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HOMOGENIZATION FOR A VARIATIONAL PROBLEM WITH A
SLIP INTERFACE CONDITION*

MIAO-JUNG YVONNE OU' AND SILVIA JIMENEZ BOLANOSH

Abstract. Inspired by applications, we study the effect of interface slip on the effective wave
propagation in poroelastic materials, which are composites consisting of elastic frames whose pore
space is filled with fluid. The current literature on the homogenization for the poroelastic wave
equations are all based on the no-slip interface condition posed on the microscale. However, for
certain pore fluids, the no-slip condition is known to be physically invalid. In the literature, slip
boundary conditions have been considered for porous materials with rigid solid frames. For these
rigid porous materials, the wave can only propagate in the pore fluid and hence the equations for
the microscale are posed only in the pore space. Consequently, the slip on the interface involves only
the fluid velocity and the fluid stress. In contrast, for poroelastic materials, the wave can propagate
not only in the pore fluid but also in the solid frame; hence the slip conditions involve the velocities
on both sides of the interface, rather than just the fluid side. With this slip condition, a variational
boundary value problem governing the small vibrations of a periodic mixture of an elastic solid and
a slightly viscous fluid is studied in this paper. The method of two-scale convergence is used to
obtain the macroscopic behavior of the solution and to identify the role played by the slip interface
condition.
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1. Introduction. Poroelastic materials are composite materials made of an elas-
tic solid matrix and fluid residing in the pore space. The poroelastic wave equations
have been widely used in biological research as well as geophysical research; for exam-
ple, cancellous bones, saturated rocks and sea ice; see [10, 18] andreferences therein.
To study the physical properties of these composite materials, the availability of the
poroelastic wave equations for wavelength much larger than the scale of the micro-
structure is crucial. In this wavelength regime, techniques such as the homogenization
method can be used to derive these effective wave equations from the wave equations
for each phase in the microscale. Compared with the effective media approach, the
homogenization approach is less phenomenological in the sense that the coefficients in
the homogenized equations can be calculated by solving the so-called cell problems,
which are derived as part of the homogenization process. The homogenization for the
variational boundary value problem of the stiff type that governs the small vibrations
of a periodic mixture of an elastic solid and a slightly viscous fluid, with no discon-
tinuity of the displacement in the interface between the two phases, was developed
by Nguetseng in [14], where the resulting homogenized equations are the poroelastic
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wave equations for composites with a no-slip interface condition. Also, this set of
equations validates the well-known Biot equations [7, 6]. However, it has been ob-
served that the no-slip interface condition is not valid for some applications such as
the polymeric pore fluid or coated interface; see [17] and the references therein. In
these cases, the interface condition at the microscale is of slip type and it leads to a
set of interesting questions. For example, since the no-slip condition is linked to the
concept of the boundary layers within which the energy dissipation is the most signif-
icant, how will the energy dissipation change when the no-slip condition is replaced
by a slip condition on the interface? In the homogenized equations, the energy dissi-
pation and wave dispersion are described by the effective properties called “dynamic
permeability” and “dynamic tortuosity,” the two most important characterizations of
the dynamic properties of the poroelastic materials. How will these quantities change
when the no-slip condition is replaced by a slip condition? As a starting point for
answering these important questions, in this paper, we carry out the analysis for the
case in which a slip boundary condition at the solid-fluid interface is allowed.

We consider the mixture of an elastic solid and a slightly viscous fluid, in the
framework of small motions linearized with respect to a rest state, where the geometric
distribution of the solid and fluid parts is periodic, with characteristic length of the
period given by €, with 0 < € < 1. Mixtures in mechanics are of great interest in
physical applications; see, for example, [11, 12, 16, 14, 2, 9].

A variety of different problems arise according to the orders of the viscosity co-
efficients and the topological properties of the mixture. In [15], the authors used the
energy method (see [5]) to show that, whether or not the fluid phase is connected, if
the elasticity coefficients together with the viscosity coefficients are O(€"), the limit
of the displacement, as € — 0, does not depend on the local variables. In this paper,
we will take the elasticity coefficients to be O(€”), and the viscosity coefficients to be
O(€?), i.e., pe? and ne® with constant g and 7. In the formal analysis, seen in [11]
or Chapter 8 of [16], it is concluded that if the fluid part is strictly contained in the
period of reference, and therefore it is not connected, the formal limit of the displace-
ment in the mixture does not depend on the local variables. On the other hand, if
the fluid part intersects each face of the period of reference, and it is connected, the
formal limit of the displacement depends on the local variables. The formal analysis
results above were rigorously proved in [14] using the method of 2-scale convergence
(see [13, 3]). Differing from [14], connectedness does not play a role in the analysis
developed and the results obtained in this paper.

The novelty of this paper is that the results obtained in [14] are generalized to
the case in which there is a slip interface condition. Though the results of the present
paper are similar to those of [14], dealing with the interface term (2.12) is not trivial.
New technical lemmas are required in order to carry out the limiting process.

This paper is organized as follows. In section 2, we present the setup of the
mathematical problem. In section 3, we derive (3.8), the variational formulation of
the boundary value problem that governs the small vibrations of a solid-fluid mixture
with a slip boundary condition on their interface. In section 4, we prove the existence
and uniqueness of the solution to the problem with a fixed e. The main general
convergence and extension results can be found in Appendix B. In section 5, we prove
the necessary uniform estimates to find the macroscopic equation. The derivation for
the local problems (for u;(x,y) and u,(x,y) in Lemma 6.2) is presented in section 7.
In section 8, we derive the homogenized problem. Finally, in section 9, we present
our conclusions.
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2. Background. In this section, we state the mathematical formulation of the
problem to be studied, which concerns the acoustics equations of poroelastic mate-
rials with periodic microstructure and a slip boundary condition on the solid-fluid
interface.

2.1. Geometry of the microstructure. We consider the space R? of the vari-
ables y = (y1,y2,ys3) to be a periodic set, with unit cell Y = (—%, %)3, decomposed as

Y =Y,UY;UT,

where Y, and Y} are open sets in R3, Y, represents the part of Y occupied by the
solid, Y; the part of Y occupied by the fluid, and I' the smooth surface separating
them. The boundary, the closure, and the Lebesgue measure of a measurable set A in
R3 are denoted by OA, A, and |A|, respectively. Let Y; be the Y-periodic extension of
Y7, i.e., the union of all the (Y;U(Y7 N3Y))+k, k ranging over Z3, I = s, f. Similarly,
we denote by I the Y -periodic extension of I'.

Following [1], we assume the following hypotheses:

(i) Y and Y} have strictly positive measures on Y.

(ii) Yy and Y; are open sets with boundary of class C', and are locally located
on one side of their boundary. Moreover, Y, is connected. Hence Y, has
an intersection with each face of the cube Y with strictly positive surface
measure.

(iii) Y is an open connected set with a locally Lipschitz boundary.

2.2. Notation. Let €2 be the smooth bounded open set occupied by the poro-
elastic material in R3 with coordinates x = (x1,22,73). Let € denote the scale of the
periodic microstructure, 0 < e < 1.

The solid part and the fluid part of €2, together with their interface, are defined
as follows:

Q:=Qne, of=and;, T.={xe:Zel}.
€

Observe that f is connected. Since I, is orientable, we can define I' and TI'f
to be the solid side and the fluid side of I, respectively. With this notation, the
following jump operator across I'. is defined:

(2.1) [1{ =)

- ()

rs’

rf

Moreover, we let n be the unit outward normal vector of 9Q/f, i.e., n points toward
the solid phase.

We denote by do(y), for y € Y, and by doe(x), for x € §, the surface measures
on I' and I, respectively. Note that

90 =T U0 NAN) and T, =005\ (907 NIQ).

The “micro”-coordinates y and the “macro”-coordinates x are related by y =
x/e. Also, the superscript € is reserved for signifying the following rescaling of a
function w:

w(x) =w (E) for w=w(y).

