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Abstract

Simulation is a key tool in population genetics for both methods development and empirical
research, but producing simulations that recapitulate the main features of genomic data sets
remains a major obstacle. Today, more realistic simulations are possible thanks to large
increases in the quantity and quality of available genetic data, and to the sophistication of
inference and simulation software. However, implementing these simulations still requires
substantial time and specialized knowledge. These challenges are especially pronounced for
simulating genomes for species that are not well-studied, since it is not always clear what
information is required to produce simulations with a level of realism sufficient to
confidently answer a given question. The community-developed framework stdpopsim seeks
to lower this barrier by facilitating the simulation of complex population genetic models
using up-to-date information. The initial version of stdpopsim focused on establishing this
framework using six well-characterized model species (Adrion et al., 2020). Here, we report
on major improvements made in the new release of stdpopsim (version 0.2), which includes a
significant expansion of the species catalog and substantial additions to simulation
capabilities. Features added to improve the realism of the simulated genomes include non-
crossover recombination and provision of species-specific genomic annotations. Through
community-driven efforts, we expanded the number of species in the catalog more than
three-fold and broadened coverage across the tree of life. During the process of expanding
the catalog, we have identified common sticking points and developed best practices for
setting up genome-scale simulations. We describe the input data required for generating a
realistic simulation, suggest good practices for obtaining the relevant information from the
literature, and discuss common pitfalls and major considerations. These improvements to
stdpopsim aim to further promote the use of realistic whole-genome population genetic
simulations, especially in non-model organisms, making them available, transparent, and
accessible to everyone.

eLife assessment

This important paper reports recent improvements and extensions to stdpopsim, a
community-driven resource that is built on top of powerful software for performing
simulations of population genomic data and provides a catalog of species with
curated genomic parameters and demographic models. In addition to describing the
new features and species in stdpopsim, the authors provide a set of practical
guidelines for implementing realistic simulations. Overall, this convincing
manuscript serves as an excellent overview of the utility, challenges, common pitfalls,
and best practices of population genomic simulations. It will be of broad interest to
population, evolutionary, and ecological geneticists studying humans, model
organisms, or non-model organisms.

Introduction

Population genetics allows us to answer questions across scales from deep evolutionary time to
ongoing ecological dynamics, and dramatic reductions in sequencing costs enable the generation
of unprecedented amounts of genomic data that can be used to address these questions (Ellegren,
2014     ). Ongoing efforts to systematically sequence life on Earth by initiatives such as the Earth

https://doi.org/10.7554/eLife.84874.2


M. Elise Lauterbur et al., 2023 eLife. https://doi.org/10.7554/eLife.84874.2 3 of 36

Biogenome (Lewin et al., 2022     ) and its affiliated project networks, such as Vertebrate Genomes
(Rhie et al., 2021     ), 10,000 Plants (Cheng et al., 2018     ) and others (Darwin Tree of Life Project
Consortium, 2022     ), are providing the backbone for enormous increases in the amount of
population-level genomic data available for model and non-model species. These data are being
used, among other things, in inference of population history and demographic parameters
(Beichman et al., 2018     ), studying adaptive introgression (Gower et al., 2021     ), providing null
expectations for selection scans (e.g. Hsieh et al., 2021     ), and understanding the implications of
deleterious variation in populations of conservation concern (e.g. Robinson et al., 2023     ). While
many of the methods that address these questions were initially developed for a few key model
systems such as humans and Drosophila, more recent efforts are generalizing these methods to
include important factors not initially accounted for, such as inbreeding or selfing (Blischak et al.,
2020     ), skewed offspring distributions (Montano, 2016     ), and intense artificial selection even
for non-model organisms (MacLeod et al., 2013     , 2014     ).

Simulations can be useful at all stages of this work—for planning studies, analyzing data, testing
inference methods, and validating findings from empirical and theoretical research. For instance,
simulations provide training data for inference methods based on machine learning (Schrider and
Kern, 2018     ) and Approximate Bayesian Computation (Csilléry et al., 2010     ). They can also serve
as baselines for further analyses: for example, simulations incorporating demographic history
serve as null models when detecting selection (Hsieh et al., 2016     ) or seed downstream breeding
program simulations (Gaynor et al., 2020     ). More recently, population genomic simulations have
been used to help guide conservation decisions for threatened species (Teixeira and Huber, 2021     ;
Kyriazis et al., 2022     ).

Increasing amounts of data and sophistication of inference methods have enabled researchers to
ask ever more specific and precise questions. Consequently, simulations must incorporate more
and more elements of biological realism. Important elements include genomic features such as
mutation and recombination rates that strongly affect genetic variation and haplotype structure
(Nachman, 2002     ). The inclusion of these genomic features is particularly important when linked
selection is acting upon the patterns of genomic diversity being studied (Cutter and Payseur,
2013     ). Furthermore, the demographic history of a species—encompassing population sizes and
distributions, divergences, and gene flow—can dramatically affect patterns of genomic variation
(Teshima et al., 2006     ). Thus species-specific estimates of these and other ecological and
evolutionary parameters (such as those governing the process of natural selection) are important
when generating realistic simulations. This presents challenges, especially to new researchers, as
it takes a great deal of specialized knowledge not only to code the simulations themselves but also
to find and choose appropriate estimates of the parameters underlying the simulation model.

The recently developed community resource stdpopsim provides easy access to detailed
population genomic simulations (Adrion et al., 2020     ). It lowers the technical barriers to
performing these simulations and reduces the possibility of erroneous implementation of
simulations for species with published demographic models. The initial release of stdpopsim was
restricted to only six well-characterized model species, such as Drosophila melanogaster and Homo
sapiens, but feedback we received from the community identified a widespread desire to simulate
a broader range of non-model species, and ideally to incorporate these into the stdpopsim catalog
for future use. This feedback, and subsequent efforts to expand the catalog, also uncovered a vital
need to better understand when it is practical to create a realistic simulation of a species of
interest, and indeed what “realistic” means in this context.

This paper reports on the updates made in the current release of stdpopsim (version 0.2), and is
also intended as a resource for any researcher who wishes to develop chromosome-scale
simulations for their own species of interest. We start by describing the central idea behind the
standardized simulation framework of stdpopsim, and then outline the main updates made to the
stdpopsim catalog and simulation framework in the past two years. We then provide guidelines

https://doi.org/10.7554/eLife.84874.2


M. Elise Lauterbur et al., 2023 eLife. https://doi.org/10.7554/eLife.84874.2 4 of 36

for generating population genomic simulations, either for the purpose of using them in one
specific study, or with the intent of making the simulations available for future work by adding the
appropriate models to stdpopsim. Among other considerations, we discuss when a chromosome-
scale simulation is more useful than simulations based on either individual loci or generic loci. We
specify the required input data, mention common pitfalls in choosing appropriate parameters, and
suggest courses of action for species that are missing estimates of some necessary inputs. We
conclude with examples from two species recently added to stdpopsim, which demonstrate some
of the main considerations involved in the process of designing realistic chromosome-scale
simulations. While the guidelines provided in this paper are intended for any researcher
interested in implementing a population genomic simulation using any software, we highlight the
ways in which the stdpopsim framework eases the burden involved in this process and facilitates
reproducible research.

The utility of stdpopsim for
chromosome-scale simulations

We begin by providing a brief overview of the importance of chromosome-scale simulations and
the main rationale behind stdpopsim; see Adrion et al. (2020)      for more on the topic. The main
objective of population genomic simulations is to recreate patterns of sequence variation along the
genome under the inferred evolutionary history of a given species. To achieve this, stdpopsim is
built on top of the msprime (Kelleher et al., 2016     ; Nelson et al., 2020     ; Baumdicker et al.,
2021     ) and SLiM (Haller and Messer, 2019     ) simulation engines, which are capable of producing
fairly realistic patterns of sequence variation if provided with accurate descriptions of the genome
architecture and evolutionary history of the simulated species. The required parameters include
the number of chromosomes and their lengths, mutation and recombination rates, the
demographic history of the simulated population, and, potentially, the landscape of natural
selection along the genome. A key challenge when setting up a population genomic simulation is to
obtain estimates of all of these quantities from the literature and then correctly implement them
in an appropriate simulation engine. Detailed estimates of all of these quantities are increasingly
available due to the growing availability of population genomic data coupled with methodological
advances. Incorporating this data into a population genomic simulation often involves integrating
this data between different literature sources, which can require specialized knowledge of
population genetics theory. Thus, the process of coding a realistic simulation can be quite time-
consuming and often error-prone.

