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Abstract—Concurrency bugs are difficult to detect and debug.
One class of concurrency bugs are thread-safety violations, where
multiple threads access thread-unsafe data structure at the same
time, resulting in unexpected behavior. Prior work proposed an

approach TSVD to detect thread-safety violations. TSVD injects s

delays at API calls that read/write to specific thread-unsafe data

structures, tracking whether multiple threads can overlap in their 7 | )
8 a.close 5

accesses to the same data structure through the delays, showing
potential thread-safety violations. We additionally enhance the
TSVD approach to also consider read/write operations to object
fields. We implement the TSVD approach in Java in our tool
TSVD4]J. TSVD4]J can be integrated as a Maven plugin that
can be included in any Maven-based application. Our evaluation
on 12 applications shows that TSVD4]J can detect 55 pairs of
code locations accessing the same shared data structure across
multiple threads, representing potential thread-safety violations.
We find that the addition of tracking field accesses contributed
the most to detecting these pairs. TSVD4] also detects more such
pairs than existing tool RV-Predict. The demo video for TSVD4J
is available at https://www.youtube.com/watch?v=-wSMzlj5cMY.

I. INTRODUCTION

Concurrency bugs are difficult to detect and debug due
to their non-deterministic characteristics. Concurrency bugs
come in a number of forms, including data races, atomicity
violations, and deadlocks [17]. As such, prior work has spent
substantial effort to help developers to find concurrency bugs
as well as to reproduce their failures [13], [15], [17], [21].

One class of concurrency bugs are thread-safety violations,
which occur when multiple threads read and write to the same
thread-unsafe data structure, e.g., one thread reading from a
non-synchronized Map while another writes to it, resulting in
unexpected behavior [15], [21]. Figure 1 illustrates an exam-
ple thread-safety violation from log4j'. The appenderList is
a Vector object that can be accessed by multiple threads, and
multiple threads can execute the example code concurrently.
One thread may read elements from appenderList (Line 7),
but at the same time another thread modifies appenderList
by removing all elements from the Vector (Line 10). The two
code locations form a conflicting-pair representing a thread-
safety violation, since one thread can read from the thread-
unsafe Vector while another one writes to it, resulting in
unexpected behavior (ArraylndexOutOfBoundsException).

Li et al. recently proposed a technique called TSVD that
specifically detects thread-safety violations on thread-unsafe
data structures that are part of the .NET framework [15].

Ihttps://bz.apache.org/bugzilla/show_bug.cgi?id=54325

I public class AppenderAttachableImpl {
public void removeAllAppenders () {

if (appenderList != null) {
4 int len = appenderList.size ();
for (int i = 0; i < len; i++) {
6 Appender a =

(Appender) appenderList.elementAt(i);

appenderList.removeAllElements ();
I appenderList null;

1

)
>

Fig. 1: Example thread-safety violation from application log4;.

Their approach tracks API calls that read/write to these data
structures, injecting delays at these calls and tracking whether
multiple threads access the same data structure within these
delays. If there is an overlap, where one thread performs a
write, then it reports a potential thread-safety violation.

We present TSVD4J, an implementation of the TSVD ap-
proach but for Java applications. Our implementation handles
read/write API calls for common thread-unsafe Java library
data structures, such as List and Set, that match what Li et al.
implemented for TSVD in their evaluation [4], [15]. Further,
we extend the ideas of TSVD to also handle multi-thread
accesses to fields. If two threads read/write to the same field
of the same object, we also inject delays around these field
accesses and check whether there can be a potential thread-
safety violation. TSVD4J reports the potential thread-safety
violations as conflicting-pairs, which are the two code loca-
tions that read/write to the same data. We evaluate TSVD4J
on 12 Java applications, including six applications from an
existing benchmark of concurrency bugs, JaConTeBe [16].
TSVD4J detects 55 conflicting-pairs. We find that tracking
field accesses contributed the most to detecting conflicting-
pairs. We also run another concurrency-bug detection tool RV-
Predict on the same applications, detecting only 17 conflicting-
pairs. Our tool is publicly available [5].

II. IMPLEMENTATION

We implement TSVD4]J based on the TSVD approach pro-
posed by Li et al. [4], [15]. The TSVD approach dynamically
instruments the underlying code to track read/write API calls
on specified thread-unsafe data structures, such as thread-
unsafe lists and maps. The intuition is that if two threads



public class ArrayListDemo {
public static void main(String[] args) {
ArrayList<Integer> arr = new ArrayList();
arr.add (20);
5+ Proxy.add(arr,

20, loc);

Fig. 2: Instrumentation changes.

