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HOMOGENIZATION FOR A VARIATIONAL PROBLEM WITH A

SLIP INTERFACE CONDITION∗

MIAO-JUNG YVONNE OU† AND SILVIA JIMÉNEZ BOLAÑOS‡

Abstract. Inspired by applications, we study the effect of interface slip on the effective wave
propagation in poroelastic materials, which are composites consisting of elastic frames whose pore
space is filled with fluid. The current literature on the homogenization for the poroelastic wave
equations are all based on the no-slip interface condition posed on the microscale. However, for
certain pore fluids, the no-slip condition is known to be physically invalid. In the literature, slip
boundary conditions have been considered for porous materials with rigid solid frames. For these
rigid porous materials, the wave can only propagate in the pore fluid and hence the equations for
the microscale are posed only in the pore space. Consequently, the slip on the interface involves only
the fluid velocity and the fluid stress. In contrast, for poroelastic materials, the wave can propagate
not only in the pore fluid but also in the solid frame; hence the slip conditions involve the velocities
on both sides of the interface, rather than just the fluid side. With this slip condition, a variational
boundary value problem governing the small vibrations of a periodic mixture of an elastic solid and
a slightly viscous fluid is studied in this paper. The method of two-scale convergence is used to
obtain the macroscopic behavior of the solution and to identify the role played by the slip interface
condition.
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1. Introduction. Poroelastic materials are composite materials made of an elas-
tic solid matrix and fluid residing in the pore space. The poroelastic wave equations
have been widely used in biological research as well as geophysical research; for exam-
ple, cancellous bones, saturated rocks and sea ice; see [10, 18] andreferences therein.
To study the physical properties of these composite materials, the availability of the
poroelastic wave equations for wavelength much larger than the scale of the micro-
structure is crucial. In this wavelength regime, techniques such as the homogenization
method can be used to derive these effective wave equations from the wave equations
for each phase in the microscale. Compared with the effective media approach, the
homogenization approach is less phenomenological in the sense that the coefficients in
the homogenized equations can be calculated by solving the so-called cell problems,
which are derived as part of the homogenization process. The homogenization for the
variational boundary value problem of the stiff type that governs the small vibrations
of a periodic mixture of an elastic solid and a slightly viscous fluid, with no discon-
tinuity of the displacement in the interface between the two phases, was developed
by Nguetseng in [14], where the resulting homogenized equations are the poroelastic
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HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2391

wave equations for composites with a no-slip interface condition. Also, this set of
equations validates the well-known Biot equations [7, 6]. However, it has been ob-
served that the no-slip interface condition is not valid for some applications such as
the polymeric pore fluid or coated interface; see [17] and the references therein. In
these cases, the interface condition at the microscale is of slip type and it leads to a
set of interesting questions. For example, since the no-slip condition is linked to the
concept of the boundary layers within which the energy dissipation is the most signif-
icant, how will the energy dissipation change when the no-slip condition is replaced
by a slip condition on the interface? In the homogenized equations, the energy dissi-
pation and wave dispersion are described by the effective properties called “dynamic
permeability” and “dynamic tortuosity,” the two most important characterizations of
the dynamic properties of the poroelastic materials. How will these quantities change
when the no-slip condition is replaced by a slip condition? As a starting point for
answering these important questions, in this paper, we carry out the analysis for the
case in which a slip boundary condition at the solid-fluid interface is allowed.

We consider the mixture of an elastic solid and a slightly viscous fluid, in the
framework of small motions linearized with respect to a rest state, where the geometric
distribution of the solid and fluid parts is periodic, with characteristic length of the
period given by \epsilon , with 0 < \epsilon \ll 1. Mixtures in mechanics are of great interest in
physical applications; see, for example, [11, 12, 16, 14, 2, 9].

A variety of different problems arise according to the orders of the viscosity co-
efficients and the topological properties of the mixture. In [15], the authors used the
energy method (see [5]) to show that, whether or not the fluid phase is connected, if
the elasticity coefficients together with the viscosity coefficients are O(\epsilon 0), the limit
of the displacement, as \epsilon \rightarrow 0, does not depend on the local variables. In this paper,
we will take the elasticity coefficients to be O(\epsilon 0), and the viscosity coefficients to be
O(\epsilon 2), i.e., \mu \epsilon 2 and \eta \epsilon 2 with constant \mu and \eta . In the formal analysis, seen in [11]
or Chapter 8 of [16], it is concluded that if the fluid part is strictly contained in the
period of reference, and therefore it is not connected, the formal limit of the displace-
ment in the mixture does not depend on the local variables. On the other hand, if
the fluid part intersects each face of the period of reference, and it is connected, the
formal limit of the displacement depends on the local variables. The formal analysis
results above were rigorously proved in [14] using the method of 2-scale convergence
(see [13, 3]). Differing from [14], connectedness does not play a role in the analysis
developed and the results obtained in this paper.

The novelty of this paper is that the results obtained in [14] are generalized to
the case in which there is a slip interface condition. Though the results of the present
paper are similar to those of [14], dealing with the interface term (2.12) is not trivial.
New technical lemmas are required in order to carry out the limiting process.

This paper is organized as follows. In section 2, we present the setup of the
mathematical problem. In section 3, we derive (3.8), the variational formulation of
the boundary value problem that governs the small vibrations of a solid-fluid mixture
with a slip boundary condition on their interface. In section 4, we prove the existence
and uniqueness of the solution to the problem with a fixed \epsilon . The main general
convergence and extension results can be found in Appendix B. In section 5, we prove
the necessary uniform estimates to find the macroscopic equation. The derivation for
the local problems (for u1(x,y) and ur(x,y) in Lemma 6.2) is presented in section 7.
In section 8, we derive the homogenized problem. Finally, in section 9, we present
our conclusions.
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2392 MIAO-JUNG YVONNE OU AND SILVIA JIMÉNEZ BOLAÑOS

2. Background. In this section, we state the mathematical formulation of the
problem to be studied, which concerns the acoustics equations of poroelastic mate-
rials with periodic microstructure and a slip boundary condition on the solid-fluid
interface.

2.1. Geometry of the microstructure. We consider the space R3 of the vari-
ables y= (y1, y2, y3) to be a periodic set, with unit cell Y = ( - 1

2 ,
1
2 )

3, decomposed as

Y = Ys \cup Yf \cup Γ,

where Ys and Yf are open sets in R
3, Ys represents the part of Y occupied by the

solid, Yf the part of Y occupied by the fluid, and Γ the smooth surface separating
them. The boundary, the closure, and the Lebesgue measure of a measurable set A in
R

3 are denoted by \partial A, A, and | A| , respectively. Let ỸI be the Y -periodic extension of
YI , i.e., the union of all the (YI\cup (YI \cap \partial Y ))+k, k ranging over Z3, I = s, f . Similarly,
we denote by Γ̃ the Y -periodic extension of Γ.

Following [1], we assume the following hypotheses:
(i) Ys and Yf have strictly positive measures on Y .
(ii) Ỹf and Ỹs are open sets with boundary of class C1, and are locally located

on one side of their boundary. Moreover, Ỹs is connected. Hence Ys has
an intersection with each face of the cube Y with strictly positive surface
measure.

(iii) Ys is an open connected set with a locally Lipschitz boundary.

2.2. Notation. Let Ω be the smooth bounded open set occupied by the poro-
elastic material in R

3 with coordinates x= (x1, x2, x3). Let \epsilon denote the scale of the
periodic microstructure, 0< \epsilon \ll 1.

The solid part and the fluid part of Ω, together with their interface, are defined
as follows:

Ωs
\epsilon =Ω\cap \epsilon Ỹs, Ωf

\epsilon =Ω\cap \epsilon Ỹf , Γ\epsilon =
\Bigl\{ 
x\in Ω :

x

\epsilon 
\in Γ̃
\Bigr\} 
.

Observe that Ωs
\epsilon is connected. Since Γ\epsilon is orientable, we can define Γs

\epsilon and Γf
\epsilon 

to be the solid side and the fluid side of Γ\epsilon , respectively. With this notation, the
following jump operator across Γ\epsilon is defined:

[[\cdot ]]fs := (\cdot )
\bigm| \bigm| \bigm| 
Γf
\epsilon 

 - (\cdot )
\bigm| \bigm| \bigm| 
Γs
\epsilon 

.(2.1)

Moreover, we let n be the unit outward normal vector of \partial Ωf
\epsilon , i.e., n points toward

the solid phase.
We denote by d\sigma (y), for y \in Y , and by d\sigma \epsilon (x), for x \in Ω, the surface measures

on Γ and Γ\epsilon , respectively. Note that

\partial Ωs
\epsilon =Γ\epsilon \cup (\partial Ωs

\epsilon \cap \partial Ω) and Γ\epsilon = \partial Ωs
\epsilon \setminus (\partial Ωs

\epsilon \cap \partial Ω).

The “micro”-coordinates y and the “macro”-coordinates x are related by y =
x/\epsilon . Also, the superscript \epsilon is reserved for signifying the following rescaling of a
function w:

w\epsilon (x) =w
\Bigl( x
\epsilon 

\Bigr) 
for w=w(y).
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HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2393

The gradient of a vector field v(x) is denoted by \nabla v, which is a matrix such that

[\nabla v]ij =
\partial vi

\partial xj
. The linear strain tensor with respect to x (resp., y) is denoted by E(\cdot )

(resp., e(\cdot )) and it is defined as follows:

Eij(v(x)) =
1

2

\biggl( 
\partial vi

\partial xj
+
\partial vj

\partial xi

\biggr) 
, i, j = 1,2,3;

eij(w(y)) =
1

2

\biggl( 
\partial wi

\partial yj
+
\partial wj

\partial yi

\biggr) 
, i, j = 1,2,3.

We denote by divy the divergence operator with respect to y, and by divx, or simply
div, the same operator with respect to x. If V is a vector space, the vector space
of the same name written in boldface V represents the corresponding product space
V 3 = V \times V \times V . In this paper, all of the vector spaces considered are over the
complex field C. The Einstein summation convention is used throughout the rest of
this paper, \delta ij is the Kronecker delta, and C represents a universal constant, which is
independent of variable quantities such as \epsilon , t, and that may change value from line
to line.

2.3. Governing equations. We denote the elastic moduli of the solid phase
by constants aijkl, 1 \leq i, j, k, l \leq 3, satisfying the following symmetry conditions and
V -ellipticity condition:

aijkl = ajikl = aijlk = aklij ,(2.2)

aijkl\xi kl\xi ij \geq c \xi ij\xi ij , c > 0 \forall symmetric matrices \xi \xi \xi (2.3)

For the fluid part, let \eta \epsilon 2, \mu \epsilon 2 \in R be the fluid viscosities, where \mu and \eta are O(1)
and satisfy the following conditions:

\mu > 0,
\eta 

\mu 
> - 2

3
.(2.4)

We assume the external force f =
\bigl\{ 
f i
\bigr\} 
\in L2

loc(0,+\infty ;L2(Ω)) is independent of \epsilon and
satisfies the following bound:

\| f(t)\| 2L2(Ω) \leq Kemt (K > 0,m\in R) for almost all 0< t<\infty .(2.5)

Let \rho s and \rho f denote the density of the solid phase and density of the fluid phase,
respectively, and c0 > 0 the reference speed of sound. For a fixed \epsilon , the governing
equations for the solid phase are in terms of the displacement field u\epsilon are (see Chapter
8 of [16]):

\rho s
\partial 2ui\epsilon 
\partial t2

=
\partial \sigma s

ij

\partial xj
+ f i,(2.6)

\sim \sigma s
ij = aijklEkl(u\epsilon );(2.7)

whereas for the fluid phase, they are given in terms of the fluid velocity field \partial u\epsilon 

\partial t and
the acoustic pressure p\epsilon := - c20 \rho f \nabla \cdot u\epsilon (see Chapter 8 of [16]):

\rho f
\partial 2ui\epsilon 
\partial t2

=
\partial \sigma f

ij

\partial xj
+ f i,(2.8)

\sim \sigma f
ij = - \delta ijp\epsilon +

\bigl( 
\epsilon 2\eta \delta ij\delta kl + 2\mu \epsilon 2\delta ik\delta jl

\bigr) 
Ekl

\biggl( 
\partial u\epsilon 

\partial t

\biggr) 
.(2.9)
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2394 MIAO-JUNG YVONNE OU AND SILVIA JIMÉNEZ BOLAÑOS

Note that the constitutive equation (2.9) is equivalent to

\sim \sigma f
ij = \delta ijc

2
0\rho 

f\nabla \cdot u\epsilon +
\bigl( 
\epsilon 2\eta \delta ij\delta kl + 2\mu \epsilon 2\delta ik\delta jl

\bigr) 
Ekl

\biggl( 
\partial u\epsilon 

\partial t

\biggr) 
.(2.10)

The equations of motion (2.6)-(2.9) are complemented by the jump conditions on
the interface Γ\epsilon :

\sim σs\cdot n=\sim σf \cdot n (continuity of stress),(2.11)

\sim σf \cdot n= \epsilon \alpha 

\biggl[ \biggl[ 
\partial u\epsilon 

\partial t

\biggr] \biggr] f

s

(slip condition),(2.12)

where \alpha > 0 is the slip constant. For more information about the \epsilon -scaling for the
slip constant in (2.12), see [2, 8]. In this paper, we consider the homogeneous initial
conditions

u\epsilon (0) = 0, v\epsilon (0) =
\partial u\epsilon 

\partial t
(0) = 0.(2.13)

3. Variational formulation. In this section, the variational formulation of the
system of equations (2.6)–(2.13) is derived. We start with introducing the function
spaces which are used in this paper.

