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Abstract

Observations of linear polarization in the 2–8 keV energy range with the Imaging X-ray Polarimetry Explorer
(IXPE) explore the magnetic field geometry and dynamics of the regions generating nonthermal radiation in
relativistic jets of blazars. These jets, particularly in blazars whose spectral energy distribution peaks at X-ray
energies, emit X-rays via synchrotron radiation from high-energy particles within the jet. IXPE observations of the
X-ray-selected BL Lac–type blazar 1ES 1959+650 on 2022 May 3–4 showed a significant linear polarization
degree of Πx= 8.0%± 2.3% at an electric-vector position angle ψx= 123° ± 8°. However, on 2022 June 9–12,
only an upper limit of Πx� 5.1% could be derived (at the 99% confidence level). The degree of optical polarization
at that time, ΠO∼ 5%, is comparable to the X-ray measurement. We investigate possible scenarios for these
findings, including temporal and geometrical depolarization effects. Unlike some other X-ray-selected BL Lac
objects, there is no significant chromatic dependence of the measured polarization in 1ES 1959+650, and its low
X-ray polarization may be attributed to turbulence in the jet flow with dynamical timescales shorter than 1 day.

Unified Astronomy Thesaurus concepts: Relativistic jets (1390); X-ray active galactic nuclei (2035); Active
galactic nuclei (16); Blazars (164); Polarimetry (1278); Spectropolarimetry (1973)

1. Introduction

Relativistic jets are powerful streams of collimated plasma
and radiation that play a prominent role in various astrophysical
phenomena, such as active galactic nuclei (AGN), γ-ray bursts,
and X-ray binary systems (Begelman et al. 1984; Falcke et al.
2004; Hughes & Bregman 2006; Blandford et al. 2019). In the
case of blazars, these jets are fueled by accretion onto a central
supermassive black hole within an AGN and are oriented in a
direction that is closely aligned with Earth’s line of sight (Urry
& Padovani 1995). These jets accelerate particles to energies
beyond 1010 eV, producing nonthermal emission observed

across a wide range of frequencies, from radio to very high-
energy (>0.1 TeV) γ-rays (Giommi et al. 2012; Liodakis et al.
2019). Advancements in understanding the physics of
relativistic jets rely heavily on multiwavelength observations
encompassing the spectral energy distribution, flux variability,
and polarization of the observed emission.
According to most theoretical models for the production,

acceleration, and collimation of relativistic jets, the plasma is
Poynting-flux-dominated close to the black hole, where the jet
is accelerated and collimated (e.g., Blandford & Znajek 1977;
Vlahakis & Königl 2004). Near the end of the acceleration and
collimation zone, there is a transition to a particle-dominated
flow (e.g., Lyubarsky 2010). It is currently unclear, however,
where most of the particle acceleration and radiative dissipation
take place. Multiple processes could play major roles in
energizing the particles that produce the radiation in blazar jets.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.
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These include magnetic reconnection events (e.g., Romanova
& Lovelace 1992; Kagan et al. 2015; Werner et al. 2018),
relativistic shocks (e.g., Blandford & Ostriker 1978; Nishikawa
et al. 2003; Sironi et al. 2015a), and stochastic particle
acceleration (e.g., Dermer et al. 1996; Kirk et al. 1996;
Katarzyński et al. 2006). These mechanisms can efficiently
accelerate particles, although particle-in-cell simulations find
that magnetic reconnection is more efficient than shocks at
doing so where the magnetization level is high (Sironi &
Spitkovsky 2014). On the other hand, shocks can be more
efficient in regions where the magnetization is low (Sironi et al.
2015b).

Multiwavelength observations of linear polarization probe
the geometry of the magnetic field in different locations in
relativistic jets (e.g., Angel & Stockman 1980; Jorstad et al.
2005; Marscher & Jorstad 2021). The results can indicate
which of the particle acceleration mechanisms are operating in
sites of strong high-energy radiation (e.g., Zhang et al.
2019, 2022; Tavecchio 2021; Di Gesu et al. 2022b; Marscher
& Jorstad 2022). Such polarization observations of blazars
have long been available at radio, infrared, and optical
wavelengths. Observations in the X-ray band now benefit from
the availability of linear polarization sensitivity through the
Imaging X-ray Polarimetry Explorer (IXPE) satellite (Weiss-
kopf et al. 2022), which began science operations on 2022
January 11. IXPE consists of three 4 m focal length X-ray
mirrors that focus on three identical polarization-sensitive gas
pixel detector units (DU1–3). The sensitivity of an X-ray
polarimeter is commonly assessed by its minimum detectable
polarization at a 99% confidence level, MDP99. At a flux level
of F2−8 keV= 10−10 erg cm−2 s−1, IXPE achieves MDP99≈
8% in a 50 ks exposure.

