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ABSTRACT: In the past eight years, the selective cross-coupling of amides by N-C(O) bond activation has emerged as a
highly attractive manifold for manipulation of the traditionally unreactive amide bonds. In this Special Issue on Next-Gen-
eration Cross-Coupling Chemistry, we report the Suzuki-Miyaura and Buchwald-Hartwig cross-coupling of amides by se-
lective N-C(O) cleavage catalyzed by bench-stable, well-defined carboxylate Pd(II)-NHC (NHC = N-heterocyclic carbene)
catalysts, [(NHC)Pd(O,CR),]. This class of Pd(II)-NHCs promotes the cross-coupling under exceedingly mild room tem-
perature conditions owing to the facile dissociation of the carboxylate ligands to form the active complex. These readily
accessible Pd(IT)-NHC precatalysts show excellent functional group tolerance and are compatible with a broad scope of
amide activating groups. Considering the mild conditions for the cross-coupling and the facile access to carboxylate Pd(II)-
NHC complexes, we anticipate that this class of bench-stable complexes will find wide application in activation of amide

N-C(O) and related acyl X-C(O) bonds.

Introduction

The amide bond represents one of the most important
functional groups throughout the realm of organic chem-
istry, including the synthesis of natural products, advanced
functional materials and best-selling pharmaceuticals.*?
However, activation of the amide N-C(O) bond has been
historically considered a major challenge owing to the
amidic resonance (nN—7'c-o barrier to rotation in planar
amides, 15-20 mol/kcal).3 The last eight years have wit-
nessed an explosion of interest in activating amide bonds
by ground-state-destabilization, where the amidic reso-
nance is decreased by amide N-C(O) bond twisting and/or
electronic N-activation (Figure 1A).35 This manifold per-
mits to selectively activate common 1° and 2° amide bonds
for insertion of transition metals into the N-C(O) bond to
form versatile acyl-metals from amides, which can be uti-
lized in the powerful transition-metal-catalyzed reaction
pathways.+5 In particular, the direct cross-coupling of acyl-
metals lead to highly valuable acyl products, such as ke-
tones and amides, >° while decarbonylation results in the
formation of aryl-metals, which can be utilized in the

synthesis of biaryls.” In this context, Pd(II)-NHCs (NHC =
N-heterocyclic carbene)® " have emerged as a highly reac-
tive class of catalysts for amide N-C(O) bond activation.5*
The high activity of PdA-NHCs can be ascribed to a signifi-
cant o-donating character of the N-heterocyclic carbene
ancillary ligand,®* which promotes the challenging oxida-
tive addition under mild conditions and with much greater
generality than common Pd-phosphine catalysts.®° One
of the fundamental aspects of Pd(II)-NHC catalysts is the
type of ancillary throw-away ligand,™s which ensures that
the metal and the NHC ligand are used in the optimal 1:1
ratio as well as render the catalysts bench-stable, opera-
tionally-simple and user-friendly.’34

Since 2017, our group has established that several classes
of well-defined Pd(II)-NHC complexes>'> can be employed
for activation of amide N-C(O) and related acyl bonds by
selective oxidative addition of the acyl group to Pd(0),? in-
cluding [PA(NHC)(allyl)Cl], [Pd(IPr)(cin)Cl], [PA(NHC)(3-
Cl-py)CL], [Pd(NHC)(1-tBu-ind)Cl], [Pd(NHC)(n-Cl)Cl],,
[Pd(NHC)(acac)Cl], and [Pd(NHC)(AN)CL,] (AN = aniline)
complexes (Figure 1B).’s
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Figure 1. (a) Cross-coupling of amides by N-C(O) bond activation; (b)
Pd(I1)-NHCs containing different ancillary ligands; (c) This study: Su-
zuki-Miyaura and Buchwald-Hartwig cross-coupling of amides using
well-defined carboxylate [(NHC)Pd(O.CR).] complexes.

In general, these complexes differ by the nature of the
ancillary throw-away ligand on Pd, which is removed un-
der the reaction conditions to generate the monoligated
Pd(o)-NHC complex.* Previous studies demonstrated that
different Pd(II)-NHC complexes have unique advantages
in terms of rate of activation, compatibility with the reac-
tion conditions, substrate scope and type of amide N-C(O)
bonds that can be engaged for cross-coupling reactions.s*
¢ We recognized that a class of well-defined Pd(II)-NHCs
bearing carboxylates as ancillary ligands has never been
used in cross-coupling reactions.'®7 We hypothesized that
the properties of the carboxylate leaving group, including
the possibility of steric and electronic tuning, may be ben-
eficial in cross-coupling of amides due to the facile disso-
ciation of the carboxylate group.” Herein, we report our
study on the Suzuki-Miyaura and Buchwald-Hartwig
cross-coupling of amides catalyzed by bench-stable, well-
defined carboxylate Pd(IT)-NHC catalysts,
[(NHC)Pd(O.CR).] (Figure 1C). %7 Most crucially, we have
established that this class of Pd(II)-NHCs promotes the
cross-coupling under exceedingly mild room temperature
conditions owing to the facile dissociation of the carbox-
ylate ligands to form the active complex. Furthermore,
these readily accessible Pd(IT)-NHC precatalysts show ex-
cellent functional group tolerance and are compatible with

a broad scope of amide activating groups. In view of the
mild conditions and the facile access to carboxylate Pd(IT)-
NHC complexes, we anticipate that this class of bench-sta-
ble complexes will find wide application in activation of
amide N-C(O) and related acyl X-C(O) bonds.

Results and Discussion

As in previous studies, the Suzuki-Miyaura cross-cou-
pling was selected as a model reaction (Table 1). The well-
defined Pd(I1)-NHCs were prepared by the methods re-
ported previously.'®> A selection of carboxylate ligands in-
cluded sterically- and electronically-differentiated carbox-
ylates, such as MeCO,, CF,CO,, PhCO,, tBuCO,.*® Although
our previous studies demonstrated that IPr is vastly pre-
ferred as the NHC ligand for amide N-C(O) bond activa-
tion,>' related IMes and SIPr ligands were also tested. Pre-
vious studies by the Sigman'®*® and Nolan'® groups
demonstrated that this class of Pd(II)-NHCs features
square-planar coordination around the metal center, while
the trans coordination site is occupied by water. The opti-
mization results are summarized in Table 1.

Table 1. Optimization of the Reaction Conditions®

o B(OH), o
.Ph [(IPr)Pd(OAc),]
N+ >
éoc Base, Solvent (0.25 M) O O
T,16h Me
Me
1a 2b 3b
[Pd] loading T Yield
E. P I B. 1
ntry [Pd] catalyst (mol%) ase Solvent ¢0) (%)
1t [(TPr)Pd(OAc),] 3.0 K,CO, THF 60 1
2 [(IPr)Pd(OAc),] 3.0 K,CO, THF 23 >98
3 [(IPr)Pd(OAc),] 1.0 K,CO, THF 23 50
4 [(IPr)Pd(OAc),] 1.0 K,CO;  toluene 23 56
5 [(IPr)Pd(OAC),] 1.0 Na,CO, THF 23 25
6 [(IPr)Pd(OAC),] 1.0 KOH THF 23 6
7 [(IPr)Pd(OAC),] 1.0 K;PO, THF 23 17
8 [(IPr)Pd(OAC),] 1.0 KF THF 23 >98

?Conditions: amide 1a (1.0 equiv), 4-Tol-B(OH). (2.0 equiv), base (3.0
equiv), [Pd] (1.0-3.0 mol%), solvent (0.25 M), water (5.0 equiv), T, 16
h. banhydrous conditions.

