DECOMPOSITIONS OF HIGH-FREQUENCY HELMHOLTZ
SOLUTIONS VIA FUNCTIONAL CALCULUS, AND APPLICATION
TO THE FINITE ELEMENT METHOD

J. GALKOWSKI*, D. LAFONTAINE!, E. A. SPENCE#, AND J. WUNSCH}

Abstract. Over the last ten years, results from [51], [52], [24], and [50] decomposing high-
frequency Helmholtz solutions into “low”- and “high”-frequency components have had a large impact
in the numerical analysis of the Helmholtz equation. These results have been proved for the constant-
coefficient Helmholtz equation in either the exterior of a Dirichlet obstacle or an interior domain with
an impedance boundary condition.

Using the Helffer—Sjostrand functional calculus [36], this paper proves analogous decompositions
for scattering problems fitting into the black-box scattering framework of Sjostrand—Zworski [66],
thus covering Helmholtz problems with variable coefficients, impenetrable obstacles, and penetrable
obstacles all at once.

These results allow us to prove new frequency-explicit convergence results for (i) the hp-finite-
element method (hp-FEM) applied to the variable-coefficient Helmholtz equation in the exterior of an
analytic Dirichlet obstacle, where the coefficients are analytic in a neighbourhood of the obstacle, and
(ii) the h-FEM applied to the Helmholtz penetrable-obstacle transmission problem. In particular,
the result in (i) shows that the hp-FEM applied to this problem does not suffer from the pollution
effect.

1. Introduction.

1.1. Context: the results of [51], [52], [24], [50] and their impact on
numerical analysis of the Helmholtz equation.. At the heart of the papers
[51], [52], [24], and [50] are results that decompose solutions of the high-frequency
Helmholtz equation, i.e.,

(1.1) Au+k*u=—f

with k large, into
(i) a component with H? regularity, satisfying bounds with improved k-
dependence compared to those satisfied by the full Helmholtz solution, and
(ii) an analytic component, satisfying bounds with the same k-dependence as
those satisfied by the full Helmholtz solution,
with these components corresponding to the “high”- and “low”-frequency components
of the solution. In the rest of this paper, we write this decomposition as u = ug2+u4.
Such a decomposition was obtained for
e the Helmholtz equation (1.1) posed in RY, d = 2, 3, with compactly-supported
f, and with the Sommerfeld radiation condition

ou . 1
as 1 := |x| — oo, uniformly in ¥ := z/r [51, Lemma 3.5],
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e the Helmholtz exterior Dirichlet problem where the obstacle has analytic
boundary [52, Theorem 4.20], and
e the Helmholtz interior impedance problem where the domain is either analytic
(d = 2,3) [52, Theorem 4.10], [50, Theorem 4.5], or polygonal [52, Theorem
4.10], [24, Theorem 3.2],
in all cases under an assumption that the solution operator grows at most polynomially
in k (which has recently been shown to hold, for most frequencies, for a variety of
scattering problems in [41]).

These decompositions have had a large impact in the numerical analysis of the
Helmholtz equation in that they allow one to prove convergence, explicit in the fre-
quency k, of so-called hp-finite-element methods (hp-FEM) applied to discretisations
of the Helmholtz equation. Recall that the hp-FEM approximates solutions of PDEs
by piecewise polynomials of degree p on a mesh with meshwidth A and obtains conver-
gence by both decreasing h and increasing p; this is in contrast to the h-FEM where
p is fixed and only h decreases.

Indeed, these decompositions were used to prove frequency-explicit convergence
of a variety of hp methods in [51, 52, 24, 50, 75, 74, 21, 7]. These results about
hp methods are particularly significant, since they show that, if h and p are chosen
appropriately, the FEM solution is uniformly accurate as k¥ — oo with the total
number of degrees of freedom proportional to k%; i.e., the hp-FEM does not suffer
from the so-called pollution effect (i.e. the total number of degrees of freedom needing
to be > k%) which plagues the h-FEM [2].

These decompositions were also used to prove sharp results about the convergence
of h methods with large but fixed p [25], [20], [42]. Furthermore, analogous decom-
positions and analogous convergence results were obtained for hp-boundary-element
methods [49], [46], hp methods applied to Helmholtz problems with arbitrarily-small
dissipation [54] and hp methods applied to formulations of the time-harmonic Max-
well equations [53], [57]. This work has also motivated attempts to provide simpler
decompositions valid for a variety of variable-coefficient problems [15].

The decomposition allows one to prove results about the hp-FEM since, when
combined with piecewise-polynomial approximation theory, the decomposition gives
estimates on how well (adjoint) solutions of the Helmholtz equation are approximated
by finite-element spaces; crucially, these estimates are better than if one just used the
bound on the solution in terms of the data. Given these adjoint-approrimability esti-
mates, the so-called Schatz argument (based on ideas from [64]) then gives conditions
under which the finite-element solution is accurate (in the sense that it is quasi-
optimal; see (1.20) and §5.1 below). The reasons the decomposition gives these better
approximability estimates are the following. The high-frequency part, ugz, is simply
smaller, as £ — oo, than the solution itself, and turns out to be well approximated
when hk/p is sufficiently small. Since the low-frequency part, u 4, is analytic, it is
well-approximated in hp spaces provided that the polynomial degree grows logarith-
mically in k (with this growth in p removing the growth coming from the solution
operator, provided that the latter is polynomially bounded in k). For more details,
see the expository article [68] (in particular [68, §5.3]).

The recent paper [43] obtained the analogous decomposition to that in [51] for

the Helmholtz problem in R% but now for the variable-coefficient Helmholtz equation
k2
(1.3) V- (AVu) + au= —f

with A and ¢ € C*°. The goal of the present paper is to obtain decompositions for
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more-general Helmholtz problems.

1.2. Informal statement of the main results. We show a decomposition of
the form u = up2 + u4 for the solutions of the following three Helmholtz problems.

(P1) The C*°-variable-coefficient Helmholtz exterior Dirichlet problem where the
obstacle has analytic boundary and the coefficients are analytic near the ob-
stacle. The corresponding result, discussed in §1.3 below, is stated as Theo-
rem B, and applied to prove quasi-optimality of the hp-FEM in Theorem B1.
In particular, Theorem B1 shows that the Ap-FEM applied to this Helmholtz
problem does not suffer from the pollution effect.

(P2) The transmission problem with finite regularity of the interface and the co-
efficients - that is, the problem of scattering by a penetrable obstacle. This
result is discussed in §1.4, where it is stated as Theorem C, and applied to
prove quasi-optimality of the h-FEM in Theorem C1.

(P3) The C*°-variable-coefficient Helmholtz equation in the full space R?; this
situation was studied in [43] and we recover the results of [43] with the more
general method presented here; see §1.5 and Theorem D. In §1.6 we discuss the
ideas behind both [43] and the present method, and the relationship between
them.

We highlight that, just as in the earlier works [51], [52], [24], and [50], ug2 and
u_4 correspond to “high” and “low” frequencies of the solution, respectively — this is
discussed further in the informal discussion in §1.6.

The three results outlined above are obtained as applications of a single, more
general, albeit abstract result, Theorem A below. This theorem is stated using the
black-box framework of Sjostrand—Zworski [66], and covers Helmholtz problems with
variable coeflicients, impenetrable obstacles, and penetrable obstacles all at once. We
postpone the rigorous statement of Theorem A to §1.7 and give an informal version
of it here.

THEOREM A’ (Informal statement of our main general result). Let P be a for-
mally self-adjoint operator with P = —A outside B(0,Ro) (“the black-boz”). We
assume that

(H1) the solution operator associated with P — k* is polynomially bounded: there
exists M > —1 so that for any x € Cg5.,, and any compactly-supported

com

f € L?, the outgoing solution of (P — k*)u = f satisfies
Ixullze S KM 2,

(H2) one has an estimate quantifying the regularity of P inside B(0,Ry) (i.e.,
“inside the black-boz”).
Then, for any R > Ry, any solution of (P — k®)u = f splits as

u|p(o,r) = Um2 + UA,

where
(i) ug= satisfies
lugzll2 + k72| Pugz2|l 2 S E72) fllLzs

(i) w4 is regular, with an estimate depending on both the reqularity of the un-
derlying problem (as measured by (H2)) and M. In addition, the part of u4
away from “the black-box” B(0, Ry) is entire (in the sense of Lemma 1.1(%)
below).



When P is the Dirichlet Laplacian, for example, ||Pugz]||z2 controls ||ugz|| g2
by elliptic regularity, and thus the bound in (i) is a bound on ||ugz| g2 (hence the
notation ugyz).

The paper [42] shows that Assumption (H1) holds in the black-box framework for
“most” frequencies (see Part (ii) of Theorem 1.5 for a more precise statement of this).
The key point, therefore, to apply this result to specific situations is to check that an
estimate of the type (H2) holds. In the three applications to problems (P1), (P2), and
(P3) above, this estimate (H2) corresponds to, respectively, a heat-flow estimate, an
elliptic estimate, and regularity of the eigenfunctions of the Laplace operator on the
torus. Theorem A could be applied to a range of other specific situations, provided
an estimate of type (H2) is at hand. For a reader interested in applying Theorem A
without going into the details of the proof, §1.7.2 gives a short summary on how to
do this.

Before stating the main result applied the problems (P1), (P2), and (P3) above,
we record the following lemma about the region of analyticity of analytic functions
depending on a parameter (in this case k); we use this lemma to understand the
properties of the uys in (P1) and (P3).

LEMMA 1.1 (k-explicit analyticity). Let u € C=(D) (for D C R?) be a family
of functions depending on k.
(i) If there exist C,Cy > 0, independent of a, such that

[0%ull z2(py < Cu(CR)l for all multiindices «,

then u is real analytic in D and its power series has infinite radius of convergence,
i.e., u can be extended to an entire function on R?.
(i) If there exist C,C, > 0, independent of «, such that

[0%ull 12(py < Cu(CR)Na|!  for all multiindices o,

then w is real analytic in D with radius of convergence proportional to (Ck)~!.
(iii) If there exist C,C, > 0, independent of «, such that

10%ull 2 (py < c,clel max {|o], k}‘al for all multiindices «,

then u is real analytic in D with radius of convergence independent of k.

Proof. In each case, we use the Sobolev embedding theorem to obtain a bound
on [|[0%u||(p), and then sum the remainder in the truncated Taylor series. For this
procedure carried out in Case (iii), see, e.g., [51, Proof of Lemma C.2]; the proofs for
the other cases are similar. ]

1.3. The main result applied to the exterior Dirichlet problem.
1.3.1. Background definitions.

DEFINITION 1.2 (Exterior Dirichlet problem). Let O_ C R?, d > 2 be a bounded
open set such that 0O is smooth, the open complement Oy := R4\ O_ is connected,
and O_ C Bgr,. Let A € C®(0,,R¥%) be such that supp(I — A) C Bg,, with
Ry > Ry, A is symmetric, and there exists Apiy > 0 such that

(1.4) (A(x)€) € > Amnl€]*  for allz € Oy and for all § € C%

Let ¢ € C®°(0O4) be such that supp(l — ¢) C Bpg,, and c¢min < ¢ < Cmax With
Cmin; Cmax > 0.



Given f € L*(O4) with suppf € R? and k > 0, u € HL (O4) satisfies the
exterior Dirichlet problem if

(1.5) AV (AVu) + EPu=—f in Oy,
u=20 on 00,

and u satisfies the Sommerfeld radiation condition (1.2).

We highlight from Definition 1.2 that the obstacle O_ is contained in Bp,, and
the variation of the coefficients A and c is contained inside the larger ball Bg, .
We use the standard weighted H' norm, || - 1 (Brno, ), defined by

2 2
(1.7) ||u||%{é(BRmO+) = ||quL2(BRﬁO+) + kK ||“HL2(BRno+) .

DEFINITION 1.3 (Cyo1). Given f € L2(O4) supported in Br with R > Ry, let u
be the solution of the exterior Dirichlet problem of Definition 1.2. Given kg > 0, let
Csol = Cso1(k, A, ¢, R, ko) > 0 be such that

(1.8) ||UHH,1(BROO+) < Csol ”f”L?(BRm(L) for all k > 0.

Csol exists by standard results about uniqueness of the exterior Dirichlet problem
and Fredholm theory; see, e.g., [33, §1] and the references therein. How Cso depends
on k is crucial to our analysis, and to emphasise this we write Cso = Cso1(k). A
key assumption in our analysis is that Cso (k) is polynomially bounded in k in the
following sense.

DEFINITION 1.4 (Cg is polynomially bounded in k). Given ko > 0 and K C
[ko,00), Cso1(k) is polynomially bounded for k € K if there exists C > 0 and M > 0
such that

(1.9) Ceor(k) < CEM for all k € K,

where C and M are independent of k (but depend on ko and possibly also on
K, A ¢, d,R).