The main objective of stdpopsim is to streamline this process, and to make it more robust and
more reproducible. Contributors collect parameter values for their species of interest from the
literature, and then specify these parameters in a template file for the new model. This model then
undergoes a peerreview process, which involves another researcher independently recreating the
model based on the provided documentation. Automated scripts then execute to compare the two
models; if discrepancies are found in this process, they are resolved by discussion between the
contributor and reviewer, and if necessary with input of additional members of the community.
This quality-control process quite often finds subtle bugs (e.g., as in Ragsdale et al., 2020     ) or
highlights parts of the model that are ambiguously defined by the literature sources. This
increases the reliability and reproducibility of the resulting simulations in any downstream
analysis.

Another important goal of stdpopsim is to promote and facilitate chromosome-scale simulations,
as opposed to the common practice of simulating many short segments (see, e.g., Harris and
Nielsen, 2016     ). Simulation of long sequences, on the order of 107 bases, has until recently been
computationally prohibitive, but this has changed with the development of modern simulation
engines such as msprime and SLiM. Generating chromosome-scale simulations has several key
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benefits. First, the organization of genes on chromosomes is a key feature of a species’ genome
that is ignored in many traditional population genomic simulations (see Schrider (2020)      for one
exception). Second, modeling physical linkage allows simulations to capture important
correlations between genetic variants on a chromosome. These correlations reduce variance
relative to separate and independent simulations of equivalent genetic material. This has a
particularly striking effect in long stretches with a low recombination rate, as observed for
instance on the long arm of human chromosome 22 (Dawson et al., 2002     ). In bacteria, a similar
effect occurs due to genome-wide linkage that is broken only by horizontal transfer of short
segments (Didelot and Maiden, 2010     ). When conducting simulations with natural selection,
linkage has an even stronger effect. Selection acting on a small number of sites can indirectly
influence levels and patterns of genetic variation at linked neutral sites, which has been shown to
have a widespread effect on patterns of genomic variation in a myriad of species (e.g., McVicker et
al., 2009     ; Charlesworth, 2012     ). In addition, the lengths of chromosome-scale shared
haplotypes within and between populations provides valuable information on their demographic
history. Demographic inference methods that use such information, such as MSMC (Schiffels and
Wang, 2020     ) and IBDNe (Browning and Browning, 2015     ), perform best on long genomic
segments with realistic recombination rates. Chromosome-scale simulations are clearly required
to test (or train) such methods, or to conduct power analyses when designing empirical studies
that use them. With stdpopsim, such simulations are available with just a single call to a
command-line script or with execution of a handful of lines of Python code.

Additions to stdpopsim

When first published, the stdpopsim catalog included six species: Homo sapiens, Pongo abelii,
Canis familiaris, Drosophila melanogaster, Arabidopsis thaliana, and Escherichia coli (Figure 1     ).
One way the catalog has expanded is through the introduction of additional demographic models
for Homo sapiens, Pongo abelii, Drosophila melanogaster, and Arabidopsis thaliana, enabling a
wider variety of simulations for these well-studied species. However, the initial collection of six
species represents only a small slice of the tree of life. This is a concern not only because there is a
large community of researchers studying other organisms, but also because methods developed
for application to model species (such as humans) may not perform well when applied to other
species with very different biology. Adding species to the stdpopsim catalog will allow developers
to easily test their methods across a wider variety of organisms.

We thus made a concerted effort to recruit members of the population and evolutionary genetics
community to add their species of interest to the stdpopsim catalog. This effort involved a series of
workshops to introduce potential contributors to stdpopsim, followed by a “Growing the Zoo”
hackathon organized alongside the 2021 ProbGen conference. The seven initial workshops allowed
us to reach a broad community of more than 150 researchers, many of whom expressed interest in
adding non-model species to stdpopsim. The hackathon was then structured based on feedback
from these participants. One month before the hackathon, we organized a final workshop to
prepare interested participants, by introducing them to the process of developing a new species
model and adding it to the stdpopsim code base. Roughly 20 scientists participated in the
hackathon (most of whom are included as authors on this paper), which resulted in the addition of
15 species to the stdpopsim catalog (Figure 1     ). The catalog now includes a teleost fish
(Gasterosteus aculeatus), a bird (Anas platyrhynchos), a reptile (Anolis carolinensis), a livestock
species (Bos taurus), six insects including two vectors of human disease (Aedes aegypti and
Anopheles gambiae), a nematode (Caenorhabditis elegans), two flowering plants including a crop
(Helianthus annuus), an algae (Chlamydomonas reinhardtii), two bacteria, four primates, and a
common mammalian associate of humans (Canis familiaris). Not all of these have recombination
maps or demographic models (see Figure 1     ), but this lays a framework for future contributions.
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Figure 1

Phylogenetic tree of species available in the stdpopsim catalog, including the six species we published in the original release
(Adrion et al., 2020     , in blue), and 15 species that have since been added (in orange). Solid circles indicate species that have
one (light grey) or more (dark grey) demographic models and recombination maps. Branch lengths were derived from the
divergence times provided by TimeTree5 (Kumar et al., 2022     ). The horizontal bar below the tree indicates 500 million years
(my).
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Expanding the species catalog required adding several capabilities to the simulation framework of
stdpopsim. Some features were added by upgrading the neutral simulation engine, msprime, from
version 0.7.4 to version 1.0 (Baumdicker et al., 2021     ). Among other features, this upgrade
includes a discrete-site model of mutation, which enables simulating sites with multiple mutations
and possibly more than two alleles. Another key feature added to stdpopsim’s simulation
framework was the ability to model non-crossover recombination. In bacteria and archaea,
genetic material can be exchanged through horizontal gene transfer, which can add new genetic
material (e.g., via the transfer of plasmids) or replace homologous sequences through homologous
recombination (Thomas and Nielsen, 2005     ; Didelot and Maiden, 2010     ; Gophna and Altman-
Price, 2022     ). However, the initial version of stdpopsim used crossover recombination to stand in
for these processes. Although we cannot currently simulate varying gene content (as would be
required to simulate the addition of new genetic material by horizontal gene transfer), the
msprime and SLiM simulation engines now allow gene conversion, which has the same effect as
non-crossover homologous recombination. Following Cury et al. (2022)     , we use this to include
non-crossover homologous recombination in bacterial and archaeal species. This is done in
stdpopsim by setting a flag in the species model to indicate that recombination should be modeled
without crossovers, and specifying an average tract length of exchanged genetic material. For
example, the model for Escherichia coli has been updated in the stdpopsim catalog to use non-
crossover recombination at an average rate of 8.9 × 10-11 recombination events per base per
generation, with an average tract length of 542 bases (Wielgoss et al., 2011     ; Didelot et al.,
2012     ). Note that this rate (8.9 × 10-11) corresponds to the rate of initiation of a recombined tract.

Recombination without crossover is also prevalent in sexually reproducing species, where it is
termed gene conversion. Gene conversion affects shorter segments than crossover recombination
and creates distinct patterns of genetic diversity along the genome (Korunes and Noor, 2017     ).
Indeed, gene conversion rates in some species are estimated to occur at similar or even higher
rates than crossover recombination (Gay et al., 2007     ; Comeron et al., 2012     ; Wijnker et al.,
2013     ). To accommodate this in stdpopsim simulations, one needs to specify the fraction of
recombinations that occur due to gene conversion (i.e., without crossover), and the average tract
length. For example, the model for Drosophila melanogaster has been updated in the stdpopsim
catalog to have a fraction of gene conversions of 0.83 (in all chromosomes that undergo
recombination) and an average tract length of 518 bases (Comeron et al., 2012     ). This update
does not affect the rate of crossover recombination, but it adds gene conversion events at a ratio of
83:17 relative to crossover recombination events. We note that since non-crossover recombination
incurs a high computation load in simulation, it is turned off by default in stdpopsim, and must be
explicitly invoked by the simulation model. Note that ignoring gene conversion may result in a
slightly skewed distribution of shared haplotypes between individuals (see Table 1     ).

Another important extension of stdpopsim allows augmenting a genome assembly with genome
annotations, such as coding regions, promoters, and conserved elements. These annotations can
be used to simulate selection at a subset of sites (such as the annotated coding regions) using
parametric distributions of fitness effects. Standardized, easily accessible simulations that include
the reality of pervasive linked selection in a species-specific manner has long been identified as a
goal for evolutionary genetics (e.g., McVicker et al., 2009     ; Comeron, 2014     ). Thus, we expect this
extension of stdpopsim to be transformative in the way simulations are carried out in population
genetics. This significant new capability of the stdpopsim library will be detailed in a forthcoming
publication, and is not the focus of this paper.

https://doi.org/10.7554/eLife.84874.2
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Table 1

Guidelines for dealing with missing parameters.