The initial promising result was obtained using K,CO; as
a base in the presence of [(IPr)Pd(O,CMe),] (3 mol%) as a
catalyst in THF at 60 °C under anhydrous conditions (entry
1). Pleasingly, the reaction was highly effective at room
temperature using water as additive to promote transmeta-
lation (entry 2). However, the yield decreased significantly
at lower catalyst loading (entry 3). The use of toluene as a
solvent was not beneficial for the reaction (entry 4). The
screen of bases revealed that although Na.CO,, K;PO, and
KOH had a detrimental effect on the reaction (entries 5-7),
the use of KF afforded the desired product in >95% yield
without cleavage of the sensitive N-Boc activating group
(entry 8).

Next, we conducted a comprehensive comparison of
[(NHC)Pd(O.CR),] precatalysts (Figure 2). As shown,
[(NHC)Pd(O.CR),] catalysts bearing MeCO,, PhCO,,
tBuCO, groups resulted in quantitative conversion to the
desired product (entries 2-4), while the acetate catalyst
was the fastest-activating (entry 4).
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Figure 2. Catalyst effect on the Suzuki-Miyaura cross-coupling of am-
ides using [(NHC)Pd(O.CR).] precatalysts after 0.5 h, 1 h and 15 h.@
?Conditions: amide (1.0 equiv), 4-Tol-B(OH). (2.0 equiv), KF (3.0
equiv), [Pd] (3.0 mol%), 5 equiv H.O, THF (0.25 M), 23 °C, 15 h. [Pd-
NHC] = [(IPr)Pd(O.CCF,).], [(IPr)Pd(OPiv).], [(IPr)Pd(OBz).,
[(IPr)Pd(OAC)-], [(IMes)Pd(OAc).], [(SIPr)Pd(OAc).]. Note that the
bars represent 0.5 h, 1 h and 15 h, respectively.
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Figure 3. Kinetic studies of the Suzuki-Miyaura cross-coupling of am-
ides using [(NHC)Pd(O.CR).] precatalysts.? “Conditions: amide (1.0
equiv), 4-Tol-B(OH). (2.0 equiv), KF (3.0 equiv), [Pd] (3.0 mol%), 5
equiv H,O, THF (0.25 M), 23 °C, 4 h. [Pd-NHC] = [(NHC)Pd(OAc)],
[(TPr)Pd(1-Bu-ind)Cl], [(IPr)Pd(u-Cl)Cl]., [Pd(IPr)(cin)Cl].
Furthermore, the trifluoroacetate catalyst resulted in
high conversion (entry 1). Finally, the use of IMes and SIPr
acetate catalysts gave much lower conversion that their IPr
congener (entries 5-6), as expected. It is interesting to note
that out of the first four complexes, [(IPr)Pd(OAc),]

showed the highest reactivity, indicting that acetate is the
favored ancillary ligand under these conditions. Detailed
conversion curves have not been determined because
[(IPr)Pd(OAC).] showed the highest reactivity (cf. Figure 3).

Kinetic studies were conducted to gain insight into the
reactivity of [(IPr)Pd(O,CMe).] as compared to other well-
defined Pd(IT)-NHCs (Figure 3). As shown, the carboxylate
catalyst [(IPr)Pd(OAc),] outperformed [Pd(NHC)(1-tBu-
ind)Cl], [Pd(NHC)(u-CI)Cl], and [Pd(IPr)(cin)Cl], while
[PA(NHC)(3-Cl-py)Cl,] and [Pd(IPr)(acac)Cl] were unreac-
tive under these conditions due to slow activation. Overall,
the results of comparative studies are consistent with the
fast activation of [(IPr)Pd(OAc).] and the role of IPr and
OAc as the preferred NHC and throw-away ancillary ligand
in this system, respectively.

With the optimum conditions, the substrate scope of the
Suzuki-Miyaura cross-coupling of amides at room temper-
ature catalyzed by [(IPr)Pd(O,CMe),] catalyst was investi-
gated (Scheme 1). As shown, these conditions are highly ef-
fective for the cross-coupling with a range of electronically-
differentiated boronic acids, such as electron-neutral (3a),
electron-donating (3b-3¢) and electron-withdrawing (3d-
3f). Importantly, electrophilic functional groups that
would be problematic in the standard addition of organo-
metallics are readily tolerated (3f). Furthermore, these
mild conditions are compatible with acidic protons as ex-
emplified by the substrates bearing free hydroxyl (3g) and
amine functional groups (3h). Moreover, steric hindrance
is well-tolerated by this system (3i). Meta-substitution is
well-compatible (3j), as expected. In this case, functional
group tolerance to ketones should be noted. Furthermore,
challenging polyfluorinated boronic acids that are prone to
protodeboronation are well-compatible with this catalyst
(3k). Moreover, polyarenes (31) and medicinally-relevant
heterocycles, such as benzodioxole (3m), benzofuran (3n)
and dibenzothiophene (30) are well-applicable to this cou-
pling protocol. Finally, we have systematically tested sev-
eral combinations of both reaction components that con-
tain electron-rich and electron-deficient functional groups
(3¢’-3s). As shown, electronically-deactivated amide per-
formed well in the reaction, affording the cross-coupling
product in quantitative yield (3¢’). This type of deactiva-
tion is compatible with both electron-donating (3p) and
electron-deficient nucleophiles (3q). Furthermore, elec-
tron-deficient amide electrophile afforded excellent yield
of the cross-coupling product (3r). Pleasingly, this system
was also compatible with the most challenging combina-
tion of electron-deficient electrophile/electron-deficient
boronic acid (3s). Overall, these examples illustrate excel-
lent functional group compatibility for the challenging N-
C(O) amide bond cross-coupling. Importantly, the cou-
pling is performed at practical, room temperature condi-
tions. It is worthwhile to note that ortho-substituents on
the amide bond component are well-tolerated in this cou-
pling (see, Scheme 2, 1f-1g). At this point, heterocyclic am-
ides have not been tested. We are currently involved in a
comprehensive investigation of heterocyclic substrates in
the amide activation platform. These studies will be pub-
lished in due course.

Next, we evaluated the compatibility of this catalyst sys-
tem with various amides (Scheme 2).



Scheme 1. Scope of the Suzuki-Miyaura Cross-Coupling of Amides by [(NHC)Pd(OAc).] Catalysis®
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2Conditions: amide 1 (1.0 equiv), boronic acid 2 (2.0 equiv), [(IPr)Pd(OAc).] (3 mol%), KF (3.0 equiv), water (5.0 equiv), THF (0.25 M), 23 °C, 16 h.

Scheme 2. Scope of the Suzuki-Miyaura Cross-Cou-
pling of Amides by [(NHC)Pd(OAc).] Catalysis®
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B(OH);  [(IPr)Pd(OAC),]
(3 mol %)

1d: 55% yield

1e: >99% vyield

?Conditions: amide 1 (1.0 equiv), boronic acid 2 (2.0 equiv),
[(TPr)Pd(OAc)2] (3 mol%), KF (3.0 equiv), water (5.0 equiv), THF (0.25
M), 23 °C, 16 h. See experimental section for details.

