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Abstract. The computation of exact barycenters for a set of discrete measures is of interest in applica-
tions where sparse solutions are desired, and to assess the quality of solutions returned by approximate
algorithms and heuristics. The task is known to be NP-hard for growing dimension and, even in low
dimensions, extremely challenging in practice due to an exponential scaling of the linear programming
formulations associated with the search for sparse solutions.

A common approach to facilitate practical computations is an approximation based on the choice of
a small, fixed set of combinations of support points from the measures that may be assigned mass.
Through classic integer programming techniques, we model an integer program to compute additional
combinations of support points that, when added to the fixed set, allow for a better approximation of
the underlying exact barycenter problem. The approach improves on the scalability of previous column
generation approaches: instead of a pricing problem that has to evaluate exponentially many reduced
cost values, we solve a mixed-integer program of quadratic size. The properties of the model, and
practical computations, reveal a tailored branch-and-bound routine as a good solution strategy.
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1 Introduction

Barycenter problems have seen much attention in the literature due to their relevance for applications in a
wide range of fields; see Section 1.1. Data for these problems is typically represented as so-called discrete
(probability) measures P;, i.e., probability measures with a finite number |P;| of support points.

The input for the discrete barycenter problem is a set of discrete measures Pi,..., P, whose support
points lie in R? and a corresponding set of positive weights A1, ..., A, with >, A = 1. Then the discrete
barycenter problem is: find a measure P such that
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where Wy is the quadratic Wasserstein distance and P?(R?) is the set of all probability measures on R?
with finite second moments (Agueh and Carlier 2011). Because the measures Pi,..., P, are discrete, all
barycenters P are also supported on a finite subset of R?. In addition to information on the support set
and associated masses, computing the associated transport cost ¢(P) requires identifying the destination
(support) points in each Py,..., P, to which mass is transported from each support point of P. Then the
optimal transport cost ¢(P) can be computed as the summation of the weighted squared Euclidean distances
between each barycenter support point and its destination points (Anderes et al. 2016, Carlier et al. 2015,
Villani 2009).

1.1 Fixed-Support Approximations

The computation of barycenters arises in a vast range of applications, from statistics (Munch et al. 2015,
Zemel and Panaretos 2019), over economics (Beiglbock et al. 2013, Chiaporri et al. 2010), game theory
(Carlier and Ekeland 2010, Carlier et al. 2015), physics and the material sciences (Cotar et al. 2013, Jain
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et al. 1998, Trouvé and Younes 2005), to image processing (Janati et al. 2020a, Simon and Aberdam 2020,
Cohen et al. 2020) and machine learning (Heitz et al. 2021, Ho et al. 2019, 2017, Schmitz et al. 2018, Yan
et al. 2021). We refer the reader to the recent surveys by Peyré and Cuturi (2019), Panaretos and Zemel
(2019) and the textbooks by Villani (2009) and Natarajan (2021).

In recent years, there has been growing interest in approaching clustering and learning applications for
high-dimensional data (Cohen et al. 2020, Ho et al. 2019, 2017, Singh et al. 2020), such as those arising in
natural language processing (Xu et al. 2018, Ye et al. 2017). However, the computation of a barycenter or an
approximation is challenging: the barycenter problem is known to be NP-hard for growing dimension, and
this hardness extends to approximate computations, some special cases, and other optimal transport metrics
(Altschuler and Boix-Adsera 2022). A variation in which one wants to find a sparse barycenter, i.e., one with
a low number of support points, remains NP-hard even for dimension two and three measures (Borgwardt
and Patterson 2021). By contrast, the barycenter problem is solvable in polynomial time for fixed dimension
(Altschuler and Boix-Adsera 2021).

There is a wide field of research that addresses these challenges through approximate and heuristic
methods. Barycenter problems are readily interpreted as multi-marginal optimal transport problems with
a special geometric cost structure. Many recent algorithmic improvements for structured multi-marginal
optimal transport problems, see for example (Benamou et al. 2015, 2016, 2019, Nenna 2016, Haasler et al.
2021) and references therein, have been particularly impactful for barycenters, and the complexity results in
(Altschuler and Boix-Adsera 2021, 2022) build on the intimate connection.

A popular approach is to a priori specify a support set Sg C R? of possible support points and then
optimize over measures supported on Sy, i.e., over the masses associated to each support point. There are
many variations of such fized-support approximations (Altschuler and Boix-Adsera 2022). In particular, a
restriction of Sy to the union of original support points in the measures leads to a strongly-polynomial-
time 2-approximation in any dimension (Borgwardt 2022). For n measures supported on a shared grid, a
barycenter is contained in an n-times finer grid (Borgwardt and Patterson 2020).

In general, the fixation of a polynomial-size S leads to a polynomial-size linear program (LP) (and avoids
an exponential scaling in d) which can be solved directly using blackbox LP solvers or through specially
tailored approaches such as entropic regularization introduced by Cuturi (2013), Cuturi and Doucet (2014).
In the latter approach, the LP is made strongly convex through the addition of a small entropy cost, so that
more efficient solvers can be applied. This approach has been refined for competitive, approximate large-scale
computations; see, e.g., Benamou et al. (2015), Janati et al. (2020b), Kroshnin et al. (2019), Lin et al. (2020),
Solomon et al. (2015).

An alternative approach to obtain an LP is to use the non-mass splitting property (Anderes et al. 2016)
of barycenters and the Wasserstein distance: given a set of single support points in n measures, the optimal
location for joint transport of mass to them is their weighted mean; we describe this observation in some
detail in Section 2. A barycenter decomposes into such combinations of support points (also called couplings in
multi-marginal optimal transport theory), each associated some mass, of the original measures. In turn, this
allows one to perform an exact barycenter computation through modeling an LP that assigns mass optimally
to the set S* of all combinations. The resulting LP is a formulation as a general multi-marginal optimal
transport problem with a special cost. See, e.g., Anderes et al. (2016), Benamou et al. (2015), Borgwardt
and Patterson (2022). Note that S* generally is of exponential size |S*| = [[\_, |P;|. Again, it is of interest
to approximate a barycenter through a smaller set of possible combinations Sg.

Recent algorithms that take alternative approaches, i.e., do not build on Sy or S, such as the Frank-Wolfe
algorithm of Luise et al. (2019) and the Functional Gradient Descent algorithm of Shen et al. (2020) are rare
exceptions. They underscore a desire to step away from a fixation of Sy or Sj; at the same time, it remains
desirable to retain the ability to connect to and use tools from the long line of research on fixed-support
approximations.

1.2 Contributions and Outline

For both types of fixed-support approximations, based on optimization over a given support set Sy or a set
of combinations 5§, the size of Sy or S§ is the bottleneck. In this work, we are interested in the generation of
support points or combinations that can be used for Sy or Sj, respectively. We describe an integer program,
and develop a branch-and-bound approach, to find a new combination to add to a given set Sg that could



allow an improvement of an optimal barycenter approximation over the new Sg. The combination corresponds
to a new support point for Sy, too. As such, our method can be used to, a posteriori, improve an approximate
barycenter computed through any method in the literature, or to certify optimality thereof.

