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ABSTRACT: Phosphorus inputs from anthropogenic activities are subject to hydrologic
(riverine) export, causing water quality problems in downstream lakes and coastal systems.
Nutrient budgets have been developed to quantify the amount of nutrients imported to and
exported from various watersheds. However, at large spatial scales, estimates of hydrologic
phosphorus export are usually unavailable. This study develops a Bayesian hierarchical
model to estimate annual phosphorus export across the contiguous United States,
considering agricultural inputs, urban inputs, and geogenic sources under varying
precipitation conditions. The Bayesian framework allows for a systematic updating of
prior information on export rates using an extensive calibration data set of riverine loadings.
Furthermore, the hierarchical approach allows for spatial variation in export rates across
major watersheds and ecoregions. Applying the model, we map hotspots of phosphorus loss
across the United States and characterize the primary factors driving these losses. Results
emphasize the importance of precipitation in determining hydrologic export rates for
various anthropogenic inputs, especially agriculture. Our findings also emphasize the
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importance of phosphorus from geogenic sources in overall river export.
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1. INTRODUCTION

Nutrient inputs to inland and coastal waters have increased
substantially over the past century, causing eutrophication that
contributes to various water quality problems."” Phosphorus
(P), in particular, is recognized as a limiting nutrient of algal
growth for many lakes and reservoirs.” > Developing efficient
watershed management strategies to reduce eutrophication
relies on estimating riverine nutrient export and linking it with
anthropogenic nutrient inputs.”” The ability to characterize P
export and understand its interannual variability over large
geographic areas can improve nutrient management at a
national or continental scale.

Various models have been developed to estimate P export
across different spatial and temporal scales. They also provide
opportunities to explore variability in the sources and
processes controlling watershed export. Recent large-scale
studies have used empirical models (e.g, multiple linear
regression) to explore factors influencing riverine nutrient
export. This approach has been used for modeling total
nitrogen (TN) export across the contiguous United States

(CONUS)® and for both total phosphorus (TP) and TN Received: September 11, 2023
across China.® These studies found that spatial variability in Revised:  May 7, 2024
export is primarily driven by nutrient inputs, while interannual Accepted: May 8, 2024
variability is dominated by precipitation. While these studies Published: May 17, 2024

produce substantial insights through linear regression, the
ability to incorporate nonlinear parametrizations and regional
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variability in parameters (i.e., rate coefficients) could
potentially improve model accuracy and interpretation.”

Watershed nutrient transport models that apply simple,
process-based formulations using data-driven, statistical
calibration techniques are often referred to as “hybrid”
models.'’ As an example, the Spatially Referenced Regressions
of Contaminant Transport on Watershed Attributes (SPAR-
ROW) uses nonlinear regression to relate watershed character-
istics (that affect nutrient export and retention) to instream
nutrient load estimates.'" SPARROW has been applied across
CONUS to predict riverine nutrient loads and characterize
subregions dominated by point and nonpoint sources.'"'
However, SPARROW is based on static hydrologic and
development conditions, which largely precludes it from
predicting temporal variability. Recent hybrid models have
incorporated precipitation-driven interannual variability into
TP export predictions, but these studies were developed at
relatively small spatial scales."*"*

A key consideration when developing nutrient export
models over large areas is whether the governing parameters
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Figure 1. Map of 131 load monitoring sites (LMSs) used in this study, their corresponding watersheds, and estimated mean TP export (kg/km?/
yr). The six regions defined for model development are also shown. Note that individual LMS watersheds were assigned to the region of maximum
overlap.

should vary regionally to account for potential spatial 2. METHODS
heterogeneity in nutrient sources and watershed processes, 21.
beyond what is reflected in available input data sets and model
formulations. Improvements in the accuracy of national TN
and TP SPARROW models were demonstrated by using
regionalized model parameters, but this regionalization also

Estimation of Riverine P Loads. Estimates of
riverine TP export are critical for hybrid model calibration. We
identified 131 load monitoring sites (LMSs) based on
proximity to the outlet of U.S. Geological Survey (USGS)
; > ) Hydrologic Unit Code 4 (HUC4) watersheds. Each LMS has
1nc1jeased paramleoter uncertainties compared to e% umfo.rm 90+ TP samples for 1997—2017 (Figure l,and Supporting
national I?Odel‘ The authors noted that a hierarchical Information, S1). Streamflow data were obtained mainly from
approach ® may be beneficial for improving model perform- federal gaging stations.'”*’ Water quality data were obtained
ance in this case. In a hierarchical framework, regionally from the Water Quality Portal,>" which includes USGS and
varying model parameters are treated as members of a state monitoring program data, and from the NCWQR
common statistical distribution, which helps constrain Tributary Loading portal.>>

parameter estimates and their uncertainties, especially for Flow and TP concentration data were used to develop

regions with relatively sparse calibration data.'® In addition, annual TP loading estimates. As TP concentrations were
hierarchical models are often developed in a Bayesian infrequently sampled, we used the Wei§hted Regressions on
framework via Markov Chain Monte Carlo sampling,'” Time, Discharge, and Season (WRTDS)** approach to impute
allowing for flexibility in the model formulation (e.g., nonlinear missing concentrations and develop estimates of annual TP
parametrizations), multiple levels of random effects, systematic load. We focused on water-year loads (Oct-Sep) on account of
incorporation of prior knowledge (e.g, from the scientific the delay between winter (and late fall) snow accumulation
literature), and rigorous uncertainty quantification."® and runoff in the following calendar year. Our objective was to
Here, for the first time, spatial and interannual variability in develop estimates of the annual TP load for 2002—2012 at
TP export is modeled across the entire CONUS. To each LMS. However, years with missing flow records or no TP
accomplish this, we develop and apply a parsimonious hybrid observations were omitted from this study. TP loads were
model of watershed P loading and retention. Through Bayesian normalized by watershed area to determine TP export (kg/
inference, we characterize P export rates from agricultural km?/yr). LMS watershed delineations were obtained from the

inputs, urban inputs, and geogenic sources under varying USGS GAGES-II database®* and StreamStats.”
precipitation conditions. In addition, a hierarchical formulation 2.2. Development of P Input Data. Anthropogenic P
allows key rates to vary spatially to improve predictive accuracy inputs were obtained from a recent national inventory.”* In
and reveal regional differences in P export. We also apply the this study, agricultural inputs include the summation of farm
model to map TP export across CONUS under varying fertilizers, pesticides, herbicides, and livestock waste. Urban
precipitation conditions. fertilizers (typically a nonpoint source) and urban human/
9783 https://doi.org/10.1021/acs.est.3c07479
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household wastes (typically mitigated through onsite or
municipal wastewater treatment) are treated separately. Note
that “urban” sources also include household inputs in rural
areas, though these are relatively small. Atmospheric
deposition (<2% of P inventory”®) was not considered an
additional input as it represents a somewhat localized
redistribution of P rather than an original source.”” The inputs
were available for 2002, 2007, and 2012 at the HUCS
watershed scale’® and aggregated to the LMS watershed scale
for model fitting. In cases where HUC8 watersheds were not
completely within an LMS watershed (i.e., around the LMS
outlet), the HUCS inventory components were apportioned
using land cover available for 2002 and 2012 and population
data for 2000 and 2010.*** Agricultural land cover was used
to apportion agricultural inputs, the urban land cover was used
to apportion urban fertilizers, and population was used to
apportion human waste. For HUC8 watersheds in Canada or
Mexico, the land use data for 2005, 2010, and 2015 were used,
assuming the same input rates as in the U.S. portion of the
LMS.* P inputs were first determined for each inventory year,
and then interpolated linearly between years (Figure S1—2).

