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ABSTRACT

Let P be a bounded polyhedron defined as the intersection of the non-

negative orthant R
n
+ and an affine subspace of codimension m in R

n. We

show that a simple and computationally efficient formula approximates

the volume of P within a factor of γm, where γ > 0 is an absolute con-

stant. The formula provides the best known estimate for the volume of

transportation polytopes from a wide family.

1. Introduction

The problem of efficient computation (approximation) of the volume of a poly-

tope, and, more generally, of a given convex body has attracted a lot of atten-

tion; see, for example, [GK18] for a survey. The most successful approach is

via Markov Chain Monte Carlo randomized algorithms; see [Ve05] for a survey.

In particular, randomized algorithms allow one to approximate the volume of

a polytope in R
n within relative error ε > 0 in time polynomial in n and ε−1.

The polytope can be defined as the convex hull of a finite set of points or as

the intersection of halfspaces, or by a membership oracle, in which case the

algorithms extend to the class of all “well-conditioned” convex bodies.
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Deterministic algorithms enjoyed less success. For a general convex body

B ⊂ R
n, the only available polynomial time algorithm approximates volume

within a factor of nO(n), using an approximation of B by an ellipsoid; see [G+88].

For B defined by a membership oracle, this approximation factor is basically

the best possible (up to some logarithmic terms) that can be achieved in de-

terministic polynomial time. More precisely, it is shown in [BF87] that with N

queries to the membership oracle, one cannot deterministically estimate the

volume better than within a factor of (γn/ lnN)n/2, where γ > 0 is an absolute

constant. A deterministic algorithm approximating the volume within a factor

of 2O(n) in 2O(n) time, which matches the above mentioned lower bound, is con-

structed in [DV13]. For a convex body B ⊂ R
n defined by a membership oracle,

for any 0 < ε < 1, the algorithm from [Da15], see also [DV13], approximates

volB within a factor of (1 + ε)n in O((1/ε)O(n)) time, almost matching a lower

bound that follows from [BF88]; see also [B+89], [CP88] and [Gl89].

If P is a polytope defined as the convex hull of a set of points or as the

intersections of halfspaces, deterministic algorithms in principle may turn out to

be as powerful as randomized ones, but so far the approximation ratio achieved

in deterministic polynomial time is the same as for general convex bodies. We

remark that if P ⊂ R
n is a polytope defined as the convex hull of n + O(1)

points or as the intersection of n+O(1) halfspaces, then volP can be computed

exactly in polynomial time, in the former case by a triangulation into nO(1)

simplices and in the latter case by a dual procedure of expressing P as a signed

linear combination of nO(1) simplices; see [GK18] and [La91]. If P is defined

by a system of linear inequalities with rational coefficients, then even to write

volP as a rational number, one may need the number of bits that is exponential

in the size of the input [La91]. For polytopes P defined by a system of linear

inequalities with a totally unimodular matrix of integer coefficients, as well as

for polytopes defined as convex hulls of sets of rational points, the problem

of computing volP exactly is #P-hard [DF88]. Of course, for special classes

of polytopes, such as parallelepipeds, there can be computationally efficient

explicit formulas.

In this paper, we consider the class of polyhedra P defined as the intersection

of the non-negative orthant Rn
+ and an affine subspace in R

n. In coordinates,

P is defined by a system of linear equations Ax = b, where A is an m× n ma-

trix, x is an n-vector of variables and b is an m-vector, and inequalities x ≥ 0,
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meaning that the coordinates of x are non-negative. We assume that m < n,

that rankA = m and that P has a non-empty relative interior, that is, contains

a point x with all coordinates positive. Hence dimP = n−m and we measure

the (n−m)-dimensional volume of P in its affine span with respect to the Eu-

clidean structure inherited from R
n. We also assume that P is bounded, that

is, a polytope. Generally, any (n − m)-dimensional polyhedron with n facets

can be represented as the intersection of Rn
+ and an affine subspace of codi-

mension m. Furthermore, many interesting polyhedra, such as transportation

polytopes (see, for example, [DK14]) are naturally defined in this way.

We present a deterministic polynomial time algorithm which approximates

the volume of such a polytope P within a factor of γm, where γ > 0 is an

absolute constant (for m large enough, one can choose γ = 4.89). In fact,

our algorithm is basically a formula. The only “non-formulaic” part of our

algorithm consists of solving some standard convex optimization problem on P ,

namely finding its “analytic center”; see [Re88]. After that, we only need to

compute two m×m determinants, which, as is well-known, can be accomplished

in O(m3) time. While the approximation factor γm looks big compared to 1+ ε

achieved by randomized algorithms, it appears to be the best achieved to date

by a deterministic polynomial time algorithm for many interesting classes of

polytopes, such as transportation polytopes. Since the algorithm is basically a

formula, it allows one to analyze how the volume changes as P evolves inside its

class, which turns out to be important for studying some statistical phenomena

related to contingency tables, cf. [D+20]. The approximation factor looks more

impressive when n � m, which is indeed the case for many interesting classes of

polytopes. Note that if we dilate a d-dimensional polytope by a factor of (1+ε),

its volume gets multiplied by (1 + ε)d. This has implications for evaluating the

volume ratio defined by

v(P ) =
(volP
volB

)1/d

,

where B is the maximum volume ellipsoid inscribed in P . This quantity plays

a fundamental role in geometric functional analysis [Pi89], [A+15]. As the

volume of B can be efficiently calculated (see [GK18] and references therein),

we can approximate the volume ratio within a factor of 1+o(1) in deterministic

polynomial time when n � m.
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2. The main result and some applications

2.1. The setup. Let A = (αij) be an m×n matrix, let b = (β1, . . . , βm) be an

m-vector, and suppose that the polyhedron P ⊂ R
n is defined by the system of

equations

(2.1.1)

n∑
j=1

αijξj = βi for i = 1, . . . ,m

and inequalities

(2.1.2) ξj ≥ 0 for j = 1, . . . , n.

