
FlakeSync: Automatically Repairing
Async Flaky Tests

Shanto Rahman
The University of Texas at Austin

Austin, Texas, USA
shanto.rahman@utexas.edu

August Shi
The University of Texas at Austin

Austin, Texas, USA
august@utexas.edu

ABSTRACT

Regression testing is an important part of the development process

but suffers from the presence of flaky tests. Flaky tests nondeter-

ministically pass or fail when run on the same code, misleading

developers about the correctness of their changes. A common type

of flaky tests are async flaky tests that flakily fail due to timing-

related issues such as a asynchronous waits that do not return in

time or different thread interleavings during execution. Developers

commonly try to repair async flaky tests by inserting or increasing

some wait time, but such repairs are unreliable.

We propose FlakeSync, a technique for automatically repairing

async flaky tests by introducing synchronization for a specific test

execution. FlakeSync works by identifying a critical point, repre-

senting some key part of code that must be executed early w.r.t.

other concurrently executing code, and a barrier point, representing

the part of code that should wait until the critical point has been

executed. FlakeSync can modify code to check when the critical

point is executed and have the barrier point keep waiting until the

critical point has been executed, essentially synchronizing these

two parts of code for the specific test execution. Our evaluation

of FlakeSync on known flaky tests from prior work shows that

FlakeSync can automatically repair 83.75% of async flaky tests, and

the resulting changes add a median overhead of only 1.00X the orig-

inal test runtime. We submitted 10 pull requests with our changes

to developers, with 3 already accepted and none rejected.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

flaky test repair, async flaky tests

ACM Reference Format:

Shanto Rahman and August Shi. 2024. FlakeSync: Automatically Repairing

Async Flaky Tests. In 2024 IEEE/ACM 46th International Conference on Soft-

ware Engineering (ICSE ’24), April 14ś20, 2024, Lisbon, Portugal. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3597503.3639115

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’24, April 14ś20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639115

1 INTRODUCTION

Regression testing is an important part of the software development

process, but it suffers from the presence of flaky tests. A flaky

test is a test that can nondeterministically pass or fail when run

on the same version of code [29]. After a developer makes some

changes, if the flaky test fails, the developer cannot trust whether

that failure indicates a true fault introduced in their changes. Flaky

tests can mislead developers, forcing them to waste time debugging

nonexistent faults in changes. Flaky tests are prevalent both in

open-source projects [9, 16, 23, 29] and in industry [19ś22, 30].

Luo et al. [29] found that the most prominent type of flaky tests

in open-source projects are async-wait flaky tests, which are tests

that fail due to making an asynchronous call but does not wait

sufficiently for the computations to complete. The second most

prominent type of flaky tests are concurrency flaky tests, which

are tests that fail due to different thread interleavings. Both such

flaky tests are dependent on nondeterministic timing issues during

test execution, e.g., the service being waited on takes too long to

complete or some thread takes longer than another, leading to an

unexpected thread interleaving. In total, Luo et al. found that 65% of

the flaky tests they studied are of these two categories [29]. Other

empirical studies similarly found both these types of flaky tests

to be the most prominent ones [13, 22]. In this paper, we refer to

such tests as async flaky tests, because these tests fail due to lack of

proper synchronization between relevant parts of code.

The most common way developers repair async flaky tests, par-

ticularly for async-wait flaky tests, is by modifying wait times in the

test code and code-under-test [22, 29]. For example, Lam et al. found

that developers commonly repair flaky tests at Microsoft by adding

additional wait times [22] to reduce flaky failures. However, they

found developers did not have a systematic way in determining

the proper wait time, waiting longer than necessary and increasing

the cost of testing. Further, modifying wait times can only mitigate

the issue, as the test may still fail when run on different machines.

Luo et al. [29] also found that developers in open-source would

add wait times to mitigate async-wait flaky tests, but this strategy

does not provide guarantees concerning flakiness while making

tests run slower. They recommend doing some synchronization

that waits for a condition to be satisfied as a better repair strategy.

We propose FlakeSync, a technique for automatically repairing

async flaky tests by introducing synchronization for a specific test

execution. Our intuition is that the flakiness comes from the test

execution not synchronizing properly between concurrently ex-

ecuting code, e.g., across different threads. For async-wait flaky

tests, the test does not wait long enough for another service to

complete its execution. By ensuring the test does wait for the ser-

vice to complete, i.e., synchronizing with the completion of that

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shanto Rahman and August Shi

service, it would no longer fail. For concurrency flaky tests, the

failure comes from one thread interleaving differently from another,

so synchronizing one thread to wait until the other thread finishes

executing a critical part of code can repair the flakiness.

At the high level, FlakeSync is composed of two main compo-

nents. For a given async flaky test to repair, the first component,

CritSearch, searches for the critical point that must be executed

early relative to other concurrently running code. If the execution

slows down such that the critical point is executed too late, the

test would fail. The second component, BarrierSearch, searches for

the barrier point corresponding to the identified critical point. The

barrier point is the part of code that needs to wait until the critical

point has been executed before proceeding, or else the test fails

(we use the term łbarrierž due to similarities to barriers for syn-

chronization in concurrent programming). With both the critical

point and barrier point, FlakeSync can repair the async flaky test

by (1) modifying the critical point to keep track of whether it gets

executed and how many times it gets executed when the test runs,

and (2) modifying the barrier point to continuously wait and yield

execution to other threads until the critical point has been executed

sufficiently. These changes together introduce the synchronization

that ensures the async flaky test does not flakily fail.

We evaluate FlakeSync on 176 known flaky tests taken from

an existing dataset of known flaky tests [4]. Initially, we find that

FlakeSync can repair 67 flaky tests. From further inspection, we

find that most of the tests that FlakeSync cannot repair are actually

flaky due to their reliance on exact timing, e.g., assertions that check

some code takes less than a constant amount of time to run or a

strict timeout built into the test. While such tests can indeed be

flaky due to timing issues on the machine, e.g., the machine being

busy and therefore runs the tests slower, they are not flaky due to

synchronization issues that async flaky tests suffer from. Such tests

can be repaired by increasing the existing timeout bounds encoded

in the tests in case of slower machines. Filtering out such flaky

tests results in 80 async flaky tests, and FlakeSync can repair 83.75%

of these async flaky tests. The median amount of time FlakeSync

takes to repair a flaky test is 58.77 minutes. Further, after we apply

the changes to repair the test, we find that these changes lead to a

median overhead of only 1.00X the original test runtime. This low

overhead shows how proper synchronization does not necessarily

increase the testing cost, unlike inserting/increasing wait times.

We also submit pull requests where we repair the known async

flaky tests on the latest versions of the projects based on FlakeSync’s

proposed changes. We only submit pull requests for async flaky

tests that are still flaky on the latest version of projects that we

could build, and we only submit one pull request per project as to

avoid spamming developers with pull requests until they confirm

they would like to see such changes to their tests. We submitted

10 pull requests to 10 projects. So far, 3 pull requests have already

been accepted, and no pull request has been rejected.

The contributions of our paper are:

• We propose a technique FlakeSync for automatically repair-

ing async flaky tests by introducing synchronization points

during test execution.

• We implement FlakeSync for Java projects and evaluate on

known flaky tests from a prior dataset [4]. Our results show

1 public class GrpcServerTest {

2 @Test

3 public void testGrpcExecutorPool() {

4 GRPCMetrics gm = GRPCMetrics.getEmptyGRPCMetrics();

5 GrpcThreadPoolExecutor executor =

6 new GrpcServer.GrpcThreadPoolExecutor(gm);

7 ...

