
Optimizing Continuous Development By Detecting

and Preventing Unnecessary Content Generation

Talank Baral1, Shanto Rahman2, Bala Naren Chanumolu1, Başak Balcı3, Tuna Tuncer3, August Shi2, Wing Lam1

1 George Mason University, USA

{tbaral,bchanumo,winglam}@gmu.edu
2 The University of Texas at Austin, USA

{shanto.rahman,august}@utexas.edu
3 Technical University of Munich, Germany

{basak.balci,tuna.tuncer}@tum.de

Abstract—Continuous development (CD) helps developers
quickly release and update their software. To enact CD, de-
velopers customize their CD builds to perform several tasks,
including compiling, testing, static analysis checks, etc. However,
as developers add more tasks to their builds, the builds take
longer to run, therefore slowing down the entire CD process.
Furthermore, developers may unknowingly include tasks into
their builds whose results are not used (e.g., generating coverage
files that are never read or uploaded anywhere), therefore wasting
build runtime doing unnecessary tasks.

We propose OptCD, a technique to dynamically detect unnec-
essary work within CD builds. Our intuition is that unnecessary
work can be identified by the generation of files that are not used
by any other task within the build. OptCD runs alongside a CD
build, tracking the generated files during the build and which
files are read/written. Files that are written to but are never read
from are unnecessary content from a build. Based on the names
of the unnecessary files, OptCD then maps the files to the specific
build tasks responsible for generating or writing to those files.
Finally, OptCD leverages ChatGPT to suggest changing the build
configuration to disable generating these unnecessary files. Our
evaluation of OptCD on 22 open-source projects finds that 95.6%
of projects generate at least one unused directory, a directory
whose contents are all unnecessarily generated. OptCD identifies
the correct task that generates 92.0% of the unused directories.
Further, OptCD can produce a patch for the CD configuration
file to prevent generating 72.0% of the unused directories. Using
the patches, we reduce the runtime by 7.0% on average for the
projects we studied. We submitted 26 pull requests for the unused
directories that we could disable. Developers have accepted 12
of them, with five rejected, and nine still pending.

I. INTRODUCTION

Developers practice continuous development (CD) to release

their software quickly and make continuous, ongoing improve-

ments after the software is released. The process of CD typi-

cally involves a build that is triggered when developers make

changes to their code and commit/push their changes. Within

this build, various other processes are performed, such as

(1) continuous integration [1]–[5], which checks whether the

changes can be integrated into the code base without breaking

existing functionality, and (2) continuous deployment, which

releases the newly changed software to end users. Developer

can customize CD builds to release the changes and perform

various tasks, commonly including compiling, testing, and

analyzing the code. If any of these tasks fail, then developers

need to debug and fix their code changes before they can make

any additional changes. There are an abundance of CD-related

services available to developers, such as GitHub Actions [6],

Jenkins [7], or Travis CI [8]. These services help developers

by providing temporary virtual machines to compile, test, and

analyze code.

CD can be time-consuming, given that CD builds occur on

every change, and developers are frequently making changes

to their code base [9]. Furthermore, a developer may configure

the CD build to perform many other tasks beyond the basics of

checking whether the code compiles or that tests pass, such as

collecting code coverage [10], building documentation [11],

or static analysis [12]. Unfortunately, developers may end

up not using any of the results of these additional tasks

they configured for the CD build. For example, if developers

configured the CD build to collect code coverage but then do

not upload those results elsewhere before the virtual machines

are destroyed, then the work that went into collecting the

results is unnecessary and a waste of CD build time.

We propose Optimizing Continuous Development (OptCD)

to automatically identify the generation of unnecessary content

during CD builds. Tasks in CD builds will often create or

modify files. The intuition of OptCD is that if these files

are never read or used after they were created or modified,

then the work that went into creating or modifying the files

is unnecessary. As such, if we can identify these unused files

and map them back to the CD-build tasks that resulted in those

files, then developers can disable or reconfigure these tasks,

therefore saving overall CD build time.

For a given CD-configured project, OptCD first modifies the

CD configuration to log the file reads/writes that occur during

a CD build. After the CD build finishes, OptCD then analyzes

the generated log, identifying unused files as those where

there are no read operations to the file after the final write

operation. OptCD then clusters the unused files together into

unused directories, namely directories that contain only unused

files. The intuition is that build tasks often do not generate

individual files but rather a set of files all gathered within

some common directory (e.g., code coverage reports). OptCD

systematically searches through the available tasks and checks

whether disabling the task also disables the generation of the



unused directories. To speed up this search process, OptCD

leverages three strategies to prioritize the order in which

to search through the tasks based on the unused directory

name: (1) Information Retrieval, (2) ChatGPT, and (3) Log

Search. The Information Retrieval strategy uses TF-IDF [13]

to prioritize the build tasks based on the task names that

are most related to the unused directory name. The ChatGPT

strategy relies on asking ChatGPT [14] to prioritize the list

of build tasks based on which ones it thinks are most likely

responsible for generating a given unused directory. The Log

Search strategy parses the generated log of file reads/writes

as well as the default log of build activity, matching the

timestamps of the creation of unused files to the timestamps

of build tasks. Whichever task has a timestamp that overlaps

with the final creation/modification timestamp of the unused

files is ranked the highest. In all three strategies, if none of the

ranked list of tasks are correct (i.e., disabling the task does not

disable the generation of the unused files), OptCD proceeds

to search on the remaining unranked tasks. Once the exact

task is identified, a developer may disable this task on their

CD and local builds by removing this task from the project

configuration file. If a developer wishes to disable the task

only on their CD builds, OptCD can also leverage ChatGPT

to help generate a patch for the CD build configuration file to

stop the generation of files within the unused directories.

We evaluate OptCD on 22 popular, open-source, Maven

projects from GitHub that use GitHub Actions for their CD.

We use OptCD to reconfigure their CD builds to track the

unused directories and later to identify the CD build tasks,

specifically the Maven plugins that generated unused direc-

tories during the build. We find that 95.6% of projects in

our evaluation generate at least one unused directory, with an

average of 4.0 unused directories per project. OptCD’s search

strategies are able to identify the correct plugin responsible for

generating 92.0% of the unused directories. OptCD can also

use ChatGPT to suggest a patch to the CD build configuration

to disable generating 72.0% of unused directories. Unfor-

tunately, not all unused directories can be easily disabled,

e.g., some directories are automatically generated by build

systems, such as Maven, to contain diagnostic information that

is often unused. When we use OptCD’s patches for CD build

files, we reduce the average time to run the corresponding

build command by 7.0%. We submitted 26 pull requests for

disabling unused directories. Developers have accepted 12 pull

requests, with five rejected, and nine pending.

This paper makes the following main contributions:

• We propose dynamically tracking file reads/writes during

CD builds to identify the generation of unnecessary con-

tent that can be disabled to speed up CD build runtime.

• We present OptCD [15] to identify the Maven build tasks

doing unnecessary work during a Maven build when a

GitHub Actions build is triggered.

• We evaluate OptCD on 22 Maven projects that use

GitHub Actions for their CD. We find that 95.6% of

projects generate at least one unused directory. OptCD

can identify a change to the CD configuration file to

disable the generation of 72.0% of identified unused

directories. We sent 26 pull requests to developers with

these changes – 12 are accepted, nine are pending, and

five are rejected.