Scheme 3. Suzuki-Miyaura Cross-Coupling of Esters
by O-C(O) Activation by [(NHC)Pd(OAc),] Catalysis®

B(OH);  [(IPr)Pd(OAc),] []
(3 mol %)
OPh +
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THF, 23 °C, 16 h
2c Ope 3c: 73% yield

2Conditions: ester 1j (1.0 equiv), boronic acid 2c¢ (2.0 equiv),
[(TPr)Pd(OAc)2] (3 mol%), KF (3.0 equiv), water (5.0 equiv), THF (0.25
M), 23 °C, 16 h.

As shown, amides bearing sterically-hindered N-glu-
tarimide (1b) and N-succinimide (1c) cyclic activating
groups are compatible with this carboxylate Pd(II)-NHC
catalyst system. Furthermore, N-acylic activation is
broadly tolerated, including N-Boc (1d) as well as N-Ms
(1e-1f) and N-Ts (1g) activation. Importantly, N,N-Boc,
amides (1h) that are readily prepared from common 1° am-
ides are well-compatible with these mild conditions. Fi-
nally, N-Ac amides that serve as versatile mono-activated
acyclic amide precursors (1j) can also be employed in this
catalyst system.

Considering the importance of activating ester O-C(O)
bonds as an alternative to N-C(O) amide bond activation,
we also tested the cross-coupling of phenyl benzoate
(Scheme 3). Pleasingly, the [(IPr)Pd(OAc).] catalyst is also
compatible with the activation of ester C(acyl)-O bonds
under mild, room temperature conditions.
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In view of the importance of transamidation reactions in
organic synthesis, we were keen to test the activity of the
[(IPr)Pd(OAC).] catalyst in acyl Buchwald-Hartwig reac-
tion of amides (Scheme 4)."3 This manifold has emerged as
a mild alternative to stoichiometric protocols, exploiting
the versatility of the acyl-metal intermediate in ligand ex-
change with amines under mild base reaction conditions.>5
As shown, we found that this carboxylate Pd(II)-NHC cat-
alyst is well-compatible with Buchwald-Hartwig amina-
tion using electron-neutral (4a), electron-donating (4b) as
well as the challenging electron-withdrawing (4¢) and ste-
rically-hindered (4d) anilines. The functional group toler-
ance towards the ester group should be noted. Interest-
ingly, high temperature is required (1o °C, 16 h) for the
more challenging Buchwald-Hartwig amination using
[(IPr)Pd(OAc).], which is similar to other Pd(II)-NHC
precatalysts,?*'5 while the combination of KF/THF condi-
tions with [(IPr)Pd(OAc),] enables room temperature Su-
zuki-Miyaura cross-coupling.

Furthermore, the TON was determined for the Suzuki-
Miyaura cross-coupling of amide 1a of 200 (4-Me-C¢H,-
B(OH),, 0.05 mol%, 110 °C, 16 h) in THF and 388 (4-Me-
CsH,-B(OH),, 0.05 mol%, 110 °C, 16 h) in 2-MeTHF, indi-
cating high reactivity of the [(IPr)Pd(OAc).] catalyst.

Scheme 4. Buchwald-Hartwig Cross-Coupling of Am-
ides by [(NHC)Pd(OAc)2] Catalysis®
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?Conditions: amide 1 (1.0 equiv), aniline 4 (2.0 equiv), [(IPr)Pd(OAc)2]
(3 mol%), K.CO; (3.0 equiv), DME (0.25 M), 110 °C, 16 h.

Conclusions

In summary, we have reported the Suzuki-Miyaura and
Buchwald-Hartwig cross-coupling of amides by selective
N-C(O) cleavage catalyzed by bench-stable, well-defined
carboxylate Pd(II)-NHC catalysts. Most importantly, this
class of bench-stable Pd(IT)-NHCs has been found to pro-
mote the cross-coupling under exceedingly mild room
temperature conditions. Comparative studies between dif-
ferent carboxylate catalysts as well as various classes of
Pd(I)-NHCs  demonstrated  high  reactivity  of
[(NHC)Pd(O,CR),] complexes. These readily accessible
Pd(IT)-NHC precatalysts show excellent functional group
tolerance and are compatible with a broad scope of amide
and ester activating groups. Considering the mild condi-
tions for the cross-coupling and the facile access to

carboxylate Pd(IT)-NHC complexes, we anticipate that this
class of bench-stable complexes will find wide application
in activation of amide N-C(O) and related acyl X-C(O)
bonds.

Experimental Section

General Methods. All compounds reported in the
manuscript have been previously described in literature or
prepared by the method reported previously unless stated
otherwise. All boronic acids are commercially available and
have been purchased from Oakwood Chemical. All
catalysts used in this study are commercially available or
were prepared according to literature report.® All experi-
ments involving palladium were performed using standard
Schlenk techniques under nitrogen or argon unless stated
otherwise. All solvents were purchased at the highest com-
mercial grade and used as received or after purification by
distillation from sodium/benzophenone under nitrogen.
All solvents were deoxygenated prior to use. All other
chemicals were purchased at the highest commercial grade
and used as received. All other general methods have been
published.’® Oil bath as the heat source has been used for
reactions that required heating. *H NMR and 3C NMR data
are given for all compounds in the Supporting Experi-
mental for characterization purposes. ‘H NMR, 3C NMR
and HRMS data are reported for all new compounds.

General Procedure for the Synthesis of [(IPr)
Pd(OAc),]. Literature procedure was followed.*® An oven-
dried vial was equipped with a magnetic stir bar was
charged with [Pd(IPr)(u-CI)Cl], (neat, 1. 0 equiv), AgOAc (
typically, 4.1 equiv). Dichloromethane (typically, 0.1 M)
was added with vigorous stirring at room temperature and
the reaction mixture was stirred for 16 h at 23 °C. After the
indicated time, the reaction mixture was filtered through a
plug of Celite and rinsed with dichloromethane. The fil-
trate was concentrated to afford the title product.'®* Com-
plexes  [Pd(IPr)(u-Cl)Cl],,* [(TPr)Pd(O,CCF;),], b
[(TPr)Pd(O-piv).,],'® [IPrPd(OBz),],"" [(IMes)Pd(OAc)],"¢
[(SIPr)Pd(OAC).]'*¢ have been previously described.

General Procedure for Suzuki-Miyaura Cross-Cou-
pling of Amides at RT. An oven-dried vial equipped with
a stir bar was charged with an amide substrate (neat, 1.0
equiv), potassium fluoride (typically, 3.0 equiv), boronic
acid (typically, 2.0 equiv), [(IPr)Pd(OAc).] (3.0 mol%),
placed under a positive pressure of argon, and subjected to
three evacuation/backfilling cycles under high vacuum.
THEF (typically, 0.25 M) and H,O (typically, 5.0 equiv) were
added with vigorous stirring at room temperature. After
the indicated time, the reaction mixture was diluted with
CH.Cl, (10 mL), filtered, and concentrated. The sample was
analyzed by '*H NMR (CDCl,;, 500 MHz) to obtain conver-
sion, selectivity, and yield using internal standards and
comparison with authentic samples. Purification by chro-
matography on silica gel (EtOAc/hexane = 1/10) afforded
the title product.

