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Abstract—Graph Convolutional Networks (GCNs) have suc-
cessfully incorporated deep learning to graph structures for social
network analysis, bio-informatics, etc. The execution pattern of
GCNs is a hybrid of graph processing and neural networks which
poses unique and significant challenges for hardware implemen-
tation. Graph processing involves a large amount of irregular
memory access with little computation whereas processing of
neural networks involves a large number of operations with
regular memory access. Existing graph processing and neural
network accelerators are therefore inefficient for computing
GCNs. This paper presents PARAG, processing in memory (PIM)
architecture for GCN computation. It consists of customized
logic with minuscule computing units called Neural Processing
Elements (NPEs) interfaced to each bank of the DRAM to support
parallel graph processing and neural network computation. It
utilizes the massive internal parallelism of DRAM to accelerate
the GCN execution with high energy efficiency. Simulation results
for inference of GCN over standard datasets show a latency
and energy reduction by three orders of magnitude over a
CPU implementation. When compared to a state-of-the-art PIM
architecture, PARAG achieves on an average 4× reduction in
latency and 4.23× reduction in the energy-delay-product (EDP).

Index Terms—Graph Convolutional Networks, Memory Bot-
tleneck, Processing In-Memory, DRAM

I. INTRODUCTION

Deep learning on structured data, such as images and text,
has found widespread success for various tasks in computer
vision [1], [2], and natural language processing (NLP) [3].
However, these models are unsuitable for unstructured, rela-
tional data represented as graphs. Graph Convolutional Net-
works (GCNs) [4], which combine deep learning with graph
data, are effective for node classification, and other such graph-
based tasks. Among the various graph representation learning
models [5], GCNs have been particularly successful when
applied to domains such as bio-informatics [6], social network
analysis [7], e-commerce [8], recommendation systems [9] etc.

GCN computation has two phases: aggregation and combi-
nation. The aggregation phase is primarily graph processing
in which while visiting every node v, the feature vectors of
its neighbors N(v) are processed to generate a new aggre-
gated feature vector of v. The combination phase takes the
aggregated vector and transforms it into a lower-dimensional
vector using a convolutional neural network (CNN). Inference
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of a GCN [4] model requires computing the aggregation
and combination phases sequentially over a few hundred of
thousand nodes while processing millions of edges [10].

The aggregation and combination present unique challenges
for hardware due to their contrasting computational character-
istics. The aggregation phase, with irregular memory accesses
due to graph processing, is memory-bound while the combi-
nation phase, with CNN computation and regular memory ac-
cesses, is compute-bound [11]. While several CPU+accelerator
(GPU, FPGA) architectures have been developed for GCNs,
they have been able to only address the compute-bound
combination phase and have had limited success in reducing
the memory bottleneck of the aggregation phase [12].

PIM architectures have demonstrated significant success in
improving the performance and energy efficiency of memory-
bound applications by orders of magnitude compared to CPUs,
and GPUs [13]. However, existing PIM architectures are
optimized for either graph processing [14] or CNNs [15],
but not GCNs which includes both. Graph processing PIM
architectures are based on near data/memory processing (NDP)
architectures in 3D memories such as hybrid memory cube
(HMC) [16] or high bandwidth memory (HBM) [17] (see
Section II-D1). Such NDP architectures do not have sufficient
parallelism for computing CNNs. On the other hand, CNN-
specific PIMs are based on near bank processing (NBP) or near
array processing (NAP) (see Section II-D2 and II-D3). These
architectures include a high degree of parallelism for regular
data accesses but have low performance for graph processing.
Therefore, existing PIM architectures do not achieve high per-
formance and high energy efficiency for GCNs. Additionally,
they also have high area and power overhead that can lead to
reduced DRAM capacity and thermal issues [15].

To address these issues, this paper introduces a new PIM
architecture, named PARAG, that simultaneously improves the
GCN’s throughput and energy efficiency. PARAG features an
array of Neural Processing Elements (NPEs) [18] that interface
with the DRAM bank’s I/O block. The NPE-Array achieves a
high degree of parallelism through SIMD computation and acts
as a near-bank processing (NBP) architecture to meet parallel
computing requirements of the compute-intensive combination
phase. The NPEs are composed of digital artificial neurons
(ANs) (a.k.a. threshold logic gates [19]), and local registers,
whose area and power are substantially lower than a function-
ally equivalent CMOS implementation [20]. Additionally, to
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TABLE I: Notations used in GCN.

Term Meaning
G graph G = (V, E)
V vertices of G
E edges of G
Dv degree of vertex v
φ(.) activation function
e(i,j) edge between vertex i and j
N(v) neighbor set of v
A(Aij) (element of) adjacency matrix
av aggregation feature vector of v
hv feature vector of v
X feature matrix composed by feature vectors

execute the aggregation phase, PARAG includes a customized
aggregation engine using a small controller and an array
of NPEs, interfaced with each DRAM bank. In this way,
PARAG also mimics a near data/memory architecture (NDP)
and computes the aggregation phase with high throughput and
energy efficiency. With these two innovations, PARAG executes
the entire GCN in the DRAM and achieves high throughput
and high energy efficiency within the tight area and power
constraints of the DRAM.

The main contributions of this paper are summarized below:
• PARAG is a new PIM architecture for GCN inference,

which integrates NPE-Array and a custom aggregation
engine with DRAM within the stringent area, power, and
timing constraints.

• PARAG can compute operands with bit-widths ranging
from 1 to 8 with high throughput and energy efficiency.

• PARAG maximally utilizes the large internal parallelism
in a DRAM to perform computation on the NPEs and
also handle the irregular memory accesses to execute the
entire GCN within the DRAM.