I public class Proxy {
public static void add(ArrayList arr,
String loc) {

Object obj,

4 long threadld = Thread.currentThread (). getld ();
5 int objld = System.identityHashCode (arr);

6 Op op = OpCode.WRITE;

7 Runtime.onCall (threadld , objld, loc, op);

8 arr.add(obj);

Fig. 3: Proxy method for ArrayList.add.

perform read/write operations on the same data structure, and
the threads perform these operations relatively close to each
other in time, then it is likely the two threads can interleave in
a different way as to result in a different order of operations
and different behavior involving the data structure. The code
locations for these two calls then form a conflicting-pair that
should be reported to the user.

TSVD4]J consists of an instrumenter to modify application’s
bytecode and a runtime analyzer to track specific API calls.

Instrumenter. The instrumenter leverages ASM [1] to modify
the application’s bytecode at runtime. For each method in a
loaded class, the instrumenter looks for method invocations
(invokevirtual) of API methods that we aim to track. We
currently configure TSVDA4]J to track the read/write operations
for 10 thread-unsafe classes from the Java standard library
collections, e.g., List, Map, Set implementations that are not
synchronized. The instrumenter replaces each such method
invocation to instead invoke the corresponding proxy method
that we implement in the backend. Figure 2 shows an example
of how the instrumenter changes a call to ArrayList.add to
instead invoke Proxy.add (the example shows the change in
Java source code for ease of presentation, but all changes are
done on Java bytecode). The proxy method takes as input the
data structure (e.g., the ArrayList arr), the arguments to the
method, and finally the code location of the call, represented
as the class and line number on which the call occurs.

Figure 3 shows the proxy method Proxy.add that the
instrumenter invokes instead of ArrayList.add. In general, all
proxy methods follow a similar structure. The proxy method
obtains the currently running thread ID and the object ID for
the data structure. Each proxy method is aware of whether the
method it is proxying is a read or write operation (e.g., add
is a write operation). The proxy method finally passes all the
relevant information to the runtime analyzer (Line 7) before
invoking the actual method (Line 8) as to ensure the same
functionality as before instrumentation.

Runtime Analyzer. The runtime analyzer injects delays and

I public class Runtime {

public static void onCall(long threadld,
] String loc, Op op) {
4 Trap tl1 = new Trap(threadld, objld,
5 if (traps.containsKey(objld)) {
traps.get(objld)) {

if (t2.getThreadld () != threadId) {

s if (t2.getOp() == WRITE || op == WRITE) {
9 reportConflict (loc, t2.getLoc());
10 }
11 }

}
13 } else {
14 traps.put(objld, new LinkedList <>());

int objld,

loc, op);

6 for (Trap t2

17 traps.get(objld).add(tl);
18 delay ();
19 traps.get(objld).remove(tl);

Fig. 4: Entry-point for backend runtime analyzer.

tracks whether read/write operations occur on the same data
structure across multiple threads at similar times such that
there may be a thread-safety violation. The entry-point to the
runtime analyzer is the Runtime.onCall method (Line 7 of
Figure 3).

Figure 4 shows the general logic of Runtime.onCall.
Runtime.onCall creates a Trap object corresponding to the
API call. This Trap object stores all the relevant information
(thread ID, object ID, code location, and the type of operation)
to be saved and tracked. Runtime.onCall first checks through
the global mapping from object ID to Traps to see whether
there is a previous Trap corresponding to the same object.
If another thread accessed the same object, and one of these
accesses (the previous one or this one) is a write operation,
then there is a potential conflict. The runtime analyzer reports
this code location along with that previous Trap’s code loca-
tion to be a conflicting-pair, representing a potential thread-
safety violation. Note that a Trap exists in the mapping if its
corresponding thread is still delaying, meaning the accesses
may happen out of order on the thread-unsafe data structure
within that delay time amount.

Runtime.onCall adds the new Trap into the global map-
ping of Traps and injects a delay (100ms). The current
thread therefore pauses while its Trap remains in the traps
mapping. Other threads continue executing and potentially
invoke Runtime.onCall to access the same data structure,
leading to conflicting-pairs. After the delay, Runtime.onCall
removes the Trap as to not be paired with later accesses, which
are unlikely to form thread-safety violations.

Aside from the main logic for the runtime analyzer, the
TSVD approach relies on other heuristics to adjust delay time,
remove unlikely conflicting-pairs, etc., that are described in the
original TSVD work [15] and implemented for .NET [4]. We
also implement these parts for Java as well.

