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Abstract. The investigation of combinatorial diameters of polyhedra is a classical topic in
linear programming due to its connection with the possibility of an efficient pivot rule for
the simplex method. We are interested in the diameters of polyhedra formed from the so-
called parallel or series connection of oriented matroids: oriented matroids are the natural
way to connect representable matroid theory with the combinatorics of linear programming,
and these connections are fundamental operations for the construction of more complicated
matroids from elementary matroid blocks.

We prove that, for polyhedra whose combinatorial diameter satisfies the Hirsch-conjecture
bound regardless of the right-hand sides in a standard-form description, the diameters of their
parallel or series connections remain small in the Hirsch-conjecture bound. These results are
a substantial step toward devising a diameter bound for all polyhedra defined through totally-
unimodular matrices based on Seymour’s famous decomposition theorem.

Our proof techniques and results exhibit a number of interesting features. While the
parallel connection leads to a bound that adds just a constant, for the series connection one
has to linearly take into account the maximal value in a specific coordinate of any vertex. Our
proofs also require a careful treatment of non-revisiting edge walks in degenerate polyhedra,
as well as the construction of edge walks that may take a ‘detour’ to facets that satisfy the
non-revisiting conjecture when the underlying polyhedron may not.

Keywords: combinatorial diameter, Hirsch conjecture, oriented matroid, parallel connection, series
connection, 2-sum
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1 Introduction

The combinatorial diameter, or just diameter, of a polyhedron is the maximum number of edges
needed to form a walk between any two vertices of a polyhedron. Diameters of polyhedra is a
classical field of study, almost as old as the inception of the simplex method, due to the possibility of
providing a lower bound on the worst-case number of iterations of the simplex method. In particular,
if there exists a polyhedron of exponential diameter (in the number of facets f or dimension d),
then there cannot exist an efficient pivot rule.

The famous Hirsch conjecture (see, e.g., [6]) claimed that the diameter of a polyhedron with f
facets and dimension d is bounded above by f −d. While disproved in general, known counterexam-
ples [14,21] only violate it linearly. The ‘polynomial Hirsch conjecture’, replacing the bound f − d
by a polynomial in f − d, remains open in general. Further, many important classes of polyhedra
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in combinatorial optimization, such as 0/1 polytopes [18] and network-flow polytopes [5], do sat-
isfy the Hirsch-conjecture bound. For many other classes, validity of the Hirsch-conjecture bound
remains open. The best known general bounds are quasi-polynomial, f log d+2 [12], (f − d)log d [25],

(f − d)logO( d

log d
) [23], or polynomial in d and the largest absolute value ∆ of a subdeterminant of

the constraint matrix, O(∆2d4(log d∆)) (and O(∆2d3.5(log d∆)) for bounded polytopes) [3]. For the
important class of polyhedra defined through totally-unimodular matrices, there is a well-known
bound of O(f16d3(log fd)3) [9], and, as ∆ = 1, the bounds of [3] improve to O(d4(log d)) and
O(d3.5(log d)), respectively. For a survey, see [13].

In the literature, the diameters of various polyhedra related to submodular functions have been
studied. These include matroid polyhedra and polymatroids. While the polyhedra that we study are
generally neither matroid polyhedra nor polymatroids, it is interesting to know that such polyhedra
do satisfy the Hirsch conjecture and more. Matroid polyhedra are special 0/1 polytopes, and thus
the bound of Naddef applies [18]. However, both types of polyhedra satisfy even stronger bounds;
in particular the diameter has an upper bound of two times the size of the ground set [26].

The polyhedra that we study in what follows do not belong to these classes, but our contributions
do strongly relate to matroids. We are interested in the diameters of polyhedra arising from the
so-called parallel or series connection of matrices. These are the representable-matroid cases of
classical matroid operations to ‘connect’ a pair of matroids on a single element from the ground
set of each, to form a larger matroid (see [19, Section 7.1]). Both can be used to define the 2-sum
of a pair of matroids. Because the matrices that we consider in linear programming are real (see
[2, Chapter 10]), it is natural to also regard these operations as acting on oriented matroids (see
[16,17], for example).

1.1 Polyhedra of Parallel and Series Connections

We begin by recalling the definitions of parallel and series connections of matrices, and use it to
define the equivalent notions for related polyhedra. Throughout, we consider two matrices Ā, B̄
with the following special forms:

Ā :=

[

A 0
a 1

]

∈ R
m1×n1 and B̄ :=

[

1 b
0 B

]

∈ R
m2×n2 ,

where A is a matrix in R
(m1−1)×(n1−1), a is a row vector in R

n1−1, B is a matrix in R
(m2−1)×(n2−1)

and b is a row vector in R
n2−1. The final column of Ā and first column of B̄ are unit columns in

R
m1 or Rm2 with a single entry 1 in the final or first row, respectively.
First, we define the parallel and series connection for matrices Ā and B̄.

Definition 1 (Parallel Connection) The parallel connection of Ā and B̄ is the matrix

P (Ā, B̄) :=





A 0 0
a 1 b
0 0 B



 .

Definition 2 (Series Connection) The series connection of Ā and B̄ is the matrix

S(Ā, B̄) :=









A 0 0
a 1 0
0 1 b
0 0 B









.
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These connections are classical matroid operations (see [19]) applied to represented matroids.
From each matroid, one chooses an element from the ground set for the construction. These elements
are represented in the matrices as the final column of Ā and the first column of B̄, respectively. The
specific form of Ā or B̄ is not a restriction; any element of the ground set that is not a loop in the
matroid can be chosen for the operation: through some elementary row operations and a reordering
of the columns, any non-zero column of a matrix could be transformed into a unit column and
moved to the first or final index, respectively, to obtain the form of Ā or B̄. Once in this form, the
operations can be applied.

If the matroids both happen to be graphic, then it is easy to describe the parallel connection and
series connection as operations on the underlying graphs. For this, we assume that we have a pair of
graphs G1 and G2 with a unique edge e that lies in both graphs. We assign e an orientation in each
graph. Parallel connection means gluing together G1 and G2 on e, respecting the orientation of e.
Series connection is a bit more complicated: one glues G1 \ e and G2 \ e together on the endpoints
of e, respecting the orientation of e, then splits the vertex at the head of e into two vertices, and
then joins these two vertices with an edge labeled e. An example of these operations is displayed in
Figure 1.

p1

u1

v1

p2

u2

v2

(a) Graphs G1 (left), G2 (right) with
identified vertices u1, u2, v1, v2 and di-
rected edges p1, p2.

u1 = u2

v1 = v2

u1 = u2

p

(b) Parallel connection (left) and series connection (right)
of G1 and G2 along p1 and p2.

Fig. 1: Example of Parallel and Series Connections of Graphs

There is a further important operation called the 2-sum, and for graphs it is equivalently realized
by deleting e in the parallel connection or by contracting e in the series connection. For matrices
Ā and B̄, where we assume that e labels the last column of Ā and the first column of B̄, we can
realize the matrix for the 2-sum by deleting the standard-unit vector column from P (Ā, B̄). Parallel
connection and series connection (and hence 2-sum) preserve total unimodularity. Considering ma-
troids, 2-sum preserves the property of being ‘identically self dual’ (see [19, Exercise 4, Section 7.1]).
2-sum is also a key property for working with the important concept of connectivity in matroids
[19, Theorem 8.3.1]: a ‘2-connected’ matroid N is not ‘3-connected’ if and only if it is the 2-sum of
proper minors of M . The Fano matroid is a fundamental matroid for studying matroids of totally-
unimodular matrices. It and its dual characterize, by exclusion as minors, binary matroids that are
not representable by totally-unimodular matrices. It is an important result of Seymour that every
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binary matroid that does not have the dual of the Fano matroid as a minor can be constructed
by direct sums and 2-sums, starting with matroids that are representable by totally-unimodular
matrices and copies of the Fano matroid (see [19, Corollary 11.2.5]). Additionally, Cunningham and
Edmonds demonstrated how 2-sum is the basic operation for constructing all 2-connected matroids,
using a matroid decomposition tree, starting from uniform matroids each of which has rank or
co-rank 1 (see [20], for example).