€
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The gradient of a vector field v(x) is denoted by Vv, which is a matrix such that
[Vv]i; = %. The linear strain tensor with respect to x (resp., y) is denoted by E(+)
(resp., e(+)) and it is defined as follows:

1 /ot ol o
Ez‘j(V(X))Q(@x,Jfax,), i,j=1,2,3;
J )

1 /0w Ouw’
j i

), i,j=1,2,3.

We denote by divy the divergence operator with respect to y, and by divy, or simply
div, the same operator with respect to x. If V is a vector space, the vector space
of the same name written in boldface V represents the corresponding product space
V3 =V x V x V. In this paper, all of the vector spaces considered are over the
complex field C. The Einstein summation convention is used throughout the rest of
this paper, d;; is the Kronecker delta, and C represents a universal constant, which is
independent of variable quantities such as €, ¢, and that may change value from line
to line.

2.3. Governing equations. We denote the elastic moduli of the solid phase
by constants a;jr, 1 <14,7,k,1 <3, satisfying the following symmetry conditions and
V-ellipticity condition:

(2.2) A5kl = Ajikl = Gijlk = Qklij,
(2.3) aik1€ri&i; > ¢&i;&ij, ¢ >0 V symmetric matrices §

For the fluid part, let ne?, ue? € R be the fluid viscosities, where y and 1 are O(1)
and satisfy the following conditions:
n 2
2.4 >0, —>—-.
(2.4) I 773
We assume the external force f = {f'} € L2 (0, +00;L?(12)) is independent of € and
satisfies the following bound:

(2.5) ()] f2() < Ke™ (K >0,meR) for almost all 0 <t < oo,

Let p* and p/ denote the density of the solid phase and density of the fluid phase,
respectively, and ¢y > 0 the reference speed of sound. For a fixed €, the governing
equations for the solid phase are in terms of the displacement field u. are (see Chapter
8 of [16]):

0%l 0o

2.6 =Y,y
(2.6) o = b + £
(2.7) Q3= aijri B (ue);

ou.

o and

whereas for the fluid phase, they are given in terms of the fluid velocity field
the acoustic pressure p. := —c3 p/ V - u. (see Chapter 8 of [16]):

o2u’ 60{ p
f € _ J _'_ft7

Ju,
(2.9) Q'ij = —0;;pe + (€°16:;0k1 + 211€*6:x051) E (&f) .
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Note that the constitutive equation (2.9) is equivalent to

ou,
(2.10) Q{j = 6ijc%pr ‘U + (e 10;;0k1 + 211€ 6Z;€(5ﬂ) By ( ey )

The equations of motion (2.6)-(2.9) are complemented by the jump conditions on
the interface T';:

(2.11) Z%n= 2/ .n (continuity of stress),
. ou T
(2.12) o/ n—ca Ha‘;ﬂ (slip condition),

where a > 0 is the slip constant. For more information about the e-scaling for the
slip constant in (2.12), see [2, 8]. In this paper, we consider the homogeneous initial
conditions

ou,
ot

3. Variational formulation. In this section, the variational formulation of the
system of equations (2.6)—(2.13) is derived. We start with introducing the function
spaces which are used in this paper.

3.1. Function spaces. Recall that Y = (-1, 5) Let Y, be a subset of Y with
Lipschitz boundary such that the periodic extension Y, has C! boundary in R3. The
following typical function spaces are used in this paper:

e () the space of Y-periodic continuous functions on R3.

. C’°° the space of Y-periodic C* functions on R3.

° Lg(Y ): the space of Y-periodic square integrable functions in Y,. This is a
Hllbert space with the L?(Y,)-norm.

o Hy(Y,)= {w|w e L}(Y,), §% € L3(Y,), i =1,2,3}. This is a Hilbert space
w1th the HY(Y,)-norm.

o H)(Y,)/C* = {w|w e Hl(Y and [, wdy = 0}, equipped with the norm

(2.13) w(0)=0, v.(0)="2¢(0)=0.

2 —_
”w”H;(YO)/C\/ z 1H3y@ L2(Y,)

e 7 (2): The space of continuous functions with compact support in €.
e 7(Q): space of C*° functions with compact support in 2.
In the case Y, =Y, we will write L2 (resp., H}) instead of L2(Y) (resp., H}(Y)).
The following function spaces specializing to the interface slip conditions (3.7) are
considered in this paper:

(3.1) V::{W\WEHl(quﬂf):W|BQ:O},
with the norm given by

2 2 2 2
(3.2) Il o= w121 r) + 19902 ) + 1D | e, -

Notice that V is a closed subspace of H(Q2f UQ?) by the trace theorem.
The counterpart of V' for functions defined in the unit cell Y is given by:

Vy :={weH' (Y;UY,) :wis Y-periodic},

2 2 2 2
IS, o= W% vy + 103 oy + 1T9DE [ oy
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The role of the interface term in the norm will be made clear later. As will be revealed
in Theorem 5.1, the following Hilbert space is also needed in the analysis:

(33)  Eo(@:uel)
={w:weL*(Q:uQ)), div(w)e L*(QUQ/), w -ng=0on 99},

where ng represents the unit normal on 9€) pointing outward from €2, equipped with
the inner product:

< W1, Wso >ED(Q:UQ{):/QW1 -de—&—/ﬂsuﬂf div(wy)div(ws) dx

for wi, wa € Ep(22 UQS). The norm induced by this inner product is denoted by
| - HEO(QSUQf)_ The Laplace transform of the fluid motion with respect to the solid
will be shown to be in the following space:

(3.4) W:={weVy :w=0onY;, and divyw=0}.
Note that W is a closed vector subspace of Vy-.

3.2. Derivation of the variational problem. The variational formulation in
the function spaces mentioned above is derived in this section.
For the solid phase, (2.6) and (2.7) lead to

0?ul —
/ p° widx
. ot?
Qg
i

— . ow _ )
= / wlfzdx — —_— (aijklEkl(us)) dx + / wlaijklEkl(ue)nﬁ,dae(x)
Qs Qs Oz T.

for all w € V, where n; is the unit normal vector of I'c pointing out of Q¢ (toward
the fluid part). By the symmetry of a;;; in (2.2), we have

ouF vt N
/Q UM G D dX:/Q aijri B () Eij (v)dx.

s s
€ €

Therefore, the above can be rewritten as

§32ui—. — —
(3.5) / v w’dXZ/ w' fldx — / ikt Ep (W) B (ue) dx
Qs Qs Q2
—/ JaijklE;gl(ue)njdae(x)7
r.
where the minus sign in the last integral is due to the fact that n = —nj.

For the fluid phase, (2.8) and (2.10) imply for all w € V', we have

0?ul — — N
(3.6) /Qf pfwwldx:/ﬂf w' f dx—/ﬂf [c%pf(v-ue)(v-w)

€

N du ow? Ou
2 . . € 2, B =
+e*n(V W)(V 8t)+2euaij”<at)1dx

+/ [cgpfnjwj(v-ue) + E2nnd wi (V- 6116)
re

ot

+2pe?n wi B <88l:;) ] doe(x).
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Observe that a;j Exi(ue)n? = (2°n)" is the total solid stress acting on the interface
and, similarly, the terms in the boundary integral in (3.6) can be regarded as (Z/n)’.
Summing the boundary integrals in (3.5) and (3.6), we can use (2.11) to obtain

(3.7) — / (@ n) wido(x) + / (@' n)wido(x) = / (@fn)i (m)idae(x)

rf .

:E/rea Haal?ﬂj-[[w]}fdae(x).

