

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengpeng Li, M. Mahdi Khosravi, Wing Lam, and August Shi

if there is a test order where A comes before B, with no other test

classes in between. While this technique provides guarantees on

the relative ordering between test-class pairs, it does not guarantee

that all test pairs in any given test class will be covered or that all

test pairs from different test classes will be covered.

Building upon Wei et al.’s approach, which we call Tuscan Class-

Only, we propose new techniques to detect OD tests by producing

test orders that cover test pairs and provide stronger guarantees.

Our first technique, Tuscan Intra-Class, leverages Tuscan squares to

not just cover all test-class pairs but also cover all test pairs within

each test class, which we call intra-class test pairs. Covering these

test pairs ensures that OD tests whose outcome depends on other

tests in the same test class can be detected. We also develop Tuscan

Inter-Class, which builds upon Tuscan Intra-Class by producing test

orders that also cover all test pairs involving tests across different

test classes, which we call cross-class test pairs. Tuscan Inter-Class

ensures that every test will be run right after every other test,

regardless of what classes the tests are in. Given the restrictions on

the positioning between tests across different test classes in a single

test order (tests from different test classes cannot be interleaved

with one another [13]), Tuscan Inter-Class can produce many test

orders to cover all cross-class test pairs (e.g., more than 24 million

orders for one test suite in our evaluation).

We further propose Target Pairs as an additional technique to

reduce the number of test orders while still covering relevant cross-

class test pairs. The insight is that not all test pairs need to be

covered, but rather only those that potentially have some shared

state. Prior work found that the most common type of shared state

among tests in Java projects is through in-memory heap reachable

from static fields [9, 19, 29]. We develop Target Pairs to produce

test orders that cover a specific set of test pairs, namely tests that

access at least one static field in common. Our technique is a greedy

approach that iteratively produces test orders that cover yet-to-be-

covered test pairs until all required test pairs are covered.

We evaluate our techniques using a dataset of 289 OD tests

published in prior work [28]. This dataset contains not only the

names of OD tests but also the other tests that a given OD test needs

to pass or fail. These 289 tests belong to 47 Maven modules, where

each module contains its own test suite, and each module belongs

to an open-source Java project. For each module, we run Tuscan

Class-Only and our three new techniques to produce test orders that

may detect the known OD tests from this dataset. Unsurprisingly,

we find that Tuscan Class-Only produces the least number of test

orders (94.0) and detects the smallest percentage of OD tests (36.0%),

on average, while Tuscan Inter-Class produces the most orders

(769148.3) but detects all OD tests. Surprisingly, we find that Target

Pairs requires more test orders but detects fewer OD tests than

Tuscan Intra-Class, suggesting that a nontrivial number of OD tests

do not share static fields and that a nontrivial number of non-OD

tests also share static fields. Overall, we find that Tuscan Intra-Class

is the best technique in that it produces a small number of test orders

(104.7), like Tuscan Class-Only, while being able to detect almost as

many OD tests as Tuscan Inter-Class (97.2%). We also investigate

the number of minimum test orders each technique needs to detect

all OD tests, motivating future work on prioritization or selection

of test orders for more efficient detection.

This paper makes the following main contributions:

New techniques to detect OD tests. We present three new tech-

niques to systematically detect OD tests.

Evaluation.We evaluate the three new techniques and a technique

from prior work, and we find that Tuscan Intra-Class is the most

cost-effective technique to systematically detect OD tests. We also

investigate the minimal test orders needed to detect all possible OD

tests, motivating future work on more efficient detection.

Tools & Dataset. We make the implementation of our new tech-

niques and all test orders generated for our evaluation publicly

available for others to use for future work and study replication [2].

2 BACKGROUND

In this section, we provide background on order-dependent tests

(OD tests). We define terms and categorizations as well as back-

ground on prior work for detecting OD tests.

2.1 Order-Dependent (OD) Tests

OD tests are flaky tests that deterministically pass or fail based on

the order in which the tests are run [13, 15, 19, 29]. These tests are

deterministic in that they either always pass or always fail for any

given test order, and there is at least one test order in which the

test passes (termed a passing test order) and at least one test order

in which the test fails (termed a failing test order). We also use the

term original test order to describe a specific, initial passing test

order; typically, this test order is arbitrarily decided by the testing

framework (e.g., JUnit). Existing techniques often detect OD tests

by running different test orders, finding at least one passing test

order and one failing test order for each OD test.

Shi et al. previously provided definitions for tests associated

with OD tests [24]. They categorized OD tests into two different

categories. The first category of OD tests is brittles. A brittle fails

when run by itself, yet it passes when another test, termed a state

setter, runs before it. In other words, the brittle requires some other

test to set up the state shared between the tests, allowing the brittle

to start running in an initial state that results in it passing. There

can be many different state setters for a brittle. A passing test order

for a brittle has at least one state setter run before the brittle, and a

failing test order has no state setter run before the brittle [24, 28].

The second (and most prominent) category of OD tests is victims.

Unlike brittles, these tests pass when run on their own but fail when

some other test, called a polluter, runs beforehand. Conceptually,

the polluter modifies or “pollutes” some state shared between the

polluter and the victim, and the polluter does not reset this shared

state after running. As such, the victim fails when run after its pol-

luter. Shi et al. also defined another type of test, called cleaners, that

also affects the relationship between polluters and victims. When

a cleaner runs after the polluter but before the victim, the victim

no longer fails. Conceptually, the cleaner “cleans” the shared state

between polluter and victim. There can be many different polluters

for a victim, and each polluter/victim pair can have different clean-

ers. A passing test order for a victim has either no polluters running

before the victim or polluters running before the victim, but there

is at least one cleaner that runs after all the polluters and before

the victim. A failing test order for a victim has at least one polluter

running before the victim and no cleaners running between the

polluter closest to the victim and the victim itself.

628

Systematically Producing Test Orders to Detect Order-Dependent Flaky Tests ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Figure 1 shows an OD test example from ktuukkan/marine-api,

an open-source project onGitHub that is used in our evaluation. The

OD test is a victim, testConstructor (Line 21). When testCon-

structor runs on its own, the test passes. However, when it runs

after testRegisterParserWithAlternativeBeginChar (Line 9),

testConstructor fails. In otherwords, testRegisterParserWith-

AlternativeBeginChar is a polluter for testConstructor. Fur-

thermore, the polluter is in a separate test class as the victim.

In this example, after the polluter runs, it unregisters VDMPar-

ser.class (Line 11). Unregistering means removing this entry

from the shared static field map parsers (Line 27). The victim

expects this entry to be in the parsers map as it tries to create an

instance of this parser at the beginning of its execution. With the

entry missing, an exception is thrown, and the victim fails.

There is also a cleaner for this victim, namely testCreate-

Parser (Line 13). When this cleaner runs after the polluter, and

before the victim, the victim passes. The reason is that when the

cleaner runs, a setup method within its test class (Line 5) is run be-

forehand, which invokes the resetmethod for the shared Sentence-

Factory instance (Line 3). The resetmethod (Line 37) repopulates

the parsers map with all the entries (Line 39), including the VDM-

Parser.class that the victim needs. Note that the cleaner is in

the same test class as the polluter. As the actual “cleaning” of the

shared state is in the setupmethod, any test in the test class of this

setupmethod is also a cleaner. However, if the polluter runs as the

last test in the test class followed by the victim’s test class, then the

victim fails because no other test resets the shared state.