As for linear programming, the operations parallel connection, series connection, and 2-sum arise
naturally in models involving time-staged decision making. For example, this happens for situations
in which the activities in time period t + 1 depend on the activities in time period t through a
single shared resource. This can be naturally modeled via 2-sum, while parallel connection allows
for injecting more of that resource into the system at the start of time period t + 1, at a (time-
dependent) per-unit cost that would be captured in the objective function. Series connection can
also be relevant for linear programming: in a situation in which there are separate endowments of
a resource in time periods t and t+ 1, one might want to match the levels of leftover resources in
the two time periods (to perhaps balance risk). All of these situations are special cases of ‘staircase
linear programs’, which are very challenging for the classical simplex method. In fact, the simplex
method has been specially tailored to take advantage of the general staircase form (for example,
see [1,10,11] and the references therein).

We are interested in relating the diameters of polyhedra defined through a parallel and series
connection of the main constraint matrix to the diameters of the original polyhedra. Let us introduce
the formal notation for this discussion.

Throughout, let

Q :=

{

x ∈ R
n1 : Āx =

(

cA
ca

)

, x ≥ 0

}

and R :=

{

x ∈ R
n2 : B̄x =

(

cb
cB

)

, x ≥ 0

}

,

where cA and cB are column vectors in R
(m1−1) and R

(m2−1), respectively, and ca, cb ∈ R.
The polyhedra that we study arise from Q and R through a connection of their main constraint

matrices and a corresponding merging of the right-hand side vectors.

Definition 3 The parallel-connection polyhedron of Q and R is the polyhedron

P (Ā, cĀ; B̄, cB̄) :=







x ∈ R
n1+n2−1 : P (Ā, B̄)x =





cA
ca + cb
cB



 , x ≥ 0







.

Definition 4 The series-connection polyhedron of Q and R is the polyhedron

S(Ā, cĀ; B̄, cB̄) :=















x ∈ R
n1+n2−1 : S(Ā, B̄)x =









cA
ca
cb
cB









, x ≥ 0















.

For convenience, we let P := P (Ā, cĀ; B̄, cB̄) and S := S(Ā, cĀ; B̄, cB̄). Our goal is to establish
diameter bounds for P and S in terms of the diameters of the original polyhedra Q and R. We will
refer to the diameter of a polyhedron Q as diam(Q). We seek to understand how the diameter of
a polyhedron with constraint matrix P (Ā, B̄) or S(Ā, B̄) is related to the diameters of polyhedra
with constraint matrix Ā or B̄. Thus, we are specifically interested in finding diameter bounds that
do not depend on the right-hand side. Our notation for a diameter bound for a class of polyhedra
with the same constraint matrix and varying right-hand sides follows:
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Definition 5 Let A be a matrix in R
m×n. Then

diam(A) := max
b∈Rm

{diam{x ∈ R
n : Ax = b, x ≥ 0}} .

Informally, we overload ‘diam()’ to be able to use it for a specific polyhedron or for a matrix, to
refer to the class of polyhedra sharing it as their main constraint matrix.

There are some immediate benefits for using diam(A) as opposed to just the diameter for a
polyhedron. First, we may assume that P and Q are simple, as it is known that the maximum
diameter (among polyhedra with the same number of facets and dimension) is achieved by a simple
polyhedron. Indeed, given any degenerate polyhedron, there exists a right-hand side perturbation
that can only increase the diameter; see, e.g., [27]. Further, when proving a diameter bound for a
connection of P and Q, we now have the freedom to discuss diameters for polyhedra with the same
constraint matrix as P or Q but with a different right-hand side.

Finally, we always assume standard form and irredundancy of the representation. For an m×n
constraint matrix, this implies that the number of facets is n and the dimension is n−m, as opposed
to the usual n− rank(A) when the equality constraints are possibly redundant. Irredundancy is not
a restriction for two reasons: first, the diameter of a polyhedron is not affected by its representation
in general. Second, the final row of Ā and the first row of B̄ are the only ones taking a ‘special role’
in a parallel or series connection; however, note that for the parallel connection, these rows keep
linear independence of any independent row subset from the other rows due to the isolated 1-entry
in the final or first column, respectively. For the series connection, it is possible that the rows of
S(Ā, B̄) are not linearly independent, even if the rows of Ā and B̄ are linearly independent. It is
possible that both linking constraints can be row-reduced to (0, 1, 0). However, this would imply that
the polyhedron is a Cartesian product of two polyhedra with diameters d(Ā) and d(B̄). Thus, the
diameter is bounded by d(Ā)+d(B̄), which will still be covered by our bounds. Our proof techniques
do not immediately transfer to this case. Thus, we assume that S(Ā, B̄) has linearly-independent
rows.

1.2 Contributions and Outline

Our main results are diameter bounds for all parallel- and series-connection polyhedra. In Section
2, we discuss parallel connections; in Section 3, we discuss series connections.

These discussions crucially depend on an understanding of the underlying graphs of the poly-
hedra P and S. For each construction, we begin by characterizing and categorizing the vertices in
terms of ‘counts’ of basic and nonbasic variables relating to the original polyhedra Q,R. Because
walking along an edge to an adjacent vertex corresponds to the exchange of a single basic and
nonbasic variable (for some basis of the involved vertices), we also obtain a better understanding
of the edges of P and S. The categorization of the vertices and insight into the underlying graph
enables us to prove the diameter bounds for the parallel- and series-connection polyhedra.

In Section 2.1, we begin with discussing the generality of our results. In particular, we show
the parallel connection arises as a special case of the matrix 2-sum operation (see [22]). Then,
we categorize the vertices of the parallel-connection polyhedron. Writing a vertex of the parallel
connection as the (n1 + n2 − 1)-vector (x, s, y) where x is a (n1 − 1)-vector, s is a scalar, and y is a
(n2 − 1)-vector. Any vertex must contain exactly m1 +m2 − 1 basic variables. Further, simplicity
of Q,R, and P implies x and y must have at least m1 − 1 and m2 − 1 (nonzero) basic variables,
respectively. This gives a degree of freedom as to where to place the final basic variable.
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In Section 2.2, we exploit the categorization to show that the diameter of the parallel connection
of two polyhedra Q and R, with diameters bounded above by diam(Ā) = d(Ā) and diam(B̄) = d(B̄),
respectively, is at most d(Ā) + d(B̄) + 2. This is stated in Theorem 1.

Theorem 1 (Diameter - Parallel Connection) The combinatorial diameter of P is at most

d(Ā) + d(B̄) + 2.

Our techniques involve identifying walks in Q and R and showing that copies of these walks
exist in P . We say a walk in Q, denoted (x1, s1), (x2, s2), . . . , (xk, sk), lifts to P if there exists y such
that (x1, s1, y), (x2, s2, y), . . . , (xk, sk, y) ∈ P are vertices and (xi, si, y) is adjacent to (xi+1, si+1, y)
for 1 ≤ i < k.

Throughout, we are interested in connecting our results to the Hirsch conjecture. Thus, in a
corollary we assume that the diameters of Q and R are at most the Hirsch bound. When we make
this assumption we say Q and R satisfy Hirsch, or simply Q and R are Hirsch. If Q, and R satisfy
Hirsch for all right-hand sides, then diam(Q) ≤ m1 and diam(R) ≤ m2, where m1,m2 are the
number of rows in the main constraint matrices. The diameter of P is at most the claimed Hirsch
bound (m1 +m2 − 1) plus 3, by Theorem 1.

