






The knowledge base starts with ➀ the seed concept
users specify, with each recommended concept rep-
resented as ➁ a node in the tree, accompanied by its
relation to the parent concept. The interface allows
users to identify concepts by ➂ diving deeper and
➃ exploring broadly before ➅ selecting a concept
to test. Alternatively, users can also distill personal
knowledge by ➄ creating concepts manually.

To assist users in creating concrete test cases,
WEAVER incorporates AdaTest (Ribeiro and Lund-
berg, 2022) as the default test case creation method,
which uses LLMs to suggest test cases. However,
the design of WEAVER is compatible with any other
techniques to test models once requirements are
identified (e.g., Zeno, Cabrera et al., 2023). The
full interface including the AdaTest integration can
be seen in Appendix B.

3 Intrinsic Evaluation

As the primary goal of WEAVER is to provide ex-
ternal knowledge to guide testing, it is important
that the knowledge provided is comprehensive in
the first place. Here, we quantitatively evaluate:
Q.1 How comprehensive are the knowledge bases

generated by WEAVER?

Tasks, data, and metrics. We select four tasks
for the evaluation: Hateful meme detection, Pedes-
trian detection, Stance detection for feminism, and
Stance detection for climate change (task descrip-
tions in Appendix C). These tasks cover diverse
domains and modalities, and importantly, provide
us with gold concepts that can be used to evaluate
our LLM-generated KB. The first two tasks have
been studied in prior work, and we directly use
their ground-truth concepts collected from existing
documents (Barzamini et al., 2022b) and user stud-
ies (Lam et al., 2023). For the last two tasks, we
aggregate all concepts identified by 20 participants
without using WEAVER as part of our user study
(discussed later in §4), which we consider as our
ground truth. Intuitively, such aggregation should
help represent what concepts are generally deemed
important. As shown in Table 1, the tasks have on
average 144 ground-truth concepts.4

Independently, we generated a knowledge base
for each task using WEAVER with default relations.
We derived the seed concepts directly from the task
names: (1) “hateful meme”, (2) “pedestrian”, (3)

“feminism”, and (4) “climate change.”

4All ground-truth concepts are shared at https://

figshare.com/s/481a69fa1b36dbd76088.

We evaluate the comprehensiveness of the gen-
erated knowledge using recall, i.e., the fraction of
existing concepts that also appear in the KB. Since
there are many phrasing variations of the same con-
cept, we decide that a concept is in the KB if it
appears exactly the same in the KB, or our manual
check decides that it matches one of the 10 most
similar concepts from the KB, as measured by the
cosine distance (cf. §2.1). We established that the
manual process is reliable by evaluating inter-rater
reliability where two authors independently labeled
a random sample of 50 concepts, finding substan-
tial agreement (κ = 69.4%).

We also evaluate the validity of the generated
knowledge using precision, i.e., the fraction of KB
edges that are valid. Note that because our ground
truths are incomplete by nature (collected from
dataset analysis and user study), KB edges that are
not in the ground truths can still be valid. Following
prior work (Cohen et al., 2023), we performed man-
ual validation on sampled KB edges. We sampled
50 edges from each of the four generated KBs.

Results Overall, our KBs cover 91% of ground-
truth concepts on average (Table 1), with 81% of
sampled generated edges being valid. Qualitatively,
we found that there are two distinct types of con-
cepts the KB failed to cover: First, there are some
very specific concepts (e.g., old photo in hateful
meme detection). Although the 2-layer KB does
not cover them, it does often cover their hyper-
nyms (e.g., photo). Therefore, these concepts can
be discovered if users choose to explore deeper.
Second, some concepts are interactions of two con-
cepts (e.g., fossil fuel uses in developing countries

in climate change stance detection). These can be
identified by users manually, as both of their com-
ponents (fossil fuel uses and developing countries)
usually already exist in the KB.

4 User Study

Does WEAVER support effective requirements elic-
itation? We conduct a user study to evaluate:
Q.2 To what degree does WEAVER help users ex-

plore concepts faster?