For each parameter, we provide a suggested course of action, and mention the main discrepancies between simulated data
and real genomic data that could be caused by misspecification of that parameter.

https://doi.org/10.7554/eLife.84874.2
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Guidelines for implementing a
population genomic simulation

The concentrated effort to add species to the stdpopsim catalog has led to a series of important
insights about this process, which we summarize here as a set of guidelines for implementing
realistic simulations for any species. Our intention is to provide general guidance that applies to
any population genomic simulation software, but we also mention specific requirements that
apply to simulations done in stdpopsim.

Basic setup for chromosome-level simulations
Implementing a realistic population genomic simulation for a species of interest requires a
detailed description of the organism’s demography and mechanisms of genetic inheritance. While
simulation software requires unforgivingly precise values, in practice we may only have rough
guesses for most of the parameters describing these processes. In this section, we list the relevant
parameters and provide guidelines for how to set them based on current knowledge.

1. A chromosome-level genome assembly, which consists of a list of chromosomes or
scaffolds and their lengths. Having a good quality assembly with complete chromosomes,
or at least very long scaffolds, is necessary if chromosome-level population genomic
simulations are to reflect the genomic architecture of the species. When expanding the
stdpopsim catalog during the “Growing the Zoo” hackathon, we considered the possibility
of adding species whose genome assemblies are composed of many relatively small contigs,
unanchored to chromosome-level scaffolds. Although we had not previously put
restrictions on which species might be added, we decided that we would only add species
with chromosome-level assemblies. The main justification for this restriction is that species
with less complete genome builds typically do not have good recombination maps and
demographic models, making chromosome-level simulation much less useful in such
species. Another issue is the storage burden and long load times involved in dealing with
hundreds of contigs. Finally, each species requires validation of its code before it is added
to the stdpopsim catalog, as well as long-term maintenance to keep it up-to-date with
changes made to the stdpopsim framework. So, the benefit of including species with very
partial genome builds in stdpopsim would be outweighed by the substantial extra burden
on stdpopsim maintainers as well as downstream users of these models. Another reason to
focus on species with chromosome-level assemblies is that we expect their numbers to
dramatically increase in the near future due to numerous genome initiatives (Lewin et al.,
2022     ; Rhie et al., 2021     ; Cheng et al., 2018     ) and the development of new long-read
sequencing technologies and assembly pipelines (Chakraborty et al., 2016     ; Amarasinghe
et al., 2020     , 2021     ).

2. An average mutation rate for each chromosome (per generation per bp). This rate
estimate can be based on sequence data from pedigrees, mutation accumulation studies, or
comparative genomic analysis calibrated by fossil data (i.e., phylogenetic estimates). At
present, stdpopsim simulates mutations at a constant rate under the Jukes–Cantor model of
nucleotide mutations (Jukes and Cantor, 1969     ). However, we anticipate future
development will provide support for more complex, heterogeneous mutational processes,
as these are easily specified in both the SLiM and msprime simulation engines. Such
progress will further improve the realism of simulated genomes, since mutation processes,
including rates, are known to vary along the genome and through time (Benzer, 1961     ;
Ellegren et al., 2003     ; Supek and Lehner, 2019     ).

https://doi.org/10.7554/eLife.84874.2
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3. Recombination rates (per generation per bp). Ideally, a population genomic simulation
should make use of a chromosome-level recombination map, since the recombination rate
is known to vary widely across chromosomes (Nachman, 2002     ), and this can strongly
affect the patterns of linkage disequilibrium and shared haplotype lengths. When this
information is not available, we suggest specifying an average recombination rate for each
chromosome. At minimum, an average genomewide recombination rate needs to be
specified, which is typically available for well-assembled genomes. For bacteria and
archaea, which primarily experience non-crossover recombination, the average tract
length should also be specified (see details in previous section). Gene conversion
(optional): If one wishes to model gene conversion in eukaryotes, either together with
crossover recombination or as a stand-alone process, then one should specify the fraction
of recombinations done by gene conversion as well as the per chromosome average tract
length.

4. A demographic model describing ancestral population sizes, split times, and migration
rates. Selection of a reasonable demographic model is often crucial, since misspecification
of the model can generate unrealistic patterns of genetic variation that will affect
downstream analyses (e.g., Navascués and Emerson, 2009     ). A given species might have
more than one demographic model, fit from different data or by different methods. Thus,
when selecting a demographic model, one should examine the data sources and methods
used to obtain it to ensure that they are relevant to the study at hand (see also Limiations
of simulated genomes below). At a minimum, simulation requires a single estimate of
effective population size. This estimate, which may correspond to some sort of historical
average effective population size, should produce simulated data that matches the average
observed genetic diversity in that species. Note, however, that this average effective
population size cannot capture features of genetic variation that are caused by recent
changes in population size and the presence of population structure (MacLeod et al.,
2013     ; Eldon et al., 2015     ). For example, a recent population expansion will produce an
excess of low-frequency alleles that no simulation of a constant-sized population will
reproduce (Tennessen et al., 2012     ).

5. An average generation time for the species. This parameter is an important part of the
species’ natural history. This value does not directly affect the simulation, since stdpopsim
uses either the Wright–Fisher model (in SLiM) or the Moran model (in msprime), both of
which operate in time units of generations. Thus, the average generation time is only
currently used to convert time units to years, which is useful when comparing among
different demographic models.

These five categories of parameters are sufficient for generating simulations under neutral
evolution. Such simulations are useful for a number of purposes, but they cannot be used to model
the influence of natural selection on patterns of genetic variation. To achieve this, the simulator
needs to know which regions along the genome are subject to selection, and the nature and
strength of this selection. As mentioned above, the ability to simulate chromosomes with realistic
models of selection is still under development, and will be finalized in the next release of
stdpopsim. The development version of stdpopsim enables simulation with selection (using the
SLiM engine) by specifying genome annotations and distributions of fitness effects, as specified
below.

6. Genome annotations, specifying regions subject to selection (as, for example, a
GFF3/GTF file). For instance, annotations can contain information on the location of coding
regions, the position of specific genes, or conserved non-coding regions. Regions not
covered by the annotation file are assumed to be evolving free from the effects of direct
natural selection.
7. Distributions of fitness effects (DFEs) for each annotation. Each annotation is
associated with a DFE describing the probability distribution of selection coefficients
(deleterious, neutral, and beneficial) for mutations occurring in the region covered by the
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annotation. DFEs can be inferred from population genomic data (reviewed in Eyre-Walker
and Keightley, 2007     ), and are available for several species (e.g., Ma et al., 2013     ; Huber
et al., 2018     ).

The current release of stdpopsim contains annotations and implemented DFE models for the three
model species: A. thaliana, D. melanogaster, and H. sapiens. A forthcoming publication will provide
details about how this is implemented in stdpopsim and examples of possible uses of this feature.

Extracting parameters from the literature
Simulations cannot of course precisely match reality, but in setting up simulations it is desirable to
choose parameters that best reflect our current understanding of the evolutionary history of the
species of interest. In practice a researcher may choose each parameter to match a fairly precise
estimate or a wild guess, which may be obtained from a peer-reviewed publication or by word of
mouth. However, values in stdpopsim are always chosen to match published estimates, so that the
underlying data and methods are documented and can be validated. Because the process of
converting information reported in the literature to parameters used by a simulation engine is
quite error-prone, independent validation of the simulation code is crucial. We highly recommend
following a quality-control procedure similar to the one used in stdpopsim, in which each species
or model added to the catalog is independently recreated or thoroughly reviewed by a separate
researcher.

Obtaining reliable and citable estimates for all model parameters is not a trivial task. Oftentimes,
values for different parameters must be gleaned from multiple publications and combined. For
example, it is not uncommon to find an estimate of a mutation rate in one paper, a recombination
map in a separate paper, and a suitable demographic model in a third paper. Integrating
information from different publications requires caution, since some of these parameter estimates
are entangled in non-trivial ways. For instance, consider simulating a demographic model
estimated in a specific paper that assumes a certain mutation rate. Naively using the demographic
model, as published, with a new estimate of the mutation rate will lead to levels of genetic
diversity that do not fit the genomic data. This is addressed in stdpopsim by allowing a
demographic model to be simulated using a mutation rate that differs from the default rate
specified for the species. See, for example, the model implemented for Bos taurus, which is
described in the next section. This important feature does not necessarily fix all potential
inconsistencies caused by assumptions made by the demographic inference method (such as
assumptions about recombination rates). It is therefore recommended, when possible, to take the
demographic model, mutation rates, and recombination rates from the same study, and to proceed
carefully when mixing sources. An additional tricky source of inconsistency is coordinate drift
between subsequent versions of genome assemblies. In stdpopsim, we follow the UCSC Genome
Browser and use liftOver to convert the coordinates of recombination maps and genome
annotations to the coordinates of the current genome assembly (Hinrichs et al., 2006     ).

