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ABSTRACT

Regression testing is an important part of the development process
but suffers from the presence of flaky tests. Flaky tests nondeter-
ministically pass or fail when run on the same code, misleading
developers about the correctness of their changes. A common type
of flaky tests are async flaky tests that flakily fail due to timing-
related issues such as a asynchronous waits that do not return in
time or different thread interleavings during execution. Developers
commonly try to repair async flaky tests by inserting or increasing
some wait time, but such repairs are unreliable.

We propose FlakeSync, a technique for automatically repairing
async flaky tests by introducing synchronization for a specific test
execution. FlakeSync works by identifying a critical point, repre-
senting some key part of code that must be executed early w.r.t.
other concurrently executing code, and a barrier point, representing
the part of code that should wait until the critical point has been
executed. FlakeSync can modify code to check when the critical
point is executed and have the barrier point keep waiting until the
critical point has been executed, essentially synchronizing these
two parts of code for the specific test execution. Our evaluation
of FlakeSync on known flaky tests from prior work shows that
FlakeSync can automatically repair 83.75% of async flaky tests, and
the resulting changes add a median overhead of only 1.00X the orig-
inal test runtime. We submitted 10 pull requests with our changes
to developers, with 3 already accepted and none rejected.
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1 INTRODUCTION

Regression testing is an important part of the software development
process, but it suffers from the presence of flaky tests. A flaky
test is a test that can nondeterministically pass or fail when run
on the same version of code [29]. After a developer makes some
changes, if the flaky test fails, the developer cannot trust whether
that failure indicates a true fault introduced in their changes. Flaky
tests can mislead developers, forcing them to waste time debugging
nonexistent faults in changes. Flaky tests are prevalent both in
open-source projects [9, 16, 23, 29] and in industry [19-22, 30].

Luo et al. [29] found that the most prominent type of flaky tests
in open-source projects are async-wait flaky tests, which are tests
that fail due to making an asynchronous call but does not wait
sufficiently for the computations to complete. The second most
prominent type of flaky tests are concurrency flaky tests, which
are tests that fail due to different thread interleavings. Both such
flaky tests are dependent on nondeterministic timing issues during
test execution, e.g., the service being waited on takes too long to
complete or some thread takes longer than another, leading to an
unexpected thread interleaving. In total, Luo et al. found that 65% of
the flaky tests they studied are of these two categories [29]. Other
empirical studies similarly found both these types of flaky tests
to be the most prominent ones [13, 22]. In this paper, we refer to
such tests as async flaky tests, because these tests fail due to lack of
proper synchronization between relevant parts of code.

The most common way developers repair async flaky tests, par-
ticularly for async-wait flaky tests, is by modifying wait times in the
test code and code-under-test [22, 29]. For example, Lam et al. found
that developers commonly repair flaky tests at Microsoft by adding
additional wait times [22] to reduce flaky failures. However, they
found developers did not have a systematic way in determining
the proper wait time, waiting longer than necessary and increasing
the cost of testing. Further, modifying wait times can only mitigate
the issue, as the test may still fail when run on different machines.
Luo et al. [29] also found that developers in open-source would
add wait times to mitigate async-wait flaky tests, but this strategy
does not provide guarantees concerning flakiness while making
tests run slower. They recommend doing some synchronization
that waits for a condition to be satisfied as a better repair strategy.

We propose FlakeSync, a technique for automatically repairing
async flaky tests by introducing synchronization for a specific test
execution. Our intuition is that the flakiness comes from the test
execution not synchronizing properly between concurrently ex-
ecuting code, e.g., across different threads. For async-wait flaky
tests, the test does not wait long enough for another service to
complete its execution. By ensuring the test does wait for the ser-
vice to complete, i.e., synchronizing with the completion of that
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service, it would no longer fail. For concurrency flaky tests, the
failure comes from one thread interleaving differently from another,
so synchronizing one thread to wait until the other thread finishes
executing a critical part of code can repair the flakiness.

At the high level, FlakeSync is composed of two main compo-
nents. For a given async flaky test to repair, the first component,
CritSearch, searches for the critical point that must be executed
early relative to other concurrently running code. If the execution
slows down such that the critical point is executed too late, the
test would fail. The second component, BarrierSearch, searches for
the barrier point corresponding to the identified critical point. The
barrier point is the part of code that needs to wait until the critical
point has been executed before proceeding, or else the test fails
(we use the term “barrier” due to similarities to barriers for syn-
chronization in concurrent programming). With both the critical
point and barrier point, FlakeSync can repair the async flaky test
by (1) modifying the critical point to keep track of whether it gets
executed and how many times it gets executed when the test runs,
and (2) modifying the barrier point to continuously wait and yield
execution to other threads until the critical point has been executed
sufficiently. These changes together introduce the synchronization
that ensures the async flaky test does not flakily fail.

We evaluate FlakeSync on 176 known flaky tests taken from
an existing dataset of known flaky tests [4]. Initially, we find that
FlakeSync can repair 67 flaky tests. From further inspection, we
find that most of the tests that FlakeSync cannot repair are actually
flaky due to their reliance on exact timing, e.g., assertions that check
some code takes less than a constant amount of time to run or a
strict timeout built into the test. While such tests can indeed be
flaky due to timing issues on the machine, e.g., the machine being
busy and therefore runs the tests slower, they are not flaky due to
synchronization issues that async flaky tests suffer from. Such tests
can be repaired by increasing the existing timeout bounds encoded
in the tests in case of slower machines. Filtering out such flaky
tests results in 80 async flaky tests, and FlakeSync can repair 83.75%
of these async flaky tests. The median amount of time FlakeSync
takes to repair a flaky test is 58.77 minutes. Further, after we apply
the changes to repair the test, we find that these changes lead to a
median overhead of only 1.00X the original test runtime. This low
overhead shows how proper synchronization does not necessarily
increase the testing cost, unlike inserting/increasing wait times.

We also submit pull requests where we repair the known async
flaky tests on the latest versions of the projects based on FlakeSync’s
proposed changes. We only submit pull requests for async flaky
tests that are still flaky on the latest version of projects that we
could build, and we only submit one pull request per project as to
avoid spamming developers with pull requests until they confirm
they would like to see such changes to their tests. We submitted
10 pull requests to 10 projects. So far, 3 pull requests have already
been accepted, and no pull request has been rejected.

