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ABSTRACT

Software testing suffers from the presence of flaky tests, which
can pass or fail when run on the same version of code. Order-
dependent tests (OD tests) are flaky tests whose outcome depends
on the order in which they are run. An OD test can be detected if
specific tests are run or not run before it, resulting in a difference
in test outcome. While prior work has proposed rerunning tests
in different random test orders, this approach does not provide
guarantees toward detecting all OD tests. Later work that proposed
a more systematic approach to ordering tests still fails to account
for the relationships between all tests in the test suite.

We propose three new techniques to detect OD tests through a
more systematic means of producing test orders. Our techniques
build upon prior work in Tuscan squares to cover test pairs in a
minimal set of test orders while also obeying the constraints of
how tests can be positioned in a test order w.r.t. their test classes.
Further, as there are many test pairs that need to be covered, we
develop a technique that can take a specified set of test pairs to
cover and produce test orders that aim to cover just those test pairs.
Our evaluation with 289 known OD tests across 47 test suites from
open-source projects shows that our most cost-effective technique
can detect 97.2% of the known OD tests with 104.7 test orders, on
average, per subject. While all techniques produce a relatively large
number of test orders, our analysis of the minimal set of test orders
needed to detect OD tests shows a tremendous reduction in the test
orders needed to detect OD tests — representing an opportunity for
future work to prioritize test orders.
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1 INTRODUCTION

Software testing is an important part of the development process,
but it suffers from the presence of flaky tests. A flaky test is a test
that nondeterministically passes or fails even when run on the same
code [19]. When a flaky test fails, developers can be misled into
thinking they just introduced a fault, even though the test may
already fail before their recent changes. Flaky tests are prevalent in
open-source software and in industry, with researchers at Facebook
suggesting that everyone should “assume all tests are flaky” [10].
While there are many reasons why tests are flaky, one of the
more frequent types of flaky tests is order-dependent tests (OD tests).
An OD test passes or fails depending on the test order in which
they are run [13, 29]. Conceptually, the reason OD tests can fail
when run in a different test order is because prior tests in the test
order modify some shared state, leading to the OD test to run in
an unexpected starting state and having a different test outcome.
Luo et al., in their prior empirical study on flaky tests in open-
source projects, found that OD tests are among the top three most
frequently observed types of flaky tests [19]. There has also been
a wide range of techniques for detecting [4, 6, 8, 9, 13, 17, 27-29],
repairing [18, 24], or accommodating the effects [3, 11] of OD tests.
One popular means to detect OD tests is to run different test
orders. For example, Lam et al. previously developed iDFlakies to
run tests in random test orders [13]. While their technique was
effective in detecting many OD tests, randomly shuffling test orders
does not provide strong guarantees on whether all OD tests have
been detected. Wei et al. later developed a more systematic way
to run test orders by covering pairs of tests [28]. A test pair (t1,
t2) is covered if there is a test order in which test t1 is positioned
right before t2, with no other tests in between. An OD test can be
detected if all test pairs are covered since every other test will run
right before the OD test. Wei et al.’s approach is based on Tuscan
squares [7], which guarantees that all pairs of tests can be covered in
N or (N +1) test orders for any N tests. Their approach focuses on
covering test-class pairs, i.e., a pair of test classes (A, B) is covered
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if there is a test order where A comes before B, with no other test
classes in between. While this technique provides guarantees on
the relative ordering between test-class pairs, it does not guarantee
that all test pairs in any given test class will be covered or that all
test pairs from different test classes will be covered.

Building upon Wei et al.’s approach, which we call Tuscan Class-
Only, we propose new techniques to detect OD tests by producing
test orders that cover test pairs and provide stronger guarantees.
Our first technique, Tuscan Intra-Class, leverages Tuscan squares to
not just cover all test-class pairs but also cover all test pairs within
each test class, which we call intra-class test pairs. Covering these
test pairs ensures that OD tests whose outcome depends on other
tests in the same test class can be detected. We also develop Tuscan
Inter-Class, which builds upon Tuscan Intra-Class by producing test
orders that also cover all test pairs involving tests across different
test classes, which we call cross-class test pairs. Tuscan Inter-Class
ensures that every test will be run right after every other test,
regardless of what classes the tests are in. Given the restrictions on
the positioning between tests across different test classes in a single
test order (tests from different test classes cannot be interleaved
with one another [13]), Tuscan Inter-Class can produce many test
orders to cover all cross-class test pairs (e.g., more than 24 million
orders for one test suite in our evaluation).

We further propose Target Pairs as an additional technique to
reduce the number of test orders while still covering relevant cross-
class test pairs. The insight is that not all test pairs need to be
covered, but rather only those that potentially have some shared
state. Prior work found that the most common type of shared state
among tests in Java projects is through in-memory heap reachable
from static fields [9, 19, 29]. We develop Target Pairs to produce
test orders that cover a specific set of test pairs, namely tests that
access at least one static field in common. Our technique is a greedy
approach that iteratively produces test orders that cover yet-to-be-
covered test pairs until all required test pairs are covered.

We evaluate our techniques using a dataset of 289 OD tests
published in prior work [28]. This dataset contains not only the
names of OD tests but also the other tests that a given OD test needs
to pass or fail. These 289 tests belong to 47 Maven modules, where
each module contains its own test suite, and each module belongs
to an open-source Java project. For each module, we run Tuscan
Class-Only and our three new techniques to produce test orders that
may detect the known OD tests from this dataset. Unsurprisingly,
we find that Tuscan Class-Only produces the least number of test
orders (94.0) and detects the smallest percentage of OD tests (36.0%),
on average, while Tuscan Inter-Class produces the most orders
(769148.3) but detects all OD tests. Surprisingly, we find that Target
Pairs requires more test orders but detects fewer OD tests than
Tuscan Intra-Class, suggesting that a nontrivial number of OD tests
do not share static fields and that a nontrivial number of non-OD
tests also share static fields. Overall, we find that Tuscan Intra-Class
is the best technique in that it produces a small number of test orders
(104.7), like Tuscan Class-Only, while being able to detect almost as
many OD tests as Tuscan Inter-Class (97.2%). We also investigate
the number of minimum test orders each technique needs to detect
all OD tests, motivating future work on prioritization or selection
of test orders for more efficient detection.

This paper makes the following main contributions:
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New techniques to detect OD tests. We present three new tech-
niques to systematically detect OD tests.

Evaluation. We evaluate the three new techniques and a technique
from prior work, and we find that Tuscan Intra-Class is the most
cost-effective technique to systematically detect OD tests. We also
investigate the minimal test orders needed to detect all possible OD
tests, motivating future work on more efficient detection.

Tools & Dataset. We make the implementation of our new tech-
niques and all test orders generated for our evaluation publicly
available for others to use for future work and study replication [2].