When used in an iterative scheme, our method would improve any approximate barycenter to an exact
barycenter. Thus, it can be used to compete with the previous column generation method in Borgwardt
and Patterson (2022) and will outperform it as soon as the exponential-size reduced-cost vector becomes
prohibitively large compared to setup and solution of a polynomial-size integer program. Depending on the
previous method’s implementation, the advantages lie in significantly faster speed at only slightly larger
memory or similar computational speed at significantly smaller memory and setup time. One obtains the
ability to compute exact barycenters for larger instances than before.

However, this favorable behavior also reveals its main challenges: by design, the method solves a pricing
problem for exact barycenters, which itself is already known to be NP-hard from hardness of the separation
oracle for the underlying dual LP and, if run in an iterative scheme, it solves the NP-hard exact barycenter
problem (Altschuler and Boix-Adsera 2021, 2022). In turn, the approach is computationally expensive and
can only be expected to be applied to problems of small-to-moderate size. Further, multiple combinations
may have to be computed before a strict improvement is possible and accuracy of computations requires
special attention.

The paper is structured as follows. In Section 2, we first recall some background on an (exponential-size)
LP formulation for the barycenter problem based on S* and the non-mass splitting property. Then we turn
to our main contribution: we devise an integer program (IP) to search for a combination of support points
to add to a given S§ such that an improved approximation may be possible. We then show that this IP can
be transformed into a simpler mixed-integer program (MIP) through the use of some optimality conditions.

In Section 3, we discuss a practical implementation. We first turn to a theoretical study of properties
of the mixed-integer program, such as the fractionality of optimal solutions in a relaxation, which inform
the design of solution strategies. Then we analyze the practical results of computational experiments, and
discuss the potential and limitations of the proposed approach. The experiments highlight better scaling in
speed or memory and reveal viable approaches in practice. We conclude in Section 4 with some final remarks
and promising directions of research for further improvements.

2 An Integer Program for Support Point Generation

2.1 A Linear Program for Exact Barycenter Computations

We begin by recalling the construction of a linear program for the computation of a barycenter based on
the set S* of all combinations of support points of measures Pi,..., P,, i.e., as a multi-marginal optimal
transport problem with special cost. It has been shown (Anderes et al. 2016) that all barycenters satisfy the
non-mass-splitting property, that is, all mass associated with a barycenter support point is transported to
a single destination point x; in each P;, i = 1,...,n. Furthermore, for a given combination of destination
points, the mass assigned to that combination must be located at the weighted mean Z?:l AiZ;, as any
other location produces a strictly increased cost. For this reason, a barycenter can be described as a set of
combinations of destination points and corresponding masses, and the location of the mass assignment can

be computed as the weighted mean, when needed. Specifically, S* contains elements s;, = (ac?, . ,xﬁ) for
h=1,..., H?Zl |P;|, and each sj has a corresponding fixed unit-mass transport cost ¢j, for each potential

combination of destination points. The cost ¢, can be computed without computing the weighted mean itself,
shown in Borgwardt and Patterson (2022) to be

n
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Then the transport cost of the barycenter ¢(P) can be computed as the sum of the mass assigned to sy,
times the unit transport cost cp,.

A resulting linear program for solving the discrete barycenter problem is as follows. Let ¢ = (cp) be
the vector stating the unit-mass transport costs for each element of S* and let d = (d;x) be the vector
stating the mass at support point x;;, the k** support point of P;. The 0, 1-matrix A gives constraints that



enforce that each support point in each measure receives the correct mass: each row has l-entries for all
combinations s in which x;; appears, and 0 otherwise. The variable vector w = (wp,) denotes mass assigned
to each combination sp. This gives a standard form linear program.

T

min c¢'w
st. Aw=d (Bary-LP)
w > 0.

The number of variables in LP (Bary-LP) is []"_, |P;|, which scales exponentially in the number of
measures n. However, LP (Bary-LP) contains only Y ., |P;| constraints, which makes it a prime candidate
for column generation as explored in Borgwardt and Patterson (2022).

2.2 An Integer Program for Support Point Generation

Classic column generation begins with a (reduced) master problem containing only a small number of all
possible variables; for LP (Bary-LP), this is a small number of all possible combinations. Information from
the current solution is used to choose a new variable, found by solving a separate pricing problem, for
introduction to the master problem.

Specifically, a reduced master problem begins with a set of possible combinations Sg that is a small
subset of the set of all combinations S*. Then, the classic pricing problem uses the dual vector y from the
current master problem, whose elements correspond to each constraint in the master problem, and Ay, the
column of A corresponding to each sj,. By minimizing ¢, — yT A, (or, equivalently, maximizing y* A;, — cz),
an index h* corresponding to combination sy« is found, and s« is the chosen combination for introduction
to the master problem.

It is possible to solve the classic pricing problem by fully processing the vector ¢, which has one entry for
each combination s, € S*\S§, and selecting the best value (Borgwardt and Patterson 2022); in an iterative
scheme, the processing of ¢ can be implemented by computing and storing it a priori or by recomputing its
entries as needed. The primary goal and contribution of the work in this paper is to reformulate the pricing
problem without searching the exponentially-scaling c. Instead, we seek to choose a combination sp- by
formulating a pricing program that will individually select an element z; of each measure P;. Our approach
will make use of properties of the costs ¢y, specific to barycenter problems, and thus does not readily transfer
to general multi-marginal optimal transport problems. Because of these properties, we are able to arrive at
a quadratic, and later linear, objective function for an integer program.

We begin the development of a new formulation by expanding the expression for ¢, from Section 2.1 in
the same manner as in Borgwardt and Patterson (2022):
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We reformulate this cost expression, returning to using the original list of support points x;; instead of
the combination h. For each i and k, let z;, be a 0, 1-variable where we interpret z;; = 1 to mean z! = z;,.
Then the first term (z7)7az! of the expansion above can be rewritten as Z;:ll Z?:H_l A ()Tl =
22:11 Z?:z 1 ZLpzll )\i)\jxﬁxikzik, with the other terms being reformulated similarly.