We assume that m < n and that rankA = m, in which case the system (2.1.1)

defines an (n−m)-dimensional affine subspace.

Suppose that P has a non-empty relative interior, that is, contains a point

x = (ξ1, . . . , ξn) where ξj > 0 for j = 1, . . . , n, and is also bounded, that is,

a polytope. Thus P is an (n − m)-dimensional bounded polyhedron and our

goal is to estimate its volume volP relative to the Euclidean structure inherited

from R
n by the affine subspace defined by (2.1.1).

We define a function f : Rn
+ −→ R by

(2.1.3)
f(x) = n+

n∑
j=1

ln ξj

where x = (ξ1, . . . , ξn) and ξj > 0 for j = 1, . . . , n

and consider the following optimization problem:

(2.1.4) Find z ∈ P such that f(z) = max
x∈P

f(x).

The function f is strictly concave and hence the maximum point z can be found

efficiently (in polynomial time); see [NN94]. Also, the point z = (ζ1, . . . , ζn) is

unique and satisfies ζj > 0 for j = 1, . . . , n, see [BH10]. In fact, the point z

was at the very source of interior-point methods in optimization [Re88] under

the name of the analytic center of P . We note that if the symmetry group

of P is sufficiently rich, we can determine z without solving the optimization

problem (2.1.3)–(2.1.4), as z must be invariant under all permutations of the

coordinates ξ1, . . . , ξn that map P onto itself.

Now we can state our result.
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Theorem 2.2: Let A be m × n matrix of rankA = m < n, let b be an m-

vector and suppose that the polyhedron P defined by the system (2.1.1)–(2.1.2)

is bounded and has a non-empty relative interior. Let z = (ζ1, . . . , ζn) be the

analytic center of P defined as the solution to the optimization problem (2.1.3)–

(2.1.4). Let B be the m × n matrix obtained by multiplying the j-th column

of A by ζj for j = 1, . . . , n and let

E(A, b) = ef(z)
√
detAAT

√
detBBT

= enζ1 · · · ζn
√
detAAT

√
detBBT

.

(1) Let α0 be the necessarily unique number in the interval (0, 1) satisfying

1

2π

∫ +∞

−∞
(1 + s2)−

1
2α0 ds = 1, α0 ≈ 0.7148659168.

Then

volP ≤
( 1√

α0

)m

E(A, b) ≤ (1.19)mE(A, b).
(2) We have

volP ≥ 2Γ(m+2
2 )

πm/2e(m+2)/2(m+ 2)m/2
E(A, b).

(3) For any 0 < ε < 1/2, there is γ(ε) > 0 such that

volP ≥ exp{−γ(ε)
√
m ln4(m+ 1)}

( 1√
2πe

)m

E(A, b)

≥ exp{−γ(ε)
√
m ln4(m+ 1)}(0.24)mE(A, b).

Some remarks are in order. Using the standard bound

(2.2.1) Γ(t) ≥ √
2πtt−

1
2 e−t for t ≥ 1,

we conclude that the right hand side of the formula in Part (2) decreases with m

roughly as ( 1

e
√
2π

)m

E(A, b) ≈ (0.14)mE(A, b).
The lower bound in Part (3) is asymptotically stronger, although it contains a

constant which may render it weaker than the bound of Part (2) for smaller m.

In addition, the proof of Part (2) is rather elementary, whereas the proof of

Part (3) relies on the recent breakthrough by Chen [Ch21] and Klartag and

Lehec [KL22] in thin shell estimates, although the same asymptotic behavior

in the ( 1√
2πe

)m term could be achieved by using earlier and weaker, but still

highly non-trivial bounds from [Kl07].
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We also note that the estimate E(A, b) scales properly when the polyhedron

is dilated: if b 
−→ τb for τ > 0, then

z 
−→ τz

and

E(A, τb) = τn−mE(A, b).

2.3. Gaussian approximation. It was proved in [BH10] that if some analytic

conditions on A and z are satisfied, we have asymptotically

(2.3.1) volP ≈ ef(z)

(2π)m/2

√
detAAT

√
detBBT

=
enζ1 · · · ζn
(2π)m/2

√
detAAT

√
detBBT

as m and n grow. The right hand side of (2.3.1) is called in [BH10] the maxi-

mum entropy Gaussian approximation. Under typical circumstances those

analytic conditions require, in particular, that m = O(
√
n) and that the coor-

dinates ζ1, . . . , ζn of the analytic center z of P are roughly of the same order.

We explain the name and the intuition behind this formula in Section 3.1. The

estimate of Theorem 2.2 is much cruder, but its validity doesn’t depend on the

particulars of A and b or the relations between m and n. We note that to un-

derstand some statistical phenomena related to contingency tables [D+20], it is

important to understand the behavior of the volume of P when the coordinates

ζ1, . . . , ζn have decidedly different orders of magnitude.