Representative Procedure for Suzuki-Miyaura Cross-
Coupling of Amides at RT. 1.0 Mmol Scale. An oven-
dried vial equipped with a stir bar was charged with tert-
butyl benzoyl(phenyl)carbamate 297 mg, 1 mmol, 1.0
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equiv), potassium fluoride (174 mg, 3 mmol, 3.0 equiv), 4-
methoxyphenyl boronic acid (304 mg, 2 mmol, 2.0 equiv),
[(IPr)Pd(OAc).] (19 mg, 0.03 mol, 3 mol%) placed under a
positive pressure of argon, and subjected to three evacua-
tion/backfilling cycles under high vacuum. THF (4 mL,
0.25 M) and H,O (9o pL, 5 mmol 5.0 equiv) were added
with vigorous stirring at room temperature, and the reac-
tion mixture was stirred for 16 h at room temperature. After
the indicated time, the reaction mixture was diluted with
CH.(Cl, (80 mL), filtered, and concentrated. Purification by
column chromatography on silica gel (solid loading,
EtOAc/hexane: 3%-5%) afforded the title product 3c. Yield
98% (210 mg). White solid. Characterization data are in-
cluded in the section below.

General Procedure for Buchwald-Hartwig Cross-Cou-
pling of Amides. An oven-dried vial equipped with a stir
bar was charged with an amide substrate (neat, 1.0 equiv),
potassium carbonate (typically, 3.0 equiv), aniline sub-
strate (typically, 2.0 equiv), [(IPr)Pd(OAc),] 3.0 mol%),
placed under a positive pressure of argon, and subjected to
three evacuation/backfilling cycles under high vacuum.
Dimethoxyethane (typically, 0.25 M) added with vigorous
stirring at 110 °C temperature. After the indicated time, the
reaction mixture was diluted with CH,Cl, (10 mL), filtered,
and concentrated. The sample was analyzed by ‘H NMR
(CDCl;, 500 MHz) to obtain conversion, selectivity and
yield using internal standard and comparison with authen-
tic samples. Purification by chromatography on silica gel
(EtOAc/hexanes = 1:5) afforded the title product. Note: the
reactions have been heated in a closed vial at 110 °C. All re-
actions have been carried out in microwave vials with
heavy-wall, Type I, Class A borosilicate. These vials are de-
signed to withstand pressures up to 300 PSI (20 bars) and
are equivalent to Fisher-Porter tube. Safety precautions
should be used when heating closed reactors above the
boiling point of the solvent. For the measurement of TON,
the reactions were carried out at 110 °C in 2-MeTHF. Safety
precautions should be taken when heating above the boil-
ing point of the solvent.

Benzophenone (3a)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv),
phenylboronic acid (2.0 equiv), H.O (5.0 equiv), KF (3.0
equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25 M) for
16 h at 23 °C, afforded after filtration and chromatography
the title product in 92% yield (16.7 mg). White solid. 'H
NMR (500 MHz, CDCL,) 8 7.81 (d, ] = 6.7 Hz, 4H), 7.59 (t, ]
= 7.4 Hz, 2H), 7.49 (t, ] = 7.6 Hz, 4H). 3C{'H} NMR (125
MHz, CDCl;) § 196.9, 137.8, 132.6, 130.2, 128.4. NMR spec-
troscopic data agreed with literature values.®

Phenyl(p-tolyl)methanone (3b)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv), p-
tolyboronic acid (2.0 equiv), H.O (5.0 equiv), KF (3.0 equiv)
and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25 M) for 16 h at
23 °C, afforded after filtration and chromatography the title
product in 99% yield (19.4 mg). White solid. '"H NMR (500
MHz, CDCL,) 8 7.79 (d, J = 6.9 Hz, 2H), 7.73 (d, ] = 8.1 Hz,

2H), 7.58 (t, ] = 7.4 Hz,1H), 7.48 (t, ] = 7.6 Hz, 2H), 7.28 (d,
J=7.9 Hz, 2H), 2.44 (s, 3H). 3C{'H} NMR (125 MHz, CDCl;)
8 196.7, 143.4, 138.1, 135.1, 132.3, 130.5, 130.1, 129.1, 128.4, 21.8.
NMR spectroscopic data agreed with literature values.”

(4-Methoxyphenyl)(phenyl)methanone (3¢)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv), 4-
methoxy phenylboronic acid (2.0 equiv), H,O (5.0 equiv),
KF (3.0 equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25
M) for 16 h at 23 °C, afforded after filtration and chroma-
tography the title product in 98% yield (20.8 mg). 'H NMR
(500 MHz, CDCl;) 6 7.83 (d, J = 8.9 Hz, 2H), 7.76 (d, J = 6.9
Hz, 2H), 7.57 (t, ] = 7.5 Hz, 1H), 7.47 (t, ] = 7.6 Hz, 2H), 6.97
(d, J = 8.8 Hz, 2H), 3.89 (s, 3H). 3C{"H} NMR (125 MHz,
CDCL,) 8 195.7, 163.4, 138.4, 132.7, 132.1, 130.3, 129.9, 128.3,
1u3.7, 55.6. White solid. NMR spectroscopic data agreed
with literature values.!

Phenyl(4-(trifluoromethyl)phenyl)methanone (3d)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv), 4-
trifluoromethyl phenylboronic acid (z.0 equiv), H,O (5.0
equiv), KF (3.0 equiv) and [(IPr)Pd(OAc).] (3.0 mol%) in
THF (0.25 M) for 16 h at 23 °C, afforded after filtration and
chromatography the title product in 95% yield (23.7
mg).White solid. 1H NMR (500 MHz, CDCI3) § 7.90 (d, ] =
8.0 Hz, 2H), 7.83 - 7.78 (m, 2H), 7.76 (d, ] = 8.1 Hz, 2H),
7.63 (td, ] = 7.3, 1.4 Hz, 1H), 7.51 (t, ] = 7.7 Hz, 2H). 3C{'H}
NMR (125 MHz, CDCI3) § 195.7, 140.9, 136.9, 133.9 (q, ] =
32.7 Hz), 133.2, 130.3, 130.2, 128.7, 125.5 (q, ] = 3.8 Hz), 123.8
(g, J = 272.6 Hz).9F{'H} NMR (471 MHz, CDCL,) § -63.0.
NMR spectroscopic data agreed with literature values.>°

(4-Fluorophenyl)(phenyl)methanone (3e)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv), (4-
fluorophenyl)boronic acid (2.0 equiv), H.O (5.0 equiv), KF
(3.0 equiv) and [(IPr)Pd(OAc).] (3.0 mol%) in THF (o.25
M) for 16 h at 23 °C, afforded after filtration and chroma-
tography the title product in 99% yield (19.8 mg). White
solid. '"H NMR (500 MHz, CDCL,) § 7.85 (dd, J = 8.7, 5.6 Hz,
2H), 7.79 - 7.75 (m, 2H), 7.60 (t, ] = 7.4 Hz, 1H), 7.49 (t, ] =
7.7 Hz, 2H), 7.16 (t, ] = 8.6 Hz, 2H). 3C{'"H} NMR (125 MHz,
CDCL,) 8§ 195.5, 165.5 (d, ] = 254.4 Hz), 137.6,133.9 (d, ] = 3.2
Hz), 132.8 (d, ] = 9.2 Hz), 132.6, 130.1, 128.5, 115.6 (d, J = 21.9
Hz). 9F{'H} NMR (471 MHz, CDCl;) § -106.0. NMR spectro-
scopic data agreed with literature values.>®