3.1. Function spaces. Recall that Y = ( - 1
2 ,

1
2 )

3. Let Yo be a subset of Y with

Lipschitz boundary such that the periodic extension Ỹo has C1 boundary in R
3. The

following typical function spaces are used in this paper:
\bullet Cp: the space of Y -periodic continuous functions on R

3.
\bullet C\infty 

p : the space of Y -periodic C\infty functions on R
3.

\bullet L2
p(Yo): the space of Y -periodic square integrable functions in Yo. This is a

Hilbert space with the L2(Yo)-norm.
\bullet H1

p (Yo)=
\bigl\{ 
w| w \in L2

p(Yo),
\partial w
\partial yi

\in L2
p(Yo), i = 1,2,3

\bigr\} 
. This is a Hilbert space

with the H1(Yo)-norm.
\bullet H1

p (Yo)/C
3 =

\bigl\{ 
w| w \in H1

p (Yo) and
\int 
Yo
wdy = 0

\bigr\} 
, equipped with the norm

\| w\| 2H1
p(Yo)/C

=

\sqrt{} \sum 3
i=1

\bigm\| \bigm\| \bigm\| \partial w
\partial yi

\bigm\| \bigm\| \bigm\| 
2

L2(Yo)
.

\bullet K (Ω): The space of continuous functions with compact support in Ω.
\bullet D(Ω): space of C\infty functions with compact support in Ω.

In the case Yo = Y , we will write L2
p (resp., H1

p ) instead of L2
p(Y ) (resp., H1

p (Y )).
The following function spaces specializing to the interface slip conditions (3.7) are

considered in this paper:

V :=
\bigl\{ 
w | w \in H1(Ωf

\epsilon \cup Ωs
\epsilon ) : w

\bigm| \bigm| 
\partial Ω

= 0
\bigr\} 
,(3.1)

with the norm given by

\| w\| 2V := \| w\| 2H1(Ωf
\epsilon )

+ \| w\| 2H1(Ωs
\epsilon )
+
\bigm\| \bigm\| [[w]]fs

\bigm\| \bigm\| 2
L2(Γ\epsilon )

.(3.2)

Notice that V is a closed subspace of H1(Ωf
\epsilon \cup Ωs

\epsilon ) by the trace theorem.
The counterpart of V for functions defined in the unit cell Y is given by:

VY :=
\bigl\{ 
w \in H1(Yf \cup Ys) :w is Y -periodic

\bigr\} 
,

\| w\| 2VY
:= \| w\| 2H1(Yf )

+ \| w\| 2H1(Ys)
+
\bigm\| \bigm\| [[w]]fs

\bigm\| \bigm\| 2
L2(Γ)

.
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HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2395

The role of the interface term in the norm will be made clear later. As will be revealed
in Theorem 5.1, the following Hilbert space is also needed in the analysis:

E0(Ω
s
\epsilon \cup Ωf

\epsilon )(3.3)

=
\bigl\{ 
w : w \in L2(Ωs

\epsilon \cup Ωf
\epsilon ), div(w)\in L2(Ωs

\epsilon \cup Ωf
\epsilon ), w \cdot nΩ = 0 on \partial Ω

\bigr\} 
,

where nΩ represents the unit normal on \partial Ω pointing outward from Ω, equipped with
the inner product:

<w1,w2 >E0(Ωs
\epsilon \cup Ωf

\epsilon )
=

\int 

Ω

w1 \cdot w2 dx+

\int 

Ωs
\epsilon \cup Ωf

\epsilon 

div(w1)div(w2)dx

for w1, w2 \in E0(Ω
s
\epsilon \cup Ωf

\epsilon ). The norm induced by this inner product is denoted by
\| \cdot \| E0(Ωs

\epsilon \cup Ωf
\epsilon )
. The Laplace transform of the fluid motion with respect to the solid

will be shown to be in the following space:

W := \{ w \in VY : w= 0 on Ys, and divyw= 0\} .(3.4)

Note that W is a closed vector subspace of VY .

3.2. Derivation of the variational problem. The variational formulation in
the function spaces mentioned above is derived in this section.

For the solid phase, (2.6) and (2.7) lead to
\int 

Ωs
\epsilon 

\rho s
\partial 2ui\epsilon 
\partial t2

widx

=

\int 

Ωs
\epsilon 

wif idx - 
\int 

Ωs
\epsilon 

\partial wi

\partial xj
(aijklEkl(u\epsilon ))dx+

\int 

Γ\epsilon 

wiaijklEkl(u\epsilon )n
j
sd\sigma \epsilon (x)

for all w \in V , where ns is the unit normal vector of Γ\epsilon pointing out of Ωs
\epsilon (toward

the fluid part). By the symmetry of aijkl in (2.2), we have
\int 

Ωs
\epsilon 

aijkl
\partial uk

\partial xl

\partial vi

\partial xj
dx=

\int 

Ωs
\epsilon 

aijklEkl(u)Eij(v)dx.

Therefore, the above can be rewritten as
\int 

Ωs
\epsilon 

\rho s
\partial 2ui\epsilon 
\partial t2

widx=

\int 

Ωs
\epsilon 

wif idx - 
\int 

Ωs
\epsilon 

aijklEkl(w)Ekl(u\epsilon )dx(3.5)

 - 
\int 

Γ\epsilon 

wiaijklEkl(u\epsilon )n
jd\sigma \epsilon (x),

where the minus sign in the last integral is due to the fact that n= - ns.
For the fluid phase, (2.8) and (2.10) imply for all w \in V , we have

\int 

Ωf
\epsilon 

\rho f
\partial 2ui\epsilon 
\partial t2

widx=

\int 

Ωf
\epsilon 

wif idx - 
\int 

Ωf
\epsilon 

\Biggl[ 
c20\rho 

f (\nabla \cdot u\epsilon )(\nabla \cdot w)(3.6)

+ \epsilon 2\eta (\nabla \cdot w)

\biggl( 
\nabla \cdot \partial u\epsilon 

\partial t

\biggr) 
+ 2\epsilon 2\mu 

\partial wi

\partial xj
Eij

\biggl( 
\partial u\epsilon 

\partial t

\biggr) \Biggr] 
dx

+

\int 

Γ\epsilon 

\biggl[ 
c20\rho 

fnjwj(\nabla \cdot u\epsilon ) + \epsilon 2\eta njwj

\biggl( 
\nabla \cdot \partial u\epsilon 

\partial t

\biggr) 

+2\mu \epsilon 2njwiEij

\biggl( 
\partial u\epsilon 

\partial t

\biggr) \biggr] 
d\sigma \epsilon (x).
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Observe that aijklEkl(u\epsilon )n
j = (\sim σsn)i is the total solid stress acting on the interface

and, similarly, the terms in the boundary integral in (3.6) can be regarded as (\sim σfn)i.
Summing the boundary integrals in (3.5) and (3.6), we can use (2.11) to obtain

 - 
\int 

Γs
\epsilon 

(\sim σsn)iwid\sigma \epsilon (x) +

\int 

Γf
\epsilon 

(\sim σfn)iwid\sigma \epsilon (x) =

\int 

Γ\epsilon 

(\sim σfn)i
\Bigl( 
[[w]]fs

\Bigr) i
d\sigma \epsilon (x)(3.7)

= \epsilon 

\int 

Γ\epsilon 

\alpha 

\biggl[ \biggl[ 
\partial u\epsilon 

\partial t

\biggr] \biggr] f

s

\cdot [[w]]fs d\sigma \epsilon (x).

From (3.5), (3.6) and (3.7), and denoting \gamma = c20 \rho 
f , the variational formulation

for our problem is as follows.
Find u\epsilon , function of t with values in V , such that
\int 

Ω

f iwidx=

\int 

Ωs
\epsilon 

\rho s
\partial 2ui\epsilon 
\partial t2

widx+

\int 

Ωf
\epsilon 

\rho f
\partial 2ui\epsilon 
\partial t2

widx

+

\int 

Ωs
\epsilon 

aijklEkl(u\epsilon )Eij(w)dx+

\int 

Ωf
\epsilon 

\gamma (\nabla \cdot u\epsilon )(\nabla \cdot w)dx

+ \epsilon 2
\int 

Ωf
\epsilon 

\biggl[ 
\eta (\nabla \cdot w)

\biggl( 
\nabla \cdot \partial u\epsilon 

\partial t

\biggr) 
+ 2\mu Eij(w)Eij

\biggl( 
\partial u\epsilon 

\partial t

\biggr) \biggr] 
dx

+ \epsilon 

\int 

Γ\epsilon 

\alpha 

\biggl[ \biggl[ 
\partial u\epsilon 

\partial t

\biggr] \biggr] f

s

\cdot [[w]]fsd\sigma \epsilon (x)

for all w \in V ; or equivalently,
\int 

Ω

f iwidx=

\int 

Ωs
\epsilon 

\rho s
\partial 2ui\epsilon 
\partial t2

widx+

\int 

Ωf
\epsilon 

\rho f
\partial 2ui\epsilon 
\partial t2

widx+ c\epsilon (u\epsilon ,w)(3.8)

+ \epsilon 2b\epsilon 
\biggl( 
\partial u\epsilon 

\partial t
,w

\biggr) 
+ \epsilon 

\int 

Γ\epsilon 

\alpha 

\biggl[ \biggl[ 
\partial u\epsilon 

\partial t

\biggr] \biggr] f

s

\cdot [[w]]fs d\sigma \epsilon (x)

for all w \in V , where u\epsilon (0) =
\partial u\epsilon 

\partial t (0) = 0 and the sesquilinear forms b\epsilon and c\epsilon are
defined as

b\epsilon (u,v) =

\int 

Ωf
\epsilon 

\Bigl[ 
\eta (\nabla \cdot u) (\nabla \cdot v) + 2\mu Eij (u)Eij(v)

\Bigr] 
dx,(3.9)

c\epsilon (u,v) =

\int 

Ωs
\epsilon 

aijklEkl(u)Eij(v)dx+

\int 

Ωf
\epsilon 

\gamma (\nabla \cdot u)(\nabla \cdot v)dx.

4. Well-posedness of the variational formulation. In this section, the analy-
sis of the variational problem (3.8) is carried out in the Laplace transformed domain.

Let v̂(\lambda ) be the Laplace transform of a function v(t). The variational formulation
of problem (3.8) in the Laplace transform domain, for a fixed \lambda , reads as follows (for
the ease of notation, we omit the argument \lambda in û\epsilon (\lambda ) and f̂(\lambda )).

Find û\epsilon \in V such that for all w \in V the following equation is satisfied:\int 

Ω

f̂ \cdot wdx= a\epsilon (û\epsilon ,w),(4.1)

where the form a\epsilon (û\epsilon ,w) is defined as follows:

a\epsilon (û\epsilon ,w) := \lambda 2
\int 

Ωs
\epsilon 

\rho sû\epsilon \cdot wdx+ \lambda 2
\int 

Ωf
\epsilon 

\rho f û\epsilon \cdot wdx+ c\epsilon (û\epsilon ,w) + \lambda \epsilon 2b\epsilon (û\epsilon ,w)

+ \lambda \epsilon 

\int 

Γ\epsilon 

\alpha [[û\epsilon ]]
f
s \cdot [[w]]

f

s d\sigma \epsilon (x).

The main result in this section is the following theorem.
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HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2397

Theorem 4.1. For any fixed \epsilon > 0 and \lambda such that Re(\lambda )>\lambda 0 > 0, with \lambda 0 large
enough, the variational problem (4.1) has a unique solution.

The following lemma plays a crucial role in the proof of Theorem 4.1.

Lemma 4.2. Suppose \partial Ωs
\epsilon \cap \partial Ω \not = \emptyset . Then, for all w \in V , there exists K =

K(\epsilon )> 0 such that the following estimate holds:

\int 

Ωs
\epsilon 

wiwidx+

\int 

Ωf
\epsilon 

wiwidx(4.2)

\leq K

\Biggl( \int 

Ωs
\epsilon 

Eij(w)Eij(w)dx+

\int 

Ωf
\epsilon 

Eij(w)Eij(w)dx+

\int 

Γ\epsilon 

\bigm| \bigm| [[w]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)

\Biggr) 
.