Example 2.4 (simplex): Suppose that m = 1, so P is defined by a single linear

equation

α1ξ1 + · · ·+ αnξn = β

together with the inequalities

ξj ≥ 0 for j = 1, . . . , n.

Since we assume that P is bounded and with a non-empty relative interior, we

must have β > 0 and αj > 0 for j = 1, . . . , n. Since E(A, b) scales correctly

when b is scaled, b −→ τb for τ > 0, we further assume that β = n. Then for

the analytic center z = (ζ1, . . . , ζn), we have

(2.4.1) ζj =
1

αj
for j = 1, . . . , n
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and hence

E(A, b) = en
√
α2
1 + · · ·+ α2

n

α1 · · ·αn
√
n

.

On the other hand,

volP =
nn

√
α2
1 + · · ·+ α2

n

n!α1 · · ·αn
.

By Stirling’s formula

n! = nne−n
√
2πn(1 + o(1)) as n −→ ∞,

and hence the Gaussian approximation is asymptotically exact as n −→ ∞.

Example 2.5 (2-way transportation polytopes): Let us fix positive integers k

and l, a k-vector of positive real numbers r = (ρ1, . . . , ρk) and an l-vector of

positive real numbers c = (γ1, . . . , γl) such that

(2.5.1)

k∑
i=1

ρi =

l∑
j=1

γj .

We consider the set T (r, c) of k× l non-negative real matrices with row sums r

and column sums c. In other words, T (r, c) is defined in the space R
k×l ∼= R

kl

of k × l matrices x = (ξij) by the equations

(2.5.2)

l∑
j=1

ξij = ρi for i = 1, . . . , k and

k∑
i=1

ξij = γj for j = 1, . . . , l

and inequalities

ξij ≥ 0 for all i, j.

It is not hard to see that T (r, c) is a polyhedron of dimension (k − 1)(l − 1). Be-

cause of the balance condition (2.5.1), which is necessary and sufficient for T (r, c)

to be non-empty, the equations (2.5.2) are not linearly independent, and to

bring them into the form required by Theorem 2.2 it suffices to drop precisely

one equation from the list. The polyhedron T (r, c) is called a 2-way trans-

portation polytope with margins r and c, see [DK14], and its volume was

investigated, in particular, in [CM09], [Ba09], [BH12] and [B+23].

By symmetry, it follows that for the analytic center z = (ζij) we have

ζij =
ρi
l

provided γ1 = · · · = γl

and

ζij =
γj
k

provided ρ1 = · · · = ρk.
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Some margins are of a particular interest. If k = l and ρi = γj = 1 for

all i and j, which we write as r = c = 1, we get the polytope of k × k doubly

stochastic matrices, also known as the Birkhoff or Birkhoff–von Neumann

polytope; cf. [DK14]. In this case, Canfield and McKay [CM09] obtained an

asymptotic formula for the volume as k −→ ∞:

volT (1,1) =
1

(2π)k−
1
2 k(k−1)2

exp
{1

3
+ k2

}
(1 + o(1)).

By symmetry, the analytic center of T (1,1) is the matrix Z = (ζij) with

ζij =
1

k
for all i, j.

Note that the formula differs from the Gaussian approximation (2.3.1) by a

factor of e1/3. In [BH12], this factor was interpreted as the Edgeworth cor-

rection in the Central Limit Theorem, and so corrected Gaussian approxima-

tion asymptotic formula was extended for all “tame” margins, where k and l

grow proportionately, and all coordinates ζij of the analytic center are within

a constant factor of each other.

One can observe a curious phase transition destroying the tameness of margins

somewhat unexpectedly. Suppose that k = l and that

ρ1 = · · · = ρk−1 = γ1 = . . . = γk−1 = 1.

It is not hard to show that if we choose

ρk = γk = 2− ε for some small ε > 0

then the entries of the analytic center satisfy

max
ij

ζij = O(k−1) as k −→ ∞.

However, if we choose

ρk = γk = 2 + ε for some small ε > 0,

then the ζkk entry becomes large:

ζkk > δ for some δ = δ(ε) > 0.

This and similar phase transitions are investigated in [D+20]. Their existence

may serve as an indication that volT (r, c) cannot be estimated too closely by a

smooth analytic expression as the margins r and c vary even mildly. The formula

of Theorem 2.2 approximates volT (r, c) within a factor of exp{O(k+ l)} and it

appears to be the only known formula where the bound on the approximation
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factor does not depend on the numerics of the margins r and c. It also provides

the best known approximation for the volume of a generic 2-way transportation

polytope.

Example 2.6 (3-way planar transportation polytopes): For an integer r > 0 we

consider the polytope Pr of all r × r × r arrays (tensors) X = (ξijk) satisfying

the equations

(2.6.1)

r∑
i=1

ξijk = 1 for j, k = 1, . . . , r,

r∑
j=1

ξijk = 1 for i, k = 1, . . . , r

and

r∑
k=1

ξijk = 1 for i, j = 1, . . . , r

and inequalities

ξijk ≥ 0 for all i, j, k.