II. BACKGROUND

Continuous development (CD) is the process of continu-

ously developing and releasing code, which involves checks

and other processes to ensure the changes are safe to integrate

and to deploy [1], [2], [4], [5]. Developers can configure the

CD process for their projects, such that changes they make

to the code can trigger a CD build that performs a number of

tasks to check for the correctness of those changes. Commonly

what happens is that these changes are automatically pulled

onto a remote server that tries to compile, test, and perform

any additional tasks on the code. Depending on the tasks,

the CD build may fail, which in turn prevents developers

from integrating their changes until they inspect and fix the

problems in those changes. There are an abundance of CD-

related systems and services available to developers, such as

GitHub Actions [6], Jenkins [7], or Travis CI [8].

In this work, we specifically focus on GitHub Actions, given

its easy integration with any open-source project on GitHub.

To configure a GitHub Actions build, a developer can create

any number of .yml files that each define a workflow that

triggers upon an event, such as a developer pushing changes

to the GitHub repository or receiving a pull request [16]. A

developer can define any number of jobs within the workflow,

and each job runs inside its own virtual machine or container

within the GitHub Actions servers, isolated from any other

jobs. All jobs operate on the same changed code in the

repository, but they may run different tasks. A job is defined

by a number of steps, where a step is a set of script commands.

After all steps in a job finish execution, the outcome of the job

is presented to developers and the virtual machine where the

job was run is deleted, along with any files generated during

the job (unless they are explicitly uploaded elsewhere).

Figure 1 shows an example workflow .yml file for the

project JSQLParser [17]. We can see that the workflow defines

jobs (identified as build under the jobs label), where

individual steps (listed under the steps label) are run on

an Ubuntu system, and each job runs with a different version

of Java. These individual steps can use predefined actions that

GitHub Actions provides (e.g., Line 15) or bash commands

(e.g., Line 17).

Aside from setting up CD, developers often also set up

a build system for their project, such as Maven [18] for

Java projects. Maven can automatically download necessary

dependencies, compile Java code, run tests, or perform any

number of other configurable tasks. In Maven, a developer

defines Maven plugins that perform these build tasks within a

Maven build. There are an abundance of existing plugins that

a developer can include, such as JaCoCo [10] for collecting

code coverage. Even compiling and testing are defined and

configurable as plugins, namely the Compiler [19] and Sure-

fire [20] plugins, respectively. A developer may configure their





inotifywait to continue until the last step in the workflow

before uploading the generated log for later use.

The added highlighted lines in Figure 1 shows an example

of the modifications OptCD makes. The modifications involve

adding extra steps to install inotifywait and other de-

pendencies for the analysis we want to perform (Lines 11

to 14) and to start inotifywait (Line 16). We also include

additional steps that touch and remove dummy files based

on the original steps included in the existing workflow file

(Lines 17 and 18). We use this modification to discern which

file operations belong to which original steps by mapping file

operations to a step based on the creation and removal of the

dummy files. We include a final step that pushes the results

for analysis later (Lines 22 and 23).

B. Classifier

Given the log file generated by the Logger, the Classifier

component determines which files are unused files. We define

an unused file as one that is generated and written to during

the build, but that file is never read from later. The intuition is

that the build has to do some work to generate the output that

is ultimately written into this file, but since the contents of the

file are never used later, the work that went into modifying

the file is unnecessary.

For each file in the inotifywait log, we track the files

that are Created during the build. For each such file, we look

for the last time the file is Modified, representing something

being written into the file. We then check whether there are

any Accessed operations on the same file later. If the file is

not Accessed after it is Created or after the final Modified,

then we classify this file as an unused file. Note that when we

track files, we use both the relative path of the file and when

the file is Created in the log. If a file with the same file path

is Created again later in the log, we treat that file as a brand

new file to see whether it is an unused file.

C. Clusterer

We ultimately want to identify the Maven build plugins that

generate unused files, so that a developer can reconfigure or

disable the plugins to not do the unnecessary work that results

in the unused files. Our intuition is that a plugin often does not

modify specifically a single, individual file; they often do work

across many files that are contained within the same directory.

As such, we should try to map plugins to the directories

that contain the individual unused files. We define an unused

directory as a directory that contains only unused files. If the

directory contains any non-unused files (i.e., necessary files

that are used in the CD build), then the directory is not an

unused directory. While we can map individual files to Maven

build plugins without clustering them into directories, doing

so for every single file can be time-consuming and likely we

would still find that all unused files within the same unused

directory would map to the same plugin anyway.

Given the unused files from the Classifier as input, the

Clusterer clusters these unused files into their corresponding

unused directories and outputs these directories. Figure 3

1 def Clusterer(unused_files, used_files):

2 paths = []

3 unused_dirs = []

4 paths.append(longest_path_prefix(unused_files))

5 while len(paths) > 0:

6 path = paths.pop()

7 # Some used file matches path

8 if path_match(path, used_files):

9 # Explore matching subdirs among unused files

10 for f in unused_files:

11 if path_match(path, f):

12 new_path = one_deeper(path, f)

13 if is_file(new_path):

14 continue

15 if not new_path in paths

16 and not new_path in unused_dirs:

17 paths.append(new_path)

18 else:

19 unused_dirs.append(path)

20 return unused_dirs

Fig. 3. Pseudo-code for Clusterer.

shows how the Clusterer identifies the unused directories.

Given the set of unused files and used files (namely the

remaining files that are not unused files), the Clusterer first

finds the longest common prefix path among all unused files.

If this path also matches for any used files (Line 8), then the

path does not represent an unused directory. Clusterer needs

to then explore deeper down this path, trying out the different

subdirectories underneath to see whether any of those can

be unused directories. For each unused file that matches the

current path prefix, Clusterer constructs a new path that is the

current path prefix plus one more directory deeper (Line 12),

which still matches that unused file. If the path cannot be

extended by one more directory, namely it results in the file

itself, then the path is discarded. This scenario occurs when

there is a directory that directly contains both unused files

and used files, so the directory is not an unused directory and

cannot be extended further. We do not report individual unused

files and we report only the top most level of unused directory

(unused subdirectories are also not reported).

If the new path is not already in the set of paths to be

explored and not already identified as an unused directory

(Line 16), then Clusterer checks whether this path is an unused

directory in future iterations (Line 17). When there are no

more paths to explore, Clusterer returns all the unused directo-

ries it identified. For example, the target/site/ directory

may contain various other directories, such as jacoco/ and

pmd/. If all the (recursive) files inside jacoco/ are unused

files, then jacoco/ will be considered an unused directory.

If at least one file is a used file in pmd/, then the pmd/

directory will not be considered an unused directory. However,

if all files in pmd/ are also unused files, then pmd/ will also

be considered an unused directory like jacoco/. If all the

directories under target/site/ are all unused directories,

then target/site/ will be considered an unused directory.

D. Mapper

The Mapper component takes the set of unused directories

from the Clusterer and identifies the plugin that modifies the



files in each unused directory. To identify the correct plugin for

each unused directory, we use a systematic search process that

iterates through the plugins defined in a project’s pom.xml

build configuration file to see which one generates the unused

directory (more precisely, we iterate through the effective

pom.xml that also contains plugins inherited from parent

pom.xml files). For each plugin, we remove the plugin from

the pom.xml file and then run the steps. If all steps complete

successfully, the unused directory no longer exists, and all the

used files are still there, then we consider the disabled plugin

to be the one responsible for generating the unused directory.

The developer may then use this information to debug and

determine how to best prevent the plugins from generating

unused files, or simply disable or remove the plugin from

their local and CD builds. As special cases, we exclude the

directories maven-status/ and surefire-reports/ if

they are the unused directories. The reason is that we know that

the two directories are generated by the Compiler and Surefire

plugins, respectively. These two plugins are always included

in any Maven build and cannot be removed. Therefore, we do

not bother searching in such cases.