From (3.5), (3.6) and (3.7), and denoting v = ¢2 pf, the variational formulation
for our problem is as follows.
Find u,, function of ¢t with values in V', such that

— 0%ul — 0%ul —
/QflwldXZ/QS P’ at;wzdx—!—/ﬂf pfaT;w‘dx

+ / aijki B (ue) By (w)dx + /f Y(V-u)(V-w)dx
Qs Qz

o f o 5 ) s, ()

for all w € V; or equivalently,

— 0?ul — 0%t —
7 — S €10 f € €
(3.8) /Qf’w dx_/Qgp at2wdx—i—/9£p —athdx-i-c(ue,w)

ou, ou, fo_
+€2b6(811’w>+6/pa[[811ﬂ w]! doo(x)

S

for all w € V, where u.(0) = %%(0) = 0 and the sesquilinear forms b and c¢ are
defined as

6o v = [ 070 (T + 2By () By

¢, v) = / i1 Byt (w) By (v + / AV ) (V)i
Qs Qz

4. Well-posedness of the variational formulation. In this section, the analy-
sis of the variational problem (3.8) is carried out in the Laplace transformed domain.

Let v(A) be the Laplace transform of a function v(¢). The variational formulation
of problem (3.8) in the Laplace transform domain, for a fixed A, reads as follows (for
the ease of notation, we omit the argument A in 6 (\) and F(\)).

Find G, € V such that for all w € V' the following equation is satisfied:

(4.1) / f - Wdx =a(ti., w),
Q
where the form a(ti,w) is defined as follows:

a(lte,w) := /\2/ Pl - Wdx + /\2/f pli, - Wdx + ¢ (i, w) + \e2b¢ (e, w)
Qs Q

4 /\e/ afa]! - 7] do.(x).

€

The main result in this section is the following theorem.
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THEOREM 4.1. For any fized € >0 and X such that Re(\) > Ao > 0, with M\ large
enough, the variational problem (4.1) has a unique solution.

The following lemma plays a crucial role in the proof of Theorem 4.1.

LEMMA 4.2. Suppose Q5 NOQ # (0. Then, for all w € V, there exists K =
K (€) >0 such that the following estimate holds:

(4.2) /Q

wrwidx + / wwidx
c Qe

€

Proof. We prove this by contradiction. Suppose (4.2) is not true. Then, there

exists a sequence {Wk}iil in V, with HWkHLz(QfXQS) =1, satisfying

/ Ei'(Wk)Eij(Wk)dw-F/ |[[W]]f‘2d05(:c)—>07 as k — oo.
Qf xqs T.

Hence, by the Korn’s inequality in Lemma A.2, there exists w* € V such that wF —
w* weakly in V and w*® — w* strongly in L?(Q). Therefore, [W*llz2(q) = 1 and
HwkHV < C. By Proposition 1.1 on page 8 of [16], we have ||w*||,, <liminfy HWkHV.
From the latter, it follows that

[ Ewn Byt [ vl o)
Qf xqs T.

< lim inf 1+/ Eil(wk)Eij(wk)der/ |[[wk]]£|2dae(x) ,
k Qf xqs

€

which, in turn, implies that
(4.3) / Eij(Ww")E;j(w*)dr =0 and / |[[w*]]£ |2 do(z) =0.
Qf xas .

Therefore w* is a rigid body motion in each phase. Since W*|,q.q5q = 0, we have
that w* = 0 in 2. By the interface integral in (4.3), we must also have w* = 0 in
Q. This contradicts Wl 2y =1 0

The proof above demonstrates the importance of including the interface jump in
the norm of the space V' in (3.1). Without the interface term, the lemma would not
be true.

With this lemma, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. The fact that \ is a complex number and the appearance
of various orders of A in the expression of af(-,-) prevent a direct application of the
Lax—Milgram lemma (Lemma A.1). Noticing that Re()\) and Re(3) have the same
sign, we recast the variational problem (4.1) to an equivalent problem by dividing
both sides of (4.1) by A #0:
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Find i, € V such that, for all w € V, we have

1 JR— R 1
(4.4) Xae(ﬁmw) = )\/ piluiwidx + )\/f pldtwidx + Xce(ﬁe,w)
H Qe

+62b6(ﬁ6,w)+6/ a[[ﬁJ]?MﬁdoJx)

1 n— 6
:XAfzwde.

To show the coercivity of (§)a(w,w), for w € V, with Re(X) >0 and € > 0, we
observe that the properties of the coefficients a;jx;, 7 and g in (2.3) and (2.4) imply
the following inequality:

(4.5)

Re (e (wow) 2 (wow) ¢ [l [ doo))

€

> Re (i) / chij(w)de
+62u{/ {—IV w|? + Eij(w )E()} dx.

+ [ EswE B (wlix } + ca Nt a0
> min (Re () ,emea) ( /Q vy DB (W) / E Wl |* doe<x>> .

We note that Lemma A.2 implies that there exist v, 7} >0 such that

(4.6) E”< w)By(widx+ | w - Wdx > 7, [|w[ 7 00 »

_ 2
(4.7) / Bl B+ [ vwsvde > 5wl -

Also, as long as 9Q: N 9N # 0, by Lemma 4.2, there exists K > 0 such that

(4.8) / wiwidx < K / Eij(w)Eij(w)dx—&—/ |ﬂw]]£|2doe(x)
Qsxf Qsxf I.

for all we V.
Using (4.6),

(1
(49) o () et 4 wowy e [ alwl | dou(o)
>m

ol ()i

7), and (4.8) in (4.5), we have

1
5| BB
2 Jasxaf

1 — 1 2
Lot _ f
+2K ngQ{w widx + 2/F€ |wl!] do’e(x)]
> C'||lwlf,
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where C’ := min(Re (f) ,eQ,u,ea)qnin(%, ﬁ

we have

)-min(v}, v, %). Therefore, for allw e V,

1
Re (Aaﬁ(w,w)> > |w?

This proves the coercivity of the sesquilinear form in (4.4). The boundedness of
this form can be checked easily by a repeated application of the Cauchy—Schwarz
inequality. Therefore, by Lemma A.1 (Lax—Milgram lemma), there exists a unique
solution of (4.4) and, hence, of (4.1), for any fixed € >0 and A, with Re(\) > 0. 0

5. Uniform bounds and the weak limit. We have shown that for any fixed
A with Re(A) > 0, there is a unique solution @, of (4.1) for each € > 0. In order to
apply the compactness results of the two-scale convergence (cf. Definition B.3), we
need to estimate the sequence {li.} and their derivatives so as to derive the bounds
which are uniform in e.

The main result in this section is the following theorem regarding the uniform
bounds of the sequence of solutions {@i.} of (4.1).

THEOREM 5.1. For every fized A such that Re(\) > 0, the sequence of solutions
{.} of (4.1) satisfies the following estimates:

(5.1) [0c|[p2() <C Ve,

(5.2) elltcll, <C Ve,

(5.3) v |2 o0 <C Ve,
(54) ||Vu6HL2(Q:) SC V0<6<60.

From this theorem, we see that the restriction of {{i.} to the solid phase Q? is
uniformly bounded in H!(Q#) while the restriction to the fluid phase is only bounded
uniformly in Hg;, (/). This prompted the introduction of the space Eo(Q% U Q)
defined in (3.3).

The following lemmas are essential in proving Theorem 5.1.

LEMMA 5.2. Let p* = min{ps,ps} and z.(t) = e ""u.(t), where r > 0 is a fized
real number and u. the solution of (3.8). We have for r > maX{O, %}, where m s
the growth rate of £ defined in (2.5), that
0z, 2

* 2 € € 2
+p ||ZE||L2(Q) + c(2e,2¢) + e’b (Ze,2c) + e |H[ZEH£HL2(F€) <C
L2(Q)

for almost all 0 <t < oo and for all e >0. Moreover,
(5.6) 1Zel[72 0y + 1div(ze) | 72y < C

for all € and almost all t > 0.
Proof. From the definition of z.(t), we have

ou, t <8zE >
=e + 1z |,

ot ot
Pu. ., [0z 0z,
92 =e <8t2 + 27 5 +r zs).
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Plugging these into (3.8), and taking w = %zt‘, we obtain
_ ) 5
it Zc 0%z, 0z, 0z, 2/ 0z,
f- dx = . d 2 d e ——d
€ /Q ot = | Par o T r/Qp’at R N T

. 0z, 2,¢ [ 0Zc Oz 95c 0z,
+c (ze,at)—f—eb (625’ at)—i—reb (ze, 6t>

+a/ 0z, ! 0z, !
el |,

2 do (x) + rea /F 2 M do(x).