Additionally, at the optimal index h, the vector (z;;) is precisely Ay, and so y? A; may be reformulated
as well. In contrast to the classic pricing objective function maxj y* Ay, — ¢, in our objective function these
terms will be summed up (and through a set of constraints we guarantee that all but one summand are
0). This allows a reformulation that merges terms for different combinations. Since the constraints in LP
(Bary-LP) ensure that x;;, the k' support point of measure P;, receives the correct mass d;x, we match the
formatting on the index of the elements of the dual vector y as yu, i = 1,...,n and k = 1,...,|P;|, giving



y = (yir), and yT A, =37 Z‘k ‘1 YikZik-
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To enforce that we choose exactly one element from each measure, we introduce constraints

Satisfaction of these constraints allows us to expand the quadruple-sum in the objective and simplify two of
its three terms to

n | Pl n |Pil n  |Pjl
Erzlao)( E E YikDik — E E E A\ xlkxlkzzk — E E E LYY xjmx]mzjm
ik i=1 k=1 =1 j=i+1 k=1 i=1 j=t+1m=1
n  |Pi| |P]
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However, this remains a quadratic objective function due to the products z;;z;,,. The resulting quadratic
program is as follows.

n | Pl n |Pil n—1 n | P | T
max > > YikZik — Z XY ANNrhaazi— 3 2 2 NANT T imZim
(zik)  i=1k=1 i=1 j=i+1k=1 i=1 j=i+1m=1

n—1 n |P] |P|

+2 Z >3 S b aimzizim

i=1 j=i+1 k=1 m=1 (Gen_QP)
| P |
s.t. Sz =1 Vi=1,...,n
k=1
z;r € {0,1} Vi=1,...,n,Vk=1,...,|F]

To reformulate the quadratic objective, we use some classic integer programming techniques. Recall that
the z;;, are 0, 1-variables. First, we introduce new variables z;;,, to represent each product z;;z;.,. Second,
we add linear constraints that link the new variables z;;rm, to the original z, zjy:

Zijkm < Zik
Zijkm < Zjm

Zijkm = Zik + Zjm — L.

The result is a linearization of the integer program in which z;;, = 0 or z;,, = 0 forces z;;x, = 0 due
to the first two constraints, and zxj, = 1 if z;; = 2, = 1 due to the third constraint. This implies that
Zijkm = ZikZjm for all z;;,z;, € {0,1}. These constraints only need to be stated for pairs ¢, j with ¢ < j.

1
In the following, the vector z = (%,) lists all z' = (z;;,), followed by all 22 = (z;;m). We use the notation
z € {0, 1} to denote that all its components lie in the specified domain.

We sum up the construction through a full formulation of the integer program for generating a combina-
tion of optimal reduced cost, and a corresponding formal statement.
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Zistom < Zik, Vie1,...omNj=1,....n,5>i, (Gen-IP)
Vk:1,7|PZ|,Vm:1,,\PJ|

Zijk:mgzjma Vi:1,...,n,Vj:1,...,n,j>i,
Vk=1,...,|B|,Ym=1,...,|P]

Zijkm = Zik + Zjm — 1, Vi=1,...,n,Vj=1,...,n,j5 > 1,

Vk=1,...,|P|,Ym=1,....|P]
z € {0,1}

Theorem 1. Given a set of possible combinations S§, and an optimal fized-support approzimation of the
barycenter problem over S§, IP (Gen-IP) finds a new combination of best reduced cost from the set of all
combinations S*.

Note that the input of S§ and the best solution for that set of possible combinations are required for the
specification of y = (y;x). By contrast, the set of constraints of IP (Gen-IP) is independent from this input.

2.3 A Simpler Mixed-Integer Program

Next, we simplify IP (Gen-IP) to a smaller mixed-integer program (MIP), i.e., a program in which some of
the variables are not required to be integer. The advantages over IP (Gen-IP) will be twofold: in addition to
the relaxation of some integer variables, we will be able to eliminate a type of main constraints.

To this end, we assume that = > 0 in all measures. This assumption is not a restriction, as the region
containing all x;;, can always be shifted to lie in the positive orthant of R? without changing the optimal
solution. This can be verified by recalling that ¢, = Z?;ll i Ajllz} — 2||? only takes into account
(squared) pairwise distances of 27, :c? The consequence of this assumption is that :L’Z;cxjm > 0 for all 5, .

We begin by showing that, in any optimal solution, z;;r., is chosen as large as possible, even without
explicit specification of the constraints z;jxm > Zix + 2jm — 1 or domain constraints z;;i», € {0, 1}.

Lemma 1. Let x > 0 and let z° be an optimal solution to an LP relazation of IP (Gen-IP) without specifi-
cation of the constraints Zigjm > Zik+ zjm — 1. Let further 2, € {0,1} foralli=1,...,nandk =1,...,|P,]|.
Then z* € {0,1}.

Proof. We have to prove that the auxiliary variables z}
objective, they only appear in the term

satisfy z* € {0,1}. In the maximization
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Recall that x > 0 by assumption, and that A > 0 by definition. Thus, A;\; %k%m > 0. For fixed z?}
{0 1}, a maxnnal objective function value can only be achieved by choosing z}

2 < 2, one obtains z7;, =~ = min{z}

S
ik>Z ]m
Tikm s large as possible. As
} € {0,1}. This proves the claim. O

ik> jm’ ijkm ik jm

Lemma 1 shows that, in an optimum of such a relaxation of IP (Gen-IP), if zj; = z7,, = 1 then z
and if z};, = 0 or ng = 0 then z” wm = 0. More generally, integrality of the z}, implies mtegrahty of the
auxiliary variables zj;, ., and z7;,, > zj + zj, — 1 is automatically satisfied. Thus, we can drop the
constraints z;;xm > 2, + 2z, — 1 and domain constraints z;jxm, € {0,1} from IP (Gen-IP) to obtain an MIP

that retains the same optimal set. Let us state this MIP; recall the notation z' = (z).

zkm_17
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zijkmgzik, Vi:1,...,n,Vj:1,...,n,j>i,
Vk=1,...,|P|,Ym=1,....|P]
Zijkm < Zjm, Vi=1,....,n,¥Vj=1,...,n,5 > 1,
Vk:L...,\HLVm:L...,\Pﬂ
z! € {0,1}

In fact, the maximal choice of z7;,,, = = min{z};, z},,} shown in the proof of Lemma 1 also holds when

* is fractional, i.e., when zj; , 77, # 0 1. This will be helpful in the further analysis and for the design of a
viable solution approach in Section 3.

We sum up these observations with a formal statement on the equivalence of the optimal sets of IP
(Gen-IP) and MIP (Gen-MIP).

Theorem 2. Letx > 0. Given a set of possible combinations S§, and an optimal fized-support approzimation
of the barycenter problem over S§, MIP (Gen-MIP) finds a new combination of best reduced cost from the set
of all combinations S*. The sets of optimal solutions z* of IP (Gen-IP) and MIP (Gen-MIP) are identical.

We conclude this section with a closer look at the size of MIP (Gen-MIP) in terms of the number of
variables and constraints. For simplicity, let all n measures have p support points. Then there are n - p
0, 1-variables of type z;;. In the following, we refer to support points by their variables z;y.

Each z;;, is matched with (n—1)-p variables z;;xm, one for each point z;,, in another measure. As, i < j,
there exist 2 ((n-p)- ((n—1)-p)) = (5) - p* continuous variables z;jx,. Together, there are a total of

n
n-p 0,1-variables and <2> - p? continuous variables.

The main constraints are comprised of two types: first, there are n equalities Zizl z;;;, = 1, one for
each measure P;. Second, for each z;jxy,, there are two inequalities z;jrm < Zik, Zjm. As @ < j, this gives
(5) - 2p* = n(n — 1) - p* constraints. In total, we have

n+4n(n —1) - p? main constraints.

