Optimizing Continuous Development By Detecting
and Preventing Unnecessary Content Generation

Talank Baral', Shanto Rahman?, Bala Naren Chanumolu', Basak Balci®, Tuna Tuncer®, August Shi?>, Wing Lam

1

! George Mason University, USA
{tbaral,bchanumo,winglam} @ gmu.edu
2 The University of Texas at Austin, USA
{shanto.rahman,august} @utexas.edu
3 Technical University of Munich, Germany
{basak.balci,tuna.tuncer } @tum.de

Abstract—Continuous development (CD) helps developers
quickly release and update their software. To enact CD, de-
velopers customize their CD builds to perform several tasks,
including compiling, testing, static analysis checks, etc. However,
as developers add more tasks to their builds, the builds take
longer to run, therefore slowing down the entire CD process.
Furthermore, developers may unknowingly include tasks into
their builds whose results are not used (e.g., generating coverage
files that are never read or uploaded anywhere), therefore wasting
build runtime doing unnecessary tasks.

We propose OptCD, a technique to dynamically detect unnec-
essary work within CD builds. Our intuition is that unnecessary
work can be identified by the generation of files that are not used
by any other task within the build. OptCD runs alongside a CD
build, tracking the generated files during the build and which
files are read/written. Files that are written to but are never read
from are unnecessary content from a build. Based on the names
of the unnecessary files, OptCD then maps the files to the specific
build tasks responsible for generating or writing to those files.
Finally, OptCD leverages ChatGPT to suggest changing the build
configuration to disable generating these unnecessary files. Our
evaluation of OptCD on 22 open-source projects finds that 95.6 %
of projects generate at least one unused directory, a directory
whose contents are all unnecessarily generated. OptCD identifies
the correct task that generates 92.0% of the unused directories.
Further, OptCD can produce a patch for the CD configuration
file to prevent generating 72.0% of the unused directories. Using
the patches, we reduce the runtime by 7.0% on average for the
projects we studied. We submitted 26 pull requests for the unused
directories that we could disable. Developers have accepted 12
of them, with five rejected, and nine still pending.

I. INTRODUCTION

Developers practice continuous development (CD) to release
their software quickly and make continuous, ongoing improve-
ments after the software is released. The process of CD typi-
cally involves a build that is triggered when developers make
changes to their code and commit/push their changes. Within
this build, various other processes are performed, such as
(1) continuous integration [1]-[5], which checks whether the
changes can be integrated into the code base without breaking
existing functionality, and (2) continuous deployment, which
releases the newly changed software to end users. Developer
can customize CD builds to release the changes and perform
various tasks, commonly including compiling, testing, and
analyzing the code. If any of these tasks fail, then developers

need to debug and fix their code changes before they can make
any additional changes. There are an abundance of CD-related
services available to developers, such as GitHub Actions [6],
Jenkins [7], or Travis CI [8]. These services help developers
by providing temporary virtual machines to compile, test, and
analyze code.

CD can be time-consuming, given that CD builds occur on
every change, and developers are frequently making changes
to their code base [9]. Furthermore, a developer may configure
the CD build to perform many other tasks beyond the basics of
checking whether the code compiles or that tests pass, such as
collecting code coverage [10], building documentation [11],
or static analysis [12]. Unfortunately, developers may end
up not using any of the results of these additional tasks
they configured for the CD build. For example, if developers
configured the CD build to collect code coverage but then do
not upload those results elsewhere before the virtual machines
are destroyed, then the work that went into collecting the
results is unnecessary and a waste of CD build time.

We propose Optimizing Continuous Development (OptCD)
to automatically identify the generation of unnecessary content
during CD builds. Tasks in CD builds will often create or
modify files. The intuition of OptCD is that if these files
are never read or used after they were created or modified,
then the work that went into creating or modifying the files
is unnecessary. As such, if we can identify these unused files
and map them back to the CD-build tasks that resulted in those
files, then developers can disable or reconfigure these tasks,
therefore saving overall CD build time.

For a given CD-configured project, OptCD first modifies the
CD configuration to log the file reads/writes that occur during
a CD build. After the CD build finishes, OptCD then analyzes
the generated log, identifying unused files as those where
there are no read operations to the file after the final write
operation. OptCD then clusters the unused files together into
unused directories, namely directories that contain only unused
files. The intuition is that build tasks often do not generate
individual files but rather a set of files all gathered within
some common directory (e.g., code coverage reports). OptCD
systematically searches through the available tasks and checks
whether disabling the task also disables the generation of the

unused directories. To speed up this search process, OptCD
leverages three strategies to prioritize the order in which
to search through the tasks based on the unused directory
name: (1) Information Retrieval, (2) ChatGPT, and (3) Log
Search. The Information Retrieval strategy uses TF-IDF [13]
to prioritize the build tasks based on the task names that
are most related to the unused directory name. The ChatGPT
strategy relies on asking ChatGPT [14] to prioritize the list
of build tasks based on which ones it thinks are most likely
responsible for generating a given unused directory. The Log
Search strategy parses the generated log of file reads/writes
as well as the default log of build activity, matching the
timestamps of the creation of unused files to the timestamps
of build tasks. Whichever task has a timestamp that overlaps
with the final creation/modification timestamp of the unused
files is ranked the highest. In all three strategies, if none of the
ranked list of tasks are correct (i.e., disabling the task does not
disable the generation of the unused files), OptCD proceeds
to search on the remaining unranked tasks. Once the exact
task is identified, a developer may disable this task on their
CD and local builds by removing this task from the project
configuration file. If a developer wishes to disable the task
only on their CD builds, OptCD can also leverage ChatGPT
to help generate a patch for the CD build configuration file to
stop the generation of files within the unused directories.

We evaluate OptCD on 22 popular, open-source, Maven
projects from GitHub that use GitHub Actions for their CD.
We use OptCD to reconfigure their CD builds to track the
unused directories and later to identify the CD build tasks,
specifically the Maven plugins that generated unused direc-
tories during the build. We find that 95.6% of projects in
our evaluation generate at least one unused directory, with an
average of 4.0 unused directories per project. OptCD’s search
strategies are able to identify the correct plugin responsible for
generating 92.0% of the unused directories. OptCD can also
use ChatGPT to suggest a patch to the CD build configuration
to disable generating 72.0% of unused directories. Unfor-
tunately, not all unused directories can be easily disabled,
e.g., some directories are automatically generated by build
systems, such as Maven, to contain diagnostic information that
is often unused. When we use OptCD’s patches for CD build
files, we reduce the average time to run the corresponding
build command by 7.0%. We submitted 26 pull requests for
disabling unused directories. Developers have accepted 12 pull
requests, with five rejected, and nine pending.

This paper makes the following main contributions:

o We propose dynamically tracking file reads/writes during
CD builds to identify the generation of unnecessary con-
tent that can be disabled to speed up CD build runtime.

o We present OptCD [15] to identify the Maven build tasks
doing unnecessary work during a Maven build when a
GitHub Actions build is triggered.

e We evaluate OptCD on 22 Maven projects that use
GitHub Actions for their CD. We find that 95.6% of
projects generate at least one unused directory. OptCD
can identify a change to the CD configuration file to

disable the generation of 72.0% of identified unused
directories. We sent 26 pull requests to developers with
these changes — 12 are accepted, nine are pending, and
five are rejected.

II. BACKGROUND

Continuous development (CD) is the process of continu-
ously developing and releasing code, which involves checks
and other processes to ensure the changes are safe to integrate
and to deploy [1], [2], [4], [5]. Developers can configure the
CD process for their projects, such that changes they make
to the code can trigger a CD build that performs a number of
tasks to check for the correctness of those changes. Commonly
what happens is that these changes are automatically pulled
onto a remote server that tries to compile, test, and perform
any additional tasks on the code. Depending on the tasks,
the CD build may fail, which in turn prevents developers
from integrating their changes until they inspect and fix the
problems in those changes. There are an abundance of CD-
related systems and services available to developers, such as
GitHub Actions [6], Jenkins [7], or Travis CI [8].

