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Abstract. Over the last ten years, results from [51], [52], [24], and [50] decomposing high-
frequency Helmholtz solutions into “low”- and “high”-frequency components have had a large impact
in the numerical analysis of the Helmholtz equation. These results have been proved for the constant-
coe�cient Helmholtz equation in either the exterior of a Dirichlet obstacle or an interior domain with
an impedance boundary condition.

Using the Hel↵er–Sjöstrand functional calculus [36], this paper proves analogous decompositions
for scattering problems fitting into the black-box scattering framework of Sjöstrand–Zworski [66],
thus covering Helmholtz problems with variable coe�cients, impenetrable obstacles, and penetrable
obstacles all at once.

These results allow us to prove new frequency-explicit convergence results for (i) the hp-finite-
element method (hp-FEM) applied to the variable-coe�cient Helmholtz equation in the exterior of an
analytic Dirichlet obstacle, where the coe�cients are analytic in a neighbourhood of the obstacle, and
(ii) the h-FEM applied to the Helmholtz penetrable-obstacle transmission problem. In particular,
the result in (i) shows that the hp-FEM applied to this problem does not su↵er from the pollution
e↵ect.

1. Introduction.

1.1. Context: the results of [51], [52], [24], [50] and their impact on
numerical analysis of the Helmholtz equation.. At the heart of the papers
[51], [52], [24], and [50] are results that decompose solutions of the high-frequency
Helmholtz equation, i.e.,

(1.1) �u+ k2u = �f

with k large, into
(i) a component with H2 regularity, satisfying bounds with improved k-

dependence compared to those satisfied by the full Helmholtz solution, and
(ii) an analytic component, satisfying bounds with the same k-dependence as

those satisfied by the full Helmholtz solution,
with these components corresponding to the “high”- and “low”-frequency components
of the solution. In the rest of this paper, we write this decomposition as u = uH2+uA.

Such a decomposition was obtained for
• the Helmholtz equation (1.1) posed in Rd, d = 2, 3, with compactly-supported
f , and with the Sommerfeld radiation condition

(1.2)
@u

@r
(x)� iku(x) = o

✓
1

r(d�1)/2

◆

as r := |x| ! 1, uniformly in bx := x/r [51, Lemma 3.5],
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• the Helmholtz exterior Dirichlet problem where the obstacle has analytic
boundary [52, Theorem 4.20], and

• the Helmholtz interior impedance problem where the domain is either analytic
(d = 2, 3) [52, Theorem 4.10], [50, Theorem 4.5], or polygonal [52, Theorem
4.10], [24, Theorem 3.2],

in all cases under an assumption that the solution operator grows at most polynomially
in k (which has recently been shown to hold, for most frequencies, for a variety of
scattering problems in [41]).

These decompositions have had a large impact in the numerical analysis of the
Helmholtz equation in that they allow one to prove convergence, explicit in the fre-
quency k, of so-called hp-finite-element methods (hp-FEM) applied to discretisations
of the Helmholtz equation. Recall that the hp-FEM approximates solutions of PDEs
by piecewise polynomials of degree p on a mesh with meshwidth h and obtains conver-
gence by both decreasing h and increasing p; this is in contrast to the h-FEM where
p is fixed and only h decreases.

Indeed, these decompositions were used to prove frequency-explicit convergence
of a variety of hp methods in [51, 52, 24, 50, 75, 74, 21, 7]. These results about
hp methods are particularly significant, since they show that, if h and p are chosen
appropriately, the FEM solution is uniformly accurate as k ! 1 with the total
number of degrees of freedom proportional to kd; i.e., the hp-FEM does not su↵er
from the so-called pollution e↵ect (i.e. the total number of degrees of freedom needing
to be � kd) which plagues the h-FEM [2].

These decompositions were also used to prove sharp results about the convergence
of h methods with large but fixed p [25], [20], [42]. Furthermore, analogous decom-
positions and analogous convergence results were obtained for hp-boundary-element
methods [49], [46], hp methods applied to Helmholtz problems with arbitrarily-small
dissipation [54] and hp methods applied to formulations of the time-harmonic Max-
well equations [53], [57]. This work has also motivated attempts to provide simpler
decompositions valid for a variety of variable-coe�cient problems [15].

The decomposition allows one to prove results about the hp-FEM since, when
combined with piecewise-polynomial approximation theory, the decomposition gives
estimates on how well (adjoint) solutions of the Helmholtz equation are approximated
by finite-element spaces; crucially, these estimates are better than if one just used the
bound on the solution in terms of the data. Given these adjoint-approximability esti-
mates, the so-called Schatz argument (based on ideas from [64]) then gives conditions
under which the finite-element solution is accurate (in the sense that it is quasi-
optimal ; see (1.20) and §5.1 below). The reasons the decomposition gives these better
approximability estimates are the following. The high-frequency part, uH2 , is simply
smaller, as k ! 1, than the solution itself, and turns out to be well approximated
when hk/p is su�ciently small. Since the low-frequency part, uA, is analytic, it is
well-approximated in hp spaces provided that the polynomial degree grows logarith-
mically in k (with this growth in p removing the growth coming from the solution
operator, provided that the latter is polynomially bounded in k). For more details,
see the expository article [68] (in particular [68, §5.3]).

The recent paper [43] obtained the analogous decomposition to that in [51] for
the Helmholtz problem in Rd but now for the variable-coe�cient Helmholtz equation

(1.3) r · (Aru) +
k2

c2
u = �f

with A and c 2 C1. The goal of the present paper is to obtain decompositions for
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more-general Helmholtz problems.

1.2. Informal statement of the main results. We show a decomposition of
the form u = uH2 + uA for the solutions of the following three Helmholtz problems.

(P1) The C1-variable-coe�cient Helmholtz exterior Dirichlet problem where the
obstacle has analytic boundary and the coe�cients are analytic near the ob-
stacle. The corresponding result, discussed in §1.3 below, is stated as Theo-
rem B, and applied to prove quasi-optimality of the hp-FEM in Theorem B1.
In particular, Theorem B1 shows that the hp-FEM applied to this Helmholtz
problem does not su↵er from the pollution e↵ect.

(P2) The transmission problem with finite regularity of the interface and the co-
e�cients - that is, the problem of scattering by a penetrable obstacle. This
result is discussed in §1.4, where it is stated as Theorem C, and applied to
prove quasi-optimality of the h-FEM in Theorem C1.

(P3) The C1-variable-coe�cient Helmholtz equation in the full space Rd; this
situation was studied in [43] and we recover the results of [43] with the more
general method presented here; see §1.5 and Theorem D. In §1.6 we discuss the
ideas behind both [43] and the present method, and the relationship between
them.

We highlight that, just as in the earlier works [51], [52], [24], and [50], uH2 and
uA correspond to “high” and “low” frequencies of the solution, respectively – this is
discussed further in the informal discussion in §1.6.

The three results outlined above are obtained as applications of a single, more
general, albeit abstract result, Theorem A below. This theorem is stated using the
black-box framework of Sjöstrand–Zworski [66], and covers Helmholtz problems with
variable coe�cients, impenetrable obstacles, and penetrable obstacles all at once. We
postpone the rigorous statement of Theorem A to §1.7 and give an informal version
of it here.

Theorem A0 (Informal statement of our main general result). Let P be a for-
mally self-adjoint operator with P = �� outside B(0, R0) (“the black-box”). We
assume that

(H1) the solution operator associated with P � k2 is polynomially bounded: there
exists M � �1 so that for any � 2 C1

comp
and any compactly-supported

f 2 L2, the outgoing solution of (P � k2)u = f satisfies

k�ukL2 . kMkfkL2 ,

(H2) one has an estimate quantifying the regularity of P inside B(0, R0) (i.e.,
“inside the black-box”).

Then, for any R > R0, any solution of (P � k2)u = f splits as

u|B(0,R) = uH2 + uA,

where
(i) uH2 satisfies

kuH2kL2 + k�2kPuH2kL2 . k�2kfkL2 ,

(ii) uA is regular, with an estimate depending on both the regularity of the un-
derlying problem (as measured by (H2)) and M . In addition, the part of uA
away from “the black-box” B(0, R0) is entire (in the sense of Lemma 1.1(i)
below).
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When P is the Dirichlet Laplacian, for example, kPuH2kL2 controls kuH2kH2

by elliptic regularity, and thus the bound in (i) is a bound on kuH2kH2 (hence the
notation uH2).

The paper [42] shows that Assumption (H1) holds in the black-box framework for
“most” frequencies (see Part (ii) of Theorem 1.5 for a more precise statement of this).
The key point, therefore, to apply this result to specific situations is to check that an
estimate of the type (H2) holds. In the three applications to problems (P1), (P2), and
(P3) above, this estimate (H2) corresponds to, respectively, a heat-flow estimate, an
elliptic estimate, and regularity of the eigenfunctions of the Laplace operator on the
torus. Theorem A could be applied to a range of other specific situations, provided
an estimate of type (H2) is at hand. For a reader interested in applying Theorem A
without going into the details of the proof, §1.7.2 gives a short summary on how to
do this.

Before stating the main result applied the problems (P1), (P2), and (P3) above,
we record the following lemma about the region of analyticity of analytic functions
depending on a parameter (in this case k); we use this lemma to understand the
properties of the uAs in (P1) and (P3).

Lemma 1.1 (k-explicit analyticity). Let u 2 C1(D) (for D ⇢ Rd) be a family
of functions depending on k.

(i) If there exist C,Cu > 0, independent of ↵, such that

k@↵uk
L2(D)

 Cu(Ck)|↵| for all multiindices ↵,

then u is real analytic in D and its power series has infinite radius of convergence,
i.e., u can be extended to an entire function on Rd.

(ii) If there exist C,Cu > 0, independent of ↵, such that

k@↵uk
L2(D)

 Cu(Ck)|↵||↵|! for all multiindices ↵,

then u is real analytic in D with radius of convergence proportional to (Ck)�1.
(iii) If there exist C,Cu > 0, independent of ↵, such that

k@↵uk
L2(D)

 CuC
|↵| max

�
|↵|, k

 |↵|
for all multiindices ↵,

then u is real analytic in D with radius of convergence independent of k.

Proof. In each case, we use the Sobolev embedding theorem to obtain a bound
on k@↵ukL1(D), and then sum the remainder in the truncated Taylor series. For this
procedure carried out in Case (iii), see, e.g., [51, Proof of Lemma C.2]; the proofs for
the other cases are similar.

1.3. The main result applied to the exterior Dirichlet problem.

1.3.1. Background definitions.

Definition 1.2 (Exterior Dirichlet problem). Let O� ⇢ Rd, d � 2 be a bounded
open set such that @O+ is smooth, the open complement O+ := Rd \O� is connected,
and O� ⇢ BR0 . Let A 2 C1(O+,Rd⇥d) be such that supp(I � A) ⇢ BR1 , with
R1 > R0, A is symmetric, and there exists Amin > 0 such that

(1.4)
�
A(x)⇠

�
· ⇠ � Amin|⇠|2 for all x 2 O+ and for all ⇠ 2 Cd.

Let c 2 C1(O+) be such that supp(1 � c) ⇢ BR1 , and cmin  c  cmax with
cmin, cmax > 0.
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Given f 2 L2(O+) with suppf b Rd and k > 0, u 2 H1

loc
(O+) satisfies the

exterior Dirichlet problem if

c2r · (Aru) + k2u = �f in O+,(1.5)

u = 0 on @O+,(1.6)

and u satisfies the Sommerfeld radiation condition (1.2).

We highlight from Definition 1.2 that the obstacle O� is contained in BR0 , and
the variation of the coe�cients A and c is contained inside the larger ball BR1 .

We use the standard weighted H1 norm, k · kH1
k(BR\O+), defined by

(1.7) kuk2
H

1
k(BR\O+)

:= kruk2
L2(BR\O+)

+ k2 kuk2
L2(BR\O+)

.

Definition 1.3 (Csol). Given f 2 L2(O+) supported in BR with R � R1, let u
be the solution of the exterior Dirichlet problem of Definition 1.2. Given k0 > 0, let
Csol = Csol(k,A, c, R, k0) > 0 be such that

(1.8) kuk
H

1
k(BR\O+)

 Csol kfkL2(BR\O+)
for all k > 0.

Csol exists by standard results about uniqueness of the exterior Dirichlet problem
and Fredholm theory; see, e.g., [33, §1] and the references therein. How Csol depends
on k is crucial to our analysis, and to emphasise this we write Csol = Csol(k). A
key assumption in our analysis is that Csol(k) is polynomially bounded in k in the
following sense.

Definition 1.4 (Csol is polynomially bounded in k). Given k0 > 0 and K ⇢
[k0,1), Csol(k) is polynomially bounded for k 2 K if there exists C > 0 and M � 0
such that

(1.9) Csol(k)  CkM for all k 2 K,

where C and M are independent of k (but depend on k0 and possibly also on
K,A, c, d, R).

There exist C1 coe�cients A and c such that Csol(kj) � C1 exp(C2kj) for 0 <
k1 < k2 < . . . with kj ! 1 as j ! 1, see [59], but this exponential growth is the
worst-possible, since Csol(k)  c3 exp(c4k) for all k � k0 by [8, Theorem 2]. We now
recall results on when Csol(k) is polynomially bounded in k.

Theorem 1.5. (Conditions under which Csol(k) is polynomially bounded in k for
the exterior Dirichlet problem)

(i) If A and c are C1 and nontrapping (i.e. all the trajectories of the generalised
bicharacteristic flow defined by the semiclassical principal symbol of (1.5) starting in
BR leave BR after a uniform time), then Csol(k) is independent of k for all su�ciently
large k; i.e., (1.9) holds for all k � k0 with M = 0.

(ii) Under no additional assumptions on O�, A, and c, given k0 > 0 and � > 0
there exists a set J ⇢ [k0,1) with |J |  � such that

Csol(k)  Ck5d/2+" for all k 2 [k0,1) \ J,

for any " > 0, where C depends on �, ", d, k0, and A.
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References for the proof. (i) follows from either the results of [55] combined with
either [71, Theorem 3]/ [72, Chapter 10, Theorem 2] or [44], or [9, Theorem 1.3 and
§3]. It has recently been proved that, for this situation, Csol is proportional to the
length of the longest trajectory in BR; see [29, Theorems 1 and 2, and Equation
6.32]. (ii) is proved for c = 1 in [41, Theorem 1.1 and Corollary 3.6]; the proof for
more-general c follows from Lemma 2.3 below.

1.3.2. Theorem A applied to the exterior Dirichlet problem.

Theorem B. (Theorem A applied to the exterior Dirichlet problem with analytic
O� and locally analytic A, c) Suppose that O�, A, c, R0, and R1 are as in Definition
1.2. In addition, assume that O� is analytic, and that A and c are analytic in BR⇤

for some R0 < R⇤ < R1.
If Csol(k) is polynomially bounded for k 2 K (in the sense of Definition 1.4),

then given f 2 L2(O+) supported in BR with R � R1, the solution u of the exterior
Dirichlet problem is such that there exists uA 2 C1(BR \O+), and uH2 2 H2(BR \
O+), both with zero Dirichlet trace on @O+, such that

u|BR = uA + uH2 .

Furthermore, there exists C1, independent of k and ↵, such that
(1.10)
k@↵uH2kL2(BR\O+)  C1k

|↵|�2kfkL2(BR\O+) for all k 2 K and for all |↵|  2,

and there exist C2, C3, C4 and C5, all independent of k and ↵, and RI , RII , RIII , RIV

with R0 < RI < RII < RIII < RIV < R such that uA decomposes as uA = uR0
A + u1

A ,
where uR0

A is analytic in BR
IV

and has zero Dirichlet trace on @O+, and u1
A is analytic

in (BR
I
)c with, for all k 2 K and all ↵,

(1.11) k@↵uR0
A kL2(BR

IV
\O+)  C2(C3)

|↵| max
�
|↵||↵|, k|↵|

 
k�1+M kfkL2(BR\O+),

(1.12) k@↵u1
A kL2((BR

I
)c\O+)  C4(C5)

|↵|k|↵|�1+M kfkL2(BR\O+),

and, for any N,m > 0 there exists CN,m > 0 so that
(1.13)
ku1

A kHm(BR
II
\O+) + kuR0

A kHm((BR
III

)c\O+)  CN,mk�N kfkL2(BR\O+) for all k 2 K.

By Parts (iii) and (i) of Lemma 1.1, uR0
A is analytic in BR

IV
with k-independent

radius of convergence, and u1
A is entire in (BR

I
)c; see Figure 1.1.

Remark 1.6 (The assumptions on A and c in Theorem B). Theorem B assumes
that the coe�cients A and c are analytic in BR⇤ for some R0 < R⇤ < R1, where
BR0 � O�. This assumption could be relaxed to A and c being analytic in a tubular
neighbourhood of O�. To do this, one would only need to change the “black box”
in §2 from the traditional BR0 to an arbitrary bounded open set. The nested balls
BR

I
b BR

II
b BR

III
b BR

IV
in Theorem B would then be replaced by nested bounded

open sets.

1.3.3. Corollary about frequency-explicit convergence of the hp-FEM.
As discussed in §1.1, Theorem B implies a frequency-explicit convergence result about
the hp-FEM applied to the exterior Dirichlet problem; we now give the necessary def-
initions to state this result. Recall that the FEM is based on the standard variational
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R0 RI RII RIII
RIV

R

u
R0
A analytic

u
R0
A = O(k�1)

u
1
A = O(k�1)

u
1
A entire

Fig. 1.1. The regions where u
R0
A and u

1
A appearing in Theorem B are analytic, entire, or

O(k�1).

formulation of the exterior Dirichlet problem: Let

H1

0,@O+
(BR \O+) :=

n
v 2 H1(BR \O+) with v = 0 on @O+

o
.

Given R � R1 and F 2 (H1

0,@O+
(BR \O+))⇤,

(1.14)
find u 2 H1

0,@O+
(BR \O+) such that a(u, v) = F (v) for all v 2 H1

0,@O+
(BR \O+),

where

a(u, v) :=

Z

BR\O+

✓
(Aru) ·rv � k2

c2
uv

◆
�
⌦
DtNk(u), v

↵
@BR

,(1.15)

where h·, ·i@BR denotes the duality pairing on @BR that is linear in the first argument
and antilinear in the second, and DtNk : H1/2(@BR) ! H�1/2(@BR) is the Dirichlet-
to-Neumann map for the equation �u + k2u = 0 posed in the exterior of BR with
the Sommerfeld radiation condition (1.2); the definition of DtNk in terms of Hankel
functions and polar coordinates (when d = 2)/spherical polar coordinates (when d =
3) is given in, e.g., [51, Equations 3.7 and 3.10]. We use later the fact that there exist
CDtN = CDtN(k0R0) such that

(1.16)
��⌦DtNk(u), vi@BR

↵��  CDtN kuk
H

1
k(BR\O+)

kvk
H

1
k(BR\O+)

for all u, v 2 H1

0,@O+
(BR \O+) and for all k � k0; see [51, Lemma 3.3].