• This paper explores and evaluates two different configu-
rations of PARAG with varying compute parallelism, on
the 2D DRAM and 3D DRAM organizations.

II. BACKGROUND

A. Graph Convolution Network (GCN) models
The notation used to describe GCN computations is shown

in Table I. Graph Convolutional Networks (GCNs) are based
on convolutional neural networks (CNNs) but are adapted
to work with graph-structured data. The input is a node-
attributed graph G(V, E), where V and E denote the set of
nodes (vertices) and edges, respectively. Each node v ∈ V has
an associated feature vector (hv) of length f and X ∈ R|V|×f

represents the feature matrix where each row contains the
feature vector hv of a node.

GCN inference for a single layer is illustrated in Fig. 1.
For a node v in a graph, the aggregation phase transforms
the feature vectors (of size f ) of the neighbors N(v) to
generate an aggregated feature vector av (of size f ). In the
combination phase, the aggregated feature vector of every node
is transformed into a feature vector of a different dimension

Fig. 1: GCN inference model.

using a multi-layer perceptron (MLP) network. A layer l in
GCN inference can be written as:

alv = Aggregate(hl−1
u : u ∈ {N(v)} ∪ {v}),

hl
v = Combine(alv)

(1)

There are several types of GCN models such as Vanilla-
GCN [4], GraphSage [21], GINConv (GIN) [22], etc., that use
different aggregation and combination functions. Aggregation
functions include element-wise addition, mean, maximum,
etc., and the combination phase commonly uses an MLP of
varying number of hidden layers of different sizes.

B. Quantized GCN
GCNs have demonstrated excellent performance in graph-

based tasks in commercial applications, but large graph sizes
have huge memory requirements. To this end, the low-
precision computation on quantized (8-bit, 4-bit, and 1-bit)
data has been explored for GCN inference with a small
reduction in the inference accuracy [23], [24]. Binarized
GCN (Bi-GCN) [24] is a special case of quantization the
FP-multiplications are replaced by bitwise XNOR, and the
accumulation is replaced by the bitcount operation with an
overall reduction of the memory requirements by about 30×.
PARAG supports the quantization GCN model of up to 8
bits though in this work we focus on 1-bit, 4-bit, and 8-bit
quantization for thorough evaluations.

C. DRAM: 2D DIMM and 3D organization
The organization of a DRAM consists of several levels of

hierarchy. Logically, the lowest level building block is called a
bank. A bank contains multiple 2D arrays of memory cells, a
row of sense amplifiers, a row, and a column decoder, collec-
tively referred to as a subarray. In a conventional 2D DRAM
organization called Dual-in-line memory module (DIMM), the
DRAM chips are packaged separately and placed on a printed
circuit board (PCB) as shown in Fig. 2. A DIMM has two
sides and the set of chips connected to the same chip-select
signal on one side of a DIMM is called a rank. The chips
on one rank are simultaneously accessed to supply data to the
memory channel connecting the DRAM and CPU.

Lately, DRAM chips have been integrated in 3D using
through silicon vias (TSVs) that serve as mechanical support,
as well as the communication and data links between the
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DRAM chips as shown in Fig. 2. All the DRAM chips are
connected to a logic layer at the base which houses the
memory control logic. The DRAM chips and the logic layer
are packaged together and are commercially available as high
bandwidth memory (HBM) [25] and hybrid memory cubes
(HMC) [26]. Compared to the 2D DDR-DIMM, the 3D HMC
and HBM have substantially higher bandwidth (4× to 5×) at
much lower energy consumption (3× to 4×) [27].

Fig. 2: 2D and 3D DRAM organization.

D. Existing PIM architectures

Placing computation near or within a conventional digital
system’s memory is a popular approach to improve the perfor-
mance and energy efficiency of memory-bound applications.
Computation can be added at different levels of the memory
hierarchy (rank, chip, banks, arrays) with varying complexity
catering to the specific type of memory-bound applications.
The classification of PIM architectures is shown in Table II.

TABLE II: Classification of PIM architectures.
PIM

Architecture
DRAM Hierarchy

level
Operations

Enabled Applications

Near Data
Processing

(NDP)

Rank/Chip (DDR)
or Logic Layer
(HMC/HBM)

32-bit INT/FP ops,
Data movement

General Purpose,
Graph Processing

[16], [28]
Near Bank
Processing

(NBP)
Memory Banks

Quantized bits
(≤16) INT/FP

specific ops

Neural Networks (NN),
Machine Learning

[15], [29]
Near/In Array

Processing
(NAP/IAP)

Memory Arrays Bitwise Boolean
ops

Quantized NN (QNN),
Database, Encryption

[13], [30]

1) Near Data Processing (NDP)
The NDP architectures include general-purpose compute

elements on the same DRAM chip in the DIMM organiza-
tion [28] or on the logic layer of the 3D-DRAM memory
(HBM/HMC) [16], [25], and thus avoid inefficient data trans-
fers on the memory channel. Other system-level innovations
in NDP architectures include the design of instruction-level
general-purpose offloading scheme [31] and distributed GNN
processing framework with optimized graph partitioning and
scheduling [32]. In General, the NDP architectures have low
compute parallelism as the compute elements are interfaced
with the global I/O block and are therefore, inefficient when
executing the compute-bound combination phase of GCNs.