Background P in soils is another potential source of
watershed P export. We used C-horizon P concentrations
from USGS,*' which are expected to reflect geogenic (ie.,
parent) material.”> While C-horizon P concentrations may be
modestly elevated in some agricultural lands (i.e., by ~90 ppm
in the Midwest), geologic drivers of variability in the C-horizon
are much greater.”> Soil P concentrations were spatially
interpolated (inverse-distance weighting), and spatial averages
were obtained for each HUC8 and LMS watershed (Figure
S1-3).

2.3. Precipitation and Waterbody Data. Precipitation
was integrated into the model formulation to account for
temporal variability in TP export. Monthly downscaled
precipitation data for 1970 to 2018 at a HUCI12 watershed
scale were obtained from LAGOS-US.**** Monthly values
were aggregated to the water year and averaged over HUC8
and LMS watersheds for modeling purposes (Figure S1—4).

Waterbody data were included in the model formulation for
P retention. Inland waters were identified from land cover data
for 2002 and 2012 (Figure S1-6).> Estimates for intervening
years were determined through linear interpolation.

2.4. Hybrid Model Development. The hybrid model
relates the WRTDS-estimated TP export (y;,) of watershed i in
year t to a combination of deterministic and stochastic
components

In(y,) ~ N(In(3,) + @ o)) 1)
where 7, is the deterministic TP export prediction (kg/km*/
yr). The remaining components of eq 1 are stochastic; @ is a
normally distributed watershed-level random effect with
standard deviation (SD) oyys The residuals are normally
distributed with SD, ey that varies hierarchically by region j,
0.() ~ N(lyey Tres)- Here, pi,; and 7, are the mean and SD of
the hyperdistribution. Parameter o}y primarily accounts for
spatial stochasticity (among LMS watersheds), and o)
primarily accounts for temporal stochasticity (within LMS
watersheds).

The deterministic prediction is the summation of various
loading contributions multiplied by a waterbody retention
term
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);,t = (Li,t,a f + Li,t,uh + Li,t,s

2)
where L;,, is agricultural export, L;,  is urban fertilizer export,
L;;u, is urban human/household waste export, and L is
geogenic P export. In addition, as waterbodies are expected to
retain P through settling as a first-order process, #*>° W, is
the fraction of the watershed area classified as water and k is a
retention coeflicient.

The loading contribution from each source type, x {a, uf, uh,

s}, is determined as

VX,
Liye=1,.X% ﬁx X 6j(i) X (Pi,f() ) (3)
where I, is the source magnitude with units of kg/km?/yr for

agricultural and urban inputs and ppm (i.e., mg TP per kg soil)
for geogenic soil P. Agricultural and urban ECs (f3,) represent
the fraction of inputs that are exported to rivers and
waterbodies (unitless). For background soil, the EC represents
the export rate (kg/km*/yr) per unit soil P (ppm). Also, & is
a normally distributed EC-adjustment factor that varies
hierarchically by region j, §;;) ~ N(1.0, 65).

To account for precipitation impacts on P export, variable p,,
is the scaled precipitation (unitless), defined by dividing the
annual precipitation of watershed i in year t by the long-term
(1970—2018) mean precipitation of each region. Parameter ¥,
is the source-specific precipitation impact coefficient (PIC,
unitless), and ;) is a normally distributed PIC-adjustment,
W;(z) ~ N(I.O, 61//)'

Region boundaries were defined using level I and II
ecoregions (https://www.epa.gov/eco-research/ecoregions)
and major river basins (Figure 1). The Mississippi River
Basin (MRB) was separated into western and eastern regions,
corresponding to ecoregions 9 and 8, respectively. The
southeast/coastal region consists of ecoregions 8.3 and 8.5
(outside of the MRB), and the northeast/mountain includes
the remaining portions of ecoregions 8 and S and a small
northern portion of ecoregion 9. The northwest/mountain
region includes ecoregions 6 and 7, and the southwest/desert
region includes ecoregions 10, 11, 12, 13, and the remainder of
ecoregion 9.

2.5. Bayesian Inference and Model Assessment.
Model parameters were estimated through Bayesian inference,
updating prior knowledge based on the model formulation and
riverine P export estimates. Prior distributions for ECs were
generally derived from Preston et al,” who provided a
synthesis of six regional SPARROW models throughout
CONUS. Priors for PICs are mildly informative, being loosely
based on Karimi et al,,'* who used a similar parametrization for
precipitation in a hybrid model of North Carolina watersheds.
Additional details on priors are provided in Supporting
Information (S2).

Bayesian inference was conducted through Hamiltonian
Monte Carlo sampling®” using Rstan® in R.> Three parallel
chains were run for 10,000 iterations, and the first 1000 were
discarded as burn-in. Then, by selecting every fifth iteration (to
reduce autocorrelation), 5400 samples characterize the joint
posterior parameter distribution. Chain convergence was
considered achieved when the scale reduction coeflicient was
below 1.1."7

Model performance was evaluated by comparing predicted
and WRTDS-estimated loads. Performance metrics include the
coefficient of determination (R*), as well as the SDs of the
residual error and watershed-level random effect distributions

https://doi.org/10.1021/acs.est.3c07479
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Figure 2. Posterior distributions for selected model parameters, along with prior distributions (dotted lines). For regional adjustment factors (& and
) and residual SD, hyper-distributions are provided instead of priors. Note that priors and posteriors are tabulated for all parameters (including

hyper-parameters) in S2.

(6, and 6y5). For R?, predicted exports were calculated using
the mean posterior parameter estimates, with and without the
watershed-level random effect.

2.6. Model Application to CONUS. After calibration, we
applied the model to predict TP export from 2002—2012 at
the HUC8 watershed scale across CONUS. We also estimated
the contribution from each P source and the fraction of
anthropogenic inputs lost to watershed export. For comparison
purposes, we present these findings under 10th-percentile,
mean, and 90th-percentile precipitation, as determined from
HUCS8 precipitation data (1970—2018) and assuming
anthropogenic inputs for 2012. Since <1% of precipitation
values in the calibration data set are larger than 2000 mm, we
capped HUCS precipitation at this value to avoid extrapolation
(see Section 3.5 for discussion).

3. RESULTS AND DISCUSSION

Through Bayesian inference, the model provides probabilistic
estimates of various parameters that control P export (Figure 2
and Table S2—2). Based largely on these posterior parameter
estimates, Sections 3.1—3.3 discuss how P export varies across
space and time. Section 3.4 examines model fit, Section 3.5
presents model predictions for the entire CONUS, and Section
3.6 discusses the implications of this study.