Q.3 To what degree does WEAVER help users ex-

plore concepts broadly?

Q.4 How much does WEAVER mitigate user biases

when exploring concepts?

We expect that our interaction design (§2.3) sup-
ports faster exploration (Q.2) and that the recom-
mendations (§2.2) support broader and less biased



Task Recall Precision # Concept

Hateful meme detection 93.1% 88.0% 101
Pedestrian detection 91.8% 74.0% 146
Stance detection for feminism 86.9% 84.0% 145
Stance det. for climate change 91.4% 76.0% 185

Average 90.6% 80.5% 144

Table 1: Knowledge bases generated by WEAVER cover 90.6% of existing concepts on average.

exploration (Q.3 and Q.4).

4.1 Study Design

Conditions. We design an IRB-approved user
study as a within-subject controlled experiment,

where participants test models in two conditions: A
treatment condition, where users use WEAVER to
find concepts for testing, and a control condition,
where users add the concepts manually while they
explore test cases. In both conditions, users have
access to AdaTest’s LLM-based test case sugges-
tions (cf. §2.3). In essence, the control interface is
a re-implementation of AdaTest with WEAVER’s
interface and interaction experience.

Tasks and models. We select two tasks of sim-
ilar difficulty for our user study: Stance detec-
tion for feminism, and stance detection for climate
change. They are accessible to participants from
different backgrounds. We had participants test
the performance of zero-shot ChatGPT (OpenAI,
2022) for both tasks, as we observed that it easily
outperformed any available fine-tuned models on
Huggingface—the latter failed at simple test cases
(full prompts in Appendix A).

Procedure. We recruited 20 participants (gradu-
ate students with varying ML/NLP experience, de-
tails in Appendix D.1) for a 90-minute experiment
session. We started by walking through the study
instructions and asked them to try WEAVER in an
interactive tutorial session. Then participants tested
the two aforementioned stance detection models
for 30 minutes each, one in the treatment condition
and one in control condition. To mitigate learning
effects, we use a Latin square design (Box, 2009)
with four groups, counterbalancing (1) which con-
dition a participant encounters first, and (2) which
model is tested first. Within each session, they were
first asked to perform model testing for 25 min-
utes, and then identify (select or create) concepts
worth future testing for 5 minutes. The first phase

of model testing is designed to ground participants
in what concepts are worth testing. The second
phase of concept exploration is designed to approx-
imate a longer time of model testing. This final de-
sign was derived from an earlier pilot study, where
we observed that writing test cases for each con-
cept took more time than identifying interesting
concepts (WEAVER’s objective). In the end, par-
ticipants filled out a post-study survey (details in
Appendix D.2). Participants were compensated for
their time.

Metrics and analysis. We use two measurements
to approximate participants’ exploration procedure:
(1) the number of concepts they explore (represent-
ing exploration speed, Q.2), and (2) the number of
distinct concepts they explore (Q.3).

Specifically, for distinctiveness, we want to
distinguish the local vs. global exploration patterns
(cf. Figure 2), which requires us to locate clusters

of similar concepts, or concepts that only differ in
granularity. Quantitative, this is reflected through
inter-relevance between concepts, e.g., rising sea

level should be considered close to sea surface

temperature increase but distinct from waste

management. To find a set of distinct concept
clusters, we again measure the concept distance
using SentenceBERT, and run Hierarchical Clus-
tering (Ward Jr, 1963) on all available concepts
collectively selected or created by our 20 user
study participants, which, as argued in §3, forms
a representative set of what end users may care
about for a given task. Note that we do not use all
concepts from our KB for clustering as it would
influence the ground truth. Hierarchical clustering
allows us to choose concept clusters that have sim-
ilar granularities using a single distance threshold.
Empirically, we use the threshold of 0.7, which pro-
duces reasonably distinct clusters for both tasks (41
and 46 clusters for feminism and climate change

respectively with an average size of 6.1 concepts).