8 executor.submit(...);

9 ...

10 + while (!GGrpcThreadPoolExecutor.hasExecuted) {

11 + Thread.yield();

12 + }

13 Thread.sleep(120);

14 double activeThreads = gm.getGaugeMap().get(THREADS);

15 assertEquals(2, activeThreads);

16 double queueSize = gm.getGaugeMap().get(QUEUE);

17 assertEquals(1, queueSize);

18

19 }

20 }

21

22 public GrpcThreadPoolExecutor {

23 ...

24 public GrpcThreadPoolExecutor {

25 private final GRPCMetrics gm;

26 public GrpcThreadPoolExecutor(GRPCMetrics gm) {

27 this.gm = gm;

28 }

29 @Override

30 protected void beforeExecute(Thread t, Runnable r) {

31 gm.incGauge(THREADS);

32 gm.setGauge(QUEUE, getQueue().size());

33 + hasExecuted = true;

34 super.beforeExecute(t, r);

35 }

36 }

Figure 1: Example flaky test from apache/incubator-uniffle

that FlakeSync can repair 83.75% of the async flaky tests,

and the changes make the test runtime on median 1.00X the

runtime before the changes.

• We submitted 10 pull requests to developers for repairing

their async flaky tests. So far, 3 pull requests have already

been accepted, and no pull request has been rejected.

2 EXAMPLE

Figure 1 illustrates a simplified version of an example flaky test

from project apache/incubator-uniffle, used in our evaluation. The

flaky test is GrpcServerTest#testGrpcExecutorPool, a
previously known flaky test from a public dataset [4], meaning

prior work observed the test to both pass and fail when rerun on

the same version of code many times.

This test first creates a GRPCMetrics object (Line 4), which

is then passed in as an argument when creating an instance of

GrpcThreadPoolExecutor (Line 6). This executor is used

to spawn new threads to run (Line 8). We see that each new thread

first executes thebeforeExecutemethod of theGrpcThread-
PoolExecutor class (Line 30), which modifies the shared GRPC-
Metrics object passed in as an argument (Lines 31-32). After

spawning the new thread to run, the test proceeds to wait for

FlakeSync: Automatically Repairing Async Flaky Tests ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 def FlakeSync(test):

2 crit_points, delays = CritSearch(test)

3 barrier_points = BarrierSearch(test, crit_points, delays)

4 return crit_points, barrier_points

Figure 2: Pseudocode for FlakeSync.

120ms (Line 13), expecting that other threads will finish their task

within this time period. Finally, the test asserts on some values

based on the shared GRPCMetrics object (Lines 15 and 17).

This pattern of waiting for a constant amount of time for some

other code to finish running is a classic example of an async-wait

flaky test [29]. This test’s assertions can fail if the computations

on another thread that modify the shared GRPCMetrics object

do not complete within a reasonable amount of time. Interestingly,

the developers had previously noticed this test to be flaky and

attempted to repair it by modifying the wait time (Line 13); the wait

time was previously 100ms, so they increased the time, but the test

still remains flaky.

The key issue is that the test should only assert on values in the

shared GRPCMetrics object once the other thread has finished

setting those values. As such, a better way to repair this test is to

force the test to wait until the other thread has finished executing

the critical computations that modify the shared GRPCMetrics
object before proceeding to the assertions. We can enforce this type

of synchronization between threads by inserting a variable to check

whether execution has made it past those critical computations

(Line 33) and then introducing a loop in the test code to continuously

yield execution to other threads until that point has been executed

on the other thread (Lines 10-12).

Using our technique, we were able to identify these parts of the

code to modify to enforce such synchronization, constructing a

patch for this flaky test as shown in Figure 1. We sent this patch

as a pull request to the developers of apache/incubator-uniffle, and

the pull request was accepted with positive feedback.

3 FLAKESYNC

Wepresent FlakeSync, a technique for automatically repairing async

flaky tests. The intuition behind FlakeSync is that async flaky tests’

flaky failures often involve concurrently executing code across

multiple threads where code on one thread needs to be executed

first relative to code on another thread, such as the async-wait flaky

test presented in Figure 1. FlakeSync repairs async flaky tests by

identifying the key parts of code during test execution that should

be synchronized with one another. FlakeSync can then modify

the code execution to introduce synchronization mechanisms that

ensure the execution on one thread does not proceed until the other

thread has executed the other critical code section.

At the high-level FlakeSync takes as input an async flaky test

and returns the relevant locations where a developer should syn-

chronize. FlakeSync consists of two main components. The first

component is the CritSearch. This component aims to identify the

critical point for the async flaky test, which is the part of code that

must be executed early; if the execution slows down such that the

critical point is executed too late relative to other executed code on

a different thread, the test would fail. The second component is the

BarrierSearch. This component aims to identify the barrier point,

which is the code that needs to wait until the corresponding critical

point has been executed. Essentially, the execution should not pro-

ceed past the barrier point until the critical point is executed, or else

the test fails (we use the term łbarrierž as it is similar to the concept

of barriers for synchronization in concurrent programming). Fig-

ure 2 shows pseudocode illustrating how FlakeSync leverages these

two components to propose a patch for a given async flaky test.

Essentially, FlakeSync first uses CritSearch to find critical points

along with the amounts of delay to inject at each critical point that

can reproduce a flaky-test failure (Line 2). FlakeSync then passes

those critical points and corresponding delays to BarrierSearch so

it identifies the corresponding barrier points to the critical points

(Line 3). The final output from FlakeSync are two lists, the critical

points and barrier points (the critical points and barrier points in

the same position in the two lists correspond to each other).

3.1 CritSearch

Given an async flaky test, CritSearch searches for the critical

points. The intuition is that, if the thread that executes a critical

point takes too long, then the test fails. In other words, if we inject a

long enough delay before a critical point, then the test fails. As such,

CritSearch identifies critical points by searching through possible

locations in which to inject some delay that can lead to the test to

reliably fail after execution. Figure 3 illustrates pseudocode for how

CritSearch runs on a given async flaky test.

3.1.1 Delay Injection. CritSearch first needs to inject delays through-

out the test execution to see whether any injected delays can lead

to a test failure. As opposed to randomly sampling delay locations

or simply injecting delays everywhere, CritSearch relies on the

heuristic that the most relevant delay locations are going to be

those related to concurrent methods, namely methods that execute

concurrently with others during test execution. As such, CritSearch

first looks for concurrent methods (Line 5). Similar to prior work on

finding concurrent methods for detecting concurrency bugs [33],

we find concurrent methods by dynamically instrumenting the

entry-point and exit-points of each executed method in the code-

under-test, and we identify a method to be a concurrent method

if its execution has not reached an exit-point while execution has

reached the entry-point of another method. Due to the nondeter-

ministic nature of flaky test executions, we run the test 10 times

and combine all the concurrent methods detected throughout those

runs. Note that our approach over-approximates the set of con-

current methods to track, because we do not track which exact

pairs of tests actually ran concurrently with one another, instead

grouping together all methods that at some point ran concurrently

with another method.