Limitations of simulated genomes
Despite their great utility, simulated genomes cannot fully capture all aspects of genetic variation
as observed in real data, with some aspects modeled better than others. As mentioned above, this
will strongly depend on the demographic model used in simulation. Thus, it is important to
consider potential limitations of different demographic models in reflecting observed genetic
variation. First, a demographic model inferred from analysis of genomic data will likely depend on
the samples that contributed the analyzed genomes. The inferred demographic model can only
reflect the genealogical ancestry of these sampled individuals, and this will typically make up a
small portion of the complete genealogical ancestry of the species. Thus, demographic models
inferred from larger sets of samples from diverse ancestry backgrounds may potentially provide a
more comprehensive depiction of genetic variation within a species. This is true if sufficiently
realistic demographic models can be fit—models that account for the structure of populations
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within a species. That said, the choice of samples used for inference will mostly influence recent
changes in genetic variation. This is because the genealogy of even a single individual consists of
numerous ancestors in each generation in the deep past, which is the premise of methods that
infer ancestral population sizes from a single input genome (Li and Durbin, 2011     ).

The computational method used for inference also affects the way genetic variation is reflected by
the demographic model, because different methods derive their inference from different features
of genomic variation. Some methods make use of the site frequency spectrum at unlinked single
sites (e.g., Gutenkunst et al., 2009     ; Excoffier et al., 2013     ; Liu and Fu, 2015     ), while other
methods use haplotype structure (e.g., Li and Durbin, 2011     ; Schiffels and Wang, 2020     ;
Browning and Browning, 2015     ). This, in turn, may influence the accuracy of different features in
the inferred demography. For example, very recent demographic changes, such as recent
admixture or bottlenecks, are difficult to infer from the site frequency spectrum, but are more
easily inferred by examining shared long haplotypes (as demonstrated by the demographic model
inferred for Bos taurus by MacLeod et al. (2013)     ; see below). Several studies have compared
different approaches to demographic inference (e.g., Harris and Nielsen, 2013     ; Beichman et al.,
2017     ), but unfortunately, there is currently no succinct handbook that describes the relative
strengths and weaknesses of different methods. Thus, assessing the potential limitations of a given
demographic model currently requires some familiarity with the method used for its inference. In
addition, all methods assume that the input sequences are neutrally evolving. This implies that
technical choices, such as the specific genomic segments analyzed and various filters, may also
influence the inferred model and its ability to model observed genetic variation. Thus, it is
strongly advised to read the study that inferred the demographic model and understand potential
limitations that stem from the selection of samples, methods, and filters.

We note that inclusion of a demographic model in the stdpopsim catalog does not involve any
judgment as to which aspects of genetic variation it captures. Any model that is a faithful
implementation of a published model inferred from genomic data can be added to the stdpopsim
catalog. Thus, potential users of stdpopsim should use the implemented models with the
appropriate caution, keeping in mind the limitations discussed above. We maintain a fairly
detailed documentation page for the catalog (see Data availability), which contains a brief
summary for each demographic model. This summary includes a graphical description of the
model (such as the one shown for Anopheles gambiae in Fig. 2B     ), as well as a description of the
data and method used for inference. Therefore, the documentation can provide guidance to
potential users of stdpopsim in the process of selecting an appropriate demographic model for
simulation. Finally, we hope that the standardized simulations implemented in stdpopsim will
facilitate additional studies that examine the relative strengths and limitations of different
approaches to demographic inference (and modeling genetic variation in general), and this will
allow us to generate even more realistic simulations in the future.

Filling in the missing pieces
For many species it is difficult to obtain estimates of all necessary model parameters. Table 1     
provides suggestions for ways to deal with missing values of various model parameters. The table
also mentions possible consequences of misspecification of each parameter.

In some cases, one may wish to generate simulations for a species with a partial genome build.
Despite the focus of stdpopsim on species with chromosome-level assemblies (see discussion
above), simulation is still potentially useful for species with less complete assemblies, with some
important considerations to keep in mind. Longer contigs or scaffolds in these builds can be
simulated separately and independently. This approach allows us to model genetic linkage within
each contig, but linkage between different contigs that map to the same chromosome will not be
captured by the simulation. This provides a reasonable approximation for many purposes, at least
for genomic regions far from the contig edges. For shorter contigs, separate independent
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Figure 2

The species parameters and demographic model used for Anopheles gambiae in the stdpopsim catalog. (A) The parameters
associated with the genome build and species, including chromosome lengths, average recombination rates (per base per
generation), and average mutation rates (per base per generation). (B) A graphical depiction of the demographic model,
which consists of a single population whose size changes throughout the past 11,260 generations in 67 time intervals (note
the log scale). The width at each point depicts the effective population size (Ne), with the horizontal bar at the bottom
indicating the scale for Ne = 106. This figure is adapted from the data on the stdpopsim catalog documentation page (see
Data availability) and plotted with POPdemog (Zhou et al., 2018     ).
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simulations will not be able to capture patterns of long-range linkage in a reasonably realistic way.
Thus, a potentially viable option for shorter contigs is to combine them into longer
pseudochromosomes, trying to mimic the species’ expected chromosome lengths. Despite their
somewhat artificial construction, these pseudo-chromosomes have the important benefit of
capturing patterns of linkage similar to those observed in real genomic chromosomes. If, for
example, the main purpose of the simulation is to examine the distribution of lengths of shared
haplotypes between individuals, or study patterns of background selection, then it makes sense to
simulate such pseudo-chromosomes. However, genetic correlations between different specific
contigs lumped together in this way are obviously not accurate. So, if the main purpose of the
simulation is to examine local patterns of genetic variation in loci of interest, then it may be more
appropriate to simulate the relevant contigs separately (even if they are short), or to randomly
sample several mappings of contigs to pseudo-chromosomes. For some purposes it makes sense to
simulate a large number of unlinked sites (Gutenkunst et al., 2009     ; Excoffier et al., 2013     ),
which can be generated without any sort of genome assembly. However, this approach would not
have the benefits of chromosome-scale simulations. While some of the same considerations hold
when simulating unlinked short sequences, a detailed discussion about such simulations goes
beyond the scope of this paper. Ultimately, the recommended mode of simulation for a species
with a partial genome assembly depends on the intended use of the simulated genomes.

Examples of added species
In this section, we provide examples of two species recently added to the stdpopsim catalog,
Anopheles gambiae and Bos taurus, to demonstrate some of the key considerations of the process.
In each example, we highlight in bold the model parameters set for each species.

Anopheles gambiae (mosquito)

Anopheles gambiae, the African malaria mosquito, is a non-model organism whose population
history has direct implications for human health. Several large-scale studies in recent years have
provided information about the population history of this species on which population genomic
simulations can be based (e.g., Miles et al., 2017     ; Clarkson et al., 2020     ). The genome assembly
structure used in the species model is from the AgamP4 genome assembly (Sharakhova et al.,
2007     ), downloaded directly from Ensembl (Howe et al., 2020     ) using the special utilities
provided by stdpopsim.

Estimates of average recombination rates for each of the chromosomes (excluding the
mitochondrial genome) were taken from a recombination map inferred by Pombi et al. (2006)     
which itself included information from Zheng et al. (1996)      (Figure 2A     ). As direct estimates of
mutation rate (e.g., via mutation accumulation) do not currently exist for Anopheles gambiae, we
used the genome-wide average mutation rate of μ = 3.5 × 10-9 mutations per generation per site
estimated by Keightley et al. (2009)      for the fellow Dipteran Drosophila melanogaster, a rate that
was used for analysis of A. gambiae data in Miles et al. (2017)     . To obtain an estimate for the
default effective population size (Ne), we used the formula θ = 4μNe, with the above mutation
rate (μ = 3.5 × 10-9 mutations per base per generation) and a mean nucleotide diversity of θ ≈ 0.015,
as reported by Miles et al. (2017)      for the Gabon population. This resulted in an estimate of Ne =
1.07 × 106, which we rounded down to one million. These steps were documented in the code for
the stdpopsim species model, to facilitate validation and future updates. We acknowledge that
some of these steps involve somewhat arbitrary choices, such as the choice of the Gabon
population and rounding down of the final value. However, this should not be seen as a
considerable source of misspecification, since this value of Ne is meant to provide only a rough
approximation to historical population sizes and would be overwritten by a more detailed
demographic model. Miles et al. (2017)      inferred demographic models from Anopheles samples
from nine different populations (locations) using the stairway plot method (Liu and Fu, 2015     ).
We chose to include in stdpopsim the demographic model inferred from the Gabon sample,
which consists of a single population whose size fluctuated from below 80,000 (an ancient
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bottleneck roughly 10,000 generations ago) to the present-day estimate of over 4 million
individuals (Figure 2B     ). To convert the timescale from generations to years, we used an
average generation time of 1/11 years, as in Miles et al. (2017)     .