3.1. TP Export under Mean Precipitation. The ECs for
the anthropogenic sources (agriculture, urban fertilizer, and
human waste inputs) represent the fraction of annual P inputs
exported to rivers under mean precipitation conditions (Figure
2). Only about 3% of agricultural P inputs are expected to be
exported to waterways, and this estimate has relatively low
uncertainty, with a coefficient of variation (CV) of 0.25. In
contrast, about 7% (CV = 0.50) of urban fertilizer inputs are
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exported, exceeding the agricultural EC with an 87%
probability (as determined by the frequency of exceedance
among posterior samples). Moreover, about 18% (CV = 0.27)
of human waste inputs are exported to rivers, exceeding the
urban fertilizer loss rate with 97% probability. Finally, the
background soil EC indicates that 0.033 kg/km”/yr of P export
occurs per ppm of geogenic soil P. For the average soil P
concentration of 668 ppm (across CONUS), it results in 22
kg/kmz/yr of P export.

Of the anthropogenic inputs considered, agriculture has the
lowest EC, likely due to crop removal. For CONUS, about
60% of the agricultural P inputs are removed with harvested
crops (and in some areas, P harvest exceeds P input),26
substantially reducing the P available for hydrologic export.
Urban fertilizer export is about twice as high as agricultural
export, consistent with the fact that urban vegetation is not
systematically harvested. The relatively high EC from human
waste indicates that a substantial fraction of TP from food-
related and other household waste (e.g., detergents) is
discharged into rivers. Note that the human waste input
estimates used in this study did not include industrial P
effluent,*® which while expected to be small, may also influence
the estimated EC. Still, the human waste EC (0.18) is generally
consistent with available information on wastewater treatment.
We expect around 70—95% P removal in septic systems
depending on soil conditions.”” Wastewater treatment plant
(WWTP) removal rates vary considerably, but only a minority
of WWTPs achieve effluent P of <1 mg/L.*" It is also possible
that a significant portion of P from human waste is exported
due to leaking sewage infrastructure.*

The posterior estimate for the background soil EC was
slightly larger than the prior expectation (Figure 2). In regional

https://doi.org/10.1021/acs.est.3c07479
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SPARROW models that accounted for soil P, this variable was
found to be an important source, accounting for more than
30% of P delivered to receiving waterbodies.**~* However,
background soil material was not considered in many other
SPARROW applications and studies that relate P inputs to P
export.”” While background soil P can be considered a natural
source, its export is likely intensified through human activities
that increase soil erosion rates.*’ Plowing, unsustainable
agricultural practices (e.g, intensive tilling, overgrazing), and
deforestation are the leading causes of human-induced soil
erosion.” Thus, estimates of background P export could
potentially be refined by considering interactions between
anthropogenic activities and natural factors (e.g, soil type,
slope) influencing soil erosion.

The marginal posterior distributions are generally tighter
than the prior distributions, indicating that the model
formulation and data effectively reduce process rate
uncertainties. For ECs and PICs, SDs are reduced by 50 and
53% on average, respectively. Also, EC means shift by +40%
(on average) relative to the priors. The urban fertilizer
parameters are least changed from the priors, probably because
urban fertilizer is a relatively small source that has limited
influence on overall watershed export.

Retention in waterbodies was parametrized using a first-
order exponential decay rate, and results indicate that for each
1% increase in waterbody coverage, retention increases by
about 5%. Thus, for the mean water cover of 1.8% across
CONUS, there is 8.2% P retention. Our retention parameter
(x) is not directly comparable to SPARROW coefficients due
to differences in formulation, but overall retention is compared
below (Section 3.5).

3.2. Precipitation Impacts. PICs determine how TP
export varies across the precipitation gradient. We find that
agricultural inputs have the largest PIC, with relatively low
uncertainty (CV = 0.08), indicating that a 10% increase in
annual precipitation (relative to the mean) will increase TP
export by about 35%. Human waste inputs have the lowest
PIC, resulting in only a 3% increase in TP export for a 10%
increase in annual rainfall. This is consistent with human waste
being collected by wastewater infrastructure, where it is less
subject to hydrologic mobilization. PICs for urban fertilizer
and background soils are intermediate in magnitude. There is
little overlap in the posterior distributions of the four PICs,
indicating that the model and data were sufficient to
discriminate among these sources.

The variation in PIC estimates across different sources is
generally consistent with our prior expectation. The TP
watershed model calibrated by Karimi et al."> also showed a
higher PIC for agriculture and a lower PIC for urban areas.
This implies that in urban areas, a smaller amount of rainfall is
needed to mobilize P compared to agricultural lands, where the
majority of P export may occur during high precipitation
conditions.**** While we allowed export rates to vary
interannually, we did not consider interannual variability in
retention. A representation of how retention changes over time
due to precipitation could refine our model estimates, but we
do not expect retention to have as much interannual variability
as nutrient export.13

Note that the ECs in this study represent export under mean
precipitation conditions and not necessarily long-term mean
export. Consistent with the power function used to model
precipitation effects (eq 3), overall export can be heavily
influenced by years of extreme precipitation. This is especially

9786

true for agriculture, which has the largest PIC. We find a mean
agricultural export fraction of 0.037 (28% higher than the
agricultural EC), determined by averaging annual exports
across the study period. The mean export rates for urban
fertilizer, human waste, and background soil are 0.065
(fraction), 0.15 (fraction), and 0.034 (kg/ppm/km?*/yr),
respectively, which are closer to their corresponding EC values.

3.3. Regional Variability. Regional variations in export
under mean precipitation are facilitated through the hierarchi-
cally modeled adjustment factors, 5. We find the lowest Js for
the southwest/desert and the west Mississippi regions,
indicating that these regions export 73 and 60% less TP than
average, respectively. In fact, 6 in the southwest/desert is
smaller than the other regions (except the west Mississippi
region) with >99% probability. The east Mississippi and
northwest/mountain regions have the highest Js, indicating
that these regions export 35 and 10% more than average,
respectively.

The lowest values of & correspond to regions of low
precipitation, likely due to reduced mobilization, wash-off, and
instream transport of nutrients.”” At the same time, these low-
precipitation regions had relatively high residual error rates (o,
in Table S2—2), indicating they are also less predictable. We
only found one other study that systematically incorporated
regional variation in model parameters.'” This study used a
relatively coarse partitioning into three regions and found few
instances of substantial regional variability for TP parameters.
On the other hand, the six regional SPARROW models’ are
not directly comparable due to differences in parameterization.
In contrast, our consistent model formulation coupled with
regional adjustment factors helps facilitate regional compar-
isons.

Regional variation is also accommodated using PIC
adjustments, . In contrast to the Js, these adjustments are
found to be relatively small, with largely overlapping posterior
distributions (Figure 2). The highest y (indicating a + 4%
adjustment in PIC) is for the west Mississippi region, while the
lowest (—2%) is for the southwest/desert and southeast/
coastal regions. Considering parameter uncertainty, the
probability that the west Mississippi value exceeds the
southwest/desert value is just 80%. These results suggest
that ys could potentially be omitted from the model without a
substantial reduction in model performance. This might
facilitate adding more influential sources of variability to the
model. For example, future model iterations could consider
regional adjustments for particular source types.