2 BACKGROUND

In this section, we provide background on order-dependent tests
(OD tests). We define terms and categorizations as well as back-
ground on prior work for detecting OD tests.

2.1 Order-Dependent (OD) Tests

OD tests are flaky tests that deterministically pass or fail based on
the order in which the tests are run [13, 15, 19, 29]. These tests are
deterministic in that they either always pass or always fail for any
given test order, and there is at least one test order in which the
test passes (termed a passing test order) and at least one test order
in which the test fails (termed a failing test order). We also use the
term original test order to describe a specific, initial passing test
order; typically, this test order is arbitrarily decided by the testing
framework (e.g., JUnit). Existing techniques often detect OD tests
by running different test orders, finding at least one passing test
order and one failing test order for each OD test.

Shi et al. previously provided definitions for tests associated
with OD tests [24]. They categorized OD tests into two different
categories. The first category of OD tests is brittles. A brittle fails
when run by itself, yet it passes when another test, termed a state
setter, runs before it. In other words, the brittle requires some other
test to set up the state shared between the tests, allowing the brittle
to start running in an initial state that results in it passing. There
can be many different state setters for a brittle. A passing test order
for a brittle has at least one state setter run before the brittle, and a
failing test order has no state setter run before the brittle [24, 28].

The second (and most prominent) category of OD tests is victims.
Unlike brittles, these tests pass when run on their own but fail when
some other test, called a polluter, runs beforehand. Conceptually,
the polluter modifies or “pollutes” some state shared between the
polluter and the victim, and the polluter does not reset this shared
state after running. As such, the victim fails when run after its pol-
luter. Shi et al. also defined another type of test, called cleaners, that
also affects the relationship between polluters and victims. When
a cleaner runs after the polluter but before the victim, the victim
no longer fails. Conceptually, the cleaner “cleans” the shared state
between polluter and victim. There can be many different polluters
for a victim, and each polluter/victim pair can have different clean-
ers. A passing test order for a victim has either no polluters running
before the victim or polluters running before the victim, but there
is at least one cleaner that runs after all the polluters and before
the victim. A failing test order for a victim has at least one polluter
running before the victim and no cleaners running between the
polluter closest to the victim and the victim itself.
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Figure 1 shows an OD test example from ktuukkan/marine-api,
an open-source project on GitHub that is used in our evaluation. The
OD test is a victim, testConstructor (Line 21). When testCon-
structor runs on its own, the test passes. However, when it runs
after testRegisterParserWithAlternativeBeginChar (Line 9),
testConstructor fails. In other words, testRegisterParserWith-
AlternativeBeginChar is a polluter for testConstructor. Fur-
thermore, the polluter is in a separate test class as the victim.

In this example, after the polluter runs, it unregisters VDMPar-
ser.class (Line 11). Unregistering means removing this entry
from the shared static field map parsers (Line 27). The victim
expects this entry to be in the parsers map as it tries to create an
instance of this parser at the beginning of its execution. With the
entry missing, an exception is thrown, and the victim fails.

There is also a cleaner for this victim, namely testCreate-
Parser (Line 13). When this cleaner runs after the polluter, and
before the victim, the victim passes. The reason is that when the
cleaner runs, a setup method within its test class (Line 5) is run be-
forehand, which invokes the reset method for the shared Sentence-
Factory instance (Line 3). The reset method (Line 37) repopulates
the parsers map with all the entries (Line 39), including the VDM-
Parser.class that the victim needs. Note that the cleaner is in
the same test class as the polluter. As the actual “cleaning” of the
shared state is in the setup method, any test in the test class of this
setup method is also a cleaner. However, if the polluter runs as the
last test in the test class followed by the victim’s test class, then the
victim fails because no other test resets the shared state.

2.2 Detecting OD Tests

Prior work proposed rerunning tests in different, random test or-
ders [13, 29], detecting an OD test when a passing test order and
a failing test order is found. However, there are no guarantees on
whether a particular OD test can be detected within some number
of random test orders. For example, to detect a victim, there must
be a test order in which the polluters are before the victim, and no
cleaners are after all polluters and before the victim. If there are
many cleaners and few polluters, then the chances of obtaining
a test order in which the victim fails can be low, requiring many
different random test orders to find one where the victim fails. In
fact, prior work has reported that the chance of generating a failing
order for an OD test can be as low as 1.2% [28].

To provide guarantees on running test orders in which the OD
test can both pass or fail and motivated by the fact that OD tests
rarely require multiple tests to fail [24], Wei et al. [28] proposed
utilizing the theory behind Tuscan squares [7] to systematically
produce test orders. Given a natural number N, a Tuscan square
consists of N rows, each of which is a permutation of the num-
bers {1,2,..., N}, and every pair (a, b) of distinct numbers occurs
consecutively in some row. Given a set of N tests, Wei et al. used
Tuscan squares to produce N permutations of these tests, such
that for all pairs of tests (1, t2), there exists a permutation where
t1 is positioned right before 2 (no other element is positioned in-
between the two) and there exists another permutation where ¢,
is positioned right before t;. Tuscan squares can be used to con-
struct exactly N permutations for all values of N, except N = 3
or N =5.For N =3 and N = 5, Tuscan squares will have to use
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1// test class with polluter and cleaner
2 public class SentenceFactoryTest {
private final SentenceFactory instance
4 SentenceFactory.getInstance();
@Before public void setUp() throws Exception {
instance.reset();

7}
8 @Test public void
9 testRegisterParserWithAlternativeBeginChar () {

1 instance.unregisterParser (VDMParser.class);
12 3

13 @Test public void testCreateParser() { ... }
14}

// test class with victim

public class AbstractAISMessagelistenerTest {

1 private final SentenceFactory sf
SentenceFactory.getInstance();

19 private final AISSentence AIS_0@1 = (AISSentence)
20 sf.createParser ("VDM");
@Test public void testConstructor() { ... }

22 }
23 // class of shared static field
24 public final class SentenceFactory {
// map containing parser classes
26 private static
27 Map<String, Class<? extends SentenceParser>> parsers;
28 public void unregisterParser
(Class<? extends SentenceParser> parser) {
30 for (String key : parsers.keySet()) {
3 if (parsers.get(key) parser) {
32 parsers.remove (key);
33 break;
34 }
35 3
36 }
37 public void reset() {

registerParser (tempParsers, "VDM", VDMParser.class);

parsers =

4

4 tempParsers;
42 3

13 }

Figure 1: Example OD test from ktuukkan/marine-api.

four and six test orders, respectively, to cover all test pairs (e.g.,
for N = 3, Tuscan squares will need four orders to cover all six
pairs: {{t1, t2, 13), {t2, t1, 13), (I3, t2, 11), (I3, t1, t2) }. In theory, pairs
{{t1, t2), {t2, t1)} need not be run in the last two orders. However,
running a few more pairs typically adds negligible runtime cost, and
yet doing so can help better detect if #; and ¢, are nondeterministic,
flaky tests or OD tests that require multiple tests as polluters.