2.2 Detecting OD Tests

Prior work proposed rerunning tests in different, random test or-

ders [13, 29], detecting an OD test when a passing test order and

a failing test order is found. However, there are no guarantees on

whether a particular OD test can be detected within some number

of random test orders. For example, to detect a victim, there must

be a test order in which the polluters are before the victim, and no

cleaners are after all polluters and before the victim. If there are

many cleaners and few polluters, then the chances of obtaining

a test order in which the victim fails can be low, requiring many

different random test orders to find one where the victim fails. In

fact, prior work has reported that the chance of generating a failing

order for an OD test can be as low as 1.2% [28].

To provide guarantees on running test orders in which the OD

test can both pass or fail and motivated by the fact that OD tests

rarely require multiple tests to fail [24], Wei et al. [28] proposed

utilizing the theory behind Tuscan squares [7] to systematically

produce test orders. Given a natural number # , a Tuscan square

consists of # rows, each of which is a permutation of the num-

bers {1, 2, . . . , # }, and every pair ⟨0, 1⟩ of distinct numbers occurs

consecutively in some row. Given a set of # tests, Wei et al. used

Tuscan squares to produce # permutations of these tests, such

that for all pairs of tests ⟨C1, C2⟩, there exists a permutation where

C1 is positioned right before C2 (no other element is positioned in-

between the two) and there exists another permutation where C2
is positioned right before C1. Tuscan squares can be used to con-

struct exactly # permutations for all values of # , except # = 3

or # = 5. For # = 3 and # = 5, Tuscan squares will have to use

1 // test class with polluter and cleaner

2 public class SentenceFactoryTest {

3 private final SentenceFactory instance =

4 SentenceFactory.getInstance ();

5 @Before public void setUp() throws Exception {

6 instance.reset ();

7 }

8 @Test public void

9 testRegisterParserWithAlternativeBeginChar () {

10 ...

11 instance.unregisterParser(VDMParser.class);

12 }

13 @Test public void testCreateParser () { ... }

14 }

15 // test class with victim

16 public class AbstractAISMessageListenerTest {

17 private final SentenceFactory sf =

18 SentenceFactory.getInstance ();

19 private final AISSentence AIS_01 = (AISSentence)

20 sf.createParser("VDM");

21 @Test public void testConstructor () { ... }

22 }

23 // class of shared static field

24 public final class SentenceFactory {

25 // map containing parser classes

26 private static

27 Map <String , Class <? extends SentenceParser >> parsers;

28 public void unregisterParser

29 (Class <? extends SentenceParser > parser) {

30 for (String key : parsers.keySet ()) {

31 if (parsers.get(key) == parser) {

32 parsers.remove(key);

33 break;

34 }

35 }

36 }

37 public void reset() {

38 ...

39 registerParser(tempParsers , "VDM", VDMParser.class);

40 ...

41 parsers = tempParsers;

42 }

43 }

Figure 1: Example OD test from ktuukkan/marine-api.

four and six test orders, respectively, to cover all test pairs (e.g.,

for # = 3, Tuscan squares will need four orders to cover all six

pairs: {⟨C1, C2, C3⟩, ⟨C2, C1, C3⟩, ⟨C3, C2, C1⟩, ⟨C3, C1, C2⟩}. In theory, pairs

{⟨C1, C2⟩, ⟨C2, C1⟩} need not be run in the last two orders. However,

running a fewmore pairs typically adds negligible runtime cost, and

yet doing so can help better detect if C1 and C2 are nondeterministic,

flaky tests or OD tests that require multiple tests as polluters.

Wei et al. proposed treating test classes as the elements in a set,

and so computing the Tuscan square for these test classes results in

test orders of test classes in which each pair of test classes runs right

before and right after each other test class in some permutation

of test classes. The reason they treat test classes as elements, as

opposed to individual tests, is that when tests are run using JUnit

and Surefire (the main unit-testing infrastructure used for Maven-

based Java projects), tests from different test classes cannot be

interleaved. For example, test class A contains two tests, t1 and t2,

and another test class B contains test t3, the test order [A.t1, B.t3,

A.t2] cannot be run in one execution of JUnit and Surefire, because

629

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengpeng Li, M. Mahdi Khosravi, Wing Lam, and August Shi

Figure 2: The test orders produced by Tuscan Class-Only.

tests from one test class B cannot be run in-between tests in another

test class A. However, test classes can be freely ordered relative to

each other. We call this strategy of producing test orders using

Tuscan squares on test classes as Tuscan Class-Only. Essentially,

Tuscan Class-Only produces test orders that cover all test-class

pairs, where a test-class pair (A, B) is covered if there is a test

order where test class A is positioned right before test class B, and

no other test classes are positioned in-between.

Tuscan Class-Only guarantees detecting victims where its pol-

luters are in a separate test class, and there are no cleaners in the

polluter or victim test classes. Tuscan Class-Only will produce a

failing test order when any of the test classes containing polluters

are run right before the victim test class. For Tuscan squares to

generate only # orders, Tuscan squares must position the victim’s

test class first in one order, thereby ensuring that there is at least

one passing test order where the victim’s test class will run before

all test classes that contain polluters. The total number of test or-

ders to try is the number of test classes (except for three or five test

classes, where the number of test orders is four or six, respectively).

As Tuscan Class-Only does not change the order of tests in the

same test class, it may not detect any OD tests that require a differ-

ent ordering between tests in the same test class. For example, if a

victim’s only polluter is in the same test class, and the original test

order has the victim run before the polluter, then Tuscan Class-Only

will never produce a test order where the victim fails. Furthermore,

if the polluter and victim are in different test classes, but there are

cleaners that are in the same test class as the polluter or victim,

then Tuscan Class-Only is also not guaranteed to produce a failing

test order because the original test order can have the cleaner al-

ways be run before the victim or after the polluter, so no matter

how the test classes are reordered, the victim will always have a

cleaner run in-between the polluter and itself. As such, we present

better techniques that can produce test orders that guarantee the

detection of OD tests even when there are cleaners in the same test

class as the victim or its polluters.

Example. Figure 2 illustrates an example set of tests and what test

orders Tuscan Class-Only would produce. In this example, there

are six tests, t1 through t6, where tests t1 through t4 are in test

class A and tests t5 and t6 are in test class B. The original test order

goes from t1 through t6. The figure illustrates the relationship

between tests in terms of OD tests: test t1 is a victim whose polluter

is t2, test t4 is a victim whose polluter is t5, and test t6 is a

victim whose polluter is t2. Furthermore, test t4 is a cleaner for

the polluter/victim pair of t2/t1, and test t5 is a cleaner for the

polluter/victim pair of t2/t6.