Methyl 4-benzoylbenzoate (3f)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv), 4-
methoxycarbonylphenylboronic acid (2.0 equiv), H,O (5.0
equiv), KF (3.0 equiv) and [(IPr)Pd(OAc).] (3.0 mol%) in
THF (0.25 M) for 16 h at 23 °C, afforded after filtration and
chromatography the title product in 49% yield (11.7 mg).
White solid. '"H NMR (500 MHz, CDCl,) § 8.15 (d, / = 8.3 Hz,
2H), 7.84 (d, J = 8.3 Hz, 2H), 7.81 (d, ] = 6.9 Hz, 2H), 7.62 (t,
J =7.4 Hz, 1H), 7.50 (t, ] = 7.6 Hz, 2H), 3.97 (s, 3H). 3C{'H}
NMR (125 MHz, CDCL,) § 196.2,166.5, 141.5, 137.1, 133.4, 133.1,



130.3, 129.9, 129.7, 128.6, 52.6. NMR spectroscopic data
agreed with literature values.®

(4-Hydroxyphenyl)(phenyl)methanone (3g)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv), (4-
hydroxyphenyl)boronic acid (2.0 equiv), H,O (5.0 equiv),
KF (3.0 equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25
M) for 16 h at 23 °C, afforded after filtration and chroma-
tography the title product in 57% yield (1.3 mg). White
solid. 'H NMR (500 MHz, CDCl;) 8 7.79 (d, ] = 8.6 Hz, 2H),
7.78 = 7.74 (m, 2H), 7.60 - 7.55 (m, 1H), 7.48 (t, ] = 7.5 Hz,
2H), 6.91 (d, ] = 8.5 Hz, 2H), 5.58 (s, 1H). 3C{"H} NMR (125
MHz, CDCl;) § 195.8, 159.8, 138.3, 133.1, 132.1, 130.5, 129.9,
128.4, 115.3. NMR spectroscopic data agreed with literature
values.”

tert-Butyl (4-benzoylphenyl)carbamate (3h)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv), 4-
((tert-butoxycarbonyl)amino)phenyl)boronic acid (2.0
equiv), H,O (5.0 equiv), KF (3.0 equiv) and
[(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25 M) for 16 h at 23
°C, afforded after filtration and chromatography the title
product in 99% yield (29.4 mg). White solid. 'H NMR (500
MHz, CDCL) § 7.80 (d, J = 8.7 Hz, 2H), 7.78 - 7.74 (m, 2H),
7.56 (d, ] = 7.5 Hz,1H), 7.47 (dt, ] = 7.4, 3.4 Hz, 4H), 1.54 (s,
oH). 3C{'H} NMR (125 MHz, CDCl;) § 195.7, 152.3, 142.6,
138.2, 132.2, 132.1, 131.9, 129.9, 128.4, 117.4, 28.4. NMR spec-
troscopic data agreed with literature values.>

Phenyl(o-tolyl) methanone (3i)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv), o-
tolylboronic acid (2.0 equiv), H,O (5.0 equiv), KF (3.0
equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25 M) for
16 h at 23 °C, afforded after filtration and chromatography
the title product in 99% yield (19.4 mg). White solid. 'H
NMR (500 MHz, CDCL,;) 8 7.80 (dd, J = 8.2, 1.4 Hz, 2H), 7.61
- 7.56 (m, 1H), 7.46 (t, ] = 7.8 Hz, 2H), 7.39 (td, ] = 7.5, 1.5
Hz, 1H), 7.33 - 7.27 (m, 2H), 7.24 (t, ] = 7.3 Hz, 1H), 2.33 (s,
3H). 3C{*H} NMR (125 MHz, CDCl;) & 198.8, 138.8, 137.9,
136.9, 133.3, 1311, 130.4, 130.3, 128.7, 128.6, 125.3, 20.1. NMR
spectroscopic data agreed with literature values.”
1-(3-Benzoylphenyl)ethan-1-one (3j)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv), 3-
acetylphenylboronic acid (2.0 equiv), H,O (5.0 equiv), KF
(3.0 equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (o.25
M) for 16 h at 23 °C, afforded after filtration and chroma-
tography the title product in 99% yield (22.2 mg). White
solid. '"H NMR (500 MHz, CDCl;) & 8.36 (s, 1H), 818 (d, ] =
7.8 Hz,1H), 7.99 (dt, ] = 7.6, 1.5 Hz, 1H), 7.82 - 7.77 (m, 2H),
7.61 (dt, J = 10.5, 7.6 Hz, 2H), 7.51 (t, ] = 7.7 Hz, 2H), 2.65 (s,
3H). 3C{'"H} NMR (125 MHz, CDCl;) § 197.5, 196.1, 138.2,
137.3, 137.2, 134.4, 133.1, 131.9, 130.2, 129.9, 128.9, 128.7, 26.9.
NMR spectroscopic data agreed with literature values.?
Phenyl(3,4,5-trifluorophenyl)methanone (3k)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv),

(3,4,5-trifluorophenyl)boronic acid (2.0 equiv), H.O (5.0
equiv), KF (3.0 equiv) and [(IPr)Pd(OAc).] (3.0 mol%) in
THF (0.25 M) for 16 h at 23 °C, afforded after filtration and
chromatography the title product in 99% yield ( 23.3 mg).
White solid. *H NMR (500 MHz, CDCL,;) 8 7.76 (dd, ] = 8.0,
1.4 Hz, 2H), 7.64 (t, ] = 7.5 Hz, 1H), 7.52 (t, ] = 7.7 Hz, 2H),
7.48 (t, ] = 7.0 Hz, 2H). 3C{'H} NMR (125 MHz, CDCl;) §
193.1, 152.1 (dd, J = 10.3, 3.4 Hz), 150.1 (dd, ] = 10.3, 3.5 Hz),
143.9 (t, ] = 15.3 Hz), 141.9 (t, | = 15.4 Hz), 136.3, 133.3, 133.2
(q,] =5.6 Hz),129.9, 128.8, 114.7 (dd, ] =16.6, 5.4 Hz). “F{*H}
NMR (471 MHz, CDCL;) § -132.3, -153.2. NMR spectroscopic
data agreed with literature values.>

Naphthalen-1-yl(phenyl)methanone (31)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv),
naphthalen-1-ylboronic acid (2.0 equiv), H,O (5.0 equiv),
KF (3.0 equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25
M) for 16 h at 23 °C, afforded after filtration and chroma-
tography the title product in 77% yield (17.8 mg). White
solid. '"H NMR (500 MHz, CDCl;) § 8.10 (d, ] = 8.2 Hz, 1H),
8.01(d, J = 8.2 Hz, 1H), 7.93 (dd, ] = 7.7, 1.6 Hz, 1H), 7.89 -
7.85 (m, 2H), 7.64 - 7.57 (m, 2H), 7.56 - 7.43 (m, 5H). 3C{*H}
NMR (125 MHz, CDCl;) 8 198.2, 138.5, 136.5, 133.9, 133.4,
131.4, 131.1, 130.6, 128.6, 128.5, 127.9, 127.4, 126.6, 125.8, 124.5.
NMR spectroscopic data agreed with literature values.?