3.4. Model Fit. Model predictions can be compared to the
WRTDS estimates (referred to here as “observations”) to
evaluate the ability of the model to explain spatial and
temporal variability in TP export. The full model, including the
watershed-level random effects, explains 85% of the variability
in observed TP export on the log-transformed (model) space,
and 84% on the original space (Figure S3—1, top row).
Discounting the watershed-level random effects, the model still
explains 62 and 53% of TP export variability on the log-
transformed and original scales, respectively (Figure S3—1,
bottom row). These lower R* values indicate how the model
would perform if applied to a new location with no
observational data. Model fit is fairly consistent across the
various regions, with R? values ranging from 0.43 to 0.57
(Figure S3—2). However, across individual LMS watersheds,
model fit is more variable (Figures S3—3 and S3—4).
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Figure 3. Total P export from all sources prior to waterbody retention (top) and contribution fraction from agriculture (second row), urban (third
row), and background soil (bottom) under 10th-percentile (left), mean (middle) and 90th-percentile (right) precipitation conditions.

We examined model residuals and random effects for signs
of temporal and spatial correlation. The average lag-1
autocorrelation coefficient across the LMS watersheds was
—0.0S, indicating minimal dependence between observations
in consecutive years. The watershed-level random effects,
which characterize spatial deviations from deterministic model
predictions, do not exhibit substantial spatial correlation across
CONUS (Figure S3—5). However, we found mostly positive
random effects in the central MRB, particularly in agricultural
regions of Missouri, Iowa, and Illinois. This indicates that more
P (than expected) is lost to rivers in these LMS watersheds.
Determining the reasons for this deviation is beyond the scope
of this study, but it could potentially be related to differences in
farming practices or geological conditions. To the extent that
spatial correlation exists, it can also potentially be addressed
through more complex error formulations within the hybrid
watershed model.”"*

For comparison, the model can also be formulated without
accounting for regional variability (without ¥ and §). In this
case, R* (without random effects) decreases from 62 to 48% on
the log-transformed scale and from 53 to 45% on the original
scale. Thus, regional adjustments contribute substantially to
overall model performance.

3.5. Application to CONUS. TP export varies substantially
across the United States and under different precipitation
conditions (Figure 3, top row). As expected, we find higher TP
export in more densely developed regions, including the Pacific
coast and most of the eastern CONUS. The top 10% of HUCS8
watersheds in terms of TP export are mostly in the central-to-
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eastern MRB and along the Pacific Northwest Coast. These
watersheds, which account for only 8% of the CONUS land
area, account for a disproportionate 35% of CONUS TP
export and also have some of the greatest year-to-year
variability in TP export (Figure S3—6). TP export can also
be aggregated across the entire United States. Under 10th-
percentile (low), mean, and 90th-percentile (high) precip-
itation, the total estimated TP load is 157, 287, and 501 Gg/
year, respectively, further highlighting the importance of
precipitation in controlling nutrient losses. If precipitation
values were not truncated at 2000 mm to avoid extrapolation
of PIC relationships (Section 2.6), there would be a 1, 4, and
8% increase in total TP load for low, mean, and high
precipitation, respectively, largely due to increased export
along the northwest Pacific coast.

Spatial variation in TP export (Figure 3) is largely explained
by anthropogenic inputs and background P sources. We find
high TP export throughout a large portion of the central and
eastern MRB, where agriculture is a dominant source of P
(Figure S1—2). High TP export in the Pacific Northwest is
explained, in part, by high background soil P (Figure S1-3).
Other coastal regions have high TP export largely due to urban
or a combination of agricultural and urban inputs. Areas of
high export are reasonably consistent with the regional
SPARROW models,” where the highest TP export was found
in the lower Missouri and Mississippi River basins.

We find considerable variability in waterbody TP retention
across CONUS (Figure S3—7). On average, 8% of TP is
retained within waterbodies. Higher retention rates (>85%) are
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Figure 4. Percent of anthropogenic (agricultural and urban) P inputs that are exported to waterways (prior to waterbody retention) under low

(left), mean (middle), and high (right) precipitation condition.

estimated for watersheds with large lakes, such as the Great
Salt Lake and Lake Tahoe. Low waterbody retention (<1%)
generally occurs in arid western regions of CONUS. We note
that some SPARROW models suggest higher retention, such as
>30% retention in streams and waterbodies in the upper
MRB,"* whereas we find an average of 13% retention in
waterbodies for this region. While all such estimates are subject
to uncertainty, our retention formulation could potentially be
refined to consider stream losses and additional waterbody
attributes, such as reservoir hydraulic loading rates.''

Spatial patterns in TP source apportionment vary across
different watersheds and precipitation conditions (rows 2—4 of
Figure 3). Agricultural inputs account for >50% of TP export
in 16% of U.S. lands, mainly in the MRB and southeast states,
where agricultural inputs are high. This area drops to 9% under
low precipitation conditions and increases to 24% under high
precipitation conditions. On the other hand, urban (urban
fertilizer plus human waste) inputs account for >50% of TP
export in only about 6% of the CONUS, located mainly in
populated coastal areas. Under high and low precipitation
conditions, this area changes to 3 and 12%, respectively.
Comparing the two urban sources reveals that human waste
greatly exceeds urban fertilizer export (Figure S3—8).

Finally, background soil P accounts for >50% of TP export
in about 60% of the CONUS under all precipitation
conditions. On average, background soil P makes up 49% of
the CONUS-wide TP export. It is particularly important in
areas with low anthropogenic inputs and high soil P
concentrations, which is generally consistent with previous
modeling studies that account for this source type.*”** For
example, geologic material was found to be the source of more
than 90% of the TP load in the Pacific Northwest.**

A benefit of formulating our model in terms of net TP inputs
is that it allows a direct determination of the fraction of these
inputs lost to hydrologic export. Under mean precipitation,
4.2% (CV = 0.24) of all anthropogenic inputs are being
exported to waterways, which decreases to 2.7% and increases
to 7.0% during low and high precipitation, respectively. There
is also substantial spatial variability in the fraction of
anthropogenic P inputs lost to watershed export (Figure 4),
varying from 0.02—31% under mean precipitation. Higher
export fractions are generally associated with regions of higher
precipitation, such as the Pacific Northwest coast and southern
MRB. As precipitation increases to the 90th-percentile, more
watersheds in these areas export >10% of anthropogenic
inputs, while most of the watersheds in the arid west still
export less <2% of inputs.

Agriculture shows the greatest variability in export fraction
due to precipitation, consistent with its high PIC. Under mean
precipitation, 3.0% of agricultural inputs are exported,
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increasing to 6.0% under high precipitation, and dropping to
1.4% under low precipitation. The export fraction varies less
for urban inputs. Under low, mean, and high precipitation,
urban inputs are exported at rates of 11.2, 12.2, and 13.2%,
respectively. Other studies have also found that the export of
nutrient inputs is largely explained by variations in climate.>>*
These studies found a positive linear or exponential relation-
ship between precipitation and the fraction of anthropogenic
input exported. Higher precipitation enhances leakage from
sewers, septic systems, and fertilizer runoff that exacerbate the
export of P inputs.” Also, P accumulated over long periods
(i.e, legacy P) can potentially be remobilized and transported
to rivers, particularly during wet years.”®*” Thus, estimates of
legacy P could be considered in future model refinements.