With the set of concurrent methods for an async flaky test, Crit-

Search searches for all the locations (i.e., lines in code) where there

are calls to a concurrent method (Line 6). The intuition is that

any method invocation can potentially take more time than ex-

pected, e.g., due to any stress on the machine or other processes run-

ning [40], so we want to simulate slowdowns, particularly for these

methods that run concurrently with others. CritSearch then runs

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shanto Rahman and August Shi

1 def CritSearch(test):

2 crit_points = []

3 crit_points_delays = []

4

5 conc_methods = find_conc_methods(test)

6 locs = find_delay_locs(test, conc_methods)

7 delay = INITIAL_DELAY

8 while delay <= MAX_DELAY:

9 test_res = run_with_delay(test, locs, delay)

10 if test_res == FAIL:

11 break

12 delay = delay*2

13 if not test_res == FAIL:

14 return crit_points, crit_points_delays # Unsuccessful

15 min_locs, delay = minimize(test, locs, delay, 2)

16 root_methods_and_delays = find_root_methods(test, delay,

17 min_locs)

18

19 for root_method, delay in root_methods_and_delays:

20 in_boundary = False

21 start_line = start_line_number(root_method)

22 end_line = end_line_number(root_method)

23 for line in range(start_line, end_line):

24 test_res = run_with_delay(test, line, delay)

25 if test_res == FAIL:

26 in_boundary = True

27 cp = line

28 elif test_res != FAIL and in_boundary:

29 crit_points.append(cp)

30 crit_points_delays.append(delay)

31 in_boundary = False

32 break

33 # Last line is critical point

34 if in_boundary:

35 crit_points.append(end_line)

36 crit_points_delays.append(delay)

37 return crit_points, crit_points_delays

38

39 def minimize(test, locs, delay, n):

40 if len(locs) == 1:

41 return locs, delay

42 # Split n equal subsets and their complements

43 subsets = split_locs(locs, n)

44 _d = delay

45 while _d <= MAX_DELAY:

46 for s in subsets:

47 if run_with_delay(test, s, _d) == FAIL:

48 return minimize(test, s, _d, 2)

49 _d = 2*_d

50 # Trying finer granularity if possible

51 if len(locs) < 2*n:

52 return locs, delay

53 else:

54 return minimize(test, locs, delay, 2*n)

55

56 def find_root_methods(test, delay, min_locs):

57 callstacks = get_callstacks(test, min_locs, delay)

58 root_methods_and_delays = set()

59 for callstack in callstacks:

60 _d = delay

61 for callsite in get_callsites(callstack):

62 while _d <= MAX_DELAY:

63 test_res = run_with_delay(test, callsite, _d)

64 if test_res == FAIL:

65 root_method = containing_method(callsite)

66 break

67 else:

68 _d = _d*2

69 root_methods_and_delays.add((root_method, _d))

70 return root_methods_and_delays

Figure 3: Pseudocode for CritSearch.

the test with delays injected at all such locations (Line 9), i.e., dynam-

ically instrumenting code to call Thread.sleep with a specified

amount of delay (initially a configurable INITIAL_DELAY), right
before all locations. As part of this process, if the test still passes

with delays injected, then CritSearch doubles the amount of de-

lay injected at each delay location (Line 12) before running the

test again. It continues doubling the amount of delay up until the

test fails or reaches the maximum amount of delay (a configurable

MAX_DELAY). If the test cannot fail up to this threshold, CritSearch
is unsuccessful at finding any critical points.

3.1.2 Minimizing Delay Locations. CritSearch uses delta-debugging [43]

to minimize the set of delay locations found from the previous step,

represented as function minimize presented in Figure 3. Given a

set of delay locations, minimize returns a subset of those delay

locations that can still result in a test failure. In standard delta-

debugging methodology, minimize splits the input set into equal

subsets (Line 43) and runs the test with a delay injected at each

delay location within a subset, minimizing that subset further if the

test still fails (Line 48). If the algorithm cannot split the set of delay

locations into any finer granularity, it simply returns the current

set as the minimal set (Line 52); otherwise, it recursively tries to

minimize the set further but with a finer split (Line 54).

Normally, when delta-debugging finds it cannot split the current

set anymore while satisfying the criterion, it terminates and reports

that set as the minimal set. In our case, we make a change to the

delta-debugging process by instead increasing the amount of delay

injected at the current delay locations (Line 49), up until a maximum

MAX_DELAY, retrying to run with the new delay amount. The

reasoning is that a test may only fail when its execution slows down

for a sufficient total amount of time, which is summed across all the

delays injected at multiple delay locations. As such, whenwe reduce

the number of delay locations, we would be reducing the overall

delay time during test execution, which in turn could decrease the

chance of test failure. While we potentially can increase the cost

of the search by running with increased amounts of delay, we find

that this modification helps reduce the set of delay locations.

3.1.3 Root Method Search. The minimal set of delay locations,

even if it consists of just one delay location (indeed, our results

show that often we can obtain just one delay location), may still

not represent the critical point. There may be many minimal sets of

delay locations that all independently can lead to the test to fail. For

example, it could be the case that injecting a delay anywhere in the

same method can still result in the same failure. In such a scenario,

instead of injecting that delay anywhere within the method, we

could instead inject a delay within the caller of that method, right

before the call site. In fact, we could keep going up this call stack

until reaching the łhighestž call site where injecting a delay there

results in the same failure. We consider this method that is highest

on the call stack from the minimal set of delay locations where

injecting a delay can still make the test fail (i.e., we cannot inject a

delay at any caller of this method and make the test fail) as the root

method.

Function find_root_methods in Figure 3 returns the root

methods with their corresponding delays for the minimal delay

locations for an async flaky test. For each delay location in the

minimal set, we compute the call stacks for that location collected

FlakeSync: Automatically Repairing Async Flaky Tests ICSE ’24, April 14–20, 2024, Lisbon, Portugal

across all executions of the location when running the test (Line 57);

this process also removes any repeated call stacks for the same

location. Each call stack starts from the delay location and ends at a

call site within the async flaky test itself. find_root_methods
handles each call stack independently, iterating through the call

sites in each call stack, going up starting from the delay location.

Each iteration keeps track of a current call site, where it runs the

test while injecting delay at that call site (Line 63). If the test fails,

then find_root_methods sets the method containing the call

site as the current root method (Line 65). On the other hand, if

the test passes, we also attempt to increase the amount of delay

injected at the current call site (Line 68), with the similar reasoning

that a higher call site may work if there is a longer delay.

The next iteration of the loop then tries the direct caller in the

call stack (Line 61). The final root method along with the amount of

delay to inject is included in a set before moving on to the next call

stack (Line 69). The final output of this function is the set of root

methods and their corresponding amounts of delay to be injected.

3.1.4 Identifying Critical Point. Finally, CritSearch searches through

the root methods to identify the critical points. The intuition is that

there is a region of code in a root method where injecting a de-

lay anywhere in that region manifests the test failure. As such,

the łboundaryž of this region, namely the location right after this

region, would be the critical point.

To search through the root method, CritSearch starts from the

beginning of the method, injecting a delay on a location-by-location

basis and running the test (Lines 23-32). The boundary starts when

injecting a delay leads the test to start failing. CritSearch then

checks whether there is then a switch from test failing to test

passing (Lines 28-32). The final location where injecting a delay

leads to a failure is then the critical point for the root method and

is saved. The final output is the list of all critical points.

Example Critical Point. In the example shown in Figure 1, the

critical point is identified to be Line 32, as after executing this line

all computations modifying the shared data have finished. We can

introduce a field to keep track of when the critical point has been

executed for use later (Line 33).