2) Near Bank Processing (NBP)
The NBP architectures host the compute logic between the

local I/O and global I/O of the memory. The compute logic is
interfaced with the data at the output of each memory bank.
All the banks are operated simultaneously to maximize bank-
level parallelism. The examples of near-bank architectures
are Samsung Aquabolt-XL [15], SK-Hynix GDDR6-based
accelerator in memory (AIM) [29] etc. These architectures
utilize higher parallelism than the NDP architectures but have
compute elements with limited functionality and lack the
capabilities to handle the large number of data movements
required in GCNs within the memory. These architectures have
reported a reduction in memory capacity and thermal problems
despite a primitive design of compute elements [15].

3) Near/In Array Processing (NAP/IAP)
These architectures exploit the bit-level parallelism in the

memory by operating on the row-wide operands in parallel
using a single command. They perform bit-wise Boolean
operations on multiple rows of the memory array by issuing
only a few DRAM commands. They rely on analog charge-
sharing operation [13] which is unreliable and violates the
memory access protocol and timing constraints. Near-array
architecture such as [30] adds logic gates interfaced directly
with sense amplifiers of the memory array. They exploit the
maximum available bandwidth in memory but are limited to
operations on bit-vectors and incur a large performance penalty
for the complex operations required in GCNs.

4) Bandwidth and Parallelism in PIM Architectures
The available Bandwidth (BW) decreases as the data is

transferred through the DRAM hierarchy. For example in a
DDR4-DIMM with 8Kb of row buffer operating at 1 GHz
and trcd = 16, 64 GB/s of BW is available per bank. Though
from the row buffer, only 8 bits are accessed in time tccd = 4
cycles which results in the BW of 256 MB/s available external
to the bank. Therefore, the NAP/IAP architectures utilize much
higher bandwidth than the NBP and NDP architectures.
Summary: The NDP architectures are suitable for graph
processing as they reduce the data transactions on the external
memory bus. On the other hand, the NBP, NAP, or IAP
architectures can utilize internal memory parallelism and add
adequate computation units inside the DRAM to meet the
computation demands of either full precision or quantized
neural networks. Therefore, a combination of NDP with either
NBP or NAP/IAP architecture is ideal for computing GCNs.

GCIM [33] is the state-of-the-art custom GCN PIM archi-
tecture using HMC. GCIM uses MAC PEs with a controller
and buffers in the DRAM layers of HMC for the aggregation
and a larger systolic array of MAC-PEs in the logic layer of
the HMC for combination. GCIM does not have support for
functions such as mean, maximum, and activation, which are
common in the aggregation phase for different GCN models.

PARAG eliminates the memory bottleneck in both phases
of the GCN workload by computing them within the DRAM
and adhering to the area, power, and timing constraints
without modifying the memory arrays. In addition, satisfying
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the DRAM constraints is absolutely critical for adoption in
commercial and practical systems.

The key advantages of PARAG are summarized below.
• NDP and NAP processing within the DRAM is enabled

without violating timing or modifying the DRAM array.
• Utilize maximum available bandwidth inside the DRAM.
• Unlike existing NAP architectures, a complete digital

processing of the workload is performed, which increases
the reliability of operation and does not lead to a drop in
the software accuracy for GCN.

• Unlike existing NBP architecture, there is no reduction
in DRAM capacity in PARAG.

• The NPEs in PARAG are not limited to the MAC op-
eration and can be configured to different operations
including the activation function. This enables support for
different GCN models without using any other hardware
for computation, unlike existing PIM architectures.

III. PARAG ARCHITECTURE

Fig. 3 shows the major hardware components of PARAG.
At the lowest level (Fig. 3c), PARAG is composed of artificial
neurons (AN, Section III-A). A network of ANs (Fig. 3b)
serves as a neuron processing element (NPE) that can be
instantly configured to perform different arithmetic, logic, and
other operations common to DNNs. It is operated to ensure
that overprovisioning of hardware the given operand size. This
reduces both power and area – the latter because the same ba-
sic cell is repeatedly used, thus avoiding the need for function-
specific hardware units. A collection of independent NPEs,
referred to as an NPE-Array in Fig. 3a are integrated with
memory arrays without interfering with the timing constraints
or access protocols of the memory. In addition, there is an
aggregation engine (AE) (Section III-D) that interfaces with
the output of the column decoder of each bank. The AE also
uses a small array of NPEs for computation. A memory bank
with the NPE-Array and the aggregation engine form a single
processing in memory unit, referred to as a PIM-unit. The
PIM-unit is unrelated to the DRAM organization which allows
PARAG to be adaptable to any variants of a DRAM such as 2D-
DIMM (DDR, GDDR, LPDDR, etc.) and 3D DRAM (HMC
and HBM). PARAG is fully scalable with DRAM capacity,
organization, and the DRAM’s interface with the host CPU.
A GCN application can be mapped to different levels of the
DRAM hierarchy with the input graph being partitioned to
the number of banks (PIM-units) in the DRAM operating in
parallel. Thus, PARAG can be operated as a low-power edge
device as well as a high-performance data center accelerator.

A. Threshold logic functions and Artificial Neurons
A Boolean function f(x1, x2, · · · , xn) is called a thresh-

old function if there exists a set of weights W =
(w1, w2, · · · , wn), and a threshold T such that1

f(x1, x2, · · ·xn) = 1 ⇔
n∑

i=1

wixi ≥ T, (2)

1W.L.O.G. the weights wi and threshold T can be integers [19].

where
∑

denotes the arithmetic sum. Many analog and digital
implementations of threshold functions exist in literature.
These implementations can be called artificial neuron (AN).
Fig. 3c shows the design of the AN that is used in PARAG.