If F (v) =
R
BR\O+

fv, then the solution of the variational problem (1.14) is the

restriction to BR of the solution of the exterior Dirichlet problem of Definition 1.2. If

(1.17) F (v) =

Z

@BR

�
@nu

I �DtNk(u
I)
�
v,

where uI is a solution of �uI + k2uI = 0 in BR \ O+, then the solution of the
variational problem (1.14) is the restriction to BR \O+ of the sound-soft scattering
problem (see, e.g, [11, Page 107]).

Given a sequence, (VN)1N=0
, of finite-dimensional subspaces of H1

0,@O+
(BR \O+),

the finite-element method for the variational problem (1.14) is the Galerkin method
applied to the variational problem (1.14), i.e.,

(1.18) find uN 2 VN such that a(uN, vN) = F (vN) for all vN 2 VN.
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Theorem B1 (Quasioptimality of hp-FEM for the exterior Dirichlet problem).
Let d = 2 or 3. Suppose that O�, A, c, R,RI , and RIV are as in Theorem B. Let

(VN)1N=0
be the piecewise-polynomial approximation spaces described in [51, §5], [52,

§5.1.1] (where, in particular, the triangulations are quasi-uniform, allow curved el-
ements, and thus fit BR \ O+ exactly). Let uN be the Galerkin solution defined by
(1.18).

If Csol(k) is polynomially bounded (in the sense of Definition 1.4) for k 2 K ⇢
[k0,1) then there exist k1, C1, C2 > 0, depending on A, c,R, and d, but independent
of k, h, and p, such that if

(1.19)
hk

p
 C1 and p � C2 log k,

then, for all k 2 K \ [k1,1), the Galerkin solution exists, is unique, and satisfies the
quasioptimal error bound

(1.20) ku� uNkH1
k(BR\O+)

 Cqo min
vN2VN

ku� vNkH1
k(BR\O+)

,

with

(1.21) Cqo :=
2
�
max{Amax, c

�2

min
}+ CDtN

�

Amin

.

Remark 1.7. (The significance of Theorem B1: the hp-FEM does not su↵er from
the pollution e↵ect) For finite-dimensional subspaces consisting of piecewise polyno-
mials of degree p on meshes with meshwidth h, the total number of degrees of freedom
⇠ (p/h)d. Therefore Theorem B1, as well as the results in [51], [52], [24], [50], [43],
show that there is a choice of h and p such that the hp-FEM is quasioptimal with the
total number of degrees of freedom ⇠ kd. As highlighted in §1.1, the significance of
this is that when the total number of degrees of freedom ⇠ kd the h-FEM (i.e., with p
fixed) does not satisfy the quasioptimal error estimate (1.20) with Cqo independent of
k; this is called the pollution e↵ect – see [2] and the references therein.

The results in [51], [52], [24], [50] are for constant-coe�cient Helmholtz problems,
and those in [43] are for the Helmholtz equation with smooth variable coe�cients and
no obstacle. Theorem B1 is therefore the first result showing that the hp-FEM applied
the Helmholtz exterior Dirichlet problem with variable coe�cients does not su↵er from
the pollution e↵ect.

1.4. The main result applied to the transmission problem.

1.4.1. Background definitions.

Definition 1.8 (Transmission problem (i.e. scattering by a penetrable obsta-
cle)). Let O� ⇢ Rd, d � 2 be a bounded Lipschitz open set such that the open
complement O+ := Rd \O� is connected and such that O� ⇢ BR0 . Let A = (A�, A+)
with A± 2 C0,1(O±,Rn⇥n) be such that supp(I � A) ⇢ BR0 , A is symmetric, and
there exists Amin > 0 such that (1.4) holds (with O+ replaced by Rd). Let c 2 L1(O�)
be such that cmin  c  cmax with 0 < cmin  cmax < 1. Let � > 0.

Let ⌫ be the unit normal vector field on @O� pointing from O� into O+, and let
@⌫,A denote the corresponding conormal derivative defined by, e.g., [47, Lemma 4.3]
(recall that this is such that, when v 2 H2(O+), @⌫,Av = ⌫ · �(Arv)).
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Given f 2 L2

comp
(Rd) and k > 0, u = (u�, u+) 2 H1

loc
(Rd) satisfies the transmis-

sion problem if

c2r · (A�ru�) + k2u� = �f in O�,

r · (A+ru+) + k2u+ = �f in O+,

u� = u+, @⌫,A�u� = �@⌫,A+u+ on @O�,(1.22)

and u+ satisfies the Sommerfeld radiation condition (1.2).

When A� and A+ are constant scalar multiples of the identity and c is constant,
two of the four parameters governing A�, A+, c, and � are redundant. For example,
by rescaling u�, u+, and f , all such transmission problems can be described by the
parameters c and � (with A� = A+ = I), as in, e.g., [10], or by the parameters A�
and c (with A+ = I and � = 1); see, e.g., the discussion and examples after [56,
Definition 2.3].

The definition of Csol for the transmission problem is almost identical to Definition
1.3, except that the norms in (1.8) are now over BR (as opposed to BR \ O+) and
now Csol depends additionally on �.

Theorem 1.9. (Conditions under which Csol(k) is polynomially bounded in k for
the transmission problem) In each of the following conditions we assume that O�, A,
and c are as in Definition 1.8.

(i) If O� is smooth and strictly convex with strictly positive curvature, A = I, c
is a constant � 1, and � > 0, then Csol(k) is independent of k for all su�ciently large
k; i.e., (1.8) holds for all k � k0 with M = 0

(ii) If O� is Lipschitz and star-shaped, A = I, and c is a constant with

1

c2
 1

�
 1

then Csol(k) is independent of k for all su�ciently large k.
(iii) If O� is star-shaped, � = 1, and both A and c are monotonically non-

increasing in the radial direction (in the sense of [33, Condition 2.6]) then Csol(k) is
independent of k for all su�ciently large k.

(iv) Under no additional assumptions on O�, A, and c, given k0 > 0 and � > 0
there exists a set J ⇢ [k0,1) with |J |  � such that

Csol(k)  Ck5d/2+1+" for all k 2 [k0,1) \ J,

for any " > 0, where C depends on �, ", d, k0, A, c, and �.

References for the proof. (i) is proved in [10, Theorem 1.1] (we note that, in fact,
a stronger result with A� variable is also proved there). (ii) is proved in [56, Theorem
3.1]. (iii) is proved in [33, Theorem 2.7]. (iv) is proved for constant c and globally
Lipschitz A in [41, Theorem 1.1 and Corollary 3.6]; the proof for these more-general
c and A follows from Lemma 2.3 below.

1.4.2. Theorem A applied to the transmission problem.

Theorem C. (Theorem A applied to the transmission problem) Suppose that
O�, A, c, and �, are as in Definition 1.8 and, additionally, A and c are C2m�2,1 and
O� is C2m�1,1 for some integer m � 1.

If Csol(k) is polynomially bounded for k 2 K (in the sense of Definition 1.4), then
given f 2 L2(Rd) supported in BR with R � R0, the solution u of the transmission
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problem is such that there exists uA = (u+,A, u�,A) 2 C1(BR \O+)⇥ C1(O�) and
uH2 = (u+,H2 , u�,H2) 2 H2(BR \O+)⇥H2(O�), satisfying (1.22), and such that

u|BR = uA + uH2 .

Furthermore there exist C1, C2 > 0, independent of k but with C2 = C2(m), such that
(1.23)

k@↵u±,H2kL2(BR\O±)  C1k
|↵|�2kfkL2(BR) for all k 2 K and for all |↵|  2,

and
(1.24)
k@↵u±,AkL2(BR\O±)  C2(m)k|↵|�1+MkfkL2(BR) for all k 2 K and for all |↵|  2m.

1.4.3. Corollary about frequency-explicit convergence of the h-FEM.
For simplicity we consider the case where the parameter � in the transmission condi-
tion (1.22) equals one; recall from the comments below Definition 1.8 that, at least in
the constant-coe�cient case, this is without loss of generality. The variational formu-
lation of the transmission problem is then (1.14) with BR \O+ replaced by BR and
a(·, ·) given by (1.15) with c understood as equal to one in BR \O+.

Since the constant C2 in (1.24) depends on m, we cannot prove a result about
the hp-FEM for the transmission problem of Definition 1.8. We therefore consider the
h-FEM and prove the first sharp quasioptimality result for this problem (see Remark
1.11 below for more discussion on the novelty of our result).

Assumption 1.10. (VN)1N=0
is a sequence of piecewise-polynomial approximation

spaces on quasi-uniform meshes with mesh diameter h and polynomial degree p. Fur-
thermore, (i) the mesh consists of curved elements that exactly triangulate BR and
O�, so that each element in the mesh is included in either O� or BR \O+, and (ii)
there exists an interpolant operator Ih,p such that for all 0  j  `  p, there exists
C(j, `, d) > 0 such that

(1.25)
��v � Ih,pv

��
Hj(BR)

 C(j, `, d)h`+1�j

⇣
kv+kH`+1(BR\O+)

+ kv�kH`+1(O�)

⌘

for all v = (v+, v�) 2 H`+1(BR \O+)⇥H`+1(O�).

Assumption 1.10 is satisfied by the hp approximation spaces described in [51, §5],
[52, §5.1.1] (with (1.25) holding by [51, Theorem B.4] and Ih,p defined in [51, Lemma
B.3 and Theorem B.4]), and also by curved Lagrange finite-element spaces in [4] (with
(1.25) holding by [4, Theorem 4.1 and Corollary 4.1] and Ih,p defined by [4, Equation
4.1]).

Theorem C1 (Quasioptimality of h-FEM for the transmission problem). Let
d = 2 or 3. Suppose that � = 1, A, c, and O� are as in Definition 1.8. Given an
integer p, if p is odd assume that O� is Cp,1 and both A and c are Cp�1,1; if p is
even, assume that O� is Cp+1,1 and both A and c are Cp,1.

Let (VN)1N=0
be a sequence of piecewise-polynomial approximation spaces of degree

p satisfying Assumption 1.10 and let uN be the Galerkin solution defined by (1.18).
If Csol(k) is polynomially bounded (in the sense of Definition 1.4) for k 2 K ⇢

[k0,1) then there exists C > 0, depending on A, c,R, d, k0, and p, but independent
of k and h, such that if

hpkp+1+M  C
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then, for all k 2 K, the Galerkin solution exists, is unique, and satisfies the quasiop-
timal error bound

ku� uNkH1
k(BR)

 Cqo min
vN2VN

ku� vNkH1
k(BR)

,

with Cqo given by (1.21).

The regularity assumptions in Theorem C1 are optimal with p odd, but subop-
timal when p is even. This is due to Theorem C controlling Sobolev norms of even
order of the solution, which is ultimately due to our using powers of the operator
(which is of order two) to obtain regularity of the solution (see (4.14) in the proof of
Theorem C). For example, when p = 2 we require u 2 H3 in Theorem C1, but we
achieve this by requiring that O�, A, and c are such that u 2 H4.

Remark 1.11 (The significance of Theorem C1). The fact that “hpkp+1 su�-
ciently small” is a su�cient condition for quasioptimality of the Helmholtz h-FEM in
nontrapping situations (i.e. M = 0) was proved for a variety of Helmholtz problems
for p = 1 in [48, Prop. 8.2.7], [34, Theorem 4.5], [29, Theorem 3] (building on the
1-d results of [1, Theorem 3.2], [39, Theorem 3], [38, Theorem 4.13], and [40, Theo-
rem 3.5]) and for p > 1 in [51, Corollary 5.6], [52, Remark 5.9], [30, Theorem 5.1],
and [15, Theorem 2.15]. Numerical experiments indicate that this condition is also
necessary – see, e.g., [15, §4.4].

Of these existing results, only [15, Theorem 2.15] covers the Helmholtz equation
with variable A and c that are also allowed to be discontinuous. However, the results
in [15] hold only when an impedance boundary condition is imposed on the trunca-
tion boundary (in our case @BR), which is equivalent to approximating the exterior
Helmholtz Dirichlet-to-Neumann map by ik. Furthermore, the proof of [15, Theorem
2.15] uses the impedance boundary condition in an essential way. Indeed, in [15,
Proof of Lemma 2.13] the solution is expanded in powers of k, i.e. u =

P1
j=0

kjuj,
and then on @BR one has @nuj+1 = iuj; this relationship between uj+1 and uj on
@BR no longer holds if DtNk is not approximated by ik.

The Helmholtz equation with an impedance boundary condition is often used as a
model problem for numerical analysis (see, e.g., the references in [27, §1.8]). However,
it has recently been shown that, in the limit k ! 1 with the truncation boundary
fixed, the error incurred in approximating the Dirichlet-to-Neumann map with ik is
bounded away from zero, independently of k, even in the best-possible situation when
the truncation boundary equals @BR for some R; see [27, §1.2]. Therefore, even if
one solves the problem truncated with an impedance boundary condition with a high-
order method (i.e., p large), the solution of the truncated problem will not be a good
approximation to the true scattering problem when k is large.

1.5. The main result applied to the Helmholtz equation in Rd with C1

coe�cients. Theorem A can also be used to recover the main result of [43], namely
[43, Theorem 3.1].

Theorem D. (The main result of [43] as a corollary of Theorem A) Assume that
O� = ; and that A, c are as in Definition 1.2 and are furthermore C1. If Csol(k) is
polynomially bounded (in the sense of Definition 1.4), then, given f 2 L2(BR), the
solution u of the Helmholtz problem (1.5), (1.2) is such that there exists uA, analytic
in BR, and uH2 2 H2(BR), such that

u|BR = uA + uH2 .

11



Furthermore, there exist C1, C2 and C3, all independent of k and ↵, such that

(1.26) k@↵uH2kL2(BR)  C1k
|↵|�2kfkL2(BR) for all k 2 K and for all |↵|  2,

and
(1.27)

k@↵uAkL2(BR)  C2(C3)
|↵|k|↵|�1+M kfkL2(BR) for all k 2 K and for all ↵.

Observe that, by Part (i) of Lemma 1.1, uA is entire. The decomposition in
Theorem D can be used to show that the hp-FEM applied to the Helmholtz equation
in Rd with C1 coe�cients is quasioptimal (with constant independent of k) if the
conditions (1.19) hold; see [43, Theorem 3.4].

1.6. Informal discussion of the ideas behind Theorem A. It is instructive
to first recall the ideas behind the results of [51, 52, 24, 50].

How the results of [51, 52, 24, 50] were obtained.. The paper [51] considered the
Helmholtz equation (1.1) posed in Rd with the Sommerfeld radiation condition (1.2).
The decomposition u = uH2 + uA was obtained by decomposing the data f in (1.1)
into “high-” and “low-” frequency components, with uH2 the Helmholtz solution for
the high-frequency component of f , and uA then the Helmholtz solution for the low-
frequency component of f . The frequency cut-o↵s were defining using the indicator
function

(1.28) 1B�k(⇣) :=

(
1 for |⇣|  � k,

0 for |⇣| � � k,

with � a free parameter (see [51, Equation 3.31] and the surrounding text). In [51] the
frequency cut-o↵ (1.28) was then used with (a) the expression for u as a convolution
of the fundamental solution and the data f , and (b) the fact that the fundamental
solution is known explicitly for the PDE (1.1) to obtain the appropriate bounds on
uA and uH2 using explicit calculation (involving Bessel and Hankel functions). The
decompositions in [52, 24, 50] for the exterior Dirichlet problem and interior impedance
problem were obtained using the results of [51] combined with extension operators
(to go from problems with boundaries to problems on Rd).

Because the proof technique in [51] did not immediately generalise to the variable-
coe�cient Helmholtz equation (1.3), until the recent paper [43] there did not exist in
the literature analogous decomposition results for the variable-coe�cient Helmholtz
equation. This was despite the increasing interest in the numerical analysis of (1.3)
see, e.g., [13, 3, 15, 31, 58, 34, 29, 42, 32]. While the present paper was being revised,
the thesis [5] and preprint [6] became available. These later works prove complemen-
tary results to those in the present paper; see the discussion in our follow-up paper
[28, §1.8].

The recent results of [43]: the decomposition for the variable-coe�cient Helmholtz
equation in free space.. The paper [43] obtained the analogous decomposition to that
in [51] for the Helmholtz problem in Rd but now for the variable-coe�cient Helmholtz
equation (1.3) with A and c 2 C1. This result was obtained again using frequency
cut-o↵s (as in [51]) but now applying them to the solution u as opposed to the data
f . Any cut-o↵ function that is zero for |⇣| � Ck is a cuto↵ to a compactly-supported
set in phase space, and hence enjoys analytic estimates. The main di�culty in [43],
therefore, was in showing that the high-frequency component uH2 satisfies a bound
with one power of k improvement over the bound satisfied by u. This was achieved
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by choosing the cut-o↵ so that the (scaled) Helmholtz operator k�2r · (Ar) + c�2 is
semiclassically elliptic on the support of the high-frequency cut-o↵. Then, choosing
the cut-o↵ function to be smooth (as opposed to discontinuous, as in (1.28)) allowed
[43] to use basic facts about the “nice” behaviour of elliptic semiclassical pseudodi↵er-
ential operators (namely, they are invertible up to a small error) to prove the required
bound on uH2 . The expository paper [68] shows that, when A = I and c = 1, the
arguments in [43] involving pseudodi↵erential operators reduce to using the Fourier
transform, and in this case a frequency cut-o↵ of the form (1.28) can be used.

The frequency decomposition achieved in Theorem A.. In this paper, we achieve
the desired decomposition into low- and high-frequency pieces in the manner best
adapted to the functional analysis of the Helmholtz equation: by using the functional
calculus for the Helmholtz operator itself. Recall that once we realise the operator

(1.29) P = �c2r · (Ar)

with appropriate domain as a self-adjoint operator (on a space weighted by c�2), the
functional calculus for self-adjoint operators allows us to define �(P ) for a broad class
of functions �. In particular, given k > 0, we take � a cuto↵ function on Rd equal
to 1 on B(0, µk) for some µ > 1. Then, for fixed k, (1 � �)(P ) is a high-frequency
cuto↵ and �(P ) a low-frequency cuto↵. We emphasise that working with functions of
the operator can be thought of as just the classic idea of using expansions in terms of
eigenfunctions of the di↵erential operator. Indeed, in the special case A = I, c = 1,
these frequency cut-o↵s are simply Fourier multipliers of the type used in [41].

The novelty of the approach used here is to make the functional calculus approach
work in the much more general setting of semiclassical black-box scattering introduced
by Sjöstrand-Zworski [66], which allows us to treat variable (possibly rough) media,
impenetrable obstacles, and penetrable obstacles all at once. We rescale, setting
~ = k�1, and study operators P~ equal to a variable-coe�cient Laplacian outside the
“black-box” BR0 , and equal to �~2� outside a larger ball BR1 . We are now interested
in functions of P~ of the form  (P~) with  = 1 in B(0, µ) and 0 in (B(0, 2µ))c. After
multiplying the solution u by a cut-o↵ function ' that equals one near the black box
(since u is only locally L2), we split

'u = ⇧High('u) +⇧Low('u)

with
⇧Low ⌘  (P~), ⇧High ⌘ (1�  )(P~),

and both pieces again defined by the spectral theorem. We now discuss the two pieces
separately.