There exist C™ coefficients A and ¢ such that Csoi(k;) > C exp(Cak;) for 0 <
ki < ko < ... with k; — oo as j — 00, see [59], but this exponential growth is the
worst-possible, since Cs1(k) < ¢ exp(csk) for all k > kg by [8, Theorem 2]. We now
recall results on when Ci (k) is polynomially bounded in k.

THEOREM 1.5. (Conditions under which Cs1(k) is polynomially bounded in k for
the exterior Dirichlet problem)

(i) If A and ¢ are C* and nontrapping (i.e. all the trajectories of the generalised
bicharacteristic flow defined by the semiclassical principal symbol of (1.5) starting in
Bpg leave Br after a uniform time), then Cyo1(k) is independent of k for all sufficiently
large k; i.e., (1.9) holds for all k > ko with M = 0.

(i) Under no additional assumptions on O_, A, and ¢, given kg > 0 and § > 0
there exists a set J C [ko,00) with |J| < & such that

Cuol(k) < CEPY2+e for all k € [k, 00) \ J,

for any € > 0, where C depends on 6,¢,d, kg, and A.
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References for the proof. (i) follows from either the results of [55] combined with
either [71, Theorem 3]/ [72, Chapter 10, Theorem 2] or [44], or [9, Theorem 1.3 and
§3]. It has recently been proved that, for this situation, Cso is proportional to the
length of the longest trajectory in Bpg; see [29, Theorems 1 and 2, and Equation
6.32]. (ii) is proved for ¢ = 1 in [41, Theorem 1.1 and Corollary 3.6]; the proof for
more-general ¢ follows from Lemma 2.3 below. ]

1.3.2. Theorem A applied to the exterior Dirichlet problem.

THEOREM B. (Theorem A applied to the exterior Dirichlet problem with analytic
O_ and locally analytic A, c) Suppose that O_, A, ¢, Ry, and Ry are as in Definition
1.2. In addition, assume that O_ is analytic, and that A and c are analytic in Bg,
for some Ry < R, < R;.

If Cso1(k) is polynomially bounded for k € K (in the sense of Definition 1.4),
then given f € L*(O,) supported in Br with R > Ry, the solution u of the exterior
Dirichlet problem is such that there exists uq € C°(Br N O,), and uy> € H*(Br N
0O4), both with zero Dirichlet trace on 00, such that

ulp, = ua +uge.

Furthermore, there exists Cy, independent of k and «, such that
(1.10)
10%ug> || 12(Brno.) < Clk‘o‘l_2||fHLz(BRmo+) for all k € K and for all |a] < 2,

and there exist Ca,Cs3,Cy and Cs, all independent of k and o, and R, R,,, R, R,
with Rp < R, < R; < Ry, < R, < R such that ua decomposes as us = u)® + u’y,
where uf}o is analytic in Br_, and has zero Dirichlet trace on 00,4, and u% is analytic
in (Bg, )¢ with, for all k € K and all o,

(L11)  0%ulle2(Br,, n0.) < Ca(Ca)* max {|af ! KR £l] 12400,

(1.12) 10°uZ |2 (Br, en04) < Ca(Cs) KM fl| 12 00,),

and, for any N,m > 0 there exists Cn n, > 0 so that
(1.13)
o) R —
HU.A ||Hm(BRHﬂ(9+) —+ ”uAOHHm((BRIH)CﬁOH < CN’mk N ||fHL2(BRﬂO+) fOT’ all k € K.

By Parts (iii) and (i) of Lemma 1.1, uf}o is analytic in B, with k-independent
radius of convergence, and uS is entire in (BRI)C; see Figure 1.1.

REMARK 1.6 (The assumptions on A and ¢ in Theorem B). Theorem B assumes
that the coefficients A and c are analytic in Br, for some Ry < R. < Ry, where
Br, D O_. This assumption could be relazed to A and c being analytic in a tubular
neighbourhood of O_. To do this, one would only need to change the “black box”
in §2 from the traditional Br, to an arbitrary bounded open set. The nested balls
BRI S BRII S BRm S BRIV in Theorem B would then be replaced by nested bounded
open sets.

1.3.3. Corollary about frequency-explicit convergence of the hp-FEM.
As discussed in §1.1, Theorem B implies a frequency-explicit convergence result about
the hp-FEM applied to the exterior Dirichlet problem; we now give the necessary def-
initions to state this result. Recall that the FEM is based on the standard variational
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u$y entire

Fic. 1.1. The regions where uf{o and u$y appearing in Theorem B are analytic, entire, or
O(k—°).

formulation of the exterior Dirichlet problem: Let
H3,30+ (BRNO4) := {v € H'(BrN O4) with v =0 on 8(9+}.

Given R > Ry and F € (H&’30+(BR NOL))*,
(1.14)
find u € Hg po, (Br N Oy) such that a(u,v) = F(v) for all v € Hj 50, (BrNOy),

where
_ k2
(1.15) a(u,v) = / ((AVu) -Vou — 2uv> - <DtNk(u),U>aB ;
BRﬂOJr c R

where (-, -)gp, denotes the duality pairing on dBp that is linear in the first argument
and antilinear in the second, and DtNy, : H'/2(0Bg) — H~'/?(9Bp) is the Dirichlet-
to-Neumann map for the equation Au + k?u = 0 posed in the exterior of Bg with
the Sommerfeld radiation condition (1.2); the definition of DtNy, in terms of Hankel
functions and polar coordinates (when d = 2)/spherical polar coordinates (when d =
3) is given in, e.g., [51, Equations 3.7 and 3.10]. We use later the fact that there exist
CDtN = CDtN(kORO) such that

(1.16) [(DtNk(u), v)o5x)| < Conn [l i (5on0.) 10112 (B R0y

for all u,v € Hé7ao+ (BRNO4) and for all k > ko; see [51, Lemma 3.3].
If F(v) = fBRmO+ /o, then the solution of the variational problem (1.14) is the
restriction to Bg of the solution of the exterior Dirichlet problem of Definition 1.2. If

(1.17) F(v) = /83 (Opu’ — DtNg(u'))7,

where u! is a solution of Au! + k?u! = 0 in Br N O, then the solution of the
variational problem (1.14) is the restriction to Bg N O4 of the sound-soft scattering
problem (see, e.g, [11, Page 107]).

Given a sequence, (V)jLo, of finite-dimensional subspaces of Hy 00, (BRNO4),
the finite-element method for the variational problem (1.14) is the Galerkin method
applied to the variational problem (1.14), i.e.,

(1.18) find un € Wy such that a(un,vn) = F(un) for all vy € Wy.
7



THEOREM B1 (Quasioptimality of hp-FEM for the exterior Dirichlet problem).
Let d = 2 or 3. Suppose that O_,A,c,R,R,, and R,, are as in Theorem B. Let
(VNN be the piecewise-polynomial approzimation spaces described in [51, §5], [52,
§5.1.1] (where, in particular, the triangulations are quasi-uniform, allow curved el-
ements, and thus fit B N O exactly). Let uy be the Galerkin solution defined by
(1.18).
If Csa1(k) is polynomially bounded (in the sense of Definition 1.4) for k € K C
[ko, 00) then there exist ki,C1,Co > 0, depending on A,c, R, and d, but independent
of k, h, and p, such that if

(1.19) — <C; and p>Cslogk,
p

then, for all k € K N[k, 0), the Galerkin solution exists, is unique, and satisfies the
quasioptimal error bound

(1.20) lu = unll g1 (Brro,) < Cao vﬁlei‘r}N lw = onll g1 Brno,) -
with

2( max{Amax, Cpin } + Cpen)
Amin

(1.21) Cqo = :

REMARK 1.7. (The significance of Theorem B1: the hp-FEM does not suffer from
the pollution effect) For finite-dimensional subspaces consisting of piecewise polyno-
mials of degree p on meshes with meshwidth h, the total number of degrees of freedom
~ (p/h)%. Therefore Theorem B1, as well as the results in [51], [52], [24], [50], [45],
show that there is a choice of h and p such that the hp-FEM is quasioptimal with the
total number of degrees of freedom ~ k®. As highlighted in §1.1, the significance of
this is that when the total number of degrees of freedom ~ k? the h-FEM (i.e., with p
fized) does not satisfy the quasioptimal error estimate (1.20) with Cyo independent of
k; this is called the pollution effect — see [2] and the references therein.

The results in [51], [52], [24], [50] are for constant-coefficient Helmholtz problems,
and those in [43] are for the Helmholtz equation with smooth variable coefficients and
no obstacle. Theorem Bl is therefore the first result showing that the hp-FEM applied
the Helmholtz exterior Dirichlet problem with variable coefficients does not suffer from
the pollution effect.

1.4. The main result applied to the transmission problem.

1.4.1. Background definitions.

DEFINITION 1.8 (Transmission problem (i.e. scattering by a penetrable obsta-
cle)). Let O_ C R? d > 2 be a bounded Lipschitz open set such that the open
complement Oy := R4\ O_ is connected and such that O_ C Br,. Let A= (A_, A})
with Ay € C%1(O4,R™ ") be such that supp(I — A) C Bg,, A is symmetric, and
there exists Amin > 0 such that (1.4) holds (with Oy replaced by R?). Let c € L>=(0_)
be such that cmin < ¢ < Cmax With 0 < cpin < Cmax < 00. Let 8 > 0.

Let v be the unit normal vector field on 0O_ pointing from O_ into Oy, and let
Oy,a denote the corresponding conormal derivative defined by, e.g., [47, Lemma 4.3]
(recall that this is such that, when v € H*(OL), 0, av = v - y(AV)).
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Given f € LZ,,,(R?) and k >0, u = (u_,uy) € H

L (RY) satisfies the transmis-
ston problem if

AV (A Vu )+ Ku_=—f in0O_,
V . (A+V’U,+) + k2u+ = —f Z’I'l O+,
(1.22) u_ =uy, Oya u_=p0,a,uy ondO_,

and uy satisfies the Sommerfeld radiation condition (1.2).

When A_ and A, are constant scalar multiples of the identity and c is constant,
two of the four parameters governing A_, Ay, ¢, and  are redundant. For example,
by rescaling u_,u, and f, all such transmission problems can be described by the
parameters ¢ and 8 (with A_ = A, =1I), as in, e.g., [10], or by the parameters A_
and ¢ (with A, = I and 8 = 1); see, e.g., the discussion and examples after [56,
Definition 2.3].

The definition of Cy,) for the transmission problem is almost identical to Definition
1.3, except that the norms in (1.8) are now over Bg (as opposed to Br N O4) and
now Cj,) depends additionally on .

THEOREM 1.9. (Conditions under which Cs1(k) is polynomially bounded in k for
the transmission problem) In each of the following conditions we assume that O_, A,
and c are as in Definition 1.8.

(i) If O_ is smooth and strictly convex with strictly positive curvature, A =1, c
is a constant > 1, and B > 0, then Cyo1(k) is independent of k for all sufficiently large
k; i.e., (1.8) holds for all k > ko with M =0

(i) If O_ is Lipschitz and star-shaped, A =1, and c is a constant with
1 < 1

2B
then Cyo1(k) is independent of k for all sufficiently large k.

(iii) If O_ is star-shaped, 8 = 1, and both A and c¢ are monotonically non-
increasing in the radial direction (in the sense of [33, Condition 2.6]) then Cso (k) is
independent of k for all sufficiently large k.

(iv) Under no additional assumptions on O_, A, and ¢, given kg > 0 and § > 0
there exists a set J C [k, 00) with |J| < § such that

<1
c

Cuor(k) < CEPV2HIYe for all k € [ko, 00) \ J,

for any € > 0, where C' depends on 6,¢,d, ko, A, c, and 5.

References for the proof. (i) is proved in [10, Theorem 1.1] (we note that, in fact,
a stronger result with A_ variable is also proved there). (ii) is proved in [56, Theorem
3.1]. (iii) is proved in [33, Theorem 2.7]. (iv) is proved for constant ¢ and globally
Lipschitz A in [41, Theorem 1.1 and Corollary 3.6]; the proof for these more-general
c and A follows from Lemma 2.3 below. |

1.4.2. Theorem A applied to the transmission problem.

THEOREM C. (Theorem A applied to the transmission problem) Suppose that
O_, A,c, and B, are as in Definition 1.8 and, additionally, A and ¢ are C*™=21 and
O_ is C?= L1 for some integer m > 1.

If Cyo1 (k) is polynomially bounded for k € K (in the sense of Definition 1.4), then
given f € L*(RY) supported in Br with R > Ry, the solution u of the transmission

9



problem is such that there exists ug = (uq a,u— ) € C°(BrNO1) x C*°(0O_) and
wprz = (uy g2, u_ g2) € HX(Br N O4) x H2(O_), satisfying (1.22), and such that

U‘BR =Uug+ug2.