Overall, this process of trying each plugin can be time-

consuming due to the rerunning of all steps for each plugin

tried during the search. To speed up this process, we propose

three strategies to rank the list of plugins to try.

Information Retrieval. We use information retrieval, namely

TF-IDF [13], to match the name of an unused directory to the

likely plugin that modifies the unused directory. The intuition

is that the unused directory name is likely related to the

plugin’s name (as listed in the pom.xml file), e.g., the JaCoCo

plugin by default writes to a directory called jacoco. To rank

the plugins, we tokenize the name (group ID and artifact ID) of

each plugin listed in the pom.xml. We treat the tokenization

of the unused directory name as the query and the tokenization

of each plugin as the documents to match the query against.

TF-IDF provides a cosine similarity score between 0 and 1

for each plugin based on its relevance to the unused directory

name, and we rank the different plugins based on this score.

We then perform the search by iterating through the plugins

in decreasing score order. Plugins with the same score are

ordered based on their appearance in the pom.xml file. A

plugin with score 0 is considered unranked. If none of the

ranked plugins are correct, we proceed to search the unranked

plugins (in order of appearance in the pom.xml file, because

they all tie with the same score of 0). We stop the search after

identifying a correct plugin and consider an unused directory

to have no correct plugins if we do not stop the search before

trying all plugins. As we show in Section V-B, our search

process can identify the correct plugin for 92.0% of the unused

directories in our evaluation.

ChatGPT. ChatGPT [14] is a large-language model-based

chatbot. ChatGPT can help with a wide range of tasks, includ-

ing coding-related questions. We utilize ChatGPT (version 4.0)

as a “Google search” equivalent to represent what a developer

would do if they were trying to identify and disable the plugin

responsible for generating unused files.

To prepare the ChatGPT queries, we considered two dif-

ferent prompting strategies: Instruction Following Prompting

Strategy [22] and TruthfulQA Prompting Strategy [23]. We

selected all the strategies from Wei et al. [24] that did not

require follow-up prompts. Out of these two strategies, we

chose the Instruction Following Prompting Strategy based on

a small experiment to find the correct plugin for a sample

of five unused directories from our evaluation dataset. Based

on this experiment, we found that the Instruction Following

Prompting Strategy gives more accurate results.

Given an unused directory for a step in the GitHub Actions

.yml file along with all the plugins defined in the pom.xml,

we construct a prompt to ChatGPT based on the Instruction

Following Prompting Strategy, asking it for a ranked list of

plugins along with a score for how likely each plugin is

responsible for generating that unused directory. The prompt

template for ChatGPT is:

Given the list of dependency plugins in a pom.xml as

“<list of plugins>”, a Maven command that has been executed

as “<Maven Command>”, and an unused directory that was

created in the target directory named “<unused directory>”,

please rank and score the plugins in the list based on how

likely each plugin is responsible for the generation of this

unused directory and the score should be greater than or equal

to zero, where zero means the plugin may not likely generate

the unused directory.

We perform the search by iterating through each plugin in

descending order of the score given by ChatGPT. Similar to

the Information Retrieval strategy, we first search the ranked

plugins before the unranked ones and we break ties in scores

the same way (based on their appearance in the pom.xml).

Log Search. Our last strategy for identifying the plugin

responsible for generating an unused directory is to parse

the log files directly. The log files generated by the Logger

component have timestamps for each file event. A GitHub

Actions build also produces timestamped logs detailing all

the Maven build activities, including when each plugin starts

running. As such, we can correlate the timestamps for the

creation and modification of files in the Logger logs with the

timestamps of when plugins were started and ended in the

GitHub Actions build logs to figure out which plugin was

running when unused files were generated.

Similar to the other two strategies, Log Search also produces

a ranked list of plugins to try, except its “list” consists of just

the one plugin found to be running at the same time as when

the unused files were created or modified. If we find this plugin

is not the correct one for generating the unused directory, we

once again search through the remaining unranked plugins.

E. Fixer

In the Fixer component, we use ChatGPT to obtain a

new Maven command that disables the generation of unused

directories. The goal is to update the Maven command in

the GitHub Actions workflow .yml build configuration file.

While a developer may use the plugin information from the

Mapper to simply disable or remove the plugin completely



from their Maven build, e.g., removing the plugin from their

pom.xml configuration file, doing so would disable the plugin

from running both on the CD servers and on the developers’

local machine. The generated files that OptCD identifies on

CD servers are unused files during a CD build, but they may

be used by developers when they build locally, e.g., they may

use detailed test reports for debugging local test failures, while

such reports are not saved anywhere and are deleted after

a CD build. As such, it is desirable to also find a way to

disable the generation of unused files only in CD builds by

adding arguments to the Maven command used in the GitHub

Actions .yml build configuration file. By modifying only the

.yml file with these arguments, only the CD builds would be

affected, i.e., local builds would not be affected.

Similar to how we use ChatGPT for Mapper, we also use

the Instruction Following Prompting Strategy to develop the

prompts for how to fix the Maven commands. We provide

to ChatGPT the entire list of plugins from the pom.xml

file, the unused directory from Clusterer, and the Maven

command from the step in the GitHub Actions .yml file.

While we could also provide to ChatGPT the name of the

responsible plugin from the Mapper (if identified successfully),

our experiments find that providing this extra information does

not help generate more fixes than just providing the entire list

of plugins. By relying on the entire plugin list, the Fixer is also

usable even when the Mapper did not successfully identify a

plugin. Ultimately, our prompt to ChatGPT is:

Given the list of dependency plugins in a pom.xml rep-

resented as “<list of plugins>”, and considering the Maven

command “<Maven command>” which results in the creation

of an unused directory named “<unused directory>” in the

target directory, please provide an argument that can be added

to the given Maven command. The objective is that when

this updated command is executed, the “<unused directory>”

should not be created. Suggest the most relevant argument

based on the context and the nature of the plugins listed.

We test the resulting commands by updating the step in

the GitHub Actions .yml file and running the build. If the

unused directory is still generated, then we say ChatGPT was

unsuccessful at fixing the build. If the unused directory is no

longer generated and all used files are still generated, then we

consider the new Maven command to be valid and report it as

a patch to developers.

IV. EXPERIMENTAL SETUP

We answer the following research questions:

• RQ1: How often are unused directories generated?

• RQ2: How effective is OptCD at identifying the plugin

that generated unused directories and suggesting ways to

prevent the generation of such directories?

• RQ3: How much runtime does OptCD save?

• RQ4: What are developers’ reaction to OptCD-inspired

fixes?

We answer RQ1 to see how prevalent are unused directories

being generated within CD builds. A large percentage of

unused directories can indicate much unnecessary work that

should be removed. We answer RQ2 to see how effective

OptCD is at identifying what part of a build is responsible for

generating unused directories as well as how it can help fix

that problem. We answer RQ3 to understand how OptCD can

help in reducing CD build time by preventing the generation of

unused directories. Finally, we answer RQ4 to understand how

interested developers are in the the fixes inspired by OptCD.

A. Subjects

We focus our evaluation on open-source Maven projects

that build using GitHub Actions. First, we queried the GitHub

REST API to search for popular projects marked with the

Java programming language. We configured the search to sort

the projects based on the number of forks as a measure of

popularity. As the GitHub REST API cannot provide more

than 1000 results at once, we stagger the search across two

days, resulting in a total of 1563 unique Java projects. We

then filtered this list of projects to include only the ones that

are already configured to use GitHub Actions and use Maven

as their build system, resulting in 215 projects.