We wish to analyze ⇧High'u by using the semiclassical ellipticity of P~ � I on its
support in phase space. The latter notion would be well-defined if ⇧High were globally
a pseudodi↵erential operator. In the broad context of the black-box theory, though,
while the function  (P~) is well-defined as an abstract operator on a Hilbert space,
its structure is much less manifest than it would be for the flat Laplacian in Euclidean
space. Not much can be said in any generality about ⇧High on the black-box, but this is
unnecessary in any event: we use an abstract ellipticity argument based on the Borel
functional calculus, with the ellipticity in question now amounting to the bounded
invertibility of P~ � 1 on the range of ⇧High, which just follows from the boundedness
of the function (�� 1)�1(1�  (�)). However, we do additionally need to understand
the commutator of ⇧High with the localiser '. Fortunately, we are able to use the
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Hel↵er–Sjöstrand approach to the functional calculus [36] to describe this commutator
explicitly. The method of [36] is a powerful tool for obtaining the structure theorem
that a decently-behaved function of a self-adjoint elliptic di↵erential operator is, as one
might hope, in fact a pseudodi↵erential operator [19, Chapter 8] (a result originally
due to Strichartz [70] in the setting of the homogeneous pseudodi↵erential calculus and
Hel↵er–Robert [35] in the semiclassical setting used here). Additionally, Davies [17]
later pointed out that in fact the same method a↵ords a novel proof of the functional
calculus formulation of the spectral theorem itself. Here, we use some refinements
of Sjöstrand [65] to learn that away from the black-box we can in fact treat ⇧High

as a pseudodi↵erential operator (see Lemma 2.8), and hence deal with [⇧High,'] as
an element of the pseudodi↵erential calculus, solving it away by once again using
ellipticity (this time in the context of pseudodi↵erential operators) together with our
polynomial resolvent estimate.

While the analysis of ⇧High'u is insensitive to the contents of the black-box, our
study of the low-frequency piece ⇧Low'u necessarily entails “opening” the black-box
and studying the local question of elliptic or parabolic estimates within it. Intuitively
the compact support in the spectral parameter of the spectral measure of P applied
to ⇧Low'u should imply that strong elliptic estimates hold, but knowing Cauchy-type
estimates on high derivatives is dependent on analyticity of the underlying problem.
We therefore make the abstract regularity hypothesis (1.33) locally near the black-
box, which allows us to estimate the part of ⇧Lowu spatially localised near its content.
The remaining part living in Rd is then given, thanks to Sjöstrand [65] again, by a
Fourier multiplier up to negligible terms, and hence enjoys the analytic estimate (1.40)
thanks to the properties of the Fourier transform, as used in [43].

By the functional calculus, Pm⇧Low'u is bounded for all m 2 N. Provided that
P satisfies elliptic estimates, the boundedness of Pm⇧Low'u allow us to estimate all
derivatives of ⇧Low'u, but the resulting estimates on @↵⇧Lowu are not explicit in ↵;
these are the only estimates we have been able to obtain in the case of penetrable
obstacles (see Corollary 4.2 and Theorem C). Such estimates give the sharp condition
for quasioptimality of the h-FEM, but estimates explicit in ↵ are required for the sharp
condition for quasioptimality of the hp-FEM. For an analytic Dirichlet obstacle, with
coe�cients analytic in a neighbourhood of the obstacle, we use a stronger property of
⇧Low'u : we can run the backward heat equation on ⇧Low'u for as long as we like and
obtain L2 estimates on the result. Under the analyticity assumptions, known heat
kernel estimates (see [23]) yield the required (explicit-in-↵) Cauchy-type estimates on
@↵⇧Low'u; see Corollary 4.1 and Theorem B.

1.7. Statement of the main result in the black-box setting.

1.7.1. Statement of Theorem A. The following theorem (Theorem A) obtains
the decomposition u = uH2 +uA in the framework of black-box scattering introduced
by Sjöstrand–Zworski in [66]. In this framework, the operator P~, where ~ := k�1

is the semiclassical parameter 1 , is a variable-coe�cient Helmholtz operator outside
BR0 (the ball of radius R0 and centre zero) for some R0 > 0, but is not specified
inside this ball (i.e., inside the “black box”). In particular, this framework includes
the Helmholtz exterior Dirichlet and transmission problems, and Theorems B and C
above are Theorem A specialised to those settings.

The theorem is stated using notation from the black-box framework, recapped

1The semiclassical parameter is often denoted by h, but we use ~ to avoid a notational clash with
the meshwidth of the FEM appearing in §1.1 and used in Theorems B1 and C1.
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in §2. The only non-standard concept we use is that of a black-box di↵erentiation
operator, which is a family of operators agreeing with di↵erentiation outside the black-
box (see Definition 2.2 below).

To understand the statement of the following theorem, the reader not familiar with
black box scattering should read it with the following identifications, which always
hold away from the black box, and, with suitable interpretation, continue to hold
inside it in the examples considered below: the Hilbert space H is L2, the operator P~
is �~2�, and the subspace D ⇢ H is the domain of P~. The superscript ] denotes the
corresponding object compactified onto a large reference torus Td

R]
:= Rd / (2R]Z)d, so

that P ]

~ is �~2�, on the torus, and D],m

~ the domain of (P ]

~)
m, with norms weighted

in the standard way with ~ (see (A.2) below, and compare to (1.7)). Finally, the
notation . indicates that the omitted constant is independent of ~ and ↵ (where
↵ 2 A and A is a set multi-indices) and

(1.30) C0(R) :=
n
f 2 C(R) : lim

�!±1
f(�) = 0

o
.

Theorem A. (The decomposition in the black-box setting) Let P~ be a semi-
classical black-box operator on H (in the sense of Definition 2.1). Then there exists
⇤ > 0 such that the following holds. Suppose that, for some ~0 > 0, there exists
H ⇢ (0, ~0] such that the following two assumptions hold.

1. There exists Dout ⇢ Dloc and M � 0 such that for any � 2 C1
comp

(Rd) equal
to one near BR0 , there exists C > 0 such that if v 2 Dout is a solution to
(P~ � I)v = �g, then

(1.31) k�vkH  C~�M�1kgkH for all ~ 2 H.

2. There exists a function E 2 C0(R) that is nowhere zero on [�⇤,⇤] such that

(1.32) E(P ]

~) = E +O(~1)D],�1
~ !D],1

~
,

where the operator E has the following property: there exists ⇢ 2 C1(Td

R]
)

equal to one near BR0 , such that, for some ↵-family of black-box di↵erentia-
tion operators (D(↵))↵2A,

(1.33) k⇢D(↵)EvkH]  CE(↵, ~)kvkH] for all v 2 D],1
~ and ~ 2 H,

for some CE(↵, ~) > 0.
Given R > 0 such that R0 < R < R], if g 2 H is compactly supported in BR and
u 2 Dout satisfies

(1.34) (P~ � 1)u = g,

then there exists uH2 2 D] and uA 2 D],1
~ such that

(1.35) u|BR =
�
uH2 + uA

�
|BR .

Furthermore, uH2 satisfies

(1.36) kuH2kH] +
��P ]

~uH2

��
H] . kgkH for all ~ 2 H,

and for any eR > 0 with R0 < eR < R], there exist RI , RII , RIII , RIV with R0 < RI <

RII < RIII < RIV < eR such that uA decomposes as

(1.37) uA = uR0
A + u1

A ,
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where uR0
A 2 D] is regular near the black-box and negligible away from it, in the sense

that

(1.38) kD(↵)uR0
A kH](BR

IV
) . CE(↵, ~) sup

�2[�⇤,⇤]

��E(�)�1
�� ~�M�1kgkH

for all ~ 2 H and ↵ 2 A, and, for any N,m > 0 there exists CN,m > 0 such that

(1.39) kuR0
A kD],m

~ ((BR
III

)c)
 CN,m~NkgkH for all ~ 2 H

and u1
A is entire away from the black-box and negligible near it, in the sense that for

some � > 1

(1.40) k@↵u1
A kH]((BR

I
)c) . �|↵|~�|↵|�M�1kgkH for all ~ 2 H and ↵ 2 A,

and, for any N,m > 0 there exists CN,m > 0 such that

(1.41) ku1
A kD],m

~ (BR
II
)
 CN,m~NkgkH for all ~ 2 H.

In addition, if E(P ]

~) = E (i.e., with no O(~1)D],�1
~ !D],1

~
remainder in (1.32)), then

the functions uA, u1
A , uR0

A , uH2 are all independent of E, and all the implicit constants
above are independent of E as well.

Finally, if ⇢ = 1, the decomposition (1.35) can be constructed in such a way that
instead of (1.37)–(1.41), uA satisfies the global regularity estimate
(1.42)
kD(↵)uAkH] . CE(↵, ~) sup

�2[�⇤,⇤]

��E(�)�1
�� ~�M�1kgkH for all ~ 2 H and ↵ 2 A;

here as well, if E(P ]

~) = E, then the functions uA, uH2 and all the above estimates do
not depend on E.

Point 1 in Theorem A is the assumption that the solution operator is polynomially
bounded in ~. In the black-box setting, [41] proved that this assumption always holds
with M > 5d/2 and {~�1 : ~ 2 H}c having arbitrarily small measure in R+ (see Part
(ii) of Theorem 1.5 and Part (iv) of Theorem 1.9). The solution operator is then
polynomially bounded because H excludes (inverse) frequencies close to resonances.
(Under an additional assumption about the location of resonances, a similar result
with a larger M can also be extracted from [69, Proposition 3] by using the Markov
inequality.)

Point 2 in Theorem A is a regularity assumption that depends on the contents of
the black box. We later refer to (1.33) as the “low-frequency estimate”, since the fact
that E is nowhere zero on [�⇤,⇤] means that it bounds low-frequency components.
The cuto↵ ⇢ in (1.33) is needed when the black box contains, e.g., an analytic obstacle
and the operator inside has analytic coe�cients; indeed the analyticity estimates that
we use for (1.33) in this case cannot hold in the transition region outside the black
box, where the coe�cients cannot be analytic.

Regarding uH2 : comparing (1.31) and (1.36), and recalling that in the nontrapping
case (1.31) holds with M = 0, we see that uH2 satisfies a bound that is better, by at
least one power of ~, than the bound satisfied by u; this is the analogue of the property
(i) in §1.1 of the results of [51, 52, 24, 50], and is a consequence of the semiclassical
ellipticity of P~ � 1 on high-frequencies (discussed in §1.6). The regularity of uH2
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depends on the domain of the operator (uH2 2 D]) but not on any other features of
the black box (in particular, not on the regularity estimate (1.33)).

Regarding uA: uA is in the domain of arbitrary powers of the operator (uA 2
D],1

~ ) and so is smooth in an abstract sense. uA is split further into two parts: uR0
A

and u1
A , with uR0

A regular near the black-box and negligible away from it, and u1
A

entire away from the black-box and negligible near it; Figure 1.1 illustrates this set up
(with “uR0

A analytic” replaced by “uR0
A regular”). Comparing (1.31) and (1.38)/(1.40),

we see that, in the regions where they are not negligible, uR0
A and u1

A satisfy bounds
with the same ~-dependence as u, but with improved regularity. These properties
are the analogue of the property (ii) in §1.1 of the results of [51], [52], [24], [50]. In
particular, the regularity of uA depends on the regularity inside the black-box (from
(1.33)), and, for the exterior Dirichlet problem with analytic obstacle and coe�cients
analytic in a neighbourhood of the obstacle, uA is analytic.

1.7.2. How to use Theorem A. To apply Theorem A to a scattering problem
not discussed in this paper, the steps are the following.

1. Check that the problem fits in the black-box scattering framework of
Sjöstrand–Zworski [66].

2. Check that a polynomial bound on the solution operator (1.31) holds.
3. Show a “low-frequency” estimate of type (1.33) for the corresponding com-

pactified problem.
Concerning Point 1: the black-box framework is specifically designed to include most
scattering problems. Examples treated in the literature include scattering by a Lip-
schitz Dirichlet or Neumann obstacle (Lemma 2.3, [42, §2.2]), by a Lipschitz penetra-
ble obstacle (Lemma 2.4, [42, §2.2]), by a compactly supported potential, by elliptic
compactly supported perturbations of the Laplacian, and scattering on finite volume
surface (see for example [22, §4.1] for these three last problems). For problems not al-
ready covered in the literature, of the conditions in §2.1, the condition on the growth of
eigenvalues for the compactified operator (BB5) will be the main non-trivial assump-
tion to check (for examples of checking this assumption, see, e.g., §B, [42, Appendix
A]).

Concerning Point 2: as mentioned below Theorem A, this assumption holds for
any M > 5d/2 and for most frequencies by [42]. For nontrapping problems, one
expects (1.31) to hold with M = 0 and H = (0, h0] (see, e.g., Theorem 1.5 below and
the references therein).

Therefore, the key step in applying Theorem A is Point 3: show a “low-frequency”
estimate of type (1.33) for the corresponding compactified problem (i.e., the same
problem, but considered in a large reference torus). This estimate dictates the regu-
larity estimate on the component uA, hence, the better the estimate, the better the
decomposition. In practical applications, the operator D(↵) in (1.33) will be nothing
but di↵erentiation D(↵) := @↵. The two main considerations are then the following.

3-a. Understand if one needs ⇢ = 1, or ⇢ vanishing away from the scatterer. If one
aims for an analytic-type estimate, because the problem under consideration
has constant coe�cients outside a compact set, it cannot typically be analytic
everywhere, and one needs to take ⇢ vanishing away from the scatterer. For
lower-regularity estimates, one can use a global estimate, i.e., with ⇢ = 1.

3-b. Choose the operator E and the function E . In the first instance, one can
ignore the flexibility given by the error term and aim for E = E(P ]

~). The
function E is then dictated by the type of estimate used. For example:

– E(�) = e�|�| corresponds to a heat-flow estimate (see the proof of Corol-
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lary 4.1),

– E(�) =
p
1 + �2

�L

, L � 1 corresponds to an elliptic estimate (see the
proof of Corollary 4.2),

– E 2 C1
comp

with E = 1 in [�M,M ] corresponds to an estimate on the
eigenfunctions of the compactified operator (see the proof of Theorem
D in §4.3).

An example where the error term in E(P ]

~) = E + O(~1)D],�1
~ !D],1

~
gives

more flexibility is the proof of Theorem D, where the error term is used to
take advantage of the regularity of the eigenfunctions of �� on the torus,
instead of those of the variable-coe�cient operator.
On the other hand, the fact that if E(P ]

~) = E (i.e., with noO(~1)D],�1
~ !D],1

~
remainder in (1.32)) then the decomposition is independent of E , allows us
to use a family of E ’s in (1.32) and hence a family of estimates as (1.33).
This feature allows us to tune the choice of E , depending on ~ and ↵, to get
the best possible estimate; this procedure is used in the proof of Theorem
B, which uses a heat-flow estimate with a time depending on ~ and ↵ (see
Corollary 4.1 and Theorem 4.3).

1.8. Outline of the rest of the paper. Section 2 recalls the black-box frame-
work and sets up the associated functional calculus. Section 3 proves Theorem A.
Section 4 proves Theorems B and C (i.e., Theorem A specialised to the exterior
Dirichlet and transmission problems), and Theorem D. Section 5 proves Theorems
B1 and C1 (i.e., the convergence results for the hp-FEM for the exterior Dirichlet
problem and the h-FEM for the transmission problem). Appendix A recalls results
about semiclassical pseudodi↵erential operators on the torus. Appendix B proves a
subsidiary result used to prove Lemma 2.4.

2. Recap of the black-box framework.

2.1. Abstract framework. We now briefly recap the abstract framework of
black-box scattering introduced in [66]; for more details, see the comprehensive pre-
sentation in [22, Chapter 4]. A brief overview of black-box scattering with an emphasis
on the counting of resonances is contained in [41, §2]. From the point of view of the
present paper, working in the framework of black-box scattering is a convenient way
to cover a large class of scattering problems.

We emphasise that here we use the approach of [65, §2], where the black-box op-
erator is a variable-coe�cient Laplacian (with smooth coe�cients) outside the black-
box, and not the Laplacian �~2� itself as in [22, Chapter 4] (although the operator
still agrees with �~2� outside a su�ciently large ball).

The Hilbert-space decomposition. Let H be an Hilbert space with an or-
thogonal decomposition

(BB1) H = HR0 � L2(Rd\BR0 ,!(x)dx),

where the weight-function ! : Rd ! R is measurable and supp(1 � !) is compact in
Rd. Let 1BR0

and 1Rd\BR0
denote the corresponding orthogonal projections. Let P~

be a family in ~ of self adjoint operators H ! H with domain D ⇢ H independent of ~
(so that, in particular, D is dense in H). Outside the black-box HR0 , we assume that
P~ equals Q~ defined as follows. We assume that, for any multi-index |↵|  2, there
exist functions a~,↵ 2 C1(Rd), uniformly bounded with respect to ~, independent of
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~ for |↵| = 2, and such that (i) for some C1 > 0

(2.1)
X

|↵|=2

a~,↵(x)⇠
↵ � C1|⇠|2 for all x 2 Rd,

(ii) for some R1 > R0

X

|↵|2

a~,↵(x)⇠
↵ = |⇠|2 for |x| � R1,

and (iii) the operator Q~ defined by

(2.2) Q~ :=
X

|↵|2

a~,↵(x)(~Dx)
↵

(where D := �i@) is formally self-adjoint on L2(Rd,!(x)dx).
We require the operator P~ to be equal to Q~ outside the black-box HR0 in the

sense that
(BB2)
1Rd\BR0

(P~u) = Q~(1Rd\BR0
u) for u 2 D, and 1Rd\BR0

D ⇢ H2(Rd\BR0).

We further assume that if, for some " > 0,

(BB3) v 2 H2(Rd) and v|BR0+" = 0, then v 2 D,

(with the restriction to BR0+✏ defined in terms of the projections in (BB2); see also
(2.8) below) and that

(BB4) 1BR0
(P~ + i)�1 is compact from H ! H.

Under these assumptions, the semiclassical resolvent

R(z, ~) := (P~ � z)�1 : H ! D

is meromorphic for Im z > 0 and extends to a meromorphic family of operators of
Hcomp ! Dloc in the whole complex plane when d is odd and in the logarithmic plane
when d is even [22, Theorem 4.4]; where Hcomp and Dloc are defined by

Hcomp :=
n
u 2 H : 1Rd\BR0

u 2 L2

comp
(Rd\BR0)

o
,

(where L2

comp
denotes compactly-supported L2 functions) and

Dloc :=
n
u 2 HR0 � L2

loc
(Rd\BR0) : if � 2 C1

comp
(Rd), �|BR0

= 1

then (1BR0
u,�1Rd\BR0

u) 2 D
o
.(2.3)

The reference operator P ]

~. Let R] > R1 be such that supp(1 � !) ⇢ BR] ,
and let Td

R]
:= Rd / (2R]Z)d; we work with [�R], R]]d as a fundamental domain for

this torus. Let

H] := HR0 � L2(Td

R]
\BR0 ,!(x) dx),
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and let 1BR0
and 1Td

R]
\BR0

denote the corresponding orthogonal projections. We

define

D] :=
n
u 2 H] : if � 2 C1

comp
(BR]), � = 1 near BR0 , then

(1BR0
u,�1Td

R]
\BR0

u) 2 D, and (1� �)1Td
R]

\BR0
u 2 H2(Td

R]
)
o
,(2.4)

and, for any � as in (2.4) and u 2 D],

P ]

~u := P~(1BR0
u,�1Td

R]
\BR0

u) +Q~
�
(1� �)1Td

R]
\BR0

u
�
,(2.5)

where we have identified functions supported in B(0, R])\B(0, R0) ⇢ Td

R]
\B(0, R0)

with the corresponding functions on Rd\B(0, R0) – see the paragraph on notation
below.