many helpful concepts in a short amount of time.
Even though practitioners have been working on
their (LLM-backed) models for a while, they both
obtained new insights into their models. First,
WEAVER helped them observe issues they did not
consider before. For example, in the seven concepts
C1 tested, they found that the resulting instructions
are always chronological even when there are de-
tours in the input and steps reordering is desired.
Second, WEAVER also helped them turn their prior,
often fuzzy knowledge of problems or requirements
into concrete testable concepts. For example, C1
turned their vague notion “useful summaries should

not take transcripts literal” into concrete theories,
including “behind the transcript, there is a hidden

thought process important for identifying key ac-

tion steps.” Third, they were able to confirm model
deficiencies they already suspected through sys-
tematic tests (e.g., “transcript summaries are often

too verbose”). Similarly, C2 tested seven concepts
and found “different parameters for customization”

and “when to use different data visualization APIs”

particularly novel and insightful.
Notably, while C1 used AdaTest for testing mod-

els on different concepts, C2 reused test cases from
their existing datasets, showing WEAVER’s flexibil-
ity with different test case creation techniques. That
C2 still discovered new insights within their own
dataset demonstrates WEAVER’s capability for en-
couraging nuanced testing following requirements.

WEAVER is useful beyond testing models after-

the-fact. While we mostly position WEAVER as
a model testing tool, we find that its support for
requirements elicitation supports the entire model
development cycle (cf. the V-model, Fig. 1).

Although practitioners sometimes found it ini-
tially challenging to define seed concepts, they
found the process itself valuable. For example,
C2 eventually settled on “specific challenges that

novice programmers might have in comprehending

[domain] code”; they self-reflected how finding a
good seed nudged them to state their goal explic-
itly for the first time. For them, this reflection hap-
pened too late to radically redesign their product,
but it shows that WEAVER has the potential to sup-
port early-stage requirements engineering both for
products and models. Meanwhile, C1 was inspired
by concepts identified with WEAVER on model
improvement. They experimented with different
changes to prompts, encoding context for concepts
they found challenging (e.g., step ordering).

6 Related Work

Requirements elicitation. Requirements engi-
neering has been extensively studied (Van Lam-
sweerde, 2009). Despite many calls for the impor-
tance of requirements in ML (e.g., Rahimi et al.,
2019; Vogelsang and Borg, 2019), requirements
in ML projects are often poorly understood and
documented (Nahar et al., 2022), which means that
testers can rarely rely on existing requirements to
guide their testing. Requirements elicitation is usu-
ally a manual and laborious process (e.g., inter-
views, focus groups, document analysis, prototyp-
ing), but the community has long been interested in
automating parts of the process (Meth et al., 2013),
e.g., by automatically extracting domain concepts
from unstructured text (Shen and Breaux, 2022;
Barzamini et al., 2022a). We rely on the insight
that LLMs contain knowledge for many domains
that can be extracted as KBs (Wang et al., 2020;
Cohen et al., 2023), and apply this idea to require-
ments elicitation.

Model evaluation, testing, and auditing. Re-
cent work on ML model evaluation (e.g., Ribeiro
et al., 2020; Goel et al., 2021; Röttger et al., 2021;
Yang et al., 2022) has pivoted from i.i.d. tradi-
tional accuracy evaluation to nuanced evaluation
of model behaviors. As surveyed in our prior work
(Yang et al., 2023), this line of research uses vari-
ous test creation techniques, including slicing, per-
turbations, and template-based generation. While
providing many useful tools, these approaches of-
ten assume an existing list of requirements and
rarely engage with the question of what to test. Ex-
iting research relied mostly on the knowledge of
particular researchers, resulting in incomplete and
biased requirements. For example, Ribeiro et al.
(2020) explicitly state that their list of requirements
in CheckList is not exhaustive and should be aug-
mented by users with additional ones that are task-
specific. Through LLM-assisted requirements elic-
itation, WEAVER helps users identify what to test

