
1

TSVD4J: Thread-Safety Violation Detection

for Java
Shanto Rahman, Chengpeng Li, August Shi

The University of Texas at Austin, USA

{shanto.rahman,chengpengli,august}@utexas.edu

Abstract—Concurrency bugs are difficult to detect and debug.
One class of concurrency bugs are thread-safety violations, where
multiple threads access thread-unsafe data structure at the same
time, resulting in unexpected behavior. Prior work proposed an
approach TSVD to detect thread-safety violations. TSVD injects
delays at API calls that read/write to specific thread-unsafe data
structures, tracking whether multiple threads can overlap in their
accesses to the same data structure through the delays, showing
potential thread-safety violations. We additionally enhance the
TSVD approach to also consider read/write operations to object
fields. We implement the TSVD approach in Java in our tool
TSVD4J. TSVD4J can be integrated as a Maven plugin that
can be included in any Maven-based application. Our evaluation
on 12 applications shows that TSVD4J can detect 55 pairs of
code locations accessing the same shared data structure across
multiple threads, representing potential thread-safety violations.
We find that the addition of tracking field accesses contributed
the most to detecting these pairs. TSVD4J also detects more such
pairs than existing tool RV-Predict. The demo video for TSVD4J
is available at https://www.youtube.com/watch?v=-wSMzlj5cMY.

I. INTRODUCTION

Concurrency bugs are difficult to detect and debug due

to their non-deterministic characteristics. Concurrency bugs

come in a number of forms, including data races, atomicity

violations, and deadlocks [17]. As such, prior work has spent

substantial effort to help developers to find concurrency bugs

as well as to reproduce their failures [13], [15], [17], [21].

One class of concurrency bugs are thread-safety violations,

which occur when multiple threads read and write to the same

thread-unsafe data structure, e.g., one thread reading from a

non-synchronized Map while another writes to it, resulting in

unexpected behavior [15], [21]. Figure 1 illustrates an exam-

ple thread-safety violation from log4j1. The appenderList is

a Vector object that can be accessed by multiple threads, and

multiple threads can execute the example code concurrently.

One thread may read elements from appenderList (Line 7),

but at the same time another thread modifies appenderList
by removing all elements from the Vector (Line 10). The two

code locations form a conflicting-pair representing a thread-

safety violation, since one thread can read from the thread-

unsafe Vector while another one writes to it, resulting in

unexpected behavior (ArrayIndexOutOfBoundsException).

Li et al. recently proposed a technique called TSVD that

specifically detects thread-safety violations on thread-unsafe

data structures that are part of the .NET framework [15].

1https://bz.apache.org/bugzilla/show bug.cgi?id=54325

1 p u b l i c c l a s s A p p e n d e r A t t a c h a b l e I m p l {
2 p u b l i c vo i d removeAl lAppenders () {
3 i f (a p p e n d e r L i s t != n u l l) {
4 i n t l e n = a p p e n d e r L i s t . s i z e () ;
5 f o r (i n t i = 0 ; i < l e n ; i ++) {
6 Appender a =
7 (Appender) a p p e n d e r L i s t . e l emen tAt (i) ;
8 a . c l o s e () ;
9 }

10 a p p e n d e r L i s t . r emoveAl lE lemen t s () ;
11 a p p e n d e r L i s t = n u l l ;
12 }
13 }
14 }

Fig. 1: Example thread-safety violation from application log4j.

Their approach tracks API calls that read/write to these data

structures, injecting delays at these calls and tracking whether

multiple threads access the same data structure within these

delays. If there is an overlap, where one thread performs a

write, then it reports a potential thread-safety violation.

We present TSVD4J, an implementation of the TSVD ap-

proach but for Java applications. Our implementation handles

read/write API calls for common thread-unsafe Java library

data structures, such as List and Set, that match what Li et al.

implemented for TSVD in their evaluation [4], [15]. Further,

we extend the ideas of TSVD to also handle multi-thread

accesses to fields. If two threads read/write to the same field

of the same object, we also inject delays around these field

accesses and check whether there can be a potential thread-

safety violation. TSVD4J reports the potential thread-safety

violations as conflicting-pairs, which are the two code loca-

tions that read/write to the same data. We evaluate TSVD4J

on 12 Java applications, including six applications from an

existing benchmark of concurrency bugs, JaConTeBe [16].