Wei et al. proposed treating test classes as the elements in a set,
and so computing the Tuscan square for these test classes results in
test orders of test classes in which each pair of test classes runs right
before and right after each other test class in some permutation
of test classes. The reason they treat test classes as elements, as
opposed to individual tests, is that when tests are run using JUnit
and Surefire (the main unit-testing infrastructure used for Maven-
based Java projects), tests from different test classes cannot be
interleaved. For example, test class A contains two tests, t1 and t2,
and another test class B contains test t 3, the test order [A.t1, B.t3,
A.t2] cannot be run in one execution of JUnit and Surefire, because
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(Polluter, Victim, Cleaner):

(t2, t1, t4) A B
(t5, t4, N/A)
(t2, t6, t5) 1| t1 2 t3 t5 6
B A
2|t [te w i = .

Figure 2: The test orders produced by Tuscan Class-Only.

tests from one test class B cannot be run in-between tests in another
test class A. However, test classes can be freely ordered relative to
each other. We call this strategy of producing test orders using
Tuscan squares on test classes as Tuscan Class-Only. Essentially,
Tuscan Class-Only produces test orders that cover all test-class
pairs, where a test-class pair (A, B) is covered if there is a test
order where test class A is positioned right before test class B, and
no other test classes are positioned in-between.

Tuscan Class-Only guarantees detecting victims where its pol-
luters are in a separate test class, and there are no cleaners in the
polluter or victim test classes. Tuscan Class-Only will produce a
failing test order when any of the test classes containing polluters
are run right before the victim test class. For Tuscan squares to
generate only N orders, Tuscan squares must position the victim’s
test class first in one order, thereby ensuring that there is at least
one passing test order where the victim’s test class will run before
all test classes that contain polluters. The total number of test or-
ders to try is the number of test classes (except for three or five test
classes, where the number of test orders is four or six, respectively).

As Tuscan Class-Only does not change the order of tests in the

same test class, it may not detect any OD tests that require a differ-
ent ordering between tests in the same test class. For example, if a
victim’s only polluter is in the same test class, and the original test
order has the victim run before the polluter, then Tuscan Class-Only
will never produce a test order where the victim fails. Furthermore,
if the polluter and victim are in different test classes, but there are
cleaners that are in the same test class as the polluter or victim,
then Tuscan Class-Only is also not guaranteed to produce a failing
test order because the original test order can have the cleaner al-
ways be run before the victim or after the polluter, so no matter
how the test classes are reordered, the victim will always have a
cleaner run in-between the polluter and itself. As such, we present
better techniques that can produce test orders that guarantee the
detection of OD tests even when there are cleaners in the same test
class as the victim or its polluters.
Example. Figure 2 illustrates an example set of tests and what test
orders Tuscan Class-Only would produce. In this example, there
are six tests, t1 through t6, where tests t1 through t4 are in test
class A and tests t5 and t6 are in test class B. The original test order
goes from t1 through t6. The figure illustrates the relationship
between tests in terms of OD tests: test t1 is a victim whose polluter
is t2, test t4 is a victim whose polluter is t5, and test t6 is a
victim whose polluter is t2. Furthermore, test t4 is a cleaner for
the polluter/victim pair of t2/t1, and test t5 is a cleaner for the
polluter/victim pair of t2/t6.
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Focusing only on test classes, Tuscan Class-Only produces two
test orders: the first test order has all tests in test class A run before
B and the second test order has all tests in test class B run before
A. All tests within a test class are in the same test order relative to
each other as in the original test order. We see that using Tuscan
Class-Only results in detecting the victim t4 since t4 runs after
t5 in the second test order. However, Tuscan Class-Only does not
produce any test order that detects t2 since it does not change the
relative order within test class A, and it does not produce any test
order that detects t6 because cleaner t5 always runs before t6.

3 DETECTION TECHNIQUES

We next describe three new techniques for detecting OD tests via
systematic generation of test orders.

3.1 Tuscan Intra-Class

We propose Tuscan Intra-Class to additionally systematically change
the ordering of tests in the same test class. We leverage Tuscan
squares again to produce the permutation of tests within each test
class. Essentially, Tuscan Intra-Class ensures producing test orders
that cover all test-class pairs (as Tuscan Class-Only does) and all
test pairs within each test class.

First, Tuscan Intra-Class uses Tuscan squares to compute permu-
tations of test classes to cover all test-class pairs, similar to Tuscan
Class-Only. Then, for each test class, Tuscan Intra-Class uses Tus-
can squares to compute all the permutations of tests within the
test class to cover those test pairs; we call the test pairs involving
only tests in the same test class as intra-class test pairs. Then, at
each iteration, Tuscan Intra-Class produces a test order by first
positioning the test classes based on the computed permutation
of test classes, and then for each test class, positioning the tests
within based on the computed permutation of tests.

At each iteration, if all test-class pairs are covered, then Tuscan
Intra-Class loops back to position test classes according to the first
permutation of test classes. Similarly, if all intra-class test pairs for
a test class are covered, it loops back to that first permutation of
tests for that test class. This process ensures that Tuscan Intra-Class
will continue to produce test orders if there are still uncovered test-
class pairs or intra-class test pairs. Tuscan Intra-Class continues
producing test orders until all test-class pairs and all intra-class test
pairs within each test class have been covered.

Figure 3 shows how Tuscan Intra-Class produces test orders for
the same tests from Figure 2. The highest number of test methods
within a test class is four (test class A), which is more than the
number of test classes, so Tuscan Intra-Class produces four test
orders. Tuscan Intra-Class iterates through the permutations of
tests within each test class following the computed Tuscan squares
to ensure all intra-class test pairs are covered. Further, the test-class
pairs are covered as well, as at least one test order has test class A
come before B, and another has the opposite. By the second test
order, all intra-class test pairs for B have been covered, so the later
test orders loop through permutations already covered for B.

Same as Tuscan Class-Only, the victim t4 can be detected. Fur-
ther, Tuscan Intra-Class ensures that if the victim has a polluter in
the same test class, it can produce a failing test order. Whether or
not there is a cleaner for the polluter/victim pair does not matter
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Figure 3: The test orders produced by Tuscan Intra-Class.

since Tuscan Intra-Class ensures that there is a test order where the
polluter is positioned right before the victim, with no other tests in
between. We see in this example that victim t1 is detected (in the
second test order) because t1 runs right after its polluter t2, unlike
in the third test order where the cleaner t4 runs in between.