Thus, MIP (Gen-MIP) has a quadratic number of continuous variables and main constraints in the
number n of measures and number p of support points in each measure, as well as a linear number of
0, 1-variables. While this contrasts sharply with the number p™ of possible combinations, and while it is a
significant improvement over IP (Gen-IP) (where the z;;x.,, are 0, 1-variables and each has an additional main
constraint), of course, MIPs with such scaling generally quickly become hard to solve. In the next section,
we discuss our strategy for and implementation of a solution approach.

3 Solution Approach and Practical Implementation

We begin with the design of a viable solution approach to MIP (Gen-MIP), informed by the observations in
Section 2.3. Then, we present some computational results and discuss advantages and disadvantages of our
approach.



3.1 A Branch-and-Bound Strategy

Our main goal is the design of a strategy for the solution of MIP (Gen-MIP). In general, mixed-integer
programs can be difficult to solve. However, the observations in Section 2.3 lead to a quite natural and
promising approach. Recall that the variables that are required to be integer are only the z;;: if and only if
these form a 0, 1-vector, the result corresponds to a combination of support points from each measure.

By Theorem 2, the optimal sets of MIP (Gen-MIP) and IP (Gen-IP) are identical. This allows an im-
mediate application of Lemma 1 to an LP relaxation of MIP (Gen-MIP): if an optimal solution z* in such
a relaxation exhibits z; € {0,1}, then all variables zj;, . ‘automatically’ satisfy zj;;,, € {0,1}, too. This
means that a branch-and-bound approach for solving MIP (Gen-MIP) requires branching only over the set
of n - p 0, 1-variables z;,. We are going to use such a branch-and-bound approach.

First, let us take a closer look at the LP relaxation of MIP (Gen-MIP). Typically, constraints of type
z! € {0,1} are relaxed to 0 < z! < 1. However, note that z! < 1 is implied by ZLpzll z;, = 1 for all
i=1,...,n. Thus it suffices to add the constraints 0 < z' to the system. We arrive at the following LP.

n | Pil n—1 =n |Pi n—1 n |Pl
max > 3 YikZik — 3. 0. 2 NNTRTikZi— 2. D . TinTimZim
z i Z1k=1 i=1 j=i+1k=1 i=1 j=i+1m=1
n—1 n | P ‘Pj|
230 2 X 2 ANNTRT mEijkm
i=1 j=it1 k=1m=1
| Ps |
s.t. Zip = 1 Vi=1,...,n (Gen_LP)
k=1
Zijknngzikv Vizlv"'vnvvj:1a"'7naj>i7
Vk=1,....|PLYm=1,...,|P
Zijkm < Zjm., Vi=1,...,n,Vj=1,...,n,7 >1,

szl,,|Pl|,Vm:1,,|Pj|
z! >0

For a simple discussion, we again assume that all n measures have p support points for the remainder of this
section. LP (Gen-LP) then has the same number of n - p + () - p* variables as the MIP, and an additional
n - p constraints that replace the 0, 1-domain of the z;, for a total of n+n(n — 1) - p? + np constraints. This
quadratic scaling leads to relatively low memory requirements for moderate problem sizes; see Section 3.2.

It suffices to search for an optimal, integral vertex z* of LP (Gen-LP) to match the optimum for MIP
(Gen-MIP) due to containment of the optimal set of the LP in the [0, 1]-unit hypercube in the underlying
space. In the following, we use the tag (Gen-LP) to also refer to the underlying polyhedron. To measure
‘how far’ one is from having an integer solution, we now study the number of fractional components — we
refer to this as fractionality — of a vertex of polyhedron (Gen-LP). Early computations immediately revealed
that the LP can lead to fractional optimal vertices. In particular, while the constraint matrix has only 0, 1-
entries, it is not totally-unimodular; we provide a brief, elementary argument in an appendix. This is not
surprising: pricing for exact barycenters is NP-hard (Altschuler and Boix-Adsera 2022), unless the dimension
is fixed (Altschuler and Boix-Adsera 2021). The dimension of the underlying data affects LP (Gen-LP) only
in the size of scalar products in the objective function. The polyhedron does not depend on the dimension
and right-hand sides are integral, so one would get an efficiently solvable pricing problem if the matrix was
totally-unimodular; a contradiction.

The study of fractionality serves two purposes. First, we show that there are not only fully-fractional
solutions, i.e., solutions where all components are fractional, but even fully-fractional vertices. This further
justifies the use of classic integer programming techniques, such as branch-and-bound, to ‘break up’ a high
fractionality. In other situations, specifically if the number of fractional variables is provably low, simpler
approaches, such as tailored rounding routines, sometimes suffice in practice. Such an example appeared
in our previous work, for example, in Borgwardt et al. (2011). Second, we are able to identify a repeated
structure in the fractional components of a vertex. This helps with the selection of promising branching rules.

We begin by showing the existence of a fully-fractional vertex of polyhedron (Gen-LP). It is not hard to
state a fully-fractional solution z* of LP (Gen-LP). Consider an input of n > 2 measures of p > 2 support
points. Then z* defined by setting z}, = % for all 1 < n,k < p and 2 = min{z},, z;‘m} = % clearly gives
a feasible solution to LP (Gen-LP). We now show that z* is, in fact, a vertex.



Lemma 2. Let n > 2,p > 2. Then z* defined by 2}, = % for all i < n,k < p and 2

ikm = % for all
1<n,j<n,j>iandk <p,m<pisavertex of polyhedron (Gen-LP).

Proof. Recall that, given a representation of a polyhedron, to form a vertex there has to exist a set of active
constraints whose normals form a matrix of full rank equal to the dimension. In other words, one has to
identify a row submatrix of active constraints with a rank equal to the dimension of the underlying space,
i.e., equal to the number of variables n - p + (72’) - p? of LP (Gen-LP).

To this end, note that the second and third types of constraints of LP (Gen-LP), rewritten as

Zijkm — Zik §0, Vizl,...,n,Vk:L...,p
Zijkm — Zjm <0, Vi=1,...,n,j>i,Vm=1,...,p

form a collection of rows with a single +1 and a single —1, and 0 everywhere else. The corresponding row
submatrix is the transpose of the node-arc incidence matrix of a directed, bipartite graph G = (V, E) with
vertex set V = AUB, where A is the set of z;jim, B the set of z;;, and F the set of directed arcs from A to
B that connect each z;j,, with z;;, and z;y,.

For a node-incidence matrix, a column set is linearly independent if and only if it does not form a cycle
in the underlying undirected graph. Based on this idea, we identify a set T of n - p + (g) -p? —1 arcs in
this graph that do not form a cycle. These arcs correspond to a row submatrix of rank n - p + (Z) -p? — 1.
Afterwards, we then have to identify only one additional, independent row from LP (Gen-LP).

First, note that each z;;x., is connected to only z;;, and z;,,. To form a cycle in G that includes a z;;xm,
one has to select both incident arcs. This allows us to begin construction of T by adding ezactly one of
these two arcs for all z;;z,, which gives (g) - p? arcs. Informally, we start with a maximal matching in the
underlying bipartite graph.