Given that we will be running the workflows for these

projects multiple times, we apply an additional filtering cri-

teria to only include the projects with one to three .yml

workflow files, reducing the number of workflows and jobs

that get triggered each build. For ease of our analysis, we also

filter out projects with more than one pom.xml file, restricting

ourselves to only single module Maven projects. After these

two filters, we are left with a total of 54 projects.

We forked these 54 projects and attempted to trigger a

GitHub Actions build. We are unable to include projects where

we cannot trigger a successful GitHub Actions build for any of

the project’s jobs, for reasons such as the job requiring some

form of authentication from a secret key that we do not have

or the job must run on self-hosted runners that we do not have

access to. We also filter out projects with workflows on which

we cannot successfully run OptCD due to reasons such as the

job being configured to run on a non-Linux operating system,

which inotifywait does not support, or there are strict

timeouts that prevents our analysis from finishing. Ultimately,

we are left with 22 projects with GitHub Actions workflows

that we use for our evaluation.

B. RQ1: How often are unused directories generated?

We rely on inotifywait [21] to track file accesses

during a CD build (Section III-A). Before settling on using

inotifywait, we tried lsof and strace as other options

for logging changes to files. We find that these other two

tools produced output that are more difficult to parse than

inotifywait, e.g., strace produced very detailed output

but most of it is unnecessary for the purpose of tracking file

reads and writes.

We conducted all experiments to collect inotifywait

logs on default Ubuntu GitHub Actions machines that have

two cores, 7GB RAM, and 14GB of disk storage. Note that

we are running the same build as the developers would every

time there are updates to their codebase, new pull requests



being opened, etc. The only change we make to a build is

to setup our logging needs. We also measure build-related

runtimes on these machines. Timing measurements with and

without fixes are done on original builds with no changes

from us except for our commands to disable the generation

of unused files. While developers can configure their builds to

run different build profiles, including those that may be less

expensive by disabling certain work during CD, the results we

observe concerning generated unused files are what actually

happens using their current build profiles.

C. RQ2: How effective is OptCD at disabling the generation

of unused directories?

We obtain the ground truth for the correct plugin by

disabling each plugin that is listed in the pom.xml file one-

by-one and then running the Maven command to observe if

the unused directory is still being generated. If the unused

directory is no longer generated and the used files are still

being generated, then we consider that plugin as the correct

plugin to disable the unused directory.

D. RQ3: How much runtime does OptCD save?

After OptCD suggests some changes to the Maven build

commands in one or more steps in a job, we run those jobs

through GitHub Actions 14 times, both with and without

the suggested changes. For each run, we record the runtime

of each step, but we exclude the time taken to download

dependencies, because the download time varies from run

to run. The fluctuations in download time can mask and

mischaracterize the actual runtime improvement from OptCD’s

proposed changes. Further, to remove the effect of outliers,

we dropped the two highest and the two lowest runtimes for

both with and without our fix. We then compute the runtime

improvement as subtracting the average runtime with the

change from the average runtime without the change, divided

by the average runtime without the change. We only compute

the runtime improvement for steps where there is a change to

the Maven commands, because we want developers to accept

our changes for runtime improvements, which developers are

more likely to accept if our changes applied only to their

CD build. To assess the statistical significance of the runtime

improvements, we also conduct a two-sample independent t-

test [25] on the obtained runtimes, comparing the runtimes

with and without the changes suggested by OptCD.

E. RQ4: What are developer’s reaction to OptCD?

We submit pull requests to the developers of the open-

source projects to gauge their interest in the suggested fixes.

Although, we attempt to open a pull request for all unused

directories that OptCD can generate a valid Maven command

for, our total number of pull requests opened is less, because

many unused directories come from the same step, which we

only opened a single pull request for in such cases. In fact,

we find that one workflow may often have multiple jobs, and

each job will have the same steps but the jobs slightly differ

in their Java version, OS version, and so on. One example of a

workflow with multiple jobs that have different Java versions

is shown in Line 8 of Figure 1. The steps are the same in

the different jobs, so we can create one pull request that helps

with all of the jobs in this workflow.

V. EVALUATION

A. RQ1: How often are unused directories generated?

Table I shows the number of unused directories that OptCD

finds to be generated during the CD build across the 22

projects and the 43 steps (each given an ID for use in a later

table) that run a Maven build command within the jobs of those

projects, shown under column “U. Dir.”. For each step, we also

show the total number of steps within the same job as that step

(“Steps”), including those that do not run a Maven command,

and the number of plugins run within that step (“Plugins”). We

see that almost every step with a Maven command generates

an unused directory, with only three steps that do not generate

any unused directories. Overall, all the steps together generate

a total of 89 unused directories. Further, when we analyze the

directories with at least one file generated, we find that 64.9%

of them contain more unused files than used files.

When we look into the unused directories, we find that

almost all of the steps generate a directory with the name

maven-status/ (only step S1-1a does not generate a

maven-status/ directory). The maven-status/ direc-

tory contains diagnostics information generated during a

Maven build. As such, it is reasonable to find that projects

tend to not do anything with the contents in this directory

during CD. Further, we do not find any means to prevent a

Maven build from generating such a directory. To focus our

efforts on unused directories that we can disable generating,

we ignore the maven-status/ directory. Table I reports the

number of unused directories without any maven-status/

directories under the column “U-MS Dir.”. There are a total

of 50 unused directories generated across all steps. We see

that there are only six steps that do not generate any unused

directories, i.e., 86.0% (37 / 43) of steps generate at least one

unused directory. Each step generates on average 2.1 (89 / 43)

unused directories. Further, 95.6% (21 / 22) of all projects

generate at least one unused directory (only one project does

not), with an average of 4.0 (89 / 22) unused directories per

project. In summary, the generation of unused directories is

rather prevalent in CD builds, showing the large amount of

unnecessary work conducted within these builds.

RQ1 findings: 95.6% of projects generate at least one unused

directory in its Maven-command steps, with an average of

4.0 unused directories per project. When we consider just the

Maven-command steps, we find that an average of 2.1 unused

directories are generated per step.

B. RQ2: How effective is OptCD at disabling the generation

of unused directories?

Table II shows the results of using OptCD to identify the

correct Maven plugins that generate the 50 unused directories,

i.e., the effectiveness of the Mapper component. Each row in

the table shows the name of the unused directory associated



TABLE I
STATISTICS OF GITHUB ACTIONS STEPS IN OUR EVALUATION. THE “-” IN CELLS UNDER “IMPROVEMENT” AND “IMPROV. P-VALUE” ARE CASES WHERE

WE CANNOT MEASURE RUNTIME IMPROVEMENT. HIGHLIGHTED P-VALUE CELLS INDICATE STATISTICALLY SIGNIFICANT IMPROVEMENTS (p < 0.05).