TSVD4J detects 55 conflicting-pairs. We find that tracking

field accesses contributed the most to detecting conflicting-

pairs. We also run another concurrency-bug detection tool RV-

Predict on the same applications, detecting only 17 conflicting-

pairs. Our tool is publicly available [5].

II. IMPLEMENTATION

We implement TSVD4J based on the TSVD approach pro-

posed by Li et al. [4], [15]. The TSVD approach dynamically

instruments the underlying code to track read/write API calls

on specified thread-unsafe data structures, such as thread-

unsafe lists and maps. The intuition is that if two threads

2

1 p u b l i c c l a s s ArrayLis tDemo {
2 p u b l i c s t a t i c vo i d main (S t r i n g [] a r g s) {
3 A r r a y L i s t<I n t e g e r > a r r = new A r r a y L i s t () ;
4 − a r r . add (2 0) ;
5 + Proxy . add (a r r , 20 , l o c) ;
6 }

Fig. 2: Instrumentation changes.

1 p u b l i c c l a s s Proxy {
2 p u b l i c s t a t i c vo i d add (A r r a y L i s t a r r , O b j e c t obj ,
3 S t r i n g l o c) {
4 l ong t h r e a d I d = Thread . c u r r e n t T h r e a d () . g e t I d () ;
5 i n t o b j I d = System . i d e n t i t y H a s h C o d e (a r r) ;
6 Op op = OpCode . WRITE ;
7 Runtime . o n C a l l (t h r e a d I d , o b j I d , loc , op) ;
8 a r r . add (o b j) ;
9 }

10 }

Fig. 3: Proxy method for ArrayList.add.

perform read/write operations on the same data structure, and

the threads perform these operations relatively close to each

other in time, then it is likely the two threads can interleave in

a different way as to result in a different order of operations

and different behavior involving the data structure. The code

locations for these two calls then form a conflicting-pair that

should be reported to the user.

TSVD4J consists of an instrumenter to modify application’s

bytecode and a runtime analyzer to track specific API calls.

Instrumenter. The instrumenter leverages ASM [1] to modify

the application’s bytecode at runtime. For each method in a

loaded class, the instrumenter looks for method invocations

(invokevirtual) of API methods that we aim to track. We

currently configure TSVD4J to track the read/write operations

for 10 thread-unsafe classes from the Java standard library

collections, e.g., List, Map, Set implementations that are not

synchronized. The instrumenter replaces each such method

invocation to instead invoke the corresponding proxy method

that we implement in the backend. Figure 2 shows an example

of how the instrumenter changes a call to ArrayList.add to

instead invoke Proxy.add (the example shows the change in

Java source code for ease of presentation, but all changes are

done on Java bytecode). The proxy method takes as input the

data structure (e.g., the ArrayList arr), the arguments to the

method, and finally the code location of the call, represented

as the class and line number on which the call occurs.

Figure 3 shows the proxy method Proxy.add that the

instrumenter invokes instead of ArrayList.add. In general, all

proxy methods follow a similar structure. The proxy method

obtains the currently running thread ID and the object ID for

the data structure. Each proxy method is aware of whether the

method it is proxying is a read or write operation (e.g., add
is a write operation). The proxy method finally passes all the

relevant information to the runtime analyzer (Line 7) before

invoking the actual method (Line 8) as to ensure the same

functionality as before instrumentation.