Furthermore there exist C1,Co > 0, independent of k but with Cy = Cy(m), such that
(1.23)
10%us g2 lL2(Brroy) < Clkl"“*2|\f||Lz(BR) for all k € K and for all |a] <2,

and
(1.24)

10%us all2(BrnoL) < C2(m)k|a‘71+MHf||Lz(BR) for all k € K and for all |a] < 2m.

1.4.3. Corollary about frequency-explicit convergence of the h-FEM.
For simplicity we consider the case where the parameter 8 in the transmission condi-
tion (1.22) equals one; recall from the comments below Definition 1.8 that, at least in
the constant-coeflicient case, this is without loss of generality. The variational formu-
lation of the transmission problem is then (1.14) with Bg N O replaced by Bgr and
a(-,-) given by (1.15) with ¢ understood as equal to one in Br N O,..

Since the constant Cy in (1.24) depends on m, we cannot prove a result about
the hp-FEM for the transmission problem of Definition 1.8. We therefore consider the
h-FEM and prove the first sharp quasioptimality result for this problem (see Remark
1.11 below for more discussion on the novelty of our result).

AssuMPTION 1.10. (V)R 5 a sequence of piecewise-polynomial approzimation
spaces on quasi-uniform meshes with mesh diameter h and polynomial degree p. Fur-
thermore, (i) the mesh consists of curved elements that exactly triangulate Br and
O_, so that each element in the mesh is included in either O_ or B N O4, and (ii)
there exists an interpolant operator I, , such that for all 0 < j < £ < p, there exists
C(j,4,d) > 0 such that

(125) ‘U — Ih’pv|Hj(BR) S CY(]7 £7 d) he"rl—j ( ||v+||H€+1(BRﬂO+) + ||/U7 ||Hz+1(o_) )

for allv = (vy,v_) € HFY(BrNOL) x HF(O_).

Assumption 1.10 is satisfied by the hp approximation spaces described in [51, §5],
[52, §5.1.1] (with (1.25) holding by [51, Theorem B.4] and I}, ;, defined in [51, Lemma
B.3 and Theorem B.4]), and also by curved Lagrange finite-element spaces in [4] (with
(1.25) holding by [4, Theorem 4.1 and Corollary 4.1] and Iy, defined by [4, Equation
4.1]).

THEOREM C1 (Quasioptimality of h-FEM for the transmission problem). Let
d = 2 or 3. Suppose that 5 =1, A,c, and O_ are as in Definition 1.8. Given an
integer p, if p is odd assume that O_ is CP' and both A and ¢ are CP~%1; if p is
even, assume that O_ is CPTLL gnd both A and ¢ are CP'L,

Let (VW)R2 be a sequence of piecewise-polynomial approzimation spaces of degree
p satisfying Assumption 1.10 and let uy be the Galerkin solution defined by (1.18).

If Cso1(k) is polynomially bounded (in the sense of Definition 1.4) for k € K C
[ko,00) then there exists C' > 0, depending on A,c, R, d, ko, and p, but independent
of k and h, such that if

hpkp+1+M <C
10



then, for all k € K, the Galerkin solution ezists, is unique, and satisfies the quasiop-
timal error bound

e =l ) < Cao i e = o8l -

with Cyo given by (1.21).

The regularity assumptions in Theorem C1 are optimal with p odd, but subop-
timal when p is even. This is due to Theorem C controlling Sobolev norms of even
order of the solution, which is ultimately due to our using powers of the operator
(which is of order two) to obtain regularity of the solution (see (4.14) in the proof of
Theorem C). For example, when p = 2 we require u € H? in Theorem C1, but we
achieve this by requiring that O_, A, and c are such that u € H*.

REMARK 1.11 (The significance of Theorem C1). The fact that “hPkPT1 suffi-
ciently small” is a sufficient condition for quasioptimality of the Helmholtz h-FEM in
nontrapping situations (i.e. M = 0) was proved for a variety of Helmholtz problems
for p =1 in [48, Prop. 8.2.7], [34, Theorem 4.5], [29, Theorem 3] (building on the
1-d results of [1, Theorem 8.2, [39, Theorem 8], [38, Theorem 4.13], and [40, Theo-
rem 3.5]) and for p > 1 in [51, Corollary 5.6], [52, Remark 5.9], [30, Theorem 5.1],
and [15, Theorem 2.15]. Numerical experiments indicate that this condition is also
necessary — see, e.g., [15, §4.4].

Of these existing results, only [15, Theorem 2.15] covers the Helmholtz equation
with variable A and c that are also allowed to be discontinuous. However, the results
in [15] hold only when an impedance boundary condition is imposed on the trunca-
tion boundary (in our case OBRr), which is equivalent to approzimating the exterior
Helmholtz Dirichlet-to-Neumann map by ik. Furthermore, the proof of [15, Theorem
2.15] uses the impedance boundary condition in an essential way. Indeed, in [15,
Proof of Lemma 2.13] the solution is expanded in powers of k, i.e. u = Z;io kiu;,
and then on OBRr one has Opuji1 = iuj; this relationship between ujy1 and u; on
OBpg no longer holds if DtNy is not approximated by ik.

The Helmholtz equation with an impedance boundary condition is often used as a
model problem for numerical analysis (see, e.g., the references in [27, §1.8]). However,
it has recently been shown that, in the limit k — oo with the truncation boundary
fixed, the error incurred in approximating the Dirichlet-to-Neumann map with ik is
bounded away from zero, independently of k, even in the best-possible situation when
the truncation boundary equals OBgr for some R; see [27, §1.2]. Therefore, even if
one solves the problem truncated with an impedance boundary condition with a high-
order method (i.e., p large), the solution of the truncated problem will not be a good
approximation to the true scattering problem when k is large.

1.5. The main result applied to the Helmholtz equation in R? with C>
coefficients. Theorem A can also be used to recover the main result of [43], namely
[43, Theorem 3.1].

THEOREM D. (The main result of [43] as a corollary of Theorem A) Assume that
O_ =0 and that A, c are as in Definition 1.2 and are furthermore C*°. If Cso1(k) is
polynomially bounded (in the sense of Definition 1.4), then, given f € L*(Bg), the
solution u of the Helmholtz problem (1.5), (1.2) is such that there exists u 4, analytic
in Br, and uy= € H*(BR), such that

U‘BR =uUg+ugz.
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Furthermore, there exist C1,Cy and Cs, all independent of k and o, such that
(1.26)  [[0%up2|z2(Bg) < C’lk‘a|72||fHL2(BR) for all k € K and for all |o| < 2,

and
(1.27)
10%uallL2(Br) < Cy(Cy) el felel=1+M I fllL2Bry  for allk € K and for all .

Observe that, by Part (i) of Lemma 1.1, uy is entire. The decomposition in
Theorem D can be used to show that the hp-FEM applied to the Helmholtz equation
in R? with C* coefficients is quasioptimal (with constant independent of k) if the
conditions (1.19) hold; see [43, Theorem 3.4].

1.6. Informal discussion of the ideas behind Theorem A. It is instructive
to first recall the ideas behind the results of [51, 52, 24, 50].

How the results of [51, 52, 24, 50] were obtained.. The paper [51] considered the
Helmholtz equation (1.1) posed in R¢ with the Sommerfeld radiation condition (1.2).
The decomposition u = ugz + uy was obtained by decomposing the data f in (1.1)
into “high-" and “low-” frequency components, with uyg2 the Helmholtz solution for
the high-frequency component of f, and u_4 then the Helmholtz solution for the low-
frequency component of f. The frequency cut-offs were defining using the indicator
function

1 for |¢| < AE,
(1.28) 15 (€) = {0 o :g: =

with X a free parameter (see [51, Equation 3.31] and the surrounding text). In [51] the
frequency cut-off (1.28) was then used with (a) the expression for u as a convolution
of the fundamental solution and the data f, and (b) the fact that the fundamental
solution is known explicitly for the PDE (1.1) to obtain the appropriate bounds on
u4 and ugz using explicit calculation (involving Bessel and Hankel functions). The
decompositions in [52, 24, 50] for the exterior Dirichlet problem and interior impedance
problem were obtained using the results of [51] combined with extension operators
(to go from problems with boundaries to problems on R%).

Because the proof technique in [51] did not immediately generalise to the variable-
coefficient Helmholtz equation (1.3), until the recent paper [43] there did not exist in
the literature analogous decomposition results for the variable-coefficient Helmholtz
equation. This was despite the increasing interest in the numerical analysis of (1.3)
see, e.g., [13, 3, 15, 31, 58, 34, 29, 42, 32]. While the present paper was being revised,
the thesis [5] and preprint [6] became available. These later works prove complemen-
tary results to those in the present paper; see the discussion in our follow-up paper
[28, §1.8].

The recent results of [43]: the decomposition for the variable-coefficient Helmholtz
equation in free space.. The paper [43] obtained the analogous decomposition to that
in [51] for the Helmholtz problem in R¢ but now for the variable-coefficient Helmholtz
equation (1.3) with A and ¢ € C*°. This result was obtained again using frequency
cut-offs (as in [51]) but now applying them to the solution u as opposed to the data
f. Any cut-off function that is zero for || > Ck is a cutoff to a compactly-supported
set in phase space, and hence enjoys analytic estimates. The main difficulty in [43],
therefore, was in showing that the high-frequency component uy2 satisfies a bound
with one power of k£ improvement over the bound satisfied by u. This was achieved

12



by choosing the cut-off so that the (scaled) Helmholtz operator k=2V - (AV) + ¢ 2 is
semiclassically elliptic on the support of the high-frequency cut-off. Then, choosing
the cut-off function to be smooth (as opposed to discontinuous, as in (1.28)) allowed
[43] to use basic facts about the “nice” behaviour of elliptic semiclassical pseudodiffer-
ential operators (namely, they are invertible up to a small error) to prove the required
bound on wg2. The expository paper [68] shows that, when A = I and ¢ = 1, the
arguments in [43] involving pseudodifferential operators reduce to using the Fourier
transform, and in this case a frequency cut-off of the form (1.28) can be used.

The frequency decomposition achieved in Theorem A.. In this paper, we achieve
the desired decomposition into low- and high-frequency pieces in the manner best
adapted to the functional analysis of the Helmholtz equation: by using the functional
calculus for the Helmholtz operator itself. Recall that once we realise the operator

(1.29) P=-c*V-(AV)

with appropriate domain as a self-adjoint operator (on a space weighted by ¢=2), the
functional calculus for self-adjoint operators allows us to define ¢(P) for a broad class
of functions ¢. In particular, given k > 0, we take ¢ a cutoff function on R¢ equal
to 1 on B(0, k) for some p > 1. Then, for fixed k, (1 — ¢)(P) is a high-frequency
cutoff and ¢(P) a low-frequency cutoff. We emphasise that working with functions of
the operator can be thought of as just the classic idea of using expansions in terms of
eigenfunctions of the differential operator. Indeed, in the special case A = I,¢c =1,
these frequency cut-offs are simply Fourier multipliers of the type used in [41].

The novelty of the approach used here is to make the functional calculus approach
work in the much more general setting of semiclassical black-boz scattering introduced
by Sjostrand-Zworski [66], which allows us to treat variable (possibly rough) media,
impenetrable obstacles, and penetrable obstacles all at once. We rescale, setting
h = k™', and study operators Py equal to a variable-coefficient Laplacian outside the
“black-box” Bg,, and equal to —h?A outside a larger ball Bg,. We are now interested
in functions of Py of the form ¢ (Py) with ¢» = 1 in B(0, 1) and 0 in (B(0,2u))°. After
multiplying the solution u by a cut-off function ¢ that equals one near the black box
(since u is only locally L?), we split

U = HHigh(@u) + HLOW(()DU)

with
1_-[Low = w(Ph)a 1_[High = (]- - /(/))(Ph)a

and both pieces again defined by the spectral theorem. We now discuss the two pieces
separately.

We wish to analyze Iluignpu by using the semiclassical ellipticity of P — I on its
support in phase space. The latter notion would be well-defined if ;g were globally
a pseudodifferential operator. In the broad context of the black-box theory, though,
while the function ¢ (Py) is well-defined as an abstract operator on a Hilbert space,
its structure is much less manifest than it would be for the flat Laplacian in Euclidean
space. Not much can be said in any generality about Ilig on the black-box, but this is
unnecessary in any event: we use an abstract ellipticity argument based on the Borel
functional calculus, with the ellipticity in question now amounting to the bounded
invertibility of P, —1 on the range of Ilgn, which just follows from the boundedness
of the function (A —1)7(1 — 1 (\)). However, we do additionally need to understand
the commutator of Ilyig, with the localiser ¢. Fortunately, we are able to use the
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Helffer-Sjostrand approach to the functional calculus [36] to describe this commutator
explicitly. The method of [36] is a powerful tool for obtaining the structure theorem
that a decently-behaved function of a self-adjoint elliptic differential operator is, as one
might hope, in fact a pseudodifferential operator [19, Chapter 8] (a result originally
due to Strichartz [70] in the setting of the homogeneous pseudodifferential calculus and
Helffer-Robert [35] in the semiclassical setting used here). Additionally, Davies [17]
later pointed out that in fact the same method affords a novel proof of the functional
calculus formulation of the spectral theorem itself. Here, we use some refinements
of Sjostrand [65] to learn that away from the black-box we can in fact treat ITigh
as a pseudodifferential operator (see Lemma 2.8), and hence deal with [Hgn, @] as
an element of the pseudodifferential calculus, solving it away by once again using
ellipticity (this time in the context of pseudodifferential operators) together with our
polynomial resolvent estimate.