ProjID # of % Runtime Improv.
-StepID GitHub User/Repository Name Steps Plugins U. Dir. U.-MS Dir. Step/Total Improvement p-value

S1-1a pedrovgs/Algorithms 4 8 1 1 45.9 7.8 0.320
S1-1b pedrovgs/Algorithms - 8 2 1 34.7 2.2 0.488
S2-1 cucumber/cucumber-java-skeleton 8 8 1 0 15.2 - -
S3-1 baomidou/dynamic-datasource-spring-boot-starter 3 12 1 0 98.0 - -
S4-1 hyperledger/fabric-sdk-java 3 15 2 1 99.2 -2.8 0.151
S4-2 hyperledger/fabric-sdk-java 3 15 2 1 99.2 3.2 0.052
S4-3 hyperledger/fabric-sdk-java 3 15 2 1 99.3 -3.0 0.197
S5-1 hub4j/github-api 3 16 4 3 85.3 9.2 0.076
S5-2 hub4j/github-api 3 16 2 1 82.2 - -
S5-3 hub4j/github-api 4 16 3 2 80.6 - -
S5-4 hub4j/github-api 4 16 3 2 94.4 -0.7 0.708
S5-5 hub4j/github-api 4 16 2 1 73.9 - -
S6-1 TooTallNate/Java-WebSocket 3 10 0 0 58.5 - -
S7-1 JSQLParser/JSqlParser 3 20 3 2 90.3 14.2 0.000
S7-2 JSQLParser/JSqlParser 3 20 3 2 89.3 8.7 0.002
S8-1 junit-team/junit4 5 14 2 1 89.5 12.8 0.000
S8-2 junit-team/junit4 5 14 2 1 82.8 3.9 0.161
S8-3 junit-team/junit4 5 14 2 1 88.0 7.0 0.019
S8-4 junit-team/junit4 5 14 2 1 88.8 10.9 0.006
S9-1 mate-academy/jv-fruit-shop 3 9 1 0 42.6 - -
S10-1 obsidiandynamics/kafdrop 3 12 3 2 81.1 5.5 0.058
S11-1 matsim-org/matsim-example-project 3 10 2 1 92.0 15.0 0.000
S12-1 mcMMO-Dev/mcMMO 4 12 2 1 86.9 7.0 0.001
S13-1 SERG-Delft/mooc-software-testing 3 9 4 3 55.1 24.1 0.000
S14-1 pagehelper/Mybatis-PageHelper 3 9 2 1 64.1 -0.2 0.921
S15-1 google/open-location-code 3 9 2 1 93.6 0.1 0.970
S15-2 google/open-location-code 3 9 2 1 80.7 0.6 0.807
S15-3 google/open-location-code 3 9 2 1 92.4 4.8 0.143
S15-4 google/open-location-code 3 9 2 1 91.9 8.1 0.005
S16-1 MicrosoftDocs/pipelines-java 4 9 2 1 33.4 - -
S17-1 socketio/socket.io-client-java 5 16 2 1 88.5 -3.5 0.000
S17-2 socketio/socket.io-client-java 5 16 2 1 92.6 -0.3 0.674
S17-3 socketio/socket.io-client-java 5 16 2 1 90.0 -0.5 0.330
S18-1 soot-oss/soot 3 15 2 1 95.7 7.5 0.022
S18-2 soot-oss/soot 3 15 2 1 96.0 10.6 0.001
S18-3 soot-oss/soot 3 15 2 1 95.8 0.6 0.874
S18-4a soot-oss/soot 4 15 0 0 47.5 - -
S18-4b soot-oss/soot 4 15 0 0 21.3 - -
S19-1 spring-petclinic/spring-framework-petclinic 3 14 4 3 71.9 16.2 0.000
S20-1 spring-petclinic/spring-petclinic-rest 3 13 3 2 70.8 22.0 0.000
S21-1 88250/symphony 3 10 3 2 66.2 46.9 0.000
S22-1 UniversalMediaServer/UniversalMediaServer 4 14 2 1 76.3 -4.2 0.228
S22-2 UniversalMediaServer/UniversalMediaServer 4 14 2 1 71.9 -1.2 0.296

Total/Mean 3.7 13.0 89 50 76.6 7.0 -

with a step ID. The table also shows the ground truth plugin

responsible for generating each unused directory based on our

inspection (Section IV). Note that two unused directories (S7-

1 and S7-2 site) are generated using more than one plugin.

The column “Baseline” shows the number of plugins tried

when using a simple baseline of iteratively trying to disable

each plugin in order of appearance in the pom.xml file (i.e.,

without any of the ranking heuristics that Mapper employs).

This baseline would try on average 6.5 plugins per directory

(we do not count cases where we cannot identify the correct

plugin by this iterative search, marked as “-” in the table).

For the three strategies for ranking plugins during Mapper’s

search (Information Retrieval, ChatGPT, and Log Search), we

show the number of plugins each would try before identifying

the correct plugin under column “#Tried”; we use “-” to denote

when a strategy cannot identify the plugin. We also show the

number of plugins that are actually ranked (column “#Rnkd”)

by Information Retrieval and ChatGPT; Log Search would

only ever rank one plugin, so we do not show it in the table.

Comparing the number of plugins tried by each strategy,

we see that all of them try a smaller number of plugins

compared to the baseline, trying on average 2.0, 1.6, and 1.0

plugins for Information Retrieval, ChatGPT, and Log Search,

respectively. ChatGPT on average creates larger ranked list of

plugins than Information Retrieval (2.1 versus 1.1), and both of

them occasionally need to try plugins beyond the ranked list,

but ChatGPT ends up trying fewer plugins than Information

Retrieval. Log Search is the most effective as it tries the fewest

number of plugins among the three strategies.

Overall, we see that the search process of trying each plugin

can identify the correct plugin for 92.0% (46 / 50) of the

unused directories. Naturally, this process cannot handle cases



TABLE II
PLUGIN ANALYSIS RESULTS FOR EACH UNUSED DIRECTORY. “-” DENOTES THE SEARCH COULD NOT IDENTIFY THE CORRECT PLUGIN. “#RNKD”

DENOTES RANKED. “N/A” DENOTES NO PLUGINS WERE RANKED. “*” DENOTES A PULL REQUEST IS SUBMITTED FOR THE DIRECTORY.

Baseline Information Retrieval ChatGPT Log Search
ID Unused Dir Ground Truth #Tried #Tried #Rnkd #Tried #Rnkd #Tried Fixer

S1-1a site - - - 1 - 1 - N*
S1-1b surefire-reports maven-surefire-plugin 5 1 1 1 1 1 Y*
S4-1 surefire-reports maven-surefire-plugin 1 1 1 1 2 1 Y*
S4-2 surefire-reports maven-surefire-plugin 1 1 1 1 2 1 Y*
S4-3 surefire-reports maven-surefire-plugin 1 1 1 1 2 1 Y*
S5-1 cache maven-surefire-plugin 8 8 N/A 8 6 1 N
S5-1 japicmp japicmp-maven-plugin 11 1 1 1 1 1 Y*
S5-1 surefire-reports maven-surefire-plugin 6 1 2 1 2 1 Y*
S5-2 site - - - 1 - 3 - N
S5-3 cache maven-surefire-plugin 8 8 N/A 8 6 1 N
S5-3 surefire-reports maven-surefire-plugin 6 1 2 1 2 1 Y*
S5-4 cache maven-surefire-plugin 8 8 N/A 8 6 1 N
S5-4 surefire-reports maven-surefire-plugin 6 1 2 1 2 1 Y*
S5-5 test-classes maven-compiler-plugin 5 5 N/A 1 2 1 N
S7-1 site maven-pmd-plugin & - - 1 - 8 - N*

jacoco-maven-plugin
S7-1 surefire-reports maven-surefire-plugin 15 1 1 1 1 1 Y*
S7-2 site maven-pmd-plugin & - - 1 - 8 - N