3.2 BarrierSearch

Given the critical points identified by CritSearch, BarrierSearch

searches for the corresponding barrier points. Figure 4 shows pseu-

docode for BarrierSearch.

For each critical point, BarrierSearch first runs the test with the

injected delay at the key delay location right before the critical

point as to force the test to fail. In Java/JUnit, a test failure results

in a thrown exception, which includes an exception call stack that

shows the point the exception occurred along with all the methods

called in-between. We run the test with the injected delay to obtain

this exception call stack (Line 4).

BarrierSearch uses function search to iterate through the call

sites in the call stack, starting at the location where the exception

occurred (Line 14). The location right before this call site could be

a barrier point, and BarrierSearch starts from that location, going

back location-by-location up until the beginning of the containing

method (Line 18), checking whether any of these locations are a bar-

rier point. The function run_test_with_crit_and_yield

1 def BarrierSearch(test, crit_points, delays):

2 barrier_points = []

3 for cp, delay in zip(crit_points, delays)

4 callstack = get_failure_callstack(test,

5 cp, delay)

6 bp = search_bp(test, cp, delay, callstack, 1)

7 if bp == None:

8 thres = count_crit_executions(test, cp)

9 bp = search_bp(test, cp, delay, callstack, thres)

10 barrier_points.append(bp)

11 return barrier_points

12

13 def search_bp(test, cp, delay, callstack, thres):

14 for callsite in get_callsites(callstack):

15 containing_meth = get_method_name(callsite)

16 start_line = start_line_number(containing_meth)

17 end_line = callsite

18 for line in range(end_line, start_line):

19 test_res = run_with_crit_yield(test, cp,

20 line, delay, thres)

21 if test_res == PASS:

22 return line # Identified barrier point

23 return None # Unsuccessful

Figure 4: Pseudocode for BarrierSearch.

runs the test with a delay injected at the critical point while in-

serting at the potential barrier point a loop that continuously calls

Thread.yield, which hints to the system that this thread will

relinquish execution to other threads, allowing the other thread

time to execute the critical point (Line 19). This loop is conditioned

to keep calling Thread.yield until the critical point has been ex-

ecuted. Lines 10 to 12 in Figure 1 illustrate what this loop looks like.

If the test passes after this change, then we have identified the bar-

rier point (Line 22 in Figure 4). If the test still fails or the test times

out (we use a timeout value of three minutes), BarrierSearch moves

on to the preceding location. The intuition is that the exception

may have been thrown based off of wrong data computed earlier

in the code. As such, no matter how much the execution pauses at

the later location, there is no way to recover from the wrong com-

putation having already occurred. If none of the locations before

the location where the exception originates are barrier points, the

function moves up the exception call stack to the caller and repeats

the search. It continues checking potential barrier points through

the prior locations relative to that call site, moving up the call stack

again if necessary, until identifying a barrier point.

3.2.1 Tracking Multiple Executions of Critical Point. Note that this

search process assumes that the barrier point should wait until

the critical point is executed just once. However, sometimes the

critical point should be executed multiple times, and the execution

should not proceed past the barrier point until a sufficient number

of executions have occurred. If we cannot identify a barrier point

by the time we have searched through the entire exception call

stack, the next step is to count how many times the critical point is

executed in a passing test execution without any injected delays.

(Line 8). The count thres can be used by search to wait at

potential barrier points until the critical point has been executed

that many times. If the test still does not pass, then FlakeSync is

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shanto Rahman and August Shi

unsuccessful at repairing the async flaky test corresponding to the

critical point.

3.3 Final Output

Figure 1 illustrates a repaired flaky test. FlakeSync introduces a

field on Line 33 to keep track of when the critical point has been

executed, and FlakeSync introduces a loop to wait until the critical

point is executed at the barrier point on Lines 10 to 12.

FlakeSync performs these transformations dynamically as the

test runs to confirm that using the critical point and barrier point

can repair the async flaky test. A developer can use the same infor-

mation to modify their source code with such transformations to

form a patch for their flaky test. However, both critical point and

barrier point must be in the developer’s own code for them to apply

this patch. A developer would not be able to modify third-party

library code. Further, given that the goal of these changes is to syn-

chronize execution for a specific async flaky test, making changes

to general library code that could be used by many other projects

is undesirable. In such a scenario, a developer can continue to use

FlakeSync as a runtime environment that dynamically modifies

code to ensure proper synchronization using the critical point and

barrier point.

4 EXPERIMENTAL SETUP

4.1 Research Questions

To evaluate the effectiveness of FlakeSync, we address the following

research questions:

• RQ1: How many async flaky tests can FlakeSync repair?

• RQ2:What are the characteristics of the repaired tests?

• RQ3:What is the runtime cost of running FlakeSync?

• RQ4: How much runtime overhead is there from using the

repaired test compared to the original test?

• RQ5: What are the developers’ reactions to the patches that

FlakeSync proposed?

We address RQ1 to see whether the intuition behind FlakeSync’s

repair strategies are effective for repairing async flaky tests. We ad-

dress RQ2 to analyze the characteristics of the repaired async flaky

tests, in particular whether they can be easily directly applied to the

project code.We address RQ3 to show the cost of running FlakeSync.

We address RQ4 to check how much overhead is incurred from us-

ing the repaired test compared to running the original test; there

might be some trade-offs in terms of removing flakiness and cost

of testing. Finally, we address RQ5 to discuss whether developers

find the type of patches that FlakeSync proposes acceptable.

4.2 Evaluation Dataset

For our evaluation, we use known flaky tests from a public dataset

of flaky tests, IDoFT [4]. These flaky tests come from open-source

Maven projects on GitHub and are categorized based on the flaky-

test detection techniques that found them. The most prominent

categories are order-dependent (OD) and non-order-dependent

(NOD) flaky tests, found using iDFlakies [3, 23]. OD tests’ outcomes

depend on the test order in which they are run [29, 45], while NOD

tests’ outcomes do not. FlakeSync is designed to repair async flaky

tests, so FlakeSync would unlikely work for OD tests. As such, we

1 public class TestTaskExecutor {

2

3 @Test

4 public void shouldBeFasterWhenRunningMultipleSlowTasks() {

5 ...

6 final long start = System.currentTimeMillis();

7 victim.submit(callables);

8 final long end = System.currentTimeMillis();

9

10 final long delta = end - start;

11 LOG.debug("Execution took: {}", delta);

12 assertTrue(delta < delay * times);

13 }

14 }

Figure 5: Timeout flaky test from wro4j/wro4j

start with the 300 flaky tests marked as NOD. For each NOD test,

we attempt to build and run the test at the commit where the flaky

test was detected. We filter out tests that we cannot build or run due

to out-of-date or missing library dependencies, leading to 221 tests.

We then run each test individually and track whether there are any

concurrent methods during execution (Section 3.1); we filter out

tests that do not have any concurrent methods, as they are also

unlikely to be async flaky tests. Ultimately, our evaluation dataset

consists of 176 flaky tests from 23 open-source Maven projects and

37 modules1. Table 1 shows the breakdown of the flaky tests per

module (column ł# Flaky Testsž) and the commit SHA on which

we evaluate (taken from IDoFT). We provide an ID per module for

ease of presentation in future tables. The table also shows for each

module the number of lines of code (łKLOCž), average runtime per

flaky test (łTest Runtime (sec)ž), and average number of concurrent

methods we found per flaky test (ł# Conc Methž).