However, Tuscan Intra-Class is not guaranteed to detect OD tests
that require a specific ordering of tests across test classes. Consider
the case where a victim and polluter are in separate test classes, but
there are cleaners that are in the same test class as either the victim
or polluter. Although Tuscan Class-Only and Tuscan Intra-Class
guarantee a test order where the polluter test class is right before
the victim test class, a cleaner may still be run between the polluter
and victim. We see in this example that Tuscan Intra-Class does
not detect victim t6 because, in all test orders where the polluter
test class is run before, the cleaner t5 also runs before t6.

3.2 Tuscan Inter-Class

We propose Tuscan Inter-Class to cover all test pairs, including
those involving tests between test classes, which we call cross-class
test pairs. Recall that tests from different test classes cannot be
interleaved with each other (Section 2.2). To cover a cross-class
test pair, their respective test classes must be positioned right next
to each other, and the tests in the cross-class test pair must be
positioned at the “boundaries” of their respective test classes. As
such, two cross-class test pairs, such as (A.t1, B.t3) and (A.t2,
B.t4), cannot both be covered in the same test order because only
one test can be at the boundaries of each test class, and test classes
cannot repeat in the same test order.

Tuscan Inter-Class first computes the permutations of test classes
that cover all test-class pairs. Starting with the first permutation
of test classes, it iterates through each consecutive pair of test
classes. For each test class of a consecutive test-class pair, Tuscan
Inter-Class computes the permutation of tests that would cover the
intra-class test pairs within that test class. It then maintains one
permutation for the second test class in that pair while iterating the
permutations in the first test class. After iterating through all the
permutations of the first test class, it iterates to the next permutation
for the second test class and loops through the permutations for the
first test class again. In other words, Tuscan Inter-Class explores
the complete combination of test permutations between the first
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Figure 4: The test orders produced by Tuscan Inter-Class.

and second test classes of a test-class pair. Tuscan squares within
a test class ensures for each test at least one test order in which
it is first and another in which it is last. As such, every test in the
first test class of the test-class pair can be positioned right before
every test in the second test class. Therefore, all cross-class test
pairs involving tests in the first test class coming before tests in
the second test class would be covered. The intra-class test pairs of
each test class would also get covered as Tuscan Inter-Class iterates
through all permutations of tests in each test class according to
Tuscan squares. After covering all cross-class test pairs for the
current pair of test classes, Tuscan Inter-Class changes to the next
consecutive test-class pair, exploring the combinations of their
permutations. Eventually, all cross-class test pairs involving all
consecutive test-class pairs are covered, and Tuscan Inter-Class
moves on to the next permutation of test classes.

Figure 4 shows how Tuscan Inter-Class produces test orders for
the same example of six tests. The first test order matches that of
Tuscan Intra-Class, but for the second test order, only the order
of tests in A changes, while the order of tests in B remains the
same. This design decision ensures that the cross-class test pair
(t4, t5) is covered. Tuscan Inter-Class iterates through all four
permutations of tests for test class A, so by the fifth test order, it
finally starts changing the ordering of tests in B, and we see that
the permutations of tests in A loop back to the first permutation.
The victim t6 fails because the cleaner t5 does not run between
the polluter t2 and t6 (another test order will also position t2 right
before t6, guaranteeing that t2 will fail). Eventually, for the ninth
test order, the test classes A and B switch positions, and Tuscan
Inter-Class loops through the permutation of tests within each test
class again. Overall, Tuscan Inter-Class tries 16 test orders, covering
all cross-class test pairs and intra-class test pairs.

3.3 Target Pairs

We propose Target Pairs as an alternative technique for producing
test orders while still covering cross-class test pairs. To reduce the
number of test orders, we leverage the insight that not all test pairs
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need to be positioned next to each other in a test order if they do
not share any state. If a test does not share a state with another,
then they cannot have any polluter/victim or state setter/brittle
relationship. Target Pairs takes as input a set of test pairs, with the
goal to produce test orders that cover those test pairs. Target Pairs
iteratively produces test orders by greedily producing test orders
that cover the most uncovered test pairs that share a state.

Prior work found that tests in Java can share states in a number
of ways, such as through files, databases, or external services, but
the main type of shared state is through shared heap-state accessed
through static fields [18, 19, 29]. Therefore, we focus on test pairs
that access at least one static field in common between them. We
first instrument the code to track when a test executes a getstatic
or putstatic Java bytecode instruction, indicating it is accessing
or writing to some static field. From the bytecode instruction, we
obtain the static field name. We run each test on this instrumented
code to map each test to the static fields it accesses or writes to.
Note that even if two tests only execute getstatic on the same
static field, it is still possible for one of the tests to be an OD test as
certain method calls that write to static fields can do so using only
getstatic (e.g., adding to a list uses getstatic as it is “rewriting”
the list and not “reassigning” the list). With this mapping of tests
to static fields, we pair together tests that have at least one static
field in common. These test pairs are the input to Target Pairs.

Figure 5 shows the pseudocode for the Target Pairs algorithm.
The entry function is TargetPairs, which takes as input the set
of test pairs to cover. While there are uncovered test pairs, the
algorithm produces a new test order (Line 4), with the aim to cover
the most number of test pairs, adding the produced test order to the
growing list of test orders. At each iteration, the covered test pairs
are removed, and then the algorithm produces a new test order.
The final output is the list of produced test orders.

The function produce_best_order produces a test order that
greedily covers the most uncovered test pairs. The function first
divides up the test pairs into two subsets, the cross-class test pairs,
and the intra-class test pairs. We distinguish between the two be-
cause the cross-class test pairs are the most restrictive, as we cannot
cover more than one cross-class test pair involving the same test
classes in a single test order. As such, the goal is to prioritize cover-
ing cross-class test pairs first. Once the relative ordering between
test classes is set, we then focus on covering intra-class test pairs
within each test class.

The function produce_best_order starts with an empty list of
tests for the test order and first finds the test that occurs the most
among uncovered cross-class test pairs (Line 19). The algorithm
gets the corresponding test classes for such a test and marks it as
scheduled within the test order. It then sets the chosen test as either
the first or last test within the test class. The test is the first test if it
occurs the most as the second test among cross-class test pairs (so it
has the most number of “connections” going left), and it is the last
test if it occurs the most as the first test among cross-class test pairs
(so it has the most number of “connections” going right). Once the
test is set at one of these boundaries for its test class, we extend
test classes in the corresponding direction of that test class if there
are cross-class test pairs that we need to cover. The algorithm then
keeps track of the right-most and left-most test classes in the test
order in two queues (Lines 28 to 29). While there are still test classes
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1 def TargetPairs(pairs):

2 testorders = []

3 while len(pairs) > 0:

4 order = produce_best_order (pairs)

5 testorders.append(order)

6 update_pairs(order, pairs) # remove covered pairs
7 return testorders

8

9 def produce_best_order(pairs)