The contributions of our paper are:

e We propose a technique FlakeSync for automatically repair-
ing async flaky tests by introducing synchronization points
during test execution.

o We implement FlakeSync for Java projects and evaluate on
known flaky tests from a prior dataset [4]. Our results show
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public class GrpcServerTest {
@Test
public void testGrpcExecutorPool() {
GRPCMetrics gm = GRPCMetrics.getEmptyGRPCMetrics();

GrpcThreadPoolExecutor executor =
new GrpcServer.GrpcThreadPoolExecutor(gm);

executor.submit(...);

+ while (!GGrpcThreadPoolExecutor.hasExecuted) {

L+ Thread.yield();
) + }

Thread.sleep(120);

double activeThreads = gm.getGaugeMap().get(THREADS);

assertEquals(2, activeThreads);
double queueSize = gm.getGaugeMap().get(QUEUE);
assertEquals(1l, queueSize);

L
}

» public GrpcThreadPoolExecutor {

public GrpcThreadPoolExecutor {
private final GRPCMetrics gm;
public GrpcThreadPoolExecutor(GRPCMetrics gm) {
this.gm = gm;
}
@Override
protected void beforeExecute(Thread t, Runnable r) {
gm.incGauge (THREADS) ;
gm.setGauge (QUEUE, getQueue().size());

33 4 hasExecuted = true;

super.beforeExecute(t, r);

¥
}

Figure 1: Example flaky test from apache/incubator-uniffle

that FlakeSync can repair 83.75% of the async flaky tests,
and the changes make the test runtime on median 1.00X the
runtime before the changes.

e We submitted 10 pull requests to developers for repairing
their async flaky tests. So far, 3 pull requests have already
been accepted, and no pull request has been rejected.

2 EXAMPLE

Figure 1 illustrates a simplified version of an example flaky test
from project apache/incubator-uniffle, used in our evaluation. The
flaky test is GrpcServerTest#testGrpcExecutorPool, a
previously known flaky test from a public dataset [4], meaning
prior work observed the test to both pass and fail when rerun on
the same version of code many times.

This test first creates a GRPCMetrics object (Line 4), which
is then passed in as an argument when creating an instance of
GrpcThreadPoolExecutor (Line 6). This executor is used
to spawn new threads to run (Line 8). We see that each new thread
first executes the beforeExecute method of the GrpcThread-
PoolExecutor class (Line 30), which modifies the shared GRPC -
Metrics object passed in as an argument (Lines 31-32). After
spawning the new thread to run, the test proceeds to wait for
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def FlakeSync(test):
crit_points, delays = CritSearch(test)
barrier_points = BarrierSearch(test, crit_points, delays)

return crit_points, barrier_points

Figure 2: Pseudocode for FlakeSync.

120ms (Line 13), expecting that other threads will finish their task
within this time period. Finally, the test asserts on some values
based on the shared GRPCMetrics object (Lines 15 and 17).

This pattern of waiting for a constant amount of time for some
other code to finish running is a classic example of an async-wait
flaky test [29]. This test’s assertions can fail if the computations
on another thread that modify the shared GRPCMetrics object
do not complete within a reasonable amount of time. Interestingly,
the developers had previously noticed this test to be flaky and
attempted to repair it by modifying the wait time (Line 13); the wait
time was previously 100ms, so they increased the time, but the test
still remains flaky.

The key issue is that the test should only assert on values in the
shared GRPCMet rics object once the other thread has finished
setting those values. As such, a better way to repair this test is to
force the test to wait until the other thread has finished executing
the critical computations that modify the shared GRPCMetrics
object before proceeding to the assertions. We can enforce this type
of synchronization between threads by inserting a variable to check
whether execution has made it past those critical computations
(Line 33) and then introducing a loop in the test code to continuously
yield execution to other threads until that point has been executed
on the other thread (Lines 10-12).

Using our technique, we were able to identify these parts of the
code to modify to enforce such synchronization, constructing a
patch for this flaky test as shown in Figure 1. We sent this patch
as a pull request to the developers of apache/incubator-uniffle, and
the pull request was accepted with positive feedback.

3 FLAKESYNC

We present FlakeSync, a technique for automatically repairing async
flaky tests. The intuition behind FlakeSync is that async flaky tests’
flaky failures often involve concurrently executing code across
multiple threads where code on one thread needs to be executed
first relative to code on another thread, such as the async-wait flaky
test presented in Figure 1. FlakeSync repairs async flaky tests by
identifying the key parts of code during test execution that should
be synchronized with one another. FlakeSync can then modify
the code execution to introduce synchronization mechanisms that
ensure the execution on one thread does not proceed until the other
thread has executed the other critical code section.

At the high-level FlakeSync takes as input an async flaky test
and returns the relevant locations where a developer should syn-
chronize. FlakeSync consists of two main components. The first
component is the CritSearch. This component aims to identify the
critical point for the async flaky test, which is the part of code that
must be executed early; if the execution slows down such that the
critical point is executed too late relative to other executed code on
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a different thread, the test would fail. The second component is the
BarrierSearch. This component aims to identify the barrier point,
which is the code that needs to wait until the corresponding critical
point has been executed. Essentially, the execution should not pro-
ceed past the barrier point until the critical point is executed, or else
the test fails (we use the term “barrier” as it is similar to the concept
of barriers for synchronization in concurrent programming). Fig-
ure 2 shows pseudocode illustrating how FlakeSync leverages these
two components to propose a patch for a given async flaky test.
Essentially, FlakeSync first uses CritSearch to find critical points
along with the amounts of delay to inject at each critical point that
can reproduce a flaky-test failure (Line 2). FlakeSync then passes
those critical points and corresponding delays to BarrierSearch so
it identifies the corresponding barrier points to the critical points
(Line 3). The final output from FlakeSync are two lists, the critical
points and barrier points (the critical points and barrier points in
the same position in the two lists correspond to each other).

3.1 CritSearch

Given an async flaky test, CritSearch searches for the critical
points. The intuition is that, if the thread that executes a critical
point takes too long, then the test fails. In other words, if we inject a
long enough delay before a critical point, then the test fails. As such,
CritSearch identifies critical points by searching through possible
locations in which to inject some delay that can lead to the test to
reliably fail after execution. Figure 3 illustrates pseudocode for how
CritSearch runs on a given async flaky test.

3.1.1 Delay Injection. CritSearch first needs to inject delays through-
out the test execution to see whether any injected delays can lead
to a test failure. As opposed to randomly sampling delay locations
or simply injecting delays everywhere, CritSearch relies on the
heuristic that the most relevant delay locations are going to be
those related to concurrent methods, namely methods that execute
concurrently with others during test execution. As such, CritSearch
first looks for concurrent methods (Line 5). Similar to prior work on
finding concurrent methods for detecting concurrency bugs [33],
we find concurrent methods by dynamically instrumenting the
entry-point and exit-points of each executed method in the code-
under-test, and we identify a method to be a concurrent method
if its execution has not reached an exit-point while execution has
reached the entry-point of another method. Due to the nondeter-
ministic nature of flaky test executions, we run the test 10 times
and combine all the concurrent methods detected throughout those
runs. Note that our approach over-approximates the set of con-
current methods to track, because we do not track which exact
pairs of tests actually ran concurrently with one another, instead
grouping together all methods that at some point ran concurrently
with another method.