Focusing only on test classes, Tuscan Class-Only produces two

test orders: the first test order has all tests in test class A run before

B and the second test order has all tests in test class B run before

A. All tests within a test class are in the same test order relative to

each other as in the original test order. We see that using Tuscan

Class-Only results in detecting the victim t4 since t4 runs after

t5 in the second test order. However, Tuscan Class-Only does not

produce any test order that detects t2 since it does not change the

relative order within test class A, and it does not produce any test

order that detects t6 because cleaner t5 always runs before t6.

3 DETECTION TECHNIQUES

We next describe three new techniques for detecting OD tests via

systematic generation of test orders.

3.1 Tuscan Intra-Class

Wepropose Tuscan Intra-Class to additionally systematically change

the ordering of tests in the same test class. We leverage Tuscan

squares again to produce the permutation of tests within each test

class. Essentially, Tuscan Intra-Class ensures producing test orders

that cover all test-class pairs (as Tuscan Class-Only does) and all

test pairs within each test class.

First, Tuscan Intra-Class uses Tuscan squares to compute permu-

tations of test classes to cover all test-class pairs, similar to Tuscan

Class-Only. Then, for each test class, Tuscan Intra-Class uses Tus-

can squares to compute all the permutations of tests within the

test class to cover those test pairs; we call the test pairs involving

only tests in the same test class as intra-class test pairs. Then, at

each iteration, Tuscan Intra-Class produces a test order by first

positioning the test classes based on the computed permutation

of test classes, and then for each test class, positioning the tests

within based on the computed permutation of tests.

At each iteration, if all test-class pairs are covered, then Tuscan

Intra-Class loops back to position test classes according to the first

permutation of test classes. Similarly, if all intra-class test pairs for

a test class are covered, it loops back to that first permutation of

tests for that test class. This process ensures that Tuscan Intra-Class

will continue to produce test orders if there are still uncovered test-

class pairs or intra-class test pairs. Tuscan Intra-Class continues

producing test orders until all test-class pairs and all intra-class test

pairs within each test class have been covered.

Figure 3 shows how Tuscan Intra-Class produces test orders for

the same tests from Figure 2. The highest number of test methods

within a test class is four (test class A), which is more than the

number of test classes, so Tuscan Intra-Class produces four test

orders. Tuscan Intra-Class iterates through the permutations of

tests within each test class following the computed Tuscan squares

to ensure all intra-class test pairs are covered. Further, the test-class

pairs are covered as well, as at least one test order has test class A

come before B, and another has the opposite. By the second test

order, all intra-class test pairs for B have been covered, so the later

test orders loop through permutations already covered for B.

Same as Tuscan Class-Only, the victim t4 can be detected. Fur-

ther, Tuscan Intra-Class ensures that if the victim has a polluter in

the same test class, it can produce a failing test order. Whether or

not there is a cleaner for the polluter/victim pair does not matter

630

Systematically Producing Test Orders to Detect Order-Dependent Flaky Tests ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Figure 3: The test orders produced by Tuscan Intra-Class.

since Tuscan Intra-Class ensures that there is a test order where the

polluter is positioned right before the victim, with no other tests in

between. We see in this example that victim t1 is detected (in the

second test order) because t1 runs right after its polluter t2, unlike

in the third test order where the cleaner t4 runs in between.

However, Tuscan Intra-Class is not guaranteed to detect OD tests

that require a specific ordering of tests across test classes. Consider

the case where a victim and polluter are in separate test classes, but

there are cleaners that are in the same test class as either the victim

or polluter. Although Tuscan Class-Only and Tuscan Intra-Class

guarantee a test order where the polluter test class is right before

the victim test class, a cleaner may still be run between the polluter

and victim. We see in this example that Tuscan Intra-Class does

not detect victim t6 because, in all test orders where the polluter

test class is run before, the cleaner t5 also runs before t6.

3.2 Tuscan Inter-Class

We propose Tuscan Inter-Class to cover all test pairs, including

those involving tests between test classes, which we call cross-class

test pairs. Recall that tests from different test classes cannot be

interleaved with each other (Section 2.2). To cover a cross-class

test pair, their respective test classes must be positioned right next

to each other, and the tests in the cross-class test pair must be

positioned at the “boundaries” of their respective test classes. As

such, two cross-class test pairs, such as (A.t1, B.t3) and (A.t2,

B.t4), cannot both be covered in the same test order because only

one test can be at the boundaries of each test class, and test classes

cannot repeat in the same test order.

Tuscan Inter-Class first computes the permutations of test classes

that cover all test-class pairs. Starting with the first permutation

of test classes, it iterates through each consecutive pair of test

classes. For each test class of a consecutive test-class pair, Tuscan

Inter-Class computes the permutation of tests that would cover the

intra-class test pairs within that test class. It then maintains one

permutation for the second test class in that pair while iterating the

permutations in the first test class. After iterating through all the

permutations of the first test class, it iterates to the next permutation

for the second test class and loops through the permutations for the

first test class again. In other words, Tuscan Inter-Class explores

the complete combination of test permutations between the first

Figure 4: The test orders produced by Tuscan Inter-Class.

and second test classes of a test-class pair. Tuscan squares within

a test class ensures for each test at least one test order in which

it is first and another in which it is last. As such, every test in the

first test class of the test-class pair can be positioned right before

every test in the second test class. Therefore, all cross-class test

pairs involving tests in the first test class coming before tests in

the second test class would be covered. The intra-class test pairs of

each test class would also get covered as Tuscan Inter-Class iterates

through all permutations of tests in each test class according to

Tuscan squares. After covering all cross-class test pairs for the

current pair of test classes, Tuscan Inter-Class changes to the next

consecutive test-class pair, exploring the combinations of their

permutations. Eventually, all cross-class test pairs involving all

consecutive test-class pairs are covered, and Tuscan Inter-Class

moves on to the next permutation of test classes.

Figure 4 shows how Tuscan Inter-Class produces test orders for

the same example of six tests. The first test order matches that of

Tuscan Intra-Class, but for the second test order, only the order

of tests in A changes, while the order of tests in B remains the

same. This design decision ensures that the cross-class test pair

(t4, t5) is covered. Tuscan Inter-Class iterates through all four

permutations of tests for test class A, so by the fifth test order, it

finally starts changing the ordering of tests in B, and we see that

the permutations of tests in A loop back to the first permutation.

The victim t6 fails because the cleaner t5 does not run between

the polluter t2 and t6 (another test order will also position t2 right

before t6, guaranteeing that t2 will fail). Eventually, for the ninth

test order, the test classes A and B switch positions, and Tuscan

Inter-Class loops through the permutation of tests within each test

class again. Overall, Tuscan Inter-Class tries 16 test orders, covering

all cross-class test pairs and intra-class test pairs.

3.3 Target Pairs

We propose Target Pairs as an alternative technique for producing

test orders while still covering cross-class test pairs. To reduce the

number of test orders, we leverage the insight that not all test pairs

631

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengpeng Li, M. Mahdi Khosravi, Wing Lam, and August Shi

need to be positioned next to each other in a test order if they do

not share any state. If a test does not share a state with another,

then they cannot have any polluter/victim or state setter/brittle

relationship. Target Pairs takes as input a set of test pairs, with the

goal to produce test orders that cover those test pairs. Target Pairs

iteratively produces test orders by greedily producing test orders

that cover the most uncovered test pairs that share a state.