10 # split test-pairs between cross-class
11 cc_pairs = get_crossclass_pairs(pairs)
12 ic_pairs = get_intraclass_pairs(pairs)
13 # keep track of already scheduled test
14 # as they cannot repeat
15 sched_classes = set()

i best_order = []

17 # find test involved with
18 # from yet-to-be-scheduled test classes

19 best_test = get_best_test(cc_pairs, sched_classes)
20 while best_test:
21 test_class = get_test_class(best_test)
22 test_classes_order = [test_class]
23 sched_classes.add(test_class)
24 # set test as first or last based on freq
25 set_test_in_class(best_test, test_class,
26 sched_classes)
27 # queues to keep track of right-most and left-most

28 right_queue = [test_class]
29 left_queue = [test_class]

30 # keep extending right and left,

3 # and set boundary tests to cover cross-class pairs
32 while right_queue.peek() and left_queue.peek():

33 if right_queue.peek():

34 test_class = right_queue.pop()

35 other_test_class = best_right_pair(test_class,

36 cc_pairs, sched_classes)

37 if other_test_class:

38 sched_classes.add(other_test_class)

39 test_classes_order.append(other_test_class)

40 right_queue.push(other_test_class)

41 if left_queue.peek():

and intra-class

classes,

most cross-class pairs

in pairs
cc_pairs,

42 test_class = left_queue.pop()
43 other_test_class = best_left_pair(test_class,
44 cc_pairs, sched_classes)

45 if other_test_class:

16 sched_classes.add(other_test_class)

47 test_classes_order.prepend(other_test_class)
8 left_queue.push(other_test_class)

19 # get test-order by populating tests within

50 # test classes

51 order = fill_tests(test_classes_order,

52 cc_pairs, ic_pairs)

53 best_order += order

54 # prepare next iteration for next test

55 best_test = get_best_test(cc_pairs, sched_classes)
56 best_order = fill_other_tests(best_test, icpairs)

57 return best_order

Figure 5: Target Pairs algorithm.

in the queues, the algorithm continues to extend test classes to the
right and left of the current test classes in the test order, covering
as many cross-class test pairs as possible (Lines 32 to 48).

At each iteration of the loop that adds new test classes, the
algorithm first tries to extend right by choosing a test class that can
connect with the current right-most test class based on cross-class
test pairs and yet-to-be-scheduled test classes. If the right-most test
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Test-Pairs:
Cross-Class: (t3, t5), (t5, t3),
(t4, t5), (t5, t4),
(t2, t6), (t6, t2)
Intra-Class: (t1, t2), (t2, t1)

Figure 6: The test orders produced by Target Pairs.

class already has a test set as the last test within, then only test
classes that can connect with this test among the cross-class test
pairs can be considered. Otherwise, any test class with a test in
a cross-class test pair that connects with some test in the current
right-most test class can be chosen (Line 35). The boundary tests
are set to cover the cross-class test pair, and the extending test
class is scheduled and pushed into the queue as the right-most test
class. A similar logic is applied for extending towards the left. The
loop ends once no more cross-class test pairs can be covered by
extending right and left from the current test classes. The remaining
tests within each scheduled test class so far are ordered to cover
intra-class test pairs while respecting the tests already positioned
at the boundaries of each test class (Line 51). All the tests in this
order are appended to the growing test order (Line 53). Then, the
algorithm tries to find the next best test as to concatenate another
sequence of tests to this growing test order. Once no more tests
can be included to cover cross-class test pairs, any remaining test
classes are added to the end, and the tests within each of those test
classes are permuted to cover intra-class test pairs (Line 56). We
choose to add the remaining test classes to the end as running extra
tests can help detect non-deterministic, flaky tests or OD tests that
require multiple tests as polluters.

Figure 6 shows how Target Pairs would produce test orders for
the same example of six tests. The set of test pairs to cover is shown
in the figure. For the first test order, Target Pairs chooses a test
that is involved in the most cross-class test pairs, which in this case
is t5. Choosing a cross-class test pair to extend to the right, Target
Pairs chooses (t5, t3) and extends test class A to the right. It fills
in the tests in each test class, covering intra-class test pair (t1,
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t2) as well. For the next iteration, Target Pairs produces a new test
order that first tries to cover cross-class test pair (t4, t5) and
then fills in tests to cover intra-class test pair (t2, t1).Eventually,
all intra-class test pairs are covered, and only cross-class test pairs
remain. The subsequent test orders all aim to cover one of these
cross-class test pairs, randomly filling in the remaining tests in each
test class as it does not need to consider intra-class test pairs any
longer. Overall, Target Pairs produces six test orders that detect all
victims, including victim t6, which is run right after its polluter t2
from another test class in the fifth test order.

3.4 Guarantees for Each Technique

Each technique has different guarantees concerning the OD tests
they can detect with the test orders they produce. Tuscan Class-
Only is guaranteed to detect all victims that have all polluters in
another test class and there are no cleaners in either the polluter’s
or victim’s test class. Tuscan Class-Only is also guaranteed to detect
brittles if there are state setters in a test class different than the
brittle and there are no state setters in the brittle’s test class.

Tuscan Intra-Class guarantees to detect all OD tests that Tuscan
Class-Only can detect. Further, it can also detect all victims whose
polluters are in the same test class as the victim. Concerning brittles,
Tuscan Intra-Class also guarantees to detect brittles that have all
state setters that are in the same test class as the brittle. The reason
it cannot guarantee detecting brittles with state setters in both the
same test class and different test class as the brittle is because a
brittle only fails if it is run before all state setters. Tuscan Intra-Class
will guarantee (1) that the brittle will run before every test in its
own test class and (2) that the brittle’s test class will run before
every other test class, but guarantees (1) and (2) may not be in the
same test order. If guarantees (1) and (2) are satisfied in separate
orders, then a brittle may still go undetected.

Tuscan Inter-Class is guaranteed to detect all OD tests. It can
detect victims with polluters in other test classes and with cleaners
in the same test class as the polluter or victim (which is not handled
by Tuscan Class-Only), because Tuscan Inter-Class is guaranteed
to produce a test order where each test across test classes is right
next to each other. Tuscan Inter-Class is also guaranteed to detect
all brittles as well (which is not handled by Tuscan Intra-Class),
because it produces test orders where the brittle is the absolute first
test in the test order (the brittle’s test class is the first test class, and
the brittle is the first test in that test class).

Target Pairs is guaranteed to detect all victims whose single
polluter modifies shared state via static fields, resulting in different
test outcomes. Target Pairs is also guaranteed to detect brittles with
just one state setter that sets the shared state via static fields. Note
that Target Pairs cannot guarantee the detection of brittles with
more than one state setter since it cannot guarantee the brittle runs
before all other tests (same as Tuscan Intra-Class).