The polytope Pr is known as a 3-way planar transportation polytope; see

[DK14]. One can also consider 3-way axial transportation polytopes ob-

tained by fixing sums over 2-dimensional coordinate sections of the array; some-

how, those turn out to have a simpler structure than Pr. The linear equations

(2.6.1) are not independent, and it is not hard to check that dimPr = (r− 1)3.

As is well known, the vertices of the Birkhoff polytope of Section 2.5 are the

permutation matrices. The integer vertices of Pr correspond to Latin squares,

but there are plenty of non-integer vertices [LL14] and the arithmetic of their

coordinates can vary wildly [Gr92]. By symmetry, the analytic center Z = (ζijk)

of Pr satisfies

ζijk =
1

r
for all i, j, k.

Theorem 2.2 implies that up to a factor of γr2 for some absolute constant γ > 0,

the volume of Pr is approximated by er
3

r−(r−1)3 . Hence we obtain an asymp-

totically exact estimate

(2.6.2) ln volPr = r3 − (r − 1)3 ln r +O(r2) as r −→ ∞.

It appears that (2.6.2) is the best estimate of the volume of Pr to date.

In the rest of the paper, we prove Theorem 2.2. In Section 3, we collect some

preliminaries. In Section 4, we prove the upper bound of Part (1). In Section 5,

we prove the lower bound of Part (2), and in Section 6, we prove the lower

bound of Part (3).
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3. Preliminaries

3.1. The maximum entropy density. Recall that a real-valued random vari-

able X has the standard exponential distribution if the density pX(t) of X

satisfies

pX(t) =

⎧⎨
⎩
e−t if t ≥ 0

0 if t < 0.

For the expectation and variance, we have

EX = 1 and varX = 1.

Let matrix A, vector b, function f , polyhedron P and point z = (ζ1, . . . , ζn) be

as in Theorem 2.2. Let a1, . . . , an be the columns of matrix A, considered as m-

vectors. Suppose further that X1, . . . , Xn are independent standard exponential

random variables and let us define a random vector Y with values in R
m by

(3.1.1) Y =

n∑
j=1

ζjXjaj =

n∑
j=1

Xjbj ,

where b1, . . . , bn are the columns of matrix B, as defined in Theorem 2.2. It is

proved in [BH10] that the density pY at b = (β1, . . . , βm) can be expressed as

(3.1.2) pY (b) =
volP

ef(z)
√
detAAT

and that for the expectation and the covariance matrix of Y , we have

(3.1.3) E Y = b and Cov Y = BBT .

We also need the characteristic function of Y . For t ∈ R
m, t = (τ1, . . . , τm), we

have

φY (t) = E exp{√−1〈Y, t〉} =

n∏
j=1

E exp{√−1Xj〈bj , t〉}

=

n∏
j=1

1

1−√−1〈bj , t〉
,

where 〈·, ·〉 is the standard inner product in R
m. Consequently, the density of Y

can be recovered as

(3.1.4) pY (y) =
1

(2π)m

∫
Rm

exp{−√−1〈y, t〉}
n∏

j=1

1

1−√−1〈bj , t〉
dt,
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see also [BH10]. We will be interested only in the situations when the inte-

gral (3.1.4) converges absolutely.

Equations (3.1.1)–(3.1.4) are the only ones we need from this section for the

proof of Theorem 2.2. The rest contains some explanatory remarks.

Equations (3.1.3) and (3.1.4) are straightforward to check, while equation

(3.1.2) follows from the fact that the density of the random vector

Z = (ζ1X1, . . . , ζnXn)

is constant on P and equal to e−f(z); see [BH10, Theorem 7]. The formal

proof easily follows from the Lagrange optimality condition for z. A more

intuitive explanation is that Z has the largest entropy among all random vectors

supported on R
n
+ and with expectation in the affine subspace defined by the

system Ax = b, just as the standard exponential distribution has the largest

entropy among all distributions supported on R+ and with expectation 1.

Since Y is the sum of independent random variables and (3.1.3) holds, in view

of the (local) Central Limit Theorem it is not inconceivable that in the vicinity

of b, the distribution of Y can be close to a Gaussian distribution. By analyzing

the integral (3.1.4), it is shown in [BH10] that it is indeed the case under

some conditions on A and z, and hence we obtain the Gaussian approximation

formula (2.3.1). It is further shown in [BH12] that for transportation polytopes

with “tame” margins, the local Central Limit Theorem holds, albeit with the

Edgeworth correction that takes into account the 3rd and 4th moments of Y .

Example 3.2 (simplex): Let P be the simplex of Example 2.4, defined by the

equation

α1ξ1 + · · ·+ αnξn = n

and inequalities

ξj ≥ 0 for j = 1, . . . , n.

Then by (2.4.1) for the random variable Y defined by (3.1.1), we have

Y =
n∑

j=1

ζjXjαj =
n∑

j=1

Xj

and hence Y is a random variable with gamma-density

pY (t) =

⎧⎨
⎩

tn−1

(n−1)!e
−t for t ≥ 0

0 for t < 0.
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We have

b = E Y = n and f(z) = n−
n∑

j=1

lnαj ,

while the formula (3.1.2) reads

pY (b) =
nn−1

(n− 1)!en
=

nn
√
α1 + · · ·+ α2

n

n!α1 · · ·αn
· α1 · · ·αn

en
√
α2
1 + · · ·+ α2

n

=
volP

ef(z)
√
detAAT

.