Prior work found that tests in Java can share states in a number

of ways, such as through files, databases, or external services, but

the main type of shared state is through shared heap-state accessed

through static fields [18, 19, 29]. Therefore, we focus on test pairs

that access at least one static field in common between them. We

first instrument the code to track when a test executes a getstatic

or putstatic Java bytecode instruction, indicating it is accessing

or writing to some static field. From the bytecode instruction, we

obtain the static field name. We run each test on this instrumented

code to map each test to the static fields it accesses or writes to.

Note that even if two tests only execute getstatic on the same

static field, it is still possible for one of the tests to be an OD test as

certain method calls that write to static fields can do so using only

getstatic (e.g., adding to a list uses getstatic as it is “rewriting”

the list and not “reassigning” the list). With this mapping of tests

to static fields, we pair together tests that have at least one static

field in common. These test pairs are the input to Target Pairs.

Figure 5 shows the pseudocode for the Target Pairs algorithm.

The entry function is TargetPairs, which takes as input the set

of test pairs to cover. While there are uncovered test pairs, the

algorithm produces a new test order (Line 4), with the aim to cover

the most number of test pairs, adding the produced test order to the

growing list of test orders. At each iteration, the covered test pairs

are removed, and then the algorithm produces a new test order.

The final output is the list of produced test orders.

The function produce_best_order produces a test order that

greedily covers the most uncovered test pairs. The function first

divides up the test pairs into two subsets, the cross-class test pairs,

and the intra-class test pairs. We distinguish between the two be-

cause the cross-class test pairs are the most restrictive, as we cannot

cover more than one cross-class test pair involving the same test

classes in a single test order. As such, the goal is to prioritize cover-

ing cross-class test pairs first. Once the relative ordering between

test classes is set, we then focus on covering intra-class test pairs

within each test class.

The function produce_best_order starts with an empty list of

tests for the test order and first finds the test that occurs the most

among uncovered cross-class test pairs (Line 19). The algorithm

gets the corresponding test classes for such a test and marks it as

scheduled within the test order. It then sets the chosen test as either

the first or last test within the test class. The test is the first test if it

occurs the most as the second test among cross-class test pairs (so it

has the most number of “connections” going left), and it is the last

test if it occurs the most as the first test among cross-class test pairs

(so it has the most number of “connections” going right). Once the

test is set at one of these boundaries for its test class, we extend

test classes in the corresponding direction of that test class if there

are cross-class test pairs that we need to cover. The algorithm then

keeps track of the right-most and left-most test classes in the test

order in two queues (Lines 28 to 29). While there are still test classes

1 def TargetPairs(pairs):

2 testorders = []

3 while len(pairs) > 0:

4 order = produce_best_order(pairs)

5 testorders.append(order)

6 update_pairs(order , pairs) # remove covered pairs

7 return testorders

8

9 def produce_best_order(pairs)

10 # split test -pairs between cross -class and intra -class

11 cc_pairs = get_crossclass_pairs(pairs)

12 ic_pairs = get_intraclass_pairs(pairs)

13 # keep track of already scheduled test classes ,

14 # as they cannot repeat

15 sched_classes = set()

16 best_order = []

17 # find test involved with most cross -class pairs

18 # from yet -to-be-scheduled test classes

19 best_test = get_best_test(cc_pairs , sched_classes)

20 while best_test:

21 test_class = get_test_class(best_test)

22 test_classes_order = [test_class]

23 sched_classes.add(test_class)

24 # set test as first or last based on freq in pairs

25 set_test_in_class(best_test , test_class , cc_pairs ,

26 sched_classes)

27 # queues to keep track of right -most and left -most

28 right_queue = [test_class]

29 left_queue = [test_class]

30 # keep extending right and left ,

31 # and set boundary tests to cover cross -class pairs

32 while right_queue.peek() and left_queue.peek ():

33 if right_queue.peek ():

34 test_class = right_queue.pop()

35 other_test_class = best_right_pair(test_class ,

36 cc_pairs , sched_classes)

37 if other_test_class:

38 sched_classes.add(other_test_class)

39 test_classes_order.append(other_test_class)

40 right_queue.push(other_test_class)

41 if left_queue.peek ():

42 test_class = left_queue.pop()

43 other_test_class = best_left_pair(test_class ,

44 cc_pairs , sched_classes)

45 if other_test_class:

46 sched_classes.add(other_test_class)

47 test_classes_order.prepend(other_test_class)

48 left_queue.push(other_test_class)

49 # get test -order by populating tests within

50 # test classes

51 order = fill_tests(test_classes_order ,

52 cc_pairs , ic_pairs)

53 best_order += order

54 # prepare next iteration for next test

55 best_test = get_best_test(cc_pairs , sched_classes)

56 best_order = fill_other_tests(best_test , icpairs)

57 return best_order

Figure 5: Target Pairs algorithm.

in the queues, the algorithm continues to extend test classes to the

right and left of the current test classes in the test order, covering

as many cross-class test pairs as possible (Lines 32 to 48).

At each iteration of the loop that adds new test classes, the

algorithm first tries to extend right by choosing a test class that can

connect with the current right-most test class based on cross-class

test pairs and yet-to-be-scheduled test classes. If the right-most test

632

Systematically Producing Test Orders to Detect Order-Dependent Flaky Tests ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Figure 6: The test orders produced by Target Pairs.

class already has a test set as the last test within, then only test

classes that can connect with this test among the cross-class test

pairs can be considered. Otherwise, any test class with a test in

a cross-class test pair that connects with some test in the current

right-most test class can be chosen (Line 35). The boundary tests

are set to cover the cross-class test pair, and the extending test

class is scheduled and pushed into the queue as the right-most test

class. A similar logic is applied for extending towards the left. The

loop ends once no more cross-class test pairs can be covered by

extending right and left from the current test classes. The remaining

tests within each scheduled test class so far are ordered to cover

intra-class test pairs while respecting the tests already positioned

at the boundaries of each test class (Line 51). All the tests in this

order are appended to the growing test order (Line 53). Then, the

algorithm tries to find the next best test as to concatenate another

sequence of tests to this growing test order. Once no more tests

can be included to cover cross-class test pairs, any remaining test

classes are added to the end, and the tests within each of those test

classes are permuted to cover intra-class test pairs (Line 56). We

choose to add the remaining test classes to the end as running extra

tests can help detect non-deterministic, flaky tests or OD tests that

require multiple tests as polluters.

Figure 6 shows how Target Pairs would produce test orders for

the same example of six tests. The set of test pairs to cover is shown

in the figure. For the first test order, Target Pairs chooses a test

that is involved in the most cross-class test pairs, which in this case

is t5. Choosing a cross-class test pair to extend to the right, Target

Pairs chooses (t5, t3) and extends test class A to the right. It fills

in the tests in each test class, covering intra-class test pair (t1,

t2) as well. For the next iteration, Target Pairs produces a new test

order that first tries to cover cross-class test pair (t4, t5) and

then fills in tests to cover intra-class test pair (t2, t1). Eventually,

all intra-class test pairs are covered, and only cross-class test pairs

remain. The subsequent test orders all aim to cover one of these

cross-class test pairs, randomly filling in the remaining tests in each

test class as it does not need to consider intra-class test pairs any

longer. Overall, Target Pairs produces six test orders that detect all

victims, including victim t6, which is run right after its polluter t2

from another test class in the fifth test order.