In this work, we specifically focus on GitHub Actions, given
its easy integration with any open-source project on GitHub.
To configure a GitHub Actions build, a developer can create
any number of .yml files that each define a workflow that
triggers upon an event, such as a developer pushing changes
to the GitHub repository or receiving a pull request [16]. A
developer can define any number of jobs within the workflow,
and each job runs inside its own virtual machine or container
within the GitHub Actions servers, isolated from any other
jobs. All jobs operate on the same changed code in the
repository, but they may run different tasks. A job is defined
by a number of steps, where a step is a set of script commands.
After all steps in a job finish execution, the outcome of the job
is presented to developers and the virtual machine where the
job was run is deleted, along with any files generated during
the job (unless they are explicitly uploaded elsewhere).

Figure 1 shows an example workflow .yml file for the
project JSQLParser [17]. We can see that the workflow defines
jobs (identified as build under the jobs label), where
individual steps (listed under the steps label) are run on
an Ubuntu system, and each job runs with a different version
of Java. These individual steps can use predefined actions that
GitHub Actions provides (e.g., Line 15) or bash commands
(e.g., Line 17).

Aside from setting up CD, developers often also set up
a build system for their project, such as Maven [18] for
Java projects. Maven can automatically download necessary
dependencies, compile Java code, run tests, or perform any
number of other configurable tasks. In Maven, a developer
defines Maven plugins that perform these build tasks within a
Maven build. There are an abundance of existing plugins that
a developer can include, such as JaCoCo [10] for collecting
code coverage. Even compiling and testing are defined and
configurable as plugins, namely the Compiler [19] and Sure-
fire [20] plugins, respectively. A developer may configure their

1

name: Java CI with Maven
on: [push, ...]
jobs:
build:
runs-on:
strategy:
matrix:
jJava: [8, 11]
name: Java ${{ matrix.java }} building ...
steps:
- uses:
with:
- name:
- run:
- uses:
run:

ubuntu-latest

actions/setup-python@v2
python-version: ’3.10'
Install dependencies

. # install pandas, numpy,
actions/checkout@v3

. # run script to start inotifywait
run: touch starting build_BuildwithMaven_ 29
run: rm starting_build BuildwithMaven_29
. # steps to setup java

— name: Build with Maven
run: mvn -B package -file pom.xml

A - name: Pushes results to another repository
+ run: # push inotify logs for analysis

+ + + +

inotify

+ +
i{0

Fig. 1. Example of a GitHub Actions workflow file. Highlighted lines are
modifications OptCD includes to enable logging of file operations.

.yml workflow file to include the Maven build commands
they want to run in each step of a job. Figure 1 shows how
the “Build with Maven” step runs the command mvn -B
package —-file pom.xml, which compiles the code, runs
tests, and finally packages the code. We explain the added
highlighted lines of code in Section III-A.

When that Maven command runs, the Surefire plugin
runs tests and creates test logs in a directory called
surefire-reports/. However, this Maven command step
is the final step in this job, and this step does not use the
generated files, e.g., by uploading the logs elsewhere. Once
the job finishes, these files are deleted so there is no point for
the Surefire plugin to generate them.

One way to prevent generating unused files is to configure
the Surefire plugin to not generate them, which can be done by
adding the -DdisableXmlReport argument to the Maven
command. When we modify the workflow file accordingly,
we can prevent generating the entire surefire-reports/
directory while also reducing the time for running the Maven
command by 14.2%. We submitted a pull request to the
developers with this workflow file change, and they accepted
our pull request.

III. OrTCD

We present OptCD, a technique for identifying unnecessary
work done during a CD build by tracking unused files. OptCD
identifies the build tasks, namely the Maven build plugins,
that generate unused files. If these plugins do not provide
useful work, then the developer may choose to remove the
plugins from the project configuration file and consequently,
from their local and CD build. Further, given the unused files
and corresponding plugins, OptCD also proposes changes to
the CD build configuration file to avoid generating unused
files in only CD builds. OptCD is divided into five main
components: Logger, Classifier, Clusterer, Mapper, and Fixer.

Inputs
Plugins from
om.xml

Plugins from
pom.xml

XML YML
pom.xml GitHub Actions
YAML

Instrument

Clusterer ¢
"Unused :

1 1
1 1
1 [Q- !
: : Files : m :
1 Cluster Unused Files 1 1
\ 1

1

. . . "
Jnto Unused Directories / i GetUnused Apalyze Log
‘o Files ’

,

Classifier

Unused

. Mapper T ,_-l--“

OQ

Do Information
Retrieval

©

Ly

R e

G:

! Ask ChatGPT !
A S ’

Ask ChatGPT

)

Do Log Search
. ’

Get Plugin

1

1

|
—%
1

1

1

1

1

Modified
YAML

Modified
XML

Fig. 2. Overview of OptCD technique.

Figure 2 illustrates OptCD’s process and how its components
interact with each other.

A. Logger

The Logger component tracks the file operations that occur
during a CD build. Specifically, for a given project, OptCD
modifies its GitHub Actions workflow . yml configuration file
to install and start inotifywait [21], an existing Linux-
based tool that can track changes to files recursively contained
within a directory. When inotifywait is running, it records
the operations that occur for all files under the specified
directory. The file operations that inotifywait records are
Created, Modified (written to), Accessed (read from), Closed,
and Deleted. inotifywait also records the timestamp of
when each such operation occurs for a file.

We configure the workflow file such that each job starts
up inotifywait before the first step, tracking changes to
files contained within the main work directory where the job
pulls in the code and performs the overall build. We configure

inotifywait to continue until the last step in the workflow
before uploading the generated log for later use.

The added highlighted lines in Figure 1 shows an example
of the modifications OptCD makes. The modifications involve
adding extra steps to install inotifywait and other de-
pendencies for the analysis we want to perform (Lines 11
to 14) and to start inotifywait (Line 16). We also include
additional steps that touch and remove dummy files based
on the original steps included in the existing workflow file
(Lines 17 and 18). We use this modification to discern which
file operations belong to which original steps by mapping file
operations to a step based on the creation and removal of the
dummy files. We include a final step that pushes the results
for analysis later (Lines 22 and 23).

B. Classifier

Given the log file generated by the Logger, the Classifier
component determines which files are unused files. We define
an unused file as one that is generated and written to during
the build, but that file is never read from later. The intuition is
that the build has to do some work to generate the output that
is ultimately written into this file, but since the contents of the
file are never used later, the work that went into modifying
the file is unnecessary.

For each file in the inotifywait log, we track the files
that are Created during the build. For each such file, we look
for the last time the file is Modified, representing something
being written into the file. We then check whether there are
any Accessed operations on the same file later. If the file is
not Accessed after it is Created or after the final Modified,
then we classify this file as an unused file. Note that when we
track files, we use both the relative path of the file and when
the file is Created in the log. If a file with the same file path
is Created again later in the log, we treat that file as a brand
new file to see whether it is an unused file.

C. Clusterer

We ultimately want to identify the Maven build plugins that
generate unused files, so that a developer can reconfigure or
disable the plugins to not do the unnecessary work that results
in the unused files. Our intuition is that a plugin often does not
modify specifically a single, individual file; they often do work
across many files that are contained within the same directory.
As such, we should try to map plugins to the directories
that contain the individual unused files. We define an unused
directory as a directory that contains only unused files. If the
directory contains any non-unused files (i.e., necessary files
that are used in the CD build), then the directory is not an
unused directory. While we can map individual files to Maven
build plugins without clustering them into directories, doing
so for every single file can be time-consuming and likely we
would still find that all unused files within the same unused
directory would map to the same plugin anyway.