The BL Lacertae object 1ES 1959+650 (z= 0.047; de
Vaucouleurs et al. 1991) stands out as one of the brightest
X-ray blazars. Only four BL Lac objects in the Einstein Slew
Survey exhibit a higher X-ray flux (Perlman et al. 1996). It is
also among the first blazars from which TeV γ-rays have been
detected (Holder et al. 2003). The X-ray flux of 1ES 1959
+650 generally exceeds 10−10 erg cm−2 s−1 in the 0.1–10 keV

range, displaying variability on timescales of <1 hr (Kapa-
nadze et al. 2014). While X-ray and γ-ray fluxes are generally
found to be correlated, a notable “orphan” TeV flare without an
X-ray counterpart was detected by the Whipple observatory in
2002 (Krawczynski et al. 2004). Owing to its bright X-ray
emission, 1ES 1959+650 was among the first blazars observed
by IXPE.
The radio-to-X-ray emission from 1ES 1959+650 is com-

monly interpreted as originating from synchrotron radiation by
relativistic electrons cooling in the jet’s magnetic field.
Synchrotron radiation is inherently polarized. The expected
degree of polarization from a power-law energy spectrum of
relativistic electrons N E Ee e

s( ) µ - in a homogeneous magnetic
field is s s1 7 3 70%( ) ( )P = + + » for s≈ 2 (Rybicki &
Lightman 1979). If the magnetic field configuration has a
random component Br, then the polarization degree will be
suppressed by a factor B B Br0

2
0
2 2( )+ , where B0 is the intensity

of the ordered magnetic field component (Ginzburg &
Syrovatskii 1965). In blazars, the presence of a random
component in the magnetic field reduces the polarization signal
from a maximum value of order 75% to an average value that is
usually between a few and tens of percent (e.g., Blinov et al.
2021; Marscher & Jorstad 2021). Therefore, polarization
measurements in the X-ray band by IXPE are sensitive to the
relative ratio of the random to the ordered magnetic field in the
region of the jet where the nonthermal emission from the
highest-energy particles is emitted. This new probe of the
magnetic field intensity and geometry in relativistic jets can be
used to discern among the possible models for particle
acceleration. For instance, if acceleration occurs in stationary
shocks, downstream of which particles lose energy, we
anticipate steady X-ray emission with higher polarization than
the polarization of the optical emission by lower-energy
particles radiating over a larger volume (Angelakis et al.
2016; Tavecchio et al. 2018, 2020; Di Gesu et al. 2022b;
Marscher & Jorstad 2022; Zhang et al. 2022). Conversely,
magnetic reconnection events convert magnetic energy into
kinetic energy, resulting in moderate X-ray and optical

Figure 1. Spectral fit to the X-ray data of 1ES 1959+650 during IXPE observations on 2022 May 3–4 (left panel) and 2022 June 9–12 (right panel). The IXPE Stokes
I, Swift-XRT, and XMM-Newton spectra are fit to derive the column density absorption and determine the presence of spectral curvature. These results will be used in
the later spectropolarimetric fit of the IXPE I, Q, and U spectra.
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polarization, with a weaker dependence on photon energy (e.g.,
Bodo et al. 2021; Zhang et al. 2022).

Here we present the first detection of linear X-ray
polarization from 1ES 1959+650 by IXPE on 2022 May 3–4
and June 9–12. We describe the IXPE measurements, as well as
X-ray spectral observations with the Neil Gehrels Swift X-ray
Telescope (Swift-XRT) and XMM-Newton, in Section 2 and
observations at other wave bands in Section 3. We discuss and
interpret the results in Section 4 and summarize our findings in
Section 5.

2. X-Ray Observations

IXPE first observed 1ES 1959+650 on 2022 May 3–4 with
an exposure time of 54 ks. A second science observation was
carried out on 2022 June 9–12, accumulating 200 ks of
exposure. XMM-Newton (Strüder et al. 2001) collected two
contemporaneous exposures of 1ES 1959+650, and Swift-
XRT (Burrows et al. 2005) monitored the source with a total of
11 exposures during the duration of the campaign.