In some studies, export fractions are determined relative to
the net anthropogenic phosphorus input (NAPI), which sums
up the inputs from agricultural and human sources and
subtracts crop removal. Combining our inputs and accounting
for crop removal*® shows that about 7.7% of the NAPI (CV =
0.12) is exported across CONUS under mean precipitation,
which reduces to 6.9% after accounting for waterbody
retention. We note the percent NAPI lost to rivers varies
widely across studies, with estimates ran§in% from 2—15%
across major watersheds in North America®*~® and Europe.**

3.6. Implications. The model developed here characterizes
P export as a function of both anthropogenic inputs and
background soil P. This is especially important in large-scale
nutrient budgets since estimates of the fraction of anthro-
pogenic inputs lost to riverine export are usually unavailable
and assumed low.”® Here, we find that over 5% of
anthropogenic inputs are likely to be exported to waterways
throughout much of the United States, and this export
increases substantially under high precipitation conditions
(Figure 4). We also determine the fraction of P lost for
individual inputs (i.e., agriculture, urban fertilizer, and human
waste) rather than as a composite (e.g., NAPI). This can help
policymakers prioritize management of different P sources and
improve P use efliciency across different sectors. In addition,
identifying hotspots of P export spatially and under different
precipitation conditions can help managers target limited
resources toward particular watersheds.” The approach can
also be transferred to other areas (i.e., other nations or
continents), and the Bayesian hierarchical formulation may be
particularly beneficial for accommodating regions with sparse
data, as the model incorporates prior knowledge from previous
research and partially pools available data across regions.'”'*'°

We find that precipitation greatly impacts the fraction of
anthropogenic inputs lost to waterways. Previous studies have
also shown the effects of precipitation on the fraction of NAPI
exported. However, these studies were developed for smaller
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areas, and the export fraction was typically compared to
climatological variables through post hoc analyses.”**°" Here,
for the first time, we directly integrated precipitation into a
large-scale model that characterizes P losses from different
sources. We show that agriculture is particularly sensitive to
precipitation conditions, with 6% of annual agricultural inputs
lost to riverine export under 90th-percentile precipitation.

Results also emphasize the importance of background
(geogenic) soil P, as it is found to be the dominant source
of exported P throughout a majority of the CONUS land area,
and it typically accounts for >20% of exported P even in
watersheds with intensive agriculture. Thus, P from natural
sources needs to be considered when developing comprehen-
sive nutrient budgets. Furthermore, water quality management
strategies should consider controls on background P export,
which is likely exacerbated by erosion from anthropogenic
activities. Related to this, future research could explore how
loading rates for different forms of P (e.g., particulate versus
dissolved) vary across different regions and hydrologic
conditions.*>®*

Finally, this study demonstrates the effectiveness of the
hybrid Bayesian approach in explaining nutrient fluxes across
large spatial and temporal scales. This was facilitated, in part,
through the regionalization of key rates within a hierarchical
framework. The model demonstrates a proof of concept for
capturing broad-scale patterns in nutrient export and the
fraction of anthropogenic inputs exported. It can potentially be
expanded in the future to consider more complex loading and
retention formulations, as discussed previously (Sections 3.1,
3.2, and 3.5), and the regionalization of additional parameters
used in these formulations. In addition, incorporating factors
such as extreme precipitation and temperature, which might
also affect interannual variability in P export,”® could be
considered within the context of the hybrid model. To prevent
overparameterization, such model enhancements could poten-
tially be facilitated through an expanded calibration data set or
more precise prior knowledge of relevant loading and retention
rates.

B ASSOCIATED CONTENT

Data Availability Statement

Model inputs can be obtained from the public sources
described in the methods. The processed data sets and codes
(sufficient to run the model) are available at 10.5281/zenodo.
1062221S.

© Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.est.3c07479.

Model inputs; parameter estimates; model performance;
and the spatiotemporal variability in TP export (PDF)

B AUTHOR INFORMATION

Corresponding Author
Kimia Karimi — Center for Geospatial Analytics, North
Carolina State University, Raleigh, North Carolina 27698,
United States; ® orcid.org/0000-0003-3750-4221;
Email: kkarimi2@ncsu.edu

Author
Daniel R. Obenour — Center for Geospatial Analytics, North
Carolina State University, Raleigh, North Carolina 27698,
United States; Department of Civil, Construction and

9789

Environmental Engineering, North Carolina State University,
Raleigh, North Carolina 27606, United States; © orcid.org/
0000-0002-7459-218X

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.est.3c07479

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This research was funded by the Science and Technologies for
Phosphorus Sustainability (STEPS) Center, a National Science
Foundation Science and Technology Center (CBET-
2019435). The authors thank Sankar Arumugam, Smitom
Borah, Owen Duckworth, Rebecca Muenich, Natalie Nelson,
Paul Westerhoff, and three anonymous reviewers for providing
valuable project and manuscript feedback.

B REFERENCES

(1) Brooks, B. W.; Lazorchak, J. M.; Howard, M. D. A.; Johnson, M.
V. V,; Morton, S. L.; Perkins, D. A. K,; Reavie, E. D.; Scott, G. L;
Smith, S. A; Steevens, J. A. Are harmful algal blooms becoming the
greatest inland water quality threat to public health and aquatic
ecosystems? Environ. Toxicol. Chem. 2016, 35 (1), 6—13.

(2) Howarth, R. W.; Anderson, D. B.; Cloern, J. E; Elfring, C;
Hopkinson, C. S.; Lapointe, B.; Malone, T.; Marcus, N.; McGlathery,
K.; Sharpley, A. N.; Walker, D. Nutrient pollution of coastal rivers,
bays, and seas. Issues Ecol. 2000, 7, 1-16.

(3) Carpenter, S. R. Phosphorus control is critical to mitigating
eutrophication. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (32), 11039—
11040.

(4) Schindler, D. W.; Carpenter, S. R;; Chapra, S. C.; Hecky, R. E,;
Orihel, D. M. Reducing phosphorus to curb lake eutrophication is a
success. Environ. Sci. Technol. 2016, 50 (17), 8923—8929.

(5) Del Giudice, D.; Fang, S.; Scavia, D.; Davis, T. W.; Evans, M. A;
Obenour, D. R. Elucidating controls on cyanobacteria bloom timing
and intensity via Bayesian mechanistic modeling. Sci. Total Environ.
2021, 755, No. 142487.

(6) Sinha, E.; Michalak, A. M. Precipitation dominates interannual
variability of riverine nitrogen loading across the continental United
States. Environ. Sci. Technol. 2016, 50 (23), 12874—12884.

(7) Sabo, R. D.; Clark, C. M.; Compton, J. E. Considerations when
using nutrient inventories to prioritize water quality improvement
efforts across the U.S. Environ. Res. Commun. 2021, 3 (4),
No. 045005, DOI: 10.1088/2515-7620/abf296.

(8) Huo, S.; Ma, C.; Li, W,; He, Z.; Zhang, H,; Yu, L.; Liy, Y.; Cao,
X; Wu, F. Spatiotemporal differences in riverine nitrogen and
phosphorus fluxes and associated drivers across China from 1980 to
2018. Chemosphere 2023, 310, No. 136827, DOI: 10.1016/j.chemo-
sphere.2022.136827.

(9) Preston, S. D.; Alexander, R. B,; Schwarz, G. E.; Crawford, C. G.
Factors affecting stream nutrient oads:a synthesis of regional
SPARROW model results for the continental United States. J. Am.
Water Resour. Assoc. 2011, 47 (S), 891-915.