The advantages of a single AN over the CMOS equivalent
are demonstrated in [20]. For instance, a 5-input AN in 40nm,
which is about the size of a high drive strength D-FF can
replace a complex function such as a 3-out-of-5 majority
function f(x1, x2, x3, x4, x5) = x1x2x3+x1x2x4+x1x3x4+
x2x3x4 + x1x2x5 + x1x3x5 + x2x3x5 + x1x4x5 + x2x4x5 +
x3x4x5 and the D-FF that f drives. Many other functions that
would normally require several levels of logic can be replaced
by a single AN.2 Overall, at the individual cell level, [20]
shows that a 5-input AN results in improvements in area,
power, and delay of [80%, 60%, 40%] respectively, over the
performance optimized, functionally equivalent CMOS circuit.

The AN shown in Fig. 3c has four main components:3 the
left input network (LIN), the right input network (RIN), a
sense amplifier (SA), and an output latch (LA). The sense
amplifier outputs are differential digital signals (N1, N2),
with (1, 0) and (0, 1) setting and resetting the latch. The LIN
and RIN consist of a set of branches with two devices in series
in each branch. One provides a programmable conductance
between its two terminals, and the other device, a MOSFET
is driven by an input signal xi. The conductance of a branch
controlled by xi serves as a proxy of the weight wi in
Equation 2. When the clock is enabled, LIN and RIN compute
the weighted sum of the inputs in the form of a cumulative
current and connect to the sense amplifier as two differential
signals, as shown in Fig. 3c. The sense amplifier evaluates to
1 (0) if the LIN current is greater (lesser) than the RIN and
stores the result in the SR latch.

B. Neuron Processing Element (NPE)

NPE is the basic compute element used for both the aggre-
gation and the combination phase. The architecture of the NPE
is shown in Fig. 3b as presented in [18]. It consists of k (=4)
fully connected ANs, denoted by Nk, where k is the index of
the neuron. Each AN is connected to a 16-bit local register, and
ANs communicate with each other using multiplexers. Each
AN implements the threshold function [2, 1, 1, 1;T ] where
T can take values [1, 2, 3]. This paper uses the physical
implementation of an AN described in [20] and shown in
Fig. 3c. A threshold function can be represented graphically as
shown in Fig. 4a. Other functional equivalent implementations
of the ANs are also possible [34], [35]. The implementation
in [20] was chosen because the area of each AN is extremely
small (about the size of DFF). An NPE performs a bit-serial
operation on the n-bit operands by processing one bit in one
cycle using the same AN regardless of the bit-width of the
operands. A four-input AN [2, 1, 1, 1;T ] is used to implement

2Includes all 117 positive threshold functions of ≤ 5 variables and their NPN
equivalents, which number in the thousands.

3This is a simplified version of the design shown in [20], with programming
circuitry not shown.
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Fig. 3: (a) Top-level architecture and integration of NPEs and aggregation engine (AE) with DDR-DIMM DRAM (b) Architecture of neuron
processing element (NPE) [18] (c) Structure and of the artificial neuron (AN) [20].

different functions (logic, addition and comparison) using the
same physical implementation.

The value of T and the inputs are selected during run-time
using control signals. The bit operands (x, y, z) to the NPE
can be tied to the binary inputs a, b, c, and d of a Nk AN to
perform logic operations such as (N)AND, (N)OR, NOT, and
3-input majority in a single clock cycle as shown in Table III.
The NPE can also perform single-bit addition using threshold
function evaluation on two ANs in consecutive clock cycles.
Fig. 4b shows 1-bit addition using XOR and majority.

TABLE III: Inputs and threshold (T) selection for various bitwise
operations on a single AN executed in a single cycle. n-bit operations
execute in n+1 cycles. x, y and z are input operand bits [20].

Operation a b c d T
NOT (a) x 0 0 0 1

AND (a,b) x y 0 0 2
OR (a,b) x y 0 0 1

MAJ (a,b,c) x y z 0 2
An NPE computes a multi-bit addition operation by de-

composing it to a ripple carry adder, where each full-adder
computes the ith sum (Si) and carry (Ci) bit using AN as
shown in Fig. 4a. An NPE either receives the operand bits from
external inputs or fetches from the local register of the neurons
in each clock cycle. The output of the addition is stored in the
local register of the neurons. An NPE can individually address
each bit in the local register, which allows it to choose the
specific bits from the local register.

Similar to addition, an NPE computes a multi-bit compar-
ison operation sequentially using a single neuron, as shown
in Fig. 4b. The n-bit operands are evaluated on the neuron
from LSB to MSB. The neuron evaluates the result of xi > yi

Fig. 4: (a) Artificial Neuron (AN) used in the NPE, (b) 1-bit Addition
operation using sequence two threshold functions. n-bit addition takes
n+1 cycles on NPE. (c) n-bit comparison using sequential execution
on AN [18] takes n+1 cycles.

in each cycle and overrides the result of the evaluation of all
previous cycle operations by comparing all lower significant
bits. Consequently, at the end of n cycles, the output of the
comparison is 1 if X > Y , else it is 0.

The multiplication operation on an NPE is divided into a
series of bitwise AND and addition operations. Consider the
example of multiplying two 4-bit operands, X = x3,x2,x1,x0
and Y = y3,y2,y1,y0. Using the shift and add multiplication
algorithm, the NPE generates partial products P0 = X.y0, P1 =
X.y1, P2 = X.y2, P3 = X.y3 over four steps and multiple clock
cycles. The NPE then performs a series of multi-bit additions
on the partial products to obtain the final result, which is
stored in the local register of one of the neurons. Overall,
4-bit multiplication takes 21 cycles on NPE. For operands of
larger bit-widths, the operands are divided into 4-bit segments,
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and the same process is repeated.
An NPE consumes, on average, substantially less (59×)

power and has about 23× lower area as compared to a func-
tionally equivalent CMOS implementation. The readers can
refer to [18] for a detailed explanation of the design of NPE.
The logical operations, addition (XOR/XNOR), comparison,
and multiplication are all used to compute the operations of
the aggregation and combination phase of the GCN.