Let q~ 2 S2(Td

R]
) denote the principal symbol of Q~ as an operator acting on the

torus Td

R]
(see Appendix A for a review of semiclassical pseudodi↵erential operators

on Td

R]
). We record for later the fact that (2.1), (2.2), and the uniform boundedness

of a~,↵(x) with respect to ~ imply that there exist C1, C2 > 0 such that

(2.6) C1|⇠|2  q~  C2|⇠|2 for su�ciently large ⇠.

The idea behind these definitions is that we have glued our black box into a torus
instead of Rd, and then defined on the torus an operator P ]

~ that can be thought of

as P~ in HR0 and Q~ in (R/2R]Z)d\BR0 ; see Figure 2.1. The resolvent (P ]

~ + i)�1 is

compact (see [22, Lemma 4.11]), and hence the spectrum of P ]

~, denoted by SpP ]

~, is
discrete (i.e., countable and with no accumulation point).

We assume that the eigenvalues of P ]

~ satisfy the polynomial growth of eigenvalues
condition

(BB5) N
�
P ]

~, [�C,�]
�
= O(~�d

]

�d
]
/2),

for some d] � d and N(P ]

~, I) is the number of eigenvalues of P ]

~ in the interval I,
counted with their multiplicity. When d] = d, the asymptotics (BB5) correspond to
a Weyl-type upper bound, and thus (BB5) can be thought of as a weak Weyl law.

We summarise with the following definition.

Definition 2.1. (Semiclassical black-box operator) We say that a family of self-
adjoint operators P~ on a Hilbert space H, with dense domain D, independent of ~, is
a semiclassical black-box operator if (P~,H) satisfies (BB1), (BB2), (BB3), (BB4),
(BB5).

We define a family of black-box di↵erentiation operators as a family of operators
agreeing with di↵erentiation outside the black-box (note that there is no notion of
derivative inside the black-box itself).

Definition 2.2 (Black-box di↵erentiation operator). (D(↵))↵2A is a family of
black-box di↵erentiation operators on D],1

~ (defined by (2.13) below) if A is a family
of d–multi-indices, and for any ↵ 2 A and any v 2 C1

comp
(Td

R]
\BR0),

D(↵)v = @↵v.
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P ]
h̄ ' Ph̄ ' ?

P ]
h̄ ' Ph̄ ' Qh̄

P ]
h̄ ' Ph̄ ' �h̄2�

R]

R0

R1

Ph̄ ' �h̄2�

Fig. 2.1. The black-box setting. The symbol ' is used to denote equality in the sense of (BB2)
and (2.5).

Notation. We identify in the natural way:
• the elements of {0}� L2(Td

R]
\BR0) ⇢ H],

• the elements of L2(Td

R]
\BR0),

• the elements of L2(Td

R]
) essentially supported outside BR0 ,

• the elements of L2(Rd) essentially supported in [�R], R]]d\BR0 ,
• and the elements of {0}�L2(Rd\BR0) ⇢ H whose orthogonal projection onto
L2(Rd\BR0) is essentially supported in [�R], R]]d\BR0 .

If v 2 H and � 2 C1
comp

(Rd) is equal to some constant ↵ near BR0 , we define

(2.7) �v := (↵1BR0
v,�1Rd\BR0

v) 2 H.

(for example, using this notation, the requirements on u in the definition of D] (2.4)
are �u 2 D and (1� �)u 2 H2(Td

R]
) for � equal to 1 near BR0).

If v 2 H and R > R0, we define

(2.8) v|BR :=
�
1BR0

v, (1Rd\BR0
v
�
|BR) 2 HR0 � L2(BR\BR0),

and, if v 2 H],

v|BR :=
�
1BR0

v, (1Td
R]

\BR0
v
�
|BR) 2 HR0 � L2(BR\BR0).

Furthermore, we say that g 2 H is compactly supported in BR if g = �0g for some
�0 2 C1

comp
(Rd) equal to one near BR0 and supported in BR.

Finally, if R0  r  R], we define the partial norms

kukH](Br)
= kukH(Br)

:= kukHR0�L2(Br\BR0 )
, kukH](Bc

r)
:= k1Td

R]
\BR0

uk
L2(Td

R]
\Br)

and
kukH(Bc

r)
:= k1Rd\BR0

ukL2(Rd\Br)
.
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2.2. Scattering problems fitting in the black-box framework. The two
following lemmas show that both scattering by Dirichlet obstacles with variable co-
e�cients and scattering by penetrable obstacles fit in the black-box framework. For
other examples of scattering problems fitting in the black-box framework, see [22,
§4.1].

Lemma 2.3. (Scattering by a Dirichlet obstacle fits in the black-box framework)
Let O�, A, c, R0, and R1 be as in Definition 1.2. Then the family of operators

P~v := �~2c2r ·
�
Arv)

with the domain

DD := H2(O+) \H1

0
(O+)

is a semiclassical black-box operator (in the sense of Definition 2.1) with ! = c�2,
Q~ = �~2c2r · (Ar), and

HR0 = L2
�
BR0 \O+; c

�2(x)dx
�

so that H = L2
�
O+; c

�2(x)dx
�
.

Furthermore the corresponding reference operator P ]

~ satisfies (BB5) with d] = d.

Proof. The non-semiclassically-scaled version of this lemma with Lipschitz ⌦�
and Ascat and c 2 L1 and domain

(2.9)
n
v 2 H1(O+), r ·

�
Ascatrv

�
2 L2(O+), v = 0 on @O+

o

is proved for c = 1 in [41, Lemma 2.1]. The proof of (BB2), (BB3), and (BB4) is
essentially the same in the present semiclassically-scaled setting. The bound (BB5)
follows from comparing the counting function for P ]

~ to the counting function for the
problem with c = 1 by a similar argument to [41, Lemma B.2]/Appendix B, and then
using the result for the problem with c = 1 proven in [41, Lemma B.1]. Finally, by
elliptic regularity, the domain (2.9) equals H2(O+)\H1

0
(O+) since ⌦� and Ascat are

smooth in Definition 1.2.

Lemma 2.4. (Scattering by a penetrable Lipschitz obstacle fits in the black-box
framework) Let O�, A, c, �, and R0 be as in Definition 1.8. Let ⌫ be the unit nor-
mal vector field on @O� pointing from O� into O+, and let @⌫,A the corresponding
conormal derivative from either O� or O+. Let

HR0 = L2
�
O�, c(x)

�2��1dx
�
� L2

�
BR0\O�

�
,

so that

H = L2
�
O�; c(x)

�2��1dx
�
� L2

�
BR0\O�

�
� L2

�
Rd\BR0

�
.

Let

D :=
n
v = (v1, v2, v3) where v1 2 H1(O�), r · (A�rv1) 2 L2(O�),

v2 2 H1
�
BR0 \ O�

�
, r · (A+rv2)

�
2 L2

�
BR0 \ O�

�
,

v3 2 H1
�
Rd \BR0

�
, �v3 2 L2

�
Rd \BR0

�
,

v1 = v2 and @⌫,A�v1 = � @⌫,A+v2 on @O�, and

22



v2 = v3 and @⌫v2 = @⌫v3 on @BR0

o
(2.10)

(observe that the conditions on v2 and v3 on @BR0 in the definition of D are such
that (v2, v3) 2 H1(Rd \ O�) and r · (A+r(v2, v3)) 2 L2(Rd \ O�)). Then the family
of operators

P~v := �~2
⇣
c2r · (A�rv1),r · (A+rv2),�v3

⌘
,

defined for v = (v1, v2, v3), is a semiclassical black-box operator (in the sense of Defini-
tion 2.1) on H, with Q~ = �~2�, and any R1 > R0. Furthermore, the corresponding
reference operator P ]

~ satisfies (BB5) with d] = d.

Proof. The non-semiclassically-scaled version of this lemma was proved for c = 1
in [41, Lemma 2.3]. The proof of (BB2), (BB3), and (BB4) is essentially the same in
the present semiclassically-scaled setting. The proof of the bound (BB5) is similar to
the the analogous proof for c = 1 and A Lipschitz in [41, Lemma B.1]; for completeness
we include the proof in §B.

Remark 2.5. Lemma 2.3 has the obstacle O� in the black box (i.e., in BR0)
but not all the variation of the coe�cients A and c (which are contained in BR1 �
BR0). In contrast, Lemma 2.4 has both the obstacle O� and all the variation of
the coe�cients A and c in the black box. The transmission problem also fits in the
black-box framework with some of the variation of the coe�cients outside the black
box (i.e., in BR1), but we do not need this formulation to prove Theorem C.

2.3. A black-box functional calculus for P ]

~. The operator P ]

~ on the torus
with domain D] is self-adjoint with compact resolvent [22, Lemma 4.11], hence we can
describe the Borel functional calculus [60, Theorem VIII.6] for this operator explicitly
in terms of the orthonormal basis of eigenfunctions �]

j
2 H] (with eigenvalues �]

j
,

appearing with multiplicity and depending on ~): for f a real-valued Borel function
on R, f(P ]

~) is self-adjoint with domain

Df :=

⇢X
aj�

]

j
2 H] :

X��f(�]
j
)aj
��2 < 1

�
,

and if v =
P

aj�
]

j
2 Df then

(2.11) f(P ]

~)(v) :=
X

ajf(�
]

j
)�]

j
.

For f a bounded Borel function, f(P ]) is a bounded operator, hence in this case we
can dispense with the definition of the domain and allow f to be complex-valued.

For m � 1, we then define D],m

~ as the domain of (P ]

~)
m equipped with the norm

(2.12) kvkD],m
~

:= kvkH] + k(P ]

~)
mvkH] ,

and D],�m

~ as its dual (note that, in the exterior of the black box, the regularity

imposed in the definition of D],m

~ is that of periodic functions on the torus with
2m derivatives in L2). We define also the partial norms, for m > 0, kvkD],m

~ (B)
:=

kvkH](B) + k(P ]

~)
mvkH](B), where B = Br or B = Bc

r
with R0  r  R]. In addition,

we let

(2.13) D],1
~ :=

\

m�0

D],m

~ ,
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so that v 2 D],1
~ i↵ (P ]

~)
mv 2 D]

~ for all m 2 Z+.
The following theorem is proved in [18, Pages 23 and 24]; see also [60, Theorem

VIII.5].

Theorem 2.6. The Borel functional calculus enjoys the following properties.
1. f ! f(P ]

~) is a ?-algebra homomorphism.

2. for z /2 R, if rz(w) := (w � z)�1 then rz(P ]) = (P ]

~ � z)�1.

3. If f is bounded, f(P ]

~) is a bounded operator for all ~, with kf(P ]

~)kL(H]) 
sup

�2R |f(�)|.
4. If f has disjoint support from SpP ]

~, then f(P ]

~) = 0.

In describing the structure of the operators produced by the functional calculus,
at least for well-behaved functions f, it is useful to recall the Hel↵er–Sjöstrand con-
struction of the functional calculus [36], [18, §2.2] (which can also be used to prove
the spectral theorem to begin with; see [17]).

We say that f 2 A if f 2 C1(R) and there exists � < 0, such that, for all r > 0,
there exists Cr > 0 such that |f (r)(x)|  Cr(1 + |x|2)(��r)/2.

Let ⌧ 2 C1(R) be such that ⌧(s) = 1 for |s|  1 and ⌧(s) = 0 for |s| � 2. Finally,

let n � 1. We define an n-almost-analytic extension of f , denoted by ef , by

ef(z) :=
 

nX

m=0

1

m!

�
@mf(Re z)

�
(i Im z)m

!
⌧

✓
Im z

hRe zi

◆

where h·i := (1+ | · |2)1/2 (observe that ef(z) = f(z) if z is real). For f 2 A, we define

(2.14) f(P ]

~) := � 1

⇡

Z

C

@ ef
@z̄

(P ]

~ � z)�1 dxdy,

where dxdy is the Lebesgue measure on C. The integral on the right-hand side of
(2.14) converges; see, e.g., [17, Lemma 1], [18, Lemma 2.2.1]. This definition can be
shown to be independent of the choices of n and ⌧, and to agree with the operators
defined by the Borel functional calculus for f 2 A; see [17, Theorems 2-5], [18, Lemmas
2.2.4-2.2.7].

When P is a self-adjoint elliptic semiclassical di↵erential operator on a compact
manifold, the Hel↵er–Sjöstrand construction can be used to show that f(P ) is a
pseudodi↵erential operator [36]. Here, in the presence of a black box, it can instead
be used to show that, modulo residual errors, f(P ]

~) agrees with f(Q~) on the region
of the torus outside the black box, with the latter being a pseudodi↵erential operator.
Furthermore, the operator wavefront set of f(Q~) can be seen to be included in
q�1

~ (suppf). We now state these results, obtained originally in [65].
We say that E1 2 L(H]) is O(~1)D],�1

~ !D],1
~

if, for any N > 0 and any m > 0,

there exists CN,m > 0 such that

(2.15) kE1kD],�m
~ !D],m

~
 CN,m~N

(compare to (A.4) below). Operators in the functional calculus are pseudo-local in
the following sense.

Lemma 2.7. Suppose f 2 A is independent of ~, and  1, 2 2 C1(Td

R]
) are

constant near BR0 . If  1 and  2 have disjoint supports, then

(2.16)  1f(P
]

~) 2 = O(~1)D],�1
~ !D],1

~
.
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Proof. In the usual case of a smooth manifold with boundary, this result follows
from the fact that f(P ]

~) is a pseudodi↵erential operator, and hence pseudo-local.
Here, it follows from combining the corresponding result about the resolvent [65,
Lemma 4.1] (i.e., (2.16) with f(w) := (w � z)�1)) with (2.14) and then integrating
(as discussed in a slightly di↵erent context in [65, Paragraph after proof of Lemma
4.2]).

Furthermore, we can show from [65, §4] that, modulo a negligible term, away from
the black-box the functional calculus is given by the semiclassical pseudodi↵erential
calculus in the following sense. The following lemma uses the notion of semiclassical
pseudodi↵erential operators on Td

R]
(including the concept of the operator wavefront

set WF~), recapped in Appendix A.

Lemma 2.8. Suppose f 2 C1
comp

(R) is independent of ~. If � 2 C1(Td

R]
) is equal

to zero near BR0 , then,

(2.17) �f(P ]

~)� = �f(Q~)�+O(~1)D],�1
~ !D],1

~
.

Furthermore, f(Q~) 2  �1
~ (Td

R]
) with

(2.18) �~(f(Q~)) = f(q~)

and

(2.19) WF~ f(Q~) ⇢ q�1

~ (suppf).

If, instead, f 2 C1(R) is identically equal to 1 near +1, then f(Q~) 2  0

~(Td

R]
) and

(2.17), (2.18), (2.19) continue to hold.

(Here we are adopting the convention that if ⇢0 = (x0, ⇣0) 2 T
⇤Td

R]
lies at fiber-

infinity (see the section “Phase space” in Appendix A), then the notion of support
is to be interpreted in the following generalized sense: q~(⇢0) = +1 and this is in
suppf if f = 1 near +1.)

Proof. First, assume f has compact support. By [65, Lemma 4.2 and the subse-
quent two paragraphs],

�f(P ]

~)� = �f(Q~)�+O(~1)D],�1
~ !D],1

~
.

The results of Hel↵er-Robert [35] (see the account in [62] and in particular Remarques
III-14 for verification of the hypotheses on f) imply that for f compactly supported,
f(Q~) 2  �1

~ , with principal symbol f(q~).
That the analogous statements hold for f = 1 near +1 instead simply follows

by noting that for such a function f , g(s) = 1 � f(s) is zero for s > C for some C.
Then f(Q~) = I � g(Q~); since Q~ is bounded below, we may assume without loss of
generality that g is compactly supported Thus the previous results show that (2.17),
(2.18) hold for g(Q~), which is in  �1

~ . We thus obtain (2.17), (2.18) for f(Q~), which
lies in  0

~ with symbol f(q~), hence we have established (2.17), (2.18) under either of
our hypotheses on f.

It remains to show that WF~ f(Q~) ⇢ q�1

~ (supp f). To this end, pick any ⇢0 /2
q�1

~ (supp f); we aim to show ⇢0 /2 WF~ f(Q~). There exists a smooth function g on
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R with g(q~(⇢0)) = 1 and supp g \ supp f = ;. We may take g to be either compactly
supported (if ⇢0 is in T ⇤Td

R]
) or equal to 1 near +1 (if ⇢0 is at fiber-infinity). Then

by Part 1 of Theorem 2.6

(2.20) f(Q~)g(Q~) = g(Q~)f(Q~) = 0

(the Borel calculus is a homomorphism). Since �~(g(Q~)) = 1 by (2.18), g(Q~) is
elliptic at ⇢0.

Now pick b 2 C1(T
⇤Td

R]
) equal to 1 in a small neighbourhood of ⇢0 and supported

on the elliptic set of g(Q~). Thus, writing B = Op
Td
R]

~ (b), ⇢0 /2 WF~(I�B) and WF~ B
lies in the elliptic set of g(Q~). Then by Theorem A.2, we may factor

B = Zg(Q~) +R

with Z 2  0

~ and ⇢0 /2 WF~ R (by (A.7)). Now write

f(Q~) = Bf(Q~) + (I �B)f(Q~)

= Zg(Q~)f(Q~) +Rf(Q~) + (I �B)f(Q~),

The first term on the right-hand side is zero by (2.20). The point ⇢0 is not in the
semiclassical operator wavefront set of the second term or third terms since it is not
in WF~ R or WF~(I �B) (see (A.9)). Hence by (A.8), ⇢0 /2 WF~ f(Q~), as desired.

3. Proof of Theorem A (the main result in the black-box framework).
The decomposition (1.35) is defined in §3.1 (and illustrated schematically in Figures
3.1 and 3.3). The estimates (1.36) and (1.38)–(1.42) are proved in §3.2 and 3.3
respectively.

3.1. The decomposition. Let ' 2 C1
comp

(Rd) be equal to one in BR and sup-
ported in BR] . For v 2 H, we define

M'v := 'v,

where the multiplication is in the sense of (2.7). Let u 2 Dout be solution to

(P~ � 1)u = g,

and let
w := M'u.

We view w as an element of H] and work in the torus Td

R]
.

We now define our frequency cut-o↵s. By (2.1), there exists eµ > 1 and cell > 0
such that

|⇠| � eµ implies that h⇠i�2(q~(x, ⇠)� 1) � cell > 0.

Therefore, by (2.6), there exists µ > 1 such that

(3.1) q~(x, ⇠) � µ implies that h⇠i�2(q~(x, ⇠)� 1) � cell > 0.

We increase µ further, if necessary, so that

(3.2)
�
(x, ⇠) : |q~(x, ⇠)| � µ

 
=
�
(x, ⇠) : q~(x, ⇠) � µ
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(note that the conditions imposed on q~(x, ⇠) in §2.1 allow it to be < 0 for some
(x, ⇠)).