In Section 3, we study the series-connection polyhedron. The discussion requires additional
technical tools and, as we will explain, leads to two different types of bounds. In particular, to
devise general diameter bounds, we require that the polyhedraQ,R allow for so-called non-revisiting

walks that adhere to the specified bounds. We begin by recalling the intimate connection of non-
revisiting walks, the non-revisiting conjecture, and the Hirsch conjecture. In Section 3.1, we present
a categorization of the vertices of series-connection polyhedra. This categorization is similar to the
categorization we used for the parallel-connection polyhedron. We also discuss the generality of our
results; in particular, we demonstrate that the series connection of any pair of matrices may be
reduced to the form S(Ā, B̄).

Again, the categorization of the vertices of S is one of the main tools we use to prove our stated
bounds for the diameter of the series-connection polyhedron. For the first bound (Theorem 2), we
assume that Q,R are integral polyhedra, i.e., have integer coordinates at all vertices. This is not a
restriction for rational input.

Theorem 2 (Diameter - Series Connection) Let Q and R be integral polyhedra that satisfy the

non-revisiting conjecture. Let S be the series-connection polyhedron for Q and R and smin := min{s :
(x, s, y) ∈ S}. If (x1, s1, y1), (x2, s2, y2) ∈ S are vertices, then the distance between (x1, s1, y1) and

(x2, s2, y2) is at most m1 + m2 + s1 + s2 − 2smin. If sup{s : (x, s, y) ∈ S} = smax < ∞, then the

diameter of S is bounded by m1 +m2 + sdiff, where sdiff = smax − smin.

Unlike for the parallel-connection polyhedron, where we are able to prove a constant, additive
bound, the sum of the original bounds here may be exceeded by the term sdiff , which represents
the range of possible values for the shared variable s. This makes it a different type of bound that
has to represent sdiff in the input to claim linearity. The excess is caused by walking the shared
variable s to an extreme value, which allows a transfer of non-revisiting walks from the original
polyhedra Q,R to (parts of) the walk in S. If Q and R are Hirsch, we can see that the diameter
exceeds Hirsch by at most sdiff .

To provide a bound which does not depend on sdiff , we devise a new approach to construct walks
between vertices of S in Section 3.3. We introduce a new notion of diameter, the s-bounded diameter
(Definition 7, stylized db(·)), that characterizes the maximum distance between two vertices when
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we do not allow the shared variable s to drop below a specified value. The s-bounded diameter is
a weaker assumption than the use of the monotone diameter [24], where (strict) improvement with
respect to a given objective function is required. We are able to show that the diameter is at most
quadratic in the diameters and the s-bounded diameters of the original polyhedra, Q and R. The
work culminates in the following theorem:

Theorem 3 The diameter of the series-connection polyhedron, S, where sRmin ≤ sQmin is at most

the maximum of

{d(Ā)(db(B̄) + 1) + d(B) + 2d(B̄), (d(Ā)− 1)(db(B̄) + 1) + d(Ā) + 3d(B̄) + 2}.

A similar bound holds when sRmin ≥ sQmin by interchanging the roles of Q and R. Again, we
can view these bounds in terms of the Hirsch conjecture. In this case, the bound simplifies slightly
because the diameter of a face cannot exceed the diameter of the polyhedron when Hirsch is satisfied
for all right-hand sides, and thus we replace d(B) with d(B̄).

In Section 4, we provide a brief conclusion and give an outlook on some natural directions for
future research.

2 Parallel Connection

In this section, we prove that the diameter of the parallel-connection polyhedron of two polyhedra
Q,R, with diameters bounded by d(Ā), d(B̄), respectively, is bounded above by d(Ā) + d(B̄) + 2.
Consequently, we establish that the diameter of a parallel-connection polyhedron of two Hirsch-
satisfying polyhedra does not exceed Hirsch by more than 3.

Throughout, we refer to points of P as triples (x, s, y) where x ∈ R
n1−1, s ∈ R, y ∈ R

n2−1. This
allows us to write

P =











x
s
y



 ∈ R
n1+n2−1 :





A 0 0
a 1 b
0 0 B









x
s
y



 =





cA
ca + cb
cB



 , x, s, y ≥ 0







.

The scalar s is associated with the ‘linking’ column or variable. For this reason, we refer to s as the
shared variable. Additionally, we recall that Ā and B̄ have full rank and Q and R are simple.

Our results for the parallel connection can be viewed as a special case of the 2-sum. The 2-sum
[22] of two general matrices is defined as:

[

A a
]

⊕2

[

b
B

]

=

[

A ab
0 B

]

.

In fact, by the definition of parallel connection, we have P (Ā, B̄) = Ā ⊕2 B̄. Furthermore, if M is
any matrix with Mm,n 6= 0, then pivoting on the shared column M⊕2 B̄ yields a parallel connection
of two matrices. Thus, if a polyhedron can be represented in standard form with main constraint
matrix M ⊕2 B̄, then our results for parallel connection hold for this special case of the 2-sum.
However, given two general matrices M1 and M2, M1 ⊕2 M2 may not be able to be reduced to the
form P (Ā, B̄) for some Ā, B̄. So, our results do not generalize completely to the 2-sum.



On the Combinatorial Diameters of Parallel and Series Connections 8

2.1 Categorization of Vertices

Our first step is to establish an understanding of the graph of P ; see Definitions 1 and 3. Toward
this end, we categorize the vertices of P .

We begin with an observation on the number of basic variables in the blocks x and y. If (x, s, y) ∈
P is a vertex and P is simple, then the vertices of P are in one-to-one correspondence with the
basic feasible solutions of P . It follows that x has at least m1 − 1 (nonzero) basic variables and y
has at least m2− 1 (nonzero) basic variables, because m1− 1 and m2− 1 basic variables are needed
to satisfy Ax = cA and By = cB, respectively, by simplicity of Q and R. Because P is simple, a
basic feasible solution has exactly m1 +m2 − 1 (nonzero) basic variables, and so there is a single
extra basic variable to ‘place’. This allows us to partition the vertices into 3 categories.

Proposition 1 (Categorization of Vertices) If P is simple, then the vertices of P can be parti-

tioned into 3 categories based on a split of basic variables of the corresponding basic feasible solutions.

1. The first category is (m1, 0,m2 − 1) indicating those vertices (x, s, y) where x has m1 basic

variables, s is nonbasic, and y has m2 − 1 basic variables.
2. The second category is (m1 − 1, 1,m2 − 1) indicating those vertices (x, s, y) where x has m1 − 1

basic variables, s is basic, and y has m2 − 1 basic variables.
3. The third category is (m1 − 1, 0,m2) indicating those vertices (x, s, y) where x has m1 − 1 basic

variables, s is nonbasic, and y has m2 basic variables.

We call the category a vertex belongs to its basis split. The categorization into different basis
splits will be a crucial tool for obtaining a diameter bound for the parallel-connection polyhedron.
We are able to establish a diameter bound by finding a bound for the distance of vertices from each
pair of categories.

2.2 Diameter Bound

Next, we prove that the diameter of P is at most d(Ā)+d(B̄)+2. Our strategy is to consider walks
in the original polyhedra Q,R (but for possibly different right-hand sides) and show that we can
lift and concatenate those walks to walks in P between corresponding vertices. We first prove two
technical lemmas and a corollary which enable us to prove the main result (Theorem 1). We will
make use of two sets of parameterized polyhedra, Q(t) and R(t):

Q(t) =

{

x ∈ R
n1 : Āx =

(

cA
t

)

, x ≥ 0

}

, R(t) =

{

x ∈ R
n2 : B̄x =

(

t
cB

)

, x ≥ 0

}

for all t ∈ R. The diameters of Q(t) and R(t) are bounded above by diam(Ā) and diam(B̄) because
they have Ā and B̄ as equality constraint matrices, respectively. We begin with a lemma that
demonstrates how to lift a walk in Q(t), for a certain t, to P .