While the analysis of Ilgignpu is insensitive to the contents of the black-box, our
study of the low-frequency piece Ily,owpu necessarily entails “opening” the black-box
and studying the local question of elliptic or parabolic estimates within it. Intuitively
the compact support in the spectral parameter of the spectral measure of P applied
to Il owu should imply that strong elliptic estimates hold, but knowing Cauchy-type
estimates on high derivatives is dependent on analyticity of the underlying problem.
We therefore make the abstract regularity hypothesis (1.33) locally near the black-
box, which allows us to estimate the part of Il .y u spatially localised near its content.
The remaining part living in R is then given, thanks to Sjostrand [65] again, by a
Fourier multiplier up to negligible terms, and hence enjoys the analytic estimate (1.40)
thanks to the properties of the Fourier transform, as used in [43].

By the functional calculus, P™II} o pu is bounded for all m € N. Provided that
P satisfies elliptic estimates, the boundedness of P™1ly,.ypu allow us to estimate all
derivatives of Ty o u, but the resulting estimates on 0*Ilp o u are not explicit in «;
these are the only estimates we have been able to obtain in the case of penetrable
obstacles (see Corollary 4.2 and Theorem C). Such estimates give the sharp condition
for quasioptimality of the A-FEM, but estimates explicit in « are required for the sharp
condition for quasioptimality of the hp-FEM. For an analytic Dirichlet obstacle, with
coefficients analytic in a neighbourhood of the obstacle, we use a stronger property of
10w : we can run the backward heat equation on Iy, pu for as long as we like and
obtain L? estimates on the result. Under the analyticity assumptions, known heat
kernel estimates (see [23]) yield the required (explicit-in-«) Cauchy-type estimates on
0T owpu; see Corollary 4.1 and Theorem B.

1.7. Statement of the main result in the black-box setting.

1.7.1. Statement of Theorem A. The following theorem (Theorem A) obtains
the decomposition u = ugz + u_4 in the framework of black-box scattering introduced
by Sjostrand—Zworski in [66]. In this framework, the operator P, where h := k=1
is the semiclassical parameter ! , is a variable-coefficient Helmholtz operator outside
Bpg, (the ball of radius Ry and centre zero) for some Ry > 0, but is not specified
inside this ball (i.e., inside the “black box”). In particular, this framework includes
the Helmholtz exterior Dirichlet and transmission problems, and Theorems B and C
above are Theorem A specialised to those settings.

The theorem is stated using notation from the black-box framework, recapped

IThe semiclassical parameter is often denoted by h, but we use & to avoid a notational clash with
the meshwidth of the FEM appearing in §1.1 and used in Theorems B1 and C1.
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in §2. The only non-standard concept we use is that of a black-box differentiation
operator, which is a family of operators agreeing with differentiation outside the black-
box (see Definition 2.2 below).

To understand the statement of the following theorem, the reader not familiar with
black box scattering should read it with the following identifications, which always
hold away from the black box, and, with suitable interpretation, continue to hold
inside it in the examples considered below: the Hilbert space H is L2, the operator Py
is —h2A, and the subspace D C H is the domain of P;. The superscript # denotes the
corresponding object compactified onto a large reference torus T%u :=R%/ (2RﬁZ)‘7l7 SO

that Pg is —h%A, on the torus, and Dg’m the domain of (P,g)m, with norms weighted
in the standard way with i (see (A.2) below, and compare to (1.7)). Finally, the
notation < indicates that the omitted constant is independent of i and « (where
a € A and A is a set multi-indices) and

(1.30) Co(R) = {f €C®): lim f(N) = o}.

THEOREM A. (The decomposition in the black-box setting) Let Py be a semi-
classical black-box operator on H (in the sense of Definition 2.1). Then there exists
A > 0 such that the following holds. Suppose that, for some hyg > 0, there exists
$ C (0, hg] such that the following two assumptions hold.

1. There exists Douy C Dioe and M > 0 such that for any x € C,(RY) equal

comp
to one near Bpr,, there exists C > 0 such that if v € Doyt is a solution to

(Pr — I)v = xg, then
(1.31) Ixvllg < Ch Mgl for all h € $.
2. There exists a function € € Cy(R) that is nowhere zero on [—A, A] such that

(1.32) EPH=E+ O(h™) pt.—oe _pice

where the operator E has the following property: there exists p € COO(TE%)
equal to one near Br,, such that, for some a-family of black-box differentia-
tion operators (D(a))acu,

(1.33) lpD(a)Ev||;: < Ce(a, h)||v]lx  for allv € ’D%’oo and I € 9,

for some Ce(a, i) > 0.
Given R > 0 such that Ry < R < Ry, if g € H is compactly supported in Br and
u € Doyt satisfies

(1.34) (Pr—Nu =g,
then there exists up2 € DY and uy € Dﬁh’oo such that
(1.35) ulp, = (upz +ua)|Bg-
Furthermore, ug= satisfies

(1.36) lurzzllos + | Bfusee |y < lallze for all b€ 5,

and for any R > 0 with Ry < R < Ry, there exist R, R, R, R,, with Ry < R, <
R, <R, <R, <R such that uyg decomposes as
(1.37) ug = ul® +u,
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where uﬁo € D! is reqular near the black-box and negligible away from it, in the sense
that

(1.38) ID(@)u 1943 (81, ) S Celasi) sup  [EN)H A7 lg]|
AE[—ALA]

forallh € $ and o € 2, and, for any N,m > 0 there exists Cy n, > 0 such that
(1.39) [0 i (5 ey < CnmhVlglae for all he &

and u% is entire away from the black-box and negligible near it, in the sense that for
some A > 1

(1.40) H@O‘uffHHu((BRI)c) S Aelp=led=M=1) 01, for all h € § and a € 2,
and, for any N,m > 0 there exists Cn n, > 0 such that

(1.41) Huf”D’éL‘m(BRH) < OnmhN|gllae  for all b€ 9.

In addition, z'fE(Phu) = F (i.e., with no O(hoo)Dg,foog)Dﬁh,oo remainder in (1.32)), then

the functions ua, u’y, uﬁo, ug2 are all independent of £, and all the implicit constants
above are independent of € as well.

Finally, if p =1, the decomposition (1.35) can be constructed in such a way that
instead of (1.37)—(1.41), ua satisfies the global reqularity estimate
(1.42)

ID(a)uallye < Ce(a,h)  sup }5()\)71| hiM*ngHH forallh € $H and a € Y,
AE[—ALA]

here as well, if E(P;g) = FE, then the functions ua,ug2 and all the above estimates do
not depend on &.

Point 1 in Theorem A is the assumption that the solution operator is polynomially
bounded in A. In the black-box setting, [41] proved that this assumption always holds
with M > 5d/2 and {h™! : h € $H}¢ having arbitrarily small measure in R* (see Part
(ii) of Theorem 1.5 and Part (iv) of Theorem 1.9). The solution operator is then
polynomially bounded because $ excludes (inverse) frequencies close to resonances.
(Under an additional assumption about the location of resonances, a similar result
with a larger M can also be extracted from [69, Proposition 3] by using the Markov
inequality.)

Point 2 in Theorem A is a regularity assumption that depends on the contents of
the black box. We later refer to (1.33) as the “low-frequency estimate”, since the fact
that £ is nowhere zero on [—A, A] means that it bounds low-frequency components.
The cutoff p in (1.33) is needed when the black box contains, e.g., an analytic obstacle
and the operator inside has analytic coefficients; indeed the analyticity estimates that
we use for (1.33) in this case cannot hold in the transition region outside the black
box, where the coefficients cannot be analytic.

Regarding ug2: comparing (1.31) and (1.36), and recalling that in the nontrapping
case (1.31) holds with M = 0, we see that uy= satisfies a bound that is better, by at
least one power of i, than the bound satisfied by wu; this is the analogue of the property
(i) in §1.1 of the results of [51, 52, 24, 50], and is a consequence of the semiclassical
ellipticity of Py — 1 on high-frequencies (discussed in §1.6). The regularity of wg-
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depends on the domain of the operator (ug> € D¥) but not on any other features of
the black box (in particular, not on the regularity estimate (1.33)).

Regarding u4: u4 is in the domain of arbitrary powers of the operator (uy €
D%’Oo) and so is smooth in an abstract sense. u 4 is split further into two parts: uﬁo
and u%, with uf}o regular near the black-box and negligible away from it, and u%’
entire away from the black-box and negligible near it; Figure 1.1 illustrates this set up
(with “ui” analytic” replaced by “uﬁo regular”). Comparing (1.31) and (1.38)/(1.40),
we see that, in the regions where they are not negligible, uﬁo and uS’ satisfy bounds
with the same A-dependence as w, but with improved regularity. These properties
are the analogue of the property (ii) in §1.1 of the results of [51], [52], [24], [50]. In
particular, the regularity of u 4 depends on the regularity inside the black-box (from
(1.33)), and, for the exterior Dirichlet problem with analytic obstacle and coefficients
analytic in a neighbourhood of the obstacle, u_4 is analytic.

1.7.2. How to use Theorem A. To apply Theorem A to a scattering problem

not discussed in this paper, the steps are the following.
1. Check that the problem fits in the black-box scattering framework of
Sjostrand—Zworski [66].
2. Check that a polynomial bound on the solution operator (1.31) holds.
3. Show a “low-frequency” estimate of type (1.33) for the corresponding com-
pactified problem.
Concerning Point 1: the black-box framework is specifically designed to include most
scattering problems. Examples treated in the literature include scattering by a Lip-
schitz Dirichlet or Neumann obstacle (Lemma 2.3, [42, §2.2]), by a Lipschitz penetra-
ble obstacle (Lemma 2.4, [42, §2.2]), by a compactly supported potential, by elliptic
compactly supported perturbations of the Laplacian, and scattering on finite volume
surface (see for example [22, §4.1] for these three last problems). For problems not al-
ready covered in the literature, of the conditions in §2.1, the condition on the growth of
eigenvalues for the compactified operator (BB5) will be the main non-trivial assump-
tion to check (for examples of checking this assumption, see, e.g., §B, [42, Appendix
Al).

Concerning Point 2: as mentioned below Theorem A, this assumption holds for
any M > 5d/2 and for most frequencies by [42]. For nontrapping problems, one
expects (1.31) to hold with M = 0 and $ = (0, ko] (see, e.g., Theorem 1.5 below and
the references therein).

Therefore, the key step in applying Theorem A is Point 3: show a “low-frequency”
estimate of type (1.33) for the corresponding compactified problem (i.e., the same
problem, but considered in a large reference torus). This estimate dictates the regu-
larity estimate on the component w4, hence, the better the estimate, the better the
decomposition. In practical applications, the operator D(«) in (1.33) will be nothing
but differentiation D(a) := 8. The two main considerations are then the following.

3-a. Understand if one needs p = 1, or p vanishing away from the scatterer. If one

aims for an analytic-type estimate, because the problem under consideration
has constant coefficients outside a compact set, it cannot typically be analytic
everywhere, and one needs to take p vanishing away from the scatterer. For
lower-regularity estimates, one can use a global estimate, i.e., with p = 1.
3-b. Choose the operator E and the function £. In the first instance, one can
ignore the flexibility given by the error term and aim for £ = &€ (Prg) The
function & is then dictated by the type of estimate used. For example:
— £(\) = e~ corresponds to a heat-flow estimate (see the proof of Corol-
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lary 4.1),

—EWN) =V1+ )\2_L, L > 1 corresponds to an elliptic estimate (see the
proof of Corollary 4.2),

— & € Cgyyp With € = 1 in [-M, M] corresponds to an estimate on the
eigenfunctions of the compactified operator (see the proof of Theorem

D in §4.3).

An example where the error term in S(Pg) =FE+ O(hoo),Dﬁh,—ocHDg’,oc gives
more flexibility is the proof of Theorem D, where the error term is used to
take advantage of the regularity of the eigenfunctions of —A on the torus,
instead of those of the variable-coefficient operator.