Proof. We prove this by contradiction. Suppose (4.2) is not true. Then, there
exists a sequence

\bigl\{ 
wk
\bigr\} \infty 
k=1

in V, with
\bigm\| \bigm\| wk

\bigm\| \bigm\| 
L2(Ωf

\epsilon \times Ωs
\epsilon )
= 1, satisfying

\int 

Ωf
\epsilon \times Ωs

\epsilon 

Eij(w
k)Eij(wk)dx+

\int 

Γ\epsilon 

\bigm| \bigm| [[w]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)\rightarrow 0, as k\rightarrow \infty .

Hence, by the Korn’s inequality in Lemma A.2, there exists w\ast \in V such that wk \rightarrow 
w\ast weakly in V and wk \rightarrow w\ast strongly in L2(Ω). Therefore, \| w\ast \| L2(Ω) = 1 and\bigm\| \bigm\| wk

\bigm\| \bigm\| 
V
\leq C. By Proposition 1.1 on page 8 of [16], we have \| w\ast \| V \leq lim infk

\bigm\| \bigm\| wk
\bigm\| \bigm\| 
V
.

From the latter, it follows that

1 +

\int 

Ωf
\epsilon \times Ωs

\epsilon 

Eij(w
\ast )Eij(w\ast )dx+

\int 

Γ\epsilon 

\bigm| \bigm| [[w\ast ]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)

\leq lim inf
k

\Biggl( 
1 +

\int 

Ωf
\epsilon \times Ωs

\epsilon 

Eij(w
k)Eij(wk)dx+

\int 

Γ\epsilon 

\bigm| \bigm| [[wk]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)

\Biggr) 
,

which, in turn, implies that

\int 

Ωf
\epsilon \times Ωs

\epsilon 

Eij(w
\ast )Eij(w\ast )dx= 0 and

\int 

Γ\epsilon 

\bigm| \bigm| [[w\ast ]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x) = 0.(4.3)

Therefore w\ast is a rigid body motion in each phase. Since w\ast | \partial Ωs
\epsilon \cap \partial Ω = 0, we have

that w\ast = 0 in Ωs
\epsilon . By the interface integral in (4.3), we must also have w\ast = 0 in

Ωf
\epsilon . This contradicts \| w\ast \| L2(Ω) = 1.

The proof above demonstrates the importance of including the interface jump in
the norm of the space V in (3.1). Without the interface term, the lemma would not
be true.

With this lemma, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. The fact that \lambda is a complex number and the appearance
of various orders of \lambda in the expression of a\epsilon (\cdot , \cdot ) prevent a direct application of the
Lax–Milgram lemma (Lemma A.1). Noticing that Re(\lambda ) and Re( 1\lambda ) have the same
sign, we recast the variational problem (4.1) to an equivalent problem by dividing
both sides of (4.1) by \lambda \not = 0:
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2398 MIAO-JUNG YVONNE OU AND SILVIA JIMÉNEZ BOLAÑOS

Find û\epsilon \in V such that, for all w \in V, we have

1

\lambda 
a\epsilon (û\epsilon ,w) = \lambda 

\int 

Ωs
\epsilon 

\rho sûi\epsilon w
idx+ \lambda 

\int 

Ωf
\epsilon 

\rho f ûi\epsilon w
idx+

1

\lambda 
c\epsilon (û\epsilon ,w)(4.4)

+ \epsilon 2b\epsilon (û\epsilon ,w) + \epsilon 

\int 

Γ\epsilon 

\alpha [[û\epsilon ]]
f
s \cdot [[w]]

f

s d\sigma \epsilon (x)

=
1

\lambda 

\int 

Ω

f̂ iwidx.

To show the coercivity of
\bigl( 
1
\lambda 

\bigr) 
a\epsilon (w,w), for w \in V , with Re(\lambda )> 0 and \epsilon > 0, we

observe that the properties of the coefficients aijkl, \eta and \mu in (2.3) and (2.4) imply
the following inequality:

Re

\biggl( 
1

\lambda 
c\epsilon (w,w) + \epsilon 2b\epsilon (w,w) + \epsilon 

\int 

Γ\epsilon 

\alpha 
\bigm| \bigm| [[w]]fs

\bigm| \bigm| 2 d\sigma \epsilon (x)
\biggr) 

(4.5)

>Re

\biggl( 
1

\lambda 

\biggr) \int 

Ωs
\epsilon 

cEij(w)Eij(w)dx

+ \epsilon 2\mu 

\biggl\{ \int 

Ωf
\epsilon 

\biggl[ 
 - 2

3
| \nabla \cdot w| 2 +Eij(w)Eij(w)

\biggr] 
dx.

+

\int 

Ωf
\epsilon 

Eij(w)Eij(w)dx

\biggr\} 
+ \epsilon \alpha 

\int 

Γ\epsilon 

\bigm| \bigm| [[w]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)

\geq min
\Bigl( 
Re
\Bigl( c
\lambda 

\Bigr) 
, \epsilon 2\mu , \epsilon \alpha 

\Bigr) \Biggl( \int 

Ωs
\epsilon \times Ωf

\epsilon 

Eij(w)Eij(w)dx+

\int 

Γ\epsilon 

\bigm| \bigm| [[w]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)

\Biggr) 
.

We note that Lemma A.2 implies that there exist \gamma \prime s, \gamma 
\prime 

f > 0 such that
\int 

Ωs
\epsilon 

Eij(w)Eij(w)dx+

\int 

Ωs
\epsilon 

w \cdot wdx\geq \gamma \prime s \| w\| 2H1(Ωs
\epsilon )
,(4.6)

\int 

Ωf
\epsilon 

Eij(w)Eij(w)dx+

\int 

Ωf
\epsilon 

w \cdot wdx\geq \gamma \prime f \| w\| 2H1(Ωf
\epsilon )
.(4.7)

Also, as long as \partial Ωs
\epsilon \cap \partial Ω \not = \emptyset , by Lemma 4.2, there exists K > 0 such that

\int 

Ωs
\epsilon \times Ωf

\epsilon 

wiwidx\leq K

\Biggl( \int 

Ωs
\epsilon \times Ωf

\epsilon 

Eij(w)Eij(w)dx+

\int 

Γ\epsilon 

\bigm| \bigm| [[w]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)

\Biggr) 
(4.8)

for all w \in V .
Using (4.6), (4.7), and (4.8) in (4.5), we have

Re

\biggl( \biggl( 
1

\lambda 

\biggr) 
c\epsilon (w,w) + \epsilon 2b\epsilon (w,w) + \epsilon 

\int 

Γ\epsilon 

\alpha 
\bigm| \bigm| [[w]]fs

\bigm| \bigm| 2 d\sigma \epsilon (x)
\biggr) 

(4.9)

\geq min
\Bigl( 
Re
\Bigl( c
\lambda 

\Bigr) 
, \epsilon 2\mu , \epsilon \alpha 

\Bigr) \Biggl[ 1
2

\int 

Ωs
\epsilon \times Ωf

\epsilon 

Eij(w)Eij(w)dx

+
1

2K

\int 

Ωs
\epsilon \times Ωf

\epsilon 

wiwidx+
1

2

\int 

Γ\epsilon 

\bigm| \bigm| [[w]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)

\Biggr] 

\geq C \prime \| w\| 2V ,
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HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2399

where C \prime :=min(Re
\bigl( 
c
\lambda 

\bigr) 
, \epsilon 2\mu , \epsilon \alpha )\cdot min( 12 ,

1
2K )\cdot min(\gamma \prime f , \gamma 

\prime 

s,
1
2 ). Therefore, for all w \in V ,

we have

Re

\biggl( 
1

\lambda 
a\epsilon (w,w)

\biggr) 
\geq C \prime \| w\| 2V .

This proves the coercivity of the sesquilinear form in (4.4). The boundedness of
this form can be checked easily by a repeated application of the Cauchy–Schwarz
inequality. Therefore, by Lemma A.1 (Lax–Milgram lemma), there exists a unique
solution of (4.4) and, hence, of (4.1), for any fixed \epsilon > 0 and \lambda , with Re(\lambda )> 0.

5. Uniform bounds and the weak limit. We have shown that for any fixed
\lambda with Re(\lambda ) > 0, there is a unique solution û\epsilon of (4.1) for each \epsilon > 0. In order to
apply the compactness results of the two-scale convergence (cf. Definition B.3), we
need to estimate the sequence \{ û\epsilon \} and their derivatives so as to derive the bounds
which are uniform in \epsilon .

The main result in this section is the following theorem regarding the uniform
bounds of the sequence of solutions \{ û\epsilon \} of (4.1).

Theorem 5.1. For every fixed \lambda such that Re(\lambda ) > 0, the sequence of solutions
\{ û\epsilon \} of (4.1) satisfies the following estimates:

\| û\epsilon \| L2(Ω) \leq C \forall \epsilon ,(5.1)

\epsilon \| û\epsilon \| V \leq C \forall \epsilon ,(5.2)

\| div û\epsilon \| L2(Ωs
\epsilon \cup Ωf

\epsilon )
\leq C \forall \epsilon ,(5.3)

\| \nabla u\epsilon \| L2(Ωs
\epsilon )
\leq C \forall 0< \epsilon < \epsilon o.(5.4)

From this theorem, we see that the restriction of \{ û\epsilon \} to the solid phase Ωs
\epsilon is

uniformly bounded in H1(Ωs
\epsilon ) while the restriction to the fluid phase is only bounded

uniformly in Hdiv(Ω
f
\epsilon ). This prompted the introduction of the space E0(Ω

s
\epsilon \cup Ωf

\epsilon )
defined in (3.3).

The following lemmas are essential in proving Theorem 5.1.

Lemma 5.2. Let \rho \ast = min\{ \rho f , \rho s\} and z\epsilon (t) = e - rtu\epsilon (t), where r > 0 is a fixed
real number and u\epsilon the solution of (3.8). We have for r > max

\bigl\{ 
0, m2

\bigr\} 
, where m is

the growth rate of f defined in (2.5), that

\rho \ast 
\bigm\| \bigm\| \bigm\| \bigm\| 
\partial z\epsilon 
\partial t

\bigm\| \bigm\| \bigm\| \bigm\| 
2

L2(Ω)

+ \rho \ast \| z\epsilon \| 2L2(Ω) + c\epsilon (z\epsilon ,z\epsilon ) + \epsilon 2b\epsilon (z\epsilon ,z\epsilon ) + \alpha \epsilon 
\bigm\| \bigm\| [[z\epsilon ]]fs

\bigm\| \bigm\| 2
L2(Γ\epsilon )

\leq C(5.5)

for almost all 0< t<\infty and for all \epsilon > 0. Moreover,

\| z\epsilon \| 2L2(Ω) + \| div(z\epsilon )\| 2L2(Ω) \leq C(5.6)

for all \epsilon and almost all t > 0.

Proof. From the definition of z\epsilon (t), we have

\partial u\epsilon 

\partial t
= ert

\biggl( 
\partial z\epsilon 
\partial t

+ rz\epsilon 

\biggr) 
,

\partial 2u\epsilon 

\partial t2
= ert

\biggl( 
\partial 2z\epsilon 
\partial t2

+ 2r
\partial z\epsilon 
\partial t

+ r2z\epsilon 

\biggr) 
.
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2400 MIAO-JUNG YVONNE OU AND SILVIA JIMÉNEZ BOLAÑOS

Plugging these into (3.8), and taking w= \partial z\epsilon 

\partial t , we obtain

e - rt

\int 

Ω

f \cdot \partial z\epsilon 
\partial t

dx=

\int 

Ω

\rho 
\partial 2z\epsilon 
\partial t2

\cdot \partial z\epsilon 
\partial t

dx+ 2r

\int 

Ω

\rho 

\bigm| \bigm| \bigm| \bigm| 
\partial z\epsilon 
\partial t

\bigm| \bigm| \bigm| \bigm| 
2

dx+ r2
\int 

Ω

\rho z\epsilon \cdot 
\partial z\epsilon 
\partial t

dx

+ c\epsilon 
\biggl( 
z\epsilon ,

\partial z\epsilon 
\partial t

\biggr) 
+ \epsilon 2b\epsilon 

\biggl( 
\partial z\epsilon 
\partial t

,
\partial z\epsilon 
\partial t

\biggr) 
+ r\epsilon 2b\epsilon 

\biggl( 
z\epsilon ,

\partial z\epsilon 
\partial t

\biggr) 

+ \epsilon \alpha 

\int 

Γ\epsilon 

\bigm| \bigm| \bigm| \bigm| \bigm| 

\biggl[ \biggl[ 
\partial z\epsilon 
\partial t

\biggr] \biggr] f

s

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

d\sigma \epsilon (x) + r\epsilon \alpha 

\int 

Γ\epsilon 

[[z\epsilon ]]
f
s \cdot 
\biggl[ \biggl[ 
\partial z\epsilon 
\partial t

\biggr] \biggr] f

s

d\sigma \epsilon (x).