With the set of concurrent methods for an async flaky test, Crit-
Search searches for all the locations (i.e., lines in code) where there
are calls to a concurrent method (Line 6). The intuition is that
any method invocation can potentially take more time than ex-
pected, e.g., due to any stress on the machine or other processes run-
ning [40], so we want to simulate slowdowns, particularly for these
methods that run concurrently with others. CritSearch then runs
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1 def CritSearch(test):
> crit_points = []
5 crit_points_delays = []

conc_methods = find_conc_methods(test)

¢« locs = find_delay_locs(test, conc_methods)

7 delay = INITIAL DELAY

¢ while delay <= MAX_DELAY:

9 test_res = run_with_delay(test, locs, delay)

10 if test_res == FAIL:

1 break

12 delay = delayx2

i3 if not test_res == FAIL:

14 return crit_points, crit_points_delays # Unsuccessful
15 min_locs, delay = minimize(test, locs, delay, 2)

1 root_methods_and_delays = find_root_methods(test, delay,
1 min_locs)

19 for root_method, delay in root_methods_and_delays:
20 in_boundary = False
21 start_line = start_line_number(root_method)
22 end_line = end_line_number(root_method)
23 for line in range(start_line, end_line):
24 test_res = run_with_delay(test, line, delay)
25 if test_res == FAIL:
26 in_boundary = True
27 cp = line
28 elif test_res != FAIL and in_boundary:
29 crit_points.append(cp)
30 crit_points_delays.append(delay)
31 in_boundary = False
32 break
# Last line is critical point
34 if in_boundary:
35 crit_points.append(end_line)
36 crit_points_delays.append(delay)
3 return crit_points, crit_points_delays
3 def minimize(test, locs, delay, n):
o 1if len(locs) ==
41 return locs, delay
22 # Split n equal subsets and their complements
5 subsets = split_locs(locs, n)
w _d = delay
5 while _d <= MAX_DELAY:
16 for s in subsets:

47 if run_with_delay(test, s, _d) == FAIL:
18 return minimize(test, s, _d, 2)
19 _d = 2x_d

so # Trying finer granularity if possible

51 if len(locs) < 2xn:

52 return locs, delay

535 else:

54 return minimize(test, locs, delay, 2x*n)

s def find_root_methods(test, delay, min_locs):
callstacks = get_callstacks(test, min_locs, delay)

55 root_methods_and_delays = set()

5o for callstack in callstacks:

60 _d = delay

61 for callsite in get_callsites(callstack):

62 while _d <= MAX_DELAY:

63 test_res = run_with_delay(test, callsite, _d)

64 if test_res == FAIL:

65 root_method = containing_method(callsite)
66 break

6 else:

68 _d = _dx2

69 root_methods_and_delays.add((root_method, _d))
o return root_methods_and_delays

Figure 3: Pseudocode for CritSearch.
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the test with delays injected at all such locations (Line 9), i.e., dynam-
ically instrumenting code to call Thread. s leep with a specified
amount of delay (initially a configurable INITTAL _DELAY), right
before all locations. As part of this process, if the test still passes
with delays injected, then CritSearch doubles the amount of de-
lay injected at each delay location (Line 12) before running the
test again. It continues doubling the amount of delay up until the
test fails or reaches the maximum amount of delay (a configurable
MAX_DELAY). If the test cannot fail up to this threshold, CritSearch
is unsuccessful at finding any critical points.

3.1.2  Minimizing Delay Locations. CritSearch uses delta-debugging [43]

to minimize the set of delay locations found from the previous step,
represented as function minimize presented in Figure 3. Given a
set of delay locations, minimize returns a subset of those delay
locations that can still result in a test failure. In standard delta-
debugging methodology, minimize splits the input set into equal
subsets (Line 43) and runs the test with a delay injected at each
delay location within a subset, minimizing that subset further if the
test still fails (Line 48). If the algorithm cannot split the set of delay
locations into any finer granularity, it simply returns the current
set as the minimal set (Line 52); otherwise, it recursively tries to
minimize the set further but with a finer split (Line 54).

Normally, when delta-debugging finds it cannot split the current
set anymore while satisfying the criterion, it terminates and reports
that set as the minimal set. In our case, we make a change to the
delta-debugging process by instead increasing the amount of delay
injected at the current delay locations (Line 49), up until a maximum
MAX_DELAY, retrying to run with the new delay amount. The
reasoning is that a test may only fail when its execution slows down
for a sufficient total amount of time, which is summed across all the
delays injected at multiple delay locations. As such, when we reduce
the number of delay locations, we would be reducing the overall
delay time during test execution, which in turn could decrease the
chance of test failure. While we potentially can increase the cost
of the search by running with increased amounts of delay, we find
that this modification helps reduce the set of delay locations.

3.1.3  Root Method Search. The minimal set of delay locations,
even if it consists of just one delay location (indeed, our results
show that often we can obtain just one delay location), may still
not represent the critical point. There may be many minimal sets of
delay locations that all independently can lead to the test to fail. For
example, it could be the case that injecting a delay anywhere in the
same method can still result in the same failure. In such a scenario,
instead of injecting that delay anywhere within the method, we
could instead inject a delay within the caller of that method, right
before the call site. In fact, we could keep going up this call stack
until reaching the “highest” call site where injecting a delay there
results in the same failure. We consider this method that is highest
on the call stack from the minimal set of delay locations where
injecting a delay can still make the test fail (i.e., we cannot inject a
delay at any caller of this method and make the test fail) as the root
method.

Function find_root_methods in Figure 3 returns the root
methods with their corresponding delays for the minimal delay
locations for an async flaky test. For each delay location in the
minimal set, we compute the call stacks for that location collected
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across all executions of the location when running the test (Line 57);
this process also removes any repeated call stacks for the same
location. Each call stack starts from the delay location and ends at a
call site within the async flaky test itself. find_root_methods
handles each call stack independently, iterating through the call
sites in each call stack, going up starting from the delay location.
Each iteration keeps track of a current call site, where it runs the
test while injecting delay at that call site (Line 63). If the test fails,
then find_root_methods sets the method containing the call
site as the current root method (Line 65). On the other hand, if
the test passes, we also attempt to increase the amount of delay
injected at the current call site (Line 68), with the similar reasoning
that a higher call site may work if there is a longer delay.

The next iteration of the loop then tries the direct caller in the
call stack (Line 61). The final root method along with the amount of
delay to inject is included in a set before moving on to the next call
stack (Line 69). The final output of this function is the set of root
methods and their corresponding amounts of delay to be injected.