systematically.
Various alternative methods have been proposed

for identifying what to test. For example, error
analysis (e.g., Naik et al., 2018; Wu et al., 2019a)
and slice discovery (Eyuboglu et al., 2022) can
help identify issues in existing datasets, but
datasets are often incomplete and biased (Rogers,
2021), and can even be missing for emerging
LLM applications where no dataset has been



pre-collected. Dataset-agnostic approaches like
adaptive testing (Ribeiro and Lundberg, 2022;
Gao et al., 2022) help users iteratively ideate
concepts abstracted from generated test cases,
but, as we confirmed, users tend to explore only
local areas. These approaches engage in bottom-up

style elicitation, which is reactive and may fare
poorly with distribution shift. In contrast, WEAVER

engages in top-down style elicitation, a more
proactive process grounded in an understanding
of the problem and domain.

Furthermore, algorithmic auditing (Metaxa
et al., 2021) elicits concerns from people with
different backgrounds, usually on fairness issues,
to avoid being limited by the ideas of a single
tester. However, it can be challenging to recruit,
incentivize, and scaffold the auditors (Deng et al.,
2023). In a way, WEAVER might complement
such work by providing diverse requirements for
individual testers or crowd auditors.

7 Discussion and Conclusion

In this work, we propose WEAVER, a tool that
uses knowledge bases to guide model testing, help-
ing testers consider requirements broadly. Thor-
ough user studies and case studies, we show that
WEAVER supports users to identify more, as well
as more diverse concepts worth testing, can suc-
cessfully mitigating users’ biases, and can support
real-world applications. Beyond being a useful test-
ing tool, the underlying concept of WEAVER have
interesting implications on ML model testing and
development, which we detail below.

Model testing in the era of LLMs. Through-
out our user studies and case studies, we focused
on testing “models” achieved by prompting LLMs.
Here, we would like to highlight the importance
of requirements in such cases. LLMs are increas-
ingly deployed in different applications, and tradi-
tional model evaluations are becoming less indica-
tive. With these models trained on massive web
text, it is unclear what should be considered as
“in-distribution evaluation data.” Instead, the eval-
uation objectives heavily depend on what practi-

tioners need, which should be reflected through
well-documented requirements.

Meanwhile, as most practitioners are not NLP
experts, they face challenges articulating how and
what they should test about their prompted mod-
els (Zamfirescu-Pereira et al., 2023). As their use
cases become more nuanced, it is also less likely for

them to find pre-existing collections on important
concepts. As such, enabling each individual to iden-
tify what-to-test is essential. We hope WEAVER can
be used for democratizing rigorous testing, just as
LLMs democratized access to powerful models.
Still, currently WEAVER relies purely on practition-
ers to identify requirements worth testing, which
may result in mis-matched requirement granularity
(cf. §3). Future work can explore more complex
structures that can represent knowledge (e.g., from
KBs to knowledge graphs), and advanced recom-
mendation mechanisms for practitioners to find the
best requirements to explore first.

Rethinking requirements for ML development.

Though we position WEAVER to ground model
testing in requirements, we expect it to be use-
ful also in other development stages (cf. §5). For
example, we expect that it can help developers
think about high-level goals and success mea-
sures for their products (Rahimi et al., 2019; Passi
and Barocas, 2019), to guide development early
on. For example, building on the observation that
requirement-based testing may help practitioners
perform prompt engineering, we envision that
future practitioners can use WEAVER for rapid
prototyping, where they identify unique require-
ments, pair them with corresponding test cases, and
achieve better overall performance either through
ensembled prompts (Pitis et al., 2023) or prompt
pipelines (Wu et al., 2022). Moreover, elicited
model requirements themselves can serve as de-
scriptions and documentation, which can foster
collaboration and coordination in interdisciplinary
teamwork (Nahar et al., 2022; Subramonyam et al.,
2022). Notably, we believe WEAVER can support
such iterations because it is built to be lightweight.
In prior research, requirements engineering has
sometimes been criticized to be too slow and bu-
reaucratic, making developers less willing to ded-
icate time to this step. In contrast, WEAVER al-
lows developers to easily adjust their exploration
directions (through seeds and interactions), which
makes it feasible to be integrated into more agile
and iterative development of ML products where
requirements are evolving quickly.

