>°-norm of
an isotropic, but not necessarily log-concave density. Let

7.‘_771/2

L(m$?)

Rm =

denote the volume of the unit ball in R™ and let
D, ={xe R™: |z|| < 7}

denote the ball of radius 7 > 0 in R™. Since ¢ is isotropic, we have

(5.23) | lalPe@ de =" [ o) do—m

Let p > 0 be a number, to be specified later.
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Taking into account (5.2.3) and then (5.2.1), we obtain

n= [ et oz [ oot ae= [ ([T 1ot a
" (o o)
[ o ) o
2 (0 g, 7 0e)

L 1
> _ mo(0 m/2 d
_/O (ﬁ o fimp(0)7 ) T
o /imf(()) m2+2
=Ph = m+2 P '

Optimizing on p, we choose
2ﬂ 2/m
2= ()
Kmp(0)

/m . o
m2 (anf(O))z - ﬁmi(g) (nnif(()))

and obtain

22/mﬂ(m+2)/m m
 (Fmp(0)2/m m 42
from which
m+2 m—+2
2 T m—+2
FOETa _ % T

Km(m +2)m/2  gm/2(m + 2)m/2’

and the proof follows by (5.2.2).

5.3. PROOF OF PART (2). As before, without loss of generality, we assume that
matrix B satisfies (3.4.2). Then by (3.1.3), the density py _ of Y —b is isotropic.
It is also, as we discussed in Section 3.4, log-concave. Hence by Theorem 5.2,
we have
2F( m+2 )
= > 2 :
py (b) = py-u(0) 2 Tm/2e(m+2)/2(m 4 2)m/2

The proof now follows by (3.4.1).
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6. Proof of Part (3)

6.1. MORE PRELIMINARIES: THIN SHELL ESTIMATES. Let ¢ : R™ — R be an
isotropic log-concave density. Then

m= [ JelPeto) do
Rm

is the expectation of ||x||> with respect to the density . In a recent paper,
Klartag and Lehec [KL22] established the following inequality, known as a “thin-
shell estimate” (see [A+21, Chapter II]), for the variance of ||z|?:

(6.1.1) / (||| = m)?p(x) de < ymIn®m

for some absolute constant v > 0 and all m > 1.

Let p be the probability measure on R™ with density ¢. The bound (6.1.1)
implies that the value of ||z| is strongly concentrated about y/m. In particular,
by the Chebyshev inequality, for any 7 > 0, we get

p{r € R™: ||z|| > Vm+ 1} = p{z € R™: ||z||> > m + 27vm + 72}
(6.1.2) - ymIn®m
~ (2rym +72)2

To obtain the main asymptotic

(yae)”

in Part (3) of Theorem 2.2 and Theorem 6.2 below, we could have used the
earlier thin shell bounds by Chen [Ch21]

p{z e R™: |z|| > vm+ 7} <7 ' exp{mvVInmInlnm}
for 7 > 0, absolute constant ; > 0 and all m > 3 and Klartag [K107]
plr €R™ ¢ ||l > vm(1+ €)} < yam ¢

for 0 < e <1 and absolute constants v2,73 > 0; see also [LV17] for a survey.
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THEOREM 6.2: Forany0 < e < 1/2, thereis~y(e) > 0 such that if p : R™ — R
is an isotropic log-concave density, then

£(0) > exp{—(e)ymIn'(m + 1)} ( ﬂlﬂe)m.

Proof. In view of Theorem 5.2, without loss of generality, we assume that m > 1.
As in the proof of Theorem 5.2, we find a halfspace H C R™ such that 0 € 0H
so that

1
(6.2.1) / o(x) dx > and ©(0) > ¢(z) forall z € H.
H &

Let u be the probability measure on R™ with density . Choosing
T = \/ 2yIn*m

in (6.1.2), we conclude that

1 1
p{z € R™: ||z|| > vVm + /2vIn* m} < g < 9
and hence by (6.2.1) we have
1
plz € H: ||z < vm++/2yIn*m} > o

Therefore,
1
P(0)m(Vim + /2yt m)™ >

where Kk, is the volume of the unit ball in R™, and

1 4 o r(m$?)
$(0) > en (Vm + \/2711& m)~ " = enm/2(\/m + /2y Int m)m

The proof now follows by (2.2.1).

6.3. PROOF OF PART (3). The proof follows as in Section 5.3, except that we
use Theorem 6.2 instead of Theorem 5.2.
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