3.3. Isotropic and log-concave densities. Recall that a non-negative mea-

surable function ρ : Rm −→ R+ is called density if
∫
Rm

ρ(x) dx = 1.

A density ρ is called centered if
∫
Rm

xρ(x) dx = 0,

where we assume that the integral converges absolutely. A density ρ is called

isotropic if it is centered and

∫
Rm

ξiξjρ(x) dx =

⎧⎨
⎩
1 if i = j,

0 if i �= j,
where x = (ξ1, . . . , ξm).

A density ρ : Rm −→ R+ is called logarithmically concave or log-concave,

if it can be written as ρ(x) = eψ(x), where ψ : Rm −→ R ∪ {−∞} is a concave

function.

We will use the following basic fact.

Let ρ : Rn −→ R+ be a log-concave density, let L ⊂ R
n be a subspace and

let R
n −→ L be the orthogonal projection. Then the push-forward density ϕ

on L defined by

ϕ(y) =

∫
y+L⊥

ρ(x) dx,

where L⊥ is the orthogonal complement of L, is also log-concave. This is a

standard corollary of the Prékopa–Leindler inequality; see, for example, [A+15,

Chapter I].
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3.4. Transforming the density of Y . From (3.1.2), we express the volume

of P as

(3.4.1) volP = ef(z)
√
detAAT pY (b),

where pY is the density of the random variable Y defined by (3.1.1). The ana-

lytic center z depends only on the affine subspace defined by the system Ax = b,

but not on a particular choice of a matrix A and vector b. If W is an in-

vertible m × m matrix, then the affine subspaces defined by systems Ax = b

and A′x = b′ where A′ = WA and b′ = Wb coincide. If we replace A

by A′ = WA and b by b′ = Wb then the matrix B gets replaced by B′ = WB,

and we have
detAAT

detBBT
=

detA′(A′)T

detB′(B′)T
,

and hence the estimate E(A, b) of Theorem 2.2 does not change. Furthermore,

we have

B′(B′)T = W (BBT )WT .

Choosing an appropriate W if needed, without loss of generality, we assume

that B satisfies

(3.4.2) BBT = Im,

where Im is the m × m identity matrix. If (3.4.2) holds, then in view of the

formula (3.1.3), the density pY−b of Y − b is isotropic. The crucial fact for us

is that pY is also log-concave. Because of (3.4.2), we can identify R
m isometri-

cally with an m-dimensional subspace L in R
n, so that B is the matrix of the

orthogonal projection R
n −→ L in some pair of orthonormal bases of Rn and L.

Let

ρ(ξ1, . . . , ξn) =

⎧⎨
⎩
exp{−∑n

j=1 ξj} if ξ1, . . . , ξn ≥ 0

0 otherwise

be the standard exponential density on R
n. Obviously, ρ is log-concave. Then

pY is the push-forward of ρ and hence is also log-concave.

4. Proof of the upper bound

In this section, we prove Part (1) of Theorem 2.2. Our approach is inspired by

Ball’s work on the volume of a section of the cube [Ba89].
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4.1. More preliminaries. As is discussed in Section 3.4, we assume that

matrix B satisfies (3.4.2). We define the random variable Y by (3.1.1). In view

of (3.4.1), our goal is to bound the �∞-norm ‖pY ‖∞ of the density pY of Y .

From (3.1.4), we have

(4.1.1) ‖pY ‖∞ ≤ 1

(2π)m

∫
Rm

n∏
j=1

(1 + 〈bj , t〉2)− 1
2 dt.

For a vector a ∈ R
m, a = (α1, . . . , αm), by a⊗ a we denote the m×m matrix

with the (i, j)-th entry equal αiαj . To bound the integral in the right hand side

of (4.1.1), we will use the Brascamp - Lieb inequality in the form adapted by

Ball, see Theorem 2 in [Ba01].

Lemma 4.2: Let u1, . . . , un be unit vectors from R
m and let λ1, . . . , λn be

positive numbers such that

n∑
j=1

λj(uj ⊗ uj) = Im,

where Im is the m × m identity matrix. Then, for measurable functions

f1, . . . , fn : R −→ R+, we have

∫
Rm

n∏
j=1

f
λj

j (〈uj , x〉) dx ≤
n∏

j=1

(∫ +∞

−∞
fj(ξ) dξ

)λj

.

Next, we investigate 1-dimensional integrals.

Lemma 4.3: For α ∈ (0, 1), let

F (α) =
1

2π

∫ +∞

−∞
(1 + ατ2)−

1
2α dτ.

Then

(1) The function F (α) is increasing on the interval (0, 1).

(2) There is a unique α0 ∈ (0, 1) such that

F (α0) =
1√
α0

.

Numerically,

α0 ≈ 0.7148659168.



Vol. TBD, 2024 VOLUME OF A POLYHEDRON 15

Proof. Let

h(τ, α) = (1 + ατ2)−
1
2α = exp

{
− 1

2α
ln(1 + ατ2)

}
.

Then

∂

∂α
h(τ, α) =

( 1

2α2
ln(1 + ατ2)− τ2

2α(1 + ατ2)

)
exp

{
− 1

2α
ln(1 + ατ2)

}

and

1

2α2
ln(1 + ατ2)− τ2

2α(1 + ατ2)
=

(1 + ατ2) ln(1 + ατ2)− ατ2

2α2(1 + ατ2)
.