Limitations

Availability of domain knowledge in LLMs.

LLMs encode a vast amount of knowledge, but
may not include very domain-specific knowledge
for specialized tasks, very new tasks, or tasks where



relevant information is confidential. Our technical
implementation fundamentally relies on extracting
knowledge from LLMs and will provide subpar
guidance if the model has not captured relevant
domain knowledge. Conceptually our approach to
guide testing with domain knowledge would also
work with other sources of the knowledge base,
whether manually created, extracted from a text
corpus (Shen and Breaux, 2022; Barzamini et al.,
2022a), or crowdsourced (Metaxa et al., 2021).

Impacts from biases in LLMs. WEAVER uses
LLMs to build knowledge bases such that users
can elicit diverse requirements. However, LLMs
themselves are found to be biased, sometimes un-
truthful, and can cause harm (Nadeem et al., 2021;
Kumar et al., 2023). Therefore, users should care-
fully interpret results from WEAVER in high-stake
applications.

Threats to validity in human-subject evalua-

tions. Every study design has tradeoffs and lim-
itations. In our evaluation, we intentionally com-
bined multiple different kinds of user studies to
triangulate results.

First, we conducted a user study as a controlled
experiment. While the results are very specific and
created in somewhat artificial settings and must be
generalized with care (limited external validity),
the study design can enact a high level of control to
ensure high confidence in the reliability of the find-
ings in the given context with statistical techniques
(high internal validity). For example, regarding
external validity, results may not generalize easily
to other tasks that require different amounts of
domain understanding or are differently supported
by the chosen test case creation technique, and
our participant population drawn from graduate
students with a technical background may not
equally generalize to all ML practitioners. There
are also some threats to internal validity that
remain, for example, despite careful control for
ordering and learning effects with a Latin square
design and assuring that the four groups were
balanced in experience (‘years of ML experience’
and ‘NLP expertise’ asked in the recruitment sur-
vey before assignment), we cannot control for all
possible confounding factors such as prior domain
knowledge, gender, and motivation. In addition, we
rely on clustering and similarity measures among
concepts for our dependent variables, which build
on well-established concepts but may not always

align with individual subjective judgment.
Second, we conducted case studies in real-world

settings with practitioners (high external validity)
but can naturally not control the setting or conduct
repeated independent observations (limited internal
validity). With only two case studies, generaliza-
tions must be made with care.

This tradeoff of external and internal validity
is well understood (Siegmund et al., 2015). Con-
ducting both forms of studies allows us to perform
some limited form of triangulation, increasing con-
fidence as we see similar positive results regarding
WEAVER’s usefulness for discovering diverse con-
cepts.

Subjectivity in human judgments. All model
testing requires judgment whether a model’s pre-
diction for a test example is correct. We noticed
that user study participants and sometimes also
case study practitioners struggled with determining
whether model output for a specific test example
was a problem, and multiple raters may sometimes
disagree. For our purposes, we assume it is the
tester’s responsibility of identifying which model
outputs they consider problematic, and we do not
question any provided labels. This, however, re-
minds us that like data annotation (Santy et al.,
2023), any model testing process will likely bring
in testers’ biases, as they get to decide what is right
and what is wrong. In practice, a broader discussion
among multiple stakeholders may be required to
identify what model behavior is actually expected
and a decomposition of model testing using require-
ments might be helpful to foster such engagement.