All of these parameters were set in the species entry in the stdpopsim catalog, accompanied by the
relevant citation information, and the model underwent the standard quality-control process. The
species entry may be refined in the future by adding more demographic models, updating or
refining the recombination map, or updating the mutation rate estimates based on ones directly
estimated for this species. Note that even if the mutation rate is updated sometime in the future,
the demographic model mentioned above should still be associated with the current mutation rate
(μ = 3.5 × 10-9 mutations per base per generation), since this was the rate used in its inference.

Bos taurus (cattle)

Bos taurus (cattle) was added to the stdpopsim catalog during the 2020 hackathon because of its
agricultural importance. Agricultural species experience strong selection due to domestication and
selective breeding, leading to a reduction in effective population size. These processes, as well as
admixture and introgression, produce patterns of genetic variation that can be very different from
typical model species (Larson and Burger, 2013     ). These processes have occurred over a
relatively short period of time, since the advent of agriculture roughly 10,000 years ago, and they
have intensified over the years to improve food production (Gaut et al., 2018     ; MacLeod et al.,
2013     ). High-quality genome assemblies are now available for several breeds of cattle (e.g.,
Rosen et al., 2020     ; Heaton et al., 2021     ; Talenti et al., 2022     ) and the use of genomic data has
become ubiquitous in selective breeding (Meuwissen et al., 2001     ; MacLeod et al., 2014     ;
Obšteter et al., 2021     ; Cesarani et al., 2022     ). Modern cattle have extremely low and declining
genetic diversity, with estimates of effective population size around 90 in the early 1980s (MacLeod
et al., 2013     ; VanRaden, 2020     ; Makanjuola et al., 2020     ). On the other hand, the ancestral
effective population size is estimated to be roughly Ne=62,000 (MacLeod et al., 2013     ). This
change in effective population size presents a challenge for demographic inference, selection
scans, genome-wide association, and genomic prediction (MacLeod et al., 2013     , 2014     ; Hartfield
et al., 2022     ). For these reasons, it was useful to develop a detailed simulation model for cattle to
be added to the stdpopsim catalog.

We used the most recent genome assembly, ARS-UCD1.2 (Rosen et al., 2020     ), a constant
mutation rate of μ = 1.2 × 10-8 mutations per base per generation for all chromosomes (Harland et
al., 2017     ), and a constant recombination rate of r = 9.26 × 10-9 recombinations per base per
generation for all chromosomes other than the mitochondrial genome (Ma et al., 2015     ). With
respect to the effective population size, it is clear that simulating with either the ancestral or
current effective population size would not generate realistic genome structure and diversity
(MacLeod et al., 2013     ; Rosen et al., 2020     ). Since stdpopsim does not allow for a missing value
of Ne, we chose to set the species default Ne to the ancestral estimate of 6.2 × 104. However, we
strongly caution that simulating the cattle genome with any fixed value for Ne will generate
unrealistic patterns of genetic variation, and recommend using a reasonably detailed
demographic model. Note that the default Ne is only used in simulation if a demographic model is
not specified. To this end, we implemented the demographic model of the Holstein breed, which
was inferred by MacLeod et al. (2013)      from runs of homozygosity in the whole-genome
sequence of two iconic bulls. This demographic model specifies changes in the ancestral effective
population size from Ne=62,000 at around 33,000 generations ago to Ne=90 in the 1980s in a series
of 13 instantaneous population size changes (taken from Supplementary Table S1 in MacLeod et
al., 2013     ). To convert the timescale from generations to years, we used an average generation
time of 5 years (MacLeod et al., 2013     ). Note that this demographic model does not capture the
intense selective breeding since the 1980s that has even further reduced the effective population
size of cattle (MacLeod et al., 2013     ; VanRaden, 2020     ; Makanjuola et al., 2020     ). These effects
can be modeled with downstream breeding simulations (e.g., Gaynor et al., 2020     ).
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When setting up the parameters of the demographic model, we noticed that the inference by
MacLeod et al. (2013)      assumed a genome-wide fixed recombination rate of r = 10-8

recombinations per base per generation, and a fixed mutation rate of μ = 9.4 × 10-9 mutations per
base per generation (considering also sequence errors). The more recently updated mutation rate
assumed in the species model (1.2 × 10-8 mutations per base per generation, from Harland et al.,
2017     ) is thus 28% higher than the rate used for inference. As a result, if genomes were
simulated under this demographic model with the species’ default mutation rate they would have
considerably higher sequence diversity than actually observed in real genomic data. To address
this, we specified a mutation rate of μ = 9.4 × 10-9 in the demographic model, which then overrides
the species’ mutation rate when this demographic model is applied in simulation. The issue of
fitting the rates used in simulation with those assumed during inference was discussed during the
independent review of this demographic model, and it raised an important question about
recombination rates. Since MacLeod et al. (2013)      use runs of homozygosity to infer the
demographic model, their results depends on the assumed recombination rate. The recombination
rate assumed in inference (r = 10-8 recombinations per base per generation) is 8% higher than the
one used in the species model (r = 9.26 × 10-9). In its current version, stdpopsim does not allow
specification of a separate recombination rate for each demographic model, so we had no simple
way to adjust for this. Future versions of stdpopsim will enable such flexibility. Thus, we note that
genomes simulated under this demographic model as currently implemented in stdpopsim might
have slightly higher linkage disequilibrium than observed in real cattle genomes. However, we
anticipate that this would affect patterns less than selection due to domestication and selective
breeding, which are not yet modeled at all in stdpopsim simulations.

Conclusion

As our ability to sequence genomes continues to advance, the need for population genomic
simulations of new model and non-model organisms is becoming acute. So, too, is the concomitant
need for an expandable framework for implementing such simulations and guidance for how to
do so. Generating realistic wholegenome simulations presents significant challenges both in
coding and in choosing parameter values on which to base the simulation. With stdpopsim, we
provide a resource that is uniquely poised to address these challenges as it provides easy access to
state-of-the-art simulation engines and practices, and an easy procedure for including new species.
Moreover, we aim for the choices regarding inclusion of new species to be driven by the needs of
the population genomics community. In this manuscript we describe the expansion of stdpopsim
in two ways: the addition of new features to the simulation framework that incorporate new
evolutionary processes, such as non-crossover recombination, broadening the diversity of species
that can be realistically modeled; and the considerable expansion of the catalog itself to include
more species and demographic models.

We also formulated a series of guidelines for implementing population genomic simulations,
based on insights from the community-driven process of expanding the stdpopsim catalog. These
guidelines specify the basic requirements for generating a useful chromosome-level simulation for
a given species, as well as the rationale behind these requirements. We also discuss special
considerations for collecting relevant information from the literature, and what to do if some of
that information is not available. Because this process is quite error-prone, we encourage wider
adoption of “code review”: researchers implementing simulations should have their parameter
choices and implementation reviewed by at least one other researcher. The guidelines in this
paper can be followed when implementing a simulation independently for a single study, or (as we
encourage others to do) when adding code to stdpopsim, which helps to ensure its robustness and
to make it available for future research. Currently, large-scale efforts such as the Earth Biogenome
and its affiliated project networks are generating tens of thousands of genome assemblies. Each of
these assemblies would become a candidate for inclusion into the stdpopsim catalog, although
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substantial changes to the structure of stdpopsim would be required to include so many distinct
species. As annotations of those genome assemblies improve over time, this information, too, can
easily be added to the stdpopsim catalog.

One of the important objectives of the PopSim consortium is to leverage stdpopsim as a means to
promote education and inclusion of new communities into computational biology and software
development. We are keen to use outreach, such as the workshops and hackathons described here,
as a way to grow the stdpopsim catalog and library while also democratizing the development of
population genomic simulations in general. We predict that the increased use of chromosome-
scale simulations in non-model species will lead to an improvement in inference methods, which
traditionally have been quite narrowly focused on well-studied model organisms. Thus, we hope
that further expansion of stdpopsim will improve the ease and reproducibility of research across a
larger number of systems, while simultaneously expanding the community of software developers
among population and evolutionary geneticists.