Given the unused files from the Classifier as input, the
Clusterer clusters these unused files into their corresponding
unused directories and outputs these directories. Figure 3

def Clusterer (unused_files, used_files):
paths [1]
unused_dirs [1]
paths.append (longest_path_prefix (unused_files))
while len(paths) > 0:
path paths.pop ()

Some file matc

used 1es path
if path_match (path, used_files):
Explore matching subdirs among unused files
for £ in unused_files:
if path_match(path, f):
new_path one_deeper (path,
if is_file(new_path):
continue
if not new_path in paths
and not new_path in unused_dirs:

paths.append (new_path)

£)

else:
unused_dirs.append (path)
return unused_dirs

Fig. 3. Pseudo-code for Clusterer.

shows how the Clusterer identifies the unused directories.
Given the set of unused files and used files (namely the
remaining files that are not unused files), the Clusterer first
finds the longest common prefix path among all unused files.
If this path also matches for any used files (Line 8), then the
path does not represent an unused directory. Clusterer needs
to then explore deeper down this path, trying out the different
subdirectories underneath to see whether any of those can
be unused directories. For each unused file that matches the
current path prefix, Clusterer constructs a new path that is the
current path prefix plus one more directory deeper (Line 12),
which still matches that unused file. If the path cannot be
extended by one more directory, namely it results in the file
itself, then the path is discarded. This scenario occurs when
there is a directory that directly contains both unused files
and used files, so the directory is not an unused directory and
cannot be extended further. We do not report individual unused
files and we report only the top most level of unused directory
(unused subdirectories are also not reported).

If the new path is not already in the set of paths to be
explored and not already identified as an unused directory
(Line 16), then Clusterer checks whether this path is an unused
directory in future iterations (Line 17). When there are no
more paths to explore, Clusterer returns all the unused directo-
ries it identified. For example, the target/site/ directory
may contain various other directories, such as jacoco/ and
pmd/. If all the (recursive) files inside jacoco/ are unused
files, then jacoco/ will be considered an unused directory.
If at least one file is a used file in pmd/, then the pmd/
directory will not be considered an unused directory. However,
if all files in pmd/ are also unused files, then pmd/ will also
be considered an unused directory like jacoco/. If all the
directories under target/site/ are all unused directories,
then target/site/ will be considered an unused directory.

D. Mapper

The Mapper component takes the set of unused directories
from the Clusterer and identifies the plugin that modifies the

files in each unused directory. To identify the correct plugin for
each unused directory, we use a systematic search process that
iterates through the plugins defined in a project’s pom.xml
build configuration file to see which one generates the unused
directory (more precisely, we iterate through the effective
pom.xml that also contains plugins inherited from parent
pom.xml files). For each plugin, we remove the plugin from
the pom.xm1 file and then run the steps. If all steps complete
successfully, the unused directory no longer exists, and all the
used files are still there, then we consider the disabled plugin
to be the one responsible for generating the unused directory.
The developer may then use this information to debug and
determine how to best prevent the plugins from generating
unused files, or simply disable or remove the plugin from
their local and CD builds. As special cases, we exclude the
directories maven—-status/ and surefire-reports/ if
they are the unused directories. The reason is that we know that
the two directories are generated by the Compiler and Surefire
plugins, respectively. These two plugins are always included
in any Maven build and cannot be removed. Therefore, we do
not bother searching in such cases.

Overall, this process of trying each plugin can be time-

consuming due to the rerunning of all steps for each plugin
tried during the search. To speed up this process, we propose
three strategies to rank the list of plugins to try.
Information Retrieval. We use information retrieval, namely
TF-IDF [13], to match the name of an unused directory to the
likely plugin that modifies the unused directory. The intuition
is that the unused directory name is likely related to the
plugin’s name (as listed in the pom . xm1 file), e.g., the JaCoCo
plugin by default writes to a directory called jacoco. To rank
the plugins, we tokenize the name (group ID and artifact ID) of
each plugin listed in the pom.xml. We treat the tokenization
of the unused directory name as the query and the tokenization
of each plugin as the documents to match the query against.
TF-IDF provides a cosine similarity score between 0 and 1
for each plugin based on its relevance to the unused directory
name, and we rank the different plugins based on this score.
We then perform the search by iterating through the plugins
in decreasing score order. Plugins with the same score are
ordered based on their appearance in the pom.xml file. A
plugin with score O is considered unranked. If none of the
ranked plugins are correct, we proceed to search the unranked
plugins (in order of appearance in the pom. xml file, because
they all tie with the same score of 0). We stop the search after
identifying a correct plugin and consider an unused directory
to have no correct plugins if we do not stop the search before
trying all plugins. As we show in Section V-B, our search
process can identify the correct plugin for 92.0% of the unused
directories in our evaluation.
ChatGPT. ChatGPT [14] is a large-language model-based
chatbot. ChatGPT can help with a wide range of tasks, includ-
ing coding-related questions. We utilize ChatGPT (version 4.0)
as a “Google search” equivalent to represent what a developer
would do if they were trying to identify and disable the plugin
responsible for generating unused files.

To prepare the ChatGPT queries, we considered two dif-
ferent prompting strategies: Instruction Following Prompting
Strategy [22] and TruthfulQA Prompting Strategy [23]. We
selected all the strategies from Wei et al. [24] that did not
require follow-up prompts. Out of these two strategies, we
chose the Instruction Following Prompting Strategy based on
a small experiment to find the correct plugin for a sample
of five unused directories from our evaluation dataset. Based
on this experiment, we found that the Instruction Following
Prompting Strategy gives more accurate results.

Given an unused directory for a step in the GitHub Actions
.yml file along with all the plugins defined in the pom.xm1,
we construct a prompt to ChatGPT based on the Instruction
Following Prompting Strategy, asking it for a ranked list of
plugins along with a score for how likely each plugin is
responsible for generating that unused directory. The prompt
template for ChatGPT is:

Given the list of dependency plugins in a pom.xml as
“<list of plugins>", a Maven command that has been executed
as “<Maven Command>", and an unused directory that was
created in the target directory named “<unused directory>",
please rank and score the plugins in the list based on how
likely each plugin is responsible for the generation of this
unused directory and the score should be greater than or equal
to zero, where zero means the plugin may not likely generate
the unused directory.

We perform the search by iterating through each plugin in
descending order of the score given by ChatGPT. Similar to
the Information Retrieval strategy, we first search the ranked
plugins before the unranked ones and we break ties in scores
the same way (based on their appearance in the pom.xml).
Log Search. Our last strategy for identifying the plugin
responsible for generating an unused directory is to parse
the log files directly. The log files generated by the Logger
component have timestamps for each file event. A GitHub
Actions build also produces timestamped logs detailing all
the Maven build activities, including when each plugin starts
running. As such, we can correlate the timestamps for the
creation and modification of files in the Logger logs with the
timestamps of when plugins were started and ended in the
GitHub Actions build logs to figure out which plugin was
running when unused files were generated.

Similar to the other two strategies, Log Search also produces
a ranked list of plugins to try, except its “list” consists of just
the one plugin found to be running at the same time as when
the unused files were created or modified. If we find this plugin
is not the correct one for generating the unused directory, we
once again search through the remaining unranked plugins.

E. Fixer

In the Fixer component, we use ChatGPT to obtain a
new Maven command that disables the generation of unused
directories. The goal is to update the Maven command in
the GitHub Actions workflow .yml build configuration file.
While a developer may use the plugin information from the
Mapper to simply disable or remove the plugin completely

from their Maven build, e.g., removing the plugin from their
pom. xml configuration file, doing so would disable the plugin
from running both on the CD servers and on the developers’
local machine. The generated files that OptCD identifies on
CD servers are unused files during a CD build, but they may
be used by developers when they build locally, e.g., they may
use detailed test reports for debugging local test failures, while
such reports are not saved anywhere and are deleted after
a CD build. As such, it is desirable to also find a way to
disable the generation of unused files only in CD builds by
adding arguments to the Maven command used in the GitHub
Actions . yml build configuration file. By modifying only the
.yml file with these arguments, only the CD builds would be
affected, i.e., local builds would not be affected.

