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ABSTRACT
Transformers-based language models have achieved remarkable
accuracy in various NLP tasks, employing self-attention mecha-
nisms primarily based on matrix multiplication. However, their
signi�cant size leads to data movement issues, causing latency
and energy e�ciency challenges in conventional Von-Neumann
systems. To mitigate these issues, several in-memory and near-
memory architectures have been proposed. This paper introduces
PACT-3D, a near-memory architecture featuring novel computing
units integrated with DRAM banks. PACT-3D signi�cantly reduces
latency by 1.7⇥ and improves energy e�ciency by 18.7⇥ compared
to state-of-the-art near-memory architectures.

CCS CONCEPTS
• Computer systems organization ! Single instruction, mul-
tiple data; • Computing methodologies ! Natural language
processing; • Hardware !Memory and dense storage.
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1 INTRODUCTION
Several state-of-the-art natural language processing (NLP) models
such as GPT-4 [13], BERT [4], BART [10], etc., are based on the
Transformer architecture. Transformers employ a self-attention
mechanism that creates a context of the input sequence of data
and improves the prediction capabilities of the Transformer model.
Self-attention involves �nding a correlation between every pair
of words in the input sequence to determine their relationship
and dependencies, making it a highly compute-intensive task. As
the NLP tasks increase in complexity, it also increases the size of
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the Transformer model requiring high memory bandwidth and
capacity. For example, GPT-3 has 175 billion parameters. Hence,
the Transformer models are both data and compute-intensive.

Conventional CPU/GPU-based architectures are highly energy
ine�cient to execute Transformers due to the massive data move-
ment on the channel connecting the DRAM to CPU/GPU. This also
leads to an increase in the latency of computation. To overcome
the memory bottleneck, the in/near-memory architectures have
been particularly successful. In/near-memory architecture brings
computation closer to the memory by either placing digital logic in
memory or by using the memory arrays as parallel compute units.

SRAM and DRAM have been used extensively to design in/near-
memory architectures. In SRAM, either analog multiply and ac-
cumulate (MAC) with small ADCs (quantization < 4 bits) are
used [17] or bit-serial digital computation is employed [8]. SRAM-
based compute-in-memory (SRAM-CIM) is usually implemented
in the cache of CPU/GPU of small size (< 100 MB), requiring at
least one-time data transfer from an external larger capacity mem-
ory such as a DRAM. Thus, for large models, data transfers on the
memory channel dominate the energy consumption of the system.

A DRAM-based near-memory architecture eliminates all the data
movement on the memory channel. A DRAM has a much larger
capacity (>10 GB) and provides parallelism at various levels of mem-
ory hierarchy such as Ranks [6], Banks [9], Memory arrays [7] etc,
which can be exploited by integrating the compute elements inside
DRAM. The data parallelism (#bits accessed in parallel) and hence,
the number of associated compute elements decreases as we move
from the memory array to rank in the memory hierarchy. However,
due to the stringent area and power constraints of the DRAM, only
primitive compute elements can be placed near memory arrays.
Therefore, the prior DRAM-based near-memory architectures have
either low compute parallelism [6], reduced DRAM capacity [9], or
have high latency for arithmetic operations [7, 14].

The key operation of Transformers includes large-scale matrix-
matrix multiplication (MM). MM operation generates a lot of inter-
nal data movement and requires a large number of computation
resources. To meet this requirement, this paper presents a DRAM-
based near-memory architecture PACT-3D, that uses the large par-
allelism of in/near array architectures and substantially reduces the
latency of computing arithmetic operations as compared to prior in-
array architectures. PACT-3D uses an array of Neuron Processing
Elements (NPEs) (as described in [16]) interfaced with the outputs
of the row bu�er of each DRAM bank. They have extremely small
area and low-power compute elements that provide a high degree
of compute parallelism through SIMD operation. The NPEs are
composed of digital con�gurable neurons (CNs), and local registers,
whose area and power are substantially lower than a functionally

57

https://doi.org/10.1145/3649476.3658732
https://doi.org/10.1145/3649476.3658732
https://doi.org/10.1145/3649476.3658732
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649476.3658732&domain=pdf&date_stamp=2024-06-12


GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Singh and Vrudhula

equivalent CMOS implementation [16]. The main contributions of
this paper are summarized below:

• PACT-3D is a new near-memory architecture for Transform-
ers, which integrates NPEs within the strict area, power, and
timing constraints of the DRAM.