3.4 Guarantees for Each Technique

Each technique has different guarantees concerning the OD tests

they can detect with the test orders they produce. Tuscan Class-

Only is guaranteed to detect all victims that have all polluters in

another test class and there are no cleaners in either the polluter’s

or victim’s test class. Tuscan Class-Only is also guaranteed to detect

brittles if there are state setters in a test class different than the

brittle and there are no state setters in the brittle’s test class.

Tuscan Intra-Class guarantees to detect all OD tests that Tuscan

Class-Only can detect. Further, it can also detect all victims whose

polluters are in the same test class as the victim. Concerning brittles,

Tuscan Intra-Class also guarantees to detect brittles that have all

state setters that are in the same test class as the brittle. The reason

it cannot guarantee detecting brittles with state setters in both the

same test class and different test class as the brittle is because a

brittle only fails if it is run before all state setters. Tuscan Intra-Class

will guarantee (1) that the brittle will run before every test in its

own test class and (2) that the brittle’s test class will run before

every other test class, but guarantees (1) and (2) may not be in the

same test order. If guarantees (1) and (2) are satisfied in separate

orders, then a brittle may still go undetected.

Tuscan Inter-Class is guaranteed to detect all OD tests. It can

detect victims with polluters in other test classes and with cleaners

in the same test class as the polluter or victim (which is not handled

by Tuscan Class-Only), because Tuscan Inter-Class is guaranteed

to produce a test order where each test across test classes is right

next to each other. Tuscan Inter-Class is also guaranteed to detect

all brittles as well (which is not handled by Tuscan Intra-Class),

because it produces test orders where the brittle is the absolute first

test in the test order (the brittle’s test class is the first test class, and

the brittle is the first test in that test class).

Target Pairs is guaranteed to detect all victims whose single

polluter modifies shared state via static fields, resulting in different

test outcomes. Target Pairs is also guaranteed to detect brittles with

just one state setter that sets the shared state via static fields. Note

that Target Pairs cannot guarantee the detection of brittles with

more than one state setter since it cannot guarantee the brittle runs

before all other tests (same as Tuscan Intra-Class).

4 EVALUATION SETUP

For our evaluation, we use a dataset of known OD tests from prior

work [28]. Prior work also categorized the OD tests into brittles

and victims and reported the corresponding state setters/polluters

/cleaners for these tests. We obtain 47 subjects for our evaluation (a

subject is a GitHub Maven project and its module that contains OD

633

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengpeng Li, M. Mahdi Khosravi, Wing Lam, and August Shi

Table 1: Subjects used in evaluation.

Test # OD

ID Project-Module Name Class Method Tests

1 activiti-spring-boot-starter 11 45 16

2 fastjson 2308 4953 2

3 dubbo-cluster 23 112 3

4 dubbo-common 70 520 1

5 dubbo-config-api 23 263 37

6 dubbo-filter-cache 5 9 1

7 dubbo-rpc-api 23 60 2

8 dubbo-rpc-dubbo 16 74 2

9 dubbo-serialization-fst 4 21 1

10 hadoop-auth 22 125 1

11 hadoop-hdfs-nfs 12 64 28

12 hadoop-mapreduce-client-app 49 394 4

13 hadoop-mapreduce-client-core 60 293 5

14 hadoop-mapreduce-client-hs 26 206 2

15 portlet 12 61 4

16 c2mon-server-elasticsearch 11 19 1

17 cukes-http 4 14 1

18 integration-test-2_1 40 233 9

19 integration-test-2_2 4 23 7

20 integration-test-3_10 3 24 2

21 integration-test-3_7 1 6 6

22 dropwizard-logging 18 80 1

23 elastic-job-lite-core 98 511 3

24 hsac-fitnesse-fixtures 49 251 1

25 spring-data-ebean 2 48 1

26 jhipster-registry 14 53 1

27 lib 2 163 25

28 marine-api 71 926 12

29 openpojo 213 1185 3

30 spring-boot-actuator-auto... 166 733 8

31 spring-boot 230 2255 2

32 spring-boot-test-autoconfigure 103 234 4

33 spring-boot-test 115 721 1

34 spring-data-envers 4 10 2

35 spring-ws-core 145 971 15

36 spring-ws-security 43 122 2

37 aismessages 18 44 2

38 unix4j-command 30 290 1

39 compute 74 488 1

40 request 49 325 1

41 wdtk-dumpfiles 9 50 3

42 wdtk-util 5 23 2

43 naming 11 82 44

44 subsystem 10 25 1

45 wro4j-core 137 851 15

46 carbon-apimgt 46 530 1

47 riptide-spring-boot-starter 25 40 2

Average × 2 | Sum × 1 93.9 394.3 289

tests). Table 1 shows the breakdown and statistics of the subjects.

For each subject, we show an ID for the subject to use in subsequent

tables, the GitHub project and module name for the subject1, the

number of test classes and the number of tests, and the number of

OD tests previously detected for the subject. Overall, we see that

each subject has, on average, 93.9 test classes and 394.3 tests. There

are a total of 289 OD tests in this dataset.

For each subject, we pass the original test orders as input to each

technique. Original test orders are obtained from running the test

suite once and recording the order in which tests are run. For Target

Pairs, we also run the tests once to collect the static fields each test

depends upon to construct the test pairs that need to be covered. We

also run Tuscan Class-Only as a baseline technique for comparison

purposes. We measure the time it takes to compute the test orders

for each technique. However, we find that for some subjects, Tuscan

Inter-Class and Target Pairs would take an immense amount of

time to produce test orders, given the large number of test pairs

to be covered (see Section 5 for more details). For Tuscan Inter-

Class cases, we compute the theoretical number of test orders for

subject ID 2 due to its large number of possible orders, and we run

the actual technique for all other subjects. However, we cannot

compute the theoretical for Target Pairs, so we set a timeout of 24

hours per subject when producing test orders.

Since we know which tests are OD tests as well as their cor-

responding state setters/polluters/cleaners, we can simulate how

effective a technique is at detecting the OD test by checking each

of the produced test orders. An OD test is detected if there is at

least one passing test order and one failing test order. We can com-

pute whether an OD test passes or fails in a test order based on

the relative positions of state setters/brittles and polluters/victim-

s/cleaners (Section 2.1). Further, we simulate how long it takes to

run a technique on a subject by measuring the time it takes to run

all the tests in a subject (averaged over five runs). The total time is

the sum of the time to produce the test orders and the product of

the time to run all tests and the number of test orders.

5 EVALUATION

Our evaluation addresses the following research questions:

RQ1: How many test orders does each technique produce?

RQ2: How effective is each technique at detecting OD tests?

RQ3: How cost-effective is each technique?

RQ4: What is the minimal number of test orders needed by each

technique to detect known OD tests?