Similar to how we use ChatGPT for Mapper, we also use
the Instruction Following Prompting Strategy to develop the
prompts for how to fix the Maven commands. We provide
to ChatGPT the entire list of plugins from the pom.xml
file, the unused directory from Clusterer, and the Maven
command from the step in the GitHub Actions .yml file.
While we could also provide to ChatGPT the name of the
responsible plugin from the Mapper (if identified successfully),
our experiments find that providing this extra information does
not help generate more fixes than just providing the entire list
of plugins. By relying on the entire plugin list, the Fixer is also
usable even when the Mapper did not successfully identify a
plugin. Ultimately, our prompt to ChatGPT is:

Given the list of dependency plugins in a pom.xml rep-
resented as “<list of plugins>", and considering the Maven
command “<Maven command>" which results in the creation
of an unused directory named “<unused directory>" in the
target directory, please provide an argument that can be added
to the given Maven command. The objective is that when
this updated command is executed, the “<unused directory>"
should not be created. Suggest the most relevant argument
based on the context and the nature of the plugins listed.

We test the resulting commands by updating the step in
the GitHub Actions .yml file and running the build. If the
unused directory is still generated, then we say ChatGPT was
unsuccessful at fixing the build. If the unused directory is no
longer generated and all used files are still generated, then we
consider the new Maven command to be valid and report it as
a patch to developers.

IV. EXPERIMENTAL SETUP

We answer the following research questions:

« RQI1: How often are unused directories generated?

e RQ2: How effective is OptCD at identifying the plugin
that generated unused directories and suggesting ways to
prevent the generation of such directories?

+ RQ3: How much runtime does OptCD save?

« RQ4: What are developers’ reaction to OptCD-inspired
fixes?

We answer RQI to see how prevalent are unused directories

being generated within CD builds. A large percentage of
unused directories can indicate much unnecessary work that

should be removed. We answer RQ2 to see how effective
OptCD is at identifying what part of a build is responsible for
generating unused directories as well as how it can help fix
that problem. We answer RQ3 to understand how OptCD can
help in reducing CD build time by preventing the generation of
unused directories. Finally, we answer RQ4 to understand how
interested developers are in the the fixes inspired by OptCD.

A. Subjects

We focus our evaluation on open-source Maven projects
that build using GitHub Actions. First, we queried the GitHub
REST API to search for popular projects marked with the
Java programming language. We configured the search to sort
the projects based on the number of forks as a measure of
popularity. As the GitHub REST API cannot provide more
than 1000 results at once, we stagger the search across two
days, resulting in a total of 1563 unique Java projects. We
then filtered this list of projects to include only the ones that
are already configured to use GitHub Actions and use Maven
as their build system, resulting in 215 projects.

Given that we will be running the workflows for these
projects multiple times, we apply an additional filtering cri-
teria to only include the projects with one to three .yml
workflow files, reducing the number of workflows and jobs
that get triggered each build. For ease of our analysis, we also
filter out projects with more than one pom. xm1 file, restricting
ourselves to only single module Maven projects. After these
two filters, we are left with a total of 54 projects.

We forked these 54 projects and attempted to trigger a
GitHub Actions build. We are unable to include projects where
we cannot trigger a successful GitHub Actions build for any of
the project’s jobs, for reasons such as the job requiring some
form of authentication from a secret key that we do not have
or the job must run on self-hosted runners that we do not have
access to. We also filter out projects with workflows on which
we cannot successfully run OptCD due to reasons such as the
job being configured to run on a non-Linux operating system,
which inotifywait does not support, or there are strict
timeouts that prevents our analysis from finishing. Ultimately,
we are left with 22 projects with GitHub Actions workflows
that we use for our evaluation.

B. RQI: How often are unused directories generated?

We rely on inotifywait [21] to track file accesses
during a CD build (Section III-A). Before settling on using
inotifywait, wetried 1sof and strace as other options
for logging changes to files. We find that these other two
tools produced output that are more difficult to parse than
inotifywait, e.g., strace produced very detailed output
but most of it is unnecessary for the purpose of tracking file
reads and writes.

We conducted all experiments to collect inotifywait
logs on default Ubuntu GitHub Actions machines that have
two cores, 7GB RAM, and 14GB of disk storage. Note that
we are running the same build as the developers would every
time there are updates to their codebase, new pull requests

being opened, etc. The only change we make to a build is
to setup our logging needs. We also measure build-related
runtimes on these machines. Timing measurements with and
without fixes are done on original builds with no changes
from us except for our commands to disable the generation
of unused files. While developers can configure their builds to
run different build profiles, including those that may be less
expensive by disabling certain work during CD, the results we
observe concerning generated unused files are what actually
happens using their current build profiles.

C. RQ2: How effective is OptCD at disabling the generation
of unused directories?

We obtain the ground truth for the correct plugin by
disabling each plugin that is listed in the pom.xml file one-
by-one and then running the Maven command to observe if
the unused directory is still being generated. If the unused
directory is no longer generated and the used files are still
being generated, then we consider that plugin as the correct
plugin to disable the unused directory.

D. RQ3: How much runtime does OptCD save?

After OptCD suggests some changes to the Maven build
commands in one or more steps in a job, we run those jobs
through GitHub Actions 14 times, both with and without
the suggested changes. For each run, we record the runtime
of each step, but we exclude the time taken to download
dependencies, because the download time varies from run
to run. The fluctuations in download time can mask and
mischaracterize the actual runtime improvement from OptCD’s
proposed changes. Further, to remove the effect of outliers,
we dropped the two highest and the two lowest runtimes for
both with and without our fix. We then compute the runtime
improvement as subtracting the average runtime with the
change from the average runtime without the change, divided
by the average runtime without the change. We only compute
the runtime improvement for steps where there is a change to
the Maven commands, because we want developers to accept
our changes for runtime improvements, which developers are
more likely to accept if our changes applied only to their
CD build. To assess the statistical significance of the runtime
improvements, we also conduct a two-sample independent t-
test [25] on the obtained runtimes, comparing the runtimes
with and without the changes suggested by OptCD.

E. RQ4: What are developer’s reaction to OptCD?

We submit pull requests to the developers of the open-
source projects to gauge their interest in the suggested fixes.
Although, we attempt to open a pull request for all unused
directories that OptCD can generate a valid Maven command
for, our total number of pull requests opened is less, because
many unused directories come from the same step, which we
only opened a single pull request for in such cases. In fact,
we find that one workflow may often have multiple jobs, and
each job will have the same steps but the jobs slightly differ
in their Java version, OS version, and so on. One example of a

workflow with multiple jobs that have different Java versions
is shown in Line 8 of Figure 1. The steps are the same in
the different jobs, so we can create one pull request that helps
with all of the jobs in this workflow.

V. EVALUATION
A. RQI: How often are unused directories generated?

Table I shows the number of unused directories that OptCD
finds to be generated during the CD build across the 22
projects and the 43 steps (each given an ID for use in a later
table) that run a Maven build command within the jobs of those
projects, shown under column “U. Dir.”. For each step, we also
show the total number of steps within the same job as that step
(“Steps”), including those that do not run a Maven command,
and the number of plugins run within that step (“Plugins”). We
see that almost every step with a Maven command generates
an unused directory, with only three steps that do not generate
any unused directories. Overall, all the steps together generate
a total of 89 unused directories. Further, when we analyze the
directories with at least one file generated, we find that 64.9%
of them contain more unused files than used files.

When we look into the unused directories, we find that

almost all of the steps generate a directory with the name
maven-status/ (only step Sl-la does not generate a
maven-status/ directory). The maven-status/ direc-
tory contains diagnostics information generated during a
Maven build. As such, it is reasonable to find that projects
tend to not do anything with the contents in this directory
during CD. Further, we do not find any means to prevent a
Maven build from generating such a directory. To focus our
efforts on unused directories that we can disable generating,
we ignore the maven-status/ directory. Table I reports the
number of unused directories without any maven-status/
directories under the column “U-MS Dir.”. There are a total
of 50 unused directories generated across all steps. We see
that there are only six steps that do not generate any unused
directories, i.e., 86.0% (37 / 43) of steps generate at least one
unused directory. Each step generates on average 2.1 (89 / 43)
unused directories. Further, 95.6% (21 / 22) of all projects
generate at least one unused directory (only one project does
not), with an average of 4.0 (89 / 22) unused directories per
project. In summary, the generation of unused directories is
rather prevalent in CD builds, showing the large amount of
unnecessary work conducted within these builds.
RQL1 findings: 95.6% of projects generate at least one unused
directory in its Maven-command steps, with an average of
4.0 unused directories per project. When we consider just the
Maven-command steps, we find that an average of 2.1 unused
directories are generated per step.