3.1.4 Identifying Critical Point. Finally, CritSearch searches through
the root methods to identify the critical points. The intuition is that
there is a region of code in a root method where injecting a de-
lay anywhere in that region manifests the test failure. As such,
the “boundary” of this region, namely the location right after this
region, would be the critical point.

To search through the root method, CritSearch starts from the

beginning of the method, injecting a delay on a location-by-location
basis and running the test (Lines 23-32). The boundary starts when
injecting a delay leads the test to start failing. CritSearch then
checks whether there is then a switch from test failing to test
passing (Lines 28-32). The final location where injecting a delay
leads to a failure is then the critical point for the root method and
is saved. The final output is the list of all critical points.
Example Critical Point. In the example shown in Figure 1, the
critical point is identified to be Line 32, as after executing this line
all computations modifying the shared data have finished. We can
introduce a field to keep track of when the critical point has been
executed for use later (Line 33).

3.2 BarrierSearch

Given the critical points identified by CritSearch, BarrierSearch
searches for the corresponding barrier points. Figure 4 shows pseu-
docode for BarrierSearch.

For each critical point, BarrierSearch first runs the test with the
injected delay at the key delay location right before the critical
point as to force the test to fail. In Java/JUnit, a test failure results
in a thrown exception, which includes an exception call stack that
shows the point the exception occurred along with all the methods
called in-between. We run the test with the injected delay to obtain
this exception call stack (Line 4).

BarrierSearch uses function search to iterate through the call
sites in the call stack, starting at the location where the exception
occurred (Line 14). The location right before this call site could be
a barrier point, and BarrierSearch starts from that location, going
back location-by-location up until the beginning of the containing
method (Line 18), checking whether any of these locations are a bar-
rier point. The function run_test_with_crit_and_yield

4
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def BarrierSearch(test, crit_points, delays):
barrier_points = []
for cp, delay in zip(crit_points, delays)
callstack = get _failure_callstack(test,
cp, delay)
bp = search_bp(test, cp, delay, callstack, 1)
if bp == None:
thres = count_crit_executions(test, cp)
bp = search_bp(test, cp, delay, callstack, thres)
barrier_points.append(bp)
return barrier_points

; def search_bp(test, cp, delay, callstack, thres):

for callsite in get_callsites(callstack):
containing_meth = get_method_name(callsite)
start_line = start_line_number(containing_meth)
end_line = callsite
for line in range(end_line, start_line):
test_res = run_with_crit_yield(test, cp,
line, delay, thres)
if test_res == PASS:
return line # Identified barrier point
return None # Unsuccessful

Figure 4: Pseudocode for BarrierSearch.

runs the test with a delay injected at the critical point while in-
serting at the potential barrier point a loop that continuously calls
Thread.yield, which hints to the system that this thread will
relinquish execution to other threads, allowing the other thread
time to execute the critical point (Line 19). This loop is conditioned
to keep calling Thread . yield until the critical point has been ex-
ecuted. Lines 10 to 12 in Figure 1 illustrate what this loop looks like.
If the test passes after this change, then we have identified the bar-
rier point (Line 22 in Figure 4). If the test still fails or the test times
out (we use a timeout value of three minutes), BarrierSearch moves
on to the preceding location. The intuition is that the exception
may have been thrown based off of wrong data computed earlier
in the code. As such, no matter how much the execution pauses at
the later location, there is no way to recover from the wrong com-
putation having already occurred. If none of the locations before
the location where the exception originates are barrier points, the
function moves up the exception call stack to the caller and repeats
the search. It continues checking potential barrier points through
the prior locations relative to that call site, moving up the call stack
again if necessary, until identifying a barrier point.

3.2.1 Tracking Multiple Executions of Critical Point. Note that this
search process assumes that the barrier point should wait until
the critical point is executed just once. However, sometimes the
critical point should be executed multiple times, and the execution
should not proceed past the barrier point until a sufficient number
of executions have occurred. If we cannot identify a barrier point
by the time we have searched through the entire exception call
stack, the next step is to count how many times the critical point is
executed in a passing test execution without any injected delays.
(Line 8). The count thres can be used by search to wait at
potential barrier points until the critical point has been executed
that many times. If the test still does not pass, then FlakeSync is
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unsuccessful at repairing the async flaky test corresponding to the
critical point.

3.3 Final Output

Figure 1 illustrates a repaired flaky test. FlakeSync introduces a
field on Line 33 to keep track of when the critical point has been
executed, and FlakeSync introduces a loop to wait until the critical
point is executed at the barrier point on Lines 10 to 12.

FlakeSync performs these transformations dynamically as the
test runs to confirm that using the critical point and barrier point
can repair the async flaky test. A developer can use the same infor-
mation to modify their source code with such transformations to
form a patch for their flaky test. However, both critical point and
barrier point must be in the developer’s own code for them to apply
this patch. A developer would not be able to modify third-party
library code. Further, given that the goal of these changes is to syn-
chronize execution for a specific async flaky test, making changes
to general library code that could be used by many other projects
is undesirable. In such a scenario, a developer can continue to use
FlakeSync as a runtime environment that dynamically modifies
code to ensure proper synchronization using the critical point and
barrier point.

4 EXPERIMENTAL SETUP

4.1 Research Questions

To evaluate the effectiveness of FlakeSync, we address the following
research questions:

RQ1: How many async flaky tests can FlakeSync repair?
RQ2: What are the characteristics of the repaired tests?
RQ3: What is the runtime cost of running FlakeSync?
RQ4: How much runtime overhead is there from using the
repaired test compared to the original test?

RQ5: What are the developers’ reactions to the patches that
FlakeSync proposed?

We address RQ1 to see whether the intuition behind FlakeSync’s
repair strategies are effective for repairing async flaky tests. We ad-
dress RQ2 to analyze the characteristics of the repaired async flaky
tests, in particular whether they can be easily directly applied to the
project code. We address RQ3 to show the cost of running FlakeSync.
We address RQ4 to check how much overhead is incurred from us-
ing the repaired test compared to running the original test; there
might be some trade-offs in terms of removing flakiness and cost
of testing. Finally, we address RQ5 to discuss whether developers
find the type of patches that FlakeSync proposes acceptable.