jacoco-maven-plugin
S7-2 surefire-reports maven-surefire-plugin 15 1 1 1 1 1 Y*
S8-1 surefire-reports maven-surefire-plugin 5 1 1 1 1 1 Y*
S8-2 surefire-reports maven-surefire-plugin 5 1 1 1 1 1 Y*
S8-3 surefire-reports maven-surefire-plugin 5 1 1 1 1 1 Y*
S8-4 surefire-reports maven-surefire-plugin 5 1 1 1 1 1 Y*
S10-1 docker-ready maven-resources-plugin 5 5 1 3 2 1 Y*
S10-1 surefire-reports maven-surefire-plugin 9 1 1 1 2 1 Y*
S11-1 surefire-reports maven-surefire-plugin 7 1 1 1 1 1 Y*
S12-1 surefire-reports maven-surefire-plugin 1 1 1 1 2 1 Y*
S13-1 jacoco-ut jacoco-maven-plugin 1 1 1 1 1 1 Y*
S13-1 site jacoco-maven-plugin 9 2 1 2 1 1 N
S13-1 surefire-reports maven-surefire-plugin 3 1 1 1 1 1 Y*
S14-1 surefire-reports maven-surefire-plugin 6 1 1 1 1 1 Y*
S15-1 surefire-reports maven-surefire-plugin 12 1 1 1 1 1 Y*
S15-2 surefire-reports maven-surefire-plugin 12 1 1 1 1 1 Y*
S15-3 surefire-reports maven-surefire-plugin 12 1 1 1 1 1 Y*
S15-4 surefire-reports maven-surefire-plugin 12 1 1 1 1 1 Y*
S16-1 test-classes maven-compiler-plugin 5 5 N/A 1 3 1 N
S17-1 surefire-reports maven-surefire-plugin 3 1 1 1 2 1 Y*
S17-2 surefire-reports maven-surefire-plugin 3 1 1 1 2 1 Y*
S17-3 surefire-reports maven-surefire-plugin 3 1 1 1 2 1 Y*
S18-1 surefire-reports maven-surefire-plugin 5 1 1 1 2 1 Y*
S18-2 surefire-reports maven-surefire-plugin 5 1 1 1 2 1 Y*
S18-3 surefire-reports maven-surefire-plugin 5 1 1 1 2 1 Y*
S19-1 .wro4j wro4j-maven-plugin 8 1 1 1 1 1 N
S19-1 site jacoco-maven-plugin 6 7 1 6 1 1 N*
S19-1 surefire-reports maven-surefire-plugin 2 1 1 1 1 1 Y*
S20-1 site jacoco-maven-plugin 2 2 1 2 1 1 N*
S20-1 surefire-reports maven-surefire-plugin 10 1 1 1 1 1 Y*
S21-1 symphony maven-assembly-plugin 4 4 N/A 1 3 1 Y*
S21-1 test-classes maven-compiler-plugin 7 7 N/A 1 3 1 N*
S22-1 surefire-reports maven-surefire-plugin 12 1 1 1 1 1 Y*
S22-2 surefire-reports maven-surefire-plugin 12 1 1 1 1 1 Y*

Total/Mean 6.5 2.0 1.1 1.6 2.1 1.0 Y=36 / N=14

where multiple plugins are involved with the generation of

the unused directory (S7-1 and S7-2 site). In the future, we

can explore strategies that can try combinations of plugins.

We also do not handle two cases (S1-1a and S5-2 site)

where the responsible plugins are directly invoked by the

Maven commands (e.g., the checkstyle plugin being in-

voked with mvn checkstyle:checkstyle). We do not

consider such cases to be possible for our process to handle

as disabling the plugin would fail the build in such cases.

We also evaluate the effectiveness of the Fixer component,

which may suggest a change to the Maven command in the

.yml CD configuration file to disable generating unused

directories. The Fixer could successfully give a fix for 36

unused directories (marked with “Y” under column “Fixer”),

i.e., 72.0% (36 / 50) of the unused directories. We find that for

five unused directories, ChatGPT was unable to provide a fix

at all for how to disable their generation. For four directories,

using the provided fix could not disable generating the unused

directories. Finally, for the remaining five, while the fix does

disable generating the unused directories, they also disabled



generating some used files, so the solution is invalid.

RQ2 findings: The Mapper can identify the correct plugin for

92.0% of the unused directories, and all three strategies end

up trying fewer plugins in their search than the baseline. Log

Search is the most efficient, because it tries the fewest plugins.

The Fixer can successfully propose a new Maven command

to disable generating 72.0% of the unused directories.

C. RQ3: How much runtime does OptCD save?

Table I shows for each step the percentage of runtime

improvement we can obtain from disabling the generation of

the unused directories (column “% Runtime Improvement”).

We show the improvements only for the 33 steps in which

we could make a change to the Maven command to disable

generating the directories. We also show for each step, the

percentage of runtime that step by itself takes out of the full

job runtime (column “% Runtime Step/Total”). We find that

the steps that perform some Maven command take, on average,

76.6% of the overall job runtime.

We also see that the proposed changes to the Maven

command can reduce the runtime of the corresponding step

by 7.0%, on average, across all steps. There is a wide

range of improvements between steps, where the highest

runtime improvement is 46.9%, which comes from disabling

the generation of all unused directories in that step, except

for the maven-status/ directory. We use a t-test [25] to

compare the runtimes with and without the fixes and find

that 15 out of 33 of the observed runtime differences are

statistically significant, p < 0.05 (highlighted under column

“Improv. p-value” in Table I). If we consider the runtime

improvement only for these statistically significant steps, the

average improvement is 13.8%.

There are nine steps with negative improvement, i.e., run-

time for the step went up after our change. Our manual

inspection finds that they are likely due to noise and the

absolute difference is rather small, with only one of them (S17-

1) being statistically significant.

RQ3 findings: The suggested changes to Maven commands

by OptCD can reduce step runtimes by 7.0%, on average.

D. RQ4: What are developer’s reaction to OptCD?

We submitted pull requests for all 33 steps in which we can

disable the generation of unused directories using the changed

Maven commands. We include the fixes for multiple steps in

one pull request if the steps are from the same project and the

fixes are similar. We submitted pull requests corresponding

to all 36 unused directories marked with “Y” under column

“Fixer” in Table II. In addition, from our manual inspection,

we developed a way to fix an additional five more cases,

leading to fixes handling a total of 41 unused directories

(marked with “*” under “Fixer” in Table II).

In total, we submitted 26 pull requests. So far, 12 have

been accepted (46.2%), five have been rejected, and nine are

still open. Of the five rejected pull requests, two were rejected

with no comments from developers and three were rejected

because the developers claim that the improvement is minor

and is worried about complications from disabling the plugin.

Details of all pull requests are on our website [15].

RQ4 findings: We submitted 26 pull requests to disable the

generation of unused directories. Developers accepted 12 of

the pull requests, with five rejected, and nine still pending.

E. Comparison against BuildSonic

BuildSonic [26] and OptCD have very similar goals. At its

core, BuildSonic fixes performance issues, statically detects

configuration smells like deep clone and cache dependen-

cies, and fixes configuration smells in build configurations.

Given BuildSonic’s focus on fixing performance configuration

smells, it can serve as a baseline for comparison with OptCD.

BuildSonic has strategies for a variety of build systems, while

OptCD is focused on Maven [18]. BuildSonic’s strategies for

Maven include enabling parallel execution, enabling forks,

setting fork count, and disabling test report generation.