C. NPE-Array

The NPE-Array is placed between the bit-line sense ampli-
fier (BLSA) output and the column decoder of a bank as shown
in Fig. 3a. The BLSA latches the entire row data (N -bits) of
the memory array and delivers the maximum amount of data
in parallel inside DDR-DRAM to the compute elements. Each
NPE is connected to four BLSA outputs, and therefore, there
are N/4 NPEs in each bank. The NPEs operate in a SIMD
fashion by sharing the control signals from an external con-
troller. Each NPE performs operations on the operands local
to the bank to which they are connected. Multiple operands
are placed in different rows and share the same columns as
shown in Fig. 5b. Therefore, a sequence of row activation
(ACT) and precharge (PRE) commands can be used to supply
operands to all the NPEs for parallel operations. NPEs being
connected to four BLSA outputs can receive up to four bits
of an operand with a single ACT command. Therefore, larger
bit-width operands must be split into multiple rows sharing
the same columns. After receiving the operands, the NPEs can
perform logical, arithmetic, relational, and predicate operations
in single or multiple cycles depending upon the operation. The
NPEs write back the results (N -bits) to the rows reserved in
the memory array for the outputs by driving the BLSA outputs.

D. Aggregation Engine (AE)

The main components of the aggregation engine of PARAG
are shown in Fig. 3a. The AE is interfaced with the output
of the column decoder (64 bits in DDR4) in each bank of
the DRAM. The AE consists of a controller which reads the
edge list E from the FIFO and generates the address for the
feature vectors of the source and destination vertices. The
NPEs perform the aggregation operation on the feature vector
and store the partially updated feature vector for a node in
the Buffer. There are 16 NPEs in the AE, where each NPE
operates on 4 bits in parallel. A completed aggregated feature
of a node is then written back to the memory bank.

E. Data layout for Aggregation and Combination Phase

To maximize performance by enabling all PIM units to
operate in parallel, the operands must be local to the memory
bank of a PIM-unit. Any inter-bank communication through
shared buffers must be initiated by an external CPU which may
require multiple data transactions on the memory bus leading
to a drop in performance and energy efficiency.

To extract the maximum compute parallelism, PARAG uses
a horizontal data layout for the aggregation and a vertical data
layout for the combination phase. This is shown in Fig. 5. The

Fig. 5: (a) Data layout for computation using aggregation engine
(AE), (b) Data layout for computation using NPE-Array.

main operation in the aggregation phase involves generating
and accessing the random addresses to read the feature vectors
of the neighborhood of a node. Therefore for the aggregation
phase, the data is stored in a horizontal layout and is byte
addressable as in conventional CPU memory access. Fig. 5a
shows two vectors X and W mapped to consecutive addresses
in a row. Vector operands with multi-bit (8-bit, 4-bit) elements
can flow into multiple rows and still be computed by the
aggregation engine.

In the combination phase, the multi-layer perceptron com-
putation involves regular memory accesses for MLP of a fixed
size determined by the size of the feature vector, the size of
the hidden layers, and the number of classes in the dataset.
MLP computation in GCN involves high compute parallelism
as the same MLP is computed for all the vertices of the graph
dataset and further each node of an MLP layer involves an
equal number of operations with independent weights and
shared input activations. Hence, the MLP can be extensively
accelerated by computing each node of MLP in parallel on
processing units operating in a SIMD fashion. Therefore, it is
ideal to use the NPE-Array for the combination phase. The
NPE-Array requires that the data associated with a single
operation must be mapped to the same columns and follow
a vertical layout as shown in Fig. 5b.

F. Dataflow for GCN processing

The pseudo-code labeled as Algorithm 1 shows the overall
dataflow for computing a GCN on the PARAG platform. This
paper focuses on the inference of the GCN, which involves
transforming the features of all the nodes of the dataset
through an aggregation and combination phase. The input
graph G = (V, E) is subjected to one-time pre-processing steps
of partitioning and storage with the appropriate data layout
into the memory banks to enable maximum parallelism. The
set of vertices V of the graph are partitioned to K subsets,
where K is equal to the number of banks in the DRAM.
The PartitionAlgorithm stated in line 2 of Algorithm 1
is based on METIS [36] and is common in several GNN
implementations [37]. METIS uses multiple phases and multi-
level algorithms to perform the partitioning. The graph pre-
processing steps are written on lines 1 and 2 in Algorithm 1.
Lines 3-8 in Algorithm 1 shows the execution of the aggrega-
tion and combination phases. The order of execution depends
upon the GCN model. For GCN model [4], the combination
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phase is executed before the aggregation phase, whereas it is
reversed for GIN [22]. The second loop in the Algorithm 1
(line 4) is executed in parallel across all banks.