Rearranging terms and applying the estimate of f in (2.5) lead to

|»
Q

+re?b (Ze,2c) +rea/ [[ze]}f: M{ daﬁ(x)]
e
Oz, oz, |?
:e*”/f~ EdX*?T/ ‘ °ldx
o ot o' ot
12
2 0z, 0z, 760[/ 0z,
ot’ ot r [lLot ],

0z
< —rt f. €
<e /Q 5 dx

0z,

(5.7) -

2
dxtr [ plafdx o+ e (o)
Q

1d
2dt

doe(x)

0z
< eth f e
< Wl |5 |,
<€_TtK1/26mt/2 /p %de 1/2
B A o | Ot

0z,

2
87 dX-i—’I“Q/ p‘Z€|2dX+CE(Z6,Z€)
t Q.

tKl/Qemt/Q /
<e""——— p
Vv )

L 1/2
+7e%b (2, 2) + 7“604/ [z])? - [[ze]}f dae(x)> ,
r

since r and « are nonnegative. Due to the fact that

Ld

5 dt(') - (.)1/2£(.)1/2 if (1) >0,

dt

we can simplify (5.7) to obtain

i / 0%,
at | J,° | ot
21€ f —=f
+7red (Ze,ze)—l—reoz/ [zc]) - 2] doe(x)
Te

KI/Qe(m/Q—'r‘)t
< —.
- Vo*

2
dx +r? / plzc2dx + (2., z.)
Q

1/2
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Oz
ot

Because z|i—o =

/ 0z,
NawT

1/2 K1/2
f f (m/2—r)T
+Tea/ zss-zﬁsda€x> < —|1—e .

I‘E[ ] [ ] () =T ﬁp*(’l’72)( )

Note that the bound does not depend on €. Therefore, for z. with r > max(0, %),
(5.5) must be true for £ >0 a.e. and for all € >0. Note that, for all 7> 0 and r > 7,

m—2r

we have 0 <e” z T < ¢e®=1. This means that

/ ’8z6
oot

+ 1%V (2e,2e) + rea/ [z.]! Mf do.(x)
I

1o =10, we have

2
dxtr? [ pla st (anm) 41V (a,)
Q

2
dxtr [ plafxc+ e (az)
Q

is uniformly bounded with respect to time ¢. The bound stated in (5.6) then follows
as a consequence of Lemma 5.2, the definition of ¢¢ (see (3.9)) and (2.3). |

LEMMA 5.3. For r>max(0, %), we can extract a subsequence such that
zc =29 i L®(0,400; Eo(Q UQY))-weak star.

Moreover, letting ug(t) :=zo(t)e"™, there exists a subsequence of {u.}, denoted by the
same symbol, which converges as follows:

(5.8)  W(A) = to(N) in Eo(Q2UQ)-weak forany A€ C, Re(A) > \g > 7.
(5.9) ue. — Ug in L®(0,T; Eo(22 UQY))-weak star for any T > 0.

Proof. By virtue of (5.6), the sequence {z.} remains uniformly bounded in the
space L>(0,+00; Eo(Q: UQY)), for all r > max {0, 2}, i.e., for all ¢ € L*(0,+00, Eg
(922 U Q)), we have

oo

lim <Ze(t>')>¢(t7')>EO(Qiuﬂ[)dt:/0 <ZO(t7'>7¢(t7')>EO(quﬂ£)dt

e—0 0

and if ¢(x,t) = e *M)(x), s >0, this is equivalent to

2gng)<z€<s>,w<x>>Eo<mz>=?i%</o @‘“ze<t,->dt,w<x>>

= (20(5), ¥(X)) g, (@s001)-

BEo(Qsu0f)

By letting ug(t) = zo(t)e™, with r > max{0,m/2}, (5.8) and (5.9) can be
deduced. O

LEMMA 5.4. There exists a positive constant C, independent of €, such that

€ (o PN PN 2 N
b (e, Ge) + (T, @) + ‘ [[uf]]gHLZ(F() > C||u€||%/.
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Proof. For all we V| we have
(5.10) ¢ (w,w) + b° (w,w) +/ Iwl!|* doe(x)
T

>c / s Eij(w)Eij(w)dx

€

+u{/ﬁ{ 217w By B ) i

+/QfE”( VEij(w dx} /]ﬂw]}f| do(x

€

> [ By B Wit | By (w) (W) + / Wl [? dor.(x),
Qs Q: re

where the constant c is the V-elliptic constant for the solid elasticity tensor a;;x
defined in (2.3). By the extension result in Theorem B.5, there exist operators T/
and T that extend w to € from Qf and Q2 respectively, such that the following
estimates are valid with positive constants Cy and Cj, independent of e:

/EwTu By (T7 )dX<Cf/ By (w) By dx Vue VY,
1951

/E”Tu Eij(Tra) dx < O Ei;j(w)E;j;(u)dx YueV?,
o Qs

where V*/ and Q; are defined in (B.2) and (B.3), respectively. Since the extended
functions belong to H} (1), Korn’s inequality implies that

/stgf Eyj(w)E;(w)dx > D' (”W”Hl(Qf) + ||W||%{1(Qi))’

where the positive constant D’ depends only on Cy, C, and the Korn’s constant of
;. Finally, (5.10) becomes

e ww) 4 (ww) [ o (9 2 min (- . ) fwlp. 0

With these lemmas, Theorem 5.1 can be proved as follows.

Proof of Theorem 5.1. By setting w =1, in (4.1), we obtain

1 i g -
Re()/fzﬁgdx:Re()\) V péagagder/ plalai dx
A Ja of

4 Re (i) o (e, 1) +e/ afa]! - o] do.(x).

€

+ €2b° (1, ;)

Besides, from Lemma 5.2, we can easily conclude that, for Re(\) > r, we have

oo o C
AC 2 </ —2)t . 2 dt<C/ —2()\—r)tdt:7
loclze@ < [ e ludza@dt<C | e 2(Re(N) — 1)’

ie. ||ﬁ6||%2(9) is uniformly bounded with respect to e. Therefore, for Re(\) > r, by
taking into account (2.5), we have the following bounds:
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(5.11) (e, 0) <C Ve,
(5.12) €2b° (e, 1) <C Ve,
(5.13) elllac|| o, SC Ve,

where, for simplicity, we write @, instead of @c(A). The uniform bound (5.2) is
then implied by Lemma 5.4, (5.11), (5.12), and (5.13). The uniform bound (5.3) is a
direct consequence of (5.8). To show the uniform bound of the gradient restricted to
the solid phase (5.4), note that (3.9), (5.11), and (2.3) lead to

C EZ](ﬁE)E”(ﬁE)dX
§c€(ﬁ6,ﬁ6):/ afjklEkl(ﬁe)Eij(ﬁe)dx—&—/fﬂdivﬁe|2 dx < C.
Qs QL

From Korn’s inequality for H}(€;), Theorem B.5, and the inequality above, we

have
2 ~i i
dxg/ oT.u, 0T ut dx
N 8.%‘]‘ 6.’17j

~i
ouy

Il

Zj

S C(Ql)/ Eij(Teﬁe)Eij(Teﬁe)dX
(951

With the bounds in Theorem 5.1, the sequence {u.} can be analyzed by using
the compactness theorems of the two-scale convergence. In these bounds, notice that
{u.} as a whole are uniformly bounded in the Ep-norm but not in the H; norm. On
the other hand, the restriction of {u.} in the solid phase is uniformly bounded in the
H, norm. As we will see in the next section, this will result in different convergence
behaviors in the solid phase and in the fluid phase.

6. Two-scale limits. The section is devoted to developing various two-scale
limits associated with {u.} and the relations between them. We first note that the
bounds (5.1) and (5.2) imply the following lemma.