• PACT-3D supports multiple bit-precisions (4, 8, 16 bits) as the
NPEs can con�gured during runtime to operate on varying
bit-width of data. It does this with high energy e�ciency.

• PACT-3D is evaluated on encoder only and encoder-decoder-
based Transformer architectures against the state-of-the-art
near-memory architectures also designed for Transformers.

• For di�erent workloads, PACT-3D achieves on an average
28.6⇥ reduction in the latency against a GPU, 1.7⇥ reduction
in latency, and 18.7⇥ reduction in energy consumption as
compared to the state-of-the-art near-memory architecture.

2 BACKGROUND AND PRIORWORK
2.1 Transformers
Transformer models have become central in Natural Language
Processing (NLP) tasks. They consist of three main layers: an em-
bedding layer, multiple encoder layers, and a classi�cation layer
as shown in Fig. 1. The embedding layer transforms input tokens
or words into vectors, forming an embedding matrix that serves
as the input to the fully connected (FC) layers within the encoder.
The FC layers produce Query (Q), Key (K), and Value (V) matrices
through matrix multiplication operations with weight matrices.

The encoder layers include self-attention (SA) layers, each con-
taining multiple self-attention heads. The SA layers aim to identify
semantic dependencies among input tokens, a distinctive feature
that sets Transformers apart from traditional deep-learning mod-
els. In the SA layers, the Q and K matrices undergo multiplication,
normalization via softmax operation, and multiplication by the V
matrix. The resulting attention output is fed into a feed-forward
(FFN) layer within the encoder and to subsequent encoder layers.

Decoder layers, while similar to encoder layers, include an ad-
ditional cross-attention layer that attends to the encoder’s output.
This modi�cation allows the decoder to consider information from
the input sequence while generating the output sequence.

Figure 1: Structure of the encoder and decoder in Transformers.

2.2 In/Near-memory Transformers Acceleration
The execution of Transformers includes a series of large-sized
matrix-matrix multiplication (MM) as described in section 2.1. Such
MM operations require large computation resources and bandwidth
for energy-e�cient execution. Recently, several near-memory archi-
tecture proposals such as TransPIM [18], X-Former [15], HAIMA [5],
utilize high internal memory parallelism and increase computation
parallelism. X-Former uses a hybrid of SRAM-based and emerging
non-volatile memory (NVM) based compute-in-memory structures.
It uses analog crossbar arrays to performMAC operations. However,
due to analog operations, the use of ADC, and the necessity for a
larger external DRAM to store Transformer parameters, X-Former’s
computation encounters reliability issues and does not e�ectively
alleviate the memory bottleneck in computation.

On the other hand, HAIMA [5] and TransPIM [18] are based on
highly scalable and high-capacity DRAM namely, high bandwidth
memory (HBM). They perform digital computation and are inte-
grated with a host CPU. Hence, HAIMA and TransPIM are used
as baseline architectures for comparison with the proposed design.
The TransPIM [18] architecture adds digital logic to the DRAM
banks to perform computation and solve the communication chal-
lenge of implementing Transformers. TransPIM adopts existing
schemes, such as Ambit [14], to perform the point-wise multipli-
cations on data in a bit-serial manner. While this o�ers maximal
parallelism, the multiplication has high latency. For processing n-bit
data, = rows must be activated (ACT) and precharged (PRE) seri-
ally. Moreover, numerous majority operations are required, each
involving multiple Activate-Activate-Precharge (AAP) operations,
necessitating hundreds of cycles to execute a single 8-bit mul-
tiplication [7, 11, 14]. Furthermore, the AAP command also
disrupts DRAM timing and the execution of the majority opera-
tion requires modi�cations to row decoder to activate multiple
rows in parallel. To add all the partial products, and store the inter-
mediate data, TransPIM adds an auxiliary compute unit (ACU) to
each bank consisting of an adder tree and data bu�er. TransPIM also
uses a ring broadcast unit to transfer data between banks without
using the shared global bu�er to reduce the data-transfer latency.