4.3 Running Environment

We run FlakeSync on each flaky test individually. FlakeSync uses

ASM [1] to instrument code to inject delays and to modify code

for synchronizing critical point and barrier point. For our exper-

iments, we set a maximum timeout of 12 hours for FlakeSync to

run on each test. After FlakeSync repairs a test, we rerun the re-

paired test 100 times to confirm that it always passes. We configure

the INITIAL_DELAY to be 100ms and the MAX_DELAY to be

51200ms (Figure 3). We set a 3 minutes timeout for each run for

barrier point search. We run our experiments in a Ubuntu 20.04

Docker container configured to use 4 CPU and 4GB RAM.

5 RESULTS

5.1 RQ1: Repairing Async Flaky Tests

Table 2 shows the results of running FlakeSync on the 176 tests

that we use in our evaluation. This table shows for each module the

number of flaky tests for which FlakeSync could identify the critical

point (column ł# CSSž) and the number of flaky tests for which

FlakeSync could identify the barrier point and therefore repair the

flaky test (column ł# Fixed Testsž). Note that FlakeSync can only

identify a barrier point for the tests where it was able to identify a

critical point. Overall, FlakeSync could repair 67 flaky tests.

1A Maven project can have multiple modules

FlakeSync: Automatically Repairing Async Flaky Tests ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Breakdown of projects and async flaky tests used in evaluation

ID Project Module SHA KLOC # Flaky Test # Conc

Tests Runtime (sec) Meth

M1 Accenture/mercury platform-core 8586dc7 19.27 1 15.00 622.50

M2 Alluxio/alluxio . 78c063a 59.68 17 5.42 893.25

M3 TooTallNate/Java-WebSocket . fa3909c 10.92 52 4.30 103.59

M4 activiti/activiti activiti-engine b11f757 111.80 12 10.30 2219.41

M5 activiti/activiti activiti-spring b11f757 3.04 1 7.56 2842.00

M6 alibaba/wasp . b2593d8 153.50 1 5.67 59.00

M7 apache/dubbo dubbo-config-api 737f7a7 8.34 4 6.33 498.50

M8 apache/dubbo dubbo-remoting-netty 737f7a7 1.56 1 13.38 265.00

M9 apache/dubbo dubbo-rpc-dubbo 737f7a7 4.69 5 4.12 364.20

M10 apache/dubbo dubbo-rpc-http 737f7a7 0.39 1 3.81 134.00

M11 apache/dubbo dubbo-rpc-rest 737f7a7 1.03 3 4.54 94.00

M12 apache/httpcore httpcore 49247d2 21.05 2 2.16 18.50

M13 apache/httpcore httpcore-nio 49247d2 19.19 9 2.15 327.66

M14 apache/incubator-uniffle common 6fb2a9a 10.68 1 6.32 46.00

M15 cescoffier/vertx-completable-future . 011d3cd 2.10 1 2.67 9.00

M16 davidmoten/rxjava2-extras . 7663d3b 13.69 3 7.06 207.00

M17 doanduyhai/Achilles integration-test-2_1 e3099bd 8.97 12 15.04 6042.08

M18 doanduyhai/Achilles integration-test-2_2 e3099bd 0.86 7 13.37 6066.00

M19 doanduyhai/Achilles integration-test-3_10 e3099bd 0.51 2 12.27 6053.00

M20 doanduyhai/Achilles integration-test-3_7 e3099bd 0.19 6 12.36 6068.16

M21 doanduyhai/Achilles integration-test f52f7ec 2.56 1 8.88 4802.00

M22 elasticjob/elastic-job-lite elasticjob-infra-common 9afe466 2.12 1 4.91 6.00

M23 feroult/yawp yawp-testing-appengine b3bcf9c 0.21 1 3.51 516.00

M24 flaxsearch/luwak luwak c27ec08 7.53 2 3.60 44.00

M25 fluent/fluent-logger-java . 2e5fdf2 1.67 1 5.39 602.00

M26 javadelight/delight-nashorn-sandbox . da35edc 2.49 1 3.07 17.00

M27 kagkarlsson/db-scheduler db-scheduler 0e9f2a8 10.39 4 3.53 32.25

M28 kagkarlsson/db-scheduler . 4a8a28e 3.74 2 7.67 434.00

M29 nlighten/tomcat_exporter client bc6a2d2 0.95 1 7.13 1111.00

M30 qos-ch/logback logback-classic 0f57531 21.63 3 4.05 380.66

M31 qos-ch/logback logback-core 0f57531 25.96 2 2.87 36.50

M32 square/okhttp okhttp-tests 129c937 11.55 1 2.78 129.00

M33 undertow-io/undertow core ac7204a 49.28 4 4.03 817.75

M34 undertow-io/undertow websockets-jsr d0efffa 6.98 4 4.77 1376.50

M35 vmware/admiral registry e4b0293 1.59 5 3.96 1864.20

M36 vmware/admiral compute e4b0293 40.47 1 8.13 2475.00

M37 wro4j/wro4j wro4j-core 7e3801e 23.34 1 2.48 9.00

Total/ 176

Mean 17.9 6.40 1434.28

Of the two tests for which FlakeSync could not identify the

critical point, we found that these two tests crashed due to hitting

memory limits after running a long time with the injected delays.

If given more resources, it is possible FlakeSync would identify the

critical point for these tests. Of the remaining 174 tests for which

FlakeSync could identify a critical point, FlakeSync identified a

barrier point, and therefore could repair 67 tests, i.e., 38.5% of all

flaky tests in our dataset. However, when we inspected test code

and the failure logs of these flaky tests, we found that many of

them are written in such a way that they rely on absolute runtime.

For example, Figure 5 shows a flaky test from module M37 that

measures the exact time taken to run a block of code (Lines 6-8)

and asserts that this time is less than a constant value (Line 12).

While this test is flaky due to timing issues, it does not fail due to

lack of synchronization between code. Rather, as long as some part

of execution simply runs slower, e.g., on a slow machine, the test

would fail. Another example of such flaky tests are those that fail

due to a constant timeout set by the developer, so the test may fail

if the machine is slower than expected. FlakeSync is not designed

to repair such flaky tests.

Our inspection shows that 94 tests rely on exact timing; the

remaining 80 tests are async flaky tests (column ł# Async Flaky

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shanto Rahman and August Shi

Table 2: Breakdown of tests that FlakeSync repairs

ID # CSS # Fixed Tests # Async Flaky Overhead

Tests (X)

M1 1 1 1 1.00

M2 15 6 9 1.08

M3 52 7 7 1.11

M4 12 0 2 n/a

M5 1 1 1 1.02

M6 1 1 1 1.05

M7 4 0 0 n/a

M8 1 1 1 0.53

M9 5 2 2 0.97

M10 1 0 0 n/a

M11 3 0 0 n/a

M12 2 1 1 1.33

M13 9 0 5 n/a

M14 1 1 1 0.88

M15 1 0 0 n/a

M16 3 2 2 1.12

M17 12 12 12 1.25

M18 7 7 7 1.40

M19 2 2 2 1.90

M20 6 6 6 1.01

M21 1 0 1 n/a

M22 1 1 1 0.95

M23 1 1 1 0.86

M24 2 1 2 1.20

M25 1 1 1 0.99

M26 1 1 1 0.91

M27 4 0 0 n/a

M28 2 1 1 1.04

M29 1 1 1 1.03

M30 3 2 2 1.02

M31 2 1 1 1.04

M32 1 1 1 1.05

M33 4 0 0 n/a

M34 4 3 3 1.09

M35 5 3 4 1.06

M36 1 0 0 n/a

M37 1 0 0 n/a

Total/ 174 67 80

Mean/ 2.26

Median 1.00

Testsž in Table 2). Therefore, FlakeSync repairs 83.75% async flaky

tests. A developer could repair the 94 other tests that rely on exact

timing simply by increasing the hard-coded time values in the tests.