LEMMA 6.1. We can extract a subsequence of {Q.} such that

(6.1) [atvoax [ by axdy. 1<k<s
Q aQxYy
~k k
(6.2) e%w dx — Owg (x,y)0(y)6(x) dxdy, 1<k,1<3,
q Ox axy Oul

forallpeL?, e H(Q), where
WO(X7 y) = (wl;) € L2(Q;H;1)(YS U Yf))7

(6.3) divywe(x,y) =0.

Moreover, this two-scale limit wq is related to the Eg-limit g (5.8) as follows:

(6.4) g = (Wo)(x).
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Proof. Since {a’g}€>0 is bounded in L2(€2), (6.1) follows immediately by Theo-
rem B.1. Property (6.2) follows as a consequence of (5.2), (6.1), Remark B.2, with
an integration by parts argument similar to the one used in Proposition 1.14 in [3].
From (5.3) and (6.2), we have as € — 0, taking k=1

e/ div,t Yo dx — 0,
Q

e/ divx iy ¢ dx — divywo(y)o(x) dx dy,
Q

axy
from where we obtain (6.3). As for (6.4), it follows from (5.8) and (6.1). O

Because of the uniform boundedness of the gradient in the solid phase (5.4), more
can be said about the two-scale limit of G, as follows.

LEMMA 6.2. A subsequence can be extracted from the one in Lemma 6.1, such
that:

ou® ou¥

ik
(6.5) /Q O8e e s dx — 0+ 50

s Oy QXY {‘%l
for 1 < k,1 < 3; for all ¢ € L12) and all ¢ € #(Q), where u = {uk} € HL(Q),
u; = {u’f} € Lz(Q;H:)(YS)/(C?’),

Moreover, the limit wo in Lemma 6.1 decomposes as follows:

(x,y) | v(y)o(x) dxdy

(66) Wo (Xa y) = u(x) + ur(xa y)

with vy € L2(Q;HE(Y; UYL)), up(x,y) =0 for y € Y, and divyu, =0, ie., u, €
L2(Q, W) with W defined in (3.4).

Proof. This follows from using (5.4) and applying Lemma 6.1 and Theorem B.1
by letting Y, =Y. 0

Note that the uniform bound on the gradient in the solid phase guarantees the
decomposition (6.6) of wg, which is the two scale limit of u.. On the other hand, the
divergence of u. is uniformly bounded in both phases. Hence, it is natural to study
how the two scale limit of {divi.} is related to uy; this is the subject of Lemma 6.3. In
preparation for stating this lemma, we recall the definition of the acoustic pressure pe,

Pe := —ydiviae in Qf, with v:= c%pf.
Note that p. € L?(Q]) satisfies ||]36HL2(Q£) < C for all € > 0. Consider D¥!(x) € L?(9),
with 1 <k,1 <3, defined by

8&’“ 5kl R

kl — € _ -
DI (x) = (00 g, — X5 ()3 e

Then we have

/\k 5
/Dflvdx:/ ode vdx — 22 | pevdx
Q Qs 0z 3y Jaf
for all v € K(Q). Since HDlem(Q) < (C, for all e >0 and 1 < k,l < 3, the sequence

DF! has a weak limit in the sense of Theorem B.1, which we denote by D*!. Taking
w®=1 and ¢ =v in Theorem B.1, we obtain
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/ DRy dx — DFY(x,y)v(x) dxdy,
Q Qxy

and by Lemma 6.2, we can conclude

ou® ou¥
kl _ 1
(6.7) D¥(x,y) = o (x) + o (x,y) for (x,y)€QxY,.

Letting po(x,y) := —yD**(x,y) for (x,y) € Q x Y}, we are ready to state the

following lemma.

LEMMA 6.3. Asel0 (e a subsequence from the one in Lemma 6.2), for all ) € L?,,
all p € #(Q), the acoustic pressure p. := —vydivi, two-scale converges as follows:

/fﬁew€¢dx—> po(x,y)Y(y)p(x)dxdy, po€ L*(Q;L2(Yy)).
Qf QxY;

Moreover, u and uy in (6.5) and the two-scale limit of diva. and u, in (6.6) satisfy
the relation:

(6.8) / divyu (x,y) dy = |Yy| divu(x) + div/
Y, Yy

Proof. The lemma follows from (6.7) and (6.6)). If k=1, we have

1
ur(x,y)derf/ Po(x,y)dy.
Y Jyy

DM (x,y)0(y)d(x) dx dy = / [divu(x) + divyuy (x,y)] ¥(y)p(x) dx dy

QXY

1 / po(, ¥)(y)$(x) dx dy.
QxYy

QxY

v
To obtain (6.8), by (5.8) we have, for all v € 2(Q2), that

/divﬁevdxﬁ/divﬁovdx
Q Q

:/ divu(x)vdxdy+/ divu, (x,y)vdxdy.
QxYy QxYy

On the other hand, we have

/ divii.vdx — divu(x)vdxdy
Q QxYs

1
—|—/ divyul(x7y)vdxdy—f/ po(x,y)vdxdy.
QxY, Y Jaxy;

Hence, we obtain

/ divu(x)vdxdy + / divu, (x,y)vdxdy
QxYy QxYy

1
:/ divyul(x,y)vdxdy—f/ po(x,y)vdxdy.
QxY,s Y Jaxy;

Therefore, u; and u, satisfy the relation described by (6.8). d

Remark 6.4. In what follows, € represents the subsequence involved in Lemma
6.3. Observe that Lemmas 6.1-6.3 hold simultaneously for that subsequence.
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7. Derivation of the local problems. In the previous section, we have shown
that in the solid phase, the two-scale limit wo(x,y) is exactly the u(x) in (6.6),
whereas in the fluid phase, it is u(x) +u,(x,y). Also shown in the previous section is
that for the solid phase, the gradient of {1} two-scale converges to Vu+ V,u; while
in the fluid phase, it can only be concluded that the acoustic pressure {p.} two-scale
converges to pyg. Moreover, the two-scale limit wyq is related to the Fy-limit Gip by
(6.4) and < wg > (x) =u(x)+ < u, > (x). In this section, we will first prove that pg
does not depend on y.

The focus in this section is on the corrector term uy of the gradient in the solid
and the corrector term u, for the fluid, given u(x) and po(x). We first summarize the
main results in the following theorems.

THEOREM 7.1 (local problem for uy). The limit pg does not depend on'y. Fur-
thermore, the local problem for uy is as follows:

(7.1) Find u; € H;(YS)/(C3 such that
ouk ow’ I
q(ui(x,-),w) = _(’TTI(X) /Y aijkla—yj dy — po(x) /Y divyw dy
vw e H}(Y;)/C?,

where q(-,) represents the sesquilinear form given by

vk dw?

2 =
(72) ov.w)= [ oG

_/ aijrieij(v)ew (W) dy.

s

This problem is uniquely solvable.

Proof. We start by testing problem (4.1) with w = ¢(w§ + w§)¢, where wg €
HL(Y), we e HL(Yy), ws(y) =0 for y € Yy, we(y) =0 for y € Y,, ws -n=w -n on
I, and ¢ € 2(Q) to obtain

fluﬁ%dx—&—e/ flw z¢0lx
:)\26/ psﬂiwgid)dx—l—)\%/ pfu’w Lpdx + (e, e(WE + W) o)
c af
FACDE (i1, ewie) + A2 / ofa]! - Twe T wo)aT doe(x).