5.1 RQ1: Number of Test Orders

Table 2 shows the results from running each technique on all 47

subjects. We show under the columns “# orders total” the number

of test orders each technique produces for each subject (“t/o” means

timeout). Overall, we see that Tuscan Class-Only produces the least

number of test orders across all subjects, with an average of 94.0 test

orders, while Tuscan Inter-Class produces themost, with an average

of 769148.3 test orders. This trend matches our expectations.

The number of test orders that Tuscan Intra-Class produces

is, on average, a few more than those produced by Tuscan Class-

Only (104.7 vs. 94.0). For individual subjects, the two techniques

1Maven projects can have multiple modules

634

Systematically Producing Test Orders to Detect Order-Dependent Flaky Tests ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 2: Detection results from running the techniques.

Tuscan Class-Only Tuscan Intra-Class Tuscan Inter-Class Target Pairs

orders % OD # orders % OD # orders % OD # orders % OD

ID total min. det. total min. det. total min. det. total min. det.

1 11 2 18.8 11 4 100.0 1794 5 100.0 217 3 100.0

2 2308 2 100.0 2308 2 100.0 24501496 2 100.0 t/o t/o t/o

3 23 2 33.3 27 2 100.0 11244 2 100.0 1616 2 100.0

4 70 0 0.0 70 2 100.0 261418 2 100.0 1005 2 100.0

5 23 0 0.0 38 37 100.0 64268 37 100.0 469 18 48.6

6 6 0 0.0 6 2 100.0 70 2 100.0 4 0 0.0

7 23 0 0.0 23 2 100.0 3386 2 100.0 90 2 100.0

8 16 0 0.0 16 2 100.0 5036 2 100.0 512 2 100.0

9 4 0 0.0 14 2 100.0 224 2 100.0 70 2 100.0

10 22 2 100.0 26 2 100.0 14270 2 100.0 726 2 100.0

11 12 2 100.0 22 2 100.0 3330 2 100.0 757 2 100.0

12 49 2 25.0 49 2 100.0 148542 2 100.0 13500 2 100.0

13 60 2 80.0 60 2 100.0 82814 2 100.0 5228 2 100.0

14 26 2 100.0 26 2 100.0 39500 2 100.0 4500 2 100.0

15 12 0 0.0 12 2 100.0 3306 2 100.0 353 2 100.0

16 11 0 0.0 11 2 100.0 312 2 100.0 50 2 100.0

17 4 0 0.0 6 2 100.0 122 2 100.0 10 2 100.0

18 40 2 11.1 40 8 100.0 50658 8 100.0 7488 8 100.0

19 4 0 0.0 8 7 100.0 382 7 100.0 147 7 100.0

20 4 0 0.0 16 2 100.0 316 2 100.0 150 2 100.0

21 1 0 0.0 6 6 100.0 6 6 100.0 10 4 66.7

22 18 0 0.0 22 0 0.0 5640 2 100.0 406 2 100.0

23 98 2 33.3 98 2 100.0 256130 2 100.0 1875 2 100.0

24 49 0 0.0 49 2 100.0 60816 2 100.0 1979 2 100.0

25 2 0 0.0 41 0 0.0 574 2 100.0 574 2 100.0

26 14 2 100.0 14 2 100.0 2572 2 100.0 12 0 0.0

27 2 0 0.0 161 2 100.0 644 2 100.0 278 2 100.0

28 71 0 0.0 71 2 100.0 841810 2 100.0 733 2 100.0

29 213 2 100.0 213 2 100.0 1392896 2 100.0 29154 2 100.0

30 166 0 0.0 166 2 100.0 531042 2 100.0 13419 2 100.0

31 230 0 0.0 230 2 100.0 5015642 2 100.0 t/o t/o t/o

32 103 0 0.0 103 2 100.0 53474 2 100.0 826 2 50.0

33 115 0 0.0 200 2 100.0 472332 2 100.0 1026 2 100.0

34 4 0 0.0 6 0 0.0 58 2 100.0 0 0 0.0

35 145 2 6.7 145 8 100.0 932108 8 100.0 6709 8 100.0

36 43 0 0.0 43 0 0.0 14452 2 100.0 80 0 0.0

37 18 0 0.0 18 2 100.0 1788 2 100.0 216 2 100.0

38 30 0 0.0 41 2 100.0 79464 2 100.0 10004 2 100.0

39 74 0 0.0 74 2 100.0 232368 2 100.0 13102 2 100.0

40 49 0 0.0 49 2 100.0 101578 2 100.0 10298 2 100.0

41 9 0 0.0 11 2 66.7 2116 2 100.0 411 2 100.0

42 6 0 0.0 9 2 100.0 492 2 100.0 6 2 100.0

43 11 2 90.9 20 2 97.7 5712 2 100.0 738 3 100.0

44 10 2 100.0 10 2 100.0 554 2 100.0 39 2 100.0

45 137 2 93.3 137 3 100.0 713822 3 100.0 24269 2 100.0

46 46 0 0.0 169 2 100.0 237882 2 100.0 34433 2 100.0

47 25 0 0.0 25 2 100.0 1512 2 100.0 38 2 100.0

Avg. 94.0 2.0 36.0 104.7 3.4 97.2 769148.3 3.3 100.0 4167.3 2.9 89.8

635

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengpeng Li, M. Mahdi Khosravi, Wing Lam, and August Shi

often produce the same number of test orders, which suggests

that the number of test orders is dominated by the number of test

classes as opposed to tests within a test class. Target Pairs produces

substantially more test orders (4167.3), though still much fewer

than Tuscan Inter-Class. We observe that Target Pairs still needs to

cover a large number of test pairs, with an average of 499399.4 per

subject. Further, they are dominated by the number of cross-class

test pairs, with an average of 494869.7 per subject.

While Tuscan Inter-Class produces a large number of test orders,

this number is still much less than the number of all possible valid

test orders for a subject. The number of possible test orders for

a subject would be the number of permutations of test classes

multiplied by the product of the number of permutations of tests

per test class, which well exceeds 10 million for most subjects.

5.2 RQ2: Detected OD Tests

Table 2 shows how effective each technique is at detecting OD

tests, measured by the percentage of the known OD tests detected

(shown under column “% of OD det.”). We see that Tuscan Class-

Only produces the fewest number of test orders, but it detects the

least number of OD tests, detecting 36.0% of the known 289 OD tests.

Tuscan Intra-Class detects more OD tests, detecting 97.2%.Whenwe

look into the OD tests that Tuscan Intra-Class does not detect, we

find that they are victims that have polluters in separate test classes

but have cleaners in the same test class as the polluter or victim

(Section 3.1), or they are brittles with multiple state setters in both

the same test class as brittles and different test class than brittles

(Section 3.4). Meanwhile, Target Pairs detects 89.8% of known OD

tests, which is lower than what Tuscan Intra-Class detects. Our

inspection shows that Target Pairs suffers similar problems with

brittles as Tuscan Intra-Class. In addition, for some victims, the

shared state between polluter and victim is not from static fields, so

Target Pairs does not attempt to cover the relevant test pairs. Future

work may track more dependencies to provide additional test pairs

for Target Pairs to cover. However, we see that Target Pairs can

detect four victims that Tuscan Intra-Class does not detect, showing

some value in specifying the relevant test pairs to cover.