4 EVALUATION SETUP

For our evaluation, we use a dataset of known OD tests from prior
work [28]. Prior work also categorized the OD tests into brittles
and victims and reported the corresponding state setters/polluters
/cleaners for these tests. We obtain 47 subjects for our evaluation (a
subject is a GitHub Maven project and its module that contains OD
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Table 1: Subjects used in evaluation.

# Test #OD

ID Project-Module Name Class Method | Tests
1 | activiti-spring-boot-starter 11 45 16
2 | fastjson 2308 4953 2
3 | dubbo-cluster 23 112 3
4 | dubbo-common 70 520 1
5 | dubbo-config-api 23 263 37
6 | dubbo-filter-cache 5 9 1
7 | dubbo-rpc-api 23 60 2
8 | dubbo-rpc-dubbo 16 74 2
9 | dubbo-serialization-fst 4 21 1
10 | hadoop-auth 22 125 1
11 | hadoop-hdfs-nfs 12 64 28
12 | hadoop-mapreduce-client-app 49 394 4
13 | hadoop-mapreduce-client-core 60 293 5
14 | hadoop-mapreduce-client-hs 26 206 2
15 | portlet 12 61 4
16 | c2mon-server-elasticsearch 11 19 1
17 | cukes-http 4 14 1
18 | integration-test-2_1 40 233 9
19 | integration-test-2_2 4 23 7
20 | integration-test-3_10 3 24 2
21 | integration-test-3_7 6 6
22 | dropwizard-logging 18 80 1
23 | elastic-job-lite-core 98 511 3
24 | hsac-fitnesse-fixtures 49 251 1
25 | spring-data-ebean 2 48 1
26 | jhipster-registry 14 53 1
27 | lib 2 163 25
28 | marine-api 71 926 12
29 | openpojo 213 1185 3
30 | spring-boot-actuator-auto... 166 733 8
31 | spring-boot 230 2255 2
32 | spring-boot-test-autoconfigure 103 234 4
33 | spring-boot-test 115 721 1
34 | spring-data-envers 4 10 2
35 | spring-ws-core 145 971 15
36 | spring-ws-security 43 122 2
37 | aismessages 18 44 2
38 | unix4j-command 30 290 1
39 | compute 74 488 1
40 | request 49 325 1
41 | wdtk-dumpfiles 9 50 3
42 | wdtk-util 5 23 2
43 | naming 11 82 44
44 | subsystem 10 25 1
45 | wro4j-core 137 851 15
46 | carbon-apimgt 46 530 1
47 | riptide-spring-boot-starter 25 40 2
Average X 2 | Sum X 1 93.9 394.3 289
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tests). Table 1 shows the breakdown and statistics of the subjects.
For each subject, we show an ID for the subject to use in subsequent
tables, the GitHub project and module name for the subject!, the
number of test classes and the number of tests, and the number of
OD tests previously detected for the subject. Overall, we see that
each subject has, on average, 93.9 test classes and 394.3 tests. There
are a total of 289 OD tests in this dataset.

For each subject, we pass the original test orders as input to each
technique. Original test orders are obtained from running the test
suite once and recording the order in which tests are run. For Target
Pairs, we also run the tests once to collect the static fields each test
depends upon to construct the test pairs that need to be covered. We
also run Tuscan Class-Only as a baseline technique for comparison
purposes. We measure the time it takes to compute the test orders
for each technique. However, we find that for some subjects, Tuscan
Inter-Class and Target Pairs would take an immense amount of
time to produce test orders, given the large number of test pairs
to be covered (see Section 5 for more details). For Tuscan Inter-
Class cases, we compute the theoretical number of test orders for
subject ID 2 due to its large number of possible orders, and we run
the actual technique for all other subjects. However, we cannot
compute the theoretical for Target Pairs, so we set a timeout of 24
hours per subject when producing test orders.

Since we know which tests are OD tests as well as their cor-
responding state setters/polluters/cleaners, we can simulate how
effective a technique is at detecting the OD test by checking each
of the produced test orders. An OD test is detected if there is at
least one passing test order and one failing test order. We can com-
pute whether an OD test passes or fails in a test order based on
the relative positions of state setters/brittles and polluters/victim-
s/cleaners (Section 2.1). Further, we simulate how long it takes to
run a technique on a subject by measuring the time it takes to run
all the tests in a subject (averaged over five runs). The total time is
the sum of the time to produce the test orders and the product of
the time to run all tests and the number of test orders.

5 EVALUATION

Our evaluation addresses the following research questions:

RQ1: How many test orders does each technique produce?

RQ2: How effective is each technique at detecting OD tests?
RQ3: How cost-effective is each technique?

RQ4: What is the minimal number of test orders needed by each
technique to detect known OD tests?

5.1 RQ1: Number of Test Orders

Table 2 shows the results from running each technique on all 47
subjects. We show under the columns “# orders total” the number
of test orders each technique produces for each subject (“t/0” means
timeout). Overall, we see that Tuscan Class-Only produces the least
number of test orders across all subjects, with an average of 94.0 test
orders, while Tuscan Inter-Class produces the most, with an average
of 769148.3 test orders. This trend matches our expectations.

The number of test orders that Tuscan Intra-Class produces
is, on average, a few more than those produced by Tuscan Class-
Only (104.7 vs. 94.0). For individual subjects, the two techniques

!Maven projects can have multiple modules
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Table 2: Detection results from running the techniques.