Rearranging terms and applying the estimate of f in (2.5) lead to

1

2

d

dt

\Biggl[ \int 

Ω

\rho 

\bigm| \bigm| \bigm| \bigm| 
\partial z\epsilon 
\partial t

\bigm| \bigm| \bigm| \bigm| 
2

dx+ r2
\int 

Ω

\rho | z\epsilon | 2dx+ c\epsilon (z\epsilon ,z\epsilon )(5.7)

+ r\epsilon 2b\epsilon (z\epsilon ,z\epsilon ) + r\epsilon \alpha 

\int 

Γ\epsilon 

[[z\epsilon ]]
f
s \cdot [[z\epsilon ]]

f

s d\sigma \epsilon (x)

\biggr] 

= e - rt

\int 

Ω

f \cdot \partial z\epsilon 
\partial t

dx - 2r

\int 

Ω

\rho 

\bigm| \bigm| \bigm| \bigm| 
\partial z\epsilon 
\partial t

\bigm| \bigm| \bigm| \bigm| 
2

dx

 - \epsilon 2b\epsilon 
\biggl( 
\partial z\epsilon 
\partial t

,
\partial z\epsilon 
\partial t

\biggr) 
 - \epsilon \alpha 

\int 

Γ\epsilon 

\bigm| \bigm| \bigm| \bigm| \bigm| 

\biggl[ \biggl[ 
\partial z\epsilon 
\partial t

\biggr] \biggr] f

s

\bigm| \bigm| \bigm| \bigm| \bigm| 

2

d\sigma \epsilon (x)

\leq e - rt

\int 

Ω

f \cdot \partial z\epsilon 
\partial t

dx

\leq e - rt \| f\| L2(Ω)

\bigm\| \bigm\| \bigm\| \bigm\| 
\partial z\epsilon 
\partial t

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(Ω)

\leq e - rtK
1/2emt/2

\surd 
\rho \ast 

\Biggl( \int 

Ω

\rho 

\bigm| \bigm| \bigm| \bigm| 
\partial z\epsilon 
\partial t

\bigm| \bigm| \bigm| \bigm| 
2

dx

\Biggr) 1/2

\leq e - rtK
1/2emt/2

\surd 
\rho \ast 

\Biggl( \int 

Ω

\rho 

\bigm| \bigm| \bigm| \bigm| 
\partial z\epsilon 
\partial t

\bigm| \bigm| \bigm| \bigm| 
2

dx+ r2
\int 

Ω\epsilon 

\rho | z\epsilon | 2dx+ c\epsilon (z\epsilon ,z\epsilon )

+ r\epsilon 2b\epsilon (z\epsilon ,z\epsilon ) + r\epsilon \alpha 

\int 

Γ

[[z\epsilon ]]
f
s \cdot [[z\epsilon ]]

f

s d\sigma \epsilon (x)

\biggr) 1/2

,

since r and \alpha are nonnegative. Due to the fact that

1

2

d

dt
(\cdot ) = (\cdot )1/2 d

dt
(\cdot )1/2 if (\cdot )\geq 0,

we can simplify (5.7) to obtain

d

dt

\Biggl[ \int 

Ω

\rho 

\bigm| \bigm| \bigm| \bigm| 
\partial z\epsilon 
\partial t

\bigm| \bigm| \bigm| \bigm| 
2

dx+ r2
\int 

Ω

\rho | z\epsilon | 2dx+ c\epsilon (z\epsilon ,z\epsilon )

+ r\epsilon 2b\epsilon (z\epsilon ,z\epsilon ) + r \epsilon \alpha 

\int 

Γ\epsilon 

[[z\epsilon ]]
f
s \cdot [[z\epsilon ]]

f

s d\sigma \epsilon (x)

\biggr] 1/2

\leq K1/2e(m/2 - r)t

\surd 
\rho \ast 

.
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Because z\epsilon | t=0 =
\partial z\epsilon 

\partial t

\bigm| \bigm| 
t=0

= 0, we have

\Biggl( \int 

Ω

\rho 

\bigm| \bigm| \bigm| \bigm| 
\partial z\epsilon 
\partial t

\bigm| \bigm| \bigm| \bigm| 
2

dx+ r2
\int 

Ω

\rho | z\epsilon | 2dx+ c\epsilon (z\epsilon ,z\epsilon ) + r\epsilon 2b\epsilon (z\epsilon ,z\epsilon )

+ r\epsilon \alpha 

\int 

Γ\epsilon 

[z\epsilon ]
f
s \cdot [z\epsilon ]

f

s d\sigma \epsilon (x)

\biggr) 1/2 \bigm| \bigm| \bigm| 
t=T

\leq K1/2

\surd 
\rho \ast 
\bigl( 
r - m

2

\bigr) 
\Bigl( 
1 - e(m/2 - r)T

\Bigr) 
.

Note that the bound does not depend on \epsilon . Therefore, for z\epsilon with r > max(0, m2 ),
(5.5) must be true for t > 0 a.e. and for all \epsilon > 0. Note that, for all T > 0 and r > m

2 ,

we have 0< e
m−2r

2
T < e0 = 1. This means that

\int 

Ω

\rho 

\bigm| \bigm| \bigm| \bigm| 
\partial z\epsilon 
\partial t

\bigm| \bigm| \bigm| \bigm| 
2

dx+ r2
\int 

Ω

\rho | z\epsilon | 2dx+ c\epsilon (z\epsilon ,z\epsilon )

+ r\epsilon 2b\epsilon (z\epsilon ,z\epsilon ) + r\epsilon \alpha 

\int 

Γ\epsilon 

[[z\epsilon ]]
f
s \cdot [[z\epsilon ]]

f

s d\sigma \epsilon (x)

is uniformly bounded with respect to time t. The bound stated in (5.6) then follows
as a consequence of Lemma 5.2, the definition of c\epsilon (see (3.9)) and (2.3).

Lemma 5.3. For r >max(0, m2 ), we can extract a subsequence such that

z\epsilon \rightarrow z0 in L\infty (0,+\infty ;E0(Ω
s
\epsilon \cup Ωf

\epsilon ))-weak star.

Moreover, letting u0(t) := z0(t)e
rt, there exists a subsequence of \{ u\epsilon \} , denoted by the

same symbol, which converges as follows:

û\epsilon (\lambda )\rightarrow û0(\lambda ) in E0(Ω
s
\epsilon \cup Ωf

\epsilon )-weak for any \lambda \in C, Re(\lambda )\geq \lambda 0 > r.(5.8)

u\epsilon \rightarrow u0 in L\infty (0, T ;E0(Ω
s
\epsilon \cup Ωf

\epsilon ))-weak star for any T > 0.(5.9)

Proof. By virtue of (5.6), the sequence \{ z\epsilon \} remains uniformly bounded in the
space L\infty (0,+\infty ;E0(Ω

s
\epsilon \cup Ωf

\epsilon )), for all r >max
\bigl\{ 
0, m2

\bigr\} 
, i.e., for all \phi \in L1(0,+\infty ,E0

(Ωs
\epsilon \cup Ωf

\epsilon )), we have

lim
\epsilon \rightarrow 0

\int 
\infty 

0

\langle z\epsilon (t, \cdot ), \phi (t, \cdot )\rangle E0(Ωs
\epsilon \cup Ωf

\epsilon )
dt=

\int 
\infty 

0

\langle z0(t, \cdot ), \phi (t, \cdot )\rangle E0(Ωs
\epsilon \cup Ωf

\epsilon )
dt

and if \phi (x, t) = e - st\psi (x), s > 0, this is equivalent to

lim
\epsilon \rightarrow 0

\langle ẑ\epsilon (s), \psi (x)\rangle E0(Ωs
\epsilon \cup Ωf

\epsilon )
= lim

\epsilon \rightarrow 0

\Biggl\langle \int 
\infty 

0

e - stz\epsilon (t, \cdot )dt,\psi (x)
\Biggr\rangle 

E0(Ωs
\epsilon \cup Ωf

\epsilon )

= \langle ẑ0(s), \psi (x)\rangle E0(Ωs
\epsilon \cup Ωf

\epsilon )
.

By letting u0(t) = z0(t)e
rt, with r > max\{ 0,m/2\} , (5.8) and (5.9) can be

deduced.

Lemma 5.4. There exists a positive constant C, independent of \epsilon , such that

b\epsilon (û\epsilon , û\epsilon ) + c\epsilon (û\epsilon , û\epsilon ) +
\bigm\| \bigm\| [[û\epsilon ]]

f
s

\bigm\| \bigm\| 2
L2(Γ\epsilon )

\geq C\| û\epsilon \| 2V .
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Proof. For all w \in V , we have

c\epsilon (w,w) + b\epsilon (w,w)+

\int 

Γ\epsilon 

\bigm| \bigm| [[w]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)(5.10)

\geq c

\int 

Ωs
\epsilon 

Eij(w)Eij(w)dx

+ \mu 

\biggl\{ \int 

Ωf
\epsilon 

\biggl[ 
 - 2

3
| \nabla \cdot w| 2 +Eij(w)Eij(w)

\biggr] 
dx.

+

\int 

Ωf
\epsilon 

Eij(w)Eij(w)dx

\biggr\} 
+

\int 

Γ\epsilon 

\bigm| \bigm| [[w]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)

\geq c

\int 

Ωs
\epsilon 

Eij(w)Eij(w)dx+ \mu 

\int 

Ωf
\epsilon 

Eij(w)Eij(w)dx+

\int 

Γ\epsilon 

\bigm| \bigm| [[w]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x),

where the constant c is the V -elliptic constant for the solid elasticity tensor aijkl
defined in (2.3). By the extension result in Theorem B.5, there exist operators T f

\epsilon 

and T s
\epsilon that extend w to Ω1 from Ωf

\epsilon and Ωs
\epsilon , respectively, such that the following

estimates are valid with positive constants Cf and Cs, independent of \epsilon :

\int 

Ω1

Eij(T
f
\epsilon u)Eij(T

f
\epsilon u)dx\leq Cf

\int 

Ωf
\epsilon 

Eij(u)Eij(u)dx \forall u\in Vf ,

\int 

Ω1

Eij(T
s
\epsilon u)Eij(T s

\epsilon u)dx\leq Cs

\int 

Ωs
\epsilon 

Eij(u)Eij(u)dx \forall u\in Vs,

where V s,f and Ω1 are defined in (B.2) and (B.3), respectively. Since the extended
functions belong to H1

0 (Ω1), Korn’s inequality implies that

\int 

Ωs
\epsilon \times Ωf

\epsilon 

Eij(w)Eij(w)dx \geq D\prime (\| w\| 2
H1(Ωf

\epsilon )
+ \| w\| 2H1(Ωs

\epsilon )
),

where the positive constant D\prime depends only on Cs, Cf , and the Korn’s constant of
Ω1. Finally, (5.10) becomes

c\epsilon (w,w) + b\epsilon (w,w)+

\int 

Γ\epsilon 

\bigm| \bigm| [[w]]fs
\bigm| \bigm| 2 d\sigma \epsilon (x)\geq min

\biggl( 
cD\prime 

Cs
,
\mu D\prime 

Cf
,1

\biggr) 
\| w\| 2V .

With these lemmas, Theorem 5.1 can be proved as follows.

Proof of Theorem 5.1. By setting ŵ= û\epsilon in (4.1), we obtain

Re

\biggl( 
1

\lambda 

\biggr) \int 

Ω

f̂ i ûi\epsilon dx=Re(\lambda )

\Biggl[ \int 

Ωs
\epsilon 

\rho sûi\epsilon û
i
\epsilon dx+

\int 

Ωf
\epsilon 

\rho f ûi\epsilon û
i
\epsilon dx

\Biggr] 
+ \epsilon 2b\epsilon (û\epsilon , û\epsilon )

+Re

\biggl( 
1

\lambda 

\biggr) 
c\epsilon (û\epsilon , û\epsilon ) + \epsilon 

\int 

Γ\epsilon 

\alpha [[û\epsilon ]]
f
s \cdot [[û\epsilon ]]

f

s d\sigma \epsilon (x).