B. RQ2: How effective is OptCD at disabling the generation
of unused directories?

Table II shows the results of using OptCD to identify the
correct Maven plugins that generate the 50 unused directories,
i.e., the effectiveness of the Mapper component. Each row in
the table shows the name of the unused directory associated

TABLE I
STATISTICS OF GITHUB ACTIONS STEPS IN OUR EVALUATION. THE “-” IN CELLS UNDER “IMPROVEMENT” AND “IMPROV. P-VALUE” ARE CASES WHERE
WE CANNOT MEASURE RUNTIME IMPROVEMENT. HIGHLIGHTED P-VALUE CELLS INDICATE STATISTICALLY SIGNIFICANT IMPROVEMENTS (p < 0.05).

ProjID # of % Runtime Improv.
-StepID GitHub User/Repository Name Steps | Plugins | U. Dir. | U.-MS Dir. | Step/Total | Improvement | p-value
Sl-la pedrovgs/Algorithms 4 8 1 1 459 7.8 0.320
S1-1b pedrovgs/Algorithms - 8 2 1 34.7 22 0.488
S2-1 cucumber/cucumber-java-skeleton 8 8 1 0 15.2 - -
S3-1 baomidou/dynamic-datasource-spring-boot-starter 3 12 1 0 98.0 - -
S4-1 hyperledger/fabric-sdk-java 3 15 2 1 99.2 -2.8 0.151
S4-2 hyperledger/fabric-sdk-java 3 15 2 1 99.2 32 0.052
S4-3 hyperledger/fabric-sdk-java 3 15 2 1 99.3 -3.0 0.197
S5-1 hub4j/github-api 3 16 4 3 85.3 9.2 0.076
S5-2 hub4j/github-api 3 16 2 1 82.2 - -
S5-3 hub4;j/github-api 4 16 3 2 80.6 - -
S5-4 hub4j/github-api 4 16 3 2 94.4 -0.7 0.708
S5-5 hub4j/github-api 4 16 2 1 73.9 - -
S6-1 TooTallNate/Java-WebSocket 3 10 0 0 58.5 - -
S7-1 JSQLParser/JSqlParser 3 20 3 2 90.3 14.2 0.000
S7-2 JSQLParser/JSqlParser 3 20 3 2 89.3 8.7 0.002
S8-1 junit-team/junit4 5 14 2 1 89.5 12.8 0.000
S8-2 junit-team/junit4 5 14 2 1 82.8 39 0.161
S8-3 junit-team/junit4 5 14 2 1 88.0 7.0 0.019
S8-4 junit-team/junit4 5 14 2 1 88.8 10.9 0.006
S9-1 mate-academy/jv-fruit-shop 3 9 1 0 42.6 - -
S10-1 obsidiandynamics/kafdrop 3 12 3 2 81.1 5.5 0.058
S11-1 matsim-org/matsim-example-project 3 10 2 1 92.0 15.0 0.000
S12-1 mcMMO-Dev/mcMMO 4 12 2 1 86.9 7.0 0.001
S13-1 SERG-Delft/mooc-software-testing 3 9 4 3 55.1 24.1 0.000
S14-1 pagehelper/Mybatis-PageHelper 3 9 2 1 64.1 -0.2 0.921
S15-1 google/open-location-code 3 9 2 1 93.6 0.1 0.970
S15-2 google/open-location-code 3 9 2 1 80.7 0.6 0.807
S15-3 google/open-location-code 3 9 2 1 92.4 4.8 0.143
S15-4 google/open-location-code 3 9 2 1 91.9 8.1 0.005
S16-1 MicrosoftDocs/pipelines-java 4 9 2 1 334 - -
S17-1 socketio/socket.io-client-java 5 16 2 1 88.5 -3.5 0.000
S17-2 socketio/socket.io-client-java 5 16 2 1 92.6 -0.3 0.674
S17-3 socketio/socket.io-client-java 5 16 2 1 90.0 -0.5 0.330
S18-1 soot-0ss/soot 3 15 2 1 95.7 7.5 0.022
S18-2 s00t-0ss/s00t 3 15 2 1 96.0 10.6 0.001
S18-3 soot-0ss/soot 3 15 2 1 95.8 0.6 0.874
S18-4a S00t-0ss/s00t 4 15 0 0 47.5 - -
S18-4b soot-0ss/soot 4 15 0 0 213 - -
S19-1 spring-petclinic/spring-framework-petclinic 3 14 4 3 71.9 16.2 0.000
S20-1 spring-petclinic/spring-petclinic-rest 3 13 3 2 70.8 22.0 0.000
S21-1 88250/symphony 3 10 3 2 66.2 46.9 0.000
S22-1 UniversalMediaServer/UniversalMediaServer 4 14 2 1 76.3 -4.2 0.228
$22-2 UniversalMediaServer/UniversalMediaServer 4 14 2 1 71.9 -1.2 0.296
Total/Mean | | 37 13.0 | 89 | 50 | 76.6 | 7.0 | -

with a step ID. The table also shows the ground truth plugin
responsible for generating each unused directory based on our
inspection (Section IV). Note that two unused directories (S7-
1 and S7-2 site) are generated using more than one plugin.

The column “Baseline” shows the number of plugins tried
when using a simple baseline of iteratively trying to disable
each plugin in order of appearance in the pom.xml file (i.e.,
without any of the ranking heuristics that Mapper employs).
This baseline would try on average 6.5 plugins per directory
(we do not count cases where we cannot identify the correct
plugin by this iterative search, marked as “-” in the table).

For the three strategies for ranking plugins during Mapper’s
search (Information Retrieval, ChatGPT, and Log Search), we
show the number of plugins each would try before identifying
the correct plugin under column “#Tried”’; we use “-” to denote
when a strategy cannot identify the plugin. We also show the

number of plugins that are actually ranked (column “#Rnkd”)
by Information Retrieval and ChatGPT; Log Search would
only ever rank one plugin, so we do not show it in the table.

Comparing the number of plugins tried by each strategy,
we see that all of them try a smaller number of plugins
compared to the baseline, trying on average 2.0, 1.6, and 1.0
plugins for Information Retrieval, ChatGPT, and Log Search,
respectively. ChatGPT on average creates larger ranked list of
plugins than Information Retrieval (2.1 versus 1.1), and both of
them occasionally need to try plugins beyond the ranked list,
but ChatGPT ends up trying fewer plugins than Information
Retrieval. Log Search is the most effective as it tries the fewest
number of plugins among the three strategies.

Overall, we see that the search process of trying each plugin
can identify the correct plugin for 92.0% (46 / 50) of the
unused directories. Naturally, this process cannot handle cases

TABLE 11
PLUGIN ANALYSIS RESULTS FOR EACH UNUSED DIRECTORY. “-” DENOTES THE SEARCH COULD NOT IDENTIFY THE CORRECT PLUGIN. “#RNKD”
DENOTES RANKED. “N/A” DENOTES NO PLUGINS WERE RANKED. “*” DENOTES A PULL REQUEST IS SUBMITTED FOR THE DIRECTORY.