We inspected further the remaining 13 async flaky tests that

FlakeSync does not repair. We find that there are six tests whose

failures were nondeterministic, meaning that we could not reliably

reproduce the failure while searching for the critical point. For two

tests, we reach the maximum time of 12 hours that we allocated for

running FlakeSync for our experiments (Section 4). For five tests,

our inspection found that they fail due to network I/O operation

errors. These errors occur when a socket connection times out

and is reset. While there is no constant waiting time in the code,

conceptually these tests are similar in nature given that the socket

connection times out after some default time.

RQ1: FlakeSync can repair 67 out of the 80 (83.75%) async flaky

tests in our dataset.

5.2 RQ2: Characteristics of Repairs

A developer can only apply the changes that FlakeSync proposes to

repair an async flaky test as a patch to their project code if both the

critical point and barrier point are in their own code (Section 3.3).

As such, we characterize the code changes that FlakeSync proposes

for the 67 async flaky tests that FlakeSync could repair based on

the locations of the critical points and barrier points.

We find that only six tests have the critical point in third-party

library code. As such, we see that async flaky tests generally need

to synchronize on critical computations that occur in their own

project code and do not need to rely on such computations in third-

party code. Having the critical point in the same project code also

means it can be easier for developers to understand the interactions

during test execution and how exactly the flaky failure can occur.

Meanwhile, we find that 31 tests have their barrier point in third-

party library code. The reason that so many barrier points are

outside project code is that FlakeSync starts its search for the barrier

point from the origin of the exception, which usually ends up in

third-party library code (Section 3.2). As such, it usually ends up

identifying a valid barrier point within third-party library code

before reaching the project code that calls into the library. If we

adjust BarrierSearch to only consider potential barrier points in

project code, we find that 61 tests can have both their critical point

and barrier point to be in the project code itself, meaning a patch

involving the repair can be directly applied.

Finally, we analyze how often we need to have the barrier point

wait until the critical point is executedmore than once (Section 3.2.1).

We find that seven tests require waiting for the critical point to be

executed multiple times, with the mean number of times to be 3.19.

Most tests require only waiting until the critical point is executed

just once, so it is reasonable that FlakeSync prioritizes its search to

first consider only needing the critical point executed just once.

RQ2: FlakeSync can repair 61 of 67 tests with changes that can

be directly applied as a patch to the project code. Most async

flaky tests also only need the barrier point to wait until the

critical point is executed just once (60 out of 67).

5.3 RQ3: FlakeSync Runtime

Figure 6 shows the amount of time that FlakeSync takes to repair

tests in each module. Overall, FlakeSync on average takes 126.62

minutes per async flaky test (whether successfully repaired or not).

FlakeSync often takes longer to run if it cannot successfully repair

the test. Considering only the tests that FlakeSync successfully

repairs, the average runtime is 103.52 minutes. From the figure, we

observe a few tests that require much higher runtime, as median

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shanto Rahman and August Shi

we find that the known flaky test no longer exists, likely already

deleted. We attempted to match tests based on the test name in

the latest commit, but we could not always find a matching test.

Third, for some projects, we could no longer build them at this

latest commit. Furthermore, some projects shifted from Maven to

Gradle; our current implementation of FlakeSync only supports

Maven projects, so we could not run FlakeSync on these projects.

Finally, for some projects, FlakeSync does not identify a critical

point and barrier point both in project code, so we cannot prepare

a patch to their codebase. After filtering out projects based on these

constraints, we obtain 10 projects on which we could run FlakeSync

and send pull requests. As to not overwhelm developers with many

pull requests before confirming they indeed want such patches, we

limit to creating one pull request per flaky test per project.

We submitted a total of 10 pull requests for 10 projects. Out of

these 10 submitted pull requests, 3 pull requests have already been

accepted [2, 5, 6]; no pull request has been rejected yet.

For one of the accepted pull requests, the developers merged

the changes without too much feedback. For another pull request,

we found that developers recognized that incorporating our patch

would eliminate the necessity of maintaining hardcoded sleep du-

rations. Consequently, upon merging our proposed changes, they

took the initiative to remove the predetermined sleep times that

had previously been implemented. For another pull request (shown

in Figure 1), we found that the developers were actually already

working on trying to repair the flaky test via increased wait time.

However, they found the test would still sometimes fail in a con-

tinuous integration environment, as waiting a constant amount

of time is unreliable. When we submitted our pull request, the

developers commented that this patch that waits on a specific con-

dition is much more desirable than changing the existing sleep

time. The developers merged this pull request with the comment

łLGTM, thanks, it’s really great workž. These comments showcase

how FlakeSync’s strategy for repairing async flaky tests is more

desirable than simply increasing wait times.

RQ5: We submitted 10 pull requests that repair async flaky

tests, with 3 accepted and the rest pending; no pull requests have

been rejected thus far.

5.6 Limitations

FlakeSync is designed to only repair async flaky tests and not other

flaky tests. A developer would have to know ahead of time to only

use FlakeSync for such tests, or rely on some automated techniques

to determine the category of flaky test [8, 34]. FlakeSync assumes

it should repair async flaky tests by making them pass, but it is

possible the failure is due to a real concurrency bug, so a developer

would want a consistent failure. Currently, FlakeSync cannot distin-

guish whether the failure is due to test flakiness or a concurrency

bug that needs to be fixed. Future work can investigate how to

automatically distinguish the two. Note that a developer could use

CritSearch only to just reproduce the failure consistently. The delay

locations may indicate where the bugs are located.

FlakeSync heavily relies on being able to reproduce a flaky-test

failure to proceed; it cannot repair an async flaky test if injecting de-

lays does not reproduce the failure. Part of our process to reproduce

the flaky-test failure involves identifying concurrently executing

methods within the same JVM, so our current implementation deals

specifically with multithreading. We currently do not track con-

currently executing code across different processes. After we can

reproduce the failure, if the async flaky test is failing due to reliance

on some absolute runtime, e.g., fails if some part of the code does

not execute within a constant set amount of time, then FlakeSync

cannot synchronize code as to prevent the failure. FlakeSync also

cannot handle cases where an async flaky test needs to synchronize

on multiple critical points at once. Finally, a developer can only

directly apply a patch on their code using FlakeSync’s reported

critical point and barrier point if both are in their own code, not in

third-party libraries. In this case, developers can use FlakeSync’s

runtime framework to dynamically insert the critical point and

barrier point during execution of the async flaky test.

6 THREATS TO VALIDITY

External Validity. We construct our evaluation dataset by filtering

from a previous dataset of known flaky tests. Our filtering is sys-

tematic but excludes flaky tests that FlakeSync was never designed

to repair, e.g., OD tests. One part of our filtering is that we remove

any tests that do not execute concurrent methods. It is possible

that we exclude some tests that actually do execute concurrent

methods due to bugs in our concurrent method search. We develop

our approach to find concurrent methods based on past work [33],

and we filtered out 45 tests out of an initial set of 300 tests due to

lack of concurrent methods. Ultimately, we believe our evaluation

set is still representative of async flaky tests.