Besides, from Lemma 5.2, we can easily conclude that, for Re(\lambda )> r, we have

\| û\epsilon \| 2L2(Ω) \leq 
\int 

\infty 

0

e - 2\lambda t\| u\epsilon \| 2L2(Ω)dt\leq C

\int 
\infty 

0

e - 2(\lambda  - r)tdt=
C

2(Re(\lambda ) - r)
,

i.e. \| û\epsilon \| 2L2(Ω) is uniformly bounded with respect to \epsilon . Therefore, for Re(\lambda ) > r, by
taking into account (2.5), we have the following bounds:
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c\epsilon (û\epsilon , û\epsilon )\leq C \forall \epsilon ,(5.11)

\epsilon 2b\epsilon (û\epsilon , û\epsilon )\leq C \forall \epsilon ,(5.12)

\epsilon 
\bigm\| \bigm\| [[û\epsilon ]]

f
s

\bigm\| \bigm\| 
L2(Γ\epsilon )

\leq C \forall \epsilon ,(5.13)

where, for simplicity, we write û\epsilon instead of û\epsilon (\lambda ). The uniform bound (5.2) is
then implied by Lemma 5.4, (5.11), (5.12), and (5.13). The uniform bound (5.3) is a
direct consequence of (5.8). To show the uniform bound of the gradient restricted to
the solid phase (5.4), note that (3.9), (5.11), and (2.3) lead to

c

\int 

Ωs
\epsilon 

Eij(û\epsilon )Eij(û\epsilon )dx

\leq c\epsilon (û\epsilon , û\epsilon ) =

\int 

Ωs
\epsilon 

asijklEkl(û\epsilon )Eij(û\epsilon )dx+

\int 

Ωf
\epsilon 

\gamma | divû\epsilon | 2 dx\leq C.

From Korn’s inequality for H1
0 (Ω1), Theorem B.5, and the inequality above, we

have
\int 

Ωs
\epsilon 

\bigm| \bigm| \bigm| \bigm| 
\partial ûi\epsilon 
\partial xj

\bigm| \bigm| \bigm| \bigm| 
2

dx\leq 
\int 

Ω1

\partial T\epsilon û
i
\epsilon 

\partial xj

\partial T\epsilon ûi\epsilon 
\partial xj

dx

\leq C(Ω1)

\int 

Ω1

Eij(T\epsilon û\epsilon )Eij(T\epsilon û\epsilon )dx

\leq C

\int 

Ωs
\epsilon 

Eij(û\epsilon )Eij(û\epsilon )dx\leq C.

With the bounds in Theorem 5.1, the sequence \{ u\epsilon \} can be analyzed by using
the compactness theorems of the two-scale convergence. In these bounds, notice that
\{ u\epsilon \} as a whole are uniformly bounded in the E0-norm but not in the H1 norm. On
the other hand, the restriction of \{ u\epsilon \} in the solid phase is uniformly bounded in the
H1 norm. As we will see in the next section, this will result in different convergence
behaviors in the solid phase and in the fluid phase.

6. Two-scale limits. The section is devoted to developing various two-scale
limits associated with \{ u\epsilon \} and the relations between them. We first note that the
bounds (5.1) and (5.2) imply the following lemma.

Lemma 6.1. We can extract a subsequence of \{ û\epsilon \} such that
\int 

Ω

ûk\epsilon \psi 
\epsilon \phi dx\rightarrow 

\int 

Ω\times Y

wk
o (x,y)\psi (y)\phi (x)dxdy, 1\leq k\leq 3,(6.1)

\int 

Ω

\epsilon 
\partial ûk\epsilon 
\partial xl

\psi \epsilon \phi dx\rightarrow 
\int 

Ω\times Y

\partial wk
o

\partial yl
(x,y)\psi (y)\phi (x)dxdy, 1\leq k, l\leq 3,(6.2)

for all \psi \in L2
p, \phi \in K (Ω), where

wo(x,y) = (wk
o )\in L2(Ω;H1

p(Ys \cup Yf )),

divywo(x,y) = 0.(6.3)

Moreover, this two-scale limit w0 is related to the E0-limit û0 (5.8) as follows:

û0 = \langle w0\rangle (x).(6.4)
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2404 MIAO-JUNG YVONNE OU AND SILVIA JIMÉNEZ BOLAÑOS

Proof. Since
\bigl\{ 
ûk\epsilon 
\bigr\} 
\epsilon >0

is bounded in L2(Ω), (6.1) follows immediately by Theo-
rem B.1. Property (6.2) follows as a consequence of (5.2), (6.1), Remark B.2, with
an integration by parts argument similar to the one used in Proposition 1.14 in [3].
From (5.3) and (6.2), we have as \epsilon \rightarrow 0, taking k= l:

\epsilon 

\int 

Ω

divxû\epsilon \psi 
\epsilon \phi dx\rightarrow 0,

\epsilon 

\int 

Ω

divxû\epsilon \psi 
\epsilon \phi dx\rightarrow 

\int 

Ω\times Y

divyw0\psi (y)\phi (x)dxdy,

from where we obtain (6.3). As for (6.4), it follows from (5.8) and (6.1).

Because of the uniform boundedness of the gradient in the solid phase (5.4), more
can be said about the two-scale limit of û\epsilon as follows.

Lemma 6.2. A subsequence can be extracted from the one in Lemma 6.1, such
that:

\int 

Ωs
\epsilon 

\partial ûk\epsilon 
\partial xl

\psi \epsilon \phi dx\rightarrow 
\int 

Ω\times Ys

\biggl[ 
\partial uk

\partial xl
(x) +

\partial uk1
\partial yl

(x,y)

\biggr] 
\psi (y)\phi (x)dxdy(6.5)

for 1 \leq k, l \leq 3; for all \psi \in L2
p and all \phi \in K (Ω), where u =

\bigl\{ 
uk
\bigr\} 

\in H1
0(Ω),

u1 =
\bigl\{ 
uk1
\bigr\} 
\in L2(Ω;H1

p(Ys)/C
3).

Moreover, the limit wo in Lemma 6.1 decomposes as follows:

w0(x,y) = u(x) + ur(x,y)(6.6)

with ur \in L2(Ω;H1
p(Yf \cup Ys)), ur(x,y) = 0 for y \in Ys and divyur = 0, i.e., ur \in 

L2(Ω,W ) with W defined in (3.4).

Proof. This follows from using (5.4) and applying Lemma 6.1 and Theorem B.1
by letting Yo = Ys.

Note that the uniform bound on the gradient in the solid phase guarantees the
decomposition (6.6) of w0, which is the two scale limit of u\epsilon . On the other hand, the
divergence of u\epsilon is uniformly bounded in both phases. Hence, it is natural to study
how the two scale limit of \{ divû\epsilon \} is related to u1; this is the subject of Lemma 6.3. In
preparation for stating this lemma, we recall the definition of the acoustic pressure p̂\epsilon ,

p̂\epsilon := - \gamma divû\epsilon in Ωf
\epsilon , with \gamma := c20\rho 

f .

Note that p̂\epsilon \in L2(Ωf
\epsilon ) satisfies \| p̂\epsilon \| L2(Ωf

\epsilon )
\leq C for all \epsilon > 0. Consider Dkl

\epsilon (x)\in L2(Ω),
with 1\leq k, l\leq 3, defined by

Dkl
\epsilon (x) := \chi s(x)

\partial ûk\epsilon 
\partial xl

 - \chi f (x)
\delta kl
3\gamma 
p̂\epsilon .

Then we have
\int 

Ω

Dkl
\epsilon v dx=

\int 

Ωs
\epsilon 

\partial ûk\epsilon 
\partial xl

v dx - \delta kl
3\gamma 

\int 

Ωf
\epsilon 

p̂\epsilon v dx

for all v \in \scrK (Ω). Since
\bigm\| \bigm\| Dkl

\epsilon 

\bigm\| \bigm\| 
L2(Ω)

\leq C, for all \epsilon > 0 and 1 \leq k, l \leq 3, the sequence

Dkl
\epsilon has a weak limit in the sense of Theorem B.1, which we denote by Dkl. Taking

w\epsilon = 1 and \phi = v in Theorem B.1, we obtain
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HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2405

\int 

Ω

Dkl
\epsilon v dx\rightarrow 

\int 

Ω\times Y

Dkl(x,y)v(x)dxdy,

and by Lemma 6.2, we can conclude

Dkl(x,y) =
\partial uk

\partial xl
(x) +

\partial uk1
\partial yl

(x,y) for (x,y)\in Ω\times Ys.(6.7)

Letting p0(x,y) :=  - \gamma Dkk(x,y) for (x,y) \in Ω \times Yf , we are ready to state the
following lemma.

Lemma 6.3. As \epsilon \downarrow 0 (\epsilon a subsequence from the one in Lemma 6.2), for all \psi \in L2
p,

all \phi \in K (Ω), the acoustic pressure p̂\epsilon := - \gamma divû\epsilon two-scale converges as follows:
\int 

Ωf
\epsilon 

p̂\epsilon \psi 
\epsilon \phi dx\rightarrow 

\int 

Ω\times Yf

p0(x,y)\psi (y)\phi (x)dxdy, p0 \in L2(Ω;L2
p(Yf )).

Moreover, u and u1 in (6.5) and the two-scale limit of divû\epsilon and ur in (6.6) satisfy
the relation:

\int 

Ys

divyu1(x,y)dy= | Yf | divu(x) + div

\int 

Yf

ur(x,y)dy+
1

\gamma 

\int 

Yf

po(x,y)dy.(6.8)

Proof. The lemma follows from (6.7) and (6.6)). If k= l, we have
\int 

Ω\times Y

Dkk(x,y)\psi (y)\phi (x)dxdy=

\int 

Ω\times Ys

[divu(x) + divyu1(x,y)]\psi (y)\phi (x)dxdy

 - 1

\gamma 

\int 

Ω\times Yf

p0(x,y)\psi (y)\phi (x)dxdy.

To obtain (6.8), by (5.8) we have, for all v \in D(Ω), that
\int 

Ω

div û\epsilon v dx\rightarrow 
\int 

Ω

div ûo v dx

=

\int 

Ω\times Y

divu(x)v dxdy+

\int 

Ω\times Yf

divur(x,y)v dxdy.

On the other hand, we have
\int 

Ω

div û\epsilon v dx\rightarrow 
\int 

Ω\times Ys

divu(x)v dxdy

+

\int 

Ω\times Ys

divy u1(x,y)v dxdy - 1

\gamma 

\int 

Ω\times Yf

p0(x,y)v dxdy.

Hence, we obtain
\int 

Ω\times Yf

divu(x)v dxdy+

\int 

Ω\times Yf

divur(x,y)v dxdy

=

\int 

Ω\times Ys

divy u1(x,y)v dxdy - 1

\gamma 

\int 

Ω\times Yf

p0(x,y)v dxdy.

Therefore, u1 and ur satisfy the relation described by (6.8).

Remark 6.4. In what follows, \epsilon represents the subsequence involved in Lemma
6.3. Observe that Lemmas 6.1–6.3 hold simultaneously for that subsequence.
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7. Derivation of the local problems. In the previous section, we have shown
that in the solid phase, the two-scale limit w0(x,y) is exactly the u(x) in (6.6),
whereas in the fluid phase, it is u(x)+ur(x,y). Also shown in the previous section is
that for the solid phase, the gradient of \{ û\epsilon \} two-scale converges to \nabla u+\nabla yu1 while
in the fluid phase, it can only be concluded that the acoustic pressure \{ p̂\epsilon \} two-scale
converges to p0. Moreover, the two-scale limit w0 is related to the E0-limit û0 by
(6.4) and <w0 > (x) = u(x)+< ur > (x). In this section, we will first prove that p0
does not depend on y.

The focus in this section is on the corrector term u1 of the gradient in the solid
and the corrector term ur for the fluid, given u(x) and p0(x). We first summarize the
main results in the following theorems.

Theorem 7.1 (local problem for u1). The limit p0 does not depend on y. Fur-
thermore, the local problem for u1 is as follows:

Find u1 \in H1
p(Ys)/C

3 such that(7.1)

q (u1(x, \cdot ),w) = - \partial u
k

\partial xl
(x)

\int 

Ys

aijkl
\partial wi

\partial yj
dy - p0(x)

\int 

Ys

divywdy

\forall w \in H1
p(Ys)/C

3,

where q(\cdot , \cdot ) represents the sesquilinear form given by

q(v,w) =

\int 

Ys

aijkl
\partial vk

\partial yl

\partial wi

\partial yj
dy=

\int 

Ys

aijkleij(v)ekl(w)dy.(7.2)

This problem is uniquely solvable.

Proof. We start by testing problem (4.1) with w = \epsilon (w\epsilon 
s + w\epsilon 

f )\phi , where ws \in 
H1

p(Ys), wf \in H1
p(Yf ), ws(y) = 0 for y \in Yf , wf (y) = 0 for y \in Ys, ws \cdot n=wf \cdot n on

Γ, and \phi \in D(Ω) to obtain

\epsilon 

\int 

Ωs
\epsilon 

f̂ iw\epsilon 
s
i\phi dx+ \epsilon 

\int 

Ωf
\epsilon 

f̂ iw\epsilon 
f
i\phi dx

= \lambda 2 \epsilon 

\int 

Ωs
\epsilon 

\rho sûi\epsilon w
\epsilon 
s
i\phi dx+ \lambda 2 \epsilon 

\int 

Ωf
\epsilon 

\rho f ûi\epsilon w
\epsilon 
f
i\phi dx+ c\epsilon (û\epsilon , \epsilon (w

\epsilon 
s +w\epsilon 

f )\phi )

+ \lambda \epsilon 2b\epsilon (û\epsilon , \epsilon w
\epsilon 
f\phi ) + \lambda \epsilon 2

\int 

Γ\epsilon 

\alpha [[û\epsilon ]]
f
s \cdot [[(w\epsilon 

s +w\epsilon 
f )\phi ]]

f

s
d\sigma \epsilon (x).