4.2 Evaluation Dataset

For our evaluation, we use known flaky tests from a public dataset
of flaky tests, IDOFT [4]. These flaky tests come from open-source
Maven projects on GitHub and are categorized based on the flaky-
test detection techniques that found them. The most prominent
categories are order-dependent (OD) and non-order-dependent
(NOD) flaky tests, found using iDFlakies [3, 23]. OD tests’ outcomes
depend on the test order in which they are run [29, 45], while NOD
tests’ outcomes do not. FlakeSync is designed to repair async flaky
tests, so FlakeSync would unlikely work for OD tests. As such, we

Shanto Rahman and August Shi

public class TestTaskExecutor {

@Test
public void shouldBeFasterWhenRunningMultipleSlowTasks() {
final long start = System.currentTimeMillis();

victim.submit(callables);
final long end = System.currentTimeMillis();

final long delta = end - start;
LOG.debug("Execution_took: _{}", delta);
assertTrue(delta < delay * times);

Figure 5: Timeout flaky test from wro4j/wro4;j

start with the 300 flaky tests marked as NOD. For each NOD test,

we attempt to build and run the test at the commit where the flaky
test was detected. We filter out tests that we cannot build or run due
to out-of-date or missing library dependencies, leading to 221 tests.
We then run each test individually and track whether there are any
concurrent methods during execution (Section 3.1); we filter out
tests that do not have any concurrent methods, as they are also
unlikely to be async flaky tests. Ultimately, our evaluation dataset
consists of 176 flaky tests from 23 open-source Maven projects and

37 modules’. Table 1 shows the breakdown of the flaky tests per

module (column “# Flaky Tests”) and the commit SHA on which
we evaluate (taken from IDoFT). We provide an ID per module for
ease of presentation in future tables. The table also shows for each
module the number of lines of code (“KLOC”), average runtime per
flaky test (“Test Runtime (sec)”), and average number of concurrent
methods we found per flaky test (“4 Conc Meth”).

4.3 Running Environment

We run FlakeSync on each flaky test individually. FlakeSync uses
ASM [1] to instrument code to inject delays and to modify code

for synchronizing critical point and barrier point. For our exper-
iments, we set a maximum timeout of 12 hours for FlakeSync to
run on each test. After FlakeSync repairs a test, we rerun the re-

paired test 100 times to confirm that it always passes. We configure

the INITIAL_DELAY to be 100ms and the MAX_DELAY to be

51200ms (Figure 3). We set a 3 minutes timeout for each run for

barrier point search. We run our experiments in a Ubuntu 20.04

Docker container configured to use 4 CPU and 4GB RAM.

5 RESULTS
5.1 RQ1: Repairing Async Flaky Tests

Table 2 shows the results of running FlakeSync on the 176 tests

that we use in our evaluation. This table shows for each module the
number of flaky tests for which FlakeSync could identify the critical

point (column “4 CSS”) and the number of flaky tests for which

FlakeSync could identify the barrier point and therefore repair the
flaky test (column “# Fixed Tests”). Note that FlakeSync can only
identify a barrier point for the tests where it was able to identify a
critical point. Overall, FlakeSync could repair 67 flaky tests.

A Maven project can have multiple modules
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Table 1: Breakdown of projects and async flaky tests used in evaluation
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ID Project Module SHA KLOC | # Flaky Test # Conc
Tests | Runtime (sec) | Meth

M1 Accenture/mercury platform-core 8586dc7 | 19.27 1 15.00 622.50
M2 Alluxio/alluxio 78c063a | 59.68 17 5.42 893.25
M3 TooTallNate/Java-WebSocket . fa3909c 10.92 52 4.30 103.59
M4 activiti/activiti activiti-engine b11£757 | 111.80 12 10.30 | 2219.41
M5 activiti/activiti activiti-spring b11£757 3.04 1 7.56 | 2842.00
Mé6 alibaba/wasp . b2593d8 | 153.50 1 5.67 59.00
M7 apache/dubbo dubbo-config-api 737f7a7 8.34 4 6.33 498.50
M3 apache/dubbo dubbo-remoting-netty 737f7a7 1.56 1 13.38 265.00
M9 apache/dubbo dubbo-rpc-dubbo 737f7a7 4.69 5 4.12 364.20
M10 apache/dubbo dubbo-rpc-http 737f7a7 0.39 1 3.81 134.00
Mi1 apache/dubbo dubbo-rpc-rest 737f7a7 1.03 3 4.54 94.00
Mi2 apache/httpcore httpcore 49247d2 | 21.05 2 2.16 18.50
Mi13 apache/httpcore httpcore-nio 49247d2 | 19.19 9 2.15 327.66
Mi14 apache/incubator-uniffle common 6fb2a%a 10.68 1 6.32 46.00
M15 cescoffier/vertx-completable-future 011d3cd 2.10 1 2.67 9.00
Mi16 davidmoten/rxjava2-extras . 7663d3b | 13.69 3 7.06 207.00
M17 doanduyhai/Achilles integration-test-2_1 €3099bd 8.97 12 15.04 | 6042.08
Mi18 doanduyhai/Achilles integration-test-2_2 €3099bd 0.86 7 13.37 | 6066.00
M19 doanduyhai/Achilles integration-test-3_10 €3099bd 0.51 2 12.27 | 6053.00
M20 doanduyhai/Achilles integration-test-3_7 €3099bd 0.19 6 12.36 | 6068.16
M21 doanduyhai/Achilles integration-test f52f7ec 2.56 1 8.88 | 4802.00
M22 elasticjob/elastic-job-lite elasticjob-infra-common | 9afe466 2.12 1 491 6.00
M23 feroult/yawp yawp-testing-appengine | b3bcf9c 0.21 1 3.51 516.00
M24 flaxsearch/luwak luwak c27ec08 7.53 2 3.60 44.00
Mz25 fluent/fluent-logger-java 2e5fdf2 1.67 1 5.39 602.00
M26 javadelight/delight-nashorn-sandbox | . da35edc 249 1 3.07 17.00
M27 kagkarlsson/db-scheduler db-scheduler 0e9f2a8 10.39 4 3.53 32.25
M28 kagkarlsson/db-scheduler . 4a8a28e 3.74 2 7.67 434.00
M29 nlighten/tomcat_exporter client bc6a2d2 0.95 1 7.13 | 1111.00
M30 qos-ch/logback logback-classic 0f57531 21.63 3 4.05 380.66
M31 qos-ch/logback logback-core 0£57531 25.96 2 2.87 36.50
M32 square/okhttp okhttp-tests 129¢937 | 11.55 1 2.78 129.00
M33 undertow-io/undertow core ac7204a | 49.28 4 4.03 817.75
M34 undertow-io/undertow websockets-jsr doeftfa 6.98 4 4.77 | 1376.50
M35 vmware/admiral registry e4b0293 1.59 5 3.96 | 1864.20
M36 vmware/admiral compute e4b0293 | 40.47 1 8.13 | 2475.00
M37 wro4j/wro4j wro4j-core 7e3801e 23.34 1 2.48 9.00
Total/ 176
Mean 17.9 6.40 | 1434.28