We combine the IXPE Stokes I, Swift-XRT, and XMM-Newton
spectra to characterize the energy spectrum of 1ES 1959+650 in
the X-ray band. The goal of this combined fit is to determine the
column density absorption and spectral shape of the X-ray
spectrum of 1ES 1959+650, as the 2–8 keV energy range of IXPE
is too narrow to robustly measure the level of neutral density
absorption and the potential presence of spectral curvature. The flux
normalizations and spectral properties are left free to allow for
intercalibration uncertainties (Madsen et al. 2017) as well as flux
and spectral variability on timescales of days, which is often
observed in 1ES 1959+650 even in relatively quiescent X-ray
states (Tagliaferri et al. 2008). The fit of the combined data set to an
absorbed power law dN dE E xµ -G yields a χ2/dof fit statistic of
554/497 (with associated probability p= 0.04) for the May 3–4
data and 616/566 (p= 0.07) for June 9–12 (Figure 1). The best-fit
parameters describing the spectra are listed in Table 1. Changing
the model to an absorbed log-parabola does not significantly
improve the fit in either case. The derived column density of
(1.32± 0.04)× 1021 cm−2, exceeding the Galactic value by 30%
(HI4PI Collaboration et al. 2016), suggests the presence of
additional neutral absorption along the line of sight within the
host galaxy to the object, consistent with previous studies (Aliu
et al. 2013, 2014). During both epochs, the average X-ray flux is
within 10% of the median value measured by Swift-XRT between
2005 and 2022 (Figure 2; Stroh & Falcone 2013). We conclude
that 1ES 1959+650was in an average X-ray flux state during the
IXPE campaign.

We have searched for time-averaged X-ray polarization from
1ES 1959+650 in the IXPE data. First, the I spectra were fit
with an absorbed power-law model. The absorbing column
density was fixed to the value obtained during the combined
spectral fit, but the power-law normalization and photon index
were allowed to vary. We then tested for the presence of a
constant degree of polarization and angle as a function of
energy by performing a spectropolarimetric fit to the Stokes I,
Q, and U spectra, with the only free parameters being the
degree of polarization and polarization angle (Figure 3).
On May 3–4, the spectrum obtained from IXPE displayed

a softer photon index of Γ= 2.50± 0.02 compared to
the contemporaneous XMM-Newton and Swift-XRT data
(Table 1). On June 9–12, the IXPE-derived Γ= 2.29± 0.01
was in closer agreement with the value previously derived. The
effect is likely to be the result of an improvement in the
telescope alignment between the two observations. The
polarization degree on May 3–4 was Πx= 8.0%± 2.3%, with
an electric-vector position angle ψx= 123° ± 8°. A null
hypothesis of no linear polarization can be excluded at a
3.5 σ confidence level. No significant linear polarization was
detected on June 9–12. From this second IXPE observation, we
derive an upper limit of Πx< 5.1% (99% confidence level),
with the polarization angle left unconstrained. The hypothesis
that the degree of polarization remained constant across the
May 3–4 and June 9–12 IXPE observations has an associated
probability of P= 0.0244 using a χ2 test; i.e., it can only be
excluded at a 2.3σ level.
To search for time-dependent X-ray polarization, we split the

200 ks duration IXPE exposure from June 9–12 into four 50 ks
slices and repeated the spectropolarimetric fit described above
independently for each time bin. We found no significant linear
polarization in three out of the four segments, with only the
third one showing significant polarization corresponding to a
2.8 σ posttrial confidence level (Figure 2). The constraints on
the degree of polarization in the four time bins are Πx< 6.0%,
<10.2%, 7.5%± 2.3%, and <7.6% (upper limits are 99%
confidence level). The polarization angle is only constrained for
the third time bin to be ψx= 127° ± 9°.
X-ray data reduction procedures are detailed in Appendix A.

3. Radio, Infrared, and Optical Observations

Figure 2 summarizes the time evolution of the X-ray and
optical polarization measurements of 1ES 1959+650. Con-
temporaneous polarization observations were obtained at radio
(millimeter), infrared (IR), and optical wavelengths using the

Table 1
Summary and Results from IXPE, XMM-Newton, and Swift-XRT X-Ray Observations on 2022 May 3–4 and June 9–12

Telescope Energy Range ObsID Date Exposure F2−8 keV Γx χ2/dof
(keV) (ks) (10−10 erg cm−2 s−1)

2022 May 3–4

IXPE 2.0–8.0 01006201 2022 05 03–04 54 1.24 ± 0.02 2.50 ± 0.02 30.6/26
Swift-XRT 0.5–10 00096560006 2022 05 03 0.9 1.57 ± 0.04 2.18 ± 0.04 314/349
Swift-XRT 0.5–10 00096560007 2022 05 04 0.9 1.63 ± 0.05 2.17 ± 0.04 374/351
XMM-Newton 1.0–10 0902110801 2022 05 06 16 1.35 ± 0.01 2.26 ± 0.01 196/155