It remains to identify n - p — 1 further arcs that can be added to T without closing a cycle. First, we add
all the missing (n — 1) - p arcs to connect z;7 to all z;, for 2 < j <n, m < p by a path of two edges incident
t0 Z1j1m. Second, we add all the missing p — 1 arcs to connect zy; to all z1,, for 2 < m < p by a path of two
edges incident to zj9,,1-

We arrive at a total of (n—1)-p+(p—1) = n-p—1 additional arcs that do not form a cycle in the graph:
only z1; and zy; are connected (by paths of two edges) to other nodes of type z;;, but a cycle would have
to include at least one more z;;. Informally, we have constructed a spanning tree in the underlying bipartite
graph.

It remains to identify one additional independent row in the system. Of course, the equality constraints
Zizl z;r, = 1 for i < n are always satisfied. The rows corresponding to set T (augmented with their right-
hand sides 0) form a system with feasible solution set z = c- (1,...,1)T for all ¢ € R, and adding any of the
equalities > 1 _, z;, = 1 gives precisely ¢ = %. Thus, we add the row of one of the equalities (> 7 _; zi = 1
for any i) to T and obtain a row submatrix of full rank. This shows that z* is a vertex of polyhedron (Gen-
LP). O

While the above example might seem pathological, highly and fully-fractional solutions do appear in our
practical computations in Section 3.2; c.f., Table 7. As we will see, classic branching rules, such as branching
on lowest-index variables or those closest or furthest from integrality, all are viable to break up the high
fractionality.

We conclude this section by proving a sufficient property for an optimal vertex z* of LP (Gen-LP) to be
integral. We show that the fractional values in z!, i.e., the variables z}, z3,,, cannot all be different. In fact,
there must be a repeated value zj;, = z7,, for some i # j and some k, m. Otherwise z* € {0,1}.

Lemma 3. Letn > 2,p > 2. Let further 2* be an optimal vertex for LP (Gen-LP) and let zj; # 2;,, for all

0 < 2y, 2}, < 1 withi# j. Then z* € {0,1}.

(2

Proof. We prove the claim by contradiction. Assume z* ¢ {0,1} and zj, # z},, for all 0 < zj;,z7,, <1 with
1 # j. We will show that the number of (independent) active constraints is strictly less than the number
n-p+ (g) - p? required for a vertex of polyhedron (Gen-LP). We now build this set 7" of active constraints.

Note that the n equality constraints are always active and independent from each other; they are added
to T. Note further that variables z;; only appear in the i-th equality constraint and that, for each i, at least

one z}; satisfies z7,, > 0. Thus one can add any active domain constraints z;; > 0 to T" while retaining linear



independence. As z* ¢ {0,1}, at most n- (p — 1) — 1 domain constraints of type z;; > 0 are active. At this
point, the size |T| of T is bounded above by |[T|<n+n-(p—1)—1=n-p—1.
The remaining (Z) - p? + 1 active, independent constraints need to come from the auxiliary constraints

Zijkm < Zik

Zijkm < Zjm

for the different z;;im. As z* is optimal, zz‘j e = min{z,, z;m}. Thus at least one of the auxiliary constraints

is active for each Zzjjim. Such a constraint can be added to 71" while retaining linear independence, as the
variable z;ji, is not used in any of the other constraints in 7.

As zjy, # z,, for all 0 <z}, 23, <1 with i j, only one auxiliary constraint is active whenever at least

one of the variables is fractional. That constraint is added to T'. For zj} = z7,, = 0 or = 1, however, both

constraints are active. If z};, = z;m = 0, the corresponding domain constraints z;; > 0 and z;,, > 0 already
are in T'. The system

Zijkm < Zik
Zijkm < Zjm
Zik, > 0
ij Z 0

only has rank 3, as it involves 3 variables. Thus the second constraint involving z;;x,, may not be added to
T without violating independence.
Finally, if zj, = z},, = 1, then the system

P
ZZ“ =1
=1
20>0 VI<pl#k

is of full rank p. The same holds for

p
> zi=1
=1

zj; > 0 Vi <p,l #m.

Combining these two systems with the constraints

Zijkm < Zik

Zijkm < Zjm

gives a system of rank 2p 4 1, as it involves 2p + 1 variables. Again, the second constraint involving z;;xm
may not be added to T' without violating independence.

Thus exactly (g) -p? auxiliary constraints — one for each z;;xm — can be added to T while retaining linear
independence. The total number of active constraints is at most n-p+ (5) -p? =1 <n-p+ (3) - p?, strictly
less than what is required for a vertex of polyhedron (Gen-LP). This proves the claim. O

Lemma 3 implies that there must be repeats of a fractional value in any fractional optimal vertex. This
observation makes it promising to try a branching rule that prioritizes the elimination of such repeats and
compare its performance to standard branching rules. Further, such a repeat has to appear for fractional
values in different measures. Thus at least two measures are split fractionally; at least four variables are
fractional. This means that the depth of a branch-and-bound tree is bounded by n - p — 3, regardless of the
branching rule.
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3.2 Computational Experiments

The purpose of our computational experiments is twofold: one, to confirm the predicted behavior of solving LP
(Gen-LP) in regards to the fractionality of the vertices, and two, to explore the practicality of using MIP (Gen-
MIP). To these ends, we implemented a column generation routine using the Gurobi Mixed Integer Program
(MIP) solver using the C++ API; source code is available at https://github.com/StephanPatterson/
PricingIP. This MIP solver, as is standard in commercial solvers, is based on branch-and-bound, runs in
parallel, and by default supplements with cutting plane methods and other heuristics. We also implemented
a custom branch-and-bound routine fully in C++ (that only uses the Gurobi Optimizer as part of its node
exploration) for comparing different branching strategies; this source code is available at https://github.
com/StephanPatterson/IP-Pricing-BB. Throughout this section, we refer to these two implementations
as the MIP approach. For comparisons involving computation times or memory requirements, we relate to
the direct use of the Gurobi MIP solver for MIP (Gen-MIP). For information on fractionality, best branching
strategies, and the size of the branch-and-bound tree, we relate to our custom implementation.

When solving MIP (Gen-MIP) through the MIP solver in Gurobi, we found the solution times to be highly
influenced by solver options. We first disabled the cutting plane methods, as adding constraints (particularly
those without the same structure currently present in the problem) can increase solution times. Disabling
heuristics also improved solution times, while disabling the presolver dramatically increased solution times,
and remains enabled in the following experiments. We also set the MIP solver to focus on proving optimality
(MIPFocus = 2). With these settings, we performed a comparison of solution times of MIP (Gen-MIP) to
the quadratic program (Gen-QP). Allowing Gurobi to handle the quadratic objective directly was typically
slightly faster, but with slightly higher memory utilization; since the scaling with problem size was almost
identical, we focus our experiments on MIP (Gen-MIP). Source code for a direct solution of (Gen-QP) is
available at https://github.com/StephanPatterson/ColGen_QuadIPPrice.