Baseline | Information Retrieval ChatGPT Log Search

ID Unused Dir Ground Truth #Tried | #Tried | #Rnkd #Tried | #Rnkd #Tried Fixer
Sl-la site - - - 1 - 1 - | N*
S1-1b surefire-reports | maven-surefire-plugin 5 1 1 1 1 1| Y*
S4-1 surefire-reports | maven-surefire-plugin 1 1 1 1 2 1| Y*
S4-2 surefire-reports | maven-surefire-plugin 1 1 1 1 2 1| Y*
54-3 surefire-reports | maven-surefire-plugin 1 1 1 1 2 1| Y*
S5-1 cache maven-surefire-plugin 8 8 N/A 8 6 1 | N
S5-1 japicmp japicmp-maven-plugin 11 1 1 1 1 1| Y*
S5-1 surefire-reports | maven-surefire-plugin 6 1 2 1 2 1| Y*
S5-2 site - - - 1 - 3 - | N
S5-3 cache maven-surefire-plugin 8 8 N/A 8 6 1| N
S5-3 surefire-reports | maven-surefire-plugin 6 1 2 1 2 1] Y*
S5-4 cache maven-surefire-plugin 8 8 N/A 8 6 1 | N
S5-4 surefire-reports | maven-surefire-plugin 6 1 2 1 2 1| Y*
S5-5 test-classes maven-compiler-plugin 5 5 N/A 1 2 1 | N
S7-1 site maven-pmd-plugin & - - 1 - 8 - | N*

jacoco-maven-plugin
S7-1 surefire-reports | maven-surefire-plugin 15 1 1 1 1 1| Y*
S7-2 site maven-pmd-plugin & - - 1 - 8 N

jacoco-maven-plugin
S7-2 surefire-reports | maven-surefire-plugin 15 1 1 1 1 1| Y*
S8-1 surefire-reports | maven-surefire-plugin 5 1 1 1 1 1| Y*
S8-2 surefire-reports | maven-surefire-plugin 5 1 1 1 1 1| Y*
S8-3 surefire-reports | maven-surefire-plugin 5 1 1 1 1 1| Y*
S8-4 surefire-reports | maven-surefire-plugin 5 1 1 1 1 1| Y*
S10-1 docker-ready maven-resources-plugin 5 5 1 3 2 1| Y*
S10-1 surefire-reports | maven-surefire-plugin 9 1 1 1 2 1| Y*
S11-1 surefire-reports | maven-surefire-plugin 7 1 1 1 1 1| Y*
S12-1 surefire-reports | maven-surefire-plugin 1 1 1 1 2 1| Y*
S13-1 jacoco-ut jacoco-maven-plugin 1 1 1 1 1 1| Y*
S13-1 site jacoco-maven-plugin 9 2 1 2 1 1 | N
S13-1 surefire-reports | maven-surefire-plugin 3 1 1 1 1 1| Y*
S14-1 surefire-reports | maven-surefire-plugin 6 1 1 1 1 1| Y*
S15-1 surefire-reports | maven-surefire-plugin 12 1 1 1 1 1| Y*
S15-2 surefire-reports | maven-surefire-plugin 12 1 1 1 1 1| Y*
S15-3 surefire-reports | maven-surefire-plugin 12 1 1 1 1 1| Y*
S15-4 surefire-reports | maven-surefire-plugin 12 1 1 1 1 1| Y*
S16-1 test-classes maven-compiler-plugin 5 5 N/A 1 3 1 | N
S17-1 surefire-reports | maven-surefire-plugin 3 1 1 1 2 1| Y*
S17-2 surefire-reports | maven-surefire-plugin 3 1 1 1 2 1| Y*
S17-3 surefire-reports | maven-surefire-plugin 3 1 1 1 2 1| Y*
S18-1 surefire-reports | maven-surefire-plugin 5 1 1 1 2 1| Y*
S18-2 surefire-reports | maven-surefire-plugin 5 1 1 1 2 1| Y*
S18-3 surefire-reports | maven-surefire-plugin 5 1 1 1 2 1| Y*
S19-1 .wrodj wro4j-maven-plugin 8 1 1 1 1 1 | N
S19-1 site jacoco-maven-plugin 6 7 1 6 1 1 | N*
S19-1 surefire-reports | maven-surefire-plugin 2 1 1 1 1 1| Y*
S20-1 site jacoco-maven-plugin 2 2 1 2 1 1 | N*
S20-1 surefire-reports | maven-surefire-plugin 10 1 1 1 1 1| Y*
S21-1 symphony maven-assembly-plugin 4 4 N/A 1 3 1| Y*
S21-1 test-classes maven-compiler-plugin 7 7 N/A 1 3 1 | N*
S22-1 surefire-reports | maven-surefire-plugin 12 1 1 1 1 1| Y*
$22-2 surefire-reports | maven-surefire-plugin 12 1 1 1 1 1| Y*
Total/Mean | | | 6.5 | 2.0 | 11 | 16 | 2.1 | 1.0 | Y=36/N=14

where multiple plugins are involved with the generation of
the unused directory (S7-1 and S7-2 site). In the future, we
can explore strategies that can try combinations of plugins.
We also do not handle two cases (S1-la and S5-2 site)
where the responsible plugins are directly invoked by the
Maven commands (e.g., the checkstyle plugin being in-
voked with mvn checkstyle:checkstyle). We do not
consider such cases to be possible for our process to handle
as disabling the plugin would fail the build in such cases.

We also evaluate the effectiveness of the Fixer component,

which may suggest a change to the Maven command in the
.yml CD configuration file to disable generating unused
directories. The Fixer could successfully give a fix for 36
unused directories (marked with “Y” under column “Fixer”),
i.e., 72.0% (36 / 50) of the unused directories. We find that for
five unused directories, ChatGPT was unable to provide a fix
at all for how to disable their generation. For four directories,
using the provided fix could not disable generating the unused
directories. Finally, for the remaining five, while the fix does
disable generating the unused directories, they also disabled

generating some used files, so the solution is invalid.

RQ2 findings: The Mapper can identify the correct plugin for
92.0% of the unused directories, and all three strategies end
up trying fewer plugins in their search than the baseline. Log
Search is the most efficient, because it tries the fewest plugins.
The Fixer can successfully propose a new Maven command
to disable generating 72.0% of the unused directories.

C. RQ3: How much runtime does OptCD save?

Table I shows for each step the percentage of runtime
improvement we can obtain from disabling the generation of
the unused directories (column “% Runtime Improvement”).
We show the improvements only for the 33 steps in which
we could make a change to the Maven command to disable
generating the directories. We also show for each step, the
percentage of runtime that step by itself takes out of the full
job runtime (column “% Runtime Step/Total”). We find that
the steps that perform some Maven command take, on average,
76.6% of the overall job runtime.

We also see that the proposed changes to the Maven
command can reduce the runtime of the corresponding step
by 7.0%, on average, across all steps. There is a wide
range of improvements between steps, where the highest
runtime improvement is 46.9%, which comes from disabling
the generation of all unused directories in that step, except
for the maven—status/ directory. We use a t-test [25] to
compare the runtimes with and without the fixes and find
that 15 out of 33 of the observed runtime differences are
statistically significant, p < 0.05 (highlighted under column
“Improv. p-value” in Table I). If we consider the runtime
improvement only for these statistically significant steps, the
average improvement is 13.8%.

There are nine steps with negative improvement, i.e., run-
time for the step went up after our change. Our manual
inspection finds that they are likely due to noise and the
absolute difference is rather small, with only one of them (S17-
1) being statistically significant.

RQ3 findings: The suggested changes to Maven commands
by OptCD can reduce step runtimes by 7.0%, on average.

D. RQ4: What are developer’s reaction to OptCD?

We submitted pull requests for all 33 steps in which we can
disable the generation of unused directories using the changed
Maven commands. We include the fixes for multiple steps in
one pull request if the steps are from the same project and the
fixes are similar. We submitted pull requests corresponding
to all 36 unused directories marked with “Y” under column
“Fixer” in Table II. In addition, from our manual inspection,
we developed a way to fix an additional five more cases,
leading to fixes handling a total of 41 unused directories
(marked with “*” under “Fixer” in Table II).