€

Observe that, as € | 0, every term goes to 0 except for c¢(i.,e(w§ + wg)p). We
study this term in detail

) ) . o F) o0t ET
o o) = [ G (s 1 o o (o (5) )
: J !

be [ a(diva o wpdx + / (v, @ ywe i,

€ €

Note that the first and the third terms in the previous expression go to 0 as € | 0.
By Lemma 6.2 (with ¢ = a;;5 (0w’ /0y;)) and by Lemma 6.3 (with ¢ = divywg), we
obtain the local problem for uy:

A uk wi S
(7.3) /Y Qijkl {awl(x) + Tw(x, y)} Iy, (y)dy — [{f po(x,y)divywe(y) dy =0
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for all wg € HY(Y;), we € HY(Yy) with ws(y) =0 for y € Yy, we(y) =0 for y € Y5,
and wg-n=wg-nonl.
By choosing wg =0, (7.3) becomes

— / po(x,y)divyw(y)dy =0
Yy

for all w € H}(Yy) with w-n = 0 on 9Yy. Therefore, it can be concluded that
fo Vypo(x,y) - Wdy = 0 by a density argument and integration by parts. Hence,

po does not depend on y. In other words, pyo € L?(Q2). To further simplify (7.3), we
observe that for all w € Vy such that w - n is continuous across I', we have

/ o) Tvyw () dy =po(x) | W ndo(y) = —po(x) / divyw(y) dy.
Yy 9Yy Y

This leads to (7.1). To prove the uniqueness, we need to check that g(-,-) is coercive
on H}(Y;)/C?, which means that there exists ¢ > 0 such that

(7.4) 4(w,w) > C||Wllgga ) jco YW € Hy(Y:)/C.

But (7.4) follows from (2.2), (2.3), and an application of Korn’s inequality for Hj,

(¥s)/C2. 0
THEOREM 7.2 (the local problem for u,). The local problem for u, is

(7.5)

Oul. ow? i —
\2pf / L(x, y)wi(y) dy + 2\ (x,y)=—dy + )\a/ uL(x,y)wt do(y)
Yy v; 0y; dy, r

N , 0 _
= <fl(x) — N plul(x) — (,;ZS(X)) /Yf widy YweWw.

The above problem is coercive in the Vy norm and, hence, has a unique solution. Note
that it is the weak formulation of the cell problem:

(7.6)
, dei;(uy) ; Ipo ,
2 f. J _ i 2 f.
e y) + 2 2B (i) =32 - ) ) v,
2ue;ij(up)n! = aul on' VweW.

As can be seen in the theorem above, the interface term resulting from the slip
condition is part of the local problem for u,. The following lemma is hence necessary
in proving Theorem 7.2 so we state it here. Note that because of the discontinuity on
the interface, we cannot directly apply Proposition 2.6 in [4]. Instead, we generalized
that proposition to the following lemma. The main point is to show that the two-
scale convergence limit on ', in the sense of (B.1) is indeed the trace of the two-scale
convergence limit; cf. Definition B.3 for our case.

LEMMA 7.3. A subsequence can be extracted from the sequence in Lemma 6.1 such
that the following convergence holds:

Aea/ . Tl dou(x) ~ Aea | Tweal dou(x)

s

(7.7) —>)\a/ /ur o(x,y) [w(y)] )ﬂ do(y)dx as € = 0.
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Proof. For the solid part, we consider ﬁ~§, the extension by zero of G := .|q:
which coinsides with @i in Qf. Then, there exist u(z) € H}(Q) and uy(z,y) €
L*(Q, H}(Ys)/R) such that @i two-scale converges to u(z)x(Ys) and Vi two-scale
converges to (Vu(z) + Vyus (z,y))x(Ys); cf. Theorem 2.9 in [3].

The uniform boundedness of the interface integral in (5.13) is still one order shy
of the assumption stated in Theorem B.4. To get a stronger uniform bound, we apply
the following scaling argument. Fix an e-periodic cell in €, say the cell indexed by k
the trace theorem implies

/F 187 (0 o (x) = ¢ / 8 (ey)Pdo(y)

<0 ( [ azenr+ |vyﬁzk<ey>|2) dy

Y

— o) ( [ eeneor +e—1|Vﬁzk<x>|2dx) .

s

Hence, by summing over all k, we arrive at the bound needed for Theorem B.4:

=~ ~sp2 ~s112
32 o (x) < C(¥2) (81320 + € IV 20y ) <.

re

By Theorem B.4, there exists v € L?(2, L?(T")) such that

8000 (5.3 ) o) = [ vixyIoteyixio(y)

for all ¢(x,y) € C[Q,C,(Y)]. Following the proof of Proposition 2.6 in [4], for any
vector-valued smooth test function ¢(x,y), we have

€ 0 Vg (x)p (x, %) dx=— e/ S (x)divxep (x, %) dx
- / 0 (x)divy (x, %) dx
+ e/rs a5 (x) (¢ (x, %) ng)do(x).

€

Passing to the two-scale limit in each term, we obtain

-/ / x)divypey)dsdy + [ [ Vi) bxy) m)do(y)ax

Therefore, [, [-(v(x,y)—u(x))¢ (x,y) -n.do(y)dx =0, which implies that, for y € T,
v(x,y) =u(x) for all x €  and hence the following two-scale convergence result holds:

(78) Aea / Gl do) Ao [ [ a0l () = wiy)da(y)ix.

For the fluid part, we know that ||ﬁ£||L2(Qf) and ||€Vﬁ€f||L2(Qf) are uniformly

bounded. We use @/ (resp., eVﬁf) to denote the extension by zero of @/ (resp.,

€Vi), which is the restriction of . (resp., eVii) to Qf and apply similar arguments
as above. By Proposition 1.14(ii) of [3], there exist ¢ € L*(Q; (H,(Yy))?) and £ €
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L?(€; (H}(Y¢))®?) such that ! two-scale converges to ¢ and eV two-scale converges
to &, with ¢(x,y) =0 for y € Y, and &£(x,y) =0 for y € Y;. For any test function
p(x,y) € 2(;,C°(Y)) and (x,y) € Z2(;C°(Y)), with p(x,y) =0 for y € Y and
P(x,y) =0 for y € Yy, we have

; o X\ ix—1im [ (&F x
lim Q£,<ue><x>so(x, ) dx=lim | (@) (x 7 ) dx

- / ¢, 9)0(x, y)dydx,

e—0

iy [ 900 (x XY ax= [ [ etuy) wixyyix
of € QJy;
Observe that

X

e | vaf(x) -y (x, ;) dx = — e/ﬂf af (x)divyy (X, %) dx

al
| afx)di X
/Q{ a, (x)divytp (x, e) dx.

Passing to the two-scale limit in each term above, we obtain the relation between ¢
and &:

/ £(%,¥) - (x,y)dydx = — / ¢ (%, y)divy(x, y)dydx
QJy; Jy;

from which we have £ = V¢ for j = 1,2,3. Therefore, ! two-scale converges to

¢(x,y)x(Yy) and eVi! two-scale converges to £(x,y)x(Yr) = V(% y)x(Yy).
Applying the scaled trace inequality in Qf by regarding I'/ = 9Q/ leads to

e [ 18] Pdo.() <€ [0z, + € 90 [y, <
T

€

By Theorem B.4, we have that there exists h € L2(, L2(T")) such that
[ a0 (xX)do0 > [ [ hixy)otey)daty)ix
rf € QJrf

for all ¢(x,y) € C[Q,C,(Y)]. Note that, for any vector-valued smooth test function
p(x,y), we have

e | Vif(x) ¢ (x, %) dx=— E/Q{ af (x)divyep (x, %) dx

ol
a0 x
/Q{ i, (x)divy (X, e) dx

+€/1"f ag(x)go (x,%) ‘ndo.(x).

Passing to the two-scale limit in each term, we obtain

/ £(x,y) - @(x,y)dydx = / V(%) - (x,y)dydx
Q Yf Q }/f
— [ | ¢txydivypixy)dyax
QJty;

+/Q/Ff h(x,y)e (x,y) -ndo(y)dx.
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An application of integration by parts to the second integral above leads to

[ [ txy) = ey (xy) - mdotyyix =0,
I
which implies that ¢(x,y ‘I‘f = h(x,y). Recall that {(x,y) = u(x) + u.(x,y) for

yec Yf.
Then, we obtain the following two-scale convergence result:

)\ea/ al - [wea]. dou(x)
(7.9) %AO‘/ /Ff X) + ur(x,y))o(x)(w/ (y) — ws(y))do(y)dx.