Lemma 1 Let P be simple. Let (x, s, y) ∈ P be a vertex and set t = ca+cb−by. If y has m2−1 basic

variables, then Q(t)×{y} is a face of P with diameter at most d(Ā). Thus, if (x1, s1, y), (x2, s2, y) ∈
P are vertices then the distance between (x1, s1, y) and (x2, s2, y) is at most d(Ā).

Proof. Let (x∗, s∗, y∗) ∈ P be such a vertex. The set Q(t)× {y∗} is a face because of the following
two facts. First, Q(t) × {y∗} is a subset of the polyhedron that arises from forcing a collection of
constraints to be satisfied with equality (i.e. yi = 0 if y∗i = 0). Second, by simplicity, there is no
other y with support contained in the support y∗ such that By = cB. The diameter of Q(t)× {y∗}
is d(Ā) because it is the Cartesian product of Q(t) and a point. ⊓⊔



On the Combinatorial Diameters of Parallel and Series Connections 9

Lemma 1 allows us to lift walks from a polyhedron Q(t) to the parallel-connection polyhedron
P . In turn, we may transfer any known bounds on the lengths of those walks. By switching the
roles of Q and R (or x and y), it follows that walks from a polyhedron R(t), for a particular t, can
be lifted to P , as well.

To prove the stated diameter bound for the parallel-connection polyhedron, we split the discus-
sion into cases based on the basis splits of the start and end vertex. The first case considers two
vertices that are not both of the first or third category. That is, they do not both have basis split
(m1, 0,m2 − 1) or (m1 − 1, 0,m2).

Lemma 2 Let P be simple. Let (x1, s1, y1), (x2, s2, y2) ∈ P be vertices, where y1 is comprised of

m2 − 1 basic variables and x2 is comprised of m1 − 1 basic variables. If ax2 ≤ ax1 + s1, then the

distance between (x1, s1, y1) and (x2, s2, y2) is at most d(Ā) + d(B̄). Similarly, if x1 is comprised

of m1 − 1 basic variables, y2 is comprised of m2 − 1 basic variables and ax1 ≤ ax2 + s2 then the

distance between (x1, s1, y1) and (x2, s2, y2) is at most d(Ā) + d(B̄).

Proof. We first note (x2, s′, y1) is feasible for some s′ > 0 because Ax2 = cA, By1 = cB, and
ax2 + by1 ≤ ax1 + s1 + by1 = ca + cb. Moreover, by simplicity of P the point (x2, s′, y1) is a vertex
because x2 has m1−1 basic variables, s′ is basic, and y1 has m2−1 basic variables. If (x2, s′, y1) was
not a vertex, this would imply the existence of a degenerate vertex. By an application of Lemma 1,
the distance between (x1, s1, y1) and (x2, s′, y1) is at most d(Ā).

Additionally, we note that there exists a walk of length at most d(B̄) from (x2, s′, y1) to
(x2, s2, y2), which again follows from an application of Lemma 1. By adjoining this walk to the
previous walk (in the natural way), we have shown that there exists a walk from (x1, s1, y1) to
(x2, s2, y2) with length at most d(Ā) + d(B̄).

In a polyhedron, edge walks are reversible. Thus, if we want to construct a path from (x1, s1, y1)
to (x2, s2, y2) where x1 is comprised of m1 − 1 basic variables, y2 is comprised of m2 − 1 basic
variables and ax1 ≤ ax2+ s2, then it is sufficient to construct a path from (x2, s2, y2) to (x1, s1, y1).
The reversed path is a walk from (x1, s1, y1) to (x2, s2, y2). By the arguments above, the length of
this path is at most d(Ā) + d(B̄). ⊓⊔

Lemma 2 implies the following corollary concerning the distance between pairs of vertices where
the shared variable is basic for each vertex (Category 2).

Corollary 1 Suppose that P is simple and that (x1, s1, y1), (x2, s2, y2) ∈ P are vertices with s1

and s2 basic. Then there exists an edge walk from (x1, s1, y1) to (x2, s2, y2) with length at most

d(Ā) + d(B̄).

Proof. Either ax1 ≤ ax2 or ax2 ≤ ax1. Thus, one of ax1 ≤ ax2 + s2 or ax2 ≤ ax1 + s1 is satisfied.
Therefore, the claim follows by Lemma 2. ⊓⊔

To prove the stated bound in Theorem 1, we reduce the remaining cases to the case addressed
in Corollary 1. We demonstrate that this reduction can be accomplished with at most 2 additional
steps in the walk.

Theorem 1 The combinatorial diameter of P is at most d(Ā) + d(B̄) + 2.

Proof. We assume that P is simple. Let (x1, s1, y1), (x2, s2, y2) ∈ P be vertices. If s1 and s2 are
basic, then the distance between (x1, s1, y1) and (x2, s2, y2) is at most d(Ā) + d(B̄) by Corollary 1.

For i ∈ {1, 2}, if si is nonbasic, then (xi, si, yi) is adjacent to a vertex where s is basic. Therefore,
by Corollary 1, the distance between (x1, s1, y1) and (x2, s2, y2) is at most d(Ā) + d(B̄) + 2. ⊓⊔
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The diameter of the parallel connection of two Hirsch satisfying polyhedra does not exceed the
Hirsch bound by more than 3. First, we note that the Hirsch bound is m1 +m2 − 1, which follows
because the polyhedron is simple and has m1 + m2 − 1 equality constraints. By Theorem 1, the
diameter is at most m1 + m2 + 2 since d(Ā) ≤ m1 and d(B̄) ≤ m2. The result is stated below,
without proof.

Corollary 2 (Hirsch - Parallel Connection) Let Q,R be polyhedra that both satisfy the Hirsch

bound for all right-hand sides. Then, the combinatorial diameter of P does not exceed the Hirsch

bound by more than 3.

To refine our analysis, we show that the distance between two vertices of the same category is
at most d(Ā) + d(B̄) + 1. This fact, along with Lemma 2, shows that the bottleneck case in our
bound is the combination of two vertices, one in Category 1 and the other in Category 3, and the
inequality comparing ax1 and ax2 in Lemma 2 is not satisfied. An improvement to this case would
improve the bound to d(Ā) + d(B̄) + 1.

Lemma 3 Suppose that (x1, s1, y1) and (x2, s2, y2) are vertices of P. If both x1 and x2 are com-

prised of m1 − 1 basic variables, then the distance between (x1, s1, y1) and (x2, s2, y2) is bounded by

d(Ā) + d(B̄) + 1. The same bound can be derived if both y1 and y2 are comprised of m2 − 1 basic

variables.

Proof. We assume that P is simple. If both s1 and s2 are basic, then by Corollary 1 the distance is
bounded by d(Ā) + d(B̄). If only s1 is basic, then s2 is identically zero, and thus by Lemma 2, the
distance between (x1, s1, y1) and (x2, s2, y2) is at most d(Ā) + d(B̄).

If both s1 and s2 are nonbasic, then an extra step is required. For the first step, increase the
coordinate s of (x1, s1, y1). As x1 is comprised of m1 − 1 basic variables and any feasible solution
must satisfy Ax = cA, it follows that x

1 must remain fixed. After increasing s, the resulting vertex,
denoted (x1, s′, y′), must have basis split (m1 − 1, 1,m2 − 1).

Again by Lemma 2, the distance between (x1, s′, y′) and (x2, s2, y2) is at most d(Ā) + d(B̄).
Because (x1, s′, y′) is adjacent to (x1, s1, y1), it follows that the distance between (x1, s1, y1) and
(x2, s2, y2) is at most d(Ā) + d(B̄) + 1. ⊓⊔

Table 1 gives an exhaustive list of cases and the resulting diameter bounds. The cases are
distinguished by categories of vertices and whether or not ax1 ≤ ax2.