5.3 RQ3: Cost-Effectiveness

Figure 7 shows boxplots that illustrate the distribution of the num-

ber of seconds that each technique takes to produce test orders

and then run those test orders across all subjects. Note that, for

presentation purposes, the y-axis is broken into parts because some

techniques need a large amount of time relative to others, partic-

ularly for Tuscan Inter-Class and Target Pairs. The black line in

the boxes represents the median, while the red triangle represents

the mean. We see that the mean is always much larger than the

median because there are a few subjects that need much more time

than others, generally because the techniques all need to produce

many more test orders for those subjects. Unexpectedly, we find

that Tuscan Inter-Class takes much more time compared against

other techniques due to the large number of test orders it produces.

We also evaluate the cost-effectiveness of each technique by

measuring the average time it takes to detect an OD test, computed

as the time to produce test orders, then run all test orders divided by

the number of detectable OD tests per each technique. We find that

2

4
1e7

2

4

1e5

Tuscan Class-Only Tuscan Intra-Class Tuscan Inter-Class Target Pairs
0

2

4

6
1e3

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 7: Time to run for all four techniques.

Tuscan Intra-Class is the most cost-effective technique, detecting an

OD test every 2398 seconds, on average. While Tuscan Class-Only

does not detect as many OD tests as Tuscan Intra-Class, it does

produce fewer test orders. Yet, on average, Tuscan Class-Only still

takes 4634 seconds to detect an OD test.

We find that Target Pairs is quite ineffective at detecting OD tests,

detecting an OD test every 177518 seconds, on average. With Target

Pairs detecting fewer OD tests and being less cost-effective than

Tuscan Intra-Class, Tuscan Intra-Class is likely the best technique

for developers to balance the cost and detectability of OD tests.

Lastly, we find that Tuscan Inter-Class is the most cost ineffective

technique to detect OD tests, detecting an OD test every 16112163

seconds, on average. The main advantage of using Tuscan Inter-

Class is the guaranteed detection of all OD tests that depend on just

one other test (Section 3.4). That being said, unless one must detect

all possible OD tests, Tuscan Intra-Class detects slightly fewer OD

tests while being much more cost-effective.

5.4 RQ4: Minimal Test Orders Needed

While each technique producesmany test orders, not all of those test

orders are needed to detect possible OD tests. For each technique,

we also compute the ideal, minimal number of test orders needed

to detect the possible OD tests the technique is able to detect. We

consider an OD test detected if there is at least one passing test

order and one failing test order, so a minimum of two test orders

are needed. Since we know the exact polluters, victims, cleaners,

brittles, and state setters [28], we also know which test orders

pass/fail for each OD test. We compute the minimal set of test

orders that can detect all known OD tests by greedily selecting

the produced test order that detects the most undetected OD tests,

continuing until all are detected by this minimal set of test orders.

We see that on average the number of minimal test orders needed

is rather small, fewer than 4 for each technique, This number is in

sharp contrast to the total number of test orders each technique

would produce, e.g., the average of 769148.3 test orders for Tuscan

Inter-Class drops all the way down to 3.3.

The number of minimal test orders needed suggests that a form

of prioritization or selection of test orders can be quite effective

636

Systematically Producing Test Orders to Detect Order-Dependent Flaky Tests ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

in helping to detect OD tests efficiently. There are some few test

orders that can detect a large percentage of OD tests in a subject, so

heuristics that can favor running such test orders first can greatly

decrease the cost of detection. A developer can then just run the

higher priority test orders up to a desired threshold and still feel

confident about detecting all the OD tests. These results motivate

future work in test order prioritization or selection.

6 THREATS TO VALIDITY

The results of our evaluation may not generalize to other subjects.

Our evaluation subjects utilize a prior dataset of OD tests with an

extensive categorization of the tests within [28]. These OD tests

were detected from popular open-source Java projects.

Our experimental results are based on simulations that require

knowledge of the characteristics of the tests, e.g., which tests are

polluters and cleaners. We rely on the previous dataset’s classi-

fications, but there may be misclassifications or incomplete data.

We checked and reran the categorized tests in the dataset to con-

firm their characteristics, and we corrected some misclassifications,

which we shared with the authors of the prior work. We also simu-

late runtime based on the average time to run all tests in a single

test order. We believe the time for running all tests, even in different

test orders, remains roughly similar.

7 RELATED WORK

Luo et al. previously conducted the first empirical study on flaky

tests [19]. They found OD tests to be among the top three most

prominent categories of flaky tests. Since then, there have been

other empirical studies on flaky tests in different domains and appli-

cations, such as pursuing developers’ perspectives on flaky tests [5]

or their effects on the development lifecycle [12], on Android appli-

cations [25], or on UI testing [23]. Flaky tests are prevalent in both

open-source projects and in industry [10–12, 16, 21, 22].

Zhang et al. proposed DTDetector, which detects OD tests by

rerunning tests in random test orders or running pairs of tests [29].

Lam et al. developed iDFlakies, a tool for randomizing test orders

and partially classifying the flaky tests into OD tests or non-OD

tests [1, 13] in Java projects. Gruber et al. developed FLAPY to

detect OD tests in a similar manner for Python projects [8]. Li et

al. proposed IncIDFlakies, which makes iDFlakies evolution-aware,

by analyzing only tests that are affected by code changes to detect

newly-introduced OD tests [17]. Our techniques do not leverage

code changes, and therefore we do not compare against IncID-

Flakies. Wei et al. proposed detecting non-idempotent-outcome

tests, which are tests that fail when run twice in the same JVM [27];

these tests may be indicative of future problems with shared states,

resulting in OD tests. Other work has focused on detecting OD

tests by analyzing shared states. Gyori et al. proposed PolDet to

detect tests that modify shared heap-state without resetting it after

execution, meaning they are potential polluters [9]. We also analyze

dependencies on heap-state through static fields for Target Pairs.

Bell et al. proposed ElectricTest, which tracks what state tests read

from andwrite to, forming dependencies between tests [4]. Gambi et

al. followed up on ElectricTest with their technique PraDet, which

would additionally run tests that share states together to check

whether a test fails [6]. We also track test dependencies, and our

techniques aim to cover relevant test pairs. Our techniques aim to

cover as many test pairs as possible in a single test order to reduce

the overall cost instead of only running test pairs on their own.

Our work builds upon Wei et al.’s prior work on systematically

covering test pairs to detect OD tests [28]. Their approach specifi-

cally targets covering test-class pairs, which we evaluate as Tuscan

Class-Only in this work. We propose Tuscan Intra-Class and Tuscan

Inter-Class to cover more test pairs than what Tuscan Class-Only

handles. Due to the large number of test orders necessary to cover

all test pairs given the constraints of test classes, we further propose

Target Pairs to reduce the number of test orders needed by reducing

the necessary test pairs that should be covered.