2022 June 9–12

IXPE 2.0–8.0 01006001 2022 06 09–12 200 1.47 ± 0.01 2.29 ± 0.01 36.5/25
Swift-XRT 0.5–10 00096560012 2022 06 12 0.9 2.23 ± 0.05 2.20 ± 0.04 334/344
XMM-Newton 1.0–10 0902111201 2022 06 23 18 1.34 ± 0.01 2.20 ± 0.01 195/155
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Figure 2. X-ray, optical, and IR light curves contemporaneous with the IXPE observations of 1ES 1959+650. Observations are described in Sections 2 and 3. Panels
show, from top to bottom, X-ray flux, optical and IR brightness in magnitudes, degree of polarization, and polarization angle. Inset plots in the top panel display the
X-ray light curve measured by IXPE. Blue data points represent significant measurements of X-ray polarization, while blue downward-pointing arrows indicate 99%
confidence level upper limits during time periods without a significant detection of X-ray polarization. Gray vertical shaded areas indicate the two epochs of
observation of IXPE.
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Institut de Radioastronomie Millimétrique (IRAM) 30 m radio
telescope, the 1.8 m Perkins Telescope (PTO), the Calar Alto
Observatory, the KANATA telescope, the Nordic Optical
Telescope (NOT), the Sierra Nevada Observatory, RoboPol
mounted at the 1.3 m telescope of the Skinakas Observatory,
the Submillimeter Array (SMA), and the Very Long Baseline
Array (VLBA).

Images of 1ES 1959+650 obtained at 7 mm (43 GHz) from
VLBA data feature a ∼1 mas jet extending to the southeast of a
compact “core” along a position angle of f∼ 150° (Piner et al.
2010; Weaver et al. 2022). Figure 4 presents VLBA images at
three epochs near the IXPE pointings obtained as part of the
BEAM-ME monitoring project.67 The data were obtained and
analyzed using standard procedures, as described by Jorstad
et al. (2017). We measure the linear polarization of the core to
be P 2.3% 0.2%core =  along 173 10corey =    on 2022
June 5 and P 2.8% 0.3%core =  along 152 10corey =    on

2022 June 24. We determine only an upper limit to the degree
of polarization of P 2.4%core  on 2022 April 30. When the
resolved 43 GHz emission is included, the degree of polariza-
tion decreases to P= 1.5%± 0.5% and 1.7%± 0.9% on June 5
and 24, respectively.
The IRAM observations were obtained during the first IXPE

observation on 2022 May 5 (MJD 59705.0138) and during the
second observation on 2022 June 12 (MJD 59742.9538) at
86.24 and 228.93 GHz under the Polarimetric Monitoring of
AGN at Millimeter Wavelengths (POLAMI) Large Program68

(Agudo et al. 2018a, 2018b; Thum et al. 2018). For the first
observation, we obtained a 99% upper limit of ΠR< 8% for the
polarization degree at 228 GHz. During the second IXPE
measurement, the IRAM observations yielded upper limits of
ΠR< 1.6% and <9.6% at 86 and 228 GHz, respectively.
SMA observations were obtained between the two IXPE

exposures on 2022 June 1 (MJD 59731.60152) and 2022 June

Figure 3. Spectropolarimetric fit to the X-ray data of 1ES 1959+650 during IXPE observations on 2022 May 3–4 (top panels) and 2022 June 9–12 (bottom panels).
Panels on the left present the fit to the IXPE Stokes I with its residuals, while panels on the right show the fits to the IXPE Q and U spectra.

67 www.bu.blazars/BEAM-ME.html 68 http://polami.iaa.es/
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6 (MJD 59736.71253) at 225.3 GHz within the SMA Monitor-
ing of AGNs with POLarization program. Data were taken with
the SMA polarimeter (Marrone & Rao 2008) in full
polarization mode using the SWARM correlator (Primiani
et al. 2016). MWC 349 A and Callisto were used as the total
flux calibrators and 3C 286 as the polarization calibrator. We
find a low degree of polarization ΠR= 1.92%± 0.58% along
ψR= 129° ± 8° for the first observation, and ΠR= 2.53%±
0.5% along ψR= 156° ± 5° for the second one.

IR photometric and polarimetric data in the H (1.6 μm) and
K (2.2 μm) bands during the June 9–12 IXPE exposures were
obtained using the MIMIR camera69 at the PTO (Flagstaff,
Arizona), operated by Boston University. The average and
standard deviation of the host-corrected IR polarization degree
were found to be ΠH= 3.27%± 0.16% along a polarization
angle ψH= 162° ± 25° and ΠK= 4.73%± 0.75% along ψK=
151° ± 28°.

During the first IXPE observation, we only have a single
optical measurement from NOT, which yielded an optical
polarization degree ΠO= 4.49%± 0.17% along ψO=159° ± 1°.
During the second IXPE observation, the median and standard
deviation of the optical polarization degree was ΠO= 5.4%±
1.1% along ψO= 103° ± 6°. The IR and optical observations
and data analysis, as well as the host-galaxy modeling, are
described in Appendix B.