Data availability

The code for stdpopsim and the species catalog are available from: https://github.com/popsim-
consortium/stdpopsim     . The documentation page for the stdpopsim catalog is available from:
https://popsim-consortium.github.io/stdpopsim-docs/stable/catalog.html     
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Reviewer #1 (Public Review):

stdpopsim is an existing, community-driven resource to support population genetics
simulations across multiple species. This paper describes improvements and extensions to
this resource and discusses various considerations of relevance to chromosome-scale
evolutionary simulations. As such, the paper does not analyse data or present new results but
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rather serves as a general and useful guide for anyone interested in using the stdpopsim
resource or in population genetics simulations in general.

Two new features in stdpopsim are described, which expand the types of evolutionary
processes that can be simulated. First, the authors describe the addition of the ability to
simulate non-crossover recombination events, i.e. gene conversion, in addition to standard
crossover recombination. This will allow for simulations that come closer to the actual
recombination processes occurring in many species. Second, the authors mention how
genome annotations can now be incorporated into the simulations, to allow different
processes to apply to different parts of the genome - however, the authors note that this
addition will be further detailed in a separate, future publication. These additions to
stdpopsim will certainly be useful to many users and represent a step forward in the degree
of ambition for realistic population genetics simulations.

The paper also describes the expansion of the community-curated catalog of pre-defined,
ready-to-use simulation set-ups for various species, from the previous 6 to 21 species (though
not all new species have demographic models implemented, some have just population
genetic parameters such as mutation rates and generation times). For each species, an
attempt was made to implement parameters and simulations that are as realistic as possible
with respect to what's known about the evolutionary history of that species, using only
information that can be traced to the published literature. This process by which this was
done appears quite rigorous and includes a quality-control process involving two people. Two
examples are given, for Anopheles gambiae and Bos taurus. The detailed discussion of how
various population genetic and demographic parameters were extracted from the literature
for these two species usefully highlights the numerous non-trivial steps involved and
showcases the great deal of care that underlies the stdpopsim resource.

The paper is clearly written and well-referenced, and I have no technical or conceptual
concerns. The paper will be useful to anyone interested in population genetics simulations,
and will hopefully serve as an inspiration for the broader effort of making simulations
increasingly more realistic and flexible, while at the same time trying to make them
accessible not just to a small number of experts.

https://doi.org/10.7554/eLife.84874.2.sa3

Reviewer #2 (Public Review):

Lauterbur et al. present a description of recent additions to the stdpopsim simulation
software for generating whole-genome sequences under population genetic models, as well
as detailed general guidelines and best practices for implementing realistic simulations
within stdpopsim and other simulation software. Such realistic simulations are critical for
understanding patterns in genetic variation expected under diverse processes for study
organisms, training simulation-intensive models (e.g., machine learning and approximate
Bayesian computation) to make predictions about factors shaping observed genetic variation,
and for generating null distributions for testing hypotheses about evolutionary phenomena.
However, realistic population genomic simulations can be challenging for those who have
never implemented such models, particularly when different evolutionary parameters are
taken from a variety of literature sources. Importantly, the goal of the authors is to expand
the inclusivity of the field of population genomic simulation, by empowering investigators,
regardless of model or non-model study system, to ultimately be able to effectively test
hypotheses, make predictions, and learn about processes from simulated genomic variation.
Continued expansion of the stdpopsim software is likely to have a significant impact on the
evolutionary genomics community.

Strengths:

https://doi.org/10.7554/eLife.84874.2
https://doi.org/10.7554/eLife.84874.2.sa3
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This work details an expansion from 6 to 21 species to gain a greater breadth of simulation
capacity across the tree of life. Due to the nature of some of the species added, the authors
implemented finite-site substitution models allowing for more than two allelic states at loci,
permitting proper simulations of organisms with fast mutation rates, small genomes, or large
effect sizes. Moreover, related to some of the newly added species, the authors incorporated a
mechanism for simulating non-crossover recombination, such as gene conversion and
horizontal gene transfer between individuals. The authors also added the ability to annotate
and model coding genomic regions.

In addition to these added software features, the authors detail guidelines and best practices
for implementing realistic population genetic simulations at the genome-scale, including
encouraging and discussing the importance of code review, as well as highlighting the
sufficient parameters for simulation: chromosome level assembly, mean mutation rate, mean
recombination rate or recombination map if available, effective size or more realistic
demographic model if available, and mean generation time. Much of these best practices are
commonly followed by population genetic modelers, but new researchers in the field seeking
to simulate data under population genetic models may be unfamiliar with these practices,
making their clear enumeration (as done in this work) highly valuable for a broad audience.
Moreover, the mechanisms for dealing with issues of missing parameters discussed in this
work are particularly useful, as more often than not, estimates of certain model parameters
may not be readily available from the literature for a given study system.

Weaknesses:

An important update to the stdpopsim software is the capacity for researchers to annotate
coding regions of the genome, permitting distributions of fitness effects and linked selection
to be modeled. However, though this novel feature expands the breadth of processes that can
be evaluated as well as is applicable to all species within the stdpopsim framework, the
authors do not provide significant detail regarding this feature, stating that they will provide
more details about it in a forthcoming publication. Compared to this feature, the additions of
extra species, finite-site substitution models, and non-crossover recombination are more
specialized updates to the software.

https://doi.org/10.7554/eLife.84874.2.sa2

Reviewer #3 (Public Review):

Lauterbur et al. present an expansion of the whole-genome evolution simulation software
"stdpopsim", which includes new features of the simulator itself, and 15 new species in their
catalog of demographic models and genetic parameters (which previously had 6 species). The
list of new species includes mostly animals (12), but also one species of plant, one of algae,
and one of bacteria. While only five of the new animal species (and none of the other
organisms) have a demographic model described in the catalog, those species showcase a
variety of demographic models (e.g. extreme inbreeding of cattle). The authors describe in
detail how to go about gathering genetic and demographic parameters from the literature,
which is helpful for others aiming to add new species and demographic models to the
stdpopsim catalog. This part of the paper is the most widely relevant not only for stdpopsim
users but for any researcher performing population genomics simulations. This work is a
concrete contribution towards increasing the number of users of population genomic
simulations and improving reproducibility in research that uses this type of simulations.

https://doi.org/10.7554/eLife.84874.2.sa1
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Author Response:

The following is the authors' response to the original reviews.

We are very glad that the editor and reviewers found our paper of broad interest to the
community of population, evolutionary, and ecological genetics. We thank them for their
positive feedback and insightful comments and suggestions. We have revised our manuscript
to address some of the issues raised by the review. The main change we made was providing
a detailed discussion of limitations of simulated genomes, focusing on considerations one
needs to make when selecting a demographic model. This can be found in a new section
“Limitations of simulated genomes” (pages 9-10). We made a few additional adjustments in
other parts of the text based on the reviewers’ suggestions. They are all listed in the detailed
point-by-point response to reviewers comments and questions below.

Editor:

1. It was noted that demographic models (or genomic parameters) that are inferred based
on certain aspects of the genomic data (eg., site frequency spectrum, haplotype
structure) may not recapitulate other aspects of the data. In other words, any inferred
demographic models are expected to reliably reproduce only some aspects of the genetic
variation data but not necessarily all. It would be helpful to emphasize this limitation in
the manuscript and to include a table summarizing the types of variation that the
demographic models for the catalogued species were based on.

This is a very important point, which we addressed in the revision by adding a section
entitled “Limitations of simulated genomes”. This section discusses the considerations that
one should make when selecting an inferred demographic model to implement in simulation.
This includes the samples used in analysis, the method used for inference, as well as various
filters. In this section we also point to the documentation page of the stdpopsim catalog,
which provides information about each demographic model that can help users decide
whether it is appropriate for their needs. We decided not to summarize this information in a
succinct table in the manuscript because it is not straightforward to summarize the strengths
and potential limitations of each model in a table. Instead, we will expand the summary
provided for each demographic model in the documentation page to provide additional
information. See response to the second reviewer’s comment on this topic for more details.

1. It will make stdpopsim more user-friendly to include an automated module that can
visualize a demographic model given the corresponding parameters (or simulation
scripts).

As mentioned in the response to the first reviewer’s comment on this subject, the
documentation page of the stdpopsim catalog provides a brief summary for each
demographic model, including a graphical representation. See response below for more
details.