One way to prevent OD test failures is to run each test in isola-

tion to prevent the sharing of states, but doing so greatly increases

the cost of testing [20]. Bell and Kaiser proposed a runtime environ-

ment to automatically reset the state between tests without running

tests in isolation [3]. However, the runtime environment still in-

troduces some extra overhead. Shi et al. proposed iFixFlakies [24]

to automatically repair OD tests. They use cleaners to generate

patches. In this work, we use their categorization of tests involved

in OD tests to conduct our simulations to determine whether an

OD test can be detected. Inspired by iFixFlakies, Wang et al. devel-

oped iPFlakies for Python projects to automatically repair Python

OD tests [26]. Li et al. later improved upon iFixFlakies, proposing

ODRepair to repair OD tests that do not have cleaners [18]. They

track the shared state from static fields and generate patches that

use methods from code-under-test that interact with those static

fields. All these techniques require knowing about the OD test and

the related other tests (e.g., polluter for a victim). Our techniques

that identify a passing test order and failing test order for each OD

test enable these other approaches to generate patches. Besides re-

pairing OD tests, Lam et al. proposed enhancing regression testing

algorithms to accommodate the effects of OD tests [14]. Their en-

hancements update the test orders proposed by regression testing

techniques, such as regression test selection or test-case prioritiza-

tion, to include and order tests based on known test dependencies,

ensuring the tests do not fail due to the test order changes.

8 CONCLUSIONS

Order-dependent tests (OD tests) are a prominent category of flaky

tests and are tests whose outcome depends on the order in which

they are run. Prior work has proposed numerous techniques to

detect OD tests, often resorting to the generation and execution

of random test orders. Recently, a more systematic approach has

been proposed to generate test orders so that all test class pairs

are covered. In this work, we expand on the systematic generation

of test orders by proposing three new techniques. Our techniques

can detect 97.2% of known OD tests compared to just 36.0% of OD

tests from prior work while running a similar number of test orders.

Our evaluation of the number of minimal test orders needed by

each technique to detect all possible OD tests reveals a tremendous

opportunity for future work to prioritize test orders.

ACKNOWLEDGEMENTS

We would like to acknowledge NSF grant no. CCF-2145774 and

Dragon Testing for their software testing research support.

637

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Chengpeng Li, M. Mahdi Khosravi, Wing Lam, and August Shi

REFERENCES
[1] 2019. iDFlakies. https://github.com/idflakies/iDFlakies.
[2] 2023. Systematically Producing Test-Orders to Detect Order-Dependent Flaky

Tests Dataset. https://sites.google.com/view/systematically-detecting-od.
[3] Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In

International Conference on Software Engineering.
[4] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient

dependency detection for safe Java test acceleration. In European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.

[5] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding flaky tests: The developer’s perspective. In European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering.

[6] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test depen-
dency detection. In International Conference on Software Testing, Verification, and
Validation.

[7] Solomon W. Golomb and Herbert Taylor. 1985. Tuscan squares – A new family
of combinatorial designs. Ars Combinatoria 20, B (1985).

[8] Martin Gruber, Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2021. An
empirical study of flaky tests in Python. In International Conference on Software
Testing, Verification, and Validation.

[9] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable test-
ing: Detecting state-polluting tests to prevent test dependency. In International
Symposium on Software Testing and Analysis.

[10] Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Opportuni-
ties and open problems for static and dynamic program analysis. In International
Working Conference on Source Code Analysis and Manipulation.

[11] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root causing flaky tests in a large-scale industrial setting. In
International Symposium on Software Testing and Analysis.

[12] Wing Lam, Kivanç Muşlu, Hitesh Sajnani, and Suresh Thummalapenta. 2020.
A study on the lifecycle of flaky tests. In International Conference on Software
Engineering.

[13] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In International
Conference on Software Testing, Verification, and Validation.

[14] Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie. 2020.
Dependent-test-aware regression testing techniques. In International Symposium
on Software Testing and Analysis.

[15] Wing Lam, StefanWinter, Angello Astorga, Victoria Stodden, and Darko Marinov.
2020. Understanding reproducibility and characteristics of flaky tests through
test reruns in Java projects. In International Symposium on Software Reliability
Engineering.

[16] Johannes Lampel, Sascha Just, Sven Apel, and Andreas Zeller. 2021. When life
gives you oranges: Detecting and diagnosing intermittent job failures at Mozilla.
In European Software Engineering Conference and Symposium on the Foundations

of Software Engineering.
[17] Chengpeng Li and August Shi. 2022. Evolution-aware detection of order-

dependent flaky tests. In International Symposium on Software Testing and Analy-
sis.

[18] Chengpeng Li, Chenguang Zhu, Wenxi Wang, and August Shi. 2022. Repairing
order-dependent flaky tests via test generation. In International Conference on
Software Engineering.

[19] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In International Symposium on Foundations of
Software Engineering.

[20] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. 2011. Finding bugs by isolating
unit tests. In European Software Engineering Conference and Symposium on the
Foundations of Software Engineering.

[21] Md Tajmilur Rahman and Peter C. Rigby. 2018. The impact of failing, flaky, and
high failure tests on the number of crash reports associated with Firefox builds.
In European Software Engineering Conference and Symposium on the Foundations
of Software Engineering.

[22] Maaz Hafeez Ur Rehman and Peter C. Rigby. 2021. Quantifying no-fault-found
test failures to prioritize inspection of flaky tests at Ericsson. In European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing.

[23] Alan Romano, Zihe Song, Sampath Grandhi, Wei Yang, and Weihang Wang. 2021.
An Empirical Analysis of UI-Based Flaky Tests. In International Conference on
Software Engineering.

[24] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering.

[25] Swapna Thorve, Chandani Sreshtha, and Na Meng. 2018. An empirical study of
flaky tests in Android apps. In International Conference on Software Maintenance
and Evolution.

[26] Ruixin Wang, Yang Chen, and Wing Lam. 2022. iPFlakies: A framework for de-
tecting and fixing Python order-dependent flaky tests. In International Conference
on Software Engineering (Tool Demonstrations Track).

[27] Anjiang Wei, Pu Yi, Zhengxi Li, Tao Xie, Darko Marinov, and Wing Lam. 2022.
Preempting flaky tests via non-idempotent-outcome tests. In International Con-
ference on Software Engineering.

[28] Anjiang Wei, Pu Yi, Tao Xie, Darko Marinov, and Wing Lam. 2021. Probabilistic
and systematic coverage of consecutive test-method pairs for detecting order-
dependent flaky tests. In Tools and Algorithms for the Construction and Analysis
of Systems.

[29] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In International Symposium on Software Testing and Analysis.

Received 2023-02-16; accepted 2023-05-03

638

	Abstract
	1 Introduction
	2 Background
	2.1 Order-Dependent (OD) Tests
	2.2 Detecting OD Tests

	3 Detection Techniques
	3.1 Tuscan Intra-Class
	3.2 Tuscan Inter-Class
	3.3 Target Pairs
	3.4 Guarantees for Each Technique

	4 Evaluation Setup
	5 Evaluation
	5.1 RQ1: Number of Test Orders
	5.2 RQ2: Detected OD Tests
	5.3 RQ3: Cost-Effectiveness
	5.4 RQ4: Minimal Test Orders Needed

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