Let  2 C1
comp

(R) be such that

(3.3)  =

(
1 in B(0, 1),

0 in (B(0, 2))c.

We now fix 1  µ0  µ/2, and define

(3.4)  µ(·) :=  

✓
·
µ

◆
,  µ0(·) :=  

✓
·
µ0

◆
.

These definitions imply that

(3.5) (1�  µ0)(1�  µ) = (1�  µ)

(since 2µ0  µ), and

(3.6) 1 /2 supp(1�  µ0)

(since µ0 � 1). Let

(3.7) ⇤ := 5µ

(note that, by (3.1), both µ and ⇤ only depend on q~), and observe that

(3.8) supp µ ⇢ [�⇤,⇤].

We define, by the Borel functional calculus for P ]

~ (Theorem 2.6), in L(H])

(3.9) ⇧Low :=  µ(P
]

~),

and additionally

⇧High := (1�  µ)(P
]

~) = I �⇧Low and ⇧0
High

:= (1�  µ0)(P ]

~).

By (3.5) and the fact the Borel functional calculus is an algebra homomorphism (Part
1 of Theorem 2.6),

(3.10) ⇧0
High

⇧High = ⇧High.

By Part 3 of Theorem 2.6, the operators ⇧Low,⇧High, and ⇧0
High

are bounded on H],
with

(3.11) k⇧LowkL(H]), k⇧HighkL(H]), k⇧0
High

kL(H])  1,

and they commute with P ]

~ by Part 1 of Theorem 2.6.
Since u 2 Dloc (defined by (2.3)), the definition of D] (2.4), (BB2), and the fact

that ' is compactly supported imply that w 2 D]. By the definition of  µ (3.4),

(2.11), and the fact that SpP ]

~ is discrete, ⇧Loww projects non-trivially only on a

finite number of eigenspaces of P ]

~, and thus ⇧Loww 2 D],1
~ . Therefore ⇧Highw =

w �⇧Loww 2 D]. We now define

(3.12) uHigh := ⇧Highw 2 D], uLow := ⇧Loww 2 D],1
~ .
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We show in §3.3 below that we can split uLow as

(3.13) uLow = uA + u✏,

where uA 2 D],1
~ satisfies (1.37)–(1.41) (or (1.42) if ⇢ = 1), and that uHigh and u✏

satisfy

(3.14) kuHighkH] +
��P ]

~uHigh

��
H] . kgkH,

and

(3.15) ku✏kH] +
��P ]

~u✏

��
H] . kgkH,

with additionally u✏ 2 D],1
~ (the subscript ✏ indicates that u✏ is “small” in a sense

made precise below). We then define

uH2 := uHigh + u✏ 2 D],

so that the decomposition (1.35), (1.36) and (1.37)–(1.41) (or (1.42) if ⇢ = 1) holds.
Our splitting strategy is summed-up in Figure 3.1; with an overview of the splitting
of the low-frequency component uLow in Figure 3.3.

In §3.2 we prove the estimate (3.14) for uHigh. In §3.3 we prove that the de-
composition (3.13) holds, with uA satisfying (1.37)–(1.41) (or (1.42) if ⇢ = 1) and u✏

satisfying (3.15) We highlight that all the arguments from now on consider ~ 2 H.

3.2. Proof of the bound (3.14) on uHigh (the high-frequency compo-
nent). We proceed in three steps: we first use the abstract information we have
about P ]

~ to bound ⇧Highw by kgkH modulo a commutator term living away from the
black box BR0 . We then use Lemmas 2.7 and 2.8 to show that this commutator is
given, up to negligible terms, by the semiclassical pseudodi↵erential calculus on the
torus Td

R]
. Finally, we work in the torus and use the semiclassical elliptic-parametrix

construction (Theorem A.2) to estimate this commutator, seen as a semiclassical
pseudodi↵erential operator on Td

R]
.

Step 1: An abstract estimate in H]. Since ⇧High commutes with P ]

~,

(P ]

~ � I)(⇧Highw) = ⇧High(P
]

~ � I)(w)

= ⇧High(P~ � I)(w)

= ⇧High'g +⇧High[P~,M']u = ⇧High'g +⇧High[P
]

~,M']u,(3.16)

where we used the fact that we can replace P ]

~ by P~ (and vice versa) on supp' ⇢ BR0

by (BB2) and (2.5)). For � 2 R, let

f(�) := (�� 1)�1(1�  µ0)(�),

where f 2 C0(R) (defined by (1.30)) by (3.6). Using (3.10), the fact that the Borel
calculus in an algebra homomorphism (Part 1 of Theorem 2.6), and finally (3.16), we
get
(3.17)
⇧Highw = ⇧0

High
⇧Highw = f(P ]

~)(P
]

~�I)⇧Highw = f(P ]

~)
�
⇧High'g+⇧High[P

]

~,M']u
�
.
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u

w := 'u

considered as an element

of the reference torus

uLow

low-frequency part

uHigh

high-frequency part

u1
A

analytic away from BR0

uR0
A

regular near BR0

u✏

not regular but small

uA uH2

' 2 C1
comp

⇧Low ⇧High

Fig. 3.1. Splitting of the Helmholtz solution

Since f 2 C0(R), f(P ]

~) is uniformly bounded from H] ! H] by Part 3 of Theorem
2.6. Combining this fact with (3.17), we obtain

k⇧HighwkH] . k⇧High'gkH] +
���⇧High[P

]

~,M']u
���
H]

.

Writing P ]

~⇧Highw = ⇧Highw + (P ]

~ � I)⇧Highw and using (3.16) again, we obtain

k⇧HighwkH] +
���P ]

~⇧Highw
���
H]

. k⇧High'gkH] +
���⇧High[P

]

~,M']u
���
H]

.

Hence, by (3.11)

k⇧HighwkH] +
���P ]

~⇧Highw
���
H]

. k'gkH] +
���⇧High[P

]

~,M']u
���
H]

. kgkH +
���⇧High[P

]

~,M']u
���
H]

.(3.18)

Step 2: Viewing ⇧High[P
]

~,M'] as a semiclassical pseudodi↵erential op-
erator on Td

R]
. To prove (3.14) from (3.18), it therefore remains to bound the com-

mutator term ⇧High[P
]

~,M']u. Since [P ]

~,M'] lives away from HR0 , we consider the
high-frequency cut-o↵ in terms of the semiclassical pseudodi↵erential calculus thanks
to Lemma 2.8.
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Since ' is compactly supported in BR] and equal to one near BR0 , in H] we can

write [P ]

~,M'] as (using the notation in §2.1)

(3.19) [P ]

~,M'] = (0, [Q~,']) = (0,�[Q~,']�) = (0, [Q~,']�)

where � 2 C1
comp

(Rd) is supported in BR] , equal to zero near BR0 , and such that

(3.20) � = 1 near suppr'.

Let � 2 C1
c
(Rd) be supported in BR] , equal to zero near BR0 , and equal to one

near supp�. Using (3.19) and Lemma 2.7 (i.e., the pseudo-locality of the functional
calculus) with  1 = 1� � and  2 = �� = �, we obtain that

⇧High[P
]

~,M'] = �⇧High��[P
]

~,M']�+O(~1)D],�1
~ !D],1

~

= �⇧High�[P
]

~,M']�+O(~1)D],�1
~ !D],1

~
,(3.21)

where we used the last equality in (3.19) to obtain the second line. By Lemma 2.8
with f(P ]

~) =  µ(P
]

~) = ⇧Low, ⇧ Low :=  µ(Q~) 2  �1
~ (Td

R]
) is such that

�⇧Low� = �⇧ 
Low

�+O(~1)D],�1
~ !D],1

~

Hence, taking ⇧ 
High

:= I �⇧ 
Low

= (1�  µ)(Q~) 2  0

~(Td

R]
),

(3.22) �⇧High� = �⇧ 
High

�+O(~1)D],�1
~ !D],1

~

in other words, modulo negligible terms, �⇧High� is a high-frequency cut-o↵ defined
from the semiclassical pseudodi↵erential calculus. We here emphasise that, since � is
supported in BR] and vanishes near BR0 , �⇧

 

High
� can be seen as an element of both

L(H]) and  0

~(Td

R]
).

Lemma 3.1. With ⇧ 
Low

:=  µ(Q~) and ⇧ High
:= (1�  µ)(Q~),

(3.23) WF~⇧
 

Low
⇢ q�1

~
�
supp µ

�
= {|q~|  2µ}

and

(3.24) WF~⇧
 

High
⇢ q�1

~
�
supp(1�  µ)

�
= {|q~| � µ}.

Proof. This follows from (2.19) (in Lemma 2.8), first with f =  µ, and then with
f = 1�  µ.

By (3.21) and (3.22), for any N and any m,

��⇧High[P
]

~,M']u
��
H] 

���⇧ 
High

�[P ]

~,M']�u
��
H] + CN,m~N

��[P ]

~,M']�u
��
D],�m

~

+ C 0
N
~N
��e�u

��
H] ,

with e� compactly supported in BR]\BR0 and equal to one on supp�. Taking m = 1,
then N = M + 1 and using the resolvent estimate (1.31) we get

��⇧High[P
]

~,M']u
��
H] 

���⇧ 
High

�[P ]

~,M']�u
��
H] + C 00

M+1
~M+1

��e�u
��
H]
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=
���⇧ 

High
�[P ]

~,M']�u
��
H] + C 00

M+1
~M+1

��e�u
��
H

.
���⇧ 

High
�[P ]

~,M']�u
��
H] +

��g
��
H.(3.25)

Finally, by the definition of P ]

~ (2.5) and the fact that � equals zero near BR0 ,

���⇧ 
High

�[P ]

~,M']�u
��
H] =

���⇧ 
High

�[Q~ � I,']�u
��
L2(Td

R]
)
,

hence by (3.25),

(3.26)
��⇧High[P

]

~,M']u
��
H] .

���⇧ 
High

�[Q~ � I,']�u
��
L2(Td

R]
)
+ kgkH.

Step 3: A semiclassical elliptic estimate in Td

R]
. Combining (3.18) and

(3.26), we see that to prove (1.36) we only need to bound �⇧ 
High

�[Q~ � I,']�u in

L2(Td

R]
). To do this, we use the semiclassical elliptic parametrix construction given

by Theorem A.2.

Lemma 3.2. The operator Q~ � I is semiclassically elliptic on the semiclassical
wavefront set of ~�1�⇧ 

High
�[Q~ � I,'].

Proof. By (A.9), (A.11), (3.24) and (3.2),

WF~(~�1�⇧ 
High

�[Q~ � I,']) ⇢ WF~⇧
 

High
⇢ q�1

~
�
supp(1�  µ)

�
⇢ {q~ � µ}.

But, on {q~ � µ}, by definition of µ (3.1),

h⇠i�2(q~(x, ⇠)� 1) � cell > 0,

and the proof is complete.

Since ~�1�⇧ 
High

�[Q~ � I,'] 2  1

~(Td

R]
) by Theorem A.1, we can therefore apply

the elliptic parametrix construction given by Theorem A.2 with A = ~�1�⇧ 
High

�[Q~�
I,'], B = Q~ � I, and ` = 1, m = 2. Hence, there exists S 2  �1

~ (Td

R]
) and

R = O(~1)
 

�1
~

with

(3.27) WF~ S ⇢ WF~
�
~�1⇧ 

High
[Q~ � I,']

�
,

and such that
�⇧ 

High
�[Q~ � I,'] = ~S(Q~ � I) +R.

We apply both sides of this identity to �u and then use (BB2) and the fact that � is
equal to zero near BR0 and supported in BR] ; the result is that

�⇧ 
High

�[Q~ � I,']�u = ~S(Q~ � I)�u+R�u

= ~S�(Q~ � I)u+ ~S[Q~ � I,�]u+R�u

= ~S�(P~ � I)u+ ~S[Q~ � I,�]u+R�u.(3.28)

The following lemma combined with (A.10) shows that

(3.29) S[Q~ � I,�] = O(~1)
 

�1
~

.

Lemma 3.3.
WF~ S \WF~[Q~ � I,�] = ;.
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Proof. By (3.27) and the definition of Q~ (2.2),

WF~ S ⇢ WF~[Q~ � I,'] ⇢ (suppr')⇥ Rd

Similarly,
WF~[Q~ � I,�] ⇢ (suppr�)⇥ Rd,

Now, by (3.20), suppr' and suppr� are disjoint, and the result follows.

Therefore, by (3.28), (3.29) and the definition of O(~1)
 

�1
~

(A.4), for any N ,

there exists CN , C 0
N

> 0 such that

k�⇧ 
High

�[Q~ � I,']�uk
L2(Td

R]
)

 ~kS�(P~ � I)uk
L2(Td

R]
)
+ CN~Nke�uk

L2(Td
R]

)
+ C 0

N
~Nk�uk

L2(Td
R]

)

= ~kS�(P~ � I)uk
L2(Td

R]
)
+ CN~Nke�ukH + C 0

N
~Nk�ukH,

where e� is compactly supported in BR]\BR0 and equal to one on supp�. Taking
N := M + 1 and using the resolvent estimate (1.31), we then obtain that

k�⇧ 
High

�[Q~ � I,']�uk
L2(Td

R]
)
. ~kS�(P~ � I)uk

L2(Td
R]

)
+ ~kgkH

. ~k�(P~ � I)uk
L2(Td

R]
)
+ ~kgkH,(3.30)

where we used in the second line the fact that S 2  �1(Td

R]
) ⇢  0(Td

R]
) together

with Part (iii) of Theorem A.1. Now, since � is equal to zero near BR0 and supported
in BR] , we get

k�(P~ � I)uk
L2(Td

R]
)
= k�(P~ � I)ukH = k�gkH  kgkH.

Thus, (3.30) implies that

k�⇧ 
High

�[Q~ � I,']�uk
L2(Td

R]
)
. ~kgkH.

Combining this last estimate with (3.18) and (3.26) we conclude that

k⇧HighwkH] +
���P ]

~⇧Highw
���
H]

. kgkH;

hence (3.14) holds.

3.3. Decomposition (3.13) of uLow, and proof of the bounds (1.38)–
(1.42) and (3.15) (the low-frequency component). By Assumption 2 in Theo-
rem A, there exists E1 = O(~1)D],�1

~ !D],1
~

with

(3.31) E(P ]

~) = E + E1,

and the low-frequency estimate (1.33) holds. By (3.8) (a consequence of the definition
of the constant ⇤ (3.7)), E is nowhere zero on the support of  µ; therefore the function
 µ/E is well-defined and in C0(R). The definition of ⇧Low (3.9) and Part 1 of Theorem
2.6 imply that
(3.32)

⇧Low =  µ(P
]

~) = E(P ]

~)

✓
1

E  µ

◆
(P ]

~) = E �
✓

1

E  µ

�
(P ]

~)

◆
+ E1 �

✓
1

E  µ

�
(P ]

~)

◆
.
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R0 RI
RII RIII

R]

�1 ⇢1�2 ⇢2

Fig. 3.2. The cut-o↵ functions ⇢1, ⇢2, �1, �2. ⇢1 is used in §3.3.2, ⇢2 in §3.3.3, and �1 and �2

in §3.3.4.

Then, by Part 3 of Theorem 2.6 and the fact that E1 = O(~1)D],�1
~ !D],1

~
,

(3.33) E1 �
✓

1

E  µ

�
(P ]

~)

◆
= O(~1)D],�1

~ !D],1
~

.

3.3.1. The decomposition (3.13) of uLow when ⇢ = 1. We first assume that
⇢ = 1 and we show the decomposition (3.13), together with the bound (1.42) on uA
and the bound (3.15) on u✏. In this case, we let

uA := E �
✓

1

E  µ

�
(P ]

~)

◆
w and u✏ := E1 �

✓
1

E  µ

�
(P ]

~)

◆
w,

so that (3.13) holds by (3.31) and (3.9). Moreover, since both uA and u✏ involve
compactly-supported functions of P ]

~, by the reasoning immediately above (3.12),

both uA and u✏ are in D],1
~ . Then, using (in this order) the low-frequency estimate

(1.33), Part 3 of Theorem 2.6, and finally the resolvent estimate (1.31), we get

kD(↵)uAkH] =

����D(↵)E �
✓

1

E  µ

�
(P ]

~)

◆
w

����
H]

 CE(↵, ~)
����


1

E  µ

�
(P ]

~)w

����
H]

 CE(↵, ~) sup
�2R

����
1

E(�) µ(�)

���� kwkH] = CE(↵, ~) sup
�2R

����
1

E(�) µ(�)

���� kwkH

. CE(↵, ~) sup
�2R

����
1

E(�) µ(�)

���� ~
�M�1kgkH;

thus (1.42) holds. In addition, the bound (3.15) on u✏ follows from (3.33) together
with the resolvent estimate (1.31).

3.3.2. The decomposition (3.13) of uLow when ⇢ 6= 1. We now tackle the
general case (i.e., ⇢ 6= 1). Given R0 and eR, let RI , RII , RIII , RIV , be such that R0 <
RI < RII < RIII < RIV < eR and ⇢ = 1 near BR

IV
. In addition, let ⇢1 2 C1(Td

R]
) be

equal to one near BR0 and such that supp(1�⇢1) ⇢ (BR
II
)c and supp ⇢1 b BR

III
(see

Figure 3.2).
Using the decomposition (3.32) of ⇧Low, we decompose uLow = ⇧Loww as

uLow = ⇧Low⇢1w +⇧Low(1� ⇢1)w

= E �
✓

1

E  µ

�
(P ]

~)

◆
⇢1w + E1 �

✓
1

E  µ

�
(P ]

~)

◆
⇢1w +⇧Low(1� ⇢1)w,(3.34)

and we define

(3.35) uR0
A := E �

✓
1

E  µ

�
(P ]

~)

◆
⇢1w and u1

Low
:= ⇧Low(1� ⇢1)w.
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uLow := ⇧Loww

⇧Low⇢1w

= E(P ]

~) �
✓

1

E  µ

�
(P ]

~)

◆
⇢1w

u1
Low

:= ⇧Low(1� ⇢1)w

E1 �
✓

1

E  µ

�
(P ]

~)

◆
⇢1w

small part

uR0
A := E �

✓
1

E  µ

�
(P ]

~)

◆
⇢1w

regular near BR0 thanks

to the low-frequency estimate,

small away from BR0

ũ✏

small part

u1
A

part given by

a Fourier multiplier

on the torus Td,

entire away from BR0 ,

small near BR0

u✏

part near BR0
part away from BR0

Fig. 3.3. The splitting of uLow

Since uR0
A involves a compactly-supported function of P ]

~, u
R0
A 2 D],1

~ . We decompose
u1
Low

in §3.3.4 below as

(3.36) u1
Low

= u1
A + eu✏

with u1
A 2 D],1

~ , (see (3.45) below) and then define

(3.37) uA := uR0
A + u1

A 2 D],1
~ and u✏ := eu✏ + E1 �

✓
1

E  µ

�
(P ]

~)

◆
⇢1w

(with the first definition implying (1.37)). These definitions imply that uLow = uA +
u✏, i.e., that (3.13) holds. To complete the proof, we now need to show that the bounds
(1.38) and (1.39) on uR0

A , the bounds (1.40) and (1.41) on u1
A , and the bound (3.15)

on u✏ all hold. This decomposition of uLow and the ideas behind it are summed-up in
Figure 3.3.