3 Series Connection

In this section, we establish two bounds for the diameter of a series-connection polyhedron. The
first bound requires S to be an integral polyhedron, which is not a restriction for any polyhedron
with rational input. The bound is presented in terms of the maximum and minimum values that s
may take. Bounds of this type are typical in the studies of lattice polytopes. For example, Deza and
Pournin proved that the diameter of a lattice polytope P is at most kd− ⌈2/3d⌉ where P ⊆ [0, k]d

when k > 2 [8].
The second bound relaxes the requirement that S is integral but requires a type of boundedness

for pairs of vertices where the path we want to lift violates a condition we require on s. We will
call this type of boundedness the s-bounded diameter (Definition 7). In turn, we establish a bound
that can be expressed in the diameters and s-bounded diameters of Q and R.
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Initial Basis Split Final Basis Split Inequality Diam. Bound Reference

(m1 − 1, 1, m2 − 1) (m1 − 1, 1,m2 − 1) N/A d(Ā) + d(B̄) Corollary 1

(m1 − 1, 1, m2 − 1) (m1 − 1, 0, m2) ax1
≥ ax2 d(Ā) + d(B̄) Lemma 2

(m1 − 1, 1, m2 − 1) (m1, 0,m2 − 1) ax1
≤ ax2 d(Ā) + d(B̄) Lemma 2

(m1 − 1, 1, m2 − 1) (m1 − 1, 0, m2) ax1 < ax2 d(Ā) + d(B̄) + 1 Theorem 1

(m1 − 1, 1, m2 − 1) (m1, 0,m2 − 1) ax1 > ax2 d(Ā) + d(B̄) + 1 Theorem 1

(m1, 0, m2 − 1) (m1, 0,m2 − 1) N/A d(Ā) + d(B̄) + 1 Lemma 3

(m1 − 1, 0, m2) (m1 − 1, 0, m2) N/A d(Ā) + d(B̄) + 1 Lemma 3

(m1, 0, m2 − 1) (m1 − 1, 0, m2) ax1
≥ ax2 d(Ā) + d(B̄) Lemma 2

(m1 − 1, 0, m2) (m1, 0,m2 − 1) ax1
≤ ax2 d(Ā) + d(B̄) Corollary 2

(m1, 0, m2 − 1) (m1 − 1, 0, m2) ax1 < ax2 d(Ā) + d(B̄) + 2 Theorem 1

(m1 − 1, 0, m2) (m1, 0,m2 − 1) ax1 > ax2 d(Ā) + d(B̄) + 2 Theorem 1

Table 1: Diameter bounds for the parallel-connection polyhedron by each case of basis split for
initial and final vertex.

For the series connection, we require the walks in Q and R to be non-revisiting. As a service to
the reader, we recall some background. This property is typically only used in the context of simple
polyhedra because each step of a walk leaves exactly one facet and enters exactly one facet.

Definition 6 Let P be a simple polyhedron. A walk in P is non-revisiting if every step of the walk

enters a new facet, not previously visited before.

The non-revisiting conjecture asks if there exists a non-revisiting walk between every pair of
vertices of a polyhedron. If a polyhedron has this property, we say the polyhedron satisfies non-

revisiting. The non-revisiting conjecture is intimately related to the Hirsch conjecture. The conjec-
tures are, in fact, equivalent [14].

Proposition 2 Let P be a simple polyhedron. P satisfies the Hirsch bound if and only if P satisfies

the non-revisiting conjecture.

The proof of Proposition 2 (see [14]) demonstrates that if a walk is non-revisiting, then the length
of the walk is bounded above by the Hirsch bound. Because the length of a non-revisiting walk is at
most the Hirsch bound, we assume that the walks that we consider also satisfy non-revisiting. For
the remainder of this section, we assume that Q and R satisfy the non-revisiting conjecture, and
hence the Hirsch bound, for all right-hand sides.

The non-revisiting property also implies that if v and w are vertices on the same face, then
there exists a walk from v to w with length bounded by Hirsch that does not leave the face. We
use this property in our work to construct a walk between two vertices both on the facet defined
by s = 0. The non-revisiting property ensures that the walk does not leave the facet and still
has length bounded by Hirsch. This property is derived from the fact that if a simple polyhedron
has the non-revisiting property then every face of the polyhedron has the non-revisiting property.
The idea generalizes further. We demonstrate that if a polyhedron (not necessarily simple) satisfies
Hirsch for all right-hand sides, then any face also satisfies Hirsch for all right-hand sides. We prove
a particular formulation of this observation below.
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Lemma 4 Let A′ :=
[

A a
]

be a matrix such that any polyhedron with constraint matrix A′ satisfies

the Hirsch bound for all right-hand sides. Then, a polyhedron with constraint matrix A satisfies the

Hirsch bound for all right-hand sides.

Proof. Let P ′ := {x : A′x = b, x ≥ 0} and P := {x : Ax = b, x ≥ 0} for some b ∈ R
m. Let k denote

the Hirsch bound for A′. If P is empty, then P satisfies the Hirsch bound vacuously.
We suppose that P is nonempty. If P ′ is simple, then P ′ satisfies non-revisiting. Therefore, P

satisfies non-revisiting, and thus Hirsch, because P is a face of P ′. Now, we assume that P ′ is
degenerate. Let y ∈ R

m be a perturbation of P ′ such that P ′(y) := {x : A′x = b + y, x ≥ 0} is
simple and has the same set of feasible bases as P ′. The polyhedron P (y) := {x : Ax = b+y, x ≥ 0}
is a face of P ′(y). Thus P (y) is simple and satisfies non-revisiting.

Let v1, v2 ∈ P be vertices and v1y, v
2
y ∈ P (y) be resulting vertices after perturbing v1, v2 (vertices

with the same basis). Because P (y) satisfies non-revisiting, there exists a non-revisiting walk between
v1y and v2y of length at most k. If two vertices are adjacent in P (y), then the corresponding vertices
in P are either adjacent or equal. Thus, the distance from v1 to v2 is at most k. Therefore, P
satisfies Hirsch. ⊓⊔

Similar to our work with P , we will refer to points of S as triples (x, s, y) where x ∈ R
n1−1,

s ∈ R, y ∈ R
n2−1. With this formulation, we have:

S =



















x
s
y



 ∈ R
n1+n2−1 :









A 0 0
a 1 0
0 1 b
0 0 B













x
s
y



 =









cA
ca
cb
cB









, (x, s, y) ≥ 0















.

Recall, we assume that Ā and B̄ have full rank and S is simple. Additionally, we note the series
connection is, in fact, more general than we have presented. If M and N are any pair of matrices
then the definition of S(·, ·) can be extended to M,N in the following fashion:

M :=

[

M ′ m1

m2 m

]

, N :=

[

n n2

n1 N ′

]

, S(M,N) :=









M ′ m1 0
m2 m 0
0 n n2

0 n1 N ′









.

If the final column ofM and the first column ofN are nonzero, then through row operations S(M,N)
can be reduced to S(Ā, B̄) for some Ā, B̄. As the graph of S is not affected by row operations, all
results concerning the diameter still hold. However, if the last column of M or first column of N is
the zero vector, then the resulting series connection reduces to a Cartesian product. The diameter
bounds we establish still hold for this case.

3.1 Categorization of Vertices

We first establish an understanding of the graph of S; see Definitions 2 and 4. Similar to the
parallel-connection polyhedron, we categorize the vertices through an observation on the number of
basic variables in the x- and y-blocks. The vertices of S are in one-to-one correspondence with the
basic feasible solutions of S because S is simple. Any basic feasible solution has m1 +m2 (nonzero)
basic variables because the simple S has m1 +m2 equality constraints. By simplicity of Q and R,
the equations Ax = cA and By = cB each require m1 − 1 and m2 − 1 (nonzero) basic variables,
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respectively, to be satisfied. Therefore, a vertex (x, s, y) ∈ S has at least m1 − 1 basic variables in
the x-block and m2 − 1 basic variables in the y-block. Thus, we have the following categorization
(recall the notation of Q(t) and R(t) introduced in Subsection 2.2):

Proposition 3 If S is simple and has an equality constraint matrix with linearly-independent rows,

then the vertices of S can be partitioned into the following three categories:

1. The vector (x, 0) is a vertex of Q, the variable s is nonbasic, and the vector (0, y) is a vertex

of R.
2. The variable s is basic, for t := ca − s, the vector (x, 0) is a vertex of Q(t), and the vector (s, y)

is a vertex of R.
3. The variable s is basic, the vector (x, s) is a vertex of Q, and for t := cb − s, the vector (0, y) is

a vertex of R(t).