Tuscan Class-Only | Tuscan Intra-Class Tuscan Inter-Class Target Pairs

# orders % OD # orders % OD # orders % OD # orders % OD

ID | total min. det. total min.  det. total min.  det. total min.  det.
1 11 2 18.8 11 4 100.0 1794 5 100.0 217 3 100.0
2 | 2308 2 100.0 | 2308 2 100.0 | 24501496 2 100.0 t/o t/o t/o
3 23 2 33.3 27 2 100.0 11244 2 100.0 1616 2 100.0
4 70 0 0.0 70 2 100.0 261418 2 100.0 1005 2 100.0
5 23 0 0.0 38 37 100.0 64268 37 100.0 469 18 48.6
6 6 0 0.0 6 2 100.0 70 2 100.0 4 0 0.0
7 23 0 0.0 23 2 100.0 3386 2 100.0 90 2 100.0
8 16 0 0.0 16 2 100.0 5036 2 100.0 512 2 100.0
9 4 0 0.0 14 2 100.0 224 2 100.0 70 2 100.0
10 22 2 100.0 26 2 100.0 14270 2 100.0 726 2 100.0
11 12 2 100.0 22 2 100.0 3330 2 100.0 757 2 100.0
12 49 2 25.0 49 2 100.0 148542 2 100.0 | 13500 2 100.0
13 60 2 80.0 60 2 100.0 82814 2 100.0 5228 2 100.0
14 26 2 100.0 26 2 100.0 39500 2 100.0 4500 2 100.0
15 12 0 0.0 12 2 100.0 3306 2 100.0 353 2 100.0
16 11 0 0.0 11 2 100.0 312 2 100.0 50 2 100.0
17 4 0 0.0 6 2 100.0 122 2 100.0 10 2 100.0
18 40 2 11.1 40 8 100.0 50658 8 100.0 7488 8 100.0
19 4 0 0.0 8 7 100.0 382 7 100.0 147 7 100.0
20 4 0 0.0 16 2 100.0 316 2 100.0 150 2 100.0
21 1 0 0.0 6 6 100.0 6 6 100.0 10 4 66.7
22 18 0 0.0 22 0 0.0 5640 2 100.0 406 2 100.0
23 98 2 33.3 98 2 100.0 256130 2 100.0 1875 2 100.0
24 49 0 0.0 49 2 100.0 60816 2 100.0 1979 2 100.0
25 2 0 0.0 41 0 0.0 574 2 100.0 574 2 100.0
26 14 2 100.0 14 2 100.0 2572 2 100.0 12 0 0.0
27 2 0 0.0 161 2 100.0 644 2 100.0 278 2 100.0
28 71 0 0.0 71 2 100.0 841810 2 100.0 733 2 100.0
29 213 2 100.0 213 2 100.0 1392896 2 100.0 | 29154 2 100.0
30 166 0 0.0 166 2 100.0 531042 2 100.0 | 13419 2 100.0
31 230 0 0.0 230 2 100.0 5015642 2 100.0 t/o t/o t/o
32 103 0 0.0 103 2 100.0 53474 2 100.0 826 2 50.0
33 115 0 0.0 200 2 100.0 472332 2 100.0 1026 2 100.0
34 4 0 0.0 6 0 0.0 58 2 100.0 0 0 0.0
35 145 2 6.7 145 8 100.0 932108 8 100.0 6709 8 100.0
36 43 0 0.0 43 0 0.0 14452 2 100.0 80 0 0.0
37 18 0 0.0 18 2 100.0 1788 2 100.0 216 2 100.0
38 30 0 0.0 41 2 100.0 79464 2 100.0 | 10004 2 100.0
39 74 0 0.0 74 2 100.0 232368 2 100.0 | 13102 2 100.0
40 49 0 0.0 49 2 100.0 101578 2 100.0 | 10298 2 100.0
41 9 0 0.0 11 2 66.7 2116 2 100.0 411 2 100.0
42 6 0 0.0 9 2 100.0 492 2 100.0 6 2 100.0
43 11 2 90.9 20 2 97.7 5712 2 100.0 738 3 100.0
44 10 2 100.0 10 2 100.0 554 2 100.0 39 2 100.0
45 137 2 93.3 137 3 100.0 713822 3 100.0 | 24269 2 100.0
46 46 0 0.0 169 2 100.0 237882 2 100.0 | 34433 2 100.0
47 25 0 0.0 25 2 100.0 1512 2 100.0 38 2 100.0
Avg. ‘ 94.0 2.0 36.0 | 104.7 3.4 97.2 | 769148.3 3.3 100.0 | 4167.3 2.9 89.8
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often produce the same number of test orders, which suggests
that the number of test orders is dominated by the number of test
classes as opposed to tests within a test class. Target Pairs produces
substantially more test orders (4167.3), though still much fewer
than Tuscan Inter-Class. We observe that Target Pairs still needs to
cover a large number of test pairs, with an average of 499399.4 per
subject. Further, they are dominated by the number of cross-class
test pairs, with an average of 494869.7 per subject.

While Tuscan Inter-Class produces a large number of test orders,
this number is still much less than the number of all possible valid
test orders for a subject. The number of possible test orders for
a subject would be the number of permutations of test classes
multiplied by the product of the number of permutations of tests
per test class, which well exceeds 10 million for most subjects.

5.2 RQ2: Detected OD Tests

Table 2 shows how effective each technique is at detecting OD
tests, measured by the percentage of the known OD tests detected
(shown under column “% of OD det.”). We see that Tuscan Class-
Only produces the fewest number of test orders, but it detects the
least number of OD tests, detecting 36.0% of the known 289 OD tests.
Tuscan Intra-Class detects more OD tests, detecting 97.2%. When we
look into the OD tests that Tuscan Intra-Class does not detect, we
find that they are victims that have polluters in separate test classes
but have cleaners in the same test class as the polluter or victim
(Section 3.1), or they are brittles with multiple state setters in both
the same test class as brittles and different test class than brittles
(Section 3.4). Meanwhile, Target Pairs detects 89.8% of known OD
tests, which is lower than what Tuscan Intra-Class detects. Our
inspection shows that Target Pairs suffers similar problems with
brittles as Tuscan Intra-Class. In addition, for some victims, the
shared state between polluter and victim is not from static fields, so
Target Pairs does not attempt to cover the relevant test pairs. Future
work may track more dependencies to provide additional test pairs
for Target Pairs to cover. However, we see that Target Pairs can
detect four victims that Tuscan Intra-Class does not detect, showing
some value in specifying the relevant test pairs to cover.

5.3 RQ3: Cost-Effectiveness

Figure 7 shows boxplots that illustrate the distribution of the num-
ber of seconds that each technique takes to produce test orders
and then run those test orders across all subjects. Note that, for
presentation purposes, the y-axis is broken into parts because some
techniques need a large amount of time relative to others, partic-
ularly for Tuscan Inter-Class and Target Pairs. The black line in
the boxes represents the median, while the red triangle represents
the mean. We see that the mean is always much larger than the
median because there are a few subjects that need much more time
than others, generally because the techniques all need to produce
many more test orders for those subjects. Unexpectedly, we find
that Tuscan Inter-Class takes much more time compared against
other techniques due to the large number of test orders it produces.
We also evaluate the cost-effectiveness of each technique by
measuring the average time it takes to detect an OD test, computed
as the time to produce test orders, then run all test orders divided by
the number of detectable OD tests per each technique. We find that
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Figure 7: Time to run for all four techniques.

Tuscan Intra-Class is the most cost-effective technique, detecting an
OD test every 2398 seconds, on average. While Tuscan Class-Only
does not detect as many OD tests as Tuscan Intra-Class, it does
produce fewer test orders. Yet, on average, Tuscan Class-Only still
takes 4634 seconds to detect an OD test.

We find that Target Pairs is quite ineffective at detecting OD tests,
detecting an OD test every 177518 seconds, on average. With Target
Pairs detecting fewer OD tests and being less cost-effective than
Tuscan Intra-Class, Tuscan Intra-Class is likely the best technique
for developers to balance the cost and detectability of OD tests.
Lastly, we find that Tuscan Inter-Class is the most cost ineffective
technique to detect OD tests, detecting an OD test every 16112163
seconds, on average. The main advantage of using Tuscan Inter-
Class is the guaranteed detection of all OD tests that depend on just
one other test (Section 3.4). That being said, unless one must detect
all possible OD tests, Tuscan Intra-Class detects slightly fewer OD
tests while being much more cost-effective.