Reviewer #1:

In the introduction, the authors cite numerous efforts to generate high-quality reference
genomes. That's not an issue in itself, but leading with this might send the message to
some readers that it is these reference genome efforts that are driving the need for
population genomics analysis and simulation tools, which is not really the case - why not
instead give some citation attention to actual population genomics projects aiming to
address the types of evolutionary questions this paper is concerned with? The reference

https://doi.org/10.7554/eLife.84874.2
https://popsim-consortium.github.io/stdpopsim-docs/stable/catalog.html
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genome citations would fit better in the section dealing with reference genomes, where
they already appear.

Indeed, the desire to answer complex evolutionary questions is the main motivation for
sequencing these genomes and also for generating realistic genome simulations. The reason
we chose to lead with the genome-sequencing efforts is that high quality genome data is an
important prerequisite for obtaining parameters for chromosome-scale simulations. So, with
that perspective, these efforts which we cite are the driving force behind expansion of
stdpopsim in the near future. Thus, we decided to leave these citations in the introduction. To
balance things out, we now start the introduction with a statement about board questions in
population genetics. Moreover, after we list the genome sequencing efforts, we added a list of
specific types of questions that can be addressed by these newly emerging genomes, with
relevant citations. The beginning of the introduction now reads:

“Population genetics allows us to answer questions across scales from deep evolutionary time
to ongoing ecological dynamics, and dramatic reductions in sequencing costs enable the
generation of unprecedented amounts of genomic data that can be used to address these
questions (Ellegren, 2014). Ongoing efforts to systematically sequence life on Earth by
initiatives such as the Earth Biogenome (Lewin et al., 2022) and its affiliated project networks,
such as Vertebrate Genomes (Rhie et al., 2021), 10,000 Plants (Cheng et al., 2018) and others
(Darwin Tree of Life Project Consortium, 2022), are providing the backbone for enormous
increases in the amount of population-level genomic data available for model and non-model
species. These data are being used, among other things, in inference of population history
and demographic parameters (Beichman et al., 2018), studying adaptive introgression (Gower
et al., 2021), distinguishing adaptation from drift (e.g. Hsieh et al., 2021), and understanding
the implications of deleterious variation in populations of conservation concern (e.g.
Robinson et al., 2023).”

Something that would be useful for the stdpopsim resource in general, though not
necessarily something for the paper, would be some kind of more human-friendly
representation of the demographic models implemented in the curated library. Perhaps
I'm not looking in the right place, but as far as I can tell, if I want to study the curated
demographic models, I need to go into the Python scripts on the stdpopsim GitHub page
(e.g.

https://github.com/popsim-consortium/stdpopsim/tree/main/stdpopsim/catalog
/BosTau). Here the various parameters and demographic events are hard-coded into the
scripts. To understand the model being implemented, one thus needs to go dig into these
scripts - something which is not necessarily very accessible to all researchers. Visual
representations, such as the one for Anopheles gambiae in Fig 2. in the paper, are more
widely accessible. I wonder if such figures could be produced for all the curated models
and included in the GitHub folders alongside the scripts, perhaps aided by an existing
model visualization software such as POPdemog. Again, I would not suggest that this is
necessary for the paper, but if practically feasible I think it would be a useful addition to
the resource in the longer term.

This is a very good point. The stdpopsim catalog actually has a documentation page that
provides a brief summary for each demographic model, including a graphical representation.
This graphical representation is generated using demesdraw applied to the demographic
model object implemented in the code. Thus, potential users do not have to dig through the
Python code to figure out the details of the demographic model. We used a similar approach
to generate the image of the demographic history of A. gambiae for Fig. 2 of the paper. The
documentation page is an important part of the stdpopsim catalog, and we now added a link
to it in section “Data availability”, and we mention it in key places in the manuscript, such as
the caption of Fig 2.

https://doi.org/10.7554/eLife.84874.2
https://github.com/popsim-consortium/stdpopsim/tree/main/stdpopsim/catalog/BosTau
https://popsim-consortium.github.io/stdpopsim-docs/stable/catalog.html
https://github.com/grahamgower/demesdraw
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Reviewer #2:

An important update to the stdpopsim software is the capacity for researchers to
annotate coding regions of the genome, permitting distributions of fitness effects and
linked selection to be modeled. However, though this novel feature expands the breadth
of processes that can be evaluated as well as is applicable to all species within the
stdpopsim framework, the authors do not provide significant detail regarding this
feature, stating that they will provide more details about it in a forthcoming publication.
Compared to this feature, the additions of extra species, finite-site substitution models,
and non-crossover recombination are more specialized updates to the software.

It would be helpful to provide additional information regarding the coding annotation
(and associated distribution of fitness effects and linked selection) that is implemented in
the current version of stdpopsim, but will be detailed in a forthcoming paper. This is not
to take away from the forthcoming paper, but I believe this is the most important update
to the software, and the current manuscript only brushes over it.

We agree that implementation of selection in simulations is a significant addition to
stdpopsim. However, our intention in this manuscript is to focus on the separate effort we
made in the last two years to expand the utility of stdpopsim to a more diverse set of species.
We think the manuscript stands firmly even without discussing in detail the new features
that allow modeling selection. The main reason we briefly mention these features in sections
“Additions to stdpopsim” and “Basic setup for chromosome-level simulations” is because the
released version of stdpopsim contains implemented DFEs for a few species, and we did not
want to completely ignore this. We thus added a brief comment at the end of the “Basic setup”
section (page 8) mentioning the three model species for which the stdpopsim catalog
currently has annotations and implemented DFE models. We think that a more detailed
description of how these features and how they should be used is best left to the manuscript
that the PopSim community is currently writing (preprint expected later this year).

When it comes to simulating realistic genomic data, the authors clearly lay out that
parameters obtained from the literature must be compatible, such as the same
recombination and mutation rates used to infer a demographic history should also be
used within stdpopsim if employing that demographic history for simulation. This is a
highly important point, which is often overlooked. However, it is also important that
readers understand that depending on the method used to estimate the demographic
history, different demographic models within stdpopsim may not reproduce certain
patterns of genetic variation well. The authors do touch on this a bit, providing the
example that a constant size demographic history will be unable to capture variation
expected from recent size changes (e.g., excess of low-frequency alleles). However,
depending on the data used to estimate a demographic history, certain types of variation
may be unreliably modeled (Biechman et al. 2017; G3, 7:3605-3620). For example, if a
site frequency spectrum method was used to estimate a demographic history, then the
simulations under this model from y stdpopsim may not recapitulate the haplotype
structure well in the observed species. Similarly, if a method such as PSMC applied to a
single diploid genome was used to estimate a demographic history, then the simulations
under this model from stdpopsim may not recapitulate the site frequency spectrum well
in the observed species. Though the authors indicate that citations are given to each
demographic model and model parameter for each species, this may not be sufficient for
a novice researcher in this field to understand what forms of genomic variation the
models may be capable of reliably producing. A potential worry is that the inclusion of a
species within stdpopsim may serve as an endorsement to users regarding the available
simulation models (though I understand this is not the case by the authors), and it would
be helpful if users and readers were guided on the type of variation the models should be

https://doi.org/10.7554/eLife.84874.2
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able to reliably reproduce for each species and demographic history available for each
species. It would be helpful to include a table with types of observed variation that the
current set of 21 species (and associated demographic histories) are likely and unlikely to
recapitulate well.

This is a very important point, which we now address in the section “Limitations of simulated
genomes”, which we added to the manuscript. In this section, we expand on this topic and
discuss various things that will affect the way simulated genomes reflect true sequence
variation. This includes the choice of demographic inference method, but also the analyzed
samples, and various filters. The main message of this section is that one should consider
various things when deciding to implement a demographic model in simulation (or selecting
a model among those implemented in stdpopsim). We also cite studies (including Beichman,
et al. 2017), which compared different approaches to demography inference. However, we
note that the conclusions of these comparisons are not as straightforward as the reviewer
suggests. In particular, methods that make use of the site frequency spectrum (such as dadi)
should be able to capture some aspects of haplotype structure, because this information is
encoded in the demographic history. Furthermore, a demographic history inferred from a
single genome (e.g., using PSMC) should do a reasonable job approximating some aspects of
the site frequency spectrum. In other words, the aspects of genetic variation not modeled
well by a given demographic inference method are not always predicted in a straightforward
way. This is why we avoid summarizing this information in a table in the manuscript. The
2nd paragraph of the “Limitations of simulated genomes” section addresses some of these
subtle considerations. In particular, we suggest that considering a demographic model for
simulation requires some familiarity with the inference method and the way it was applied to
data. Regarding the demographic models currently implemented in stdpopsim, we provide
some information about each model in the documentation page of the catalog. When
selecting a demographic model from the catalog, users should make use of this
documentation to guide their decision. This is mentioned in the 3rd paragraph of the
“Limitations of simulated genomes” section. Following-up on this issue, we intend to review
the documentation and make sure it provides sufficient information for each demographic
model. See this GitHub issue.