FlakeSync may find different delay locations and amount of delay

to inject when run on different machines, leading to different critical

points and barrier points. Our manual inspection and modification

of code confirms that the identified critical points do make the tests

fail with the specified delays, and that the critical points and barrier

points also allow the test to pass with the injected delays.

Internal Validity. Our implementation of FlakeSync involves in-

strumentation that may introduce changes beyond delaying execu-

tion, and failures may be due to these unintentional changes. To

check, we manually modify source code to inject the delays at the

identified critical points, and we also check that we can apply the

patches modifying critical point and barrier point when possible.

Construct Validity. We confirm a test to be repaired if the test

always passes after 100 times even with injected delays. While it

is possible there may still be failures after more reruns, we believe

this check to be sufficient given the large number of reruns and that

the test always fails with injected delays without the patch. Further,

we also send patches as pull requests to developers to confirm.

7 RELATED WORK

Luo et al. presented the first empirical study on the root causes of

flaky tests in open-source projects [29]. They found the top reasons

for flaky tests include async-wait and concurrency, which we call

async flaky tests. Separate groups conducted additional studies

to better understand flaky tests [13, 18, 22, 24, 25] with similar

FlakeSync: Automatically Repairing Async Flaky Tests ICSE ’24, April 14–20, 2024, Lisbon, Portugal

findings on top causes. Companies also report problems with flaky

tests [19ś21, 30, 32].

Prior work on automatically repairing flaky tests has focused

mostly on those with easily reproducible flaky behavior. Shi et

al. [39] proposed iFixFlakies for fixing order-dependent (OD) flaky

tests in Java, where the failure can be easily reproduced by running

in a specific test order. Li et al. [27] followed up with technique

ODRepair to fix OD flaky tests that iFixFlakies cannot, and Wang et

al. [42] adapted iFixFlakies to fix Python OD flaky tests. Beyond OD

flaky tests, Zhang et al. [44] proposed DexFix to fix flaky tests that

are dependent on specific implementations of library API. Dutta et

al. [12] proposed FLEX to fix flaky tests in machine-learning ap-

plications whose assertions are too strict. Our work focuses on

specifically automatically repairing async flaky tests.

Prior work found developers would try to repair async flaky tests

by inserting wait times [22, 29, 31]. For example, Lam et al. [22]

found that Microsoft developers would need to guess at how long

to wait to mitigate flakiness, but their wait times may be longer

than needed. Lam et al. then proposed technique FaTB to adjust

the existing wait times to reduce testing time while still ensuring

the tests do not fail. FlakeSync proposes a different way to repair

async flaky tests by instead synchronizing the test execution. Such a

strategy avoids issues with inserting or changing wait times, where

machine load variance can influence the effectiveness of the con-

stant wait times. Furthermore, FlakeSync automatically identifies

the critical points and barrier points, whereas FaTB relies on a

developer already having identified where to insert the wait time

(akin to the barrier point that FlakeSync identifies). It is possible

to then use FlakeSync to identify the barrier point and insert the

wait time instead of synchronizing and waiting for the critical point

to execute. However, this strategy still runs into the other issues

involving constant wait times, namely not knowing exactly how

long to wait and slowing down test execution more than necessary.

A wide range of work focuses on detecting flaky tests. Lam et

al. [23] proposed iDFlakies [3] for detecting OD flaky tests. Shi et

al. [38] proposed NonDex [7, 17] for detecting flaky tests that are

dependent on specific implementations of libraryAPI. Flaky tests de-

tected by both tools constitute a large part of the IDoFT dataset [4]

that we use in our evaluation. We focus on tests marked NOD,

because they are likely async flaky tests. Alshammari et al. [9] pro-

posed FlakeFlagger, a machine-learning model to predict whether a

test is flaky. Silva et al. [40] proposed Shaker to detect async flaky

tests by purposefully introducing large amounts of stress on the

machine’s CPU and memory while running tests, simulating a ma-

chine with constrained resources. Other tools that detect flaky tests

include DeFlaker [10], which detects flaky tests as those that newly

fail after changes yet do not cover changed code, and FLASH [11],

which detects flaky tests in machine learning applications by ma-

nipulating underlying random number generators. In our work, we

focus on repairing flaky tests once they have been detected.

Researchers have also proposed tools to help debug flaky tests.

Lam et al. [21] proposed RootFinder to find the root cause of flaki-

ness by comparing passing and failing execution traces of the same

test. Researchers at Microsoft proposed FlakeRepro [26] to repro-

duce concurrency-related flaky tests in C# applications by injecting

delays at locations related to shared memory accesses, checking

whether the test can reliably fail. Rahman et al. also proposed Flak-

eRake [36] to reproduce flaky-test failures in Java applications by

injecting delays at timing-related Java API calls. FlakeSync also

relies on injecting delays as part of identifying the critical point,

but it also identifies the barrier point to repair the test.

Our work is related to the area of concurrency bug detection,

and we borrow ideas from prior work in this area. Pradel et al. [33]

proposed automatically generating tests to detect concurrency bugs

by first executing the code with some initial inputs to detect con-

current methods and then generating tests that target executing

pairs of methods found to be concurrent to each other. We rely on

similar logic to determine concurrent methods. Much prior work

in concurrency bug detection rely on injecting delays at key lo-

cations within code [14, 15, 28, 37, 41]. For example, Li et al. [28]

proposed TSVD to search for thread-safety violations by injecting

delays at supposedly thread-safe read/write API calls in C# appli-

cations. Rahman et al. [35] implemented TSVD for Java while also

enhancing it to consider read/write operations to object fields. We

also inject delays in code, but at calls to concurrent methods. Our

goal is not to detect concurrency bugs but rather to make tests fail

more consistently to aid in repair. The async flaky tests we focus

on may be flaky due to concurrency issues, but we assume the

failure does not indicate a true concurrency bug in code, and we

add synchronization to ensure the test passes.

8 CONCLUSIONS

We propose FlakeSync, a technique for automatically repairing

async flaky tests. The intuition is that such tests fail due to lack of

synchronization between concurrently running code. FlakeSync

repairs async flaky tests by identifying a critical point and barrier

point, where the barrier point waits until the critical point has

been executed before proceeding. Our evaluation on known flaky

tests from a prior dataset shows that FlakeSync can automatically

repair 83.75% of the async flaky tests. The repaired async flaky

tests have a low median runtime overhead compared to the original

test runtime. We submitted 10 pull requests based on FlakeSync’s

patches, with 3 accepted pull requests and none rejected thus far.

In the future, we plan to improve FlakeSync’s CritSearch through

better heuristics that allow for more efficient search for the delay

locations, leading to finding the critical point. We plan to similarly

improve the runtime of BarrierSearch through prioritization of

which locations to check for valid barrier points. We also plan on

improving the FlakeSync tool to also automatically modify source

code using the critical point and barrier point when applicable. Fi-

nally, we plan on extending FlakeSync’s core algorithm to consider

multiple critical points and barrier points that together are needed

to repair the flaky test.