Observe that, as \epsilon \downarrow 0, every term goes to 0 except for c\epsilon (û\epsilon , \epsilon (w
\epsilon 
s +w\epsilon 

f )\phi ). We
study this term in detail

c\epsilon (û\epsilon , \epsilon (w
\epsilon 
s +w\epsilon 

f )\phi ) = \epsilon 

\int 

Ωs
\epsilon 

aijkl
\partial ûk\epsilon 
\partial xl

\biggl( 
w\epsilon 

s
i \partial \phi 

\partial xj

\biggr) 
dx+

\int 

Ωs
\epsilon 

aijkl
\partial ûk\epsilon 
\partial xl

\biggl( 
\phi 

\biggl( 
\partial wi

s

\partial yj

\biggr) \epsilon \biggr) 
dx

+ \epsilon 

\int 

Ωf
\epsilon 

\gamma (divû\epsilon )(\nabla \phi \cdot w\epsilon 
f )dx+

\int 

Ωf
\epsilon 

\gamma (divû\epsilon )(\phi (divywf )
\epsilon 
)dx.

Note that the first and the third terms in the previous expression go to 0 as \epsilon \downarrow 0.
By Lemma 6.2 (with \psi = aijkl(\partial wi

s/\partial yj)) and by Lemma 6.3 (with \psi = divywf ), we
obtain the local problem for u1:

\int 

Ys

aijkl

\biggl[ 
\partial uk

\partial xl
(x) +

\partial uk1
\partial yl

(x,y)

\biggr] 
\partial wi

s

\partial yj
(y)dy - 

\int 

Yf

p0(x,y)divywf (y)dy= 0(7.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/0

1
/2

4
 t

o
 1

3
2
.1

7
4
.2

5
4
.7

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2407

for all ws \in H1
p(Ys), wf \in H1

p(Yf ) with ws(y) = 0 for y \in Yf , wf (y) = 0 for y \in Ys,
and ws \cdot n=wf \cdot n on Γ.

By choosing ws = 0, (7.3) becomes

 - 
\int 

Yf

p0(x,y)divyw(y)dy= 0

for all w \in H1
p(Yf ) with w \cdot n = 0 on \partial Yf . Therefore, it can be concluded that\int 

Yf
\nabla yp0(x,y) \cdot wdy = 0 by a density argument and integration by parts. Hence,

p0 does not depend on y. In other words, p0 \in L2(Ω). To further simplify (7.3), we
observe that for all w \in VY such that w \cdot n is continuous across Γ, we have

\int 

Yf

p0(x)divyw(y)dy= p0(x)

\int 

\partial Yf

w \cdot nd\sigma (y) = - p0(x)
\int 

Ys

divyw(y)dy.

This leads to (7.1). To prove the uniqueness, we need to check that q(\cdot , \cdot ) is coercive
on H1

p(Ys)/C
3, which means that there exists c > 0 such that

q(w,w)\geq C \| w\| 2H1
p(Ys)/C3 \forall w \in H1

p(Ys)/C
3.(7.4)

But (7.4) follows from (2.2), (2.3), and an application of Korn’s inequality for H1
p

(Ys)/C
3.

Theorem 7.2 (the local problem for ur). The local problem for ur is

\lambda 2\rho f
\int 

Yf

uir(x,y)w
i(y)dy+ 2\lambda \mu 

\int 

Yf

\partial uir
\partial yj

(x,y)
\partial wi

\partial yj
dy+ \lambda \alpha 

\int 

Γ

uir(x,y)w
i d\sigma (y)

(7.5)

=

\biggl( 
f̂ i(x) - \lambda 2\rho fui(x) - \partial p0

\partial xi
(x)

\biggr) \int 

Yf

wi dy \forall w \in W.

The above problem is coercive in the VY norm and, hence, has a unique solution. Note
that it is the weak formulation of the cell problem:

\left\{ 
 
 
\lambda 2\rho fuir(x,y) + 2\lambda \mu 

\partial eij(ur)

\partial yj
=

\biggl( 
f̂ i(x) - \lambda 2\rho fui(x) - \partial p0

\partial xi
(x)

\biggr) 
in Yf ,

2\mu eij(ur)n
j = \alpha uir on Γ \forall w \in W.

(7.6)

As can be seen in the theorem above, the interface term resulting from the slip
condition is part of the local problem for ur. The following lemma is hence necessary
in proving Theorem 7.2 so we state it here. Note that because of the discontinuity on
the interface, we cannot directly apply Proposition 2.6 in [4]. Instead, we generalized
that proposition to the following lemma. The main point is to show that the two-
scale convergence limit on Γ\epsilon in the sense of (B.1) is indeed the trace of the two-scale
convergence limit; cf. Definition B.3 for our case.

Lemma 7.3. A subsequence can be extracted from the sequence in Lemma 6.1 such
that the following convergence holds:

\lambda \epsilon \alpha 

\int 

Γf
\epsilon 

û\epsilon \cdot [[w\epsilon \phi ]]
f

s d\sigma \epsilon (x) - \lambda \epsilon \alpha 

\int 

Γs
\epsilon 

û\epsilon \cdot [[w\epsilon \phi ]]
f

s d\sigma \epsilon (x)

\rightarrow \lambda \alpha 

\int 

Ω

\int 

Γ

ur(x)\phi (x,y) [[w(y)]]
f

s d\sigma (y)dx as \epsilon \rightarrow 0.(7.7)
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Proof. For the solid part, we consider \̂widetilde us
\epsilon , the extension by zero of ûs

\epsilon := û\epsilon | Ωs
\epsilon 
,

which coinsides with û\epsilon in Ωs
\epsilon . Then, there exist u(x) \in H1

0 (Ω) and u1(x, y) \in 
L2(Ω,H1

p (Ys)/R) such that \̂widetilde us
\epsilon two-scale converges to u(x)\chi (Ys) and \nabla \̂widetilde us

\epsilon two-scale
converges to (\nabla u(x) +\nabla yu1(x, y))\chi (Ys); cf. Theorem 2.9 in [3].

The uniform boundedness of the interface integral in (5.13) is still one order shy
of the assumption stated in Theorem B.4. To get a stronger uniform bound, we apply
the following scaling argument. Fix an \epsilon -periodic cell in Ω, say the cell indexed by k,
the trace theorem implies

\int 

Γs
\epsilon 

| \̂widetilde us
\epsilon ,k(x)| 2d\sigma \epsilon (x) = \epsilon 2

\int 

Γs

| \̂widetilde us
\epsilon ,k(\epsilon y)| 2d\sigma (y)

\leq \epsilon 2C(Ys)

\biggl( \int 

Ys

| ûs
\epsilon ,k(\epsilon y)| 2 + | \nabla yû

s
\epsilon ,k(\epsilon y)| 2

\biggr) 
dy

=C(Ys)\epsilon 
2

\biggl( \int 

\epsilon Ys

\epsilon  - 3| ûs
\epsilon ,k(x)| 2 + \epsilon  - 1| \nabla ûs

\epsilon ,k(x)| 2dx
\biggr) 
.

Hence, by summing over all k, we arrive at the bound needed for Theorem B.4:

\epsilon 

\int 

Γs
\epsilon 

| \̂widetilde us
\epsilon | 2d\sigma \epsilon (x)\leq C(Ys)

\Bigl( 
\| ûs

\epsilon \| 2L2(Ωs
\epsilon )
+ \epsilon 2 \| \nabla ûs

\epsilon \| 2L2(Ωs
\epsilon )

\Bigr) 
\leq C.

By Theorem B.4, there exists v \in L2(Ω,L2(Γ)) such that

\epsilon 

\int 

Γs
\epsilon 

\̂widetilde us
\epsilon (x)\phi 

\Bigl( 
x,

x

\epsilon 

\Bigr) 
d\sigma \epsilon (x)\rightarrow 

\int 

Ω

\int 

Γs

v(x,y)\phi (x,y)dxd\sigma (y)

for all \phi (x,y) \in C[Ω,Cp(Y )]. Following the proof of Proposition 2.6 in [4], for any
vector-valued smooth test function ϕ(x,y), we have

\epsilon 

\int 

Ωs
\epsilon 

\nabla ûs
\epsilon (x)ϕ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx= - \epsilon 

\int 

Ωs
\epsilon 

ûs
\epsilon (x)divxϕ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx

 - 
\int 

Ωs
\epsilon 

ûs
\epsilon (x)divyϕ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx

+ \epsilon 

\int 

Γs
\epsilon 

\̂widetilde us
\epsilon (x)(ϕ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
\cdot ns)d\sigma \epsilon (x).

Passing to the two-scale limit in each term, we obtain

0 = - 
\int 

Ω

\int 

Ys

u(x)divyϕ(x,y)dxdy+

\int 

Ω

\int 

Γs

v(x,y)(ϕ (x,y) \cdot ns)d\sigma (y)dx.

Therefore,
\int 
Ω

\int 
Γ
(v(x,y) - u(x))\varphi (x,y) \cdot nsd\sigma (y)dx= 0, which implies that, for y \in Γ,

v(x,y) = u(x) for all x\in Ω and hence the following two-scale convergence result holds:

\lambda \epsilon \alpha 

\int 

Γs
\epsilon 

\̂widetilde us
\epsilon \cdot [[w\epsilon \phi ]]

f

s d\sigma \epsilon (x)\rightarrow \lambda \alpha 

\int 

Ω

\int 

Γs

u(x)\phi (x)(wf (y) - ws(y))d\sigma (y)dx.(7.8)

For the fluid part, we know that \| ûf
\epsilon \| L2(Ωf

\epsilon )
and \| \epsilon \nabla ûf

\epsilon \| L2(Ωf
\epsilon )

are uniformly

bounded. We use
\̂widetilde 
u
f
\epsilon (resp., \epsilon \nabla \̂widetilde uf

\epsilon ) to denote the extension by zero of ûf
\epsilon (resp.,

\epsilon \nabla ûf
\epsilon ), which is the restriction of û\epsilon (resp., \epsilon \nabla û\epsilon ) to Ωf

\epsilon and apply similar arguments
as above. By Proposition 1.14(ii) of [3], there exist ζ \in L2(Ω; (H1

p (Yf ))
3) and ξ \in 
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HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2409

L2(Ω; (H1
p(Yf ))

9) such that
\̂widetilde 
u
f
\epsilon two-scale converges to ζ and \epsilon \nabla \̂widetilde uf

\epsilon two-scale converges
to ξ, with ζ(x,y) = 0 for y \in Ys and ξ(x,y) = 0 for y \in Ys. For any test function
\varphi (x,y) \in D(Ω;C\infty 

p (Y )) and ψ(x,y) \in D(Ω;C\infty 

p (Y )), with \varphi (x,y) = 0 for y \in Ys and
ψ(x,y) = 0 for y \in Ys, we have

lim
\epsilon \rightarrow 0

\int 

Ωf
\epsilon 

(ûf
\epsilon )(x)\varphi 

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx= lim

\epsilon \rightarrow 0

\int 

Ω

(\̂widetilde uf
\epsilon )(x)\varphi 

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx

=

\int 

Ω

\int 

Yf

ζ(x,y)\varphi (x,y)dydx,

lim
\epsilon \rightarrow 0

\epsilon 

\int 

Ωf
\epsilon 

\nabla ûf
\epsilon (x) \cdot ψ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx=

\int 

Ω

\int 

Yf

ξ(x,y) \cdot ψ(x,y)dydx.

Observe that

\epsilon 

\int 

Ωf
\epsilon 

\nabla ûf
\epsilon (x) \cdot ψ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx= - \epsilon 

\int 

Ωf
\epsilon 

ûf
\epsilon (x)divxψ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx

 - 
\int 

Ωf
\epsilon 

ûf
\epsilon (x)divyψ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx.

Passing to the two-scale limit in each term above, we obtain the relation between ζ
and ξ:

\int 

Ω

\int 

Yf

ξ(x,y) \cdot \psi (x,y)dydx= - 
\int 

Ω

\int 

Yf

ζ(x,y)divy\psi (x,y)dydx

from which we have ξ = \nabla yζ for j = 1,2,3. Therefore,
\̂widetilde 
u
f
\epsilon two-scale converges to

ζ(x,y)\chi (Yf ) and \epsilon \nabla \̂widetilde uf
\epsilon two-scale converges to ξ(x,y)\chi (Yf ) =\nabla yζ(x,y)\chi (Yf ).