Reviewer #3:

- p5, 2nd paragraph: I think many Biologists, myself included, will think of horizontal
gene transfer mostly as plasmids being transferred among bacteria and adding extra
genetic material, not as homologous bacterial recombination. This made me confused
about modelling horizontal gene transfer in the same way as gene conversion. It may be
helpful for some readers if you specify that you are modelling this particular type of
horizontal gene transfer. Some explanation along the lines of what is in Cury et al (2022)
would be enough.

This is a good point. We modified the text in that sentence in the 2nd paragraph on page 5 to
clarify that we are modeling non-crossover homologous recombination, and not
incorporation of exogenous DNA (e.g., via plasmid transfer). The relevant part of the text now
says:

“In bacteria and archaea, genetic material can be exchanged through horizontal gene
transfer, which can add new genetic material (e.g., via the transfer of plasmids) or replace
homologous sequences through homologous recombination (Thomas and Nielsen, 2005;
Didelot and Maiden, 2010; Gophna and Altman-Price, 2022). However, the initial version of
stdpopsim used crossover recombination to stand in for these processes. Although we cannot
currently simulate varying gene content (as would be required to simulate the addition of
new genetic material by horizontal gene transfer), the msprime and SLiM simulation engines

https://doi.org/10.7554/eLife.84874.2
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https://github.com/popsim-consortium/stdpopsim/issues/1442
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now allow gene conversion, which has the same effect as non-crossover homologous
recombination.

Following (Cury et al., 2022), we use this to include non-crossover homologous recombination
in bacterial and archaeal species.”

- p5, 3rd paragraph: When you say gene conversion is turned off by default, you could
refer to table 1 and briefly mention the consequence of ignoring gene conversion.

We agree that it is important to note that avoiding to model gene conversion may lead to
faulty lengths of shared haplotypes across individuals. This is implied by the statement we
make in the beginning of the 3rd paragraph on page 5, where we lay out the motivation for
modeling gene conversion in simulation. Following the reviewer’s suggestion, we now added
a statement about this in the end of that paragraph:

“Note that ignoring gene conversion may result in a slightly skewed distribution of shared
haplotypes between individuals (see Table 1)”

- p7, item 1 and p9, 1st paragraph: I am not sure what you mean by genetic map here,
can you define this term? I am not sure if it is synonymous with gene annotations, a
recombination map, or something else. The linkage map doesn't seem to make sense to
me here.

The term ‘genetic map’ referred to the recombination map whenever it was used in the
manuscript. To avoid any confusion, we now removed all mentions of ‘genetic map’, and use
‘recombination map’ instead. The recombination map is relevant in item 1 of page 7 because
in species with poor assemblies you will not be able to reliably estimate recombination maps,
making chromosome-scale simulations less effective. In the 1st paragraph of page 9, we
discuss the issue of lifting over coordinates from one assembly to another, and if you have a
recombination map estimated in one assembly, you might need to lift it over to another
assembly to apply it in your simulation.

- Table 1, last row, middle column: when you say "simulated population", I think it is a bit
ambiguous. You mean "the true population that we are trying to simulate", but could be
read as "the population data that was generated by simulation". I would delete the word
simulated here.

What we mean here is that the selected effective population size should reflect the observed
genetic diversity in real genomic data. We realize that the previous wording was confusing,
and changed this to the following:

“Set the effective population size (Ne) to a value that reflects the observed genetic diversity”

- Figure 2, and other places when you refer to mutation and recombination rate (eg p11,
last paragraph), can you include the units (e.g. per base pair, per generation)?

Throughout the manuscript, rates are always specified per base per generation. In Figure 2,
this is specified in the caption (3rd line). We added units in other places in section “Examples
of added species” on pages 12-13, where they were indeed missing.

- p11, "default effective population size": can you use a more descriptive word instead of
the default? Maybe the historical average? Also, what is this value used for in the
simulations when there is a demographic model specified (as in the case of Anopheles)?

https://doi.org/10.7554/eLife.84874.2
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We think that “default effective population size” is the most appropriate term to use here,
since we are referring to the parameter in the species model in stdpopsim. It is correct that
the value of this parameter should reflect the historical average size in some sense, but it is
really unclear what this should be in the case of a species like Bos taurus, which experienced
a very dramatic bottleneck in the recent past. We address this subtle, yet important, issue in
the sentence preceding this one. If a demographic model is specified in simulation, it
overrides the default effective population size, and its value is ignored (which is why we refer
to it as ‘default’). We added a short sentence clarifying this in the 2nd paragraph of the “Bos
Taurus” section (now page 12).

“Note that the default Ne is only used in simulation if a demographic model is not specified.”

- p8, when you say "Such simulations are useful for a number of purposes, but they
cannot be used to model the influence of natural selection on patterns of genetic
variation.": You may want to bring up the discussion that many of these neutral
parameters taken from the literature could have been estimated assuming genome-wide
neutrality, and thus ignoring the effect of background selection. Therefore the parameter
values might reflect some effect of background selection that was unaccounted for
during their estimation.

This is an important subtle point, which we now address in the section “Limitations of
simulated genomes”, which we added to the revised manuscript. In that section, we discuss
various limitations of simulations, focusing on inferred demographic models. We address the
potential influence of the segments selected for analysis toward the end of 2nd paragraph in
that section (page 9):

“... all methods assume that the input sequences are neutrally evolving. This implies that
technical choices, such as the specific genomic segments analyzed and various filters, may
also influence the inferred model and its ability to model observed genetic variation.”

Interestingly, background selection in itself typically does not have a strong effect on the
inferred model. This is something that is examined in the forthcoming publication that
presents simulations with natural selection in stdpopsim.

- Why are some concepts written in bold (eg effective population size, demographic
model)? Were you planning to make a vocabulary box? I think this is a good idea given
that you are aiming for a public that can include people who are not very familiar with
some population genetics concepts.

In the “Examples of added species” section, we use boldface fonts to highlight the model
parameters that were determined for each species. We added a statement clarifying this in
the beginning of this section (page 11), and made sure that all the relevant parameters were
consistently highlighted throughout this section. In other sections, we use boldface fonts only
for titles. A few cases that did not conform to this rule were removed in the current version.
We did not intend on adding a vocabulary box, but considered this when revising the
manuscript, due to the reviewer’s suggestion. However, we found it difficult to converge on a
small (yet comprehensive) set of terms with accurate and succinct definitions. We think that
the important terms are adequately defined within the text of the manuscript, providing
sufficient information also for readers who are not expert population geneticists.

- p4, 2nd paragraph: Are these automated scripts that are used to compare models
publicly available? If you are suggesting that people use this approach generally when
coming up with a simulation model (p8, penultimate paragraph), it would be helpful to
have access to these automated scripts.

https://doi.org/10.7554/eLife.84874.2
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The scripts are part of the public stdpopsim repository on GitHub, and may be used by
anyone. Some components of these scripts are more easy to apply in general, such as
comparing a demographic model with one implemented separately by the reviewer. This
step, for example, is achieved by application of the Demography.is_equivalent method in
msprime. Other parts of the comparison depend on the specific structure of python objects
used by stdpopsim, so they are not likely to be useful when implementing simulations outside
the framework of stdpopsim.

- p9, 1st paragraph, and p.12 2nd paragraph: instead of adjusting the mutation rate to
fit the demographic model (and using an old estimate of the mutation rate), would it be
ok to adjust the demographic model to fit the new mutation rate? E.g. with a new
mutation rate that is the double of a previous estimate, would it be ok to just divide Ne
by 2 such that Ne*mu is constant (in a constant population size model)? I imagine this
could get complicated with population size changes.

In principle, this could be done if you were simulating neutrally evolving sequences (without
modeling natural selection). Since the coalescence is scale-free, then you can scale down all
population sizes and divergence times by a multiplicative factor, and scale up migration rates
and the mutation rate by the same factor, and you get the exact same distribution over the
output sequences. However, making sure you get the scaling right is tricky and is quite error-
prone. Especially considering the fact that you have to do this every time the mutation rate of
a species is updated. Moreover, once you start modeling natural selection, this scale-free
property no longer holds. Thus, the simple solution we came up with in stdpopsim is to attach
to each demographic model the mutation rate used in its inference.

https://doi.org/10.7554/eLife.84874.2
https://github.com/popsim-consortium/stdpopsim
https://tskit.dev/msprime/docs/stable/api.html#msprime.Demography.is_equivalent
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