Test Listener. TSVD4] relies on executions to detect thread-
safety violations. A user can either attach the TSVD4J agent
to the JVM and execute a main method or existing JUnit



tests. We implement a JUnit test listener to track when tests
start and end. When a test finishes running, the listener
extracts the newly detected conflicting-pairs during that test
run and saves them in files associated with that test. As
such, TSVD4]J intermittently outputs conflicting-pairs per test
instead of waiting for the entire test suite to finish running, in
case the user has to stop TSVDA4J early. Further, we want to
associate conflicting-pairs to individual tests in case the user
wants to debug further, so they know which test(s) to rerun.

Tracking Field Accesses. In our preliminary study into
known concurrency bugs from the JaConTeBe dataset [2],
[16], we find that many threads not just access thread-unsafe
data structures but also shared object fields. We modify the
instrumenter to also track field accesses similarly as for
API calls. The instrumenter also modifies getfield/getstatic
and putfield/putstatic bytecode instructions, corresponding
to read and write operations on fields, respectively. The
instrumenter replaces these instructions with the corresponding
proxy methods that similarly pass relevant information to the
runtime analyzer while also performing the actual operation.
Instead of using the object ID, these proxy methods create
hashcodes corresponding to the instance object ID (or class
name for static fields) along with the field name as to uniquely
identify the object/field pair. The remaining logic involving the
runtime analyzer remains the same as it delays and tracks the
accesses to the same object/field pair across multiple threads.

III. USAGE

We implement TSVDA4J as a Java agent that can be attached
when starting a JVM process by passing in the TSVD4J JAR
as an argument through the -javaagent flag. TSVD4J can also
be included as a Maven plugin by modifying the pom.xml:

<plugin>

~<groupld>edu.utexas.ece</groupld>
<artifactld>tsvd4j -maven—plugin</artifactId>
~.<version>0.1 -SNAPSHOT</ version>

</plugin>

A user invokes the TSVD4J Maven plugin through the
command mvn tsvd4j:tsvd4j. The plugin executes the under-
lying unit tests through Surefire, attaching a Java agent and
test listener to instrument code to interact with the backend
runtime analyzer. In addition, a user can configure TSVD4]
with flags to control whether they want to track API calls or
field accesses only (both are tracked by default) [5].

TSVD4J writes all detected conflicting-pairs under the
.tsvd4j/ output directory. The output format per file has
a conflicting-pair on every line, represented as two code

[T

locations (class name and line number), separated by “:”.

IV. EVALUATION
A. Setup

We evaluate TSVD4J on six applications from JaCon-
TeBe [2], [16] (a benchmark dataset of Java concurrency bugs)
that can build using Java 8 and up. In addition, we obtain
six popular open-source Java Maven GitHub applications.

TABLE I: Application statistics.

D | Project | SHA | #kLOC  # Tests
J1 JaConTeBe-dbcp - 9 4
12 JaConTeBe-derby - 572 5
I3 JaConTeBe-groovy - 105 6
J4 JaConTeBe-log4j - 35 5
J5 JaConTeBe-lucene - 68 2
J6 JaConTeBe-pool - 11 5
P1 TooTallNate/Java-WebSocket | aad6654 16 641
P2 davidmoten/rxjava2-extras d0315b6 19 390
P3 fluent/fluent-logger-java daldec3 2 18
P4 javadelight/delight-... [3] da35edc 2 79
P5 ktuukkan/marine-api af00038 16 926
P6 openpojo/openpojo 00ed7a0 24 1204
Total | | | 879 | 3285

TABLE II: Conflicting-pairs reported by each technique.

TSVD4J with | TSVDA4J with

ID RV-Predict API Only Field Only TSVD4J
J1 4 0 1 1
J2 1 0 1 1
J3 1 0 1 1
J4 0 0 8 8
J5 0 0 0 0
J6 1 0 1 1
Total | 7| 0| 12 | 12
P1 2 0 25 25
P2 0 3 1 4
P3 4 3 1 4
P4 2 0 3 3
P5 2 4 1 5
P6 0 2 0 2
Total | 10 || 12 | 31 | 43
Total | 17 || 12 | 43 | 55

These applications use multiple threads, meaning they can
possibly have thread-safety violations. We run TSVD4J on
these applications’ unit tests. We use the latest commit for
each application so we can report detected potential thread-
safety violations to developers.

Table I shows the full set of applications on which we
evaluate. The top six applications are from JaConTeBe while
the remaining applications are the open-source GitHub appli-
cations. For each application, we also show the commit SHA
on which we evaluate (simply “-” for JaConTeBe) and the size
of the application in kKLOC and number of tests.

For each JaConTeBe application, we run the provided driver
test code that forces the failure. For the other applications,
we include the TSVD4J Maven plugin and run on their tests.
For comparison purposes, we also run RV-Predict, a tool for
detecting Java data races [13], for each application. RV-Predict
reports data races similarly as conflicting-pairs, so we can
compare the results of both tools. For both TSVD4J and RV-
Predict, we use a timeout of 6 hours per application.