5.4 RQ4: Minimal Test Orders Needed

While each technique produces many test orders, not all of those test
orders are needed to detect possible OD tests. For each technique,
we also compute the ideal, minimal number of test orders needed
to detect the possible OD tests the technique is able to detect. We
consider an OD test detected if there is at least one passing test
order and one failing test order, so a minimum of two test orders
are needed. Since we know the exact polluters, victims, cleaners,
brittles, and state setters [28], we also know which test orders
pass/fail for each OD test. We compute the minimal set of test
orders that can detect all known OD tests by greedily selecting
the produced test order that detects the most undetected OD tests,
continuing until all are detected by this minimal set of test orders.

We see that on average the number of minimal test orders needed
is rather small, fewer than 4 for each technique, This number is in
sharp contrast to the total number of test orders each technique
would produce, e.g., the average of 769148.3 test orders for Tuscan
Inter-Class drops all the way down to 3.3.

The number of minimal test orders needed suggests that a form
of prioritization or selection of test orders can be quite effective
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in helping to detect OD tests efficiently. There are some few test
orders that can detect a large percentage of OD tests in a subject, so
heuristics that can favor running such test orders first can greatly
decrease the cost of detection. A developer can then just run the
higher priority test orders up to a desired threshold and still feel
confident about detecting all the OD tests. These results motivate
future work in test order prioritization or selection.

6 THREATS TO VALIDITY

The results of our evaluation may not generalize to other subjects.
Our evaluation subjects utilize a prior dataset of OD tests with an
extensive categorization of the tests within [28]. These OD tests
were detected from popular open-source Java projects.

Our experimental results are based on simulations that require
knowledge of the characteristics of the tests, e.g., which tests are
polluters and cleaners. We rely on the previous dataset’s classi-
fications, but there may be misclassifications or incomplete data.
We checked and reran the categorized tests in the dataset to con-
firm their characteristics, and we corrected some misclassifications,
which we shared with the authors of the prior work. We also simu-
late runtime based on the average time to run all tests in a single
test order. We believe the time for running all tests, even in different
test orders, remains roughly similar.

7 RELATED WORK

Luo et al. previously conducted the first empirical study on flaky
tests [19]. They found OD tests to be among the top three most
prominent categories of flaky tests. Since then, there have been
other empirical studies on flaky tests in different domains and appli-
cations, such as pursuing developers’ perspectives on flaky tests [5]
or their effects on the development lifecycle [12], on Android appli-
cations [25], or on UI testing [23]. Flaky tests are prevalent in both
open-source projects and in industry [10-12, 16, 21, 22].

Zhang et al. proposed DTDetector, which detects OD tests by
rerunning tests in random test orders or running pairs of tests [29].
Lam et al. developed iDFlakies, a tool for randomizing test orders
and partially classifying the flaky tests into OD tests or non-OD
tests [1, 13] in Java projects. Gruber et al. developed FLAPY to
detect OD tests in a similar manner for Python projects [8]. Li et
al. proposed IncIDFlakies, which makes iDFlakies evolution-aware,
by analyzing only tests that are affected by code changes to detect
newly-introduced OD tests [17]. Our techniques do not leverage
code changes, and therefore we do not compare against IncID-
Flakies. Wei et al. proposed detecting non-idempotent-outcome
tests, which are tests that fail when run twice in the same JVM [27];
these tests may be indicative of future problems with shared states,
resulting in OD tests. Other work has focused on detecting OD
tests by analyzing shared states. Gyori et al. proposed PolDet to
detect tests that modify shared heap-state without resetting it after
execution, meaning they are potential polluters [9]. We also analyze
dependencies on heap-state through static fields for Target Pairs.
Bell et al. proposed ElectricTest, which tracks what state tests read
from and write to, forming dependencies between tests [4]. Gambi et
al. followed up on ElectricTest with their technique PraDet, which
would additionally run tests that share states together to check
whether a test fails [6]. We also track test dependencies, and our
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techniques aim to cover relevant test pairs. Our techniques aim to
cover as many test pairs as possible in a single test order to reduce
the overall cost instead of only running test pairs on their own.

Our work builds upon Wei et al.’s prior work on systematically
covering test pairs to detect OD tests [28]. Their approach specifi-
cally targets covering test-class pairs, which we evaluate as Tuscan
Class-Only in this work. We propose Tuscan Intra-Class and Tuscan
Inter-Class to cover more test pairs than what Tuscan Class-Only
handles. Due to the large number of test orders necessary to cover
all test pairs given the constraints of test classes, we further propose
Target Pairs to reduce the number of test orders needed by reducing
the necessary test pairs that should be covered.

One way to prevent OD test failures is to run each test in isola-
tion to prevent the sharing of states, but doing so greatly increases
the cost of testing [20]. Bell and Kaiser proposed a runtime environ-
ment to automatically reset the state between tests without running
tests in isolation [3]. However, the runtime environment still in-
troduces some extra overhead. Shi et al. proposed iFixFlakies [24]
to automatically repair OD tests. They use cleaners to generate
patches. In this work, we use their categorization of tests involved
in OD tests to conduct our simulations to determine whether an
OD test can be detected. Inspired by iFixFlakies, Wang et al. devel-
oped iPFlakies for Python projects to automatically repair Python
OD tests [26]. Li et al. later improved upon iFixFlakies, proposing
ODRepair to repair OD tests that do not have cleaners [18]. They
track the shared state from static fields and generate patches that
use methods from code-under-test that interact with those static
fields. All these techniques require knowing about the OD test and
the related other tests (e.g., polluter for a victim). Our techniques
that identify a passing test order and failing test order for each OD
test enable these other approaches to generate patches. Besides re-
pairing OD tests, Lam et al. proposed enhancing regression testing
algorithms to accommodate the effects of OD tests [14]. Their en-
hancements update the test orders proposed by regression testing
techniques, such as regression test selection or test-case prioritiza-
tion, to include and order tests based on known test dependencies,
ensuring the tests do not fail due to the test order changes.

8 CONCLUSIONS

Order-dependent tests (OD tests) are a prominent category of flaky
tests and are tests whose outcome depends on the order in which
they are run. Prior work has proposed numerous techniques to
detect OD tests, often resorting to the generation and execution
of random test orders. Recently, a more systematic approach has
been proposed to generate test orders so that all test class pairs
are covered. In this work, we expand on the systematic generation
of test orders by proposing three new techniques. Our techniques
can detect 97.2% of known OD tests compared to just 36.0% of OD
tests from prior work while running a similar number of test orders.
Our evaluation of the number of minimal test orders needed by
each technique to detect all possible OD tests reveals a tremendous
opportunity for future work to prioritize test orders.
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