The above categorization of the vertices captures the possible basis splits in the respective blocks
and relates the coordinate vectors to vertices of the original polyhedra. As we did in Section 2, we
will establish diameter bounds by breaking the problem into subcases based on these categories.

3.2 Lattice-Type Diameter Bound

In this section, we establish a diameter bound for the series-connection polyhedron that relies on
the difference between the maximum and minimum values of the shared variable s. Such bounds
typically arise in the studies of lattice polytopes or general polyhedra in combinatorial optimization;
see, e.g., [4,7,8]. The state-of-the-art bounds for the diameter of a lattice polytope in [0, k]d are kd
for k = 1 [15], ⌊(kd− (1/2)d)⌋ when k = 2 [7], and kd− ⌈(2/3)d⌉ when k ≥ 3 [8].

In what follows, we will make reference to the maximum and minimum values that s can take
on in Q,R, and S. We set sQmin := min{s : (x, s) ∈ Q} and sQmax := max{s : (x, s) ∈ Q}. We define
sRmin and sRmax analogously. We show that the diameter of S is bounded above by m1 +m2 + sdiff
where:

sdiff := max{s : (x, s, y) ∈ S} −min{s : (x, s, y) ∈ S}.

We note that the range of values s that may take decreases following the series-connection operation.

Lemma 5 Let (x, s, y) ∈ S. Then max{sQmin, s
R
min} ≤ s ≤ min{sQmax, s

R
max}. Moreover, these bounds

are tight.

Proof. Let (x, s, y) ∈ S. Then, (x, s) ∈ Q and (s, y) ∈ R. Therefore,

sQmin ≤ s ≤ sQmax and sRmin ≤ s ≤ sRmax.

Thus, we conclude
max{sQmin, s

R
min} ≤ s ≤ min{sQmax, s

R
max}.

For tightness, we assume, without loss of generality, that sQmax ≤ sRmax. By definition of sQmax,
there exists an x such that (x, sQmax) ∈ Q. Additionally, there exist y1, y2 such that (sRmin, y

1),
(sRmax, y

2) ∈ R. As sRmin ≤ sQmax ≤ sRmax, we can find λ ∈ [0, 1] such that sQmax = λsRmin+(1−λ)sRmax.
Setting y = λy1 + (1− λ)y2, it follows by convexity that (sQmax, y) ∈ R. Therefore, (x, sQmax, y) ∈ S.

A similar argument shows that the bound max{sQmin, s
R
min} is tight. ⊓⊔
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Our technique for Theorem 2 relies on concatenating three walks to form a walk between a pair
of vertices. Two of the portions connect the start and end vertices, respectively, to vertices where
s is maximal or minimal. We show that such a walk exists and has length at most sdiff for any
integral polyhedron S.

Lemma 6 Suppose that S is an integral polyhedron with variable smin ≤ s ≤ smax. Let (x, s, y) ∈ S
be a vertex. Then (x, s, y) is at most a distance sdiff from a vertex where s is minimal and from a

vertex where s is maximal.

Proof. Let (x′, s′, y′) be a vertex. Consider the linear programs min{s : (x, s, y) ∈ S} and max{s :
(x, s, y) ∈ P}. The simplex method initialized at (x′, s′, y′) can be used to construct a walk to
an optimal vertex. The value of s must improve by at least one for each (non-degenerate) step
because S is integral and the simplex method strictly improves the objective function. Therefore,
min{s : (x, s, y) ∈ S} is solved in at most s′ − smin steps, and max{s : (x, s, y) ∈ S} is solved in at
most smax − s′ steps. In both cases, the number of steps is bounded by sdiff . ⊓⊔

Lemma 6 is the key ingredient to devise a bound of S in terms of sdiff .

Theorem 2 Let Q and R be integral polyhedra that satisfy the non-revisiting conjecture. Let S be

the series-connection polyhedron for Q and R and smin := min{s : (x, s, y) ∈ S}. If (x1, s1, y1),
(x2, s2, y2) ∈ S are vertices, then the distance between (x1, s1, y1) and (x2, s2, y2) is at most m1 +
m2 + 2sdiff . If sup{s : (x, s, y) ∈ S} < ∞, then the diameter of S is bounded by m1 +m2 + sdiff.

Proof. We assume that S is simple. First, we show that if (x1, s1, y1), (x2, s2, y2) ∈ S are vertices
where s1 = s2 and s1, s2 are both maximal or both minimal then the distance between (x1, s1, y1)
and (x2, s2, y2) is at most m1 + m2. Let (x1, s1, y1), (x2, s2, y2) be such vertices. We assume that
(x1, s1, y1) 6= (x2, s2, y2), otherwise the distance between (x1, s1, y1) and (x2, s2, y2) is zero. It follows
that

(x1, y1), (x2, y2) ∈ S ′ :=















(x, y) ∈ R
n1+n2−2 :









A 0
a 0
0 b
0 B









[

x
y

]

=









cA
ca − s1

cb − s1

cB









, (x, y) ≥ 0















and (x1, y1), (x2, y2) are vertices of S ′. Further, S ′ is a face of S, because s is at an extreme value.
Therefore, any path in S ′ can be realized as a path in S. We note the constraint matrix of S ′ is

the 1-sum of

[

A
a

]

and

[

b
B

]

. Thus, the diameter is at most d(

[

A
a

]

) + d(

[

b
B

]

). When nonrevisiting

is satisfied, the bound reduces to m1 +m2.
Let (x1, s1, y1), (x2, s2, y2) ∈ S be vertices. Now, we establish that the distance between

(x1, s1, y1) and (x2, s2, y2) is at most m1 + m2 + 2sdiff . By integrality of S, any step which de-
creases the value of s will decrease the value of s by at least 1. Therefore, the vertex (x1, s1, y1)
is at most s1 steps from a vertex where s is minimal. Similarly, (x2, s2, y2) is at most s2 steps
from a vertex where s is minimal. Thus, the distance between (x1, s1, y1), (x2, s2, y2) is at most
m1 +m2 + s1 + s2 ≤ m1 +m2 + 2sdiff .

We now suppose that sup{s : (x, s, y) ∈ S} < ∞. By Lemma 6, it follows that (x1, s1, y1) is at
most a distance s1 − smin from a vertex where s is minimal and at most a distance smax − s1 from
a vertex where s is maximal. For (x2, s2, y2) there are similar bounds (s2 − smin and smax − s2).
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It can be shown that (x1, s1, y1) and (x2, s2, y2) are at most a combined sdiff steps from vertices
where s is either maximal or minimal. Thus, the distance between (x1, s1, y1), (x2, s2, y2) is at most
m1 +m2 + sdiff . ⊓⊔

We conclude with a brief remark that Theorem 2 implies that if Q and R satisfy the Hirsch
bound for all right-hand sides, then the diameter of S does not exceed Hirsch by more than sdiff .
This result follows because the Hirsch bound for S is m1 +m2 when S is simple.

3.3 A Quadratic Bound

In the previous subsection, the diameter of S was bounded using the quantity sdiff . However, a
scaling of a polyhedron by a factor of λ > 0 would also scale sdiff with λ, even though the diameter
does not change. In this subsection, we establish a bound that does not rely on sdiff .