The lemma is then proved by subtracting (7.8) from (7.9). |
The following lemma will also be needed in the proof of Theorem 7.2.

LEMMA 7.4. Let € be the subsequence involved in Lemma 6.1. Then, as €0, the
following holds:

ouF ow owk ow'’
Qbe Ae €y 2/ € d i / o - dx d
b (b, w) =¢ M D, O, S PdxX = pijk oy, O (x,y) ay,; (y)o(x) dxdy

for all w= {wl} € Hll)(Yf), for all ¢ € # (Q), where Wijit = (85651 + 055041).

€ dyj

w € Hp (Yy), we obtain the result, due to (6.3) and ¢ = ebf;y, 8“; . 0

Proof. Notice that %(wié(x)) =10w y— Choosing 9 = bijkl ?9715 in (6.2), with
J Y= J

Now, we have all the ingredients needed for proving Theorem 7.2.

Proof of Theorem 7.2. For u,, we first note that u, € L2({;W); see Lemma 6.2.
Now, we use the test function wé¢p, w € W and ¢ € Z(Q) in (4.1), to obtain

(7.10) / f - wehdx =\ / . i - wegdx + ¢ (i, weo)
Q Q:

€

+ A%bE (1, weo) + )\6/ afa! - [[wﬁ(ﬁﬂf doe(x).

€

Then, by letting ¢ ] 0 in (7.10), and using Lemmas 6.1, 7.4, and 6.3, we obtain
(i) [ E) W dxdy
QXYf

N A2/ P (u(x) + ue(x,y)) - w(y)o(x) dx
QxYy

+ lim ¢ (i, W) + Ae?b (i, weo)
e—0

+ lim <)\ea/ i, - [wea] do.(x) /\ea/ i, - [[Wﬁgb]]zdoe(x)) .
e—0 F{ Is

With a straightforward calculation, applying Lemmas 6.1 and 6.3, and integrating by
parts, the following limits can be concluded:

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/01/24 to 132.174.254.72 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

HOMOGENIZATION FOR A VARIATIONAL PROBLEM 2411
(7.12) ggr(l) A2DE (e, W) = ZMA/ qb(x)eij (w)egj(u(x) +ur(x,y)) dy dx

JHA/ o(x awza Td dx.
Yy

Yj OYj

(7.13) lg% (e, W) = / f Vpo(x)w(y)o(x) dy dx.

QJY,

Taking into account Lemma 7.3 and the two equations above, (7.11) leads to the
problem for u, in (7.5). o

In preparation for deriving the homogenized equations in the next section, we
calculate uy in terms of u and py. To do this, we seek a solution of the form

(714) 1063 =~ 2 () (v) P GOXY)

with x, xg € Hllj(YS) /C3,1<i,j <3, real-valued vector functions, independent of x.
It can be verified with a straightforward calculation that the vectors x and x; satisfy
the following equations:

(7.15) q(x,w):/ divyw dy VWEHII,(YS)/(C?’,
. Dk
(7.16) q(xﬁ,w)z/ aijii - dy vweHL(Y,)/C?,

s

respectively, which are uniquely defined by (7.4) and are independent of A.
We set

51-]-:—/ divyxgdy, ﬂ:/ divyx dy.
Y,

s

Note that 8= ¢q(x,x) >0 (see (7.15)).
Equation (7.14) allows us to write pg(x) in terms of u(x) and (u,)(x) as follows.
By substitution of (7.14) into (6.8), we get

k
(7.17) 6 po 251@12& — Idivu — div (uy),
xy

where § and II are given by

11 - Vs
0= +ﬁ> >0, II=-—-L=|Y¢>0.
(7 v =

8. The homogenized problem. In this section, we derive the governing equa-
tions for po(x) and wyg, the two-scale limit of .. As will be seen in the theorem
below, this homogenized problem is posed in a six-dimensional space for u and u,.

THEOREM 8.1. For every A such that A > Ay > r > 1, the homogenized problem
for wo =u+u, is the solution to the following uniquely solvable equation:
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1) 5 /Q Flwr T () dx

:)\pf/ (u%ui)(wi+w;;)dxdy+A(1—H)pS/u@dx
QXYf Q

1 / ouF ow' oul, Qw?
+5 Qi'lkiidx+2,u/ LT dxdy
X Jo o Ox; axy; 0y; 0y;

ta / / we(x,y) - Wa(x,y) do(y) dx

+ i/ﬂ <ﬁkz§£ — Idiva — div(ur>> <ﬂijgxw; - Hdivw—div(wr>> dx
= Fu+u,, w+ w,;)
for all w e HY(Q) and all w, € H(Q; W), which is defined as
H(QW) ={w: weL3(Q,W),(w) e Ey(Q:uQf)},

and is a Hilbert space with the norm

1/2
2 . 2
Il = (IwlE @uar) + Idiv(w)[E2(a) ) -

Proof. We take w € 2(Q2) in (4.1), and concentrate on passing to the limit as
€ } 0, using Theorem B.1, and Lemmas 6.1 and 6.2. Observe that if w € 2(Q0), the
interface term drops automatically because wf =w, on I'¢, obtaining

/fiﬁdx:)ﬁ/ (<p>ui+pf<ur>i)ﬁdxf|Yf|/p0diVWdX
Q Q Q

ok ouk\ ow?
8.2 +/ i ( + 1> dxd
®.2) OxY. M\ 0x " oy ) Ox; Y

for all w € 2(Q), where we recall the notation that is already defined in (6.4):

(v)(x) = /Yv(x, y)dy forve Lz(Q,Lf)).

In order to replace the u; term with the zero-order terms ug and pg, we use the
solutions of the cell problems for u; (7.14)-(7.16) to define the following auxiliary
variables. For 1 <4,5 <3, let p} :=y,0;x, k=1,2,3, and introduce

Qijkt =4 (xi -pl.xk - pL) :

where ¢(-,-) (resp., Xz) is defined in (7.2) (resp., (7.16)). Observe that the coefficients
gijki are real and they satisfy

Qijkl = Qjikl = Qijlk = qklij,
(8.3) Gijki€ri&i; > c&ii€i; (€>0) &;=&u (1<1i,j<3).

A calculation shows that

our  oub ouk
i . — | dy= ijlk o 35705 .a .7k7l:17273'
/ysajlk(axz+3yz> y qglkaxlﬁ-ﬁgpo (2W]
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We substitute the above equation into (8.2) and use the fact that 2(f2) is dense in
H}(Q) to obtain the macroscopic equation

— . R k9,0
(84) /fiwidX:)\Q/ (<P>ul+pf(ur>z) deX—i—/ q”lkau %dx
Q ox X 8:5]

+5/ <5kz — IIdiva — d1v<ur>> <Bz-jw — Hdivw) dx
81‘j
for all w € H3(9).

To close the system, we substitute (7.17) into (7.5) and test it with functions of
the form w = wy(x,-) for fixed x, w, € Z(Q; W) (W defined in (3.4)), followed by
integrating over €2 to obtain

(8.5) /f ) dx = A2 f/ (ui+ui)ﬁdxdy+2Au/ 0us, 003 1y
QxYy QxYy 6yJ 8y]

+ o) / / W (%, y)We(x, y)do(y)dx

+5/ (Bkl—Hdlvu dlv(ur>) (=div(wy)) dx

for all w, € 2(;W). The space H is chosen because u, € L?(Q, W) and (u,) =
o —u € Ep(Q2uUQf), ie, u, € H(;W). Since 2(; W) is dense in the space
H(; W), we can replace 2(2; W) by the space H(; W) in (8.5).

Note that the first integral on the right-hand side of (8.4) can be written as

(1-1I) ps/ wlwi dx + pf/ (u® 4 ul)wi dx dy.
Q QxY;

Combining (8.4) with (8.5) and divide both side by A lead to problem (8.1). It can be
checked that ReF'(w 4+ wy, W + w,) is coercive and hence the existence and uniqueness
of solution follow from the Lax—Milgram lemma. O

The time domain macroscopic equation can be obtained by applying the inverse
Laplace transform to the equation above.