A Comparison of Methods in Low and Higher Dimension. We compare two implementations of a
previous column generation strategy, based on a direct evaluation of the reduced cost vector y7 A — ¢ as
in Borgwardt and Patterson (2022), with the MIP approach in view of computational speed and memory
requirement. In both of our implementations of the direct evaluation, we efficiently form the product y” A in
each iteration of column generation, i.e., without storing the matrix A. In the implementation “CG SaveC”,
the vector ¢ of approximate size p™ is stored in memory, while in the second implementation “CG RecompC”
we recompute each element of ¢ as needed. Note that CG SaveC has exponential memory requirement and
comes with high setup costs for growing dimension due to the evaluation of d-dimensional scalar products for
each of the exponentially many elements cy; in contrast, CG RecompC has a minimal memory requirement
and setup cost (essentially just storing the original input) but recomputes the elements ¢; in each iteration,
which again requires the evaluation of d-dimensional scalar products and introduces a scaling with the
dimension in each iteration. One of the primary benefits of the MIP approach is that its feasible set does
not scale with the dimension, and memory and setup cost are small; the objective function is set up, just
once, by forming the scalar product for each pair of support points.

We performed experiments on data sets in dimensions 2, 12, and 48, to highlight effects that already
become visible in low dimension and effects in higher dimension. Recall that a 2-dimensional data set is
especially favorable for CG SaveC and CG RecompC. Our experiments were run on a laptop (MacBook Pro,
2.4 GHz Intel Core 19, 32 GB of RAM, SSD) with 16 cores for parallel computations. These experiments
consist of running column generation on n measures, with n between 3 and 36, and each measure containing
2 — 12 support points for an average of 2.3 — 4.7 support points per measure. We report on the averages for
many repeated runs, with 10 — 100 repeats depending on problem size. For higher dimensions, these problem
sizes (especially for the larger values of n) are already very challenging for an exact barycenter computation
(Anderes et al. 2016, Altschuler and Boix-Adsera 2022).

We begin with experiments on 2-dimensional data. The data for the experiments consists of event locations
given in latitude and longitude (support points). These locations do not underlie an obvious structure,
which is the hardest setting for barycenter computations (Altschuler and Boix-Adsera 2022, Borgwardt and
Patterson 2020). The events are grouped by the month and year in which they occurred (measures). Tables
1 and 2 display the results. In the tables in this section, n refers to the number of measures, support refers
to the total number of support points, and variables refers to the number of variables in MIP (Gen-MIP).
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Table 1 exhibits the gap in memory measured after the first solve of the pricing problem and the addition
of the first column to the master problem. Whereas the memory requirement for CG RecompC and the
MIP approach are almost constant for the experiments, and almost negligible for CG RecompC, the memory
for CG SaveC scales exponentially. As problem size grows, the memory gap widens and quickly reaches
some orders of magnitude. The same effect happens for setup times before the first iteration, which remain
negligible for CG RecompC and the MIP approach, but grow exponentially for CG SaveC, reaching up to
15 minutes for the largest instances.

In contrast, the high cost of recomputation for CG RecompC is evident in Table 2, which exhibits the
gap in average time per solution of the pricing problem. For small problem sizes, our experiments reveal
some overhead cost for the MIP approach in each iteration that is not needed for the classic approaches;
see the first row in the table. For the larger problems, the MIP approach and CG SaveC perform similarly
and run significantly faster than CG RecompC. As CG SaveC requires dramatically more memory and has
significant initial setup cost, the MIP approach performs best among the three options already in dimension
2.

Before moving to higher-dimensional experiments — where the strengths of the MIP approach lie by
design — we would like to note that, in dimension 2 and in absolute terms, neither of the above approaches
comes close to the performance of the fastest exact algorithm in the literature: the algorithm in Altschuler
and Boix-Adsera (2021) is reported to solve a problem with 10 measures and a total support of 200 points
exactly in about 50 seconds. We generated some data sets mirroring our problem sizes (more measures, fewer
support points) from Tables 1 and 2 and ran the algorithm on our equipment, validating overall running
times below 45 seconds. To the best of our knowledge, an implementation of this algorithm is not available
for higher dimensions.

n | Total Support Variables CG SaveC | CG RecompC | MIP
12 42 1,990,656 38 1 120
14 57 28,449,792 220 2 104
15 50 31,850,496 245 3 94

18 56 254,803,968 1,990 3 110
15 71 731,566,080 10,910 3 143
19 60 1,019,215,872| 22,910 3 146
17 73 1,567,641,600 23,370 3 139
16 69 1,820,786,688| 41,000 3 146

Table 1. Total memory used in MB for two-dimensional experiments.

n | Total Support Variables CG SaveC | CG RecompC | MIP

12 42 1,990,656 0.088 2.95 4.18

15 50 31,850,496 1.12 22.6 10.07
14 57 28,449,792 1.16 24.7 18.450
18 56 254,803,968 9.09 179.1 18.12
15 71 731,566,080 93.86 481.1 110.39
19 60 1,019,215,872 30.73 1.7 22.30
17 73 1,567,641,600 90.04 1092.3 115.28
16 69 1,820,786,688 126.47 1276.7 70.22

Table 2. Average time per solution of the pricing problem in seconds for two-dimensional experiments.

Next, we take a closer look at some experiments in which each support point has 12 or 48 characteristics
in its support, i.e., on a 12-dimensional and 48-dimensional data set, respectively. The support points were
constructed from an open data set: the Heart Disease data set available at https://data.world/kudem/
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heart-disease-dataset. Our goal is to exhibit the differences in performance to the previous 2-dimensional
runs. The overall problem sizes are similar to the top half of the experiments in Tables 1 and 2; as we will
see, for larger problems we run into scaling issues for CG SaveC and CG RecomputeC.

Tables 3 and 4 show the memory requirements and setup times. As expected, the memory requirements
are very similar to the 2-dimensional experiments; c.f., Table 1. CG RecompC requires minimal memory to
encode the original input, MIP requires a bit more due to encoding MIP (Gen-MIP), and CG SaveC exhibits
an exponential scaling. Major differences to the previous experiments lie in the computational cost for the
setup of CG SaveC. While that cost remains negligible for CG RecompC and the MIP approach at these
problem sizes, for CG SaveC, the computation of the exponentially-growing vector ¢ requires the evaluation
of scalar products that are 6 times or 24 times larger (compared to the 2-dimensional experiments) for each
element of c. In the tables, instances that exceeded 30 minutes for setup are marked with a (*).

Tables 5 and 6 show the average time per solution of the pricing problem. The results for CG SaveC and
the MIP approach again are similar to each other and similar to the 2-dimensional experiments; c.f., Table
1. This is as expected, as after setup the underlying dimension is not ‘visible’ anymore and the selection of a
best reduced cost or the solution of MIP (Gen-MIP) work just as before. Significant differences arise in the
scaling of CG RecompC, where the fact that much larger scalar products have to be formed in each iteration
(again 6 or 24 times larger than before) lead to an even larger gap in running times. In the tables, instances
that exceeded 30 minutes for their iteration time are marked with a (*).