4. Implications for Particle Acceleration Scenarios

The spectral energy distribution of the synchrotron emission
from 1ES 1959+650 typically peaks in the X-ray band
(∼0.1–100 keV; Chang et al. 2019). It belongs to the category
of high-frequency-peaked BL Lac–type blazars, a subclass that
includes Mrk 501 and Mrk 421, which exhibit the highest
X-ray fluxes (Perlman et al. 1996). In a leptonic-dominated
emission scenario, the IR to X-ray emission from these objects
is attributed to synchrotron radiation produced by electrons
(and possibly positrons) in the jet’s magnetic field. Synchrotron
radiation is inherently polarized, with a degree of polarization
of Π∼ 70% for electrons in a homogeneous magnetic field.

After correcting for relativistic aberration, the polarization
angle (ψ) at optically thin wavelengths is perpendicular to the
average magnetic field direction projected onto the plane of the
sky. In the case of BL Lac–type blazars, observations typically
show polarization degrees of Π 20% (Jorstad et al. 2005;
Smith et al. 2007; Hovatta et al. 2016; Blinov et al. 2021).
There are two main reasons for the reduction in observed

polarization. First, geometrical depolarization occurs when
there is a random component in the magnetic field with varying
orientations within the emitting region. This geometrical
depolarization effect becomes more pronounced as the ratio
of random to ordered magnetic field (Br/B0) increases
(Ginzburg & Syrovatskii 1965). Second, temporal depolariza-
tion happens when the magnetic field direction changes over
timescales shorter than the integration time of the polarization
measurement. The magnitude of this effect increases with the
amplitude of unresolved changes in polarization angle (Di Gesu
et al. 2022b; Zhang et al. 2022). This phenomenon was
observed in IXPE observations of Mrk 421 (Di Gesu et al.
2023).
The degree of polarization in the X-ray band can be

compared to that measured at optical frequencies during the
same epoch. This polarization ratio Πx/ΠO can be used as a
diagnostic for potential differences in the magnetic field
geometry and dynamics encountered by the populations of
electrons responsible for the emission in each band. Previous
IXPE observations of Mrk 501 and Mrk 421 have shown higher
X-ray polarization compared to optical and radio frequencies
(Di Gesu et al. 2022a; Liodakis et al. 2022), which can be
explained by an energy-stratified particle distribution that
would naturally arise in shock acceleration scenarios (e.g.,
Tavecchio et al. 2018).
On 2022 May 3–4, the ratio of X-ray to optical degree of

polarization in 1ES 1959+650 was measured to be Πx/ΠO=
1.8± 0.5, lower than observed in Mrk 421 (Πx/ΠO∼ 5; Di
Gesu et al. 2022a) and comparable to Mrk 501 (Πx/ΠO∼ 2.5;
Liodakis et al. 2022). As in Mrk 501, the X-ray and optical
polarization angles of 1ES 1959+650 were aligned (within
30°) with the jet direction, inferred to be f∼ 150° from VLBA
images (Piner et al. 2010; Weaver et al. 2022; Figure 4),
indicating a magnetic field geometry consistent with a helical

Figure 4. VLBA images of 1ES 1959+650 at 7 mm at three epochs contemporaneous with the IXPE observations. Contours: total intensity in factors of 2, starting at
2% of the peak intensity of (left to right) 0.16, 0.12, and 0.14 Jy beam−1. Color coding: relative linearly polarized intensity, with maxima of (left to right) <4, 2.8, and
4.0 mJy beam−1. Yellow line segments: electric-vector position angle of polarization. Cross-hatched ellipse in the lower left of each panel: FWHM of the elliptical
restoring beam corresponding to the angular resolution along different directions. All positions are relative to the location of maximum intensity.

69 https://people.bu.edu/clemens/mimir/index.html
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or toroidal configuration (Hovatta et al. 2012) or compression
by a shock (Hughes et al. 1985).

In contrast, during the second IXPE exposure on 2022 June
9–12, the average optical polarization was ΠO= 5.4%± 1.1%,
while the X-ray polarization was Πx< 5.1% (Figure 3),
suggesting Πx/Πo 1.0. The optical polarization angle
exhibited a rotation from ψO 170° 1 day before June 9–12
to 103° during the IXPE exposure, returning to ∼160° 5 days
after (Figure 2). Similar polarization angle excursions were
observed in 2013–2016 (Blinov et al. 2021). IR observations
also indicated a change in polarization angle during the second
IXPE exposure. The X-ray flux exhibited smooth variations
with a peak-to-valley amplitude of approximately 50% of the
median X-ray flux (Figure 2).