On the other hand, the fact that ifE(P,g) = F (i.e., with no O(hoo),Dg,foo%Dg.oo
remainder in (1.32)) then the decomposition is independent of £ ,Lallows us
to use a family of £’s in (1.32) and hence a family of estimates as (1.33).
This feature allows us to tune the choice of £, depending on & and «, to get
the best possible estimate; this procedure is used in the proof of Theorem
B, which uses a heat-flow estimate with a time depending on % and « (see
Corollary 4.1 and Theorem 4.3).

1.8. Outline of the rest of the paper. Section 2 recalls the black-box frame-
work and sets up the associated functional calculus. Section 3 proves Theorem A.
Section 4 proves Theorems B and C (i.e., Theorem A specialised to the exterior
Dirichlet and transmission problems), and Theorem D. Section 5 proves Theorems
B1 and C1 (i.e., the convergence results for the hp-FEM for the exterior Dirichlet
problem and the A-FEM for the transmission problem). Appendix A recalls results
about semiclassical pseudodifferential operators on the torus. Appendix B proves a
subsidiary result used to prove Lemma 2.4.

2. Recap of the black-box framework.

2.1. Abstract framework. We now briefly recap the abstract framework of
black-box scattering introduced in [66]; for more details, see the comprehensive pre-
sentation in [22, Chapter 4]. A brief overview of black-box scattering with an emphasis
on the counting of resonances is contained in [41, §2]. From the point of view of the
present paper, working in the framework of black-box scattering is a convenient way
to cover a large class of scattering problems.

We emphasise that here we use the approach of [65, §2], where the black-box op-
erator is a variable-coefficient Laplacian (with smooth coefficients) outside the black-
box, and not the Laplacian —h%A itself as in [22, Chapter 4] (although the operator
still agrees with —h2?A outside a sufficiently large ball).

The Hilbert-space decomposition. Let 7 be an Hilbert space with an or-
thogonal decomposition

(BB1) H = Hp, ® L*(R)\Bg,,w(x)dz),

where the weight-function w : RY — R is measurable and supp(1 — w) is compact in
R?. Let 1 Br, and lga\ Bnr, denote the corresponding orthogonal projections. Let Py
be a family in 7 of self ad301nt operators H — H with domain D C H independent of i
(so that, in particular, D is dense in H). Outside the black-box Hg,, we assume that
Py, equals @y defined as follows. We assume that, for any multi-index |a| < 2, there
exist functions ap,o € C° (R?), uniformly bounded with respect to &, independent of
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B for |a| = 2, and such that (i) for some C; > 0

(2.1) Z ()€ > C1)€[*  for all z € RY,

Jal=2

(ii) for some Ry > Ry

> ana(2)6* = (¢ for |z| > Ry,

lal<2

and (iii) the operator Qp, defined by

(2.2) Qni= Y ana(z)(hDs)"

lal<2

(where D := —id) is formally self-adjoint on L?(R%, w(z)dz).
We require the operator P; to be equal to ()5 outside the black-box Hp, in the
sense that
(BB2)
1ga\ gy, (Pru) = Qn(lga\p, u) forueD, and 1gap, D C H?*(R™\Bg,).

We further assume that if, for some ¢ > 0,
(BB3) ve H*(R?Y) and V|Bg,. =0, then wveD,

(with the restriction to Bg,t. defined in terms of the projections in (BB2); see also
(2.8) below) and that

(BB4) 1pg, (Pr+ i)7! is compact from H — H.
Under these assumptions, the semiclassical resolvent
R(z,h):=(Ph—2)"':H =D

is meromorphic for Imz > 0 and extends to a meromorphic family of operators of
Hcomp —+ Dioc in the whole complex plane when d is odd and in the logarithmic plane
when d is even [22, Theorem 4.4]; where Hcomp and Diec are defined by

Hcornp = {u EH : le\BROu € Lzomp(Rd\BRo)}7

(where Lgomp denotes compactly-supported L? functions) and

Dioe = {u € HRO D L?oc(Rd\BRo) Dif x € Og(?mp(Rd)’ X‘BRO =1

(2.3) then (1pg, u, X1ga\ B, u) € D}.

The reference operator Phu. Let Ry > Ry be such that supp(l —w) C Bg,,
and let T%u = R?/ (2R4Z)%; we work with [—Ry, R]? as a fundamental domain for
this torus. Let

H* = Hp, & L*(Th,\Br,,w(z) dz),
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and let 1p, and 1ra \ Br, denote the corresponding orthogonal projections. We
'y
define

Df ::{u eH : if xe Ceomp(BR,); X =1 near Bg,, then
(2.4) (Lo, Xy \py, ) € D, and (1= X)1gy \p,, u€ H(T,) |,
and, for any y as in (2.4) and u € D¥,
(2.5) Piu:= Ph(lBROU,Xngn\BROU) +Qn((1— X)lT%u\BRO u),

where we have identified functions supported in B(0, R4)\B(0,Ry) C T%n\B(O, Ry)
with the corresponding functions on R%\B(0, Ry) — see the paragraph on notation
below.

Let g, € S 2(']I‘j,i%ﬁ) denote the principal symbol of Q)5 as an operator acting on the
torus T%n (see Appendix A for a review of semiclassical pseudodifferential operators
on T%u)' We record for later the fact that (2.1), (2.2), and the uniform boundedness
of ap () with respect to i imply that there exist C7, Ce > 0 such that

(2.6) Chl€) < qn < Cy)¢)*  for sufficiently large €.

The idea behind these definitions is that we have glued our black box into a torus
instead of R%, and then defined on the torus an operator Pfg that can be thought of
as Py in Hp, and Qp in (R/2RyZ)*\ B,; see Figure 2.1. The resolvent (P! + i)' is
compact (see [22, Lemma 4.11]), and hence the spectrum of Pg, denoted by Sp Pg, is
discrete (i.e., countable and with no accumulation point).

We assume that the eigenvalues of Pfg satisfy the polynomial growth of eigenvalues
condition

(BB5) N (P [=C,A) = O(h~ AT/,

for some d* > d and N (Pig, I) is the number of eigenvalues of P,g in the interval I,

counted with their multiplicity. When d* = d, the asymptotics (BB5) correspond to

a Weyl-type upper bound, and thus (BB5) can be thought of as a weak Weyl law.
We summarise with the following definition.

DEFINITION 2.1. (Semiclassical black-box operator) We say that a family of self-
adjoint operators Py, on a Hilbert space H, with dense domain D, independent of h, is
a semiclassical black-box operator if (P, H) satisfies (BB1), (BB2), (BB3), (BB4),
(BBS5).

We define a family of black-box differentiation operators as a family of operators
agreeing with differentiation outside the black-box (note that there is no notion of
derivative inside the black-box itself).

DEFINITION 2.2 (Black-box differentiation operator). (D(&))aca is a family of
black-box differentiation operators on D%’OO (defined by (2.13) below) if A is a family
of d—multi-indices, and for any o € A and any v € C (Tilan\BRo)}

comp

D(a)v = 0%.
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=
[

By

F1G. 2.1. The black-box setting. The symbol ~ is used to denote equality in the sense of (BB2)
and (2.5).

Notation. We identify in the natural way:
e the elements of {0} @ L? (']I‘%n\BRO) C H,
o the elements of L*(T4%,\Bg,),
e the elements of L2 (T%ﬁ) essentially supported outside Bg,,

e the elements of L?(R?) essentially supported in [—Ry, Ry]?\ Bg,,
e and the elements of {0} ® L?(R%\Bgr,) C H whose orthogonal projection onto
L%*(R?\Bp,) is essentially supported in [—Ry, Ry]*\ B,
IfveHand x € ngmp(Rd) is equal to some constant a near Bp,, we define

(2.7) XV = (@l pg v, X1ga\ B, v) € H.

(for example, using this notation, the requirements on u in the definition of D¥ (2.4)
are yu € D and (1 —x)u € H2(TdRﬁ) for x equal to 1 near Bp,).
If v € H and R > Ry, we define

(28) ’U|BR = (1BRO’U, (1]Rd\BR0v)|BR) S HRO &) LQ(BR\BRU)7
and, if v € H!,
vlBr = (1840, (11r;gu\BROU)|BR) € Hp, © L*(BR\Br,)-

Furthermore, we say that g € H is compactly supported in By if ¢ = xog for some
Xo € C.. (RY) equal to one near Bg, and supported in Bg.

comp

Finally, if Ry <r < Ry, we define the partial norms
||U\|m(BT) = [Jull(s,) = ||u||HR(,€BL2(BT\BR0)7 ||U||Hﬁ(Bg) = H1’H‘§%u\BROuHL2(T%n\B,,.)

and
lull(Be) = [1ra\ By, ull L2\ B,)-
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2.2. Scattering problems fitting in the black-box framework. The two
following lemmas show that both scattering by Dirichlet obstacles with variable co-
efficients and scattering by penetrable obstacles fit in the black-box framework. For
other examples of scattering problems fitting in the black-box framework, see [22,
§4.1].

LEMMA 2.3. (Scattering by a Dirichlet obstacle fits in the black-box framework)
Let O_, A, c, Ry, and Ry be as in Definition 1.2. Then the family of operators
Ppv = —h*c*V - (AVv)

with the domain

Dp = H*(O4) N Hy(O4)

2

is a semiclassical black-box operator (in the sense of Definition 2.1) with w = ¢~ =,

Qn = —h*c?V - (AV), and
Hp, = L?(Br, N Oy;¢ *(z)dz)  so that H=L*(O4;c *(z)dz).

Furthermore the corresponding reference operator Pg satisfies (BB5) with df = d.

Proof. The non-semiclassically-scaled version of this lemma with Lipschitz Q_
and Agear and ¢ € L and domain

(2.9) {v € HY(0,), V- (Awear V) € L2(O4), v =0 on ao+}

is proved for ¢ = 1 in [41, Lemma 2.1]. The proof of (BB2), (BB3), and (BB4) is
essentially the same in the present semiclassically-scaled setting. The bound (BB5)
follows from comparing the counting function for Phﬁ to the counting function for the
problem with ¢ = 1 by a similar argument to [41, Lemma B.2]/Appendix B, and then
using the result for the problem with ¢ = 1 proven in [41, Lemma B.1]. Finally, by
elliptic regularity, the domain (2.9) equals H2(O,) N H(O4) since Q_ and Agea are
smooth in Definition 1.2. d

LEMMA 2.4. (Scattering by a penetrable Lipschitz obstacle fits in the black-box
framework) Let O_, A, ¢, B, and Ry be as in Definition 1.8. Let v be the unit nor-
mal vector field on 0O_ pointing from O_ into O, and let 0, 4 the corresponding
conormal derivative from either O_ or OL. Let

Hp, = L*(0_,c(z) 7?8 dz) @ L*(Bg,\O-),
so that
H=L*(0_;c(z) B 'dz) @ L*(Bgr,\O-) ® L*(R\Bg,).
Let
D :z{v = (v1,v2,03) where v € HY(O.), V-(A_Vu)e L2(0O_),

vy € H'(Bg, \ O_), V-(A;Vuwy)) € L?(Bg, \ O-),

v3 € H'(R?\ Bg,), Avs € L*(R?\ Bg,),

vi=vy and 0Oya vi=P0,a,v2 ondO_, and
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(2.10) vo =v3 and Oyvy =0,v3 on IBg, }

(observe that the conditions on vy and vz on OBR, in the definition of D are such
that (vy,v3) € HY(RI\ O_) and V - (A4 V(vq,v3)) € L2(RE\ O_)). Then the family
of operators

Pho = — 1 (02V (A_V0,),V - (A4 V), Avg),

defined for v = (v1,v9,v3), is a semiclassical black-box operator (in the sense of Defini-
tion 2.1) on H, with Qn = —h%A, and any Ry > Ry. Furthermore, the corresponding
reference operator Pg satisfies (BBb) with d* = d.

Proof. The non-semiclassically-scaled version of this lemma was proved for ¢ = 1
in [41, Lemma 2.3]. The proof of (BB2), (BB3), and (BB4) is essentially the same in
the present semiclassically-scaled setting. The proof of the bound (BB5) is similar to
the the analogous proof for ¢ = 1 and A Lipschitz in [41, Lemma B.1]; for completeness
we include the proof in §B. O

REMARK 2.5. Lemma 2.3 has the obstacle O_ in the black box (i.e., in Bpg,)
but not all the variation of the coefficients A and ¢ (which are contained in Br, D
Bg,). In contrast, Lemma 2.4 has both the obstacle O_ and all the variation of
the coefficients A and c in the black box. The transmission problem also fits in the
black-boz framework with some of the variation of the coefficients outside the black
boz (i.e., in B, ), but we do not need this formulation to prove Theorem C.