Algorithm 1 GCN Processing dataflow on PARAG

Input: G(V, E), X, W and K
{G(V, E) is input graph with a set of vertices V and a set of
edges E , X and W are feature and weight matrix, and K is the
number of bank in the DRAM}

Output: Feature vector hv, ∀v ∈ V for layer l
1: Create vertices Vk, feature vector matrix Xk, and edge list

partitions Ek = PartitionAlgorithm(G, X, K); ∀k ∈ K and store
partitions Vk, Xk and Ek in DRAM bank k, ∀k ∈ K

2: Map Xk and W to memory banks as described in Section III-E
3: for GCN layer l ∈ L, do
4: for k = 0 to k < K do
5: hl

v = Combine(al
v , W), ∀v ∈ Vk, {using NPE-Array}

6: al
v = Aggregate(hl−1

u : u ∈ {N(v)} ∪ {v}), ∀v ∈ Vk,
{using Aggregation Engine}

7: end for
8: end for

IV. EXPERIMENTS AND RESULTS

Design and evaluation methodology: PARAG consists of
three major architecture components: the NPEs, the aggrega-
tion engine (AE), and the DRAM. The DRAM organizations
used in this paper operate at 1.2 GHz. The energy, perfor-
mance, and area models of the NPE were used from [18]
which used well-established commercial flows to obtain the
post-layout estimates. The controller and the FIFO in the
AE are designed using Verilog and synthesized at 1.2 GHz
using commercial tools in TSMC 40nm LP technology to
obtain its power and area. The area and power of the buffer
are obtained using CACTI [27] memory model at 40nm
technology. The area, power, and energy numbers of the NPEs
and the custom logic as shown in Table IV are used in the
custom-designed behavioral simulator written in concert with
DRAMPower [38]. This simulator takes a workload descrip-
tion and DRAM specifications as the input to characterize the
latency and energy consumption of the PARAG architecture.

TABLE IV: Power and area of logic components added in PARAG.

Component Power (mW) Area (mm2)
Controller 2.2 0.001

Feature Buffer 18.19 0.015
FIFO 4.84 0.005

NPE [18] 0.057 0.001
Hardware Configuration: This paper uses a DDR4-2400 4-

Gb DRAM chip in DIMM configuration with 8 chips per Rank
and a total of two Ranks with a total capacity of 8 GB. Each
Chip is composed of 4 bank groups (BG) with 4 banks in
each BG. The row buffer4 size of each bank is 1 KB. As the
NPE-array is interfaced with the row buffer, with each NPE
operating on 4 bits, therefore, the NPE-Array has 2048 NPEs.

4An array of bit-line sense amplifiers (BLSA) is also called row buffer in
DRAM as it latches the entire row of data when a row is activated in a bank
until the next activation command is issued to the same bank.

The aggregation engine (AE) has 16-NPEs, 1 KB FIFO, and
an output buffer of 1 KB.

This paper studies two configurations of PARAG using
DDR-DIMM. (1) PARAG-2D-Bank-Group: this configuration
has one NPE-Array per bank group, (2) PARAG-2D-Bank:
which uses an NPE-Array for every bank in the memory.
Further, each of PARAG configurations is also scaled for the 3D
hybrid memory cube (HMC) with 8 GB total capacity. The 3D
configurations of PARAG are referred to as PARAG-3D-Bank-
Group and PARAG-3D-Bank and these configurations are used
for comparison against the baselines which use 3D DRAM
architectures with the same capacity.

Workloads: Evaluation of two types of GCN models,
GCN [4] and GIN [22], and three commonly used graph
datasets5, Citeseer, DBLP, and Pubmed is presented. These
datasets are chosen to have different characteristics (vertices,
density, and size of feature vectors) resulting in the dominance
of either the aggregation phase or the combination phase or
having a balanced effect on the overall latency. For instance,
the Citeseer dataset has a small number of vertices but large
feature vectors, hence its combination phase is dominant. The
Pubmed dataset has the opposite characteristics, whereas, in
the case of the DBLP dataset, both phases contribute almost
equally to the overall execution latency.

The PARAG architecture can be easily scaled with the
DRAM capacity to implement even larger graphs. Both GCN
and GIN use addition as the aggregate function and an MLP
with a hidden layer size of 128 for the combination. GCN and
GIN have one and two hidden layers respectively. In GCN, the
combination phase is performed before aggregation, whereas
in GIN, the combination follows the aggregation phase. The
parameters of the datasets are shown in Table V.

TABLE V: Description of the datasets evaluated.

Dataset Citeseer (CS) DBLP (DB) Pubmed (PB)
Vertices 3264 17716 19717
Edges 9430 105734 88648

Features 3703 1639 500
Classes 6 4 3

Density of A 0.09% 0.03% 0.02%

Baselines: PARAG is compared against three types of state-
of-the-art platforms used for GCN acceleration.

1) GCIM (3D) [33] is a PIM architecture that adds custom
logic for aggregation and combination on DRAM and
logic layers of 3D hybrid memory cube (HMC). The 3D
architecture has high memory bandwidth and parallelism
and consumes the least amount of energy for internal data
transfers due to short wiring distances among banks in the
DRAM layers and the logic layer.

2) HyGCN (2.5D) [39] is a GCN accelerator synthesized as
an ASIC using commercial tools and uses a HBM. The
ASIC and the HBM communicate through an interposer.
This is popularly known as 2.5D architecture.

5Dataset source: https://github.com/EdisonLeeeee/GraphData
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3) PyG [40] is a library optimized for deep learning for
graphs. This is a software implementation for a CPU
(PyG-CPU) or a GPU (PyG-GPU) with external DRAM.

The system configurations for the baseline architectures are
shown in Table VI [33]. NVIDIA V100 GPU [39] is used.