Various single-zone models can explain the observed
depolarization as geometrical. In shock acceleration scenarios,
energy-dependent geometrical depolarization arises as elec-
trons with decreasing energies occupy a larger volume, leading
to a higher random magnetic field component and increased
geometrical depolarization toward lower frequencies (Angela-
kis et al. 2016; Tavecchio et al. 2018; Liodakis et al. 2022). In
magnetic reconnection scenarios, geometrical depolarization
can occur due to the increasing range of magnetic field
orientations as high-energy electrons move away from X-points
where the highly ordered magnetic field changes direction
(Tchekhovskoy et al. 2009; Sironi & Spitkovsky 2014).
However, a precise calculation of the X-ray versus optical
polarization degree is not straightforward. The presence of a
kink instability can create preferred locations for current sheets,
and if the reconnecting fields are mainly toroidal (Zhang et al.
2022), the emitted radiation should exhibit a polarization angle
roughly aligned with the jet axis.

Multizone models with turbulent magnetic field cells predict
greater geometrical depolarization at optical frequencies than at
X-ray energies (Marscher 2014). However, in such models it is
the mean X-ray polarization that should exceed the mean
optical polarization by a factor of 2 (Marscher &
Jorstad 2022). Temporal fluctuations of both, with a standard
deviation equal to 0.5 times the mean, are expected, so the
ΠX/ΠO ratio should vary over time. Turbulence-based models
also predict polarization angle swings that are not associated
with changes in flux or polarization degree (Zhang et al. 2023).

5. Conclusions

On 2022 May 3–4, IXPE detected X-ray polarization from
the BL Lac–type blazar 1ES 1959+650. The degree of
polarization in the 2–8 keV band was measured to be
Πx= 8.0± 2.3, with an electric-vector polarization position
angle ψx= 123° ± 8°. Bharathan et al. (2023) do not report a
significant detection of X-ray polarization from this data set,
possibly due to their use of a model-independent analysis that
is less sensitive than the spectropolarimetric analysis presented
here. Our study constrains the degree of polarization during a
second IXPE exposure on 2022 June 9–12 to Πx< 5.1%.
Subsequent observations of 1ES 1959+650 with IXPE in 2022
October and 2023 August reveal increased X-ray polarization
levels, reaching Πx= 12.5± 0.7 (Bharathan et al. 2023),
compared to the levels from the earlier campaign reported here.

A time-resolved analysis of the second data set shows
significant polarization during one of four 50 ks time bins, with
a polarization degree and angle compatible with the May 3–4

observation. Considering the measurement uncertainties, the
hypothesis of a constant Πx over the two observations can be
only marginally rejected at a 2.3σ confidence level.
During the 50 day period including the two IXPE observa-

tions, optical polarization measurements showed a range of
2.3%�ΠO� 6.5%, with a median value of 3.9%. When
comparing the degree of polarization between the X-ray and
optical bands, a ratio of Πx/ΠO= 1.8± 0.5 was observed
during May 3–4, while Πx/ΠO 1.0 was observed during
June 9–12.
The amplitude of the galaxy-subtracted optical flux varia-

bility was 35% (peak to valley) during the campaign, while the
X-ray flux changed by a factor of ∼3. Although the optical and
IR position angles of polarization varied significantly during
the second IXPE pointing, the degree of polarization in these
bands remained low, at around 4%. This suggests the presence
of multiple magnetic field directions within the optical and IR
emission regions, which could be a result of turbulence or
magnetic reconnection events.
Recent observations of nearby high-frequency-peaked

BL Lacs (Mrk 501 and Mrk 421; z∼ 0.03) at X-ray and optical
frequencies have shown a higher degree of polarization in the
X-ray band. This has been interpreted as evidence for an
energy-stratified electron population dominating the observed
radiative output of the jet (Di Gesu et al. 2022a; Liodakis et al.
2022). Similar results have been obtained with analogs of those
objects at higher redshift (PG 1553+113, z∼ 0.4; 1ES 0229
+200, z= 0.140; Middei et al. 2023b; Ehlert et al. 2023).
Our observations of 1ES 1959+650 represent the first time

that X-ray polarization is detected from a high-frequency-
peaked BL Lac without clearly exhibiting frequency depend-
ence. The observed ratio Πx/Πo 1.0 in 1ES 1959
+650 during the second IXPE pointing is in apparent contra-
diction with a scenario where electrons emitting optical
radiation occupy a larger volume with a more turbulent
magnetic field compared to the higher-energy electrons
responsible for the X-ray emission. Nevertheless, the higher-
amplitude flux variability in the X-ray band compared to that at
optical frequencies suggests a more compact X-ray-emitting
region.
Temporal depolarization induced by turbulence in the X-ray-