We conduct a high-level analysis of the 1,263 pull requests

submitted by BuildSonic in April 2023, revealing the following

distribution: 745 closed pull requests, 280 open pull requests,

and 238 deleted pull requests. Among the 745 closed pull re-

quests, 521 were rejected and 224 were accepted. We observe

that 314 out of the 521 rejected pull requests were closed

without any specific reason (i.e., no comments in the pull

request). When we inspected the remaining 207 rejected pull

requests that included comments, we find that the majority of

them get rejected due to reasons beyond any limitations related

to the tool, e.g., 81 pull requests are rejected because the

developers stopped using the CD service or 13 pull requests

are rejected simply due to unclear writing in the pull request

text. The pull requests rejected due to limitations of the tool

are those rejected due to no major performance gains (28) or

marked as having invalid changes (52).

We similarly find that developers may reject pull requests

if they feel the performance gains are not high enough,

despite the changes reducing the generation of unused files.

A developer using either tool can ultimately choose to use

the suggested changes if they feel the performance gains are

sufficient. We then look into the pull requests with invalid

changes (52), specifically focusing on the pull requests that

were built using the BuildSonic strategy of disabling test

report generation, which is related to the detection of a

common type of unused directories that OptCD can find. We

notice that BuildSonic disables test report generation for any

project that runs tests. However, these reports could be helpful

when a build fails. In fact, we find that one BuildSonic pull

request was rejected because BuildSonic suggests to disable

the generation of test reports even though these test reports

are later uploaded when the build fails [27]. At the same time,

OptCD marks these files as used files and does not suggest the

developers to disable generating them. The reason that Build-

Sonic proposes such a change on any such build is because

it only performs a static analysis on the build configuration,

acting as a sort of linter, without looking deeper into whether

the suggested changes are disabling the generation of files that

are actually used by the build. Meanwhile, OptCD would find



these files being used when it tracks file accesses during an

actual run of the build, and it therefore would mark them as

used files and not suggest to disable their generation. This

example showcases a main benefit of dynamically detecting

the generation of unused files compared to statically doing so.

VI. THREATS TO VALIDITY

Our results may not generalize to all projects. We create our

evaluation dataset in a systematic manner starting with a large

number of popular Java projects and filtering to include all

projects that match our criteria (Section IV-A). The projects

we evaluate on use GitHub Actions as a CD service, which is

easily integratable with projects hosted on GitHub. Given the

large number of open-source projects on GitHub, we believe

such projects can be representative of open-source projects.

The core idea behind OptCD is to identify unnecessary work

via unused files. While we rely specifically on inotifywait

to track file accesses, which is available only on Linux

systems, the ideas are still applicable on other operating

systems with similar tooling. Further, while we specifically

develop OptCD for Maven projects, the idea is applicable

to projects that use other build systems (e.g., Gradle builds

may also run plugins that generate unused files). We can use

the same approach to identify unused files for different build

systems, but we would need to adapt our current strategies,

e.g., adapting to get the list of Maven plugins to another build

system for the Mapper.

The goal of our work is to identify unnecessary work that

occurs during CD builds, which the contents of the build are

typically destroyed shortly after it finishes. To accomplish this

goal, we leverage the insight that unused directories represent

unnecessary work. It may be the case that some of the unused

directories we identify are actually useful for developers, but

not visible in the constraints of the CD build that we observe.

Further, it may be the case that for some plugins, OptCD can

suggest disabling the plugin from running (consequently from

generating unused files), while for other plugins, it can only

suggest to disable generating the unused files. The correct

solution depends on the plugin, e.g., the testing plugin should

not be disabled, as we still want to run tests, but we should

disable it from generating unused test reports. We mitigate

these threats by manually checking the suggested fixes. We

also send our fixes as pull requests to developers, checking

whether such fixes are acceptable to developers.

We may also miss detecting some unused files, because,

while these files are eventually read from, those read op-

erations themselves are not so useful, e.g., copying the file

elsewhere and then not reading any further. As such, the

number of unused files and unused directories we identify may

be fewer than the actual number.

There may also be noise in our runtime measurements,

which are conducted on the GitHub Actions CD machines.

We mitigate this threat by rerunning the jobs multiple times

and then dropping the best two and worst two runtimes to

discard large outliers. We ultimately end up with 10 runtimes

to use for comparison. While we develop a systematic way to

prompt ChatGPT for Mapper and Fixer, the same query may

result in different responses given its nondeterministic nature.

We experimented with querying ChatGPT multiple times, and

we find that its answers do not change substantially (e.g.,

ChatGPT always fixed the same unused directories).

VII. RELATED WORK

Hilton et al. performed extensive empirical studies on

CD [1], [2], showing its importance along with the developers’

perspective on the process. There has been extensive work

in improving the efficiency of builds in general [28]–[30].

Telea and Voinea proposed decomposing C/C++ header files

to remove performance bottlenecks from compilation [31].

Vakilian et al. proposed refactoring targets in a distributed

build system to improve build times [32]. Work in build

prediction aims to predict build outcomes as to skip running

builds entirely [33]–[36]. In contrast, our work focuses on

dynamically tracking unused directories with the goal to

disable their generation as to reduce build runtime.

Regression testing is a large part of CD, with the cost

of CD largely coming from the need to run tests on every

build. Researchers have proposed a number of ways to reduce

the cost of regression testing, such as through regression test

selection, which selects to run only the tests affected by the

changes [9], [37]–[45], test-suite reduction, which reduces

the set of tests to run [46]–[53], or test parallelization [54]–

[56]. Other work in improving regression testing include

changing how the underlying build system runs tests [57].

OptCD does not focus on just testing but rather on when the

build generates unused directories, indicative of unnecessary

work. Interestingly, we find cases where compiling tests is

unnecessary as the build runs no tests.

VIII. CONCLUSIONS

We propose OptCD, a technique that can dynamically detect

unnecessary work within CD builds by tracking whether the

build generates unused files. The intuition is that generating

these unused files wastes time, so disabling the build from

generating them can reduce the build runtime. OptCD logs

file operations that occur during a build and analyzes those

operations to determine the unused files. It then clusters

unused files together into unused directories and then system-

atically searches through the tasks to identify the likely one

responsible for generating those unused directories. We also

use ChatGPT to propose changes to the CD build command to

disable generating unused directories during CD, successfully

providing the necessary changes for 72.0% of the unused

directories. We sent out 26 pull requests with these changes,

with 12 accepted, five rejected, and nine still pending.

ACKNOWLEDGEMENTS

We would like to acknowledge NSF grant no. CCF-2145774

and Dragon Testing for their support on software testing

research. We thank Nate Levin for his insightful comments.



REFERENCES

[1] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in International Conference on Automated Software Engineering, 2016,
pp. 426–437.

[2] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-offs in
continuous integration: Assurance, security, and flexibility,” in European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2017, pp. 197–207.
[3] P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration: Improv-

ing Software Quality and Reducing Risk. Addison-Wesley Professional,
2007.

[4] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality
and productivity outcomes relating to continuous integration in GitHub,”
in European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2015, pp. 805–816.
[5] M. Fowler, “Continuous Integration,” https://martinfowler.com/articles/

continuousIntegration.html, 2006.
[6] “GitHub Actions,” https://github.com/features/actions, 2023.
[7] “Jenkins,” https://www.jenkins.io, 2023.
[8] “Travis-CI,” https://travis-ci.org, 2018.
[9] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test

selection with dynamic file dependencies,” in International Symposium

on Software Testing and Analysis, 2015, pp. 211–222.
[10] “JaCoCo Java Code Coverage Library,” https://github.com/jacoco/

jacoco, 2023.
[11] “Apache Maven Javadoc Plugin,” https://maven.apache.org/plugins/

maven-javadoc-plugin, 2023.
[12] “Apache Maven PMD Plugin,” https://maven.apache.org/plugins/

maven-pmd-plugin/index.html, 2023.
[13] G. Salton and C. Buckley, “Term-weighting approaches in automatic

text retrieval,” Information Processing & Management, vol. 24, no. 5,
pp. 513–523, 1988.