Our technique “corrects” a step that failed to lift. Suppose that (x0, s0, y0), (x′, s′, y′) ∈ S are
vertices with basis split (m1 − 1, 1,m2). By Proposition 3, (x0, s0), (x′, s′) are vertices of Q. Thus,
there exists a walk between (x0, s0), (x1, s1), . . . , (xk, sk) = (x′, s′) in Q. If the entire walk lifts
successfully to S, then constructing a diameter bound that is linear in d(Ā) and d(B̄) is straight-
forward with our previous techniques. If a step (xi, si) to (xi+1, si+1) does not lift successfully,
meaning (xi+1, si+1, y0) is infeasible, then an additional db(R) (Definition 7) steps may be needed
to reach a vertex (xi+1, si+1, y) for some y. After this “correction”, we proceed by lifting the step
(xi+1, si+1) to (xi+2, si+2) and using an additional db(R) steps to correct, if needed. Lemmas 7 and
8 make these arguments rigorous. Theorem 3 is our diameter bound.

Definition 7 Let P be a polyhedron and let (x, s0) ∈ P be a vertex. The smax-bounded distance of

(x, s0) is the minimal number of steps to walk from (x, s0) to a vertex with s maximal where, for

every vertex (xi, si) in the walk, si > s0. The smin-bounded distance of v is defined similarly for a

vertex where s is minimal. The s-bounded distance of v, db(v) is the maximum of the two distances.

The s-bounded diameter of P is db(P ) := max{db(v) : v ∈ P, v is a vertex}.

In what follows, we demonstrate that the diameter of S is bounded above by a function that is
quadratic in the diameter of one of the original polyhedra and the s-bounded diameter of the other.
The s-bounded diameter represents the weakest requirement for the construction of the bound. A
more restrictive formulation is the well-studied monotone diameter.

The c-monotone diameter, for a linear functional c, is the maximum length of a shortest path
between an arbitrary vertex and a vertex that is optimal with respect to c with the restriction that
the value cTx improves with each step on the path. This diameter is therefore intimately tied to
the simplex method. The monotone diameter is the maximum over all choices of c. The s-bounded
diameter of S is bounded above by the c-monotone diameter of S which is bounded above by the
monotone diameter of S.

For brevity, we overload the notation db(·) by defining db(M) for a matrix M . Here, db(M)
represents the greatest s-bounded diameter of a polyhedron with constraint matrix M . Lemma
7 shows that the s-bounded diameter can be used to bound the distance between two particular
vertices of S.

Lemma 7 If (x0, s0), (x′, s′) ∈ Q are adjacent vertices such that there exist vertices (x0, s0, y0),
(x′, s′, y′) ∈ S, then there exists a y such that (x′, s′, y) ∈ S is a vertex, and the distance between

(x0, s0, y0) and (x′, s′, y) is at most db(R) + 1.
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Proof. Throughout this proof, we assume that S is simple. First, we suppose that s0 = s′ = 0. It is
easy to verify that (x′, s′, y0) ∈ S is a vertex and (x0, s0, y0) and (x′, s′, y0) are adjacent.

Now, we assume that s0 ≥ s′ and s0 > 0. If (x′, s′, ȳ0) is feasible for some ȳ0 with the same
zero and nonzero components as y0, then by simplicity (x′, s′, ȳ0) is a vertex and (x0, s0, y0) and
(x′, s′, ȳ0) are adjacent vertices. If no such ȳ0 exists, then lifting the step (x0, s0) to (x′, s′) yields a
change in basis split. We call the resulting vertex (x1, s1, y1), which has basis split (m1, 1,m2 − 1).
By Proposition 3, (s1, y1) ∈ R.

The point (x1, s1) lies on the edge of Q defined by the convex hull of (x0, s0) and (x′, s′) because
it arose from the step from (x0, s0) to (x′, s′). For any adjacent vertex (s2, y2) of (s1, y1), a step
(s1, y1) → (s2, y2) lifts successfully at (x1, s1, y1) if and only if there exists x̄1, with the same
zero and nonzero components as x1, such that (x̄1, s2, y2) ∈ S. This is possible if and only if
(x̄1, s2) ∈ conv{(x0, s0), (x′, s′)}; otherwise (x̄1, s2) /∈ Q. Therefore, s2 ∈ [s′, s0]. Thus, we have the
following criterion: a step (s1, y1) to (s2, y2) lifts at (x1, s1, y1) if and only if s2 ∈ [s′, s]. Otherwise,
if s2 < s′ the step is blocked at (x′, s′, y) for some (0, y) ∈ R and if s2 > s the step is blocked at
(x0, s0, y) for some (0, y) ∈ R.

Now, we construct the path. Let (s∗, y∗) be a vertex representative from argmin{s : (s, y) ∈ R}.
We let (s1, y1), (s2, y2), . . . , (sk, yk) = (s∗, y∗) denote the shortest path from (s1, y1) to (s∗, y∗)
satisfying si ≤ s1 for all i. Existence of this path follows because such a path can be constructed
via the simplex method with an improving pivot rule. By Definition 7, k ≤ db(R). Let j be the
smallest index such that sj > s′ and sj+1 ≤ s′, which exists as s∗ ≤ s′ < s1. Now, the sub-
path (s1, y1) → (sj , yj) lifts successfully by the aforementioned criterion. However, by the same
criterion, the step (sj , yj) → (sj+1, yj+1) is blocked and the step terminates at (x′, s′, y) for some
y ∈ conv{yj , yj+1}. Thus, this walk is at most 1 + j ≤ 1 + db(R) steps. ⊓⊔

An analogous statement holds for adjacent vertices (s, y), (s′, y′) ∈ R with bound db(Q) + 1.
Lemma 7 requires the existence of a y′ such that (x′, s′, y′) is feasible. To show existence of such a
y′, it will be helpful to work with a particular basis split. Lemma 8 establishes that every vertex is
at most a distance max{d(Ā), d(B̄)} from a vertex with the ‘opposite’ basis split.

Lemma 8 Let S be simple and (x, s, y) ∈ S be a vertex with basis split (m1, 1,m2 − 1). If there

exists a vertex (x′, s′, y′) ∈ S with basis split (m1 − 1, 1,m2) and sQmax < sRmax or sQmin > sRmin then

there exists a vertex (xc, sc, yc) ∈ S with basis split (m1 − 1, 1,m2) or (m1, 0,m2) at most distance

d(B̄) from (x, s, y).

Proof. First, we assume that sQmax < sRmax. This implies that there exists (s′, y′) ∈ R be a vertex with
s′ > sQmax. By assumption and Proposition 3, (s, y) and (s′, y′) are vertices of R. We consider a short-
est walk from (s, y) to (s′, y′) in R, which we enumerate as (s, y) = (s0, y0), (s1, y1), . . . , (sk, yk) =
(s′, y′). As this is a shortest walk, we have k ≤ d(B̄). When lifting step i, a coordinate of (si, yi)
enters the basis and a coordinate of (xi−1, si−1, yi−1) leaves the basis. If a coordinate of (xi−1, si−1)
leaves the basis, then the vertex has basis split (m1 − 1, 1,m2) or (m1, 0,m2).

Assume a coordinate of (x, s) never left the basis while lifting each step. It follows that the walk
terminates at (x̄, s′, y′) with basis split (m1 − 1, 1,m2), where x̄ is a vector with the same zero and
nonzero components of x. By definition of the series-connection polyhedron, we have (x̄, s′) ∈ Q,
which contradicts s′ > sQmax. Thus, at some step of the walk a coordinate of (x, s) must leave the
basis. Therefore, (x, s, y) is at most d(B̄) steps from a vertex with basis split (m1 − 1, 1,m2) or
(m1, 0,m2).