3.3.3. Proof of (1.38) and (1.39) for the localised term uR0
A .. Using (in

this order) the definition of uR0
A (3.35), the fact that ⇢ = 1 on BR

IV
, the low-frequency

estimate (1.33), Part 3 of Theorem 2.6, and finally the resolvent estimate (1.31) we
obtain

kD(↵)uR0
A kH](BR

IV
) =

����D(↵)E �
✓

1

E  µ

�
(P ]

~)

◆
⇢1w

����
H](BR

IV
)


����⇢D(↵)E �

✓
1

E  µ

�
(P ]

~)

◆
⇢1w

����
H]
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 CE(↵, ~)
����

✓
1

E  µ

�
(P ]

~)

◆
⇢1w

����
H]

 CE(↵, ~) sup
�2R

����
1

E(�) µ(�)

���� kwkH]

= CE(↵, ~) sup
�2R

����
1

E(�) µ(�)

���� kwkH

. CE(↵, ~) sup
�2R

����
1

E(�) µ(�)

���� ~
�M�1kgkH;

thus (1.38) holds, where the sup
�2R becomes sup

�2[�⇤,⇤] because of the support
property (3.8) of  µ.

Let ⇢2 2 C1(Td

R]
) be supported in BR

III
and such that ⇢2 = 1 on supp ⇢1 (see

Figure 3.2). By (3.31), Part 1 of Theorem 2.6, and the pseudo-locality of the functional
calculus (Lemma 2.7),

(1� ⇢2)E �
✓

1

E  µ

�
(P ]

~)

◆
⇢1 = (1� ⇢2)E(P ]

~)

✓
1

E  µ

◆
(P ]

~)⇢1 +O(~1)D],�1
~ !D],1

~

= (1� ⇢2)⇧Low⇢1 +O(~1)D],�1
~ !D],1

~

= O(~1)D],�1
~ !D],1

~
.(3.38)

On the other hand, since ⇢2 = 0 on Bc

R
III
,

kuR0
A kDm,]((BR

III
)c) =

����(1� ⇢2)E �
✓

1

E  µ

�
(P ]

~)

◆
⇢1w

����
Dm,]((BR

III
)c)


����(1� ⇢2)E �

✓
1

E  µ

�
(P ]

~)

◆
⇢1w

����
Dm,]

.

Combining this with (3.38) and then using the resolvent estimate (1.31), we obtain
(1.39).

3.3.4. The term away from the black-box u1
Low

..
Step 1: obtaining the decomposition (3.36) and the bound (3.15) on u✏.. Let �1 2

C1(Td

R]
) be equal to zero near BR0 , and such that �1 = 1 near (BR

I
)c. Since

supp(1� �1) and supp(1� ⇢1) are disjoint (see Figure 3.2), by the pseudo-locality of
the functional calculus given by Lemma 2.7,

⇧Low(1� ⇢1) = �1⇧Low(1� ⇢1) +O(~1)D],�1
~ !D],1

~

= �1⇧Low�1(1� ⇢1) +O(~1)D],�1
~ !D],1

~
.

Therefore, by Lemma 2.8,

(3.39) ⇧Low(1� ⇢1) = �1⇧
 

L
�1(1� ⇢1) +O(~1)D],�1

~ !D],1
~

,

where ⇧ 
Low

2  �1
~ (Td

R]
) and

(3.40) WF~⇧
 

Low
⇢ q�1

~ (supp µ).

By (2.6), since  µ is compactly supported, there exists � > 1 such that

(3.41) q�1

~ (supp µ) ⇢ Td

R]
⇥B

✓
0,
�

2

◆
.
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Now, let e' 2 C1
comp

be compactly supported in B(0,�2) and equal to one on

B(0,�2/4). By (3.41) and (3.40) together with (A.11), WF~
�
1 � Op

Td
R]

~ (e'(|⇠|2))
�
\

WF~
�
⇧ 

Low

�
= ;. Therefore, by (A.10), as operators on the torus,

(3.42) ⇧ 
Low

= Op
Td
R]

~ (e'(|⇠|2))⇧ 
Low

+ E1,

where E1 = O(~1)
 

�1
~

. Since �1 = 0 near BR0 , by the definitions of P ] (2.5), k·kD],m
~

(2.12), and k · k
H

2m
~ (Td

R] )
(A.2),

(3.43) k�1wkD],m
~

.m k�1wkH2m
~ (Td

R] )
.m k�1wkD],m

~
for all w 2 D],m

~ ,

and thus �1E1�1 = O(~1)D],�1
~ !D],1

~
. Therefore, combining this with (3.42) and

(3.39), we obtain that

(3.44) ⇧Low(1� ⇢1) = �1 Op
Td
R]

~ (e'(|⇠|2))⇧ 
L
�1(1� ⇢1) + E2,

where E2 = O(~1)D],�1
~ !D],1

~
. We let

(3.45) u1
A := �1 Op

Td
R]

~ (e'(|⇠|2))⇧ 
L
�1(1� ⇢1)w and eu✏ := E2w;

observe that u1
A 2 D] because of the presence of �1 at the start of the expression.

The decomposition (3.36) then holds by (3.44) and (3.35). The bound (3.15) on u✏

follows directly from the definition of u✏ (3.37), together with (3.33), the fact that
E2 = O(~1)D],�1

~ !D],1
~

, and the resolvent estimate (1.31).

Step 2: proving that u1
A is regular in (BR

I
)c (i.e., the bound (1.40)).. By the

definition of u1
A (3.45) and the fact that �1 = 1 on (BR

I
)c,

k@↵u1
A kH((BR

I
)c) =

���@↵ Op
Td
R]

~ (e'(|⇠|2))⇧ 
L
�1(1� ⇢1)w

���
H((BR

I
)c)


���@↵ Op

Td
R]

~ (e'(|⇠|2))⇧ 
L
�1(1� ⇢1)w

���
L2(Td

R]
)

.(3.46)

We now bound the right-hand side of (3.46). By Lemma A.3, Op
Td
R]

~ (e'(|⇠|2)) is given
as a Fourier multiplier on the torus (defined by (A.12)), i.e.,

(3.47) Op
Td
R]

~ (e'(|⇠|2)) = e'(�~2�).

Let v 2 L2(Td

R]
) be arbitrary, and let bv(j) be the Fourier coe�cients of v. By (A.12),

e'(�~2�)v =
X

j2Zd

bv(j)e'(~2|j|2⇡2/R2

]
)ej ,

where the normalised eigenvectors ej are defined by (A.1). Hence, for any multi-index
↵,

@↵ e'(�~2�)v =
X

j2Zd

bv(j)e'(~2|j|2⇡2/R2

]
)

✓
i⇡j

R]

◆↵

ej
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=
X

j2Zd, |j|
�R]
~⇡

bv(j)e'(~2|j|2⇡2/R2

]
)

✓
i⇡j

R]

◆↵

ej ,

since e' is supported in B(0,�2). Therefore

k@↵ e'(�~2�)vk2
L2(Td

R]
)
=

X

j2Zd, |j|
�R]
~⇡

����bv(j)e'(~
2|j|2⇡2/R2

]
)

✓
i⇡j

R]

◆↵
����
2

 �2|↵|~�2|↵|
X

j2Zd

|bv(j)|2

= �2|↵|~�2|↵|kvk2
L2(Td

R]
)
.(3.48)

We now use (3.48) with
v := ⇧ 

L
�1(1� ⇢1)w,

and combine the resulting estimate with (3.46) and (3.47). Using the fact that ⇧ 
L
2

 1(Td

R]
), �1 = 0 near BR0 , and the resolvent estimate (1.31), we get

k@↵u1
A kH((BR

I
)c)  �|↵|~�|↵|k⇧ 

L
�1(1� ⇢1)wkL2(Td

R]
)

. �|↵|~�|↵|k�1(1� ⇢1)wkL2(Td
R]

)

= �|↵|~�|↵|k�1(1� ⇢1)wkH  �|↵|~�|↵|~�M�1kgkH;

hence (1.40) holds.
Step 3: proving that u1

A is negligible in BR
II
(i.e., the bound (1.41)).. It therefore

remains to show (1.41). Let �2 2 C1(Td

R]
) be equal to zero on BR

II
and such that

�2 = 1 on supp(1 � ⇢1); see Figure 3.2. Since supp(1 � �2) and supp(1 � ⇢1) are
disjoint, using (A.9) and (A.11)

WF~
⇣
(1� �2)Op

Td
R]

~ (e'(|⇠|2))⇧ 
L

⌘
\WF~(1� ⇢1) = ;.

Then, by (A.10),

(1� �2)Op
Td
R]

~ (e'(|⇠|2))⇧ 
L
(1� ⇢1) = O(~1)

 
�1
~

as a pseudo-di↵erential operator on the torus. Multiplying by �1 on the right and on
the left, and then using the fact that �1 = 0 on BR0 and the norm equivalence (3.43),
we find

(3.49) (1� �2)�1 Op
Td
R]

~ (e'(|⇠|2))⇧ 
L
�1(1� ⇢1) = O(~1)D],�1

~ !D],1
~

as an element of L(H]). On the other hand, since �2 = 0 near BR
II
,

ku1
A kD],m

~ (BR
II
)
= k(1� �2)u

1
A kD],m

~ (BR
II
)
.

Then (1.41) follows from combining this last equation with the definition of u1
A (3.45),

(3.49), and the resolvent estimate (1.31).
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3.3.5. Showing that the decomposition is independent of E when E1 =
0.. When E1 = 0, uR0

A = ⇧Low⇢1w (by (3.34)), and u✏ = eu✏ (by (3.37)); see Figure
3.3. The decomposition and associated bounds are therefore independent of E .

The proof of Theorem A is now complete.

4. Proofs of Theorems B, C, and D (i.e., the application of Theorem A
to the Dirichlet, transmission, and full-space problems). Theorem D is proved
by directly verifying the assumptions of Theorem A. Theorems B and C are proved
using the following two corollaries of Theorem A. In the first corollary (Corollary 4.1),
the low-frequency estimate (1.33) comes from a heat-flow estimate, and in the second
(Corollary 4.2) from an elliptic-regularity estimate.

Corollary 4.1. Let P~ be a semiclassical black-box operator on H satisfying the
polynomial resolvent estimate (1.31) in H ⇢ (0, ~0]. Assume further that (i) P ]

~ �
a(~) > 0 for some a(~) > 0, and (ii) for some ↵-family of black-box di↵erentiation
operators (D(↵))↵2A (Definition 2.2), there exists ⇢ 2 C1(Td

R]
) equal to one near

BR0 such that, for some family of subsets I(~,↵) ⇢ [0,+1), the following localised
heat-flow estimate holds,

(4.1)
���⇢D(↵)e�tP

]
~
���
H]!H]

 C(↵, t, ~) for all ↵ 2 A, t 2 I(~,↵), ~ 2 H.

Then, if R > 0 is such that R0 < R < R], g 2 H is compactly supported in BR,

and u 2 Dout satisfies (1.34), there exist uA 2 D],1
~ and uH2 2 D] such that u decom-

poses as (1.35). Furthermore, uH2 satisfies (1.36) and there exists RI , RII , RIII , RIV ,
and R], with R0 < RI < RII < RIII < RIV < R], such that uA decomposes as
uA = uR0

A + u1
A with, for some ⇤ > 0 and � > 1,

(4.2)
kD(↵)uR0

A kH](BR
IV

) . inf
t2I(~,↵)

C(↵, ~, t)e⇤t ~�M�1kgkH for all ~ 2 H and ↵ 2 A,

(4.3) k@↵u1
A kH]((BR

I
)c) . �|↵|~�|↵|�M�1kgkH for all ~ 2 H and ↵ 2 A,

and, for any N,m > 0 there exists CN,m > 0 such that
(4.4)
ku1

A kD],m
~ (BR

II
)
+ kuR0

A kD],m
~ ((BR

III
)c)

 CN,m~NkgkH for all ~ 2 H and ↵ 2 A.

In addition, if ⇢ = 1, the decomposition (1.35) can be constructed in such a way that
instead of (4.2)–(4.4), uA satisfies the global regularity estimate

(4.5) kD(↵)uAkH] . inf
t2I(~,↵)

C(↵, ~, t)e⇤t ~�M�1kgkH for all ~ 2 H and ↵ 2 A.

Finally, the omitted constants in (4.2), (4.3), and (4.5) are independent of ~ and ↵.

Proof. For ↵ 2 A and ~ 2 H, let t 2 I(~,↵), and Et(�) := e�t|�|. Since P ]

~ �
a(~) > 0, SpP ]

~ ⇢ [a(~),1). Therefore, by Parts 4 and 3 of Theorem 2.6, e�tP
]
~ =

Et(P ]

~). Such an Et is in C0(R), never vanishes, and satisfies (1.33) with Et := Et(P ]

~)
and CEt(↵, ~) := C(↵, ~, t) by (4.1). From Theorem A, we therefore obtain the above
decomposition uA, u

R0
A , u1

A , uH2 . Since Et(P ]

~) = Et, by the final part of Theorem A,
the decomposition is constructed independently of Et, and hence independently of t.
The result then follows, with the infimum in t in (4.2) coming from (1.38) and the
fact that this estimate in valid for any t 2 I(~,↵).
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Corollary 4.2. Let P~ be a semiclassical black-box operator on H satisfying the
polynomial resolvent estimate (1.31) in H ⇢ (0, ~0]. Assume further that, for some
↵-family of black-box di↵erentiation operators (D(↵))↵2A (in the sense of Definition
2.2), there exists L > 0 and 0 < L(↵)  L such that the following elliptic-regularity
estimate holds,
(4.6)

kD(↵)wkH] 
L(↵)X

`=0

C`(↵, ~)
��(P ]

~)
`w
��
H] for all ↵ 2 A, w 2 D],1

~ , and ~ 2 H,

for some C`(↵, ~) > 0, ` = 0, . . . , L(↵).
Then, if R0 < R < R], g 2 H is compactly supported in BR and u 2 Dout satisfies

(1.34), there exists uA 2 D],1
~ , uH2 2 D] such that u can be written as (1.35), uH2

satisfies (1.36), and uA satisfies

(4.7) kD(↵)uAkH] .
✓ L(↵)X

`=0

C`(↵, ~)
◆
~�M�1kgkH for all ↵ 2 A and ~ 2 H,

where the omitted constant is independent of ~ and ↵.

Proof. Let ⇢ := 1, E(�) := h�i�L and CE(↵, ~) :=
PL(↵)

`=0
C`(↵, ~). We now need

to show that the bound (4.6) implies that the bound (1.33) holds with these choices
of E and CE . Given v 2 D],1

~ , let w := hP ]

~i�Lv 2 D],1
~ . The bound (4.6) implies

that
(4.8)
���⇢D(↵)hP ]

~i
�Lv

���
H]


L(↵)X

`=0

C`(↵, ~)
��(P ]

~)
`hP ]

~i
�Lv

��
H] for all ↵ 2 A and ~ 2 H.

Since h�i�L�`  1, by Part 3 of Theorem 2.6, the term in brackets on the right-hand
side of (4.8) is bounded by CE(↵, ~)kvkH] , and then (1.33) follows. The result (4.7)
then follows from the bound (1.42) in Theorem A.

4.1. Proof of Theorem B. Let ~ := k�1, g := ~2f , and define H and P~ as in
Lemma 2.3, so that P~ is a semiclassical black-box operator on H. The assumption
that Csol(k) is polynomially bounded means that (1.31) holds with

(4.9) H :=
�
~ : ~ = k�1 with k 2 K

 
.

The plan is to apply Corollary 4.1, showing that the heat-flow estimate (4.1) is satisfied
using the following theorem.

Theorem 4.3. (Heat-equation estimate from [23]) Suppose that O�, A, c, R0, and
R1 are as in Definition 1.2. In addition, assume that O� is analytic, and that A and
c are C1 everywhere and analytic in BR⇤ for some R0 < R⇤ < R1. Let P ]

~ denote
the associated black-box reference operator on the torus (as described in §2.1).

Given ⇢ 2 C1
comp

with supp ⇢ ⇢ BR⇤ , there exists C > 0 such that for all t 2 (0, 1]
and for all ⌧ 2 [0, 1]

(4.10)
���⇢@↵et~

�2
P

]
~
���
L2!L2

 exp(t�⌧ )|↵|!C |↵|t(⌧�1)|↵|/2.
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Note that the operator et~
�2

P
]
~ is just the variable coe�cient heat operator for time

t.

References for the proof of Theorem 4.3. When ⌧ = 1, (4.10) is essentially [23,
Theorem 1.1], and when ⌧ = 0, (4.10) is a more-standard heat-equation estimate [23,
Equation 1.5], attributed there to [26, Part 3, §3].

Indeed, the bound with ⌧ = 1 follows from [23, Lemma 2.7] with the choice of
their parameter ✓ equal to 1 (via an argument using Sobolev embedding in time, as
discussed immediately before [23, Lemma 2.7]). The bound with ⌧ = 0 follows from
[23, Lemma 2.7] with ✓ = t (since � = 1 for the heat equation in the notation of [23,
§2]), as highlighted in [23, Remark 2.8]. The bound for general ⌧ 2 [0, 1] then follows
from [23, Lemma 2.7] with ✓ = t1�⌧ .

The main di↵erence between the set up of [23] and the hypotheses of Theorem 4.3
is that [23] works on a bounded domain with Dirichlet boundary conditions, whereas
Theorem 4.3 works on the torus with a Dirichlet obstacle inside. However, these global
considerations only enter the arguments in [23] in deriving time-analyticity estimates
of the heat semi group in [23, Lemma 2.1], and these estimates hold equally well on
the torus with a Dirichlet obstacle.

As in Corollary 4.1, we choose ⇢ to be equal to one near BR0 , and further assume
that ⇢ is supported in B(R0+R⇤)/2 (i.e., in a region where A and c are known to be
analytic). Given ~ 2 H and a multi-index ↵, let ⌧ = ⌧(~,↵) 2 [0, 1], depending only
on ~ and ↵, to be fixed later. By letting t 7! t~2 in Theorem 4.3, we see that the
heat-flow estimate (4.1) is satisfied with D(↵) := @↵,

C(↵, ~, t) := exp
�
(~2t)�⌧

�
|↵|!C |↵|�~2t)(⌧�1)|↵|/2 and I(~,↵) := (0, ~�2];

note that the heat-flow given by the functional calculus, appearing in (4.1), is indeed
the solution of the heat equation; see, e.g., [60, Theorem VIII.7].

We can therefore apply Corollary 4.1 with an arbitrary R] > R, and we obtain

uH2 2 D] and uA 2 D],1
~ with uA = uR0

A + u1
A satisfying (1.35), (1.36), (1.37),

and the bounds (4.2)–(4.4). Observe that uH2 and uA satisfy the Dirichlet boundary
condition (1.6) since they are in D] (2.4).