DATA AVAILABILITY

Our data is available at https://sites.google.com/view/flakesync/

home, containing code, scripts, and raw data. An artifact to repro-

duce our results is available at https://zenodo.org/records/10460139.

ACKNOWLEDGMENTS

We would like to acknowledge NSF grant no. CCF-2145774 and the

Jarmon Innovation Fund.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Shanto Rahman and August Shi

REFERENCES
[1] ASM. https://asm.ow2.io/.
[2] elasticjob-2242. https://github.com/apache/shardingsphere-elasticjob/pull/2242.
[3] iDFlakies. https://github.com/idflakies/iDFlakies.
[4] IDoFT. http://mir.cs.illinois.edu/flakytests.
[5] incubator-uniffle-1023. https://github.com/apache/incubator-uniffle/pull/1023.
[6] mercury-136. https://github.com/Accenture/mercury/pull/136.
[7] NonDex. https://github.com/TestingResearchIllinois/NonDex.
[8] A. Akli, G. Haben, S. Habchi, M. Papadakis, and Y. Le Traon. FlakyCat: Predicting

flaky tests categories using few-shot learning. In International Conference on
Automation of Software Test, 2023.

[9] A. Alshammari, C.Morris, M. Hilton, and J. Bell. FlakeFlagger: Predicting flakiness
without rerunning tests. In International Conference on Software Engineering,
2021.

[10] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov. DeFlaker:
Automatically detecting flaky tests. In International Conference on Software
Engineering, 2018.

[11] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic. Detecting
flaky tests in probabilistic and machine learning applications. In International
Symposium on Software Testing and Analysis, 2020.

[12] S. Dutta, A. Shi, and S. Misailovic. FLEX: Fixing flaky tests in machine-learning
projects by updating assertion bounds. In European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, 2021.

[13] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. Understanding flaky tests:
The developer’s perspective. In European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019.

[14] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded Java program
test generation. IBM Systems Journal, 41(1), 2002.

[15] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective data-race
detection for the kernel. In USENIX Symposium on Operating Systems Design and
Implementation, 2010.

[16] M. Gruber, S. Lukasczyk, F. Krois, and G. Fraser. An empirical study of flaky
tests in python. In International Conference on Software Testing, Verification, and
Validation, 2021.

[17] A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and D. Marinov. NonDex: A tool for
detecting and debugging wrong assumptions on Java API specifications. In Inter-
national Symposium on Foundations of Software Engineering (Tool Demonstrations
Track), 2016.

[18] S. Habchi, G. Haben, M. Papadakis, M. Cordy, and Y. Le Traon. A qualitative study
on the sources, impacts, and mitigation strategies of flaky tests. In International
Conference on Software Testing, Verification, and Validation, 2022.

[19] M. Harman and P. O’Hearn. From start-ups to scale-ups: Opportunities and open
problems for static and dynamic program analysis. In International Working
Conference on Source Code Analysis and Manipulation, 2018.

[20] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, andA.Memon. Modeling and
ranking flaky tests at Apple. In International Conference on Software Engineering,
Software Engineering in Practice, 2020.

[21] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta. Root causing
flaky tests in a large-scale industrial setting. In International Symposium on
Software Testing and Analysis, 2019.

[22] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta. A study on the lifecycle
of flaky tests. In International Conference on Software Engineering, 2020.

[23] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. iDFlakies: A framework for
detecting and partially classifying flaky tests. In International Conference on
Software Testing, Verification, and Validation, 2019.

[24] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov. Understanding
reproducibility and characteristics of flaky tests through test reruns in Java
projects. In International Symposium on Software Reliability Engineering, 2020.

[25] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell. A large-scale longitu-
dinal study of flaky tests. Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 4(OOPSLA), 2020.

[26] T. Leesatapornwongsa, X. Ren, and S. Nath. FlakeRepro: Automated and efficient
reproduction of concurrency-related flaky tests. In European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2022.

[27] C. Li, C. Zhu, W. Wang, and A. Shi. Repairing order-dependent flaky tests via
test generation. In International Conference on Software Engineering, 2022.

[28] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye. Efficient scalable thread-
safety-violation detection: Finding thousands of concurrency bugs during testing.
In Symposium on Operating Systems Principles, 2019.

[29] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of flaky tests.
In International Symposium on Foundations of Software Engineering, 2014.

[30] M. Machalica, A. Samylkin, M. Porth, and S. Chandra. Predictive test selection. In
International Conference on Software Engineering, Software Engineering in Practice,
2019.

[31] J. Malm, A. Causevic, B. Lisper, and S. Eldh. Automated analysis of flakiness-
mitigating delays. In International Conference on Automation of Software Test,
2020.

[32] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco.
Taming Google-scale continuous testing. In International Conference on Software
Engineering, Software Engineering in Practice, 2017.

[33] M. Pradel and T. R. Gross. Fully automatic and precise detection of thread safety
violations. In Conference on Programming Language Design and Implementation,
2012.

[34] S. Rahman, A. Baz, S. Misailovic, and A. Shi. Quantizing large-languagemodels for
predicting flaky tests. In International Conference on Software Testing, Verification,
and Validation, 2024.

[35] S. Rahman, C. Li, and A. Shi. TSVD4J: Thread-safety violation detection for Java.
In International Conference on Software Engineering (Tool Demonstrations Track),
2023.

[36] S. Rahman, A. Massey, W. Lam, A. Shi, and J. Bell. Automatically reproducing
timing-dependent flaky-test failures. In International Conference on Software
Testing, Verification, and Validation, 2024.

[37] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4), 1997.

[38] A. Shi, A. Gyori, O. Legunsen, and D. Marinov. Detecting assumptions on deter-
ministic implementations of non-deterministic specifications. In International
Conference on Software Testing, Verification, and Validation, 2016.

[39] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov. iFixFlakies: A framework for au-
tomatically fixing order-dependent flaky tests. In European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2019.

[40] D. Silva, L. Teixeira, and M. d’Amorim. Shake it! Detecting flaky tests caused by
concurrency with Shaker. In International Conference on Software Maintenance
and Evolution, 2020.

[41] S. D. Stoller. Testing concurrent Java programs using randomized scheduling.
Electronic Notes in Theoretical Computer Science, 70(4), 2002.

[42] R. Wang, Y. Chen, and W. Lam. iPFlakies: A framework for detecting and fixing
Python order-dependent flaky tests. In International Conference on Software
Engineering (Tool Demonstrations Track), 2022.

[43] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2), 2002.

[44] P. Zhang, Y. Jiang, A. Wei, V. Stodden, D. Marinov, and A. Shi. Domain-specific
fixes for flaky tests with wrong assumptions on underdetermined specifications.
In International Conference on Software Engineering, 2021.

[45] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and D. Notkin. Em-
pirically revisiting the test independence assumption. In International Symposium
on Software Testing and Analysis, 2014.

	Abstract
	1 Introduction
	2 Example
	3 FlakeSync
	3.1 CritSearch
	3.2 BarrierSearch
	3.3 Final Output

	4 Experimental Setup
	4.1 Research Questions
	4.2 Evaluation Dataset
	4.3 Running Environment

	5 Results
	5.1 RQ1: Repairing Async Flaky Tests
	5.2 RQ2: Characteristics of Repairs
	5.3 RQ3: FlakeSync Runtime
	5.4 RQ4: Overhead of Repaired Tests
	5.5 RQ5: Developers' Reactions
	5.6 Limitations

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