In total, we submitted 26 pull requests. So far, 12 have
been accepted (46.2%), five have been rejected, and nine are
still open. Of the five rejected pull requests, two were rejected
with no comments from developers and three were rejected
because the developers claim that the improvement is minor

and is worried about complications from disabling the plugin.
Details of all pull requests are on our website [15].

RQ4 findings: We submitted 26 pull requests to disable the
generation of unused directories. Developers accepted 12 of
the pull requests, with five rejected, and nine still pending.

E. Comparison against BuildSonic

BuildSonic [26] and OptCD have very similar goals. At its
core, BuildSonic fixes performance issues, statically detects
configuration smells like deep clone and cache dependen-
cies, and fixes configuration smells in build configurations.
Given BuildSonic’s focus on fixing performance configuration
smells, it can serve as a baseline for comparison with OptCD.
BuildSonic has strategies for a variety of build systems, while
OptCD is focused on Maven [18]. BuildSonic’s strategies for
Maven include enabling parallel execution, enabling forks,
setting fork count, and disabling test report generation.

We conduct a high-level analysis of the 1,263 pull requests
submitted by BuildSonic in April 2023, revealing the following
distribution: 745 closed pull requests, 280 open pull requests,
and 238 deleted pull requests. Among the 745 closed pull re-
quests, 521 were rejected and 224 were accepted. We observe
that 314 out of the 521 rejected pull requests were closed
without any specific reason (i.e., no comments in the pull
request). When we inspected the remaining 207 rejected pull
requests that included comments, we find that the majority of
them get rejected due to reasons beyond any limitations related
to the tool, e.g., 81 pull requests are rejected because the
developers stopped using the CD service or 13 pull requests
are rejected simply due to unclear writing in the pull request
text. The pull requests rejected due to limitations of the tool
are those rejected due to no major performance gains (28) or
marked as having invalid changes (52).

We similarly find that developers may reject pull requests
if they feel the performance gains are not high enough,
despite the changes reducing the generation of unused files.
A developer using either tool can ultimately choose to use
the suggested changes if they feel the performance gains are
sufficient. We then look into the pull requests with invalid
changes (52), specifically focusing on the pull requests that
were built using the BuildSonic strategy of disabling test
report generation, which is related to the detection of a
common type of unused directories that OptCD can find. We
notice that BuildSonic disables test report generation for any
project that runs tests. However, these reports could be helpful
when a build fails. In fact, we find that one BuildSonic pull
request was rejected because BuildSonic suggests to disable
the generation of test reports even though these test reports
are later uploaded when the build fails [27]. At the same time,
OptCD marks these files as used files and does not suggest the
developers to disable generating them. The reason that Build-
Sonic proposes such a change on any such build is because
it only performs a static analysis on the build configuration,
acting as a sort of linter, without looking deeper into whether
the suggested changes are disabling the generation of files that
are actually used by the build. Meanwhile, OptCD would find

these files being used when it tracks file accesses during an
actual run of the build, and it therefore would mark them as
used files and not suggest to disable their generation. This
example showcases a main benefit of dynamically detecting
the generation of unused files compared to statically doing so.

VI. THREATS TO VALIDITY

Our results may not generalize to all projects. We create our
evaluation dataset in a systematic manner starting with a large
number of popular Java projects and filtering to include all
projects that match our criteria (Section IV-A). The projects
we evaluate on use GitHub Actions as a CD service, which is
easily integratable with projects hosted on GitHub. Given the
large number of open-source projects on GitHub, we believe
such projects can be representative of open-source projects.
The core idea behind OptCD is to identify unnecessary work
via unused files. While we rely specifically on inotifywait
to track file accesses, which is available only on Linux
systems, the ideas are still applicable on other operating
systems with similar tooling. Further, while we specifically
develop OptCD for Maven projects, the idea is applicable
to projects that use other build systems (e.g., Gradle builds
may also run plugins that generate unused files). We can use
the same approach to identify unused files for different build
systems, but we would need to adapt our current strategies,
e.g., adapting to get the list of Maven plugins to another build
system for the Mapper.

The goal of our work is to identify unnecessary work that
occurs during CD builds, which the contents of the build are
typically destroyed shortly after it finishes. To accomplish this
goal, we leverage the insight that unused directories represent
unnecessary work. It may be the case that some of the unused
directories we identify are actually useful for developers, but
not visible in the constraints of the CD build that we observe.
Further, it may be the case that for some plugins, OptCD can
suggest disabling the plugin from running (consequently from
generating unused files), while for other plugins, it can only
suggest to disable generating the unused files. The correct
solution depends on the plugin, e.g., the testing plugin should
not be disabled, as we still want to run tests, but we should
disable it from generating unused test reports. We mitigate
these threats by manually checking the suggested fixes. We
also send our fixes as pull requests to developers, checking
whether such fixes are acceptable to developers.

We may also miss detecting some unused files, because,
while these files are eventually read from, those read op-
erations themselves are not so useful, e.g., copying the file
elsewhere and then not reading any further. As such, the
number of unused files and unused directories we identify may
be fewer than the actual number.

There may also be noise in our runtime measurements,
which are conducted on the GitHub Actions CD machines.
We mitigate this threat by rerunning the jobs multiple times
and then dropping the best two and worst two runtimes to
discard large outliers. We ultimately end up with 10 runtimes
to use for comparison. While we develop a systematic way to

prompt ChatGPT for Mapper and Fixer, the same query may
result in different responses given its nondeterministic nature.
We experimented with querying ChatGPT multiple times, and
we find that its answers do not change substantially (e.g.,
ChatGPT always fixed the same unused directories).

VII. RELATED WORK

Hilton et al. performed extensive empirical studies on
CD [1], [2], showing its importance along with the developers’
perspective on the process. There has been extensive work
in improving the efficiency of builds in general [28]-[30].
Telea and Voinea proposed decomposing C/C++ header files
to remove performance bottlenecks from compilation [31].
Vakilian et al. proposed refactoring targets in a distributed
build system to improve build times [32]. Work in build
prediction aims to predict build outcomes as to skip running
builds entirely [33]-[36]. In contrast, our work focuses on
dynamically tracking unused directories with the goal to
disable their generation as to reduce build runtime.

Regression testing is a large part of CD, with the cost
of CD largely coming from the need to run tests on every
build. Researchers have proposed a number of ways to reduce
the cost of regression testing, such as through regression test
selection, which selects to run only the tests affected by the
changes [9], [37]-[45], test-suite reduction, which reduces
the set of tests to run [46]-[53], or test parallelization [54]-
[56]. Other work in improving regression testing include
changing how the underlying build system runs tests [57].
OptCD does not focus on just testing but rather on when the
build generates unused directories, indicative of unnecessary
work. Interestingly, we find cases where compiling tests is
unnecessary as the build runs no tests.

VIII. CONCLUSIONS

We propose OptCD, a technique that can dynamically detect
unnecessary work within CD builds by tracking whether the
build generates unused files. The intuition is that generating
these unused files wastes time, so disabling the build from
generating them can reduce the build runtime. OptCD logs
file operations that occur during a build and analyzes those
operations to determine the unused files. It then clusters
unused files together into unused directories and then system-
atically searches through the tasks to identify the likely one
responsible for generating those unused directories. We also
use ChatGPT to propose changes to the CD build command to
disable generating unused directories during CD, successfully
providing the necessary changes for 72.0% of the unused
directories. We sent out 26 pull requests with these changes,
with 12 accepted, five rejected, and nine still pending.

ACKNOWLEDGEMENTS

We would like to acknowledge NSF grant no. CCF-2145774
and Dragon Testing for their support on software testing
research. We thank Nate Levin for his insightful comments.

[1]

[2

—

[3

[t}

[5]

[6
[7]
[8]
[9]

[10]
(1]
[12]
[13]

[14]
[15]

[16

[17]
[18
[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

REFERENCES

M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in International Conference on Automated Software Engineering, 2016,
pp. 426-437.

M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-offs in
continuous integration: Assurance, security, and flexibility,” in European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2017, pp. 197-207.

P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration: Improv-
ing Software Quality and Reducing Risk. Addison-Wesley Professional,
2007.