The HAIMA [5] architecture uses a hybrid of SRAM and DRAM-
based compute-in-memory (CIM) architectures. It distributes the
Transformer workload among the compute elements in DRAM,
SRAM, and the host CPU. The DRAM-CIM in HAIMA is based
on a modi�cation of TransPIM architecture. Dedicated 8-bit mul-
tipliers are used in each bank replacing point-wise multiplication
of TransPIM to reduce the latency. This however increases the
area of HAIMA over TransPIM by 3⇥. The SRAM-CIM unit of
HAIMA is based on the architecture Colonnade [8]. It computes
parallel 8-bit MAC in SRAM with a area overhead of 48%. Since
HAIMA uses SRAM-CIM and DRAM-CIM, there are high latency
and energy-consuming data transactions on the CPU-DRAM chan-
nel. Additionally, SRAM’s lower parallelism and higher energy
consumption than a DRAM leads to energy-e�ciency degradation.
Summary of The Two SoA Designs:

(1) TransPIM uses bit-serial multiplication based on prior archi-
tectures [7, 14], which results in high computation latency
(hundreds of cycles) for the multiplication operation.
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(2) Like several prior architectures, TransPIM requires modi�-
cations to DRAMmemory cells and the row decoder thereby
increasing the cost of DRAM.

(3) TransPIM requires changes to the DRAM timing protocol.
(4) HAIMA distributes the workload among SRAM-CIM and

DRAM-CIM, therefore the high energy and high latency
data transactions on the CPU-DRAM bus cannot be avoided.

(5) Due to the small size of SRAM, SRAM-CIM is energy e�cient
only for relatively smaller workloads.

Key Features of PACT-3D: The Proposed Design
(1) The compute elements in PACT-3D consume substantially

(125⇥) lower power and have about 16⇥ lower area as
compared to a bit precision equivalent CMOS standard cell
implementation of a MAC unit [16]. Thousands of elements
are connected to the memory arrays without reducing the
DRAM capacity. This SIMD style operation improves paral-
lelism and therefore, throughput.

(2) PACT-3D does not require modi�cations to the DRAM mem-
ory array or row decoder.

(3) It uses conventional DRAM commands for its operation and
adheres to the timing protocol.

(4) Though the architecture performs bit-serial computation, the
latency of the multi-bit operations is substantially reduced
by eliminating the memory writes for intermediate data. The
low-latency bit-serial operation makes the architecture ideal
for a low-cost implementation.

Figure 2: Top-level architecture of PACT-3D using High Bandwidth
Memories (HBM) integrated with a host CPU.

3 PACT-3D ARCHITECTURE
Fig. 2a shows the top-level architecture of PACT-3D. It includes
High Bandwidth Memory (HBM) cubes integrated with a host CPU
on an interposer. An HBM consists of multiple DRAM layers and a
base logic layer connected using the through silicon vias (TSVs) to
form a 3D integrated memory with high density. Each DRAM layer
in the HBM consists of NMP-Units formed by an array of Neuron
Processing Elements (NPEs) calledNPE-Array connected to a DRAM

Figure 3: (a) Datal�ow of Transformer execution in PACT-3D, (b)
Initial data mapping in each memory bank of PACT-3D.

bank (see Fig. 2c). An NPE-Array is integrated with a memory array
without interfering with the timing constraints or access protocols
of the memory. An NPE is the basic computing element that can
be instantly con�gured to perform di�erent arithmetic, logic, and
other operations common to DNNs and Transformers [16]. NPE-
Array enables the parallel execution of the matrix-matrix (MM)
and matrix-vector (MV) multiplications of the Transformer layers.
Also, as shown in Fig. 2b, the logic layer of HBM includes the
RISC-V processors to compute the normalization and the softmax
function of the Transformer. The NMP-Unit of PACT-3D can be
adapted to di�erent DRAM organizations such as 2D-DIMM (DDR,
GDDR, LPDDR, etc.) and 3D DRAM (HMC and HBM). PACT-3D is
fully scalable with DRAM capacity, organization, and the DRAM
interface with the host CPU.