Finally, we observe that

g(σ) = (1 + σ) ln(1 + σ)− σ > 0 for σ > 0,

since g(0) = 0 and

g′(σ) = ln(1 + σ) > 0 for σ > 0.

Summarizing, the function α 
−→ h(τ, α) is increasing for all τ �= 0 and constant

for τ = 0. The proof of Part (1) follows.

For 0 < α < 1, we have

√
αF (α) =

√
α

2π

∫ +∞

−∞
(1 + ατ2)−

1
2α dτ =

1

2π

∫ +∞

−∞
(1 + σ2)−

1
2α dσ.

Hence as α changes from 0 to 1, the value of
√
αF (α) increases from 0 to +∞.

We find α0 from the equation
√
α0F (α0) = 1, which we solve numerically. This

completes the proof of Part (2).

Recall that b1, . . . , bn are the columns of matrix B. By ‖ · ‖ we denote the

standard Euclidean norm in R
m.

Corollary 4.4: Suppose that the columns b1, . . . , bn of matrix B satisfy
n∑

j=1

bj ⊗ bj = Im

and that

‖bj‖ ≤ √
α0 for j = 1, . . . , n,

where α0 is the constant of Lemma 4.3. Then

‖pY ‖∞ ≤ α
−m/2
0 ,

where Y is the random variable defined by (3.1.1).
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Proof. We use (4.1.1). Without loss of generality, we assume that bj �= 0 for

j = 1, . . . , n. Let

λj = ‖bj‖2 and uj =
1√
λj

bj for j = 1, . . . , n.

Hence uj are unit vectors,

(4.4.1)

n∑
j=1

λj(uj ⊗ uj) = Im and

n∑
j=1

λj = m,

where the second identity is obtained comparing the traces of matrices on both

sides of the first identity. Besides,

0 < λj ≤ α0 for j = 1, . . . , n.

By (4.1.1), we have

‖pY ‖∞ ≤ 1

(2π)m

∫
Rm

n∏
j=1

(1 + λj〈uj , t〉2)−1/2 dt

=
1

(2π)m

∫
Rm

n∏
j=1

((1 + λj〈uj , t〉2)−
1

2λj )λj dt

≤ 1

(2π)m

n∏
j=1

(∫ +∞

−∞
(1 + λjτ

2)
− 1

2λj dτ

)λj

≤ 1

(2π)m

n∏
j=1

(∫ +∞

−∞
(1 + α0τ

2)−
1

2α0 dτ

)λj

=
1

(2π)m

n∏
j=1

( 2π√
α0

)λj

= α
−m/2
0 .

We use Lemma 4.2 in the inequality of the third line, Part (1) of Lemma 4.3 in

the inequality of the fourth line and Part (2) of Lemma 4.3 and (4.4.1) in the

last line.

To complete the proof, we need the following standard result.

Lemma 4.5: Let ϕ, ψ : R −→ R+ be densities and let ρ : R −→ R+ be their

convolution

ρ(ξ) =

∫ +∞

−∞
ϕ(ξ − τ)ψ(τ) dτ.

Then ρ is a density and

‖ρ‖∞ ≤ min{‖ϕ‖∞, ‖ψ‖∞}.
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4.6. Proof of Part (1) of Theorem 2.2. As before, we assume that the

matrix B satisfies (3.4.2), or equivalently, the columns b1, . . . , bn of B satisfy

(4.6.1)

n∑
j=1

bj ⊗ bj = Im,

where Im is the m×m identity matrix. Another equivalent way to write (4.6.1)

is
n∑

j=1

〈bj , x〉2 = ‖x‖2 for all x ∈ R
m.

In view of (3.4.1), our goal is to extend the conclusion of Corollary 4.4, without

assuming that ‖bj‖ ≤ √
α0 for j = 1, . . . , n.

Let X1, . . . , Xn be independent standard exponential random variables and

let Y be defined by (3.1.1). We proceed by induction onm. Suppose thatm = 1,

so

Y =

n∑
j=1

μjXj where

n∑
j=1

μ2
j = 1.

If we have

|μj | ≤ √
α0 for j = 1, . . . , n,

the result follows from Corollary 4.4. If for at least one μj we have |μj | > √
α0

and for some i �= j we have μi �= 0 then applying Lemma 4.5, where ϕ = pμjXj ,

ψ is the density of
∑

i: i�=j μiXi, and ρ = pY , we obtain

‖pY ‖∞ ≤ ‖pμjXj‖∞ =
1

|μj | <
1√
α0

.

If μi = 0 for all i �= j then |μj | = 1 and

‖pY ‖∞ = ‖pXj‖∞ = 1 <
1√
α0

.

Suppose now that m > 1. Let

λj = ‖bj‖2 for j = 1, . . . , n.

If

λj ≤ α0 for j = 1, . . . , n,

the result follows by Corollary 4.4. Otherwise, we have λj > α0 for some j.

Without loss of generality, we assume that λn > α0. From (4.6.1) it follows

that λn ≤ 1.
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Suppose first that λn = 1. Then from (4.6.1) we must have

(4.6.2) 〈bj , bn〉 = 0 for j = 1, . . . , n− 1.