Runtime Analyzer. The runtime analyzer injects delays and

1 p u b l i c c l a s s Runtime {
2 p u b l i c s t a t i c vo i d o n C a l l (l ong t h r e a d I d , i n t o b j I d ,
3 S t r i n g loc , Op op) {
4 Trap t 1 = new Trap (t h r e a d I d , o b j I d , loc , op) ;
5 i f (t r a p s . c o n t a i n s K e y (o b j I d)) {
6 f o r (Trap t 2 : t r a p s . g e t (o b j I d)) {
7 i f (t 2 . g e t T h r e a d I d () != t h r e a d I d) {
8 i f (t 2 . getOp () == WRITE | | op == WRITE) {
9 r e p o r t C o n f l i c t (loc , t 2 . ge tLoc ()) ;

10 }
11 }
12 }
13 } e l s e {
14 t r a p s . p u t (o b j I d , new L i n k e d L i s t <>());
15 }
16

17 t r a p s . g e t (o b j I d) . add (t 1) ;
18 d e l a y () ;
19 t r a p s . g e t (o b j I d) . remove (t 1) ;
20 }
21 }

Fig. 4: Entry-point for backend runtime analyzer.

tracks whether read/write operations occur on the same data

structure across multiple threads at similar times such that

there may be a thread-safety violation. The entry-point to the

runtime analyzer is the Runtime.onCall method (Line 7 of

Figure 3).

Figure 4 shows the general logic of Runtime.onCall.
Runtime.onCall creates a Trap object corresponding to the

API call. This Trap object stores all the relevant information

(thread ID, object ID, code location, and the type of operation)

to be saved and tracked. Runtime.onCall first checks through

the global mapping from object ID to Traps to see whether

there is a previous Trap corresponding to the same object.

If another thread accessed the same object, and one of these

accesses (the previous one or this one) is a write operation,

then there is a potential conflict. The runtime analyzer reports

this code location along with that previous Trap’s code loca-

tion to be a conflicting-pair, representing a potential thread-

safety violation. Note that a Trap exists in the mapping if its

corresponding thread is still delaying, meaning the accesses

may happen out of order on the thread-unsafe data structure

within that delay time amount.

Runtime.onCall adds the new Trap into the global map-

ping of Traps and injects a delay (100ms). The current

thread therefore pauses while its Trap remains in the traps
mapping. Other threads continue executing and potentially

invoke Runtime.onCall to access the same data structure,

leading to conflicting-pairs. After the delay, Runtime.onCall
removes the Trap as to not be paired with later accesses, which

are unlikely to form thread-safety violations.

Aside from the main logic for the runtime analyzer, the

TSVD approach relies on other heuristics to adjust delay time,

remove unlikely conflicting-pairs, etc., that are described in the

original TSVD work [15] and implemented for .NET [4]. We

also implement these parts for Java as well.

Test Listener. TSVD4J relies on executions to detect thread-

safety violations. A user can either attach the TSVD4J agent

to the JVM and execute a main method or existing JUnit

3

tests. We implement a JUnit test listener to track when tests

start and end. When a test finishes running, the listener

extracts the newly detected conflicting-pairs during that test

run and saves them in files associated with that test. As

such, TSVD4J intermittently outputs conflicting-pairs per test

instead of waiting for the entire test suite to finish running, in

case the user has to stop TSVD4J early. Further, we want to

associate conflicting-pairs to individual tests in case the user

wants to debug further, so they know which test(s) to rerun.

Tracking Field Accesses. In our preliminary study into

known concurrency bugs from the JaConTeBe dataset [2],

[16], we find that many threads not just access thread-unsafe

data structures but also shared object fields. We modify the

instrumenter to also track field accesses similarly as for

API calls. The instrumenter also modifies getfield/getstatic
and putfield/putstatic bytecode instructions, corresponding

to read and write operations on fields, respectively. The

instrumenter replaces these instructions with the corresponding

proxy methods that similarly pass relevant information to the

runtime analyzer while also performing the actual operation.

Instead of using the object ID, these proxy methods create

hashcodes corresponding to the instance object ID (or class

name for static fields) along with the field name as to uniquely

identify the object/field pair. The remaining logic involving the

runtime analyzer remains the same as it delays and tracks the

accesses to the same object/field pair across multiple threads.