3.1 PACT-3D Data-�ow and Transformer
Execution

Transformers Layer Mapping and Execution Data-�ow in
PACT-3D: Consider a transformer architecture as shown in Fig. 1
for � input tokens of " length each. Let there be � heads in the
multi-head attention layer (MHAL) of the transformer. The main
computation steps in the transformer are:

(1) Fully Connected Layer (FC): It involves matrix multiplica-
tion operation of input tokens positional embedding matrix
X 2 R�G" and weight matrices W& 2 R"G" , W 2
R"G" , and W+ 2 R"G" to generate Query (Q 2 R�G" ),
Key (K 2 R�G" ), and Value (V 2 R�G" ) matrices respec-
tively. Given� heads in the transformer,Q,K,V are divided
into � parts by column and multiplied by the corresponding
weight matrices to generate all Q⌘,K⌘,V⌘,⌘ 2 � in parallel.

(2) Multi-Head Attention Layer (MHAL): It consists of 3 ma-
trixmultiplications,Y⌘ = Q⌘K)⌘ ,S⌘ = Softmax(Y⌘/(")1/2),
andA⌘ = S⌘V⌘ , whereA⌘ is the attention weight matrix of
a head. The �nal attention matrixA is created by concatenat-
ing allA⌘,⌘ 2 � and is then multiplied with a weight matrix
W! 2 R"G" to generate the output of MHAL,Z = AW! .

(3) Feed Forward Network (FFN): It involves FC layers that
take the attention output matrix as an input and generate the
block output which can be used as an input for the next block
such as decoder, encoder, or an output layer for classi�cation.

Fig. 3a shows the data �ow of layers of the Transformer. The host
CPU (Fig. 2a) o�oads the execution to HBM cubes which consist
of NMP-Units and RISC-V processors. The NMP-Units perform all
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the matrix multiplication operations in parallel as will be explained
later in this section, while the RISC-V processors in the logic layer
perform the softmax and normalization operation.

To extract maximum memory parallelism and reduce the data
movement across the memory banks, input token-based data shard-
ing [18] is used in PACT-3D. The input tokens are divided among
all the available banks and all the data needed to process all layers
of the transformers is written in all the banks as shown in Fig. 3b.
In this way, all the banks can operate in parallel and can handle
end-to-end Transformer inference for a set of input tokens. Fur-
ther, to enable fast interbank communication, PACT-3D uses a ring
broadcast unit as used in the TransPIM [18] and HAIMA [5]. In
PACT-3D matrix multiplication (MM) is obtained by scheduling
multiple independent vector-vector multiplication (dot product)
computations in a NMP-Unit.
Matrix Multiplication Execution in a NMP-Unit: As shown
in Fig. 4, PACT-3D adds NPEs to each bank in the DRAM to form
a single NMP-Unit. The NPEs inside the DRAM bank are placed
between the bit-line sense ampli�er (BLSA) output and the local I/O
of the bank. BLSA latches the entire row data (⇠-bits) of the memory
array and delivers the maximum amount of data in parallel inside
DRAM to the compute elements. Each NPE is connected to  (here
 = 8) BLSA output bits, and therefore, there are⇠/ NPEs in each
bank. The NPEswork in SIMD fashion by sharing the control signals
generated by an external controller. They perform operations on
the operands local to the bank they are directly interfaced with.
Multiple operands are placed in di�erent rows and share the same
columns connected to an NPE shown in Fig. 4.