emitting region could potentially explain occasions when the
observed X-ray and optical polarization becomes ΠX≈ΠO. If
changes in polarization angle occur on timescales shorter than
the 50 ks resolution of IXPE at the observed flux levels, the
degree of polarization in the X-ray band will be suppressed.
Optical observations, with integration times of 2 ks, are less
susceptible to temporal depolarization caused by slowly
varying magnetic field configurations.
The change in optical polarization angle observed during the

second IXPE pointing, in the absence of significant X-ray or
optical flux variability, could be explained by multizone
emission from turbulent plasma cells with typical dynamical
timescales of <1 day. However, models based on turbulence
alone do not predict the alignment of the electric-vector
polarization angle with the projected jet axis direction. During
this campaign, we observed ψx≈ ψo aligned within 30° of the
projected jet direction, as measured with the VLBA. Models in
which turbulent plasma crosses a shock have the potential to
explain alignment with the jet as well as the time variability
(Marscher 2014; Tavecchio et al. 2018; Tavecchio 2021).
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A plausible alternative explanation for the lower degree of
X-ray polarization measured in 1ES 1959+650 compared to
Mrk 501 and Mrk 421 could be a minor contribution from the
rising edge of the high-energy emission component of the
spectral energy distribution to the observed 2–8 keV X-ray
flux. This second emission component consists of Compton-
scattered photons that are expected to have a very low degree
of polarization (Krawczynski 2012). Thus, their presence in the
IXPE data would weaken the measured degree of X-ray
polarization in that band. Despite the absence of spectral
curvature in the Swift-XRT and XMM-Newton spectral
models, uncertainties might allow for a slight contribution
from Compton-scattered emission at the highest energies.
However, it is worth noting that no significant (inverted)
spectral break, which would indicate a second spectral X-ray
component, was indicated in the model fitting.

Given the time variability of the flux and polarization,
further IXPE and multiwavelength polarization and flux
monitoring observations of 1ES 1959+650 are needed to probe
the magnetic field geometry and the relationship between the
emission regions at X-ray, optical, and IR wavelengths. During
our campaign, the influence of geometrical and temporal
depolarization cannot be fully distinguished. At X-ray flux
levels of F2−8 keV= 10−10 erg cm−2 s−1 and Πx∼ 8%, IXPE
has the capability to detect changes in the polarization degree
within approximately 50 ks. The sensitivity of IXPE scales as

FMDP99 2 8 keV
1 2( )µ ´ -

-exposure , indicating that varia-
tions in X-ray polarization down to levels of Πx 5% could be
resolved when the X-ray flux from 1ES 1959+650 is
F2−8 keV 3× 10−10 erg cm−2 s−1, or approximately twice as
bright as the flux levels during the reported campaign. This
capability has been demonstrated recently with the detection by
IXPE of a >360° X-ray polarization angle rotation in Mrk 421
(Di Gesu et al. 2023).
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High Energy Astrophysics Science Archive Research Center
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Appendix A
X-Ray Data Reduction

A.1. IXPE

Level 2 IXPE event files containing Stokes parameters
calculated on an event-by-event basis were downloaded from
the public HEASARC data repository. Data were further
processed using ixpeobssim v30.2.2 (Baldini et al.
2022a, 2022b). Signal events were extracted using the
xpselect tool from an 80″ radius circle centered on the
sky location of 1ES 1959+650. Background photon counts
were extracted from an annulus with an inner radius of 140″
and outer radius of 200″ centered on the same location. This
procedure was repeated for each of the three IXPE detector
units (DU1–3; Weisskopf et al. 2022). Spectra were back-
ground-dominated at energies above 6 keV. Stokes I, Q, and U
spectra in the 2–6 keV band were therefore extracted using
xpbin without using event weights and binned to a minimum
of 8 counts per bin. Spectropolarimetric analysis was
performed using Sherpa v4.14 (Burke et al. 2022), with
custom spectropolarimetry models equivalent to the pol-
const models found in Xspec. For June 9–12, the constant
associated with XMM-Newton is 0.82 and that of Swift-XRT is
1.35, while those for detector units DU2 and DU3 are 0.97 and
0.92, all normalized to IXPE DU1. The wider spread in
intercalibration constants can be attributed to the X-ray flux
variability of 1ES 1959+650 during and after June 9–12.

A.2. Swift-XRT

Swift-XRT observations were performed in both photon
counting and windowed timing mode. Files were processed
using xrtpipeline packaged in HEASoft v6.30 using
the latest Swift-XRT calibration files. Signal events were
extracted from a 60″ radius circle centered on 1ES 1959+650.
Background photon counts were extracted from an annulus
with an inner radius of 150″ and outer radius of 280″. Spectra
were binned to have at least 40 counts per energy bin and fit
using Xspec (Arnaud 1996) to extract fluxes and spectral
information.