III. USAGE

We implement TSVD4J as a Java agent that can be attached

when starting a JVM process by passing in the TSVD4J JAR

as an argument through the -javaagent flag. TSVD4J can also

be included as a Maven plugin by modifying the pom.xml:

<p l u g i n>
<g r o u p I d>edu . u t e x a s . ece< / g r o u p I d>
< a r t i f a c t I d>t s v d 4 j −maven− p l u g i n< / a r t i f a c t I d>
<v e r s i o n>0.1 −SNAPSHOT< / v e r s i o n>

< / p l u g i n>

A user invokes the TSVD4J Maven plugin through the

command mvn tsvd4j:tsvd4j. The plugin executes the under-

lying unit tests through Surefire, attaching a Java agent and

test listener to instrument code to interact with the backend

runtime analyzer. In addition, a user can configure TSVD4J

with flags to control whether they want to track API calls or

field accesses only (both are tracked by default) [5].

TSVD4J writes all detected conflicting-pairs under the

.tsvd4j/ output directory. The output format per file has

a conflicting-pair on every line, represented as two code

locations (class name and line number), separated by “:”.

IV. EVALUATION

A. Setup

We evaluate TSVD4J on six applications from JaCon-

TeBe [2], [16] (a benchmark dataset of Java concurrency bugs)

that can build using Java 8 and up. In addition, we obtain

six popular open-source Java Maven GitHub applications.

TABLE I: Application statistics.

ID Project SHA # kLOC # Tests

J1 JaConTeBe-dbcp - 9 4
J2 JaConTeBe-derby - 572 5
J3 JaConTeBe-groovy - 105 6
J4 JaConTeBe-log4j - 35 5
J5 JaConTeBe-lucene - 68 2
J6 JaConTeBe-pool - 11 5

P1 TooTallNate/Java-WebSocket aad6654 16 641
P2 davidmoten/rxjava2-extras d0315b6 19 390
P3 fluent/fluent-logger-java da14ec3 2 18
P4 javadelight/delight-... [3] da35edc 2 79
P5 ktuukkan/marine-api af00038 16 926
P6 openpojo/openpojo 00ed7a0 24 1204

Total 879 3285

TABLE II: Conflicting-pairs reported by each technique.

ID RV-Predict
TSVD4J with

API Only
TSVD4J with

Field Only
TSVD4J

J1 4 0 1 1
J2 1 0 1 1
J3 1 0 1 1
J4 0 0 8 8
J5 0 0 0 0
J6 1 0 1 1

Total 7 0 12 12

P1 2 0 25 25
P2 0 3 1 4
P3 4 3 1 4
P4 2 0 3 3
P5 2 4 1 5
P6 0 2 0 2

Total 10 12 31 43

Total 17 12 43 55

These applications use multiple threads, meaning they can

possibly have thread-safety violations. We run TSVD4J on

these applications’ unit tests. We use the latest commit for

each application so we can report detected potential thread-

safety violations to developers.

Table I shows the full set of applications on which we

evaluate. The top six applications are from JaConTeBe while

the remaining applications are the open-source GitHub appli-

cations. For each application, we also show the commit SHA

on which we evaluate (simply “-” for JaConTeBe) and the size

of the application in kLOC and number of tests.

For each JaConTeBe application, we run the provided driver

test code that forces the failure. For the other applications,

we include the TSVD4J Maven plugin and run on their tests.

For comparison purposes, we also run RV-Predict, a tool for

detecting Java data races [13], for each application. RV-Predict

reports data races similarly as conflicting-pairs, so we can

compare the results of both tools. For both TSVD4J and RV-

Predict, we use a timeout of 6 hours per application.