Ethics Statement

Research Reproducibility. While our experi-
ments are mostly conducted on the closed API
(text-davinci-003) provided by OpenAI, none
of the conceptual contributions of our paper relate
to specific models or APIs. The concrete evalua-
tion results depend on how humans interact with
specific models, but the approach can be used with
other models. Indeed, our extra experiments with
llama-2-13b-chat on the climate change task
show that the generated concepts from open-source
models achieve substantial levels of recall (83%
vs. 91% originally). This supports that the idea be-
hind WEAVER is reproducible. While users may see
somewhat different KBs through different runs of
the same/different LLMs, they get similar chances
of seeing useful concepts, receive a similar level of



support on requirement elicitation (our core con-
tribution), and will be able to yield similar model
testing effectiveness.

Human-subject Experiments. Our studies had
been approved by our IRB before it was conducted,
as is standard practice for human-subject experi-
ments. We recruited all participants through emails,
and all of them are graduate students with varying
ML/NLP experience (see details in Appendix D.1).
The participants were compensated for their time
($20 per hour). As part of testing, they may write
or review text that is abusive, dangerous, hateful,
or offensive—they were made aware of this fact
and could end participation at any time.
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A Complete List of Used Prompts

# Prompts for expanding knowledge bases

{context}

{list_prompt} Pay attention to the context above.

Summarize in a JSON list.

'''json

## Example list prompts

TYPEOF: List {N} types of {concept}.

PARTOF: List {N} parts or aspects of {concept}.

HASPROPERTY: List {N} descriptions of {concept}.

USEDFOR: List {N} things {concept} could be used

for.

ATLOCATION: List {N} locations {concept} could

appear in.

CAUSES: List {N} consequences of {concept}.

MOTIVATEDBY: List {N} motivations behind {

concept}.

OBSTRUCTEDBY: List {N} things, entities, or

people against {concept}.

MANNEROF: List {N} ways to do {concept}.

LOCATEDNEAR: List {N} things that often locates

near {concept}.

CAPABLEOF: List {N} things that {concept} is

capable of.

HASSUBEVENT: List {N} subevents of {concept}.

HASPREREQUISITE: List {N} things that happen

before {concept}.

DESIRES: List {N} things that {concept} desires.

CREATEDBY: List {N} creators of {concept}.

SYMBOLOF: List {N} symbols of {concept}.

CAUSESDESIRE: List {N} desires caused by {

concept}.

MADEOF: List {N} materials of {concept}.

RECEIVESACTION: List {N} actions that can be

done to {concept}.

DESIREDBY: List {N} entities or people that

desire {concept}.

CREATES: List {N} things that {concept} creates.

CAUSEDBY: List {N} things that cause {concept}.

DONEBY: List {N} entities or people that can do

{concept}.

DESIRECAUSEDBY: List {N} things that cause

desire of {concept}.

DONETO: List {N} entities or people that {

concept} can be done to.

RELATEDTO: List {N} concepts related to {concept

}.

## Example contexts prompts

TYPEOF: {concept} is a type of {parent_concept}.

PARTOF: {concept} is a part of {parent_concept}.

HASPROPERTY: {parent_concept} is described as {

concept}.

USEDFOR: {parent_concept} is used for {concept}.

ATLOCATION: {parent_concept} locates at {concept

}.

CAUSES: {parent_concept} causes {concept}.

MOTIVATEDBY: {parent_concept} is motivated by {

concept}.

OBSTRUCTEDBY: {parent_concept} is obstructed by

{concept}.

MANNEROF: {concept} is a way to do {

parent_concept}.

LOCATEDNEAR: {concept} locates near {

parent_concept}.

CAPABLEOF: {parent_concept} is capable of {

concept}.

HASSUBEVENT: {concept} happens during {

parent_concept}.

HASPREREQUISITE: {concept} happens before {

parent_concept}.

DESIRES: {parent_concept} desires {concept}.

CREATEDBY: {concept} creates {parent_concept}.

SYMBOLOF: {concept} is a symbol of {

parent_concept}.

CAUSESDESIRE: {parent_concept} causes desire of

{concept}.

MADEOF: {parent_concept} is made of {concept}.

RECEIVESACTION: {parent_concept} receives action

of {concept}.

DESIREDBY: {concept} desires {parent_concept}.