TABLE VI: Configuration of the baseline platforms used.
PyG-CPU HyGCN GCIM

Compute
Elements

2.4 GHz @
20 Cores

500 MHz @ 16 SIMD units with
16 cores and 4 (8 x 64 MACs)

systolic arrays

500 MHz @ 64 LLUs with
4 MACs and 16 (8x16 MACs)

systolic arrays
On-Chip
Memory 27.5 MB 4.25 MB Buffers 2.125 MB

Off-Chip
Memory

256 GB
DDR4 8 GB HBM 1.0 8 GB HMC

Note that the results reported for HyGCN [39] and GCIM
[33] are based on cycle accurate simulation similar to PARAG,
whereas the results for PyG-CPU and PyG-GPU [39] are
obtained from running software on commerical chips. PARAG
and GCIM [33] are both PIM architectures and their com-
putational capabilities are limited by the type of DRAM
and its capacity. Hence, for a fair comparison, PARAG uses
HMC of equal capacity as in GCIM [33], and cross-platform
comparisons are made with the other baseline designs. If HBM
is used instead of HMC for PIM architectures, the results are
expected to be similar, given that for an equal capacity both,
HBM and HMC have similar internal bandwidth.

Results and discussion: The evaluation of PARAG is carried
out at three quantization levels of the GCN models: 8, 4, and 1
bit, and compared against the baseline architectures for latency,
energy, and energy-delay product. PARAG performs full graph
inference, i.e., the labels of all the vertices are being predicted.

1) Latency and Speedup:
Table VII presents the latency and energy consumption of

the 2D configurations of PARAG for all six workloads. It shows
that PARAG-2D-Bank has a lower latency than the PARAG-
2D-Bank-Group for each of the corresponding bit precision.
Since PARAG-2D-Bank has an NPE-Array attached to every
bank, it can utilize the maximum bank-level parallelism in
the combination phase by operating simultaneously on each
graph partition. On the other hand, in PARAG-2D-Bank-Group
an NPE-Array performs the combination phase serially on
partitions stored in the banks in a bank group. Therefore in
PARAG-2D-Bank-Group, the compute parallelism is reduced
by a factor equal to the number of banks in a bank group. For
any PARAG configuration, the latency of computation increases
(decreases) with increasing (decreasing) bit-precision of the
workload as the number of cycles for an operation on an NPE
increases with increasing precision. Having flexibility without
incurring any overhead is a significant advantage of PARAG.

Fig. 6 shows the latency comparison of the different baseline
architectures against the various configurations of PARAG,
with PARAG computing at 8 bits (highest latency). The com-
parison shows that PARAG-3D-Bank has the least latency
among all the PARAG configurations by virtue of maximizing
the bank-level parallelism in high bandwidth 3D HMC. As
shown in Fig. 6, excluding one workload GCN on Citeseer
dataset (GCN-CS) using PARAG-2D-Bank-Group with only

3.3% higher latency, all PARAG configurations have lower
latency than the GCIM (minimum latency baseline) for all the
workloads. On average over all workloads, GCIM, HyGCN,
PyG-GPU, and PyG-CPU have 4×, 8.76×, 12.85×, and
1025× higher latency than PARAG-3D-Bank configuration.

Fig. 6: Latency comparison of the baseline architectures to 8-bit
computation on different configurations of PARAG. PARAG-3D-Bank
has 4×, 8.76×, 12.85×, and 1025× lower latency than on average
than GCIM, HyGCN, PyG-GPU and PyG-CPU respectively.

How PARAG speeds up the computation? The acceler-
ation of the aggregation phase is attributed to the three main
factors facilitated by PARAG: (i) execution of the workload
near the source of data leading to the reduction in the number
of data transactions on the memory bus, (ii) parallel execution
of the graph partitions in all the banks, and (iii) parallel
execution of the aggregate function on the elements of the
feature vector using NPE array in the aggregation engine
(AE). The combination phase computation involves parallel
MLP computation for all the nodes. The highest degree of
parallelism within the DRAM is at the array level, where a
single DRAM ACT command can supply Kbits of row-wide
data to associated compute units. PARAG efficiently utilizes the
array level parallelism with its NPE-Array composed of highly
area-efficient and flexible NPEs. The ANs in NPEs enable
the run-time reconfigurability of different bit-wise operations
with zero overhead in latency and power. PARAG with its
near array processing (NAP) through the NPE-array does not
require the operand duplication to avoid overwriting the source
data as is the case in the destructive operations in prior NAP
architectures [13]. Therefore, PARAG results in a substantial
decrease in the latency of the quantized combination phase.

2) Energy Consumption and Energy-Delay-Product:
Table VII shows the energy consumption of PARAG con-

figurations for different workloads at 8, 4, and 1 bit of
precision. Fig. 7 shows the energy consumption of baseline
architectures and PARAG configurations normalized to the
most energy efficient PARAG-3D-Bank-Group architecture for
different workloads at 8 bits of precision. Therefore, PARAG-
3D-Bank-Group has a relative value of 1. On average over
all the workloads PARAG-3D-Bank-Group computing at 8-bit
precision has 1.24×, 3.41×, 35.17×, and 7904× lower energy
than GCIM, HyGCN, PyG-GPU and PyG-CPU. As shown in
Table VII, the energy consumption can be further reduced up
to 5× to 6× by reducing the bit precision of the workload.

Energy-delay-product (EDP) is an important metric for
inference accelerators. It characterizes the energy efficiency
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TABLE VII: Latency and energy consumption of PARAG-2D-Bank and PARAG-2D-Bank-Group.