Applying the scaled trace inequality in Ωf
\epsilon by regarding Γf

\epsilon = \partial Ωf
\epsilon leads to

\epsilon 

\int 

Γf
\epsilon 

| \̂widetilde uf
\epsilon | 2d\sigma \epsilon (x)\leq C

\bigm\| \bigm\| ûf
\epsilon 

\bigm\| \bigm\| 2
L2(Ωf

\epsilon )
+ \epsilon 2

\bigm\| \bigm\| \nabla ûf
\epsilon 

\bigm\| \bigm\| 2
L2(Ωf

\epsilon )
\leq C.

By Theorem B.4, we have that there exists h\in L2(Ω,L2(Γ)) such that

\epsilon 

\int 

Γf
\epsilon 

\̂widetilde uf
\epsilon (x)\phi 

\Bigl( 
x,

x

\epsilon 

\Bigr) 
d\sigma \epsilon (x)\rightarrow 

\int 

Ω

\int 

Γf

h(x,y)\phi (x,y)d\sigma (y)dx

for all \phi (x,y) \in C[Ω,Cp(Y )]. Note that, for any vector-valued smooth test function
ϕ(x,y), we have

\epsilon 

\int 

Ωf
\epsilon 

\nabla ûf
\epsilon (x) \cdot ϕ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx= - \epsilon 

\int 

Ωf
\epsilon 

ûf
\epsilon (x)divxϕ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx

 - 
\int 

Ωf
\epsilon 

ûf
\epsilon (x)divyϕ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
dx

+ \epsilon 

\int 

Γf
\epsilon 

\̂widetilde uf
\epsilon (x)ϕ

\Bigl( 
x,

x

\epsilon 

\Bigr) 
\cdot nd\sigma \epsilon (x).

Passing to the two-scale limit in each term, we obtain
\int 

Ω

\int 

Yf

ξ(x,y) \cdot ϕ(x,y)dydx=

\int 

Ω

\int 

Yf

\nabla yζ(x,y) \cdot ϕ(x,y)dydx

= - 
\int 

Ω

\int 

Yf

ζ(x,y)divyϕ(x,y)dydx

+

\int 

Ω

\int 

Γf

h(x,y)ϕ (x,y) \cdot nd\sigma (y)dx.
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2410 MIAO-JUNG YVONNE OU AND SILVIA JIMÉNEZ BOLAÑOS

An application of integration by parts to the second integral above leads to

\int 

Ω

\int 

Γf

(h(x,y) - ζ(x,y))ϕ (x,y) \cdot nd\sigma (y)dx= 0,

which implies that ζ(x,y)
\bigm| \bigm| 
Γf = h(x,y). Recall that ζ(x,y) = u(x) + ur(x,y) for

y \in Yf .
Then, we obtain the following two-scale convergence result:

\lambda \epsilon \alpha 

\int 

Γf
\epsilon 

\̂widetilde 
u
f
\epsilon \cdot [[w\epsilon \phi ]]

f

s d\sigma \epsilon (x)

\rightarrow \lambda \alpha 

\int 

Ω

\int 

Γf

(u(x) + ur(x,y))\phi (x)(wf (y) - ws(y))d\sigma (y)dx.(7.9)

The lemma is then proved by subtracting (7.8) from (7.9).

The following lemma will also be needed in the proof of Theorem 7.2.

Lemma 7.4. Let \epsilon be the subsequence involved in Lemma 6.1. Then, as \epsilon \downarrow 0, the
following holds:

\epsilon 2b\epsilon (û\epsilon ,w
\epsilon ) = \epsilon 2

\int 

Ω

b\epsilon ijkl
\partial ûk\epsilon 
\partial xl

\partial wi\epsilon 

\partial xj
\phi dx\rightarrow \mu ijkl

\int 

Ω\times Yf

\partial wk
o

\partial yl
(x,y)

\partial wi

\partial yj
(y)\phi (x)dxdy

for all w=
\bigl\{ 
wi
\bigr\} 
\in H1

p(Yf ), for all \phi \in K (Ω), where \mu ijkl = \mu (\delta ik\delta jl + \delta jk\delta il).

Proof. Notice that \partial 
\partial xj

(wi\epsilon (x)) = 1
\epsilon 
\partial wi

\partial yj

\bigm| \bigm| 
y= x

\epsilon 

. Choosing \psi = bijkl
\partial wi

\partial yj
in (6.2), with

w \in H1
p(Yf ), we obtain the result, due to (6.3) and \psi \epsilon = \epsilon b\epsilon ijkl

\partial wi\epsilon 

\partial xj
.

Now, we have all the ingredients needed for proving Theorem 7.2.

Proof of Theorem 7.2. For ur, we first note that ur \in L2(Ω;W ); see Lemma 6.2.
Now, we use the test function w\epsilon \phi , w \in W and \phi \in D(Ω) in (4.1), to obtain

\int 

Ωf
\epsilon 

f̂ \cdot w\epsilon \phi dx= \lambda 2
\int 

Ωf
\epsilon 

\rho f û\epsilon \cdot w\epsilon \phi dx+ c\epsilon (û\epsilon ,w
\epsilon \phi )(7.10)

+ \lambda \epsilon 2b\epsilon (û\epsilon ,w
\epsilon \phi ) + \lambda \epsilon 

\int 

Γ\epsilon 

\alpha [[û\epsilon ]]
f
s \cdot [[w\epsilon \phi ]]

f

s d\sigma \epsilon (x).

Then, by letting \epsilon \downarrow 0 in (7.10), and using Lemmas 6.1, 7.4, and 6.3, we obtain

\int 

Ω\times Yf

f̂(x) \cdot w(y)\phi (x)dxdy(7.11)

= \lambda 2
\int 

Ω\times Yf

\rho f (u(x) + ur(x,y)) \cdot w(y)\phi (x)dx

+ lim
\epsilon \rightarrow 0

c\epsilon (û\epsilon ,w
\epsilon \phi ) + \lambda \epsilon 2b\epsilon (û\epsilon ,w

\epsilon \phi )

+ lim
\epsilon \rightarrow 0

\Biggl( 
\lambda \epsilon \alpha 

\int 

Γf
\epsilon 

û\epsilon \cdot [[w\epsilon \phi ]]
f

s d\sigma \epsilon (x) - \lambda \epsilon \alpha 

\int 

Γs
\epsilon 

û\epsilon \cdot [[w\epsilon \phi ]]
f

s d\sigma \epsilon (x)

\Biggr) 
.

With a straightforward calculation, applying Lemmas 6.1 and 6.3, and integrating by
parts, the following limits can be concluded:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2411

lim
\epsilon \rightarrow 0

\lambda \epsilon 2b\epsilon (û\epsilon ,w
\epsilon \phi ) = 2\mu \lambda 

\int 

Ω

\int 

Yf

\phi (x)eij(w)eij(u(x) + ur(x,y))dydx(7.12)

= 2\mu \lambda 

\int 

Ω

\int 

Yf

\phi (x)
\partial wi

\partial yj

\partial uir
\partial yj

dydx.

lim
\epsilon \rightarrow 0

c\epsilon (û\epsilon ,w
\epsilon \phi ) =

\int 

Ω

\int 

Yf

\nabla p0(x)w(y)\phi (x)dydx.(7.13)

Taking into account Lemma 7.3 and the two equations above, (7.11) leads to the
problem for ur in (7.5).

In preparation for deriving the homogenized equations in the next section, we
calculate u1 in terms of u and p0. To do this, we seek a solution of the form

u1(x,y) = - \partial u
k

\partial xl
(x)χl

k(y) - p0(x)χ(y)(7.14)

with χ, χj
i \in H1

p(Ys)/C
3, 1\leq i, j \leq 3, real-valued vector functions, independent of x.

It can be verified with a straightforward calculation that the vectors χ and χj
i satisfy

the following equations:

q (χ,w) =

\int 

Ys

divywdy \forall w \in H1
p(Ys)/C

3,(7.15)

q
\bigl( 
χ

j
i ,w
\bigr) 
=

\int 

Ys

aijkl
\partial wk

\partial yl
dy \forall w \in H1

p(Ys)/C
3,(7.16)

respectively, which are uniquely defined by (7.4) and are independent of \lambda .
We set

\beta ij = - 
\int 

Ys

divyχ
j
i dy, \beta =

\int 

Ys

divyχdy.

Note that \beta = q(χ,χ)\geq 0 (see (7.15)).
Equation (7.14) allows us to write p0(x) in terms of u(x) and \langle ur\rangle (x) as follows.

By substitution of (7.14) into (6.8), we get

\delta  - 1p0 = \beta kl
\partial uk

\partial xl
 - Πdivu - div \langle ur\rangle ,(7.17)

where \delta and Π are given by

\delta =

\biggl( 
Π

\gamma 
+ \beta 

\biggr)  - 1

> 0, Π=
| Yf | 
| Y | = | Yf | > 0.

8. The homogenized problem. In this section, we derive the governing equa-
tions for p0(x) and w0, the two-scale limit of û\epsilon . As will be seen in the theorem
below, this homogenized problem is posed in a six-dimensional space for u and ur.

Theorem 8.1. For every \lambda such that \lambda > \lambda 0 > r > 1, the homogenized problem
for w0 = u+ ur is the solution to the following uniquely solvable equation:
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1

\lambda 

\int 

Ω

f̂ i(wi + \langle wr\rangle i)dx(8.1)

= \lambda \rho f
\int 

Ω\times Yf

(ui + uir)(w
i +wi

r)dxdy+ \lambda (1 - Π)\rho s
\int 

Ω

uiwi dx

+
1

\lambda 

\int 

Ω

qijlk
\partial uk

\partial xl

\partial wi

\partial xj
dx+ 2\mu 

\int 

Ω\times Yf

\partial uir
\partial yj

\partial wi
r

\partial yj
dxdy

+ \alpha 

\int 

Ω

\int 

Γ

ur(x,y) \cdot wr(x,y)d\sigma (y)dx

+
\delta 

\lambda 

\int 

Ω

\biggl( 
\beta kl

\partial uk

\partial xl
 - Πdivu - div\langle ur\rangle 

\biggr) \Biggl( 
\beta ij

\partial wi

\partial xj
 - Πdivw - div\langle wr\rangle 

\Biggr) 
dx

=: F (u+ ur,w+wr)

for all w \in H1
0(Ω) and all wr \in H(Ω;W ), which is defined as

H(Ω;W ) =
\bigl\{ 
w : w \in L2(Ω,W ), \langle w\rangle \in E0(Ω

s
\epsilon \cup Ωf

\epsilon )
\bigr\} 
,

and is a Hilbert space with the norm

\| w\| H =
\Bigl( 
\| w\| 2L2(Ω;W ) + \| div\langle w\rangle \| 2L2(Ω)

\Bigr) 1/2
.

Proof. We take w \in D(Ω) in (4.1), and concentrate on passing to the limit as
\epsilon \downarrow 0, using Theorem B.1, and Lemmas 6.1 and 6.2. Observe that if w \in D(Ω), the
interface term drops automatically because wf =ws on Γ\epsilon , obtaining

\int 

Ω

f̂ iwi dx= \lambda 2
\int 

Ω

\bigl( 
\langle \rho \rangle ui + \rho f \langle ur\rangle i

\bigr) 
wi dx - | Yf | 

\int 

Ω

p0 divwdx

+

\int 

Ω\times Ys

aijkl

\biggl( 
\partial uk

\partial xl
+
\partial uk1
\partial yl

\biggr) 
\partial wi

\partial xj
dxdy(8.2)

for all w \in D(Ω), where we recall the notation that is already defined in (6.4):

\langle v\rangle (x) =
\int 

Y

v(x,y)dy for v \in L2(Ω,L2
p).

In order to replace the u1 term with the zero-order terms u0 and p0, we use the
solutions of the cell problems for u1 (7.14)–(7.16) to define the following auxiliary
variables. For 1\leq i, j \leq 3, let pj

i := yj\delta ik, k= 1,2,3, and introduce

qijkl := q
\Bigl( 
χ

j
i  - p

j
i,χ

l
k  - pl

k

\Bigr) 
,

where q(\cdot , \cdot ) (resp., χj
i ) is defined in (7.2) (resp., (7.16)). Observe that the coefficients

qijkl are real and they satisfy

qijkl = qjikl = qijlk = qklij ,

qijkl\xi kl\xi ij \geq c \xi ij\xi ij (c > 0) \xi ij = \xi ji (1\leq i, j \leq 3).(8.3)

A calculation shows that
\int 

Ys

aijlk

\biggl( 
\partial uk

\partial xl
+
\partial uk1
\partial yl

\biggr) 
dy= qijlk

\partial uk

\partial xl
+ \beta ijp0, i, j, k, l= 1,2,3.
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HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2413

We substitute the above equation into (8.2) and use the fact that D(Ω) is dense in
H1

0(Ω) to obtain the macroscopic equation

\int 

Ω

f̂ iwi dx= \lambda 2
\int 

Ω

\bigl( 
\langle \rho \rangle ui + \rho f \langle ur\rangle i

\bigr) 
wi dx+

\int 

Ω

qijlk
\partial uk

\partial xl

\partial wi

\partial xj
dx(8.4)

+ \delta 

\int 

Ω

\biggl( 
\beta kl

\partial uk

\partial xl
 - Πdivu - div\langle ur\rangle 

\biggr) \Biggl( 
\beta ij

\partial wi

\partial xj
 - Πdivw

\Biggr) 
dx

for all w \in H1
0(Ω).