Of the two tests for which FlakeSync could not identify the
critical point, we found that these two tests crashed due to hitting
memory limits after running a long time with the injected delays.
If given more resources, it is possible FlakeSync would identify the
critical point for these tests. Of the remaining 174 tests for which
FlakeSync could identify a critical point, FlakeSync identified a
barrier point, and therefore could repair 67 tests, i.e., 38.5% of all
flaky tests in our dataset. However, when we inspected test code
and the failure logs of these flaky tests, we found that many of
them are written in such a way that they rely on absolute runtime.
For example, Figure 5 shows a flaky test from module M37 that

measures the exact time taken to run a block of code (Lines 6-8)
and asserts that this time is less than a constant value (Line 12).
While this test is flaky due to timing issues, it does not fail due to
lack of synchronization between code. Rather, as long as some part
of execution simply runs slower, e.g., on a slow machine, the test
would fail. Another example of such flaky tests are those that fail
due to a constant timeout set by the developer, so the test may fail
if the machine is slower than expected. FlakeSync is not designed
to repair such flaky tests.

Our inspection shows that 94 tests rely on exact timing; the
remaining 80 tests are async flaky tests (column “# Async Flaky
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Table 2: Breakdown of tests that FlakeSync repairs

ID # CSS | # Fixed Tests | # Async Flaky | Overhead
Tests X)

M1 1 1 1 1.00
M2 15 6 9 1.08
M3 52 7 7 1.11
M4 12 0 2 n/a
M5 1 1 1 1.02
M6 1 1 1 1.05
M7 4 0 0 n/a
M8 1 1 1 0.53
M9 5 2 2 0.97
Mi10 1 0 0 n/a
M11 3 0 0 n/a
M12 2 1 1 1.33
M13 9 0 5 n/a
M14 1 1 1 0.88
M15 1 0 0 n/a
M16 3 2 2 1.12
M17 12 12 12 1.25
M18 7 7 7 1.40
M19 2 2 2 1.90
M20 6 6 6 1.01
M21 1 0 1 n/a
M22 1 1 1 0.95
M23 1 1 1 0.86
M24 2 1 2 1.20
M25 1 1 1 0.99
M26 1 1 1 0.91
M27 4 0 0 n/a
M28 2 1 1 1.04
M29 1 1 1 1.03
M30 3 2 2 1.02
M31 2 1 1 1.04
M32 1 1 1 1.05
M33 4 0 0 n/a
M34 4 3 3 1.09
M35 5 3 4 1.06
M36 1 0 0 n/a
M37 1 0 0 n/a
Total/ 174 67 80
Mean/ 2.26
Median 1.00

Tests” in Table 2). Therefore, FlakeSync repairs 83.75% async flaky
tests. A developer could repair the 94 other tests that rely on exact

timing simply by increasing the hard-coded time values in the tests.

We inspected further the remaining 13 async flaky tests that
FlakeSync does not repair. We find that there are six tests whose
failures were nondeterministic, meaning that we could not reliably
reproduce the failure while searching for the critical point. For two
tests, we reach the maximum time of 12 hours that we allocated for
running FlakeSync for our experiments (Section 4). For five tests,
our inspection found that they fail due to network I/O operation
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errors. These errors occur when a socket connection times out
and is reset. While there is no constant waiting time in the code,
conceptually these tests are similar in nature given that the socket
connection times out after some default time.

RQ1: FlakeSync can repair 67 out of the 80 (83.75%) async flaky
tests in our dataset.

5.2 RQ2: Characteristics of Repairs

A developer can only apply the changes that FlakeSync proposes to
repair an async flaky test as a patch to their project code if both the
critical point and barrier point are in their own code (Section 3.3).
As such, we characterize the code changes that FlakeSync proposes
for the 67 async flaky tests that FlakeSync could repair based on
the locations of the critical points and barrier points.

We find that only six tests have the critical point in third-party
library code. As such, we see that async flaky tests generally need
to synchronize on critical computations that occur in their own
project code and do not need to rely on such computations in third-
party code. Having the critical point in the same project code also
means it can be easier for developers to understand the interactions
during test execution and how exactly the flaky failure can occur.
Meanwhile, we find that 31 tests have their barrier point in third-
party library code. The reason that so many barrier points are
outside project code is that FlakeSync starts its search for the barrier
point from the origin of the exception, which usually ends up in
third-party library code (Section 3.2). As such, it usually ends up
identifying a valid barrier point within third-party library code
before reaching the project code that calls into the library. If we
adjust BarrierSearch to only consider potential barrier points in
project code, we find that 61 tests can have both their critical point
and barrier point to be in the project code itself, meaning a patch
involving the repair can be directly applied.

Finally, we analyze how often we need to have the barrier point
wait until the critical point is executed more than once (Section 3.2.1).
We find that seven tests require waiting for the critical point to be
executed multiple times, with the mean number of times to be 3.19.
Most tests require only waiting until the critical point is executed
just once, so it is reasonable that FlakeSync prioritizes its search to
first consider only needing the critical point executed just once.

RQ2: FlakeSync can repair 61 of 67 tests with changes that can
be directly applied as a patch to the project code. Most async
flaky tests also only need the barrier point to wait until the
critical point is executed just once (60 out of 67).

5.3 RQ3: FlakeSync Runtime

Figure 6 shows the amount of time that FlakeSync takes to repair
tests in each module. Overall, FlakeSync on average takes 126.62
minutes per async flaky test (whether successfully repaired or not).
FlakeSync often takes longer to run if it cannot successfully repair
the test. Considering only the tests that FlakeSync successfully
repairs, the average runtime is 103.52 minutes. From the figure, we
observe a few tests that require much higher runtime, as median



FlakeSync: Automatically Repairing Async Flaky Tests

ICSE 24, April 14-20, 2024, Lisbon, Portugal

350

300

250

200

Runtime (min)

[y
w
o

100

50

PaN

O

%
%
%
@7
%
/96‘
%
@é’
%

SPPFFE L L E I
Modules

@ CritSearch
v BarrierSearch

PEFLP LSS

Figure 6: Runtime breakdown for FlakeSync per module

runtime per test is 58.77 minutes. While this amount of time to run
FlakeSync is very high compared against the time to run a single
test, note that this search process for critical point and barrier point
is completely automated. A developer could run FlakeSync just
once to obtain a permanent way to repair their async flaky test.

The figure also shows the breakdown of FlakeSync’s runtime
across CritSearch and BarrierSearch. On average, CritSearch takes
104.39 minutes (median 30.73 minutes) to run per test while the
BarrierSearch takes 22.23 minutes (median 7.00 minutes) per test.
CritSearch tends to contribute the most to the runtime cost of using
FlakeSync, likely due to its minimization and root-method search
steps. For example, in module M30 that on average take the most
time, we see that the main reason for the high runtime cost is due
to the large delay amount needed, with on average 8000ms at each
delay location per test to reproduce the failure. In addition, the call
stacks obtained from those delay locations have many call sites, so
searching for the root method takes longer as well (Section 3.1.3).
Future work may consider how to speed up this process by more
quickly jumping to the likely best delay locations and root method.