Workload Latency Normalized to 1 bit computation Energy to 1 bit computation
PARAG-2D-Bank PARAG-2D-Bank-Group PARAG-2D-Bank PARAG-2D-Bank-Group

Bit Prec 8 bit 4 bit 1 bit 8 bit 4 bit 1 bit 8 bit 4 bit 1 bit 8 bit 4 bit 1 bit
GCN-CS 4.59 1.55 1.00 5.05 1.62 1.00 5.67 1.81 1.00 7.48 2.26 1.00
GCN-DB 2.58 1.24 1.00 4.02 1.46 1.00 4.94 1.68 1.00 5.66 1.91 1.00
GCN-PB 1.66 1.10 1.00 2.84 1.28 1.00 3.96 1.51 1.00 3.93 1.57 1.00
GIN-CS 5.52 2.09 1.00 5.33 1.79 1.00 5.87 1.98 1.00 7.62 2.52 1.00
GIN-DB 4.13 1.96 1.00 4.68 1.82 1.00 5.31 2.13 1.00 6.02 2.53 1.00
GIN-PB 2.49 1.48 1.00 3.35 1.54 1.00 4.62 1.90 1.00 4.83 2.09 1.00

Fig. 7: Energy consumption comparison of the baseline architectures
to 8-bit computation on PARAG configurations. PARAG-3D-Bank-
Group has 1.24×, 3.41×, 35.17×, and 7904× lower energy than on
average than GCIM, HyGCN, PyG-GPU and PyG-CPU respectively.

of the hardware to process multiple inference requests within
a deadline. An accelerator with a low EDP is desirable in
both battery-powered edge devices (to prolong battery life)
and high-end servers. The fast response time and low energy
consumption in the servers help to reduce operational costs.
Fig. 8 shows the EDP comparison of the different PARAG
configurations and PIM GCN accelerator GCIM [33]. For
all the workloads, all PARAG configurations have a lower
EDP except for GCN-CS workload, where PARAG-2D-Bank-
Group has a higher EDP than GCIM. On average, PARAG-
3D-Bank, has 4.2×, 25.4×, 460.57× and 8x106× lower EDP
than GCIM, HyGCN, PyG-GPU, and PyG-CPU respectively.

Fig. 8: Energy-Delay-Product (EDP) comparison of GCIM [33] to
8-bit computation on different configurations of PARAG. PARAG-3D-
Bank has 4.23×, 25.37×, 460.57×, and 8x106× lower EDP than on
average than GCIM, HyGCN, PyG-GPU, and PyG-CPU respectively.

Key takeaway: PARAG achieves all the improvements by
utilizing the maximum parallelism and bandwidth in DRAM.

This is possible in PARAG due to the low area and power and
run-time reconfigurable design of the NPE [18]. Large arrays
of NPEs can be added to each bank of the DRAM within its
area overhead constraints and perform all the GCN operations.

V. RELATED WORK

Software frameworks: GCN execution on CPUs and GPUs
is performed using various programming frameworks and
algorithms. Deep graph library (DGL) [41], Neugraph [42],
etc. are popular GNN frameworks. These frameworks running
on CPUs and GPUs are energy inefficient due to memory
bottlenecks and GPU under-utilization for irregular data.

Graph processing accelerators: Graph processing requires
high memory bandwidth due to the irregular and sparse
structure of real-world graphs. For these, near data processing
(NDP) architectures such as GraphH [43], and GraphQ [44]
have been proposed. These NDP architectures use HMC or
HBM with high internal memory bandwidth. Other PIM graph
processing architectures based on DRAM [45], and ReRAM
[46] have also been proposed. Although these architectures
provide high energy efficiency and performance, they are un-
suitable for GCN as they cannot leverage the high parallelism
and data regularity of the combination phase.

Neural network accelerators: Neural network accelerators
like Eyeriss [47] use systolic arrays of MAC processing
elements to perform convolution. They optimize memory in-
terfaces (DianNao [48]) or adopt hardware compression tech-
niques (EIE [49]) to reduce memory usage. Some accelerators
such as Sparten [50]) handle sparsity in convolutions and can
perform sparse matrix multiplication (SpMM) in GCN but
lose their advantages for convolutions. CNN accelerators are
highly optimized only for regular memory accesses and high
computation intensity and, therefore, are not ideal for GCN.

GCN accelerators: Several specialized hardware for GCN
have been proposed, including high-level synthesis [51], FPGA
architectures [52], [53], hardware-software co-design frame-
works [54], and ASIC architectures [55]. LL-GNN [53] with
novel matrix multiplication implementation improved the la-
tency of GNN execution on an FPGA.HyGCN [39] was the
first ASIC with separate aggregation and combination engines
for GCN. AWB-GCN [56] proposes a runtime technique to
balance the workload to increase the utilization of the PEs
and achieve about 5.1× speedup over the HyGCN. EnGN [57]
has a unified architecture and uses the ring edge reduce
(RER) technique. GCNAX [55] was later proposed to optimize
data flow. Custom ASICs have fixed data flow and do not
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perform well with larger datasets, as performance is tied
to the size of feature vectors, the graph structure, and the
CNN parameters. Both the FPGAs and ASICs have resource
constraints and due to external DRAM accesses, they suffer
from memory bottlenecks and have reduced performance and
energy efficiency for larger workloads.

VI. CONCLUSION

This paper presents PARAG a PIM architecture that in-
tegrates the functional capabilities of near data processing
(NDP) and near array processing (NAP) architectures in a
DRAM resulting in an efficient architecture for GCN. PARAG
has an aggregation engine (AE) integrated with each DRAM
bank to circumvent the memory bottleneck of the aggregation
phase and NPE-Array interfaced with the memory arrays to
compute the neural network of the combination phase. This
paper evaluates two models of GCN over three graph datasets.
Simulation results show that the PARAG-3D-Bank configu-
ration achieves on an average 4× latency and 4.23× EDP
reduction against the state-of-the-art PIM GCN accelerator.
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