The case sQmin > sRmin is similar; we find a walk from (s, y) to a vertex of form (sRmin, ymin). ⊓⊔
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Lemmas 7 and 8, are crucial tools for the proof of the diameter bound. We will consider the
case where sRmin ≤ sQmin, although, by interchanging the roles of Q and R, we can derive a bound

when sQmin < sRmin, too. When either sRmax < sQmin or sQmax < sRmin, S is empty (see Lemma 5). Then,
S satisfies Hirsch vacuously, so we do not examine this situation further.

Our proof is split into two cases. The first case assumes s ≤ sRmax for each vertex in the walk
we are lifting from Q. In this case, each intermediate vertex (xi, si) can be lifted to a vertex
(xi, si, yi) ∈ S. A bound can be derived from an application of Lemma 7. The second case assumes
s > sRmax for some step. In this case, we adjust the arguments used. A different bound is found
depending on the case; therefore, the bound in Theorem 3 is presented as a maximum of two terms.

Theorem 3 The diameter of the series-connection polyhedron, S, where sRmin ≤ sQmin is at most

the maximum of

{d(Ā)(db(B̄) + 1) + d(B) + 2d(B̄), (d(Ā)− 1)(db(B̄) + 1) + d(Ā) + 3d(B̄) + 2}.

Proof. We assume that S is simple. Let (x, s, y), (x′, s′, y′) ∈ S be vertices. First, we consider the
case where y and y′ consist of m2 basic variables. By Proposition 3, both (x, s), (x′, s′) ∈ Q are
vertices, and thus, there exists a walk (x, s) = (x0, s0), (x1, s1), . . . , (xk, sk) = (x′, s′) with k ≤ d(Ā).

Next, we assume that for all i, we have si ≤ sRmax. By Lemma 7, the vertex (x0, s0, y) is at
most a distance db(B̄) + 1 from a vertex (x1, s1, y1) for some (0, y1) ∈ R. By induction, (xi, si, yi)
is a vertex at most a distance db(B̄) + 1 from a vertex (xi+1, si+1, yi+1). Thus, (x, s, y) is at most
a distance k(db(B̄) + 1) from a vertex (x′, s′, yk). We note (0, yk), (0, y′) ∈ R(cb − sk) are vertices.
Thus, there exists a path of length at most d(B) from (0, yk) to (0, y′) where s remains fixed at 0,
by an application of Lemma 4 to the facet defined by s = 0. Thus, the distance from (x, s, y) to
(x′, s′, y′) is at most d(Ā)(db(B̄) + 1) + d(B).

Now, we suppose that there exists a vertex, (xi+1, si+1), in the walk with si+1 > sRmax. We
further assume i + 1 is minimal. This implies sRmax < sQmax, and thus s′ ≤ sRmax by Lemma 5. The
distance from (x, s, y) to (xi, si, yi) for some yi is at most i(db(B̄)+ 1) by the previous case and the
minimality of i+1. As si+1 > sRmax, the step (xi, si) → (xi+1, si+1) does not lift successfully. Instead,
the resulting vertex is ((xi+1)′, sRmax, y

i+1) for some (xi+1)′ ∈ conv{xi, xi+1}. Let j be the largest
index such that sj > sRmax. The vertex (x′, s′, y′) is at most at distance (k − j − 1)(db(B̄) + 1) + 1
from a vertex of form ((xj)′, sRmax, y

j), for some (xj)′ ∈ conv{xj , xj+1}, again by the previous case
and the maximality of j.

The proof of Theorem 2 from Subsection 3.2 implies that the distance between ((xi+1)′, sRmax, y
i+1)

and ((xj)′, sRmax, y
j) is at most d(Ā) + d(B̄). Therefore, the distance between (x, s, y) and (x′, s′, y′)

is at most i(db(B̄) + 1) + 1+ d(Ā) + d(B̄) + (k − j − 1)(db(B̄) + 1) + 1. In the worst case, i+ 1 = j
and k = d(Ā). Thus, the bound is at most (d(Ā)− 1)(db(B̄) + 1) + d(Ā) + d(B̄) + 2.

If (x, s, y) has basis split (m1, 1,m2 − 1), then (x, s, y) is at most d(B̄) steps from a vertex in
another category, by Lemma 8. If (x′, s′, y′) has basis split (m1, 1,m2 − 1), the same is true. Thus,
2d(B̄) extra steps may be required. ⊓⊔

When sQmin ≤ sRmin, a bound can be derived by interchanging the roles of Q and R. In this case
the diameter is bounded by the maximum of d(B̄)(db(Ā)+1)+d(A)+2d(Ā) and (d(B̄)−1)(db(Ā)+
1) + d(Ā) + 3d(B̄) + 2.

If both Q and R satisfy Hirsch, then the bounds can be simplified further.
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Corollary 3 Suppose that Q and R are polyhedra that satisfy Hirsch and sRmin ≤ sQmin. Then the

diameter of the series-connection polyhedron, S, is at most the maximum of

{d(Ā)(db(B̄) + 1) + 3d(B̄), (d(Ā)− 1)(db(B̄) + 1) + d(Ā) + 3d(B̄) + 2}.

The result follows from the fact that Hirsch implies that d(A) ≤ d(Ā) and d(B) ≤ d(B̄), which
follows from its equivalence with the non-revisiting conjecture.

4 Conclusion and Outlook

In this work, we established diameter bounds for the parallel and series connection of polyhedra.
These constructions are based on the corresponding classical matroid operations. For the parallel-
connection polyhedron, we were able to devise a bound that adds a constant 2 to the diameters of
the original polyhedra (and would exceed the claimed Hirsch bound by 3). For the series-connection
polyhedron, we obtained a bound that adds the range of the shared variable to the original diameters.
The latter can be translated into a quadratic term in the Hirsch bound, provided that distances are
realized by so-called s-monotone walks; this is a much weaker assumption than working with general
monotone diameters. While the series-connection bounds require that the underlying polyhedra
satisfy the Hirsch conjecture, and while the derived bounds are weaker, they hold for a broader
class of polyhedra.

There are a few natural directions for next steps. First, validity of the Hirsch conjecture for
the connection of two Hirsch-satisfying polyhedra remains open. In particular, in all but a few
special cases, the constant added in the parallel connection is a strict overestimation. For the
series-connection polyhedron, there is even more room for improvement towards a linear bound
or the actual Hirsch bound. Corollary 3 also raises a more general question about the relation
of the s-bounded diameter and the traditional combinatorial diameter: if the s-bounded diameter
is polynomial in the traditional diameter, then does the series connection of two polyhedra that
satisfy the polynomial Hirsch conjecture also satisfy the polynomial Hirsch conjecture? By design,
our approach is limited to transferring walks in the original polyhedra to the connected polyhedron.
For possible improvements, we expect that one has to leave this setting; i.e., one has to construct
walks that are known to be short, but do not correspond to walks in the original polyhedra.

Second, parallel and series connections are, in particular, meaningful due to their intimate
relation to the 2-sum [19]. While one can obtain a 2-sum through deletion or contraction on the
matrices, such operations generally do not allow for the immediate transfer of diameter bounds:
it is well-known that faces of polyhedra that violate the Hirsch conjecture may themselves satisfy
the bound and, conversely, a polyhedron may satisfy the Hirsch conjecture, but some of its faces
may not. However, our approach to the parallel connection itself actually comes close to being a
bound for one of the possible phrasings of 2-sums as in [22]; see the introduction of Section 2. We
essentially proved a bound that holds if one of the two matrices has a special form – the final step
is to generalize the special form to this matrix.

And third, general k-sums for k > 2 and the associated parallel and series connections on
(complete) k-edge subgraphs are of similar interest to 2-sums. In a mathematical programming
sense, they correspond to a more general linking of two subsystems; in the construction of totally-
unimodular matrices, both 2- and 3-sums are fundamental operations. It would be promising to
extend our approach – the transfer of walks from the original polyhedra – to 3-sums and general
k-sums. We expect that polynomial bounds of at most power k are possible for both types of
connections.
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