There are a few cases where BarrierSearch takes much more time
than CritSearch. For example, in module M13, BarrierSearch takes
much more time because it cannot obtain a barrier point. In such
cases, BarrierSearch has to essentially run twice across all candidate
barrier points, since if it cannot find a barrier point with threshold
1 then it has to run again with a different threshold (Section 3.2.1),
ultimately still not identifying a barrier point.

RQ3: We find that on average FlakeSync takes 126.62 minutes
and on median 58.77 minutes to repair an async flaky test.

5.4 RQ4: Overhead of Repaired Tests

Table 2 also shows per module under the column “Overhead (X)”
the average overhead of the repaired async flaky tests, measured
as the ratio of the runtime of the repaired test over the runtime
of the original test, e.g., how many times slower is the repaired
test. We report “n/a” for modules where FlakeSync could not repair
any async flaky tests. Overall, the average overhead of a repaired
test is 2.26X of the original test runtime (shown in the final row).
However, there are a few modules with particularly high overhead,
and median overhead is just 1.00X (also shown in the final row).

However, for most tests, the changes add barely any overhead.
We even observe some cases where the overhead is seemingly less
than 1.00X, but these differences are likely due to noise. Overall, the
low overheads highlight how repairing by synchronization does
not substantially slow down test execution.

RQ4: The repaired async flaky test takes on median 1.00X the
runtime of the original test.

5.5 RQ5: Developers’ Reactions

To evaluate how developers react to FlakeSync’s patches for their
flaky tests, we send pull requests to the developers based on the
proposed patches. Since our evaluations thus far are on known
flaky tests found on old commits, we first rerun FlakeSync on these
tests found in the latest commit of the projects. In moving to the
latest commit, we encountered several issues. First, we find some
async flaky tests have already been fixed by this latest version of
the project, so we do not need to submit any pull request. Second,
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we find that the known flaky test no longer exists, likely already
deleted. We attempted to match tests based on the test name in
the latest commit, but we could not always find a matching test.
Third, for some projects, we could no longer build them at this
latest commit. Furthermore, some projects shifted from Maven to
Gradle; our current implementation of FlakeSync only supports
Maven projects, so we could not run FlakeSync on these projects.
Finally, for some projects, FlakeSync does not identify a critical
point and barrier point both in project code, so we cannot prepare
a patch to their codebase. After filtering out projects based on these
constraints, we obtain 10 projects on which we could run FlakeSync
and send pull requests. As to not overwhelm developers with many
pull requests before confirming they indeed want such patches, we
limit to creating one pull request per flaky test per project.

We submitted a total of 10 pull requests for 10 projects. Out of
these 10 submitted pull requests, 3 pull requests have already been
accepted [2, 5, 6]; no pull request has been rejected yet.

For one of the accepted pull requests, the developers merged
the changes without too much feedback. For another pull request,
we found that developers recognized that incorporating our patch
would eliminate the necessity of maintaining hardcoded sleep du-
rations. Consequently, upon merging our proposed changes, they
took the initiative to remove the predetermined sleep times that
had previously been implemented. For another pull request (shown
in Figure 1), we found that the developers were actually already
working on trying to repair the flaky test via increased wait time.
However, they found the test would still sometimes fail in a con-
tinuous integration environment, as waiting a constant amount
of time is unreliable. When we submitted our pull request, the
developers commented that this patch that waits on a specific con-
dition is much more desirable than changing the existing sleep
time. The developers merged this pull request with the comment
“LGTM, thanks, it’s really great work”. These comments showcase
how FlakeSync’s strategy for repairing async flaky tests is more
desirable than simply increasing wait times.

RQ5: We submitted 10 pull requests that repair async flaky
tests, with 3 accepted and the rest pending; no pull requests have
been rejected thus far.

5.6 Limitations

FlakeSync is designed to only repair async flaky tests and not other
flaky tests. A developer would have to know ahead of time to only
use FlakeSync for such tests, or rely on some automated techniques
to determine the category of flaky test [8, 34]. FlakeSync assumes
it should repair async flaky tests by making them pass, but it is
possible the failure is due to a real concurrency bug, so a developer
would want a consistent failure. Currently, FlakeSync cannot distin-
guish whether the failure is due to test flakiness or a concurrency
bug that needs to be fixed. Future work can investigate how to
automatically distinguish the two. Note that a developer could use
CritSearch only to just reproduce the failure consistently. The delay
locations may indicate where the bugs are located.
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FlakeSync heavily relies on being able to reproduce a flaky-test
failure to proceed; it cannot repair an async flaky test if injecting de-
lays does not reproduce the failure. Part of our process to reproduce
the flaky-test failure involves identifying concurrently executing
methods within the same JVM, so our current implementation deals
specifically with multithreading. We currently do not track con-
currently executing code across different processes. After we can
reproduce the failure, if the async flaky test is failing due to reliance
on some absolute runtime, e.g., fails if some part of the code does
not execute within a constant set amount of time, then FlakeSync
cannot synchronize code as to prevent the failure. FlakeSync also
cannot handle cases where an async flaky test needs to synchronize
on multiple critical points at once. Finally, a developer can only
directly apply a patch on their code using FlakeSync’s reported
critical point and barrier point if both are in their own code, not in
third-party libraries. In this case, developers can use FlakeSync’s
runtime framework to dynamically insert the critical point and
barrier point during execution of the async flaky test.

6 THREATS TO VALIDITY

External Validity. We construct our evaluation dataset by filtering
from a previous dataset of known flaky tests. Our filtering is sys-
tematic but excludes flaky tests that FlakeSync was never designed
to repair, e.g., OD tests. One part of our filtering is that we remove
any tests that do not execute concurrent methods. It is possible
that we exclude some tests that actually do execute concurrent
methods due to bugs in our concurrent method search. We develop
our approach to find concurrent methods based on past work [33],
and we filtered out 45 tests out of an initial set of 300 tests due to
lack of concurrent methods. Ultimately, we believe our evaluation
set is still representative of async flaky tests.