Each NPE performs a dot product of two vectors $%1 and $%2
using a multiply and accumulate operation (MAC). An NPE receives
elements of the input vectors sequentially by using the DRAM
row activation (ACT) and precharge (PRE) commands. A single
DRAM activation activates all the bits in a row and supplies to
the BLSA and hence to all connected NPEs. All the NPEs perform
the same operation on di�erent vectors providing massive parallel
execution of the matrix multiplication operation. For example, in
DDR4memory, a row consists of 8192 bits (⇠ = 8192), which enables
= = ⇠

 = 8192
8 = 1024 parallel dot product operations in a single

bank. The NPEs store the intermediate results in local registers and
�nally write back the results (⇠-bits) to the rows reserved in the
memory array for the outputs using the write drivers in the local
I/O block. There are no writebacks to the memory banks during
the computation of the dot-product of vectors as is the case with
many prior DRAM-based near-memory architectures [3, 7].

3.2 Neuron Processing Element (NPE)
Element-wise multiplication and accumulation are two basic op-
erations in a vector dot product computation. PACT-3D uses an
NPE [16] to perform these operations. The structure of the NPE is
shown in Fig. 5. It consists of four computing clusters, a set of four
local registers and external inputs, control signals, and an internal
connectivity routing hub.
NPE Operations: Each computing cluster consists of non-CMOS
compute primitives described in section 3.3 to execute 5-bit primi-
tive operations in one or two clock cycles. These primitive oper-
ations are Addition, Comparison, and Logic as shown in Fig. 5.

Figure 4: Data Mapping on to a bank of PACT-3D to compute inner
products of vectors in parallel.

Figure 5: Neuron Processing Element (NPE) [16].

The addition operation takes two clock cycles to compute in which
carryout (⇠>DC ) of  5 bits is computed �rst in a single cycle and
then Sum bits ((8 , 1  8  5) are computed in the next cycle. The
comparison and logic operations on operands with bit-width  5
are computed in a single cycle. The NPE can also perform (# > 5),
addition, comparison, and logic, by decomposing the N-bit opera-
tions into 5-bit primitive operations and executed sequentially on
the NPE as described in detail in [16].
Multiplication operation on NPE: is computed by decomposing
multiplication into logic operations to compute the partial prod-
ucts and addition operation of the partial products. An NPE takes
multiple clock cycles to compute a multiplication operation.

Note: Compared to conventional MAC unit which computes in
a single cycle, the multi-cycle operations on NPE still consume less
energy as each NPE has substantially (125⇥) lower power and has
about 16⇥ lower area. Due to the much smaller area, many NPEs
can be replicated in the same area as a single MAC and operated in
a SIMD fashion resulting in higher throughput.

An NPE achieves lower power and area by using unique, non-
CMOS logic primitives called Con�gurable Neurons (CNs) (see
section 3.3 for details) in each of its computing clusters which
allows an NPE to (1) implement multiple functions on the same
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Figure 6: (a) Graphical representation of threshold logic function
(TF). (b) TF for an AND gate, (c) TF for full adder. (d) TF for sequential
comparison of two = bit numbers. Note: All these functions have the
same physical implementation.

hardware structure, (2) instantaneously switch between the various
functions by con�guring the CN, and (3) utilize the exact hardware
to compute an operand of particular bit-width.

3.3 Logic Primitive Con�gurable Neuron (CN)
ABoolean function 5 (G1, G2, · · · , G=) is called a threshold function if
there exists a set of weights, = (F1,F2, · · · ,F=), and a threshold
) such that1

5 (G1, G2, · · · G=) = 1 ,
=’
8=1

F8G8 � ) , (1)

where
Õ

denotes the arithmetic sum.
A graphical representation of a threshold logic function is shown

in Fig. 6a. Fig. 6 shows that by selecting appropriate parameters
[W;T], in equation 1, di�erent Boolean functions and predicate
operations can be implemented. Many analog and digital imple-
mentations of threshold functions exist in literature. A mixed signal
implementation with a digital output is called a con�gurable neuron
(CN) [16]. Each cluster of the NPEs consists of 5 CNs to perform
5-bit logic, addition, and comparison operations.