B. Results

Table II shows the results of running RV-Predict and
TSVD4J. We show the results for RV-Predict and variants
of running TSVD4J when tracking only API calls, only
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Fig. 5: Runtime of all techniques per application.

field accesses, and both. We present the total number of
conflicting-pairs detected by each technique, divided between
just JaConTeBe applications, just GitHub applications, and for
all applications. Figure 5 shows the time to run RV-Predict,
TSVDA4J, and its two variants i.e., tracking API calls only and
tracking fields only, in boxplot form. The boxes depict for
each technique the time it took to run each one across all
applications (solid line is median, dashed line is mean).

Overall, TSVD4J can detect more conflicting-pairs than
RV-Predict, at 55 to 17 conflicting-pairs, respectively. The
runtimes are similar, though TSVD4J has a slightly higher
mean (127.7 versus 108.8 minutes, respectively). We see that
tracking field accesses was the most beneficial to detecting
conflicting-pairs, detecting 43 conflicting-pairs to the 12 from
tracking just API calls, though at a higher cost. Using just
one or the other greatly reduces the overall runtime compared
with using both, though we still see all techniques reaching
the timeout for some applications.

Figure 6 shows the distribution of conflicting-pairs reported
by TSVDA4J and RV-Predict across all applications (JS is not
shown as both techniques do not detect any conflicting-pair).
The figure also shows a line that represents the amount of
overlap in detected conflicting-pairs between each technique.
Overall, there are 10 conflicting-pairs in common between the
two techniques. RV-Predict detects seven conflicting-pairs that
TSVD4J does not. Besides missing conflicting-pairs due to
inherent nondeterminism, some other reasons for why TSVD4J
did not detect them are that they involve API calls that we
currently do not support, or the execution with TSVD4J did
not reach the relevant parts within the 6 hours timeout. We
plan to extend TSVD4J’s tracking and improve its efficiency.

For JaConTeBe applications with known concurrency bugs,
we examine the conflicting-pairs reported by TSVD4]J for each
application to understand whether it detects all the bugs. We
find that TSVDA4]J is able to identify the reads and writes as
possible conflicting-pairs for all bugs marked as data race
bugs from JaConTeBe. TSVDA4J does not detect remaining
bugs such as deadlock bugs, which is expected. For the open-
source applications, we manually inspected the conflicting-
pairs reported by TSVD4J, and we classified six conflicting-
pairs to be false positives. Some reasons for false positives
involve the actual runtime type of the object being a concurrent
data structure (our instrumentation only used the statically-
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Applications
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Fig. 6: Distribution of conflicting-pairs per application.

declared type to determine what to track) or the conflicting-
pair involves two write operations to a field where both
operations write the same constant value. In the future, we plan
to improve TSVDA4J to extract further runtime information to
better filter out such cases, potentially at a higher runtime cost.

For the cases we determined not to be false positives via
inspection, we further attempted to manifest a failure by
injecting delays around the reported code locations. We could
manifest at least one failure for each application. Further, we
reported an issue request per application.

V. RELATED WORK

There have been much prior work in detecting concurrency
bugs. One class of techniques focus on detecting data races
or atomicity violations, either through observing and/or ma-
nipulating existing executions [7], [9], [13], [15], [18], [19],
generating new test inputs that can expose such bugs [8],
[21], [24], model checking [12], [25], or static analysis [11].
TSVD works with existing executions, such as test execu-
tions, and injects delays at key points to detect thread-safety
violations [15]; we build TSVD4J as an implementation of
TSVD for Java applications. We compare against RV-Predict,
another tool that can detect data races for Java [13]. Another
class of techniques focus specifically on deadlock concurrency
bugs [6], [10], [14], [20], [22], [23], [26]. TSVDA4J is not
designed to specifically detect deadlocks.

VI. CONCLUSIONS

We present TSVDA4]J, a tool for detecting thread-safety viola-
tions in Java applications. We implement TSVD4J based on the
prior TSVD approach, with adjustments to also detect thread-
safety violations on shared object fields. Our implementation
is available as a Maven plugin that can be integrated into any
Maven-based application, and TSVD4J runs the application’s
tests to detect thread-safety violations based on their execution.
Our evaluation of TSVD4J on 12 applications shows that
TSVD4J can detect 55 conflicting-pairs that represent thread-
safety violations in the code. Compared against existing tool
RV-Predict, TSVDA4J detects more thread-safety violations in
the similar runtime, largely due to tracking field accesses.
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