(10) Schwarz, G. E.; Alexander, R. B.; Smith, R. A.; Preston, S. D.
The regionalization of national-scale SPARROW models for stream
nutrients. J. Am. Water Resour. Assoc. 2011, 47 (5), 1151—-1172.

(11) Smith, R. A; Schwarz, G. E.; Alexander, R. B. Regional
interpretation of water-quality monitoring data. Water Resour. Res.
1997, 33 (12), 2781—2798.

(12) Alexander, R. B,; Smith, R. A.; Schwarz, G. E. Estimates of
diffuse phosphorus sources in surface waters of the United States
using a spatially referenced watershed model. Water Sci. Technol.
2004, 49 (3), 1-10.

(13) Karimi, K.; Miller, J. W.; Sankarasubramanian, A.; Obenour, D.
R. Contrasting annual and summer phosphorus export using a hybrid

https://doi.org/10.1021/acs.est.3c07479
Environ. Sci. Technol. 2024, 58, 9782—9791


https://doi.org/10.5281/zenodo.10622215
https://doi.org/10.5281/zenodo.10622215
https://pubs.acs.org/doi/10.1021/acs.est.3c07479?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c07479/suppl_file/es3c07479_si_001.pdf
https://orcid.org/0000-0003-3750-4221
mailto:kkarimi2@ncsu.edu
https://orcid.org/0000-0002-7459-218X
https://orcid.org/0000-0002-7459-218X
https://pubs.acs.org/doi/10.1021/acs.est.3c07479?ref=pdf
https://doi.org/10.1002/etc.3220
https://doi.org/10.1002/etc.3220
https://doi.org/10.1002/etc.3220
https://doi.org/10.1073/pnas.0806112105
https://doi.org/10.1073/pnas.0806112105
https://doi.org/10.1021/acs.est.6b02204?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.6b02204?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.scitotenv.2020.142487
https://doi.org/10.1016/j.scitotenv.2020.142487
https://doi.org/10.1021/acs.est.6b04455?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.6b04455?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.6b04455?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/2515-7620/abf296
https://doi.org/10.1088/2515-7620/abf296
https://doi.org/10.1088/2515-7620/abf296
https://doi.org/10.1088/2515-7620/abf296?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.chemosphere.2022.136827
https://doi.org/10.1016/j.chemosphere.2022.136827
https://doi.org/10.1016/j.chemosphere.2022.136827
https://doi.org/10.1016/j.chemosphere.2022.136827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.chemosphere.2022.136827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1111/j.1752-1688.2011.00577.x
https://doi.org/10.1111/j.1752-1688.2011.00577.x
https://doi.org/10.1111/j.1752-1688.2011.00581.x
https://doi.org/10.1111/j.1752-1688.2011.00581.x
https://doi.org/10.1029/97WR02171
https://doi.org/10.1029/97WR02171
https://doi.org/10.2166/wst.2004.0150
https://doi.org/10.2166/wst.2004.0150
https://doi.org/10.2166/wst.2004.0150
https://doi.org/10.1029/2022WR033088
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c07479?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

Bayesian watershed model. Water Resour. Res. 2023, 59 (1),
No. e2022WR033088.

(14) Wellen, C.; Arhonditsis, G. B.; Labencki, T.; Boyd, D. A
Bayesian methodological framework for accommodating interannual
variability of nutrient loading with the SPARROW model. Water
Resour. Res. 2012, 48 (10), DOI: 10.1029/2012WR011821.

(15) Gelman, A; Hill, J. Data Analysis Using Regression and
Multilevel/Hierarchical Models.; Cambridge University Press, 2006.

(16) Alexander, R. B.; Schwarz, G. E.; Boyer, E. W. Advances in
quantifying streamflow variability across continental scales: 2.
improved model regionalization and prediction uncertainties using
hierarchical Bayesian methods. Water Resour. Res. 2019, SS (12),
11061—-11087.

(17) Gelman, A,; Carlin, J. B; Stern, H. S.; Rubin, D. B.Bayesian
Data Analysis; CRC, 2014.

(18) Strickling, H. L.; Obenour, D. R. Leveraging spatial and
temporal variability to probabilistically characterize nutrient sources
and export rates in a developing watershed. Water Resour. Res. 2018,
54 (7), 5143-5162.

(19) USGS. USGS water data for the Nation: US Geological Survey
National Water Information System database; U.S. Geological Survey,
2022. http://dx.doi.org/10.5066/F7PSSKJN.

(20) IBWC.Rio Grande Historical Mean Daily Discharge Data;
International Boundary & Water Commission: United States and
Mexico, 2022. https://www.ibwc.gov/Water_Data/rio_grande WEF.
html#Stream.

(21) NWQMC.Water Quality Portal; National Water Quality
Monitoring Council, 2022. https://www.waterqualitydata.us

(22) NCWQR. Heidelberg Tributary Loading Program (HTLP)
Dataset; National Center for Water Quality Research, 2022. https://
doi.org/10.5281/zenodo.6606949.

(23) Hirsch, R. M.; Moyer, D. L.; Archfield, S. A. Weighted
regressions on time, discharge, and season (WRTDS), with an
application to chesapeake bay river inputs. J. Am. Water Resour. Assoc.
2010, 46 (5), 857—880.

(24) Falcone, J. A.; Carlisle, D. M.; Wolock, D. M.; Meador, M. R.
GAGES: A stream gage database for evaluating natural and altered
flow conditions in the conterminous United States. Ecology 2010, 91
(2), No. 621, DOI: 10.1890/09-0889.1.

(25) USGS. The StreamStats program; U.S. Geological Survey
(USGS), 2019.

(26) Sabo, R. D.; Clark, C. M.; Gibbs, D. A,; Metson, G. S.; Todd,
M. J; LeDug, S. D.; Greiner, D.; Fry, M. M.; Polinsky, R.; Yang, Q.;
Tian, H,; Compton, J. Phosphorus inventory for the conterminous
United States (2002—2012). J. Geophys. Res.: Biogeosci. 2021, 126 (4),
No. €2020JG005684.

(27) Tipping, E; Benham, S.; Boyle, J. E,; Crow, P.; Davies, J;
Fischer, U.; Guyatt, H.; Helliwell, R.; Jackson-Blake, L.; Lawlor, A. J.;
Montheith, D. T.; Rowe, E. C.; Toberman, H. Atmospheric
deposition of phosphorus to land and freshwater. Environ. Sci.: Process
Impacts 2014, 16 (7), 1608—1617.

(28) Falcone, J. A.US Block-Level Population Density Rasters for 1990,
2000, and 2010; U.S. Geological Survey, 2016.

(29) Falcone, J. A. U.S. conterminous wall-to-wall anthropogenic land
use trends (NWALT), 1974—2012.; U.S. Geological Survey, 2015.
http://pubs.er.usgs.gov/publication/ds948.

(30) CEC. North American Environmental Atlas; Commission for
Environmental Cooperation, 2022. http://www.cec.org/north-
american-environmental-atlas/? atlas search=LANDCOVER.

(31) Smith, D. B.; Cannon, W. F.; Woodruff, L. G.; Solano, F.;
Kilburn, J. E.; Fey, D. L. Geochemical and Mineralogical Data for Soils
of the Conterminous United States; U.S. Geological Survey. 2013.
https://pubs.usgs.gov/ds/801/.