Benzo[d][1,3]dioxol-5-yl(phenyl)methanone (3m)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv),
benzo[d][1,3]dioxol-5-ylboronic acid (2.0 equiv), H,O (5.0
equiv), KF (3.0 equiv) and [(IPr)Pd(OAc).] (3.0 mol%) in
THF (0.25 M) for 16 h at 23 °C, afforded after filtration and
chromatography the title product in 90% yield (20.3 mg).
Yellow solid. '"H NMR (500 MHz, CDCL,) 8 7.77 - 7.72 (m,
2H), 7.60 - 7.54 (m, 1H), 7.48 (d, ] = 7.9 Hz, 2H), 7.40 - 7.35
(m, 2H), 6.86 (d, ] = 7.9 Hz, 1H), 6.07 (s, 2H). 3C{*H} NMR
(125 MHz, CDCl;) 8 195.3, 151.7, 148.1, 138.3, 132.1, 132.1, 129.9,
128.4, 127.1, 110.1, 107.9, 102.0. NMR spectroscopic data
agreed with literature values.>

Benzofuran-2-yl(phenyl)methanone (3n)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv),
benzofuran-2-ylboronic acid (2.0 equiv), H,O (5.0 equiv),
KF (3.0 equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25
M) for 16 h at 23 °C, afforded after filtration and chroma-
tography the title product in 74% yield( 16.4 mg). White
solid. 'H NMR (500 MHz, CDCl;) 8 8.08 - 8.03 (m, 2H),
7.74 (d,] = 7.7 Hz,1H), 7.65 (t, 2H), 7.58 - 7.53 (m, 3H), 7.53
- 7.47 (m, 1H), 7.37 - 7.31 (m, 1H). 3C{"H} NMR (125 MHz,
CDCL;) & 184.6, 156.2, 152.4, 137.4, 133.1, 129.6, 128.7, 128.5,
127.2, 124.1, 123.5, 116.7, 112.7. NMR spectroscopic data
agreed with literature values.?

Dibenzol[b,d]thiophen-4-yl(phenyl)methanone (30)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.1 mmol, 1.0 equiv),
dibenzo[b,d]thiophen-4-ylboronic acid (2.0 equiv), H,O
(5.0 equiv), KF (3.0 equiv) and [(IPr)Pd(OAc).] (3.0 mol%)
in THF (0.25 M) for 16 h at 23 °C, afforded after filtration
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and chromatography the title product in 85% yield (24.5
mg). White solid. 'H NMR (500 MHz, CDCL;) § 8.43 (d, ] =
7.9 Hz, 1H), 8.25 - 8.23 (m, 1H), 7.99 - 7.96 (m, 1H), 7.93 (d,
J=7.6 Hz, 1H), 7.82 (d, ] = 7.6 Hz, 2H), 7.62 (t, ] = 7.5 Hz,
1H), 7.59 - 7.50 (m, 5H). 3C{'H} NMR (125 MHz, CDCL,) §
196.0, 142.0, 141.0, 138.3, 137.6, 134.2, 132.1, 131.8, 130.4, 129.8,
128.5, 127.4, 126.0, 124.7, 123.9, 123.1, 121.6. NMR spectro-
scopic data agreed with literature values.>”

(4-Methoxyphenyl)(phenyl)methanone (3¢’)

According to the general procedure, the reaction of tert-
butyl (4-methoxybenzoyl)(phenyl)carbamate (0.1 mmol,
1.0 equiv), 4-methoxy phenylboronic acid (2.0 equiv), H,O
(5.0 equiv), KF (3.0 equiv) and [(IPr)Pd(OAc),] (3.0 mol%)
in THF (0.25 M) for 16 h at 23 °C, afforded after filtration
and chromatography the title product in 99% yield (21 mg).
'H NMR (500 MHz, CDCl;) 8 7.84 (d, J = 8.9 Hz, 2H), 7.76
(d, J=6.9 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.47 (t, ] = 7.6 Hz,
2H), 6.98 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H). 3C{"H} NMR (125
MHz, CDCl;) § 195.7, 163.4, 138.5, 132.7, 132.1, 130.3, 129.9,
128.3, 113.7, 55.7. White solid. NMR spectroscopic data
agreed with literature values.?®

Bis(4-Methoxyphenyl)methanone (3p)

According to the general procedure, the reaction of tert-
butyl (4-methoxybenzoyl)(phenyl)carbamate (0a
mmol,1.0 equiv), 4-methoxyphenyl)boronic acid (2.0
equiv), H,O (5.0 equiv), KF (3.0 equiv) and [(IPr)Pd(OAc),]
(3.0 mol%) in THF (0.25 M) for 16 h at 23 °C, afforded after
filtration and chromatography the title product in 95%
yield (23 mg). White solid. *H NMR (500 MHz, CDCl,) §
7.81-7.77 (m, 4H), 6.98 - 6.94 (m, 4H), 3.88 (s, 6H). 3C{'H}
NMR (125 MHz, CDCL) § 194.6, 162.9, 132.4, 130.9, 113.6,
55.6. NMR spectroscopic data agreed with literature val-
ues.?®

Methyl 4-(4-methoxybenzoyl)benzoate (3q)

According to the general procedure, the reaction of tert-
butyl (4-methoxybenzoyl)(phenyl)carbamate (01
mmol,1.0 equiv), 4-methoxycarbonylphenylboronic acid
(2.0 equiv), H,O (5.0 equiv), KF (3.0 equiv) and
[(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25 M) for 16 h at 23
°C, afforded after filtration and chromatography the title
product in 82% yield (22.1 mg). White solid. *H NMR (500
MHz, CDCL) § 8.14 (d, J = 8.4 Hz, 1H), 7.81 (dd, ] = 16.0, 8.6
Hz, 2H), 6.98 (d, J = 8.8 Hz, 1H), 3.97 (s, 2H), 3.90 (s, 2H).
5C{'H} NMR (125 MHz, CDCl;) 8 194.9, 166.5, 163.7, 142.3,
132.9,132.8, 129.7, 129.6, 113.9, 55.7, 52.6. NMR spectroscopic
data agreed with literature values.>

(4-Methoxyphenyl)(4-(trifluoromethyl)phenyl)meth-
anone (3r)

According to the general procedure, the reaction of tert-
butyl phenyl(4-(trifluoromethyl)benzoyl)carbamate (0.1
mmol,1.o equiv), 4-methoxyphenyl)boronic acid (2.0
equiv), H,O (5.0 equiv), KF (3.0 equiv) and [(IPr)Pd(OAc),]
(3.0 mol%) in THF (0.25 M) for 16 h at 23 °C, afforded after
filtration and chromatography the title product in 95%
yield (26.6 mg). White solid. 'H NMR (500 MHz, CDCl;) §
7.83 (dd, J =10.0, 8.4 Hz, 4H), 7.74 (d, ] = 8.1 Hz, 2H), 6.98
(d, J = 8.8 Hz, 2H), 3.90 (s, 3H). 3C{*H} NMR (125 MHz,

CDCL,) 8 194.4,163.9, 141.7, 133.4 (q, ] = 32.7 Hz), 132.8, 129.9,
129.5, 125.4 (q, J = 3.7 Hz), 123.9 (q, J = 272.6 Hz), 113.9, 55.7.
YF{'H} NMR (471 MHz, CDCl;) & -62.9. NMR spectroscopic
data agreed with literature values.>°

Methyl 4-(4-(trifluoromethyl)benzoyl)benzoate (3s)