2.3. A black-box functional calculus for P,g. The operator P,g on the torus
with domain D* is self-adjoint with compact resolvent [22, Lemma 4.11], hence we can
describe the Borel functional calculus [60, Theorem VIIL6] for this operator explicitly
in terms of the orthonormal basis of eigenfunctions gbg € H* (with eigenvalues /\2,
appearing with multiplicity and depending on #): for f a real-valued Borel function
on R, f(P,g) is self-adjoint with domain

2
Dﬁz{Xhm%#ﬂ:ENﬂﬂm¢<w}
and if v = Zajgbg- € Dy then

(2.11) FPH) =" a; f(N)d.

For f a bounded Borel function, f(P*) is a bounded operator, hence in this case we
can dispense with the definition of the domain and allow f to be complex-valued.
For m > 1, we then define D%’m as the domain of (Phﬁ)m equipped with the norm

(2.12) lollpgmn = Nollses + I1(PEY™ollsc

and Dﬁh,—m as its dual (note that, in the exterior of the black box, the regularity
imposed in the definition of Dg’m is that of periodic functions on the torus with
2m derivatives in L?). We define also the partial norms, for m > 0, [vllpzm gy =
h

vl () + ||(P£)mv||7_¢u(3), where B = B, or B = Bf with Ry < r < Ry. In addition,
we let
(2.13) Dp> = () DE™

m>0
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so that v € Dg’oo iff (Pg)mv € D% for all m € Z+.
The following theorem is proved in [18, Pages 23 and 24]; see also [60, Theorem
VIIL5].

THEOREM 2.6. The Borel functional calculus enjoys the following properties.
1. f— f(Pg) is a x-algebra homomorphism.
2. for z ¢ R, if r (w) := (w— 2)"1 then r (P%) = (P,g —2)7L
3. If f is bounded, f(Pg) is a bounded operator for all h, with Hf(Pfg)HL(‘Hﬁ) <
supyeg | f(A)]-
4. If f has disjoint support from Sp P,g, then f(P,g) = 0.

In describing the structure of the operators produced by the functional calculus,
at least for well-behaved functions f, it is useful to recall the Helffer—Sjostrand con-
struction of the functional calculus [36], [18, §2.2] (which can also be used to prove
the spectral theorem to begin with; see [17]).

We say that f € Aif f € C*(R) and there exists 5 < 0, such that, for all » > 0,
there exists C, > 0 such that |f(")(z)| < C,.(1 + |x[?)B=)/2,

Let 7 € C*°(R) be such that 7(s) = 1 for |s| < 1 and 7(s) = 0 for |s| > 2. Finally,
let n > 1. We define an n-almost-analytic extension of f, denoted by f, by

n

Fz) = (Z %(8mf(Rez)) (iImz)m> T (g;;)

m=0

where (-) := (14 - |2)'/2 (observe that f(z) = f(z) if z is real). For f € A, we define

1of

Pﬁ _ —1
T Caz( h Z) dxdy)

(2.14) f(Ph) = -
where dzdy is the Lebesgue measure on C. The integral on the right-hand side of
(2.14) converges; see, e.g., [17, Lemma 1], [18, Lemma 2.2.1]. This definition can be
shown to be independent of the choices of n and 7, and to agree with the operators
defined by the Borel functional calculus for f € A; see [17, Theorems 2-5], [18, Lemmas
2.2.4-2.2.7).

When P is a self-adjoint elliptic semiclassical differential operator on a compact
manifold, the Helffer—Sjostrand construction can be used to show that f(P) is a
pseudodifferential operator [36]. Here, in the presence of a black box, it can instead
be used to show that, modulo residual errors, f(P,g) agrees with f(Qs) on the region
of the torus outside the black box, with the latter being a pseudodifferential operator.
Furthermore, the operator wavefront set of f(Qp) can be seen to be included in
a, !(suppf). We now state these results, obtained originally in [65].

We say that E., € L(HF) is O(h“)pg,ﬂo%pg,oo if, for any N > 0 and any m > 0,
there exists C ,, > 0 such that ' L
(2.15) HEOO”DgL.f'm*)DgLJn S CN’th

(compare to (A.4) below). Operators in the functional calculus are pseudo-local in
the following sense.

LEMMA 2.7. Suppose f € A is independent of h, and 1,10y € COO(']T%u) are
constant near Br,. If 11 and 2 have disjoint supports, then

(2.16) Y1f(Pi)s = O(F®) pr—oe _pp.
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Proof. In the usual case of a smooth manifold with boundary, this result follows
from the fact that f (P,g) is a pseudodifferential operator, and hence pseudo-local.
Here, it follows from combining the corresponding result about the resolvent [65,
Lemma 4.1] (i.e., (2.16) with f(w) := (w — z)~1)) with (2.14) and then integrating
(as discussed in a slightly different context in [65, Paragraph after proof of Lemma
4.2]). |

Furthermore, we can show from [65, §4] that, modulo a negligible term, away from
the black-box the functional calculus is given by the semiclassical pseudodifferential
calculus in the following sense. The following lemma uses the notion of semiclassical
pseudodifferential operators on le%ﬁ (including the concept of the operator wavefront

set WF},), recapped in Appendix A.

LEMMA 2.8. Suppose f € Cgsy,,(R) is independent of h. If x € C’OO(']T‘}%) is equal
to zero near Bpr,, then,

(2.17) XF(PE)x = XF(Qn)x + O(h%) pt.—oe_,pt-oe-

Furthermore, f(Qn) € \Ilgoo(T%n) with

(2.18) on(f(@n)) = f(an)
and
(2.19) WF f(Qnr) C g5 ' (supp/).-

If, instead, f € C°(R) is identically equal to 1 near 400, then f(Qr) € \I/%(T%n) and
(2.17), (2.18), (2.19) continue to hold.

(Here we are adopting the convention that if pg = (20, (g) € T*TdRu lies at fiber-
infinity (see the section “Phase space” in Appendix A), then the notion of support
is to be interpreted in the following generalized sense: gp(po) = +oo and this is in
suppf if f =1 near +00.)

Proof. First, assume f has compact support. By [65, Lemma 4.2 and the subse-
quent two pauraglrauphs]7

XF(POX = XF(@Qu)X + O(F) pr. - pre.

The results of Helffer-Robert [35] (see the account in [62] and in particular Remarques
III-14 for verification of the hypotheses on f) imply that for f compactly supported,
f(Qr) € ¥, °°, with principal symbol f(gs).

That the analogous statements hold for f = 1 near +oo instead simply follows
by noting that for such a function f, g(s) = 1 — f(s) is zero for s > C for some C.
Then f(Qr) = I — g(Qr); since @y, is bounded below, we may assume without loss of
generality that g is compactly supported Thus the previous results show that (2.17),
(2.18) hold for g(Qr), which is in ¥, *°. We thus obtain (2.17), (2.18) for f(Qr), which
lies in W9 with symbol f(qs), hence we have established (2.17), (2.18) under either of
our hypotheses on f.

It remains to show that WFy, f(Qr) C g; ' (supp f). To this end, pick any py ¢
qgl(supp f); we aim to show py ¢ WF}, f(Qr). There exists a smooth function g on
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R with g(gr(po)) = 1 and supp g Nsupp f = 0. We may take g to be either compactly
supported (if pg is in T*']I‘%n) or equal to 1 near +o0o (if pg is at fiber-infinity). Then
by Part 1 of Theorem 2.6

(2.20) f(@n)g(Qn) = 9(@r)f(Qr) =0

(the Borel calculus is a homomorphism). Since ox(g(@r)) = 1 by (2.18), g(Qpr) is
elliptic at pg. .
Now pick b € C=(T T%n) equal to 1 in a small neighbourhood of py and supported

vﬂ-d
on the elliptic set of g(Q). Thus, writing B = Oth” (b), po ¢ WF(I—B) and WF, B
lies in the elliptic set of g(Qp). Then by Theorem A.2, we may factor

B=27Zg(Qn) +R
with Z € ¥9 and py ¢ WF R (by (A.7)). Now write
f(Qr) = Bf(Qr) + ([ — B)f(Qnr)
=Zg(Qn)f(Qn) + Rf(Qn) + (I — B)f(Qn),

The first term on the right-hand side is zero by (2.20). The point pg is not in the
semiclassical operator wavefront set of the second term or third terms since it is not
in WF; R or WF,(I — B) (see (A.9)). Hence by (A.8), po ¢ WF}, f(Qr), as desired.0

3. Proof of Theorem A (the main result in the black-box framework).
The decomposition (1.35) is defined in §3.1 (and illustrated schematically in Figures
3.1 and 3.3). The estimates (1.36) and (1.38)—(1.42) are proved in §3.2 and 3.3
respectively.

3.1. The decomposition. Let ¢ € C5,,,(R?) be equal to one in By and sup-
ported in Bg,. For v € H, we define

Myv = v,
where the multiplication is in the sense of (2.7). Let u € Dyyt be solution to
(Ph - l)u =9,

and let
w = M, u.

We view w as an element of H* and work in the torus Tf,.

We now define our frequency cut-offs. By (2.1), there exists 1 > 1 and ¢ > 0
such that

|¢| > 7 implies that (&) ™%(qn(x, &) — 1) > con > 0.
Therefore, by (2.6), there exists 1 > 1 such that
(3.1) qn(z,€) > p implies that (€)72(gn(z, &) — 1) > cen > 0.
We increase p further, if necessary, so that

(3.2) {(.6) : lan(@,8) = p} = {(=,€) : qn(@,6) > p}
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(note that the conditions imposed on gp(z,£) in §2.1 allow it to be < 0 for some

(z,€))-
Let ¢ € O35, (R) be such that

1 B(0,1),
(3:3) V= {0 in (B(0,2))°.

We now fix 1 < g/ < /2, and define

(3.4 ) =v (=), wetr=v ().
These definitions imply that

3.5) (1= )= ) = (1= )
since 2/ < p), and

3.6) 1 ¢ supp(l — ¢p)

(
(
(
(since p/ > 1). Let
(
(
(

w

.7) A:=5pu
note that, by (3.1), both x and A only depend on g¢;), and observe that
3.8) supp ¢, C [—A, Al
We define, by the Borel functional calculus for P,g (Theorem 2.6), in £(H*)
(3.9) Mow = tu(P}),
and additionally
Miign = (1= ) (P)) = 1 —Tlow  and Tl = (1= ) (P).

By (3.5) and the fact the Borel functional calculus is an algebra homomorphism (Part
1 of Theorem 2.6),

(3.10) Hi{ithHigh = 1_[High~

By Part 3 of Theorem 2.6, the operators Ilyoy, IInigh, and H’High are bounded on ’H,ﬁ,
with

(3.11) IMrowll 2reys [Mrighll 2y Mignller) < 1

and they commute with Phﬁ by Part 1 of Theorem 2.6.

Since u € Dy, (defined by (2.3)), the definition of D* (2.4), (BB2), and the fact
that ¢ is compactly supported imply that w € D! By the definition of 1, (3.4),
(2.11), and the fact that Sp P,g is discrete, Ily,oww projects non-trivially only on a
finite number of eigenspaces of P,g, and thus Ilj,w € D%’Oo. Therefore Ilgignw =
w — Mpoww € DY We now define

(312) UHigh ‘= HHighw (S 'Dﬁ, ULow = HLowW € D}ﬁi,oo
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We show in §3.3 below that we can split upow as
(313) ULow = UA + Ue,

where uy € D%’Oo satisfies (1.37)—(1.41) (or (1.42) if p = 1), and that umigh and u.
satisfy

(3.14) utignllze + | PEusign ||, < llgllas
and
(3.15) uellzes + || PEue]l e < llgllae

with additionally u. € D%’oo (the subscript € indicates that u. is “small” in a sense
made precise below). We then define

U2 ‘= UHigh + ue € Dﬁ7

so that the decomposition (1.35), (1.36) and (1.37)—(1.41) (or (1.42) if p = 1) holds.
Our splitting strategy is summed-up in Figure 3.1; with an overview of the splitting
of the low-frequency component uyqy in Figure 3.3.

In §3.2 we prove the estimate (3.14) for umign. In §3.3 we prove that the de-
composition (3.13) holds, with u 4 satisfying (1.37)—(1.41) (or (1.42) if p = 1) and u.
satisfying (3.15) We highlight that all the arguments from now on consider ki € $.

3.2. Proof of the bound (3.14) on umign (the high-frequency compo-
nent). We proceed in three steps: we first use the abstract information we have
about P,g to bound ITyignw by | g||x modulo a commutator term living away from the
black box Bg,. We then use Lemmas 2.7 and 2.8 to show that this commutator is
given, up to negligible terms, by the semiclassical pseudodifferential calculus on the
torus ']Tﬁl%ﬁ. Finally, we work in the torus and use the semiclassical elliptic-parametrix
construction (Theorem A.2) to estimate this commutator, seen as a semiclassical
pseudodifferential operator on ']I‘;i%u.