(32) Woodruff, L.; Cannon, W. F.; Smith, D. B.; Solano, F. The
distribution of selected elements and minerals in soil of the
conterminous United States. J. Geochem. Explor. 20185, 154, 49—60.

(33) PRISM Climate Group, Oregon State University, 2022. http://
prism.oregonstate.edu.

9790

(34) Smith, N. J.; Webster, K. E.; Rodriguez, L. K.; Cheruvelil, K. S.;
Soranno, P. A. LAGOS-US GEO vl. 0: Data module of lake
geospatial ecological context at multiple spatial and temporal scales in
the conterminous US. https://doi.org/10.6073/pasta/
0e443bd43d7e24c2b6abc7af54ca424a.

(35) Brett, M. T.; Benjamin, M. M. A review and reassessment of
lake phosphorus retention and the nutrient loading concept.
Freshwater Biol. 2008, 53 (1), 194—211.

(36) Bernhardt, E. S. Cleaner lakes are dirtier lakes. Science 2013,
342 (6155), 205—206.

(37) Neal, R. M. MCMC using Hamiltonian dynamics. In Handbook
of Markov Chain Monte Carlo; CRC, 2011.

(38) Stan Development Team. R Stan: the R interface to Stan. 2020.
http://mc-stan.org/.

(39) R Core Team. R: A Language and Environment for Statistical
Computing; R Foundation for Statistical Computing. 2022. https://
Www.r-project.org/.

(40) Robertson, W. D.; Van Stempvoort, D. R;; Schiff, S. L. Review
of phosphorus attenuation in groundwater plumes from 24 septic
systems. Sci. Total Environ. 2019, 692, 640—652.

(41) EPA. National Study of Nutrient Removal and Secondary
Technologies; U.S. Environmental Protection Agency, 2023. https://
www.epa.gov/eg/national-study-nutrient-removal-and-secondary-
technologies#fact-sheets.

(42) Pennino, M. J.; Kaushal, S. S.; Mayer, P. M,; Utz, R. M,;
Cooper, C. A. Stream restoration and sewers impact sources and
fluxes of water, carbon, and nutrients in urban watersheds. Hydrol.
Earth Syst. Sci. 2016, 20 (8), 3419—3439.

(43) Domagalski, J.; Saleh, D. Sources and transport of phosphorus
to rivers in California and adjacent states, U.S., as determined by
SPARROW modeling. ]. Am. Water Resour. Assoc. 2015, S1 (6),
1463—1486.

(44) Garcia, A. M.; Hoos, A. B; Terziotti, S. A regional modeling
framework of phosphorus sources and transport in streams of the
southeastern United States. J. Am. Water Resour. Assoc. 2011, 47 (5),
991-1010.

(45) Wise, D. R;; Johnson, H. M. Surface-water nutrient conditions
and sources in the United States Pacific Northwest. J. Am. Water
Resour. Assoc. 2011, 47 (S5), 1110—1135.

(46) Nearing, M. A; Xie, Y; Liu, B; Ye, Y. Natural and
anthropogenic rates of soil erosion. Int. Soil Water Conserv. Res.
2017, 5 (2), 77-84.

(47) Borrelli, P.; Robinson, D. A.; Panagos, P.; Lugato, E.; Yang, J.
E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use
and climate change impacts on global soil erosion by water (2015—
2070). Proc. Natl. Acad. Sci. U.S.A. 2020, 117 (36), 21994—22001.

(48) Banner, E. B. K; Stahl, A. J.; Dodds, W. K. Stream discharge
and riparian land use influence In-stream concentrations and loads of
phosphorus from central plains watersheds. Environ. Manage. 2009, 44
(3), 552—565.

(49) Shields, C. A.; Band, L. E.; Law, N.; Groffman, P. M.; Kaushal,
S. S.; Savvas, K; Fisher, G. T.; Belt, K. T.Streamflow distribution of
non-point source nitrogen export from urban-rural catchments in the
Chesapeake Bay watershed. Water Resour. Res. 2008; Vol. 44 9
DOI: 10.1029/2007WR006360.

(50) Haith, D. A,; Shoemaker, L. L. Generalized watershed loading
functions for stream flow nutrients. J. Am. Water Resour. Assoc. 1987,
23 (3), 471-478.

(51) Qian, S. S.; Reckhow, K. H.; Zhai, J.; McMahon, G. Nonlinear
regression modeling of nutrient loads in streams: A Bayesian
approach. Water Resour. Res. 2005, 41 7, DOI: 10.1029/
200SWRO003986.

(52) Peterson, E. E.; Merton, A. A.; Theobald, D. M.; Urquhart, N.
S. Patterns of spatial autocorrelation in stream water chemistry.
Environ. Monit. Assess. 2006, 121 (1-3), 571—596.

(53) Chen, D.; Hu, M.; Guo, Y.; Dahlgren, R. A. Influence of legacy
phosphorus, land use, and climate change on anthropogenic
phosphorus inputs and riverine export dynamics. Biogeochemistry
2015, 123 (1-2), 99—116.

https://doi.org/10.1021/acs.est.3c07479
Environ. Sci. Technol. 2024, 58, 9782—9791