According to the general procedure, the reaction of tert-
butyl phenyl(4-(trifluoromethyl)benzoyl)carbamate (0.1
mmol,1.o equiv), 4-methoxycarbonylphenylboronic acid
(2.0 equiv), H,O (5.0 equiv), KF (3.0 equiv) and
[(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25 M) for 16 h at 23
°C, afforded after filtration and chromatography the title
product in 57% yield (17.5 mg). White solid. 'H NMR (500
MHz, CDCl;) § 8.17 (d, J = 8.4 Hz, 2H), 7.90 (d, ] = 8.0 Hz,
2H), 7.85 (d, ] = 8.3 Hz, 2H), 7.77 (d, ] = 8.1 Hz, 2H), 3.97 (s,
3H). 3C{'H} NMR (125 MHz, CDCl;) § 194.4, 163.9, 141.7,
133.4 (d, ] = 32.7 Hz), 133.1, 132.8, 129.9, 129.5, 125.4 (q, ] = 3.7
Hz), 123.9 (q, ] = 272.4 Hz), u4.0, 55.7. “F{'H} NMR (471
MHz, CDCl;) 8 -62.9. NMR spectroscopic data agreed with
literature values.*

(4-Methoxyphenyl)(phenyl)methanone (3¢, from 1b)

According to the general procedure, the reaction of 1-ben-
zoylpiperidine-2,6-dione (0.1 mmol, 1.0 equiv), 4-methoxy-
phenyl boronic acid (2.0 equiv), H,O (5.0 equiv), KF (3.0
equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25 M) for
16 h at 23 °C, afforded after filtration and chromatography
the title product in 99% yield (21 mg). White solid. 'H NMR
(s00 MHz, CDCl;) § 7.83 (d, J = 8.5 Hz, 2H), 7.76 (dd, ] =
8.2,1.4 Hz, 2H), 7.59 - 7.54 (m, 1H), 7.47 (t, ] = 7.6 Hz, 2H),
6.97 (d, ] = 8.6 Hz, 2H), 3.89 (s, 3H). 3C{'H} NMR (125 MHz,
CDC(I3) 8 195.7, 163.3, 138.4, 132.7, 132.0, 130.3, 129.9, 128.3,
113.7, 55.6. NMR spectroscopic data agreed with literature
values."”

(4-Methoxyphenyl)(phenyl)methanone (3¢, from 1c)

According to the general procedure, the reaction of 1-ben-
zoylpyrrolidine-2,5-dione (0.1 mmol, 1.0 equiv), 4-methox-
yphenyl boronic acid (2.0 equiv), H,O (5.0 equiv), KF (3.0
equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25 M) for
16 h at 23 °C, afforded after filtration and chromatography
the title product in 57% yield (12 mg). White solid. 'H NMR
(so0 MHz, CDCI3) § 7.83 (d, ] = 8.5 Hz, 2H), 7.76 (dd, ] =
8.0,1.6 Hz, 2H), 7.60 - 7.54 (m, 1H), 7.47 (t, ] = 7.5 Hz, 2H),
6.97 (d, ] = 8.4 Hz, 2H), 3.89 (s, 3H). 3C{"H} NMR (125 MHz,
CDCL,) 8 195.7, 163.4, 138.4, 132.7, 132.0, 130.3, 129.9, 128.3,
13.7, 55.6. NMR spectroscopic data agreed with literature
values.”

(4-Methoxyphenyl)(phenyl)methanone (3¢, from 1d)

According to the general procedure, the reaction of tert-
butyl benzoyl(methyl)carbamate (0.1 mmol, 1.0 equiv), 4-
methoxyphenyl boronic acid (2.0 equiv), H,O (5.0 equiv),
KF (3.0 equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25
M) for 16 h at 23 °C, afforded after filtration and chroma-
tography the title product in 55% yield (1.6 mg). White
solid. "H NMR (500 MHz, CDCl;) § 7.83 (d, ] = 8.9 Hz, 2H),
7.76 (d, ] = 6.9 Hz, 2H), 7.57 (t, ] = 7.5 Hz, 1H), 7.47 (¢, ] =
7.6 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H). 3C{'H}
NMR (125 MHz, CDCL,) § 195.7, 163.4, 138.4, 132.7, 132.0,
130.3, 129.9, 128.3, 113.7, 55.7. NMR spectroscopic data
agreed with literature values.”



(4-Methoxyphenyl)(phenyl)methanone (3¢, from 1e)

According to the general procedure, the reaction of N-ben-
zyl-N-(methylsulfonyl)benzamide (0.1 mmol, 1.0 equiv), 4-
methoxyphenyl boronic acid (2.0 equiv), H,O (5.0 equiv),
KF (3.0 equiv) and [(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25
M) for 16 h at 23 °C, afforded after filtration and chroma-
tography the title product in 99% yield (21 mg). White
solid. 'H NMR (500 MHz, CDCl;) § 7.83 (d, ] = 8.6 Hz, 2H),
7.76 (d, ] = 7.4 Hz, 2H), 7.57 (t,] = 7.4 Hz, 1H), 7.47 (¢, ] =
7.6 Hz, 2H), 6.97 (d, ] = 8.6 Hz, 2H), 3.89 (s, 3H). 3C{'H}
NMR (125 MHz, CDCL) § 195.7, 163.4, 138.4, 132.7, 132.0,
130.3, 129.9, 129.1, 128.3, 113.7, 55.6. NMR spectroscopic data
agreed with literature values.

(4-Methoxyphenyl)(o-tolyl)methanone (3u, from 1f)

According to the general procedure, the reaction of 2-me-
thyl-N-(methylsulfonyl)-N-phenylbenzamide (01
mmol,1.o equiv), 4-methoxyphenyl)boronic acid (2.0
equiv), H,O (5.0 equiv), KF (3.0 equiv) and [(IPr)Pd(OAc),]
(3.0 mol%) in THF (0.25 M) for 16 h at 23 °C, afforded after
filtration and chromatography the title product in 96%
yield (21.7 mg). White solid. 'H NMR (500 MHz, CDCl;) §
7.79 (d, ] = 8.6 Hz, 2H), 7.37 (td, ] = 7.4, 1.5 Hz, 1H), 7.30 -
7.26 (m, 2H), 7.23 (d, J = 7.4 Hz, 1H), 6.93 (d, ] = 8.6 Hz, 2H),
3.88 (s, 3H), 2.30 (s, 3H). 3C{*H} NMR (125 MHz, CDCl;) §
197.5,163.8, 139.3, 136.3, 132.7, 131.00, 130.7, 129.9, 128.1, 125.3,
13.8, 55.7, 19.9. NMR spectroscopic data agreed with liter-
ature values.

(4-Methoxyphenyl)(o-tolyl)methanone (3u, from 1g)

According to the general procedure, the reaction of 2-me-
thyl-N-phenyl-N-tosylbenzamide (0.1 mmol,1.0 equiv), 4-
methoxyphenyl)boronic acid (2.0 equiv), H,O (5.0 equiv),
KF (3.0 equiv) and [(IPr)Pd(OAc).] (3.0 mol%) in THF (0.25
M) for 16 h at 23 °C, afforded after filtration and chroma-
tography the title product in 69% yield (19.9 mg). White
solid. 'H NMR (500 MHz, CDCl;) § 7.79 (d, J = 8.6 Hz, 2H),
7.37 (td, ] = 7.4, 1.4 Hz, 1H), 7.30 - 7.26 (m, 2H), 7.23 (d, ] =
7.4 Hz, 1H), 6.93 (d, ] = 8.7 Hz, 2H), 3.88 (s, 3H), 2.30 (s,
3H). 5C{'H} NMR (125 MHz, CDCL) § 197.5, 163.8, 139.3,
136.3, 132.7, 131.0, 130.7, 129.9, 128.1, 125.3, 113.8, 55.7, 19.9.
NMR spectroscopic data agreed with literature values.3