A.3. XMM-Newton

XMM-Newton observations were performed with the pn
camera in timing mode, using the thick filter to mitigate pileup
effects. EPAT plots clearly indicated the presence of pileup in the
MOS cameras, rendering the MOS data unsuitable for analysis.
Spectra were generated using version 20210317_1624-
19.1.0 of the XMM-Newton Science Analysis Software

(SAS) and the latest calibration products. To derive the spectrum
of the source, a 27 pixel size box was employed, centered on the
source itself. For background extraction, a region of the same size
was selected from a blank area on the EPIC-pn CCD camera. To
ensure accurate analysis, the resulting spectrum was appropriately
rebinned to achieve a minimum of 30 counts per bin. Moderate
pileup was observed in the pn data below 1 keV, prompting the
restriction of spectral analysis to the 1.0–10 keV energy range.
After background subtraction, the net exposure in the pn camera
is 1.39× 104 s.

Appendix B
Infrared/Optical Observations and Data Reduction

B.1. Infrared Observations

The IR observations were obtained with the MIMIR
instrument at the 1.8 m PTO in Flagstaff, Arizona. A detailed
description of the camera and data reduction can be found in
Clemens et al. (2012). One observation was the result of six
dithering exposures of 10 s each at 16 positions of a half-wave
plate, rotated in steps of 22°.5 from 0° to 360°. Therefore, to
determine the polarization parameters at a given epoch, we
collected 96 measurements of the source. We carried out 15
and 10 observations in the H and K bands, respectively, from
MJD 59736.5 to MJD 59748.5. To perform photometry, we
have coadded all 96 exposures at a given epoch to construct a
deep image. These deep images were also used to model the
host galaxy of 1959+650 in the H and K bands.
To make a model of the host galaxy, we used a photometric

decomposition technique, which allows one to find an
analytical model of an object and separate the light coming
from its components. The distance to the object does not allow
us to resolve it in great detail on our IR images, so in this work,
we adopted a rather simple model consisting of two
components: a Sérsic (Sérsic 1963, 1968) function to describe
the host galaxy and a point source for the active nucleus. We
built the point-spread function (PSF) by averaging images of
bright, isolated, and unsaturated stars and fit the resulting image
with a Moffat function (Moffat 1969) to produce a smooth
image. To run the decomposition, we used the IMFIT package
(Erwin 2015). Our estimates of the host-galaxy structural
parameters are as follows: ellipticity e= 0.31± 0.05, position
angle PA= 72°.9± 13°.1, Sérsic index n= 1.55± 0.5, effec-
tive radius re(K )= 2.53± 0 46, re(H)= 2.84± 0 35, effec-
tive surface brightness μe(K )= 16.98± 0 39, and μe(H)=
17.65± 0 27 mag arcsec–2. The rather large uncertainties,
especially in the Sérsic index value, are attributed to poor
resolution of the object; the observed object effective radius is
close to the PSF FWHM, which results in a degradation of the
decomposition quality (Trujillo et al. 2001). We have employed
the model parameters to estimate the contributions of the host
galaxy of 1959+650 within an aperture of diameter 5″ that are
equal to 14.28± 0.09 and 13.71± 0.05 mag in the H and K
bands, respectively.

B.2. Optical Observations

The optical R-band observations were performed at the Calar
Alto Observatory, the KANATA telescope, the NOT using the
Alhambra Faint Object Spectrograph and Camera (ALFOSC),
the Sierra Nevada Observatory, and the Skinakas Observatory
using the RoboPol polarimeter. The Calar Alto and SNO
observations were obtained on 2022 June 6, 10, and 17
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(MJD 59737.1, 59740.9, 59741.0, and 59747.8) and analyzed
using standard photopolarimetric procedures. The KANATA
observations were obtained on 2022 May 3 (MJD 59702.0)
using the Hiroshima Optical and Near-InfraRed camera
(Kawabata et al. 1999; Akitaya et al. 2014) and analyzed
using standard procedures. The NOT observations were
obtained on 2022 May 4 (MJD 59703.1) and 2022 June 7
(MJD 59737.1). The data were analyzed using unpolarized and
polarized standard stars for calibration, following the standard
photometric procedures included in the Tuorla Observatory
pipeline (Hovatta et al. 2016; Nilsson et al. 2018). The
RoboPol polarimeter is a novel four-channel polarimeter that
simultaneously measures ΠO and ψO with a single exposure
(Ramaprakash et al. 2019). Details of the analysis pipeline and
data reduction procedures can be found in Panopoulou et al.
(2015) and Blinov et al. (2021).
All of the optical observations were corrected for the

depolarization effect of unpolarized host-galaxy contribution to
the emission following Nilsson et al. (2007). A more detailed
description of the analysis procedures from the different
observatories can be found in Di Gesu et al. (2022a), Liodakis
et al. (2022), and Middei et al. (2023a).
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