The low-frequency bounds (4.3)–(4.4) give directly the low-frequency bound away
from the obstacle (1.12) and the error bound (1.13). The rest of the proof therefore
consists in obtaining the low-frequency bound near the obstacle (1.11) from (4.2) and
the high-frequency bound (1.10) from (1.36).

To obtain (1.11), by (4.2), we only have to show that, for some ⌧ 2 [0, 1] and
C > 0,
(4.11)

inf
t2(0,~�2]

✓
exp

⇥
(~2t)�⌧ + ⇤t

⇤
|↵|!C |↵|

�
~2

t)
(⌧�1)|↵|/2

◆
 C|↵| max

�
|↵||↵|, ~�|↵| .

We first prove (4.11) when |↵| � ~�1, i.e., when the max on the right equals C|↵|↵|↵|.
If ⌧ = 1 and t = ~�1, then the quantity in the infimum on the left-hand side of (4.11)
equals

exp
⇥
(1 + ⇤)~�1

⇤
|↵|!C |↵|  ( eC)|↵||↵||↵|

(by Stirling’s formula) as required.
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To prove (4.11) when |↵|  ~�1, we seek to choose t and ⌧ such that

(4.12) (~2t)(⌧�1)|↵|/2 = ~�|↵||↵|�|↵| and t = (~2t)�⌧ .

Under the second equality in (4.12), the left-hand side of the first equality becomes
~�|↵|t�|↵|; we therefore let t = |↵|, which is allowed since |↵|  ~�1  ~�2. We now
choose ⌧ such that the second equality in (4.12) holds; i.e.,

⌧ =
log |↵|

log(~�2|↵|�1)
.

When 1  |↵|  ~�1, 0  ⌧  1, and so this choice of ⌧ is allowed. Under the
equalities in (4.12), the quantity in the infimum on the left-hand side of (4.11) equals

exp
⇥
(1 + ⇤)|↵|

⇤
|↵|!C |↵|~�|↵||↵|�|↵|  ( eC)|↵|~�|↵|,

which is the right-hand side of (4.11) when |↵|  ~�1. We have therefore proved
(4.11), and thus the low-frequency bound near the obstacle (1.11).

We now complete the proof by proving the high-frequency bound (1.10). The
bound (1.36) implies that

kuH2k
L2(Td

R]
\O�)

+ k�2kr · (AruH2)k
L2(Td

R]
\O�)

. k�2kfkL2(BR\O+),

and then Green’s first identity (see, e.g., [47, Lemma 4.3]) and the fact that A satisfies
(1.4) imply that

kuH2k
L2(Td

R]
\O�)

+ k�1kruH2k
L2(Td

R]
\O�)

+ k�2kr · (AruH2)k
L2(Td

R]
\O�)

. k�2kfkL2(BR\O+);(4.13)

see, e.g., [33, Lemma 3.10]. That is, (1.10) holds for |↵| = 0 and 1. To obtain (1.10)
for |↵| = 2, we combine (4.13) with the H2 regularity result of, e.g., [47, Part (i) of
Theorem 4.18, pages 137-138], applied with ⌦1 = BR\O+ and ⌦2 = B(R+R])/2

\O+.

Finally, the fact that uR0
A is analytic in BR

IV
and u1

A is analytic in (BR
I
)c follows

from Lemma 1.1 and the bounds (1.11) and (1.12), respectively.

4.2. Proof of Theorem C. The plan is to apply Corollary 4.2. Let ~ := k�1,
g := ~2f , and define H and P~ as in Lemma 2.3. By Lemma 2.3, P~ is a semiclassical
black-box operator on H.

The assumption that Csol(k) is polynomially bounded means that (1.31) holds
with H given by (4.9) and thus we only need to show that the regularity estimate
(4.6) is satisfied for appropriate D(↵), C`(↵, ~), and L(↵).

We claim that for n even with n  2m

(4.14) kwk
Hn(O�)�Hn(Td

R]
\O+)


n/2X

`=0

eC`(n)
��(r · (Ar))`w

��
L2(O�)�L2(Td

R]
\O+)

for all w 2 D],1
~ , where eC`(n) also depends on O�, A, and c. If (4.14) holds, then the

regularity estimate (4.6) is satisfied with (i) D(↵) := (@↵|O� , @
↵|O+), (ii) A consisting

of multi-indices ↵ such that |↵| is even and |↵|  2m, (iii) L(↵) := |↵|/2, and (iv)

(4.15) C`(↵, ~) := ~�2` eC`(|↵|).
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We assume that (4.14) holds, and show how the result of the theorem follows from
Corollary 4.2. Applying this corollary, we obtain uH2 , uA satisfying (1.35), (1.36),
and (4.7). Observe that uH2 and uA satisfy the transmission conditions (1.22) since
they are in D]. By (4.15), there exists C2 = C2(m) > 0 such that, for |↵|  2m,

L(↵)X

`=0

C`(↵, ~)  C2(m)~�|↵|.

The low-frequency bound (4.7) therefore gives (1.24) for all ↵ 2 A, i.e., for all ↵
with |↵| even and  2m. The bound (1.24) then holds for all ↵ with |↵|  2m by
interpolation (see, e.g., [47, Theorem B.8], [12, §4.2]). Finally, (1.23) follows from
the high-frequency estimate (1.36), together with Green’s identity and (4.14) applied
with n = 2 (similar to the end of the proof of Theorem B).

We therefore only need to prove (4.14). The two ingredients to do this are the
regularity result

kvk
Hn+2(O�)�Hn+2(Td

R]
\O+)

. kr · (Arv)k
Hn(O�)�Hn(Td

R]
\O+)

+ kvk
H1(O�)�H1(Td

R]
\O+)

(4.16)

for all integers n  2m� 2, and the bound
(4.17)
kvk

H1(O�)�H1(Td
R]

\O+)
. kr · (Arv)k

L2(O�)�L2(Td
R]

\O+)
+ kvk

L2(O�)�L2(Td
R]

\O+)
,

where both bounds are valid for all v 2 D],m, and the omitted constants in both
depend on A, c, and �.

The bound (4.17) is proved using Green’s first identity (see, e.g., [47, Lemma
4.3]), the fact that v satisfies the transmission conditions in (2.10), and the fact that
A satisfies (1.4); see, e.g., [33, Lemma 3.10] for an analogous bound in Rd for the case
� = 1.

Regarding (4.16): elliptic regularity results imply that, given ⌦1,⌦2 with O� b
⌦1 b ⌦2 b BR] ,

kvkHn+2(O�)�Hn+2(⌦1\O+)

. kr · (Arv)kHn(O�)�Hn(⌦2\O+) + kvkH1(O�)�H1(⌦2\O+)

 kr · (Arv)k
Hn(O�)�Hn(Td

R]
\O+)

+ kvk
H1(O�)�H1(Td

R]
\O+)

,(4.18)

for all v 2 D] and integers n  2m�2, where the omitted constant depends on A, c,�;
see, e.g., [47, Theorem 4.20], [16, Theorem 5.2.1, Part (i)]. Since the torus is compact
(and is thus covered by a finite number of ⌦1s), (4.18) holds with the left-hand side
replaced by kvk

Hn+2(O�)�Hn+2(O+\Td
R]

)
and (4.16) follows.

We now use (4.16) and (4.17) to prove (4.14) by induction. The bound (4.14) with
n = 2 follows from combining (4.16) with n = 0 and v = w and (4.17) with v = w
(observe that choosing v = w in both is allowed since w 2 D]). We now assume that
we have proved (4.14) for n even and n  2q for some 0  q  m� 1; i.e.,

(4.19) kwkH2q .
qX

`=0

��(r · (Ar))`w
��
L2 for all w 2 D],1

~ ,
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where we have omitted the q-dependent constants and the domains of the norms for
brevity.

Applying (4.16) with n = 2q and v = w, we have

(4.20) kwk
H2q+2 . kr · (Arw)k

H2q + kwk
H1

(again omitting the domains of the norms for brevity). The desired bound (4.14) with
n = 2q + 2 then follows by using in (4.20) the inequality (4.19) with w replaced by
r · (Arw) (which is allowed since w 2 D],1

~ implies that P ]

~w 2 D],1
~ by (2.13)), and

then using (4.17) with v = w.

4.3. Proof of Theorem D. Let ~ := k�1, g := ~2f , and define H and P~ as in
Lemma 2.3 with O� = ;. By Lemma 2.3, P~ is a semiclassical black-box operator on
H. The reference operator is given by P ]

~ = �~2c2r · (Ar), acting on the torus Td

R]
.

The assumption that Csol(k) is polynomially bounded means that the bound
(1.31) holds with H given by (4.9); i.e., the assumption in Point 1 of Theorem A is
satisfied.

We now construct E and E satisfying the assumptions in Point 2 of Theorem A.
Let ⇤ > 0 be as in Theorem A, and let E 2 C1

comp
(R) be such that E = 1 in [�⇤,⇤],

and E = 0 outside [�2⇤, 2⇤]. The results of Hel↵er-Robert [35] (see the account in
[62]) imply that E(P ]

~) = E(�~2c2r ·
�
Ar)) is a pseudo-di↵erential operator on the

torus Td

R]
. Then, the same argument as in the proof of Lemma 2.8 shows that

WF~ E
�
� ~2c2r · (Ar)

�
⇢ q�1(supp E),

where q(x, ⇠) = c(x)2hA(x)⇠, ⇠i is the semi-classical principal symbol of�~2c2r·(Ar).
Hence, since E is compactly supported and A satisfies (1.4), there exists ⇤0 > 0 such
that

(4.21) WF~ E
�
� ~2c2r · (Ar)

�
⇢ Td

R]
⇥B

✓
0,
⇤0

2

◆
.

Let e' 2 C1
comp

be compactly supported in B(0,⇤2

0
) and equal to one on B(0,⇤2

0
/4). By

(4.21) and (A.11), WF~
�
1�Op

Td
R]

~ (e'(|⇠|2))
�
\WF~ E(�~2c2r ·

�
Ar)) = ;, therefore,

by (A.10),

E
�
� ~2c2r · (Ar)

�
= Op

Td
R]

~ (e'(|⇠|2))E
�
� ~2c2r · (Ar)

�
+O(~1)

 
�1
~

.

Then, by Lemma A.3,

(4.22) E(�~2c2r ·
�
Ar)) = e'(�~2�)E(�~2c2r ·

�
Ar)) +O(~1)

 
�1
~

.

We now define

(4.23) E := e'
�
� ~2�)E(�~2c2r · (Ar)

�
,

and thus (4.22) implies that

E(P ]

~) = E +O(~1)D],�1
~ !D],1

~
.

We now need to show that a low-frequency estimate of the form (1.33) is satisfied.
Since e' is compactly supported in B(0,⇤2

0
), the definition of E (4.23) and the same

argument used to show the bound (3.48) imply that

k@↵Evk
L2(Td

R]
)
 ⇤|↵|

0
~�|↵|kE(�~2c2r ·

�
Arv))vk

L2(Td
R]

)
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for all v 2 L2(Td

R]
) and for all multi-indices ↵. Then, since E(�~2c2r ·

�
Ar)) 2

 �1
~ (Td

R]
), there exists C > 0 such that

k@↵Evk
L2(Td

R]
)
 C⇤|↵|

0
~�|↵|kvk

L2(Td
R]

)
for all v 2 L2(Td

R]
) and multi-indices ↵.

Therefore, the assumption in Point 2 of Theorem A is satisfied with D(↵) := @↵,

CE(↵, ~) := C⇤|↵|
0

~�|↵| and ⇢ = 1. The result then follows from Theorem A; indeed,
the bound (1.27) follows immediately from (1.42), and (1.26) follows from (1.36) after
using Green’s identity and elliptic regularity in the same way as at the end of the
proof of Theorem B – see (4.13) and the surrounding text.

5. Proofs of Theorems B1 and C1 (the frequency-explicit results about
the convergence of the FEM).

5.1. Recap of FEM convergence theory. The two ingredients for the proof
of Theorems B1 and C1 are

• Lemma 5.4, which is the standard duality argument giving a condition for
quasioptimality to hold in terms of how well the solution of the adjoint prob-
lem is approximated by the finite-element space (measured by the quantity
⌘(VN) defined by (5.4)), and

• Lemma 5.5 that bounds ⌘(VN) using the decomposition from Theorems B and
C.

Regarding Lemma 5.4: this argument came out of ideas introduced in [64], was then
formalised in [63], and has been used extensively in the analysis of the Helmholtz
FEM; see, e.g., [1, 39, 48, 63, 51, 52, 75, 73, 20, 14, 45, 15, 30, 34, 29, 43].

Before stating Lemma 5.4 we need to introduce some notation. Let Ccont =
Ccont(A, c�2, R, k0) be the continuity constant of the sesquilinear form a(·, ·) (defined
in (1.15)) in the norm k · kH1

k(BR\O+); i.e.

|a(u, v)|  Ccont kukH1
k(BR\O+)

kvk
H

1
k(BR\O+)

for all u, v 2 H1(BR \O+).

By the Cauchy-Schwarz inequality and (1.16),

(5.1) Ccont  max{Amax, c
�2

min
}+ CDtN.

The following definitions are stated for the sesquilinear form of the Dirichlet problem
(1.15). For the sesquilinear form of the transmission problem with the transmission
parameter � = 1, one only needs to replace BR \O+ by BR and define c to be equal
to one in BR \O+.

Definition 5.1 (The adjoint sesquilinear form a⇤(·, ·)). The adjoint sesquilinear
form, a⇤(u, v), to the sesquilinear form a(·, ·) defined in (1.15) is given by

a⇤(u, v) := a(v, u) =

Z

BR\O+

✓
(Aru) ·rv � k2

c2
uv

◆
�
⌦
u,DtNk(v)

↵
@BR

.

Definition 5.2 (Adjoint solution operator S⇤). Given f 2 L2(BR\O+), let S⇤f
be defined as the solution of the variational problem: find S⇤f 2 H1(BR \ O+) such
that

(5.2) a⇤(S⇤f, v) =

Z

BR\O+

f v for all v 2 H1(BR \O+).
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Green’s second identity applied to solutions of the Helmholtz equation sat-
isfying the Sommerfeld radiation condition (1.2) implies that

⌦
DtNk ,�

↵
@BR

=⌦
DtNk�, 

↵
@BR

for all �, 2 H1/2(@BR) (see, e.g., [67, Lemma 6.13]); thus a(v, u) =

a(u, v) and so the definition (5.2) implies that

(5.3) a(S⇤f, v) = (f, v)L2(BR) for all v 2 H1(BR \O+).

Definition 5.3 (⌘(VN)). Given a sequence (VN)1N=0
of finite-dimensional sub-

spaces of H1(BR \O+), let

(5.4) ⌘(VN) := sup
0 6=f2L2(BR\O+)

min
vN2VN

kS⇤f � vNkH1
k(BR\O+)��f

��
L2(BR\O+)

.

Lemma 5.4 (Conditions for quasioptimality). If N and k are such that

k ⌘(VN) 
1

Ccont

s
Amin

2
�
Amin + c�2

min

� ,

then the Galerkin equations (1.18) have a unique solution which satisfies

ku� uNkH1
k(BR\O+)

 2Ccont

Amin

✓
min
vN2VN

ku� vNkH1
k(BR\O+)

◆
.

References for the proof. See, e.g., [43, Lemma 6.4].

The following two lemmas are proved in the next subsections.

Lemma 5.5 (Bound on ⌘(VN) for the exterior Dirichlet problem). Let d = 2 or
3. Suppose that O�, A, c, R,RI , and RIV are as in Theorem B, and that Csol(k) is
polynomially bounded for k 2 K.

Let (VN)1N=0
be the piecewise-polynomial approximation spaces described in [51,

§5], [52, §5.1.1].
Given k0 > 0 and N > 0 there exist
• C1, C2,� > 0, depending on A, c,R, d, and k0, but independent of k, h, p, and
N , and

• CN depending on A, c,R, d, k0, and N , but independent of k, h, p,
such that, for k 2 K \ [k0,1),

(5.5) k ⌘(VN)  C1
hk

p

✓
1 +

hk

p

◆
+ C2kM

✓✓
h

h+ �

◆p

+ k

✓
hk

�p

◆p◆
+ CNk1�N .

Lemma 5.6 (Bound on ⌘(VN) for the transmission problem). Let d = 2 or 3
and let � = 1. Suppose that A, c, and O� are as in Definition 1.8 and, given an
integer p, satisfy the regularity assumptions in Theorem C1. Suppose that Csol(k) is
polynomially bounded for k 2 K.

Let (VN)1N=0
be a sequence of piecewise-polynomial approximation spaces of degree

p satisfying Assumption 1.10.
Given k0 > 0, there exist eC1, eC2, depending on A, c,R, d, k0, and p, but indepen-

dent of k and h, such that

(5.6) k ⌘(VN) 
�
1 + hk

�⇣eC1hk + eC2 kM+1(hk)p
⌘

for all k 2 K \ [k0,1).
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Proof of Theorems B1/C1 assuming Lemmas 5.5/5.6. Theorem C1 follows im-
mediately by combining Lemmas 5.4 and 5.6 and the inequality (5.1).

Theorem B1 follows in a similar way (and is essentially the same as the proof of
[52, Theorem 5.8]), except that we first choose N > 1, and then let k1 > 0 be such
that

CNk1�N  1

2Ccont

s
Amin

2
�
Amin + c�2

min

� for all k � k1.

Theorem B1 then follows by using this bound in (5.5) and then combining the resulting
inequality with Lemma 5.4 and the inequality (5.1).

5.2. Proof of Lemma 5.5. Given f 2 L2(BR\O+), let v = S⇤f . By (5.3) and
Theorem B, v = vH2 + vA, where vH2 and vA satisfy the bounds (1.10)–(1.13) with u
replaced by v.

The proof of Lemma 5.5 is very similar to the proofs of [51, Theorem 5.5] and [52,
Proposition 5.3] (covering the constant-coe�cient Helmholtz equation in, respectively,
Rd and the exterior of an analytic Dirichlet obstacle).

The only di↵erence is that in [51], [52] the function vA is analytic on the whole
of BR \ O+, whereas here vA = vR0

A + v1A with vR0
A and v1A analytic in subsets of

the domain and O(k�1) in the complements of these subsets; see (1.11)-(1.13) and
Figure 1.1. The consequence is that CNk1�N appears on the right-hand side of (5.5),
but this term is not present on the right-hand sides of the analogous bounds in [51,
Theorem 5.5] and [52, Proposition 5.3 and Equation 5.11]. Since this term can be
made arbitrarily-small for k su�ciently large, the only consequence is that Lemma
5.5 and Theorem B1 are valid for k su�ciently large (as opposed to for all k � k0
with k0 arbitrary).

Exactly as in the proof of [51, Theorem 5.5], there exists C3 > 0 (dependent only
on the constants in [51, Assumption 5.2] defining the element maps from the reference
element) such that

(5.7) min
wN2VN

kv � wNkH1
k(BR\O+)

 C3
h

p

✓
1 +

hk

p

◆
|v|H2(BR\O+),

for all v 2 H2(BR \ O+); recall that this result follows from the polynomial-
approximation result of [51, Theorem B.4] and the definition (1.7) of the norm k ·kH1

k
.