[14] “Introducing ChatGPT,” https://openai.com/blog/chatgpt, 2022.
[15] “Optimizing continuous development by detecting and preventing unnec-

essary content generation,” https://sites.google.com/view/optimizing-cd,
2023.

[16] “Understanding GitHub Actions,” https://docs.github.com/en/actions/
learn-github-actions/understanding-github-actions, 2023.

[17] “JSqlParser,” https://github.com/JSQLParser/JSqlParser, 2023.
[18] “Apache Maven Project,” https://maven.apache.org, 2020.
[19] “Apache Maven Compiler Plugin,” https://maven.apache.org/plugins/

maven-compiler-plugin, 2023.
[20] “Maven Surefire Plugin,” https://maven.apache.org/surefire/

maven-surefire-plugin, 2023.
[21] “inotify,” https://pypi.org/project/inotify, 2023.
[22] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,

C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano,
J. Leike, and R. Lowe, “Training language models to follow instructions
with human feedback,” in Advances in Neural Information Processing

Systems, vol. 35, 2022, pp. 27 730–27 744.
[23] S. Lin, J. Hilton, and O. Evans, “TruthfulQA: Measuring how models

mimic human falsehoods,” in Association for Computational Linguistics,
2022, pp. 3214–3252.

[24] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto,
O. Vinyals, P. Liang, J. Dean, and W. Fedus, “Emergent abilities of large
language models,” Transactions on Machine Learning Research, 2022.

[25] “SciPy ttest_ind_from_stats,” https://docs.scipy.org/doc/scipy-1.3.2/
reference/generated/scipy.stats.ttest_ind_from_stats.html, 2023.

[26] C. Zhang, B. Chen, J. Hu, X. Peng, and W. Zhao, “BuildSonic: Detecting
and repairing performance-related configuration smells for continuous
integration builds,” in International Conference on Automated Software

Engineering, 2023, pp. 1–13.
[27] “apache/maven-surefire pull request #526,” https://github.com/apache/

maven-surefire/pull/526, 2022.
[28] B. Adams, R. Suvorov, M. Nagappan, A. E. Hassan, and Y. Zou, “An

empirical study of build system migrations in practice: Case studies on
KDE and the Linux kernel,” in International Conference on Software

Maintenance, 2012, pp. 160–169.
[29] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of Java build

systems,” Empirical Software Engineering Journal, vol. 17, pp. 578–
608, 2012.

[30] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. Hassan, “A
large-scale empirical study of the relationship between build technol-
ogy and build maintenance,” Empirical Software Engineering Journal,
vol. 20, pp. 1587–1633, 2014.

[31] A. Telea and L. Voinea, “A tool for optimizing the build performance
of large software code bases,” in European Conference on Software

Maintenance and Reengineering, 2008, pp. 323–325.
[32] M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and V. Mirrokni, “Auto-

mated decomposition of build targets,” in International Conference on

Software Engineering, 2014, pp. 123–133.
[33] F. Hassan and X. Wang, “Change-aware build prediction model for stall

avoidance in continuous integration,” in International Symposium on

Empirical Software Engineering and Measurement, 2017, pp. 157–162.
[34] X. Jin and F. Servant, “A cost-efficient approach to building in continu-

ous integration,” in International Conference on Software Engineering,
2020, pp. 13–25.

[35] A. Ni and M. Li, “Cost-effective build outcome prediction using cas-
caded classifiers,” in Mining Software Repositories, 2017, pp. 455–458.

[36] Z. Xie and M. Li, “Cutting the software building efforts in continuous
integration by semi-supervised online AUC optimization,” in Interna-

tional Joint Conference on Artificial Intelligence, 2018, pp. 2875–2881.
[37] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selec-

tion technique,” ACM Transactions on Software Engineering Methodol-

ogy, vol. 6, no. 2, pp. 173–210, 1997.
[38] L. Zhang, “Hybrid regression test selection,” in International Conference

on Software Engineering, 2018, pp. 199–209.
[39] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to

large software systems,” in International Symposium on Foundations

of Software Engineering, 2004, pp. 241–251.
[40] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An

extensive study of static regression test selection in modern software
evolution,” in International Symposium on Foundations of Software

Engineering, 2016, pp. 583–594.
[41] A. Shi, P. Zhao, and D. Marinov, “Understanding and improving regres-

sion test selection in continuous integration,” in International Symposium

on Software Reliability Engineering, 2019, pp. 228–238.
[42] A. Gyori, O. Legunsen, F. Hariri, and D. Marinov, “Evaluating regression

test selection opportunities in a very large open-source ecosystem,” in
International Symposium on Software Reliability Engineering, 2018, pp.
112–122.

[43] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive
test selection,” in International Conference on Software Engineering,

Software Engineering in Practice, 2019, pp. 91–100.
[44] A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen,

“Reflection-aware static regression test selection,” Proceedings of the

ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 187:1–
187:29, 2019.

[45] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjørner, and J. Czerwonka,
“Optimizing test placement for module-level regression testing,” in
International Conference on Software Engineering, 2017, pp. 689–699.

[46] T. Y. Chen and M. F. Lau, “A new heuristic for test suite reduction,”
Journal of Information and Software Technology, vol. 40, no. 5-6, pp.
347–354, 1998.

[47] ——, “A simulation study on some heuristics for test suite reduction,”
Journal of Information and Software Technology, vol. 40, no. 13, pp.
777–787, 1998.

[48] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical
studies of test-suite reduction,” Journal of Software Testing, Verification

and Reliability, vol. 12, no. 4, pp. 219–249, 2002.
[49] H. Zhong, L. Zhang, and H. Mei, “An experimental study of four typical

test suite reduction techniques,” Journal of Information and Software

Technology, vol. 50, no. 6, pp. 534–546, 2008.
[50] J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria models for

all-uses test suite reduction,” in International Conference on Software

Engineering, 2004, pp. 106–115.
[51] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand test

suite reduction,” in International Conference on Software Engineering,
2012, pp. 738–748.

[52] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization
for modified condition/decision coverage,” in International Conference

on Software Maintenance, 2001, pp. 92–102.
[53] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical study

of JUnit test-suite reduction,” in International Symposium on Software

Reliability Engineering, 2011, pp. 170–179.



[54] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,
W. Schulte, N. Sanches, and S. Kandula, “CloudBuild: Microsoft’s
distributed and caching build service,” in International Conference on

Software Engineering Companion, 2016, pp. 11–20.
[55] O. Schwahn, N. Coppik, S. Winter, and A. Møller, “Assessing the

state and improving the art of parallel testing for C,” in International

Symposium on Software Testing and Analysis, 2019, pp. 123–133.

[56] J. Candido, L. Melo, and M. d’Amorim, “Test suite parallelization in
open-source projects: A study on its usage and impact,” in International

Conference on Automated Software Engineering, 2017, pp. 838–848.
[57] P. Nie, A. Celik, M. Coley, A. Milicevic, J. Bell, and M. Gligoric,

“Debugging the performance of Maven’s test isolation: Experience
report,” in International Symposium on Software Testing and Analysis,
2020, pp. 249–259.