The advantages of a single CN over the CMOS equivalent are
demonstrated in [16]. For instance, a 5-input CN in 40nm, which is
about the size of a high drive strength D-FF can replace a complex
function such as a 3-out-of-5majority function 5 (G1, G2, G3, G4, G5) =
G1G2G3 + G1G2G4 + G1G3G4 + G2G3G4 + G1G2G5 + G1G3G5 + G2G3G5 +
G1G4G5 + G2G4G5 + G3G4G5 and the D-FF that 5 drives. Many other
functions that would normally require several levels of logic can
be replaced by a single CN. Overall, at the individual cell level, [16]
shows that a 5-input CN results in improvements in area, power,
and delay of [80%, 60%, 40%] respectively, over the performance
optimized, functionally equivalent CMOS circuit.

4 EXPERIMENTS AND RESULTS
4.1 Design and evaluation methodology
The proposed PACT�3D architecture consists of two major com-
ponents: the NPEs and the High Bandwidth Memory (HBM). The
energy and performance models of NPEs are obtained from [16].
1 W.L.O.G. the weights F8 and threshold) can be integers [12].

The area and power numbers of the NPEs at 500 MHz frequency are
shown in Table 1 and used in the custom-designed behavioral level
simulator written in concert with DRAMPower [2]. This simulator
takes workload and HBM speci�cations as the input to characterize
the latency and energy consumption of the (NPEs + HBM).

We present a comparison against the state-of-the-art near-memory
architecture HAIMA [5]. HAIMA is a hybrid architecture that adds
digital logic to the SRAM and DRAM to perform computation inside
the memory. An SRAM processing unit (SPU) performs 256 parallel
8-bit MAC operations in one SRAM-CIM block. Inside the DRAM,
HAIMA uses a bank processing unit (BPU) with each DRAM bank
to compute a dot product between two vectors of 32 8-bit elements
each. A BPU consists of digital multipliers, adders, and MUXs to
perform the computation. Table 1 shows the power and area over-
head of HAIMA’s compute elements. Table 2 shows the hardware
con�guration of PACT-3D and the baseline HAIMA [5].

Note: We also use our behavior level simulator to simulate
HAIMA as well based on the hardware description, power, and
latency of di�erent units provided in the paper [5].

Table 1: Power and area of logic added in PACT�3D and HAIMA [5].

Component Power (mW) Area (mm2)
BPU of HAIMA 148.0 0.014

32-to-1 MUX Of HAIMA 2,990 0.033
SPU of HAIMA 1,554.3 0.125

NPE [16] 0.207 0.004

We also provide a comparison against another DRAM-based
near-memory architecture, TransPIM [18] and NVIDIA Tesla V100
GPU based on data provided in [5]. TransPIM adds digital logic
to HBM DRAM to accelerate the Transformer execution. For a
meaningful comparison, the same HBM con�guration as described
in Table 2 is used for PACT-3D, HAIMA, and TransPIM. Additionally,
for the simulation framework, HBM to host CPU bandwidth is set
to 256GB/s and the rate of energy consumption is 35GB/J [1].

4.2 Workloads
This paper evaluates on twoTransformer-based architectures, BERT [4]
and BART [10] used for various NLP tasks. BERT is based on en-
coder architecture with two con�gurations, BERT base (12 Encoder
layers) and BERT large (24 encoder layers). On the other hand,
BART consists of both encoder and decoder layers. Similar to BERT,
it also has a BART small (6 encoders and 6 decoders) and BART
large (12 encoders and 12 decoders) con�guration. An input se-
quence of 512 to 4096 tokens is common in various NLP tasks and
therefore, used for evaluation.

4.3 Results and discussion
The evaluation of PACT-3D is carried out for 8-bit precision of
the workload, same as the HAIMA and TransPIM. The results are
presented for matrix multiplication operations in the attention and
feed-forward layers of the Transformers.
Latency and Energy E�ciency: Fig. 7 shows the speedup of
TransPIM, HAIMA, and PACT-3D architectures over GPU for dif-
ferent workloads. On average PACT-3D achieves 1.7⇥, 2.4⇥, and
28.6⇥ speedup over the HAIMA, TransPIM, and GPU respectively.
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Table 2: Con�guration of the platforms used.