To close the system, we substitute (7.17) into (7.5) and test it with functions of
the form w = wr(x, \cdot ) for fixed x, wr \in D(Ω;W ) (W defined in (3.4)), followed by
integrating over Ω to obtain

\int 

Ω

f̂ i\langle wr\rangle i dx= \lambda 2\rho f
\int 

Ω\times Yf

\bigl( 
uir + ui

\bigr) 
wi

r dxdy+ 2\lambda \mu 

\int 

Ω\times Yf

\partial uir
\partial yj

\partial wi
r

\partial yj
dxdy(8.5)

+ \alpha \lambda 

\int 

Ω

\int 

Γ

ur(x,y)wr(x,y)d\sigma (y)dx

+ \delta 

\int 

Ω

\biggl( 
\beta kl

\partial uk

\partial xl
 - Πdivu - div\langle ur\rangle 

\biggr) 
( - div\langle wr\rangle )dx

for all wr \in D(Ω;W ). The space H is chosen because ur \in L2(Ω,W ) and \langle ur\rangle =
û0  - u \in E0(Ω

s
\epsilon \cup Ωf

\epsilon ), i.e., ur \in H(Ω;W ). Since D(Ω;W ) is dense in the space
H(Ω;W ), we can replace D(Ω;W ) by the space H(Ω;W ) in (8.5).

Note that the first integral on the right-hand side of (8.4) can be written as

(1 - Π)\rho s
\int 

Ω

uiwi dx+ \rho f
\int 

Ω\times Yf

(ui + uir)w
i dxdy.

Combining (8.4) with (8.5) and divide both side by \lambda lead to problem (8.1). It can be
checked that ReF (w+wr,w+wr) is coercive and hence the existence and uniqueness
of solution follow from the Lax–Milgram lemma.

The time domain macroscopic equation can be obtained by applying the inverse
Laplace transform to the equation above.

9. Conclusion. In this paper, we consider wave propagation in a poroelastic
composite material. It generalizes the results obtained in [14] from no-slip condition
on the solid-fluid interface to the case of a slip boundary condition given by the
interface term (2.12). To handle this interface condition, various function spaces are
defined in section 3.1 to accommodate the discontinuity of u\epsilon on the interface.

The existence and uniqueness result presented in section 4 dealt with the interface
term.

Unlike [14], this slip problem requires taking the two-scale convergence limit for
a surface integral. The results from [4] (presented in section B.1) generalize the
definition of two-scale convergence to surfaces and are fundamental in the limiting
process of the interface term. We can use these results since we are able to obtain
(5.5) and (5.13). An important part of our analysis is to establish the relation between
the two-scale limits of the functions and the two-scale limits of their traces. Another
difference between our results and those in [14] is that we need to add the norm of
the interface jump term to the V -norm so results like Lemma 5.4 can hold.

The interface term does not show up in the local problem for u1 (see (7.1)),
and we obtained similar results to [14]. However, the interface term is in the local
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2414 MIAO-JUNG YVONNE OU AND SILVIA JIMÉNEZ BOLAÑOS

problem for ur, which is obtained in section 7.2. Note that in (7.10) the boundary
term doesn’t disappear, and the technical lemma, Lemma 7.3, is necessary for dealing
with this term and to finally obtain (7.5).

Unlike the results in [14], where the macroscopic equation in the case of inclusions
has simpler form than the case of connected geometry, the macroscopic equations in
the slip case are indifferent to whether the pore space is connected or not.

The homogenized equations (8.1) are posed in six-dimension space. Since ur in
(7.6) is linearly proportional to the force term

F i(x) :=

\biggl( 
f̂ i(x) - \lambda 2\rho fui(x) - \partial p0

\partial xi
(x)

\biggr) 
,

we could have defined the auxiliary matrix-valued variable θ, such that

uir(x,y) = \theta ip(y)F
p(x).

By substituting this expression into (7.5), the following equations for θ(y) can be
easily obtained:

\lambda 2\rho f

\int 

Yf

\theta ipwidy+ 2\lambda \mu 

\int 

Yf

\partial \theta ip
\partial yj

\partial wi

\partial yj
dy+ \lambda \alpha 

\int 

Γ

\theta ipwid\sigma (y)(9.1)

=

\int 

Yf

w \cdot epdy, p= 1,2,3 \forall w \in W.

This cell problem can be solved first and then the homogenized equation will be only
for u(x) and hence a problem in three dimensions, instead of six. However, unlike
the auxiliary variables introduced for u1, whose governing equations (7.15) and (7.16)
are independent of \lambda , (9.1) depends on \lambda . This means that the corresponding three-
dimensional macroscopic equation problem in the time-domain will contain memory
terms with the inverse Laplace transform of θ being the kernel function. Finally, we
remark that as a result of the slip interface condition, the cell problem for ur in (7.6)

has the form of a generalized Darcy’s law but with an additional term of 2\lambda \mu 
\partial eij(ur)

\partial yj
.

The consequence of this term on the permeability will be studied in future work.

Appendix A. Useful lemmas used in this paper.

Lemma A.1 (Lax–Milgram lemma (Theorem 5.1, page 18 of [16])). If a(u, v) is
a sesquilinear form on V such that

\bullet a(\lambda u,\mu v) = \lambda \̄mu a(u, v),
\bullet | a(u, v)| \leq M \| u\| V \| v\| V ,

and if there exists C > 0 such that | a(u,u)| \geq C \| u\| 2V for all u \in V , then, for every
f \in V \prime (the dual space of V ), there exists a unique u\in V such that a(u, v) = [f, v] for
all v \in V , where [\cdot , \cdot ] represents the dual pairing between V and V \prime .

Lemma A.2 (Korn’s inequality (Lemma 1.1, page 87 of [16])). Given a bounded
set Υ with \partial Υ smooth, there exists \gamma \prime > 0, such that the following estimate holds:

\int 

Υ

Eij(w)Eij(w)dx+

\int 

Υ

wiwidx\geq \gamma \prime \| w\| 2H1(Υ)

for all w \in H1(Υ).

Appendix B. Useful convergence results. We list here the various conver-
gence theorems that are applied throughout this paper. The proofs can be found in
[13, 14].
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Theorem B.1. Let v\epsilon \in L2(Ω) (Ω is any bounded open set in R
3) such that

\| v\epsilon \| L2(Ω) \leq C \forall \epsilon .

Then, up to a subsequence (still denoted by \epsilon ), as \epsilon \downarrow 0, the following holds:
\int 

Ω

v\epsilon w
\epsilon \phi dx\rightarrow 

\int 

Ω\times Y

vo(x,y)w(y)\phi (x)dxdy

for all w \in L2
p, for all \phi \in K (Ω), where vo \in L2(Ω;L2

p).
If, furthermore, v\epsilon \in H1(Ω) and there exists a constant C > 0, independent of \epsilon ,

such that

\| v\epsilon \| L2(Ω) \leq C for all \epsilon ,

3\sum 

i=1

\int 

Ωo
\epsilon 

\bigm| \bigm| \bigm| \bigm| 
\partial v\epsilon 

\partial xi

\bigm| \bigm| \bigm| \bigm| 
2

dx\leq C \forall \epsilon ,

Then, we can extract a subsequence (still denoted by \epsilon ) such that for all w \in L2
p and

\phi \in K (Ω), as \epsilon \downarrow 0, we have

v\epsilon \rightarrow \langle vo\rangle in L2(Ω)-weak,\int 

Ω

v\epsilon w
\epsilon \phi dx\rightarrow 

\int 

Ω\times Y

vo(x,y)w(y)\phi (x)dxdy,

\int 

Ωo
\epsilon 

\partial v\epsilon 

\partial xi
w\epsilon \phi dx\rightarrow 

\int 

Ω\times Yo

\biggl( 
\partial u

\partial xi
(x) +

\partial u1

\partial yi
(x,y)

\biggr) 
w(y)\phi (x)dxdy, i= 1,2,3,

where vo \in L2(Ω,L2
p) is given by

vo(x,y) = u(x) + ur(x,y)

with u \in H1(Ω), ur(x,y) = 0 almost everywhere in Yo, for almost all x \in Ω, u1 \in 
L2(Ω;H1

p (Yo)/C), and \langle vo\rangle (x) :=
\int 
Y
vo(x,y)dy, the mean value of vo(x, \cdot ). Moreover,

if v\epsilon \in H1
0 (Ω), then u\in H1

0 (Ω).

Remark B.2 (see [13]). Assume that \| v\epsilon \| H1(Ω) \leq C for all \epsilon . Then, by extraction
of a suitable subsequence, we have

v\epsilon \rightarrow u in H1(Ω) - weak,\int 

Ω

\partial v\epsilon 

\partial xi
w\epsilon \phi dx\rightarrow 

\int 

Ω\times Y

\biggl( 
\partial u

\partial xi
(x) +

\partial u1

\partial yj
(x,y)

\biggr) 
w(y)\phi (x)dxdy

for all w \in L2
p, for all \phi \in K (Ω), where u1 \in L2(Ω;H1

p(Y )/C).

These theorems motivate the following definition of two-scale convergence.

Definition B.3. A sequence \{ v\varepsilon \} \varepsilon >0 in L2(Ω) is said to two-scale converge to
v= v(x,y), with v \in L2(Ω\times Y ), if and only if

lim
\varepsilon \rightarrow 0

\int 

Ω

v\varepsilon (x)\psi 
\Bigl( 
x,

x

\varepsilon 

\Bigr) 
dx=

1

| Y | 

\int 

Ω

\int 

Y

v(x,y)\psi (x,y)dydx

for any test function \psi =\psi (x,y), with \psi \in D(Ω,C\infty 

p (Y )); see [13, 3].
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2416 MIAO-JUNG YVONNE OU AND SILVIA JIMÉNEZ BOLAÑOS

B.1. Two-scale convergence on the surface. To handle the interface term
in the weak formulation, we will also need the following theorems, which generalize
results about two-scale convergence to sequences in L2(Γ\epsilon ). Their proofs can be found
in [4].

Theorem B.4 (see [4]). Let u\epsilon be a sequence in L2(Γ\epsilon ) such that the surface
integral satisfies the bound

\epsilon 

\int 

Γ\epsilon 

| u\epsilon (x)| 2 d\sigma \epsilon (x)\leq C.

Then, there exist a subsequence (still denoted by \epsilon ) and a two-scale limit g(x,y) \in 
L2(Ω;L2(Γ)), such that u\epsilon (x) two-scale converges to g(x,y), in the sense that

lim
\epsilon \rightarrow 0

\epsilon 

\int 

Γ\epsilon 

u\epsilon (x)\phi 
\Bigl( 
x,

x

\epsilon 

\Bigr) 
d\sigma \epsilon (x) =

\int 

Ω

\int 

Γ

g(x,y)\phi (x,y)dxd\sigma (y)(B.1)

for every continuous function \phi (x,y)\in C[Ω;Cp(Y )].

The following extension theorems play a crucial role in establishing the uniform
bounds of solutions, which are required for the two-scale convergence.

B.2. Extension theorems. Define

Σs,f
\epsilon = \partial Ω \cap \epsilon Ỹs,f , Vs,f =

\bigl\{ 
v \in H1(Ωs,f

\epsilon ) : v= 0 on Σs,f
\epsilon 

\bigr\} 
,(B.2)

Ω1 =
\bigl\{ 
x\in R

3 : d(x,Ω)< 1
\bigr\} 
,(B.3)

where d designates the Euclidean metric and Ω is the closure of Ω in R
N .

Theorem B.5 (Theorem A of [14]). For each \epsilon < \epsilon o (\epsilon o is a suitable constant),
there exists an extension operator T\epsilon \in \scrL (Vs,H

1
0(Ω1)) (i.e., T\epsilon is continuous linear

and T\epsilon u= u on Ωs
\epsilon for all u\in Vs) such that

\int 

Ω1

Eij(T\epsilon u)Eij(T\epsilon u)dx\leq C

\int 

Ωs
\epsilon 

Eij(u)Eij(u)dx \forall u\in V\epsilon ,

where the constant C does not depend on \epsilon .

A similar extension theorem can be established for Vf .

Theorem B.6 (Theorem B of [14]). There exists an extension operator Tp \in 
\scrL (H1

p(Ys),H
1
p) such that Tpw=w almost everywhere in Ys for all w \in H1

p(Ys) and

\int 

Y

eij(Tpw)eij(Tpw)dx\leq C

\int 

Ys

eij(w)eij(w)dx \forall w \in H1
p(Ys),

where the constant C does not depend on \epsilon .

A similar extension theorem can be established for Yf .
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