CREATES: {parent_concept} creates {concept}.

CAUSEDBY: {concept} causes {parent_concept}.

DONEBY: {concept} does {parent_concept}.

DESIRECAUSEDBY: {concept} causes desire of {

parent_concept}.

DONETO: {parent_concept} is done to {concept}.

RELATEDTO: {concept} is related to {

parent_concept}.



# Prompts for the tested models in the user

study

# Stance detection on feminism

Carefully classify a sentence's stance on

feminism. The labels are \"favor\", \"

against\" or \"none\". Only reply with the

label.

Sentence: {example}

# Stance detection on climate change

Carefully classify a sentence's stance on

combating climate change. The labels are \"

favor\", \"against\" or \"none\". Only reply

with the label.

Sentence: {example}

The path contexts in our full prompt are used to
mitigate the issue of polysemy and deviation when
users explore deeper in the graph.

SURVEY QUESTIONS

• Rate whether you agree with the statement: Concept
knowledge graph helps me find more diverse model
bugs. Write a justification for your rating.

• Rate whether you agree with the statement: Concept
knowledge graph helps me find more important model
bugs. Write a justification for your rating.

• Rate whether you agree with the statement: Concept
knowledge graph helps me test the model more holisti-
cally. Write a justification for your rating.

• Rate whether you agree with the statement: I want to
use the tool with knowledge graph to test the model I
build/use in the future.. Write a justification for your
rating.

• If you want to use the tool in the future, what is the
model and task you want to use it for?

• Feedback on how to improve the tool in the future.

Figure 8: Post-study survey questions.

B User Interface

In Figure 9, we show the complete user interface.

C Task Descriptions

Hateful meme detection. Hateful meme detec-
tion (Kiela et al., 2020) requires classifying an
image (meme with text) as hateful or non-hateful.
This task is challenging in that it requires multi-
modal reasoning in order to classify the original
meme and its confounders correctly

Pedestrian detection. Pedestrian detec-
tion (Zhang et al., 2017) requires detecting and
localizing pedestrians in images. Though it is one
of the longest-standing problems in computer
vision, people still observe generalizability issues
in existing detectors (Hasan et al., 2021).

Stance detection. Stance detection requires clas-
sifying texts as either being in favor of, against, or
neutral toward the given target (Mohammad et al.,
2016). The task is crucial for understanding the
public’s perception of given targets We selected
two targets for our evaluation: feminism and cli-

mate change, which are previously explored for
Tweets (Mohammad et al., 2016).

D User Study

D.1 Study Design Details

Participants. We recruited 20 participants (grad-
uate students with varying ML/NLP experience).
Among them, 70% have worked on ML for more
than three years; 80% rate themselves as at least
somewhat familiar with NLP; 60% are working on
a project using NLP at the time of the study. We
randomly assigned participants to the four experi-
mental groups. The four groups are comparable in
terms of ML/NLP experience and familiarity. The
participants were compensated $20 per hour.

D.2 Post-study Survey

We share our survey questions (Figure 8) and users’
responses (Table 2).

D.3 Quantitative Analysis

We show the ANOVA analysis results in Table 3.

E Additional Data on Running WEAVER

It takes 30 seconds on average to generate a default
KB from scratch (with around 500 concepts) on
our machine (Precision 3650 workstation, with In-
tel(R) Xeon(R) W-1350 CPU and 32GB memory).
When users explore the KB interactively and ex-
pand a node, the query takes 8 seconds on average.
The wait can be greatly reduced via pre-fetching
(i.e., expanding the node on display in the back-
ground before the actual query), which has been
implemented in WEAVER.

F WEAVER with Open-source LLMs

We conducted an extra experiment to evaluate
whether open-source LLMs can also generate com-
prehensive KBs. We generated another KB on
the climate change task, using llama-2-13b-chat

with 4-bit quantization. We found that the gener-
ated KB achieved comparable levels of recall (83%
vs. 91% with text-davinci-003).