(4-Methoxyphenyl)(p-tolyl)methanone (3t, from 1h)

According to the general procedure, the reaction of tert-
butyl(tert-butoxycarbonyl)(4-methylbenzoyl)carbamate
(0.1 mmol,1.o0 equiv), 4-methoxyphenyl)boronic acid (2.0
equiv), H,O (5.0 equiv), KF (3.0 equiv) and [(IPr)Pd(OAc),]
(3.0 mol%) in THF (0.25 M) for 16 h at 23 °C, afforded after
filtration and chromatography the title product in 96%
yield (21.7 mg). White solid. '"H NMR (500 MHz, CDCl;) §
7.81 (d, J = 8.8 Hz, 2H), 7.68 (d, ] = 7.9 Hz, 2H), 7.27 (d, J =
7.9 Hz, 2H), 6.96 (d, ] = 8.8 Hz, 2H), 3.89 (s, 3H), 2.44 (s,
3H). 3C{*H} NMR (125 MHz, CDCL,) § 195.5, 163.2, 142.8,
135.6, 132.6, 130.6, 130.2, 129.0, 113.6, 55.6, 21.8. NMR spec-
troscopic data agreed with literature values.>

4-(4-Methoxybenzoyl)benzonitrile (3v from 1i)

According to the general procedure, the reaction of N-ace-
tyl-4-cyano-N-phenylbenzamide(o.1 mmol, 1.0 equiv), (4-
methoxyphenyl)boronic acid (2.0 equiv), H,O (5.0 equiv),
KF (3.0 equiv) and [(IPr)Pd(OAc).] (3.0 mol%) in THF (0.25
M) for 16 h at 23 °C, afforded after filtration and

chromatography the title product in 77% yield (18.2 mg).
White solid. '"H NMR (500 MHz, CDCl;) § 7.83 - 7.77 (m,
6H), 6.98 (d, ] = 8.9 Hz, 2H), 3.90 (s, 3H). 3C{'H} NMR (125
MHz, CDCL,) § 193.9, 164.1, 142.2, 132.8, 132.3, 130.1, 129.1,
18.3, 115.3, 114.1, 55.8. NMR spectroscopic data agreed with
literature values.3+

(4-Methoxyphenyl)(phenyl)methanone (3¢, from 1j)

According to the general procedure, the reaction of phenyl
benzoate (0.1 mmol, 1.0 equiv), 4-methoxyphenyl boronic
acid (2.0 equiv), H,O (5.0 equiv), KF (3.0 equiv) and
[(IPr)Pd(OAc),] (3.0 mol%) in THF (0.25 M) for 16 h at
23 °C, afforded after filtration and chromatography the title
product in 73% yield (16 mg). White solid. 'H NMR (500
MHz, CDCI3) § 7.84 (d, ] = 8.5 Hz, 2H), 7.75 (dd, ] = 8.0, 1.6
Hz, 2H), 7.60 - 7.55 (m, 1H), 7.47 (t, ] = 7.5 Hz, 2H), 6.96 (d,
] = 8.4 Hz, 2H), 3.89 (s, 3H). 3C{*H} NMR (125 MHz, CDCl,)
8195.7,163.4, 138.4, 132.7, 132.0, 130.3, 129.9, 128.3, 113.7, 55.7.
NMR spectroscopic data agreed with literature values.34
N-(p-tolyl)Benzamide (5a)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.10 mmol, 1.0 equiv), p-
toluidine (2.0 equiv), K,CO; (3.0 equiv) and
[(IPr)Pd(OAc),] (3.0 mol%) in DME (o0.25 M) for 16 h at
uo °C, afforded after filtration and chromatography the ti-
tle product in 97% yield (21.4 mg). White solid. 'H NMR
(s00 MHz, CDCl;) 6 7.87 (d, J = 7.1 Hz, 2H), 7.75 (s, 1H), 7.57
- 7.46 (m, 5H), 718 (d, ] = 8.1 Hz, 2H), 2.35 (s, 3H). 3C{*H}
NMR (125 MHz, CDCl;) § 165.7, 135.5, 134.4, 131.9, 129.8,
128.9, 127.1, 120.4, 21.1. NMR spectroscopic data agreed with
literature values.34

N-(4-Methoxyphenyl)benzamide (5b)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.10 mmol, 1.0 equiv), 4-
methoxyaniline (2.0 equiv), K,CO; (3.0 equiv) and
[(IPr)Pd(OAc),] (3.0 mol%) in DME (o0.25 M) for 16 h at
no °C, afforded after filtration and chromatography the ti-
tle product in 95% yield( 21.5 mg). White solid. 'H NMR
(500 MHz, CDCl;) § 7.87 (d, J = 7.2 Hz, 2H), 7.71 (s, 1H), 7.57
- 7.52 (m, 3H), 7.49 (t, ] = 7.5 Hz, 2H), 6.92 (d, ] = 8.9 Hz,
2H), 3.82 (s, 3H). 3C{'H} NMR (125 MHz, CDCL,) & 165.3,
162.7, 138.3, 129.2, 129.0, 127.3, 124.5, 120.3, 114.2, 55.6. NMR
spectroscopic data agreed with literature values.3

Ethyl 4-benzamidobenzoate (5¢)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.10 mmol, 1.0 equiv),
ethyl 4-aminobenzoate (2.0 equiv), K,CO; (3.0 equiv) and
[(IPr)Pd(OAc),] (3.0 mol%) in DME (o0.25 M) for 16 h at
1o °C, afforded after filtration and chromatography the ti-
tle product in 95% yield (25.5 mg). White solid. '"H NMR
(500 MHz, CDCL,) & 8.06 (d, ] = 8.7 Hz, 2H), 8.03 (s, 1H),
7.88 (d, J = 71 Hz, 2H), 7.74 (d, ] = 8.7 Hz, 2H), 7.60 - 7.55
(m, 1H), 7.50 (dd, J = 8.3, 6.8 Hz, 2H), 4.37 (q, J = 7.1 Hz,
2H), 1.40 (t, J = 71 Hz, 3H). 3C{'"H} NMR (125 MHz, CDCl,)
8166.3,165.9, 142.2, 134.7, 132.4, 131.0, 129.0, 127.2, 125.4, 119.3,
61.1, 14.5. NMR spectroscopic data agreed with literature
values .3

N-(2,6-Dimethylphenyl)benzamide (5d)

According to the general procedure, the reaction of tert-
butyl benzoyl(phenyl)carbamate (0.10 mmol, 1.0 equiv),
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2,6-dimethylaniline (2.0 equiv), K,CO; (3.0 equiv) and
[(IPr)Pd(OAc),] (3.0 mol%) in DME (o0.25 M) for 16 h at
1o °C, afforded after filtration and chromatography the ti-
tle product in 88% yield (19.8 mg). White solid. 'H NMR
(500 MHz, CDCl;) § 7.93 (d, J = 7.3 Hz, 2H), 7.61 - 7.55 (m,
1H), 7.51 (t, ] = 7.5 Hz, 2H), 7.36 (s, 1H), 7.14 (q, J = 5.0 Hz,
3H), 2.30 (s, 6H). 3C{'"H} NMR (125 MHz, CDCl;) § 166.0,
135.7, 134.7, 134.0, 132.0, 128.9, 128.4, 127.6, 127.4, 18.7. NMR
spectroscopic data agreed with literature values. 3°
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