. CG SaveC|CG RecompC| MIP
n [Total Support | Variables MB T sec [MB Soc MBI soc
12 42 1,990,656 | 33 | 8.79| 3 0.009 | 50 |0.007
22 47 12,582,912 | 194 |80.54| 3 0.009 | 77 |0.008
15 45 14,348,907 | 208 |71.69| 3 0.007 | 45 |0.007
15 50 31,850,496 | 488 [157.4| 3 0.006 | 60 |0.006
16 52 63,700,992 | 974 [322.5| 3 0.023 | 61 |0.009
17 54 127,401,984(1900(682.7| 3 0.011 | 59 |0.006
20 55 191,102,976(3800| 1396 | 3 0.011 | 71 |0.025
18 56 254,803,968| * * 3 0.015 | 71 |0.007

Table 3. Total memory used in MB and setup times in seconds for 12-dimensional experiments. (*) These
runs exceeded half an hour of setup time.

n |Total Support | Variables 1?/[(]; Sz\éic 1(3/[% Recs;lpc MIISVI Ifec
12 42 1,990,656 | 33 | 28.34| 3 0.014 | 45 (0.029
22 47 12,582,912 |155| 276.1 | 3 0.017 48 10.009
15 45 14,348,907 {221 237.7| 3 0.63 43 10.021
15 50 31,850,496 |483|558.96| 3 0.035 | 62 (0.025
16 52 63,700,992 [488|1124.0| 3 0.033 71 10.028
17 54 127,401,984| * * 3 0.021 | 65 (0.007
20 55 191,102,976| * * 3 0.027 | 821(0.014
18 56 254,803,968 * * 3 0.032 67 | 0.02

Table 4. Total memory used in MB and setup times in seconds for 48-dimensional experiments. (*) These
runs exceeded half an hour of setup time.

Summing up, the MIP approach performs as expected. It cannot resolve the underlying challenge in
the computations, but its scaling is better than previous approaches. Especially for larger dimensions, the
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n | Total Support | Variables |[CG SaveC CG RecompC | MIP
12 42 1,990,656 0.039 7.84 0.38
22 47 12,582,912 0.25 76.4 8.4
15 45 14,348,907 0.24 65.7 0.32
15 50 31,850,496 0.73 144.4 0.99
16 52 63,700,992 1.19 299.3 1.19
17 54 127,401,984 2.64 650.9 1.57
20 55 191,102,976 5.77 1098.6 2.39
18 56 254,803,968 5.9 * 1.99

Table 5. Average time

These runs exceeded a half-an-hour iteration time.

per solution of the pricing problem in seconds for 12-dimensional experiments. (*)

n | Total Support | Variables |[CG SaveC CG RecompC | MIP
12 42 1,990,656 0.036 20.1 0.42
22 47 12,582,912 0.253 171.2 8

15 45 14,348,907 0.24 140.9 0.52
15 50 31,850,496 0.65 302.8 0.96
16 52 63,700,992 1.3 1002.1 1.25
17 54 127,401,984 ok * 1.22
20 55 191,102,976 Hox * 2.37
18 56 254,803,968 *ox * 1.49

Table 6. Average time per solution of the pricing problem in seconds for 48-dimensional experiments. (*)
These runs exceeded a half-an-hour iteration time. (**) These runs exceeded a half-an-hour setup time.

advantage takes either the form of computational speed (if recomputing costs) or the form of lower memory
requirement and setup times (if storing the costs).

Fractionality of Solutions. Next, we turn to the fractionality of solutions in LP (Gen-LP), the relaxation
of MIP (Gen-MIP). In Lemma 2, we saw that there exist pathological vertex solutions that are fully fractional.

To measure the fractionality in practice, we generated random subsets of the input measures in Section
3.2 and an initial set of combinations for a feasible solution, in turn giving us the vector y for the pricing
objective. Then, we solved the resulting LP (Gen-LP) and measured the percentage of the variables z;
which were fractional, along with the number of unique (different) fractional values.

Table 7 shows the results of these computations. They align with the theoretical analysis in Section 3.1
and further justify the design and use of a branch-and-bound method. The number of fractional values is
very high throughout, sometimes reaching 100%, while the number of unique values is low. A good branching
strategy would be one that not only ‘attacks’ the high fractionality (in a sense, any branching strategy would
do that), but prioritizes a reduction in the number of unique fractional values, which are already low to begin
with.

Design of Branch-and-Bound for MIP (Gen-MIP). Finally, we discuss the design of a custom branch-
and-bound method to solve MIP (Gen-MIP). We begin with some general information and then turn to a
comparison of different branching strategies. The method begins with solving the relaxation LP (Gen-LP),
whose solution provides an upper bound (or ‘maximum potential’) for the objective value of MIP (Gen-MIP).
We will explore different strategies for choosing a variable z;; for branching; once chosen, in the left-hand
subtree, z;; is set to 0 and in the right-hand subtree, it is set to 1. Since at most one decision per variable
is required to reach integrality, the maximum depth of the produced tree is 2?21 |P;|; in fact, the more
refined analysis at the end of Section 3.1 exhibits that this bound can be improved to (3., |P;|) — 3.
Further, by setting a variable to 1, one implicitly sets all other variables for the same measure to 0. This
results in a theoretical maximum number of nodes in the tree of [[\_, |P;|. As we will see, in our practical
computations, we only visit a small fraction of these exponentially many possible nodes. The depth of the
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n | Total Support | Fractional Values | Unique Fractional Values
3 21 100% 1
8 29 86.2% 4
9 41 87.8% 5
12 57 100% 5
14 63 98.4% 6
18 56 96.4% 3
23 71 70.4% 3
36 132 84.8% 5

Table 7. Percentage of variables z;; observed to be fractional when solving LP (Gen-LP) and the number
of unique fractional values.

tree where pruning occurs, and how many nodes are avoided, will depend on the branching strategy, but,
regardless, many right-hand branches will be pruned during the process. Further, our branch-and-bound
implementation begins with an initial lower bound that also immediately allows for pruning branches that
fall below it.

Recall that the initialization of column generation requires an initial feasible solution. We generate such
an initial solution using the greedy strategy described in Borgwardt and Patterson (2022), which iteratively
creates combinations of support points out of the first support points in each measure available to receive
mass, and assigns to each generated combination the maximum mass receivable by those support points.
The generated solution has the aforementioned second use: the total transportation cost associated with it
leads to an initial lower bound on the optimal value of MIP (Gen-MIP) for the purpose of pruning nodes.

During the custom branch-and-bound, processing a node creates exactly two child nodes and the resulting
(relaxed) MIPs are solved immediately. Solving the two new MIPs is implemented using the new Multiple
Scenario feature in Gurobi 9.0. The assigned values of the branching variable (left-hand branch 0, right-hand
branch 1) is achieved using the scenario upper bound and lower bound attributes, ScenNUB and ScenNLB,
by setting the left-hand branch to have an upper bound of 0, and the right-hand branch to a lower bound of
1. Gurobi’s output reports that the two scenarios are infeasible only if both scenarios are infeasible, so we
check each scenario individually for infeasibility and prune the tree accordingly.