We consider a decomposition R
m = R

m−1 ⊕ R, y = (y′, η), where we identify

span(b1, . . . , bn−1) = R
m−1 and span(bn) = R.

From (4.6.1) and (4.6.2), we have

n−1∑
j=1

bj ⊗ bj = Im−1.

Let Y ′ =
∑n−1

j=1 Xjbj be a random vector in R
m−1 and let Y ′′ = Xnbn = ±Xn

be a random variable with values in R, so that Y = (Y ′, Y ′′). Then

pY (y
′, η) = pY ′(y′)pY ′′(η)

and applying the induction hypothesis, we obtain

‖pY ‖∞ = ‖pY ′‖∞‖pY ′′‖∞ = ‖pY ′‖∞ ≤ α
−(m−1)/2
0 < α

−m/2
0 .

It remains to consider the case where

(4.6.3) α0 < λn < 1.

We consider a decomposition R
m = R

m−1 ⊕ R, where R is identified with

span(bn) and R
m−1 is identified with the orthogonal complement b⊥n .

For j = 1, . . . , n− 1, let b′j be the orthogonal projection of bj onto R
m−1 and

let b′′j be the orthogonal projection of bj onto R. From (4.6.1) it follows that

n−1∑
j=1

b′j ⊗ b′j = Im−1.

We introduce a random vector Y ′ with values in R
m−1 by

Y ′ =
n−1∑
j=1

Xjb
′
j

and a random variable Y ′′ with values in R by

Y ′′ = Xnbn +
n−1∑
j=1

Xjb
′′
j ,

so that Y = (Y ′, Y ′′). By the induction hypothesis, we have

(4.6.4) ‖pY ′‖∞ ≤ α
−(m−1)/2
0 .
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Using conditional density, for y ∈ R
m, y = (y′, η) where y′ ∈ R

m−1 and η ∈ R,

we write

(4.6.5) pY (y
′, η) =

⎧⎨
⎩
0 if pY ′(y′) = 0,

pY ′(y′)pY ′′|Y ′(η|y′) if pY ′(y′) �= 0.

Let

Z =

n−1∑
j=1

Xjb
′′
j .

Since (4.6.1) and (4.6.3) hold, the matrix
∑n−1

i=1 bi ⊗ bi is invertible. Therefore,

the random vector

(Y ′, Z) =

n−1∑
j=1

Xjbj

has density and hence the conditional density pZ|Y ′ exists whenever pY ′ �= 0.

Now, we have Y ′′ = Z+Xnbn and hence for the conditional densities we have

pY ′′|Y ′ = pZ|Y ′ ∗ pXnbn .

Applying Lemma 4.5 with ρ = pY ′′|Y ′ , ϕ = pXnbn and ψ = pZ|Y ′ , we obtain

(4.6.6) ‖pY ′′|Y ′‖∞ ≤ ‖pXnbn‖∞ =
1

‖bn‖ ≤ 1√
α0

.

Combining (4.6.4)–(4.6.6), we conclude that

‖pY ‖∞ ≤ α
−m/2
0 .

The proof now follows from (3.4.1).

5. Proof of Part (2)

The bound of Part (2) of Theorem 2.2 will follow from some general estimate

for isotropic log-concave densities.

Lemma 5.1: Let ϕ :Rm−→R+ be a centered log-concave density and letH⊂R
n

be a closed halfspace containing 0. Then∫
H

ϕ(x) dx ≥ 1

e
.
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Proof. When ϕ is the uniform density on a convex body, the result was proved

by Grünbaum [Gr60] (with a slightly better constant depending on n and de-

creasing to 1/e as n grows). For an adaptation to general log-concave measures,

see [LV07], [A+15, Proposition 1.5.16] or [B+14, Lemma 2.2.6].

Theorem 5.2: Let ϕ : Rm −→ R+ be an isotropic log-concave density. Then

ϕ(0) ≥ 2Γ(m+2
2 )

πm/2e(m+2)/2(m+ 2)m/2
.

Proof. Without loss of generality, we assume that ϕ is not constant on open

subsets of Rn: a general ϕ can be approximated by a sequence of strictly log-

concave isotropic densities ϕn obtained from ϕ(x) exp{−‖x‖2/n} by a scaling,

shift and linear transformation. Then the set

K = {x ∈ R
m : ϕ(x) ≥ ϕ(0)}

is convex and such that 0 ∈ ∂K. There is a hyperplane supporting K at 0.

Let H be the open halfspace bounded by that hyperplane and disjoint from the

interior of K. We have

(5.2.1) ϕ(x) ≤ ϕ(0) for all x ∈ H

and by Lemma 5.1,

(5.2.2) β :=

∫
H

ϕ(x) dx ≥ 1

e
.

It is clear now that ϕ(0) > 0. From this point on, our proof mimics that of

Proposition 10.2.5 of [A+15] that provides a lower bound for the �∞-norm of

an isotropic, but not necessarily log-concave density. Let

κm =
πm/2

Γ(m+2
2 )

denote the volume of the unit ball in R
m and let

Dτ = {x ∈ R
m : ‖x‖ ≤ τ}

denote the ball of radius τ > 0 in R
m. Since ϕ is isotropic, we have

(5.2.3)

∫
Rm

‖x‖2ϕ(x) dx =

m∑
i=1

∫
Rm

ξ2i ϕ(x) dx = m.