FlakeSync may find different delay locations and amount of delay
to inject when run on different machines, leading to different critical
points and barrier points. Our manual inspection and modification
of code confirms that the identified critical points do make the tests
fail with the specified delays, and that the critical points and barrier
points also allow the test to pass with the injected delays.
Internal Validity. Our implementation of FlakeSync involves in-
strumentation that may introduce changes beyond delaying execu-
tion, and failures may be due to these unintentional changes. To
check, we manually modify source code to inject the delays at the
identified critical points, and we also check that we can apply the
patches modifying critical point and barrier point when possible.
Construct Validity. We confirm a test to be repaired if the test
always passes after 100 times even with injected delays. While it
is possible there may still be failures after more reruns, we believe
this check to be sufficient given the large number of reruns and that
the test always fails with injected delays without the patch. Further,
we also send patches as pull requests to developers to confirm.

7 RELATED WORK

Luo et al. presented the first empirical study on the root causes of
flaky tests in open-source projects [29]. They found the top reasons
for flaky tests include async-wait and concurrency, which we call
async flaky tests. Separate groups conducted additional studies
to better understand flaky tests [13, 18, 22, 24, 25] with similar
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findings on top causes. Companies also report problems with flaky
tests [19-21, 30, 32].

Prior work on automatically repairing flaky tests has focused
mostly on those with easily reproducible flaky behavior. Shi et
al. [39] proposed iFixFlakies for fixing order-dependent (OD) flaky
tests in Java, where the failure can be easily reproduced by running
in a specific test order. Li et al. [27] followed up with technique
ODRepair to fix OD flaky tests that iFixFlakies cannot, and Wang et
al. [42] adapted iFixFlakies to fix Python OD flaky tests. Beyond OD
flaky tests, Zhang et al. [44] proposed DexFix to fix flaky tests that
are dependent on specific implementations of library API Dutta et
al. [12] proposed FLEX to fix flaky tests in machine-learning ap-
plications whose assertions are too strict. Our work focuses on
specifically automatically repairing async flaky tests.

Prior work found developers would try to repair async flaky tests
by inserting wait times [22, 29, 31]. For example, Lam et al. [22]
found that Microsoft developers would need to guess at how long
to wait to mitigate flakiness, but their wait times may be longer
than needed. Lam et al. then proposed technique FaTB to adjust
the existing wait times to reduce testing time while still ensuring
the tests do not fail. FlakeSync proposes a different way to repair
async flaky tests by instead synchronizing the test execution. Such a
strategy avoids issues with inserting or changing wait times, where
machine load variance can influence the effectiveness of the con-
stant wait times. Furthermore, FlakeSync automatically identifies
the critical points and barrier points, whereas FaTB relies on a
developer already having identified where to insert the wait time
(akin to the barrier point that FlakeSync identifies). It is possible
to then use FlakeSync to identify the barrier point and insert the
wait time instead of synchronizing and waiting for the critical point
to execute. However, this strategy still runs into the other issues
involving constant wait times, namely not knowing exactly how
long to wait and slowing down test execution more than necessary.

A wide range of work focuses on detecting flaky tests. Lam et
al. [23] proposed iDFlakies [3] for detecting OD flaky tests. Shi et
al. [38] proposed NonDex [7, 17] for detecting flaky tests that are
dependent on specific implementations of library API. Flaky tests de-
tected by both tools constitute a large part of the IDoFT dataset [4]
that we use in our evaluation. We focus on tests marked NOD,
because they are likely async flaky tests. Alshammari et al. [9] pro-
posed FlakeFlagger, a machine-learning model to predict whether a
test is flaky. Silva et al. [40] proposed Shaker to detect async flaky
tests by purposefully introducing large amounts of stress on the
machine’s CPU and memory while running tests, simulating a ma-
chine with constrained resources. Other tools that detect flaky tests
include DeFlaker [10], which detects flaky tests as those that newly
fail after changes yet do not cover changed code, and FLASH [11],
which detects flaky tests in machine learning applications by ma-
nipulating underlying random number generators. In our work, we
focus on repairing flaky tests once they have been detected.

Researchers have also proposed tools to help debug flaky tests.
Lam et al. [21] proposed RootFinder to find the root cause of flaki-
ness by comparing passing and failing execution traces of the same
test. Researchers at Microsoft proposed FlakeRepro [26] to repro-
duce concurrency-related flaky tests in C# applications by injecting
delays at locations related to shared memory accesses, checking
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whether the test can reliably fail. Rahman et al. also proposed Flak-
eRake [36] to reproduce flaky-test failures in Java applications by
injecting delays at timing-related Java API calls. FlakeSync also
relies on injecting delays as part of identifying the critical point,
but it also identifies the barrier point to repair the test.

Our work is related to the area of concurrency bug detection,
and we borrow ideas from prior work in this area. Pradel et al. [33]
proposed automatically generating tests to detect concurrency bugs
by first executing the code with some initial inputs to detect con-
current methods and then generating tests that target executing
pairs of methods found to be concurrent to each other. We rely on
similar logic to determine concurrent methods. Much prior work
in concurrency bug detection rely on injecting delays at key lo-
cations within code [14, 15, 28, 37, 41]. For example, Li et al. [28]
proposed TSVD to search for thread-safety violations by injecting
delays at supposedly thread-safe read/write API calls in C# appli-
cations. Rahman et al. [35] implemented TSVD for Java while also
enhancing it to consider read/write operations to object fields. We
also inject delays in code, but at calls to concurrent methods. Our
goal is not to detect concurrency bugs but rather to make tests fail
more consistently to aid in repair. The async flaky tests we focus
on may be flaky due to concurrency issues, but we assume the
failure does not indicate a true concurrency bug in code, and we
add synchronization to ensure the test passes.

8 CONCLUSIONS

We propose FlakeSync, a technique for automatically repairing
async flaky tests. The intuition is that such tests fail due to lack of
synchronization between concurrently running code. FlakeSync
repairs async flaky tests by identifying a critical point and barrier
point, where the barrier point waits until the critical point has
been executed before proceeding. Our evaluation on known flaky
tests from a prior dataset shows that FlakeSync can automatically
repair 83.75% of the async flaky tests. The repaired async flaky
tests have a low median runtime overhead compared to the original
test runtime. We submitted 10 pull requests based on FlakeSync’s
patches, with 3 accepted pull requests and none rejected thus far.

In the future, we plan to improve FlakeSync’s CritSearch through
better heuristics that allow for more efficient search for the delay
locations, leading to finding the critical point. We plan to similarly
improve the runtime of BarrierSearch through prioritization of
which locations to check for valid barrier points. We also plan on
improving the FlakeSync tool to also automatically modify source
code using the critical point and barrier point when applicable. Fi-
nally, we plan on extending FlakeSync’s core algorithm to consider
multiple critical points and barrier points that together are needed
to repair the flaky test.

DATA AVAILABILITY

Our data is available at https://sites.google.com/view/flakesync/
home, containing code, scripts, and raw data. An artifact to repro-
duce our results is available at https://zenodo.org/records/10460139.
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