9. Conclusion. In this paper, we consider wave propagation in a poroelastic
composite material. It generalizes the results obtained in [14] from no-slip condition
on the solid-fluid interface to the case of a slip boundary condition given by the
interface term (2.12). To handle this interface condition, various function spaces are
defined in section 3.1 to accommodate the discontinuity of u. on the interface.

The existence and uniqueness result presented in section 4 dealt with the interface
term.

Unlike [14], this slip problem requires taking the two-scale convergence limit for
a surface integral. The results from [4] (presented in section B.1) generalize the
definition of two-scale convergence to surfaces and are fundamental in the limiting
process of the interface term. We can use these results since we are able to obtain
(5.5) and (5.13). An important part of our analysis is to establish the relation between
the two-scale limits of the functions and the two-scale limits of their traces. Another
difference between our results and those in [14] is that we need to add the norm of
the interface jump term to the V-norm so results like Lemma 5.4 can hold.

The interface term does not show up in the local problem for uy (see (7.1)),
and we obtained similar results to [14]. However, the interface term is in the local
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problem for u,, which is obtained in section 7.2. Note that in (7.10) the boundary
term doesn’t disappear, and the technical lemma, Lemma 7.3, is necessary for dealing
with this term and to finally obtain (7.5).

Unlike the results in [14], where the macroscopic equation in the case of inclusions
has simpler form than the case of connected geometry, the macroscopic equations in
the slip case are indifferent to whether the pore space is connected or not.

The homogenized equations (8.1) are posed in six-dimension space. Since u, in
(7.6) is linearly proportional to the force term

i Fi i Op
zww:(ﬂw—%ﬁu<>a°u0
T
we could have defined the auxiliary matrix-valued variable 6, such that

U (x,5) = 0ip (y) F? (x).

By substituting this expression into (7.5), the following equations for 6(y) can be
easily obtained:

(9.1) )\zpf/ Oipwidy + 2\ i aﬂd + )\a/ 0;pwido(y)

Yy v, Oy 0y; r

= w-epdy, p=1,2,3 YweW.

Yy
This cell problem can be solved first and then the homogenized equation will be only
for u(x) and hence a problem in three dimensions, instead of six. However, unlike
the auxiliary variables introduced for uy, whose governing equations (7.15) and (7.16)
are independent of A, (9.1) depends on A. This means that the corresponding three-
dimensional macroscopic equation problem in the time-domain will contain memory
terms with the inverse Laplace transform of 8 being the kernel function. Finally, we
remark that as a result of the slip interface condition, the cell problem for u, in (7.6)
has the form of a generalized Darcy’s law but with an additional term of 2/\1186”7;“)
The consequence of this term on the permeability will be studied in future work. ’

Appendix A. Useful lemmas used in this paper.

LEMMA A.1 (Lax-Milgram lemma (Theorem 5.1, page 18 of [16])). If a(u,v) is
a sesquilinear form on V such that
o a(Au,pv) =Apal(u,v),
o Ja(u, )| < M Jully ol
and if there exists C > 0 such that |a(u,u)| > C’||uHV for all w €'V, then, for every
f eV’ (the dual space of V'), there exists a unique uw € V such that a(u v)=[f,v] for
all v €V, where [-,-] represents the dual pairing between V and V'.

LEMMA A.2 (Korn’s inequality (Lemma 1.1, page 87 of [16])). Given a bounded
set T with Y smooth, there exists v >0, such that the following estimate holds:

t/% Eywax+ [ wiwidx o wine
T

for all w e HY(Y)

Appendix B. Useful convergence results. We list here the various conver-
gence theorems that are applied throughout this paper. The proofs can be found in
[13, 14].
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THEOREM B.1. Let v, € L*(Q) (Q is any bounded open set in R3) such that
Vel g2y < C Ve

Then, up to a subsequence (still denoted by €), as €0, the following holds:

/ v wpdx — Vo(X,¥)W(y)o(x)dxdy
Q Qxy

Jor all we L2, for all ¢ € A (), where vo € L*(; L2).
If, furthermore, v. € HY(Q) and there exists a constant C > 0, independent of e,
such that

HVEHLQ(Q) <C foralle,

2,

Then, we can extract a subsequence (still denoted by €) such that for all w € L]% and
¢ (Q), as €0, we have

v,

2
dx<C V¥
oz, x < €,

Ve = (Vo) in L*(Q)-weak,
/ VW odx — Vo(X,y)W(y)o(x)dxdy,
Q

QXY
8VE Ou 8111

Qo 81‘1' aml X) + ayl(xay)> W(y)¢(x)dXdy7 1= ]-7 27 37

weopdx — <
QxY,

where v € L*(, L2) is given by

Vo(X,y) =u(x) + u,(x,y)

with u € HY(Q), uy(x,y) = 0 almost everywhere in Y,, for almost all x € 2, uy €
L?(Q; H) (Y,)/C), and (v,)(X) :== [ Vo(x,y)dy, the mean value of vo(x,-). Moreover,
if ve € HY(Q), then ue H} ().

Remark B.2 (see [13]). Assume that [|[ve|| 1) < C for all e. Then, by extraction
of a suitable subsequence, we have

ve—u in HY(Q)— weak,

Ove 0 0
| Grewrodes [ (G0 + Gty ) wiv)ol) dxdy

for all w € L2, for all ¢ € ¢ (2), where uy € L*((; HL(Y)/C).
These theorems motivate the following definition of two-scale convergence.

DEFINITION B.3. A sequence {v:}eso in L?(Q) is said to two-scale converge to
v=uv(x,y), withv e L>(Q x Y), if and only if

e—=0

lim st(x)d) (x,?) dx:|71|/ﬂ/yv(x,y)w(x,y)dydx

for any test function ¢ = (x,y), with ¢ € 2(Q,C;°(Y)); see [13, 3].
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B.1. Two-scale convergence on the surface. To handle the interface term
in the weak formulation, we will also need the following theorems, which generalize
results about two-scale convergence to sequences in L?(T.). Their proofs can be found
in [4].

THEOREM B.4 (see [4]). Let u. be a sequence in L*(T.) such that the surface
integral satisfies the bound

e/ e ()2 do(x) < C.
I

Then, there exist a subsequence (still denoted by €) and a two-scale limit g(x,y) €
L2(Q; L2(T)), such that u.(x) two-scale converges to g(x,y), in the sense that

(B.1) nme/reue(x)qs( do(x // (x,¥)é(x,y) dx do(y)

e—0

for every continuous function ¢(x,y) € C[Q;Cp(Y)].

The following extension theorems play a crucial role in establishing the uniform
bounds of solutions, which are required for the two-scale convergence.

B.2. Extension theorems. Define
(B.2) S =00 N €Yy, Vep={veH (Q7):v=00n35/},
(B.3) Q1 ={xeR’®:d(x,Q) <1},

where d designates the Euclidean metric and Q is the closure of Q in RV.

THEOREM B.5 (Theorem A of [14]). For each € < ¢, (€, is a suitable constant),
there exists an extension operator T, € L(V ¢, H§ (1)) (i.e., T, is continuous linear
and Teu=u on Q¢ for all ue V) such that

Eij (Teu)EZ-j (TEU) dx<C Eij (u)Eij(u) dx YueVg,
Q4 Q:
where the constant C' does not depend on €.
A similar extension theorem can be established for V.

THEOREM B.6 (Theorem B of [14]). There exists an extension operator T, €
L(HL(Y;),H}) such that Tyw =w almost everywhere in Yy for all w € HL(Y;) and

/ eij (Tpw)e;;(Tprw) dx < C/ eij(w)eij(w)dx Vwe HII)(YS),
Y Y

where the constant C' does not depend on €.

A similar extension theorem can be established for Y.
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