B. Results

Table II shows the results of running RV-Predict and

TSVD4J. We show the results for RV-Predict and variants

of running TSVD4J when tracking only API calls, only

5

REFERENCES

[1] ASM. https://asm.ow2.io/.
[2] JaConTeBe. https://sir.csc.ncsu.edu/portal/bios/JaConTeBe.php.
[3] Nashorn sandbox. https://github.com/javadelight/

delight-nashorn-sandbox.
[4] TSVD. https://github.com/microsoft/TSVD.
[5] TSVD4J. https://github.com/UT-SE-Research/TSVD4J.
[6] Y. Cai and W. K. Chan. MagicFuzzer: Scalable deadlock detection

for large-scale applications. In International Conference on Software

Engineering, pages 606–616, 2012.
[7] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-

haran. Efficient and precise datarace detection for multithreaded object-
oriented programs. In International Conference on Programming Lan-

guage Design and Implementation, pages 258–269, 2002.
[8] A. Choudhary, S. Lu, and M. Pradel. Efficient detection of thread

safety violations via coverage-guided generation of concurrent tests.
In International Conference on Software Engineering, pages 266–277,
2017.

[9] D. Deng, W. Zhang, and S. Lu. Efficient concurrency-bug detection
across inputs. In Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 785–802, 2013.
[10] J. Deshmukh, E. A. Emerson, and S. Sankaranarayanan. Symbolic dead-

lock analysis in concurrent libraries and their clients. In International

Conference on Automated Software Engineering, pages 480–491, 2009.
[11] D. Engler and K. Ashcraft. RacerX: Effective, static detection of

race conditions and deadlocks. In Symposium on Operating Systems

Principles, pages 237–252, 2003.
[12] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity

checker for multithreaded programs. In Symposium on Principles of

Programming Languages, pages 256–267, 2004.
[13] J. Huang, P. O. Meredith, and G. Rosu. Maximal sound predictive race

detection with control flow abstraction. In International Conference on

Programming Language Design and Implementation, pages 337–348,
2014.

[14] P. Joshi, M. Naik, K. Sen, and D. Gay. An effective dynamic analysis
for detecting generalized deadlocks. In International Symposium on

Foundations of Software Engineering, pages 327–336, 2010.

[15] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye. Efficient scalable
thread-safety-violation detection: Finding thousands of concurrency bugs
during testing. In Symposium on Operating Systems Principles, pages
162–180, 2019.

[16] Z. Lin, D. Marinov, H. Zhong, Y. Chen, and J. Zhao. JaConTeBe: A
benchmark suite of real-world Java concurrency bugs. In International

Conference on Automated Software Engineering, pages 178–189, 2015.
[17] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A

comprehensive study on real world concurrency bug characteristics.
In International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 329–339, 2008.
[18] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting atomicity

violations via access interleaving invariants. In International Conference

on Architectural Support for Programming Languages and Operating

Systems, pages 37–48, 2006.
[19] N. Machado, B. Lucia, and L. Rodrigues. Production-guided concur-

rency debugging. In Symposium on Principles and Practice of Parallel

Programming, pages 29:1–29:12, 2016.
[20] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock

detection. In International Conference on Software Engineering, pages
386–396, 2009.

[21] M. Pradel and T. R. Gross. Fully automatic and precise detection of
thread safety violations. In International Conference on Programming

Language Design and Implementation, pages 521–530, 2012.
[22] M. Samak and M. K. Ramanathan. Multithreaded test synthesis for

deadlock detection. In Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pages 473–489, 2014.
[23] M. Samak and M. K. Ramanathan. Trace driven dynamic deadlock

detection and reproduction. In Symposium on Principles and Practice

of Parallel Programming, pages 29–42, 2014.
[24] V. Terragni and M. Pezzè. Effectiveness and challenges in generating

concurrent tests for thread-safe classes. In International Conference on

Automated Software Engineering, pages 64–75, 2018.
[25] W. Visser, C. S. Pundefinedsundefinedreanu, and S. Khurshid. Test

input generation with Java PathFinder. In International Symposium on

Software Testing and Analysis, pages 97–107, 2004.
[26] A. Williams, W. Thies, and M. D. Ernst. Static deadlock detection for

Java libraries. In European Conference on Object-Oriented Program-

ming, pages 602–629, 2005.