Let ρ > 0 be a number, to be specified later.
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Taking into account (5.2.3) and then (5.2.1), we obtain

m =

∫
Rm

‖x‖2ϕ(x) dx ≥
∫
H

‖x‖2ϕ(x) dx =

∫
H

(∫ ‖x‖2

0

1 dτ

)
ϕ(x) dx

=

∫ +∞

0

(∫
H\D√

τ

ϕ(x) dx

)
dτ

=

∫ +∞

0

(
β −

∫
H∩D√

τ

ϕ(x) dx

)
dτ

≥
∫ ρ

0

(
β −

∫
H∩D√

τ

ϕ(x) dx

)
dτ

≥
∫ ρ

0

(
β − 1

2
κmϕ(0)τm/2

)
dτ

=ρβ − κmf(0)

m+ 2
ρ

m+2
2 .

Optimizing on ρ, we choose

ρ =
( 2β

κmϕ(0)

)2/m

and obtain

m ≥
( 2β

κmϕ(0)

)2/m

β − κmϕ(0)

m+ 2

( 2β

κmϕ(0)

)m+2
m

=
22/mβ(m+2)/m

(κmϕ(0))2/m
m

m+ 2
,

from which

ϕ(0) ≥ 2β
m+2

2

κm(m+ 2)m/2
=

2β
m+2

2 Γ(m+2
2 )

πm/2(m+ 2)m/2
,

and the proof follows by (5.2.2).

5.3. Proof of Part (2). As before, without loss of generality, we assume that

matrix B satisfies (3.4.2). Then by (3.1.3), the density pY−b of Y −b is isotropic.

It is also, as we discussed in Section 3.4, log-concave. Hence by Theorem 5.2,

we have

pY (b) = pY−b(0) ≥
2Γ(m+2

2 )

πm/2e(m+2)/2(m+ 2)m/2
.

The proof now follows by (3.4.1).
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6. Proof of Part (3)

6.1. More preliminaries: thin shell estimates. Let ϕ : Rm −→ R be an

isotropic log-concave density. Then

m =

∫
Rm

‖x‖2ϕ(x) dx

is the expectation of ‖x‖2 with respect to the density ϕ. In a recent paper,

Klartag and Lehec [KL22] established the following inequality, known as a “thin-

shell estimate” (see [A+21, Chapter II]), for the variance of ‖x‖2:

(6.1.1)

∫
Rm

(‖x‖2 −m)2ϕ(x) dx ≤ γm ln8 m

for some absolute constant γ > 0 and all m > 1.

Let μ be the probability measure on R
m with density ϕ. The bound (6.1.1)

implies that the value of ‖x‖ is strongly concentrated about
√
m. In particular,

by the Chebyshev inequality, for any τ > 0, we get

(6.1.2)

μ{x ∈ R
m : ‖x‖ ≥ √

m+ τ} = μ{x ∈ R
m : ‖x‖2 ≥ m+ 2τ

√
m+ τ2}

≤ γm ln8 m

(2τ
√
m+ τ2)2

.

To obtain the main asymptotic

( 1√
2πe

)m

in Part (3) of Theorem 2.2 and Theorem 6.2 below, we could have used the

earlier thin shell bounds by Chen [Ch21]

μ{x ∈ R
m : ‖x‖ ≥ √

m+ τ} ≤ τ−1 exp{γ1
√
lnm ln lnm}

for τ > 0, absolute constant γ1 > 0 and all m ≥ 3 and Klartag [Kl07]

μ{x ∈ R
m : ‖x‖ ≥ √

m(1 + ε)} ≤ γ2m
−γ3ε

2

for 0 ≤ ε ≤ 1 and absolute constants γ2, γ3 > 0; see also [LV17] for a survey.
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Theorem 6.2: For any 0 < ε < 1/2, there is γ(ε) > 0 such that if ϕ : Rm−→R+

is an isotropic log-concave density, then

ϕ(0) ≥ exp{−γ(ε)
√
m ln4(m+ 1)}

( 1√
2πe

)m

.

Proof. In view of Theorem 5.2, without loss of generality, we assume thatm > 1.

As in the proof of Theorem 5.2, we find a halfspace H ⊂ R
m such that 0 ∈ ∂H

so that

(6.2.1)

∫
H

ϕ(x) dx ≥ 1

e
and ϕ(0) ≥ ϕ(x) for all x ∈ H.

Let μ be the probability measure on R
m with density ϕ. Choosing

τ =
√

2γ ln4 m

in (6.1.2), we conclude that

μ{x ∈ R
m : ‖x‖ ≥ √

m+
√
2γ ln4 m} ≤ 1

8
<

1

2e

and hence by (6.2.1) we have

μ{x ∈ H : ‖x‖ ≤ √
m+

√
2γ ln4 m} ≥ 1

2e
.

Therefore,

ϕ(0)κm(
√
m+

√
2γ ln4 m)m ≥ 1

e
,

where κm is the volume of the unit ball in R
m, and

φ(0) ≥ 1

eκm
(
√
m+

√
2γ ln4 m)−m =

Γ(m+2
2 )

eπm/2(
√
m+

√
2γ ln4 m)m

.

The proof now follows by (2.2.1).

6.3. Proof of Part (3). The proof follows as in Section 5.3, except that we

use Theorem 6.2 instead of Theorem 5.2.
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