Step 1: An abstract estimate in #Hf. Since ITxign commutes with P,g,

(P — I)(Tgignw) = Migign (P — I)(w)
= Hyign(Pr — I)(w)
(3.16) = Trrign i + atign [Pr, MoJu = rrigh0g + Masgn [P, Mo Ju,

where we used the fact that we can replace Prg by Py (and vice versa) on suppy C Bg,
by (BB2) and (2.5)). For A € R, let

FO) = A =D)L =) (),

where f € Cy(R) (defined by (1.30)) by (3.6). Using (3.10), the fact that the Borel

calculus in an algebra homomorphism (Part 1 of Theorem 2.6), and finally (3.16), we

get

(3.17)

Mgtighw = Mg, Mitighw = f(Pf)(Pf— Digighw = f(Pf) (Mitigheg + Mitign [Pf, Mo]u).
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© € Cosmp

w = pu
considered as an element

of the reference torus

MLow N&{igh
ULow UHigh
low-frequency part high-frequency part
uf\” uy Ue
regular near Bg, analytic away from Br, not regular but small
UA U2

Fic. 3.1. Splitting of the Helmholtz solution

Since f € Cy(R), f(Pfg) is uniformly bounded from H¥ — H* by Part 3 of Theorem
2.6. Combining this fact with (3.17), we obtain

gt lyes S Mignogllgs + [Monen P, M-

Writing P,gHHighw = Iighw + (P;EL — I)IThighw and using (3.16) again, we obtain

[Mrignwl| 5 + HPIBLHHigthHt S Maigheglly: + HHHigh[P;g,M@]uHHﬁ.

Hence, by (3.11)

Wty + || P, < lpgllge + |[Tonan (PE M|

(3.18) < Ngllye + |[Fonanl P, Mol -

Step 2: Viewing HHigh[P,g,Mw] as a semiclassical pseudodifferential op-
erator on T;i%n. To prove (3.14) from (3.18), it therefore remains to bound the com-
mutator term Ilgign [Pg, M,]u. Since [Pg, M,] lives away from Hp,, we consider the
high-frequency cut-off in terms of the semiclassical pseudodifferential calculus thanks
to Lemma 2.8.
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Since ¢ is compactly supported in Bg, and equal to one near Bg,, in H! we can
write [Pg, M,] as (using the notation in §2.1)

(3.19) [PF, M) = (0,[Qn, ¢]) = (0, 0[Qn, ¢]) = (0, [Qn. ¥]9)

where ¢ € Co5,,(R?) is supported in Bg,, equal to zero near Br,, and such that
(3.20) ¢ = 1 near supp V.

Let x € C®(R?%) be supported in Bpr,, equal to zero near Bpg,, and equal to one
near supp ¢. Using (3.19) and Lemma 2.7 (i.e., the pseudo-locality of the functional
calculus) with 11 = 1 — x and ¥3 = x¢ = ¢, we obtain that

HHigh[Pfgy MW] = XHHighX¢[P}§7 Mtp]¢ + O(hoo)Dé’foc—)Dg‘oc
(3.21) = Xrign X[}, M) é + O(h™) oo, pie

where we used the last equality in (3.19) to obtain the second line. By Lemma 2.8
with f(Pf) = ¢,(Pf) = Mpow, I, = 1,(Qn) € ¥;>(T%,) is such that

XpowXx = XHEOWX + O(hoo)Dg'_x—)Dg’x

Hence, taking ITjj,y, := I — 17, = (1 —4,)(Qn) € WR(TF,),

Low
(3.22) Xigh X = XTgignX + O(h%) pt oo, pioe

in other words, modulo negligible terms, xIInignx is a high-frequency cut-off defined
from the semiclassical pseudodifferential calculus. We here emphasise that, since x is
supported in Br, and vanishes near Bg,, Xﬂgighx can be seen as an element of both

L(H*) and ‘Il%(']l‘dRﬁ ).

LeEMMA 3.1, With TIY, =1, (Qs) and I, = (1 —1,)(Qn),

(3.23) WF Iy, C g5t (supp ) = {lgn| < 24}
and
(3.24) WF Mg, © g5, (supp(1 — ¢)) = {lan| > u}-
Proof. This follows from (2.19) (in Lemma 2.8), first with f = v,,, and then with
f=1- wu’ o

By (3.21) and (3.22), for any N and any m,
Mesin (P, Mol <|IXTignX[PE, Moloul| s + On ™ [|[PF, M| s,

+C§VHN||$U||HW

with ¢7 compactly supported in Br,\Bg, and equal to one on supp ¢. Taking m = 1,
then N = M + 1 and using the resolvent estimate (1.31) we get

||HHigh[P£’Mso]uHm < ||XHI‘?IighX[P7§vM¢]¢“Hm + CXJHHMHH%“HW
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= ||XHI\PIighX[P£7 M¢]¢“||Hu + C;‘I/IHHMHHQNSUHH
(3.25) S X g X [P, Mo)dul s + (9]

Finally, by the definition of Pg (2.5) and the fact that ¢ equals zero near Bp,,
||XHI‘?IlghX[P£7 MSP](ZSUHHn = HXHI\?IlghX[Qh - Ia (p](buHLQ(TdRu)’
hence by (3.25),

(326) HHHigh[PfgvMLp]quHn S HXHI\I{IighX[Qh - I, (P]¢UHL2(Tan) + HgHH

Step 3: A semiclassical elliptic estimate in T%ﬁ. Combining (3.18) and
(3.26), we see that to prove (1.36) we only need to bound XHI‘I-{ighX[Qh —1,¢]¢u in

L? ('JI“}2 ). To do this, we use the semiclassical elliptic parametrix construction given
by Theorem A.2.

LEMMA 3.2. The operator Qn — I is semiclassically elliptic on the semiclassical
wavefront set of h_lxﬂgighx[Qh —1I,¢].

Proof. By (A.9), (A.11), (3.24) and (3.2),
WE (A I, X[@Qn — 1, ¢]) € Wy I, € g ' (supp(1 — vy)) C {an > p}.
But, on {gs > u}, by definition of p (3.1),

<§>_2(Qh($>f) - ]-) Z Cell > 07

and the proof is complete. 0

Since h’lxﬂgighx[Qh —1I,p] € \I/;L(Tan) by Theorem A.1, we can therefore apply
the elliptic parametrix construction given by Theorem A.2 with A = A1 XHI\?Iigh X|Qr—
I,ol, B=Qr—1I,and £ = 1, m = 2. Hence, there exists S € \Pgl('ﬂ‘%n) and
R = O(hoo),{j;oc with

(3.27) WF;, S € WFy, (h™ i, [Qn — 1, ¢]),
and such that
XHgighX[Qh - Ia SD] = hS(Qﬁ - I) + R.

We apply both sides of this identity to ¢u and then use (BB2) and the fact that ¢ is
equal to zero near Bg, and supported in Bg,; the result is that

X X[Qn — I, eléu = hS(Qr — I)du + Rou
= hSP(Qr — Nu+ hS[Qr — I, plu + Rou
(3.28) = hSG(Py — Nu + hS[Qn — I, dlu + Rou.

The following lemma combined with (A.10) shows that

(3.29) S[Qn—1,0] = O(h™) g

h

LEMMA 3.3.
WF; SNWF;[Qr — I, 9] = 0.
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Proof. By (3.27) and the definition of @, (2.2),
WF, S € WF[Qr — I, 9] C (supp V) x R?

Similarly,
WEL[Qn — 1,6] C (supp Vg) x R,

Now, by (3.20), supp V¢ and supp V¢ are disjoint, and the result follows. d

Therefore, by (3.28), (3.29) and the definition of O(hoo)\l,;oo (A.4), for any N,
there exists C'n, Cy > 0 such that

HxngighX[Qh -1, 90]¢U||L2(T;§u)

< hl|S¢(Pr — I)U||L2(ngu) + CNhN||¢U||L2(T<;§u) + CfvhN||¢UHL2(T%u)

= RSO — Dullz(ry, ) + OBV | Gull + C ™ [l guln,
where % is compactly supported in Bg,\Br, and equal to one on supp¢. Taking
N := M + 1 and using the resolvent estimate (1.31), we then obtain that

||XHI\I{/ighX[Qh -1, @]QJ)UHB(T% ) S hlISo(Pr — I)UHL?(’II‘% )+ hllglla
: s

(3.30) S Mé(Pn = Dull 2 vy, ) + Dllgllae,

where we used in the second line the fact that S € \Il_l(TdRﬁ) C \IJO(’]I“}%) together
with Part (iii) of Theorem A.1. Now, since ¢ is equal to zero near Bp, and supported
in Bg,, we get

16(En = Dullpacrg, y = 19(Fn =~ Dullre = églle < gl
Thus, (3.30) implies that
XL X [Qn — 1, Ploullpaery ) < hllgllae
Combining this last estimate with (3.18) and (3.26) we conclude that
Mgl + | PiMiigneo||, < gl

hence (3.14) holds.

3.3. Decomposition (3.13) of up.w, and proof of the bounds (1.38)—
(1.42) and (3.15) (the low-frequency component). By Assumption 2 in Theo-
rem A, there exists Eo, = O(h™)pt.—c_, pr.o With

h h

(3.31) E(P}) = E+ B,

and the low-frequency estimate (1.33) holds. By (3.8) (a consequence of the definition
of the constant A (3.7)), £ is nowhere zero on the support of 9,,; therefore the function
,,/€ is well-defined and in Cy(R). The definition of IT; 0w (3.9) and Part 1 of Theorem
2.6 imply that

(3.32)

M = 0P = £ (0 ) (B = B o ([ (B)) + B ([ ] 2)
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F1c. 3.2. The cut-off functions p1,p2,71,7v2. p1 is used in §3.8.2, p2 in §3.3.8, and v1 and 2
mn §3.3.4.

Then, by Part 3 of Theorem 2.6 and the fact that Eo, = O(hoo),Dg‘—oc_}Dﬁh,oo7

(3.33) E. o Qé%} (P,lj)) = O(h™) pp—oe_pice-

3.3.1. The decomposition (3.13) of up.w when p = 1. We first assume that
p = 1 and we show the decomposition (3.13), together with the bound (1.42) on w4
and the bound (3.15) on u.. In this case, we let

uq:=Eo ([;%} (P,ﬁ)) w  and  wu:= Exo ([;%} (P,ij)) w,

so that (3.13) holds by (3.31) and (3.9). Moreover, since both u4 and u. involve
compactly-supported functions of P,g, by the reasoning immediately above (3.12),

both u4 and u. are in D%’OO. Then, using (in this order) the low-frequency estimate
(1.33), Part 3 of Theorem 2.6, and finally the resolvent estimate (1.31), we get

ID@uls = [Pl o (| o] () v

<cun] o]

’7—[“ HE

1 1
< Celauh) sup ]mwm) e = Co(a ) sup ]mwuu)\ il

1

< Ce(a, h) sup | =——=<1u(A ’h_M_l ;
thus (1.42) holds. In addition, the bound (3.15) on u, follows from (3.33) together
with the resolvent estimate (1.31).

3.3.2. The decomposition (3.13) of up., when p # 1. We now tackle the
general case (i.e., p # 1). Given Ry and R, let R,R,,R,, R, besuch that Ry <
R, < R, <R,, <R, < Rand p=1near Bpg,,, - In addition, let p; € C‘”(']T?,—iu) be
equal to one near B, and such that supp(1 —p1) C (B, ) and supp p1 € B (see
Figure 3.2).

Using the decomposition (3.32) of Iy,qw, we decompose upow = i oww as

ULow = HLowplw + HLOW(]- - Pl)w
1 1
339 =5 ([go.] ) s+ o ([g0] D) oo+ =
and we define

1
(3.35) uf{’ =Fo ([gqﬁu} (Prg)) pw  and  ufo = ow(1 — p1)w.
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ULow = poww

art near Bp,
P o part away from Br,

Hpowprw
1 U oy 7= HLOW(I - Pl>w
= E(Phu) ) ([Ew“] (Pg)) pw v

/ AN

. N
ufe = o (| gu| (D) ui

part given by

regular near Br, thanks Fy o <{Ewu} (P,E)) pLw e a Fourier multiplier
to the low-frequency estimate, small part on the torus T¢
small part ’
small away from Bg, entire away from Bg,,

small near Br,

Ue
Fic. 3.3. The splitting of ur,ow

Since uﬁo involves a compactly-supported function of Phﬁ, uﬁ“ € Dfil’oo. We decompose
upe,, in §3.3.4 below as

(3.36) ug?,, = u + U

with u% € Dg’oo, (see (3.45) below) and then define

(3.37)  wa=ul +uF € D and  ue =l + Fso 0 ([ 1/}4 (P, )) pLw

(with the first definition implying (1.37)). These definitions imply that upew = ua +
Ue, 1.e., that (3.13) holds. To complete the proof, we now need to show that the bounds
(1.38) and (1.39) on uAO, the bounds (1.40) and (1.41) on u%, and the bound (3.15)
on u, all hold. This decomposition of uro, and the ideas behind it are summed-up in
Figure 3.3.