We are now ready to explore three branching strategies. Our goal is to identify a strategy that produces
the smallest branch-and-bound tree, i.e., that processes the fewest nodes.

First, we consider a naive direct branching strategy in which the variables are branched on in the order
they are given. That is, first z; is processed, then zqo, until the last support point of measure P; is reached;
then the branching moves on to the points in measure P», and so on. We refer to this simple strategy as
Index Order.

Second, we consider a Closest to Integer strategy in which the variable whose value is closest to 0 or
1 (but still some small tolerance away from integer to avoid issues of numerical stability) is branched on.
Essentially this is a rounding strategy, based on the general idea that, in practice, a good solution to an
integer program may sometimes be found by rounding a relaxed solution to integer values.

Third, we explore a strategy in which we select a (first) variable whose current fractional value is repeated
most frequently in all variables. As observed earlier, fractional solutions in which all variables are assigned
the same value are both theoretically possible and appear in practice. The goal of this branching strategy
is to break apart this highly repetitious fractionality the most directly. We refer to this strategy as Most
Repeated.

In our initial experiments, we leave the measures in their naturally occurring order (‘unsorted’). Results
are shown in Table 8. We observed that the fewest nodes are processed for the Most Repeated strategy, in
which we focus on breaking apart the highly fractional nature of the solutions of the relaxation. This aligns
with the results of our theoretical analysis in Section 3.1, where we identified such a strategy as a particularly
promising angle of attack.

The naive Index Order strategy performed worst. The performance of the rounding strategy Closest to
Integer was generally between that of the Inder Order and Most Repeated strategies: for larger instances
it performed almost as well as the Most Repeated strategy; for smaller instances it performed similarly to
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n | Total Support Nodes Processed: Unsorted
Index Order | Closest to Integer | Most Repeated

5 32 2282 2281 1028
6 34 4567 3755 2057
7 31 2870 3007 2204
8 29 2247 2032 1727
9 26 4225 3071 3071
9 32 15423 9366 8639
9 34 7212 4055 3455
10 29 15489 6143 6143

Table 8. The number of nodes processed for three branching strategies. The measures were passed to the
algorithm in their naturally occurring order.

the Index Order strategy. It is worth noting that in all strategies, only a small percentage of the theoretical
maximum number [];"_, |P;| of nodes of a branch-and-bound tree is ever explored. Using the average number
of support points in each measure to approximate the bound, the theoretical maxima for the experiments in
Table 8 would lie between 1.07 - 10* (for n = 5 and 32 support points total) and 1.57 - 105 (for n = 9 and 34
support points total).

In previous work on column generation (Borgwardt and Patterson 2022), we observed that sorting the
measures so that the smallest measures (lowest number of support points) are first can be beneficial for
solution times. We theorized that such a sorting may also be beneficial in our branch-and-bound method,
as particularly in the Index Order strategy the variables for entire measures would be fixed at high levels of
the tree. Table 9 shows how the number of processed nodes changes with this preprocessing. The number of
processed nodes dropped significantly for all strategies. As expected, the benefit is the largest for the Index
Order strategy, but Most Repeated, which focuses on breaking apart the highly repetitious fractionality of
solutions, still outperforms the other strategies.

n | Total Support Nodes Processed: Sorted
Index Order | Closest to Integer | Most Repeated

5 32 1560 1785 1028
6 34 3123 2941 2057
7 31 2185 2748 1575
8 29 1564 1339 1080
9 26 4696 4292 3240
9 32 1597 1027 1023
9 34 4426 3768 3456
10 29 4797 3238 3071

Table 9. The number of nodes processed for three branching strategies. The measures were presorted so
that those with the fewest support points were first.

4 Conclusion and Outlook

Fixed-support approximations are the arguably most popular approach to the barycenter problem, in par-
ticular for exact barycenter computations. In this paper, we devised an integer program, IP (Gen-IP), to
generate an optimal support point to add to such a fixed support for a better approximation. We proved
that a simpler MIP (Gen-MIP) can be solved instead of IP (Gen-IP), and we designed a branch-and-bound
method that uses the symmetry of the underlying problem for a tailored branching strategy. The advantage of
the new approach lies in significantly faster computational speed at only slightly larger memory requirement,
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or in a significantly smaller memory requirement and setup time while retaining similar speed. It facilitates
larger-scale computations than before. We see two practical uses of the methods in this paper. First, one can
perform a limited number of iterations to improve on a given approximate barycenter. Second, the ability to
find exact barycenters for larger high-dimensional instances than before leads to a more reliable assessment
of the quality of solutions returned by algorithms in the literature.

There are a few promising directions for practical and theoretical future work. Commercial solvers such
as Gurobi have branch-and-bound routines that are highly optimized, for example allowing for the parallel
solution of several subproblems, but do not allow the integration of a tailored branching strategy, as we
propose. Our custom implementation is a proof of concept designed to identify a best branching strategy
and to identify the impact of presorting measures by size. It would not be hard to improve the custom
implementation and close some of the performance gap. We are also planning to compare different options
of commercial solvers, and follow their development cycle — additional options for tweaking algorithms are
added regularly — for a better transfer of our strategies to a state-of-the-art solver.

We see the most exciting research direction in striving for a deeper understanding of the set of all possible
combinations S*, whose size and scaling is the bottleneck in exact barycenter computations and also for the
column generation approach in this work and previous work. The size of S* drives the exponential scaling of
the reduced-cost vector in Borgwardt and Patterson (2020) and determines the size of IP (Gen-IP). In all of
these settings, the ability to a priori rule out combinations from S* that cannot appear in an optimal solution
may dramatically improve practical performance. For other combinations, it may be possible to bound the
approximation error incurred if left out of consideration. This would be a step to leaving the setting of exact
barycenter computations and working towards the efficient computation of improving support points for
approximate large-scale computations in higher dimensions.
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Appendix A - Constraint matrix of MIP (Gen-MIP)

We exhibit that the constraint matrix of MIP (Gen-MIP) is not totally-unimodular. While it is a 0, 1-matrix,
it is not hard to verify any of the well-known criteria that rule out total unimodularity.
For example, consider the submatrix corresponding to variables z11, Z12, Z21, Z1211, Z1221 and to constraints

Z11+2zi2+--=1
=711 + Z1211 <0
—Z21 + Z1211 <0
—Z12 + Z1221 <0

—Z21 + 21221 < 0.

The corresponding coefficient matrix has the form

11000
-10 010
U=|0 0-110],
0-1001
0 0-101

which is Eulerian, i.e., it has even row and column sums, but the total sum of elements is 2, and not a
multiple of 4. This violates one of the properties of totally-unimodular matrices. Other criteria are easy to
check as well. For example, the determinant of U is det(U) = —2.
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