https://doi.org/10.1029/2022WR033088
https://doi.org/10.1029/2012WR011821
https://doi.org/10.1029/2012WR011821
https://doi.org/10.1029/2012WR011821
https://doi.org/10.1029/2012WR011821?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1029/2019WR025037
https://doi.org/10.1029/2019WR025037
https://doi.org/10.1029/2019WR025037
https://doi.org/10.1029/2019WR025037
https://doi.org/10.1029/2017WR022220
https://doi.org/10.1029/2017WR022220
https://doi.org/10.1029/2017WR022220
http://dx.doi.org/10.5066/F7P55KJN
https://www.ibwc.gov/Water_Data/rio_grande_WF.html#Stream
https://www.ibwc.gov/Water_Data/rio_grande_WF.html#Stream
https://www.waterqualitydata.us
https://doi.org/10.5281/zenodo.6606949
https://doi.org/10.5281/zenodo.6606949
https://doi.org/10.1111/j.1752-1688.2010.00482.x
https://doi.org/10.1111/j.1752-1688.2010.00482.x
https://doi.org/10.1111/j.1752-1688.2010.00482.x
https://doi.org/10.1890/09-0889.1
https://doi.org/10.1890/09-0889.1
https://doi.org/10.1890/09-0889.1?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1029/2020JG005684
https://doi.org/10.1029/2020JG005684
https://doi.org/10.1039/C3EM00641G
https://doi.org/10.1039/C3EM00641G
http://pubs.er.usgs.gov/publication/ds948
http://www.cec.org/north-american-environmental-atlas/?_atlas_search=LANDCOVER
http://www.cec.org/north-american-environmental-atlas/?_atlas_search=LANDCOVER
https://pubs.usgs.gov/ds/801/
https://doi.org/10.1016/j.gexplo.2015.01.006
https://doi.org/10.1016/j.gexplo.2015.01.006
https://doi.org/10.1016/j.gexplo.2015.01.006
http://prism.oregonstate.edu
http://prism.oregonstate.edu
https://doi.org/10.6073/pasta/0e443bd43d7e24c2b6abc7af54ca424a
https://doi.org/10.6073/pasta/0e443bd43d7e24c2b6abc7af54ca424a
https://doi.org/10.1111/j.1365-2427.2007.01862.x
https://doi.org/10.1111/j.1365-2427.2007.01862.x
https://doi.org/10.1126/science.1245279
http://mc-stan.org/
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1016/j.scitotenv.2019.07.198
https://doi.org/10.1016/j.scitotenv.2019.07.198
https://doi.org/10.1016/j.scitotenv.2019.07.198
https://www.epa.gov/eg/national-study-nutrient-removal-and-secondary-technologies#fact-sheets
https://www.epa.gov/eg/national-study-nutrient-removal-and-secondary-technologies#fact-sheets
https://www.epa.gov/eg/national-study-nutrient-removal-and-secondary-technologies#fact-sheets
https://doi.org/10.5194/hess-20-3419-2016
https://doi.org/10.5194/hess-20-3419-2016
https://doi.org/10.1111/1752-1688.12326
https://doi.org/10.1111/1752-1688.12326
https://doi.org/10.1111/1752-1688.12326
https://doi.org/10.1111/j.1752-1688.2010.00517.x
https://doi.org/10.1111/j.1752-1688.2010.00517.x
https://doi.org/10.1111/j.1752-1688.2010.00517.x
https://doi.org/10.1111/j.1752-1688.2011.00580.x
https://doi.org/10.1111/j.1752-1688.2011.00580.x
https://doi.org/10.1016/j.iswcr.2017.04.001
https://doi.org/10.1016/j.iswcr.2017.04.001
https://doi.org/10.1073/pnas.2001403117
https://doi.org/10.1073/pnas.2001403117
https://doi.org/10.1073/pnas.2001403117
https://doi.org/10.1007/s00267-009-9332-6
https://doi.org/10.1007/s00267-009-9332-6
https://doi.org/10.1007/s00267-009-9332-6
https://doi.org/10.1029/2007WR006360
https://doi.org/10.1029/2007WR006360
https://doi.org/10.1029/2007WR006360
https://doi.org/10.1029/2007WR006360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1111/j.1752-1688.1987.tb00825.x
https://doi.org/10.1111/j.1752-1688.1987.tb00825.x
https://doi.org/10.1029/2005WR003986
https://doi.org/10.1029/2005WR003986
https://doi.org/10.1029/2005WR003986
https://doi.org/10.1029/2005WR003986?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1029/2005WR003986?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10661-005-9156-7
https://doi.org/10.1007/s10533-014-0055-2
https://doi.org/10.1007/s10533-014-0055-2
https://doi.org/10.1007/s10533-014-0055-2
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c07479?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

(54) Hong, B.; Swaney, D. P.; Mérth, C. M.; Smedberg, E.; Higg, H.
E.; Humborg, C.; Howarth, R. W.; Bouraoui, F. Evaluating regional
variation of net anthropogenic nitrogen and phosphorus inputs
(NANI/NAPI), major drivers, nutrient retention pattern and
management implications in the multinational areas of Baltic Sea
basin. Ecol. Modell. 2012, 227, 117—13S.

(55) Morse, N. B.; Wollheim, W. M. Climate variability masks the
impacts of land use change on nutrient export in a suburbanizing
watershed. Biogeochemistry 2014, 121 (1), 45—59.

(56) Han, H.; Allan, J. D.; Scavia, D. Influence of climate and human
activities on the relationship between watershed nitrogen input and
river export. Environ. Sci. Technol. 2009, 43 (6), 1916—1922.

(57) Van Meter, K. J.; McLeod, M. M,; Liu, J.; Tenkouano, G. T.;
Hall, R. I; Van Cappellen, P.; Basu, N. B. Beyond the mass balance:
watershed phosphorus legacies and the evolution of the current water
quality policy challenge. Water Resour. Res. 2021, S§7 (10),
No. e2020WR029316.

(58) Stackpoole, S.; Sabo, R.; Falcone, J.; Sprague, L. Long-term
Mississippi River trends expose shifts in the river load response to
watershed nutrient balances between 1975 and 2017. Water Resour.
Res. 2021, §7 (11), No. e2021WR030318.

(59) Goyette, J. O.; Bennett, E. M.; Howarth, R. W.; Maranger, R.
Changes in anthropogenic nitrogen and phosphorus inputs to the St.
Lawrence sub-basin over 110 years and impacts on riverine export.
Global Biogeochem. Cycles 2016, 30 (7), 1000—1014.

(60) Russell, M. J.; Weller, D. E; Jordan, T. E; Sigwart, K. J;
Sullivan, K. J. Net anthropogenic phosphorus inputs: Spatial and
temporal variability in the Chesapeake Bay region. Biogeochemistry
2008, 88 (3), 285—304.

(61) Chen, D.; Hu, M.; Wang, J.; Guo, Y.; Dahlgren, R. A. Factors
controlling phosphorus export from agricultural/forest and residential
systems to rivers in eastern China, 1980—2011. J. Hydrol. 2016, 533,
53-61.

(62) Uusitalo, R.; Turtola, E.; Puustinen, M.; Paasonen-Kivekis, M.;
Uusi-Kdamppi, J. Contribution of particulate phosphorus to runoff
phosphorus bioavailability. J. Environ. Qual. 2003, 32 (6), 2007—2016.

(63) Clark, G. M.; Mueller, D. K; Mast, M. A. Nutrient
concentrations and yields in undeveloped stream basins of the United
States. J. Am. Water Resour. Assoc. 2000, 36 (4), 849—860.

9791

https://doi.org/10.1021/acs.est.3c07479
Environ. Sci. Technol. 2024, 58, 9782—9791


https://doi.org/10.1016/j.ecolmodel.2011.12.002
https://doi.org/10.1016/j.ecolmodel.2011.12.002
https://doi.org/10.1016/j.ecolmodel.2011.12.002
https://doi.org/10.1016/j.ecolmodel.2011.12.002
https://doi.org/10.1016/j.ecolmodel.2011.12.002
https://doi.org/10.1007/s10533-014-9998-6
https://doi.org/10.1007/s10533-014-9998-6
https://doi.org/10.1007/s10533-014-9998-6
https://doi.org/10.1021/es801985x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es801985x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/es801985x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1029/2020WR029316
https://doi.org/10.1029/2020WR029316
https://doi.org/10.1029/2020WR029316
https://doi.org/10.1029/2021WR030318
https://doi.org/10.1029/2021WR030318
https://doi.org/10.1029/2021WR030318
https://doi.org/10.1002/2016GB005384
https://doi.org/10.1002/2016GB005384
https://doi.org/10.1007/s10533-008-9212-9
https://doi.org/10.1007/s10533-008-9212-9
https://doi.org/10.1016/j.jhydrol.2015.11.043
https://doi.org/10.1016/j.jhydrol.2015.11.043
https://doi.org/10.1016/j.jhydrol.2015.11.043
https://doi.org/10.2134/jeq2003.2007
https://doi.org/10.2134/jeq2003.2007
https://doi.org/10.1111/j.1752-1688.2000.tb04311.x
https://doi.org/10.1111/j.1752-1688.2000.tb04311.x
https://doi.org/10.1111/j.1752-1688.2000.tb04311.x
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c07479?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