Architecture HAIMA PACT-3D

Processing
Elements

1 BPU/Bank in DRAM,
1 SPU/SRAM-CIM,
8-core Host CPU

1024 NPEs/Bank in DRAM,
1 RISC-V/Channel in
HBM logic layer

SRAM-CIM
32 units,
256 rows,

256 x 8 bits/row
Not Used

DRAM
(HBM)

1 Rank, 4 Bank groups (BG),
4 Banks/BG, 32768 rows/Bank, 1024 x 8 bits/row

C'�( = 29, C'% = 14, C'⇠⇡ = 16, C⇠! ,
C⇠⇠⇡ = 2, C,' = 16, C'⇠ = 45, C''⇡ = 2

Figure 7: Speedup of PACT-3D as compared to the baseline archi-
tectures. PACT-3D has 1.7⇥, 2.4⇥, and 28.6⇥, speed-up on an average
over HAIMA, TransPIM and GPU respectively.

Due to the small size of the NPEs, PACT-3D utilizes the maximum
available parallelism inside the DRAM by interfacing the NPEs
with BLSA (row bu�er) outputs. This con�guration not only in-
creases the compute parallelism but also reduces the high latency
and energy-consuming DRAM operations of activating the row
(ACT), reading (RD), and write-back (WR) to the DRAM banks. As
the entire computation takes place inside the DRAM as opposed to
HAIMA, the data transaction on the CPU-HBM memory channel
is avoided. This leads to a substantial reduction in latency and en-
ergy consumption in PACT-3D. Furthermore, the use of extremely
low-power NPEs, computation of the entire workload is performed
within the HBM, and substantial reduction in the latency leads to a
highly energy-e�cient execution of the Transformers in PACT-3D.
Furthermore, on average over all workloads, PACT-3D has 18.7⇥
higher energy e�ciency than HAIMA.
E�ect of Scaling theworkload:Table 3 shows the speedup and en-
ergy e�ciency improvement of PACT-3D over HAIMA for increas-
ing the length of the input sequence. As the hardware con�guration
and the capacity of the HBM are kept constant for both HAIMA
and PACT-3D, a nearly constant improvement in the speed-up and
energy e�ciency is observed. This shows a complete utilization of
the compute resources and bandwidth in PACT-3D. If the workload
increases, the HAIMA architecture’s energy e�ciency degrades due
to two main reasons: (1) limited SRAM size restricts computation
resources, increasing latency and energy consumption, and (2) more
data transactions on the host-HBM memory channel drastically
increase energy consumption and latency.

Table 3: Speedup and Energy E�ciency of PACT-3D normal-
ized to HAIMA for di�erent workloads.

BERT-Large
(HAIMA = 1)

BART-Large
(HAIMA = 1)

Seq. Length Speedup Energy E�. Speedup Energy E�.
512 1.75 19.20 1.72 18.65
1024 1.74 18.43 1.71 17.98
2048 1.74 17.89 1.71 17.42
4096 1.74 17.58 1.71 17.10

5 CONCLUSION
This paper presents PACT-3D a near-memory architecture that
integrates novel neuron processing elements (NPEs) to utilize the
maximum available parallelism inside a DRAM and mitigate the
memory bottleneck of executing large-scale deep neural network
models. Low-power and low-area NPEs enable a large number of
parallel compute units inside DRAM to perform the execution of
the Transformer model without transferring data over the host-
DRAMmemory channel. This paper evaluates encoder-only (BERT)
and encoder-decoder (BART) Transformer architectures with vary-
ing sequence lengths. PACT-3D achieves about 1.7⇥ lower latency
and 18.7⇥ higher energy e�ciency than the state-of-the-art near-
memory architecture for Transformers and demonstrates the ability
of PACT-3D to scale larger workloads with high energy e�ciency.
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