Applying the bound (5.7) to vH2 and using (1.10) with |↵| = 2, we obtain

min
wN2VN

kvH2 � wNkH1
k(BR\O+)

 C3 C1

h

p

✓
1 +

hk

p

◆
kfk

L2(BR\O+)
;

we then let C1 := C1 C3.
To prove (5.5), therefore, we only need to show that

min
wN2VN

kvA � wNkH1
k(BR\O+)


✓
C2 kM

✓✓
h

h+ �

◆p

+ k

✓
hk

�p

◆p◆
+ CNk�N

◆
kfk

L2(BR\O+)
,(5.8)

for some C2 > 0 independent of k, h, p, and N and some CN > 0 independent of k, h,
and p. Recall the regions where vR0

A and v1A are analytic (see Figure 1.1). Given VN,
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choose D1 such that (i) D1 is a union of elements of the triangulation associated with
VN and (ii) BR

III
b D1 b BR

IV
. Thus, by (1.13),

min
wN2VN

��vR0
A � wN

��
H

1
k(BR\O+)

 min
wN2VN

��vR0
A � wN

��
H

1
k(D1\O+)

+
��vR0

A
��
H

1
k(BR\(D1)

c)

 min
wN2VN

��vR0
A � wN

��
H

1
k(D1\O+)

+ C 0
N
k�N kfk

L2(BR\O+)

for some C 0
N

> 0 independent of k, h, and p. Similarly, with D2 a union of elements
of the triangulation and such that BR

I
b D2 b BR

II
,

min
wN2VN

��v1A �wN

��
H

1
k(D2\O+)

 min
wN2VN

��v1A �wN

��
H

1
k(BR\(D2)

c)
+C 00

N
k�N kfk

L2(BR\O+)

for some C 00
N

> 0, independent of k, h, and p. To prove (5.8), therefore, we only need
to show that

(5.9) min
wN2VN

��vR0
A �wN

��
H

1
k(D1\O+)

 C2
2

kM
✓✓

h

h+ �

◆p

+ k

✓
hk

�p

◆p◆
kfk

L2(BR\O+)

and
(5.10)

min
wN2VN

��v1A � wN

��
H

1
k(BR\(D2)

c)
 C2

2
kM

✓✓
h

h+ �

◆p

+ k

✓
hk

�p

◆p◆
kfk

L2(BR\O+)
,

for some C2 > 0, independent of k, h, p, and N . Note that (i) we introduced D1 and
D2 so that the domains on which vR0

A and v1A are approximated in (5.9) and (5.10) are
exactly triangulated by the mesh, and (ii) for the approximation (5.9), it is important
that vR0

A = 0 on @O+, since the space VN has this zero Dirichlet boundary condition
imposed.

The bounds (5.9) and (5.10) then follow from [52, Proposition 5.3] (which uses
[51, Theorem 5.5]); the key point is that v1A and vR0

A satisfy the same type of bound
– namely that in Part (iii) of Lemma 1.1 – as uA in [52] (see the second displayed
equation in [52, Theorem 4.20], and note that ↵ in [52] equals our M).

5.3. Proof of Lemma 5.6. Given f 2 L2(BR), let v = S⇤f . By (5.3) and
Theorem C, v = vH2 + vA, where vH2 and vA satisfy the bounds (1.23) and (1.24)
with u replaced by v.

By the definition of the H1

k
norm (1.7) and the bound (1.25), there exists Cint =

Cint(`, d) > 0 such that
(5.11)

min
wN2VN

kw � wNkH1
k(BR)

 Cint(`, d)
�
1 + hk

�
h`

⇣
kw+kH`+1(BR\O+)

+ kw�kH`+1(O�)

⌘

for all w = (w+, w�) 2 H`+1(BR \O+)⇥H`+1(O�). Applying (5.11) with ` = 1 to
vH2 and using (1.23) with |↵| = 2, we obtain that

(5.12) min
wN2VN

kvH2 � wNkH1
k(BR)

 Cint(1, d)
�
1 + hk

�
hC1 kfkL2(BR)

.

Let CSob(p, d) be such that

if k@↵vk
L2  C for all ↵ with |↵|  p, then kvk

Hp+1  CSob(p, d)C;

i.e., CSob depends only on the normalisations in the definition of k · kHp+1 .
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The regularity assumptions on O�, A, and c and the regularity results of, e.g., [47,
Theorem 4.20], [16, Theorem 5.2.1, Part (i)] imply that u±,A 2 Hp+1 for p odd and
Hp+2 for p even. For p odd we apply Theorem C with m = (p+ 1)/2 and for p even
with m = (p + 2)/2. In both cases, we apply (5.11) with ` = p to vA = (vA,+, vA,�)
and use (1.24) with |↵| = p+ 1 to obtain that
(5.13)

min
wN2VN

kvA � wNkH1
k(BR)

 Cint(p)
�
1 + hk

�
hp CSob(p, d)C2(p) k

p+M kfk
L2(BR)

.

The bound on ⌘(VN) in (5.6) then follows from combining (5.12) and (5.13), with
eC1 := Cint(1, d)C1 and eC2 := Cint(p, d)CSob(p, d)C2.

Appendix A. Semiclassical pseudodi↵erential operators on the torus.
Recall that for R] > 0 we defined the torus

Td

R]
:= Rd/(2R]Z)d.

This appendix reviews the material about semiclassical pseudodi↵erential operators
on Td

R]
used in §3.2, and appearing in Lemma 2.8, with our default references being

[76] and [22, Appendix E].
Semiclassical Sobolev spaces.. We consider functions or distributions on the torus

as periodic functions or distributions on Rd. To eliminate confusion between Fourier
series and integrals, for f 2 L2(Td

R]
) we define the Fourier coe�cients

bf(j) :=
Z

Td
R]

f(x)ej(x) dx,

where j 2 Zd and the integral is over the cube of side 2R], and where the Fourier
basis given by the L2-normalized functions

(A.1) ej(x) = (2R])
�d/2 exp

�
i⇡j · x/R]

�

for j 2 Zd. The Fourier inversion formula is then

f =
X

j2Zd

bf(j)ej .

The action of the operator (~D)↵ on the torus is therefore

(~D)↵f =
X

j2Zd

(~j⇡/R])
↵ bf(j)ej .

We work on the spaces defined by the boundedness of these operators, namely

Hm

~ (Td

R]
) :=

n
u 2 L2(Td

R]
), hjim bf(j) 2 `2(Zd)

o
,

and use the norm

(A.2) kuk2
H

m
~ (Td

R]
)
:=
X

| bf(j)|2h~ji2m;

see [76, §8.3], [22, §E.1.8]. In this appendix, we abbreviate Hm

~ (Td

R]
) to Hm

~ and

L2(Td

R]
) to L2.
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Since these spaces are defined for positive integerm by boundedness of (hD)↵ with
|↵| = m (and can be extended to m 2 R by interpolation and duality), they agree with
localized versions of the corresponding spaces on Rd defined by semiclassical Fourier
transform

F~u(⇠) :=
Z

Rd

exp
�
� ix · ⇠/~

�
u(x) dx,

and

kuk2
H

m
~ (Rd)

:= (2⇡~)�d

Z

Rd

h⇠im|F~u(⇠)|2 d⇠.

We note for later use that the inverse semiclassical Fourier transform has a pre-factor
of (2⇡~)�d in this normalisation.

Phase space.. The set of all possible positions x and momenta (i.e. Fourier vari-
ables) ⇠ is denoted by T ⇤Td

R]
; this is known informally as “phase space”. Strictly,

T ⇤Td

R]
:= Td

R]
⇥ (Rd)⇤, but for our purposes, we can consider T ⇤Td

R]
as {(x, ⇠) : x 2

Td

R]
, ⇠ 2 Rd}. We also use the analogous notation for T ⇤Rd where appropriate.
To deal uniformly near fiber-infinity with the behavior of functions on phase space,

we also consider the radial compactification in the fibers of this space,

T
⇤Td

R]
:= Td ⇥Bd,

where Bd denotes the closed unit ball, considered as the closure of the image of Rd

under the radial compactification map

RC : ⇠ 7! ⇠/(1 + h⇠i);

see [22, §E.1.3]. Near the boundary of the ball, |⇠|�1 � RC�1 is a smooth function,

vanishing to first order at the boundary, with (|⇠|�1 �RC�1, b⇠ �RC�1) thus furnishing
local coordinates on the ball near its boundary. The boundary of the ball should be
considered as a sphere at infinity consisting of all possible directions of the momen-
tum variable. Where appropriate (e.g., in dealing with finite values of ⇠ only), we
abuse notation by dropping the composition with RC from our notation and simply
identifying Rd with the interior of Bd.

Symbols, quantisation, and semiclassical pseudodi↵erential operators.. A symbol
on Rd is a function on T ⇤Rd that is also allowed to depend on ~, and thus can be
considered as an ~-dependent family of functions. Such a family a = (a~)0<~~0 , with
a~ 2 C1(Rd), is a symbol of order m on the Rd, written as a 2 Sm(Rd), if for any
multi-indices ↵,�

|@↵
x
@�
⇠
a(x, ⇠)|  C↵,�h⇠im�|�| for all (x, ⇠) 2 T ⇤Rd and for all 0 < ~  ~0,

where C↵,� does not depend on ~; see [76, p. 207], [22, §E.1.2].
For a 2 Sm(Rd), we define the semiclassical quantisation of a on Rd, denoted by

Op~(a)

(A.3)
�
Op~(a)v

�
(x) := (2⇡~)�d

Z

⇠2Rd

Z

y2Rd

exp
�
i(x� y) · ⇠/~

�
a(x, ⇠)v(y) dyd⇠;

[76, §4.1] [22, Page 543]. The integral in (A.3) need not converge, and can be under-
stood either as an oscillatory integral in the sense of [76, §3.6], [37, §7.8], or as an
iterated integral, with the y integration performed first; see [22, Page 543]. It can be
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shown that for any symbol a, Op~(a) preserves Schwartz functions, and extends by
duality to act on tempered distributions [76, §4.4]

We use below that if a = a(⇠) depends only on ⇠, then

Op~(a) = F�1

~ MaF~,

where Ma denotes multiplication by a; i.e., in this case Op~(a) is simply a Fourier
multiplier on Rd.

We now return to considering the torus: if a(x, ⇠) 2 Sm(Rd) and is periodic, and
if v is a distribution on the torus, we can view v as a periodic (hence, tempered)
distribution on Rd, and define

�
Op

Td
R]

~ (a)v
�
=
�
Op~(a)v

�
,

since the right side is again periodic; for details see, e.g., [76, §5.3.1].

If A can be written in the form above, i. e. A = Op
Td
R]

~ (a) with a 2 Sm, we say
that A is a semiclassical pseudodi↵erential operator of order m on the torus and we
write A 2  m

~ (Td

R]
); furthermore that we often abbreviate  m

~ (Td

R]
) to  m

~ in this

Appendix. We use the notation a 2 ~lSm if ~�la 2 Sm; similarly A 2 ~l m

~ if
~�lA 2  m

~ . We say that A 2  �1
~ if A 2  �N

~ for all N � 1.

Theorem A.1. (Composition and mapping properties of semiclassical pseudodif-
ferential operators [76, Theorem 8.10], [22, Proposition E.17 and Proposition E.19])
If A 2  m1

~ and B 2  m2
~ , then

(i) AB 2  m1+m2
~ ,

(ii) [A,B] 2 ~ m1+m2�1

~ ,
(iii) For any s 2 R, A is bounded uniformly in ~ as an operator from Hs

~ to
Hs�m1

~ .

Residual class.. We say that A = O(~1)
 

�1
~

if, for any s > 0 and N � 1, there

exists Cs,N > 0 such that

(A.4) kAk
H

�s
~ !H

s
~
 CN,s~N ;

i.e. A 2  �1
~ and furthermore all of its operator norms are bounded by any algebraic

power of ~.
Principal symbol �~.. Let the quotient space Sm/~Sm�1 be defined by identifying

elements of Sm that di↵er only by an element of ~Sm�1. For any m, there is a linear,
surjective map

�m

~ :  m

~ ! Sm/~Sm�1,

called the principal symbol map, such that, for a 2 Sm,

(A.5) �m

~
�
Op

Td
R]

~ (a)
�
= a mod ~Sm�1;

see [76, Page 213], [22, Proposition E.14] (observe that (A.5) implies that ker(�m

~ ) =
~ m�1

~ ).
When applying the map �m

~ to elements of  m

~ , we denote it by �~ (i.e. we omit
the m dependence) and we use �~(A) to denote one of the representatives in Sm (with
the results we use then independent of the choice of representative).
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Operator wavefront set WF~.. We say that (x0, ⇣0) 2 T
⇤Td

R]
is not in the semi-

classical operator wavefront set of A = Op
Td
R]

~ (a) 2  m

~ , denoted by WF~ A, if there
exists a neighbourhood U of (x0, ⇣0) such that for all multi-indices ↵,� and all N � 1
there exists C↵,�,U,N > 0 (independent of ~) such that, for all 0 < ~  ~0,

(A.6) |@↵
x
@�
⇠
a(x, ⇠)|  C↵,�,U,N~N h⇠i�N for all (x,RC(⇠)) 2 U.

For ⇣0 = RC(⇠0) in the interior of Bd, the factor h⇠i�N is moot, and the definition
merely says that outside its semiclassical operator wavefront set an operator is the
quantization of a symbol that vanishes faster than any algebraic power of ~; see [76,
Page 194], [22, Definition E.27]. For ⇣0 2 @Bd = Sd�1, by contrast, the definition
says that the symbol decays rapidly in a conic neighborhood of the direction ⇣0, in
addition to decaying in ~.

Three properties of the semiclassical operator wavefront set that we use in §3.2
are

(A.7) WF~ A = ; if and only if A = O(~1)
 

�1
~

,

(see [22, E.2.3]),

(A.8) WF~(A+B) ⇢ WF~ A [WF~ B,

(see [22, E.2.4]),

(A.9) WF~(AB) ⇢ WF~ A \WF~ B,

(see [76, §8.4], [22, E.2.5]),

(A.10) WF~(A) \WF~(B) = ; implies that AB = O(~1)
 

�1
~

,

(as a consequence of (A.7) and (A.9)), and

(A.11) WF~
�
Op~(a)

�
⇢ supp a

(since (supp a)c ⇢ (WF~(Op~(a)))
c by (A.6)).

Ellipticity.. We say that B 2  m

~ is elliptic at (x0, ⇣0) 2 T
⇤Td

R]
if there exists a

neighborhood U of (x0, ⇣0) and c > 0, independent of ~, such that

h⇠i�m
���~(B)(x, ⇠)

�� � c for all (x,RC(⇠)) 2 U and for all 0 < ~  ~0.

A key feature of elliptic operators is that they are microlocally invertible; this is
reflected in the following result, proved by inverting at the level of principal symbols,
and then using the composition property.

Theorem A.2. (Elliptic parametrix [22, Proposition E.32]) 2 Let A 2  `

~(Td

R]
)

and B 2  m

~ (Td

R]
) be such that B is elliptic on WF~(A). Then there exist S, S0 2

 `�m

~ (Td

R]
) such that

A = BS +O(~1)
 

�1
~

= S0B +O(~1)
 

�1
~

,

with
WF~ S ⇢ WF~ A, WF~ S

0 ⇢ WF~ A.

2We highlight that working in a compact manifold allows us to dispense with the proper-support
assumption appearing in [43, §4], [22, Proposition E.32, Theorem E.33].
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Functional Calculus.. The main properties of the functional calculus in the black-
box context are recalled in §2.3; here we record a simple result that we need about
functions of the flat Laplacian.

For f a Borel function, the operator f(�~2�) is defined on smooth functions on
the torus (and indeed on distributions if f has polynomial growth) by the functional
calculus for the flat Laplacian, i.e., by the Fourier multiplier

(A.12) f(�~2�)v =
X

j2Zd

bv(j)f(~2|j|2⇡2/R2

]
)ej .

It is reassuring to discover that indeed it is precisely the quantization of f(|⇠|2). Since
our quantization procedure was defined in terms of Fourier transform rather than
Fourier series, this is not obvious a priori.

Lemma A.3. For f 2 Sm(R1) (i.e., f is a function of only one variable),

f(�~2�) = Op~f(|⇠|2).

Proof. First note that for v 2 C1(Td

R]
),

v =
X

bv(j)ej = (2R])
�d/2

Z

Rd

X

j2Zd

bv(j)�(⇠ � ~⇡j/R]) exp(i⇠x/~) d⇠

= (2⇡~)d(2R])
�d/2F�1

~
X

j2Zd

bv(j)�(⇠ � ~⇡j/R]).(A.13)

Thus, if we take the semiclassical Fourier transform of v, regarded as a periodic
function,

F~v(⇠) = (2⇡~)d(2R])
�d/2

X

j2Zd

bv(j)�(⇠ � ~⇡j/R]).

Consequently,

F~
⇥
f(�~2�)v

⇤
(⇠) = (2⇡~)d(2R])

�d/2
X

j2Zd

f(~2⇡2|j|2/R2

]
)bv(j)�(⇠ � ~⇡j/R])

= (2⇡~)d(2R])
�d/2

X

j2Zd

f(|⇠|2)bv(j)�(⇠ � ~⇡j/R])

= f(|⇠|2)F~[v](⇠),

by (A.13), from which
f(�~2�)v = Op~f(|⇠|2)(v).

Appendix B. Proof of (BB5) for the transmission problem.
By the min-max principle for self-adjoint operators with compact resolvent (see,

e.g., [61, Page 76, Theorem 13.1])

(B.1) �n = inf
X2�n(D])

sup
u2X

hP#u, ui�,c
ku+k2L2(Td

R]
\O�)

+ ��1 ku�/ck2L2(O�)

,

where (�n)n�1 denotes the ordered eigenvalues of P#, D] is the domain of P# defined
by (2.4) (with D given by (2.10)), �n(D]) the set of all n-dimensional subspaces of D],
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and h·, ·i�,c is the scalar product defined implicitly by the norm in the denominator
(which is the norm in Lemma 2.4).

By Green’s identity and the definition of D],

(B.2) hP#u, ui�,c = ~2hA+ru+,ru+iL2(Td
R]

\O�)
+ ��1~2hA�ru�,ru�iL2(O�).

Furthermore,

hA+ru+,ru+iL2(Td
R]

\O�)
+ ��1hA�ru�,ru�iL2(O�)

ku+k2L2(Td
R]

\O�)
+ ��1 ku�/ck2L2(O�)

�
min

�
(A+)min, ��1(A�)min

�

max
�
1, ��1(cmin)�2

�
kruk2

L2(Td
R]

)

kuk2
L2(Td

R]
)

.(B.3)

The definition of D] implies that
(B.4)
D] ⇢

�
(u1, u2) 2 H1(Td

R]
\O�)�H1(O�) such that u1 = u2 on @O�

 
= H1(Td

R]
).

Using (B.2), (B.3), and (B.4) in (B.1), we have

�n �
min

�
(A+)min, ��1(A�)min

�

max
�
1, ��1(cmin)�2

�

0

@ inf
X2�n(H

1(Td
R]

))

sup
u2X

~2 kruk2
L2(Td

R]
)

kuk2
L2(Td

R]
)

1

A .

The result then follows from the min-max principle for the eigenvalues of the Laplacian
on the torus.
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