B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality
and productivity outcomes relating to continuous integration in GitHub,”
in European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2015, pp. 805-816.

M. Fowler, “Continuous Integration,” https://martinfowler.com/articles/
continuousIntegration.html, 2006.

“GitHub Actions,” https://github.com/features/actions, 2023.

“Jenkins,” https://www.jenkins.io, 2023.

“Travis-CI,” https://travis-ci.org, 2018.

M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in International Symposium
on Software Testing and Analysis, 2015, pp. 211-222.

“JaCoCo Java Code Coverage Library,” https:/github.com/jacoco/
jacoco, 2023.

“Apache Maven Javadoc Plugin,” https://maven.apache.org/plugins/
maven-javadoc-plugin, 2023.
“Apache Maven PMD Plugin,”
maven-pmd-plugin/index.html, 2023.
G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information Processing & Management, vol. 24, no. 5,
pp. 513-523, 1988.

“Introducing ChatGPT,” https://openai.com/blog/chatgpt, 2022.
“Optimizing continuous development by detecting and preventing unnec-
essary content generation,” https://sites.google.com/view/optimizing-cd,
2023.

“Understanding GitHub Actions,” https://docs.github.com/en/actions/
learn-github-actions/understanding- github-actions, 2023.

“JSqlParser,” https://github.com/JSQLParser/JSqlParser, 2023.

“Apache Maven Project,” https://maven.apache.org, 2020.

“Apache Maven Compiler Plugin,” https://maven.apache.org/plugins/
maven-compiler-plugin, 2023.
“Maven Surefire Plugin,”
maven-surefire-plugin, 2023.
“inotify,” https://pypi.org/project/inotify, 2023.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano,
J. Leike, and R. Lowe, “Training language models to follow instructions
with human feedback,” in Advances in Neural Information Processing
Systems, vol. 35, 2022, pp. 27 730-27 744.

S. Lin, J. Hilton, and O. Evans, “TruthfulQA: Measuring how models
mimic human falsehoods,” in Association for Computational Linguistics,
2022, pp. 3214-3252.

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto,
O. Vinyals, P. Liang, J. Dean, and W. Fedus, “Emergent abilities of large
language models,” Transactions on Machine Learning Research, 2022.
“SciPy ttest_ind_from_stats,” https://docs.scipy.org/doc/scipy-1.3.2/
reference/generated/scipy.stats.ttest_ind_from_stats.html, 2023.

C. Zhang, B. Chen, J. Hu, X. Peng, and W. Zhao, “BuildSonic: Detecting
and repairing performance-related configuration smells for continuous
integration builds,” in International Conference on Automated Software
Engineering, 2023, pp. 1-13.

“apache/maven-surefire pull request #526,” https://github.com/apache/
maven-surefire/pull/526, 2022.

B. Adams, R. Suvorov, M. Nagappan, A. E. Hassan, and Y. Zou, “An
empirical study of build system migrations in practice: Case studies on
KDE and the Linux kernel,” in International Conference on Software

Maintenance, 2012, pp. 160-169.
S. MclIntosh, B. Adams, and A. E. Hassan, “The evolution of Java build

systems,” Empirical Software Engineering Journal, vol. 17, pp. 578—
608, 2012.

https://maven.apache.org/plugins/

https://maven.apache.org/surefire/

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

S. Mclntosh, M. Nagappan, B. Adams, A. Mockus, and A. Hassan, “A
large-scale empirical study of the relationship between build technol-
ogy and build maintenance,” Empirical Software Engineering Journal,
vol. 20, pp. 1587-1633, 2014.

A. Telea and L. Voinea, “A tool for optimizing the build performance
of large software code bases,” in European Conference on Software
Maintenance and Reengineering, 2008, pp. 323-325.

M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and V. Mirrokni, “Auto-
mated decomposition of build targets,” in International Conference on
Software Engineering, 2014, pp. 123-133.

F. Hassan and X. Wang, “Change-aware build prediction model for stall
avoidance in continuous integration,” in International Symposium on
Empirical Software Engineering and Measurement, 2017, pp. 157-162.
X. Jin and F. Servant, “A cost-efficient approach to building in continu-
ous integration,” in International Conference on Software Engineering,
2020, pp. 13-25.

A. Ni and M. Li, “Cost-effective build outcome prediction using cas-
caded classifiers,” in Mining Software Repositories, 2017, pp. 455-458.
Z. Xie and M. Li, “Cutting the software building efforts in continuous
integration by semi-supervised online AUC optimization,” in Interna-
tional Joint Conference on Artificial Intelligence, 2018, pp. 2875-2881.
G. Rothermel and M. J. Harrold, “A safe, efficient regression test selec-
tion technique,” ACM Transactions on Software Engineering Methodol-
ogy, vol. 6, no. 2, pp. 173-210, 1997.

L. Zhang, “Hybrid regression test selection,” in International Conference
on Software Engineering, 2018, pp. 199-209.

A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to
large software systems,” in International Symposium on Foundations
of Software Engineering, 2004, pp. 241-251.

O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in [International Symposium on Foundations of Software
Engineering, 2016, pp. 583-594.

A. Shi, P. Zhao, and D. Marinov, “Understanding and improving regres-
sion test selection in continuous integration,” in International Symposium
on Software Reliability Engineering, 2019, pp. 228-238.

A. Gyori, O. Legunsen, F. Hariri, and D. Marinov, “Evaluating regression
test selection opportunities in a very large open-source ecosystem,” in
International Symposium on Software Reliability Engineering, 2018, pp.
112-122.

M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive
test selection,” in International Conference on Software Engineering,
Software Engineering in Practice, 2019, pp. 91-100.

A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen,
“Reflection-aware static regression test selection,” Proceedings of the
ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 187:1—
187:29, 2019.

A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjgrner, and J. Czerwonka,
“Optimizing test placement for module-level regression testing,” in
International Conference on Software Engineering, 2017, pp. 689—-699.
T. Y. Chen and M. F. Lau, “A new heuristic for test suite reduction,”
Journal of Information and Software Technology, vol. 40, no. 5-6, pp.
347-354, 1998.

——, “A simulation study on some heuristics for test suite reduction,”
Journal of Information and Software Technology, vol. 40, no. 13, pp.
777-787, 1998.

G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical
studies of test-suite reduction,” Journal of Software Testing, Verification
and Reliability, vol. 12, no. 4, pp. 219-249, 2002.

H. Zhong, L. Zhang, and H. Mei, “An experimental study of four typical
test suite reduction techniques,” Journal of Information and Software
Technology, vol. 50, no. 6, pp. 534-546, 2008.

J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria models for
all-uses test suite reduction,” in International Conference on Software
Engineering, 2004, pp. 106-115.

D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand test
suite reduction,” in International Conference on Software Engineering,
2012, pp. 738-748.

J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization
for modified condition/decision coverage,” in International Conference
on Software Maintenance, 2001, pp. 92-102.

L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical study
of JUnit test-suite reduction,” in International Symposium on Software
Reliability Engineering, 2011, pp. 170-179.

[54]

[55]

H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,
W. Schulte, N. Sanches, and S. Kandula, “CloudBuild: Microsoft’s
distributed and caching build service,” in International Conference on
Software Engineering Companion, 2016, pp. 11-20.

O. Schwahn, N. Coppik, S. Winter, and A. Mgller, “Assessing the
state and improving the art of parallel testing for C,” in International
Symposium on Software Testing and Analysis, 2019, pp. 123-133.

[56]

(571

J. Candido, L. Melo, and M. d’Amorim, “Test suite parallelization in
open-source projects: A study on its usage and impact,” in International
Conference on Automated Software Engineering, 2017, pp. 838-848.
P. Nie, A. Celik, M. Coley, A. Milicevic, J. Bell, and M. Gligoric,
“Debugging the performance of Maven’s test isolation: Experience
report,” in International Symposium on Software Testing and Analysis,
2020, pp. 249-259.