3.3.3. Proof of (1. 38) and (1.39) for the localised term “A . Using (in
this order) the definition of u ¢ (3.35), the fact that p = 1 on Bg_, the low frequency
estimate (1.33), Part 3 of Theorem 2.6, and finally the resolvent estlmate (1.31) we
obtain

1
D@ i = DB ([00] (7)) |
H¥(Br,, )

< s ([ew] o) o],
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< Ce(a,h) H ([é%} (P,ff)) mWH

e

1
< Ce(or, h) sup mwm [[w]|5¢2

1
= Ce(a,h)sup | =——
S ey

1
< Ce(a, h) sup | =——
(@130 e
thus (1.38) holds, where the sup,cr becomes sup,ci_, ] because of the support

property (3.8) of 1.

Let po € C"X’(']T}i%u) be supported in Br and such that p» = 1 on supp p1 (see

Figure 3.2). By (3.31), Part 1 of Theorem 2.6, and the pseudo-locality of the functional
calculus (Lemma 2.7),

buN| w2

Du(N) | ™M gl

(=)o ([ g0 () o = (1= g1z (00 ) (P + O gy
= (1 - pQ)HLowpl + O(hoo)Dg'_"oﬁDg’oo
(3.39) = O(F®) ey o=

On the other hand, since p; = 0 on Bl%m’

1
||ufl0||Dm,,u((BRm)c) = H(l —p2)E o ([51%} (P;f)) p1w

D5 ((Bry,,)°)

< H(l — p3)Eo ([;M (P}i)) pruw

Dt

Combining this with (3.38) and then using the resolvent estimate (1.31), we obtain
(1.39).

3.3.4. The term away from the black-box ;2 ..
Step 1: obtaining the decomposition (3.36) and the bound (3.15) on u... Let v1 €
C“(T(Iiﬂ) be equal to zero near Bp,, and such that y1 = 1 near (Bg )¢ Since

supp(1 — 1) and supp(1 — p1) are disjoint (see Figure 3.2), by the pseudo-locality of
the functional calculus given by Lemma 2.7,

Hpow (1 = p1) = v Low (1 — p1) + O(hoo)pgf“ep"h‘”
= MLowy1 (1 = p1) + O(F) e~ ptooe.
Therefore, by Lemma 2.8,
(3.39) Mrow(1 = p1) = L3 (1 = p1) + O(h%) ps—oe_pi.oe

b
where IIf

€ ﬂlgw(T‘Igu) and
(3.40) WF I, C q;, ' (supp,,).

By (2.6), since ¢, is compactly supported, there exists A > 1 such that

_ A
(3.41) g, ' (supp¥,) C T, x B (0, 2) .
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Now, let ¢ € C2°__ be compactly supported in B(0,A?) and equal to one on

comp

Td
B(0,A2/4). By (3.41) and (3.40) together with (A.11), WF;, (1 — Op, ™ (3(1¢[?))) N
WF;, (HEOW) = (). Therefore, by (A.10), as operators on the torus,

Td
(342) HEOW = Op;u (¢(|£‘2))HEOW + Elv
where Fq = O(hoo)qj;oo. Since y1 = 0 near Bg,, by the definitions of P# (2.5), ||-|| ps.m
0 h
(2.12), and || - ||H§7n('ﬂ*du) (A.2),
v R
(3.43) ||'71w||pﬁhvm Sm H'YleHg’"(’Jl‘;u) Sm H'Ylepgjm for all w € D%m»

and thus E1y = O(h"o)Dg,foo%Dg,m. Therefore, combining this with (3.42) and
(3.39), we obtain that

TS,
(3.44) Meow(L = p1) = 71 0py, * (B(EF)IE (L — p1) + Bo,
where Ey = O(hoo)Dg,foo_)Dg,oo. We let

d

T ~ ~
(3.45) uX == 0p, * (BUEPHTEN (L = pr)w  and T == Eyw;

observe that vy € D* because of the presence of 4, at the start of the expression.
The decomposition (3.36) then holds by (3.44) and (3.35). The bound (3.15) on u.
follows directly from the definition of u. (3.37), together with (3.33), the fact that
E, = O(hm)Dg,foqug,oo, and the resolvent estimate (1.31).

Step 2: proving that u3 is regular in (Bg, )¢ (i.e., the bound (1.40)).. By the
definition of u (3.45) and the fact that 41 = 1 on (Bg,)¢,

Td
9%uce o= Haa 0 Ry~ 2 H\Il 1— H
|0%u; ||H((BRI) ) P (€)1 ( pr)w H((Br,)*)

Ty 2y (0
(3.46) < [ op,* @M (1 = pr)eo)

L2(7$,)

Td
We now bound the right-hand side of (3.46). By Lemma A.3, Op, * (3(|¢[?)) is given
as a Fourier multiplier on the torus (defined by (A.12)), i.e.,

(3.47) Op;, * (#(I€]%)) = #(=h"A).
Let v € Lz(']I‘ji%n) be arbitrary, and let ¥(j) be the Fourier coefficients of v. By (A.12),
PR A)y =Y V(G)@(R*|j*n* B )e;,
jezd

where the normalised eigenvectors e; are defined by (A.1). Hence, for any multi-index
Q,

- SO imj\*
IG(—h*A)w = Z 0(j)p(h*|j]*7*/RE) <Rj> e
jezd

36



_ 21:12. 2 1 ae,
- X ek () e

jezd, |j|< 5k

since @ is supported in B(0, A\?). Therefore

10 B A ey = D ‘ R 2/Rﬁ><gj)a‘2

jend, |j1< 5t

< )\2|a\h72|a\ Z |i}\(j)|2

JEZ?
(3.48) = A2|“‘h*2|°“||v||2L2(T%ﬁ).

We now use (3.48) with
vi=IEm (1= pw

and combine the resulting estimate with (3.46) and (3.47). Using the fact that 1T} €
\I/°°(T§l%u), ~v1 = 0 near Bp,, and the resolvent estimate (1.31), we get

10%u a2 )y < XA 70 (1 — PW 2y, )
S ATl (1 - pWl 2wy, )
= A=l (1 = pr)wllx < A'“‘h M gl

hence (1.40) holds.
Step 3: proving that u is negligible in B (i.e., the bound (1.41)).. It therefore
remains to show (1.41). Let v2 € COO(’]T‘}%) be equal to zero on Bg and such that

v2 = 1 on supp(l — p1); see Figure 3.2. Since supp(l — v2) and supp(l — p1) are
disjoint, using (A.9) and (A.11)

WEy (1= 72) Op,™ (F(EE)IY ) N WER(1 - pr) = 0.

Then, by (A.10),

T%u ~ 2 v o0
(1 —72) Opy, " (#(I€17)HL (1 = p1) = O(h )ng‘x’
as a pseudo-differential operator on the torus. Multiplying by ;1 on the right and on

the left, and then using the fact that v; = 0 on Bp, and the norm equivalence (3.43),
we find

TS,
(3.49) (1= 72)7 Opy, * (BUEP)IE 71 (L = p1) = O(h™) pt. - pp.ce
as an element of £(#H¥). On the other hand, since 7o = 0 near Bg,,
”uilo”DgLvm(BRH) =(1- 72)'“?40”@2"”(3}311)'

Then (1.41) follows from combining this last equation with the definition of u% (3.45),
(3.49), and the resolvent estimate (1.31).
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3.3.5. Showing that the decomposition is independent of £ when E., =
0.. When E, =0, uﬁ“ = Hpowprw (by (3.34)), and u. = 4. (by (3.37)); see Figure
3.3. The decomposition and associated bounds are therefore independent of £.

The proof of Theorem A is now complete.

4. Proofs of Theorems B, C, and D (i.e., the application of Theorem A
to the Dirichlet, transmission, and full-space problems). Theorem D is proved
by directly verifying the assumptions of Theorem A. Theorems B and C are proved
using the following two corollaries of Theorem A. In the first corollary (Corollary 4.1),
the low-frequency estimate (1.33) comes from a heat-flow estimate, and in the second
(Corollary 4.2) from an elliptic-regularity estimate.

COROLLARY 4.1. Let Py, be a semiclassical black-box operator on H satisfying the
polynomial resolvent estimate (1.31) in $ C (0,hp]. Assume further that (i) Pg >
a(h) > 0 for some a(h) > 0, and (ii) for some a-family of black-box differentiation
operators (D(a))aca (Definition 2.2), there exists p € COO(T?Q) equal to one near
Bg, such that, for some family of subsets I(h,a) C [0,+00), the following localised
heat-flow estimate holds,
< C(ayt,h) forallae, t€I(ha), hesh.

41 H D(a)e P
TR e

Then, if R > 0 is such that Ry < R < Ry, g € H 1is compactly supported in Bp,

and u € Doyt satisfies (1.54), there exist ug € D%’OO and w2z € DY such that w decom-
poses as (1.35). Furthermore, ug> satisfies (1.36) and there exists R, R, Ry,,, R,y ,
and Ry, with Ry < R, < R, < R, < R, < Ry, such that us decomposes as

ug = ui" +u with, for some A >0 and A > 1,

(4.2)
ID(@)u 1945 (B, ) < nf Clah, t)e Mgl for allh € § and o € A,
(4.3) 104 922 (1, o) S Melp=lal=M=1101. for allh € $ and a € A,

and, for any N,m > 0 there exists Cn n > 0 such that
(4.4)
&S] R N
lu ”Dﬁn'm(BRH) + HUAOHD}‘;”"((BRIH)“) < CnmP gl for allh e $ and o € 2.

In addition, if p =1, the decomposition (1.35) can be constructed in such a way that
instead of (4.2)-(4.4), ua satisfies the global regularity estimate

s

(4.5) [|D(@)ually: < }I(lhf )C’(a, hot)e™ MY gl for allhe $ and o € A.
te

Finally, the omitted constants in (4.2), (4.3), and (4.5) are independent of h and «.

Proof. For a € % and h € 9, let t € I(h, ), and &()) := et Since Prg >
a(h) > 0, Sp P,g C [a(h),o0). Therefore, by Parts 4 and 3 of Theorem 2.6, e thh =
Et(Pg). Such an & is in Cy(R), never vanishes, and satisfies (1.33) with E; := Et(Prg)
and Cg, (o, h) :== C(a, B, t) by (4.1). From Theorem A, we therefore obtain the above
decomposition u 4, uﬁo, u%, ug2. Since Et(P,g) = FE, by the final part of Theorem A,
the decomposition is constructed independently of &, and hence independently of t.
The result then follows, with the infimum in ¢ in (4.2) coming from (1.38) and the
fact that this estimate in valid for any ¢ € I(A, ). d
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COROLLARY 4.2. Let Py be a semiclassical black-box operator on H satisfying the
polynomial resolvent estimate (1.31) in $ C (0, hg]. Assume further that, for some
a-family of black-box differentiation operators (D(«))aeu (in the sense of Definition
2.2), there exists L > 0 and 0 < L(«) < L such that the following elliptic-regularity
estimate holds,

(4.6)
L(a)
| D(c)wll4,: < Z C’g(oc,71)||(P,§)Zw||ﬂn foralla e, we Dg’m, and h € $,
=0

for some Cy(a, k) >0,£=0,...,L(c).

Then, if Ry < R < Ry, g € H is compactly supported in Br and u € Doyt satisfies
(1.34), there exists ug € Dg’oo, ug> € D* such that u can be written as (1.35), ug>
satisfies (1.36), and u 4 satisfies

L(a)

47)  [[D(@uallz: S ( > Cila, h)>hM1|g||H for all « € 2 and h € §,
(=0

where the omitted constant is independent of h and «.

Proof. Let p:=1, £()\) := (\)"F and Ce(a,h) := ZEL:(? Cy(a, h). We now need
to show that the bound (4.6) implies that the bound (1.33) holds with these choices
of & and Cg. Given v € DY let w := (P!)~Lv € DY, The bound (4.6) implies
that
(4.8)

L(a)
HpD(a)(Pg)_Lva < Z Cg(a,h)H(Pg)e(Pg)_Lva for all @ € A and h € H.

Since (\)"FA¢ < 1, by Part 3 of Theorem 2.6, the term in brackets on the right-hand
side of (4.8) is bounded by Cg(«, h)||v|| ¢, and then (1.33) follows. The result (4.7)
then follows from the bound (1.42) in Theorem A. d

4.1. Proof of Theorem B. Let i := k™!, g := h2f, and define H and P; as in
Lemma 2.3, so that Py is a semiclassical black-box operator on H. The assumption
that Cso1(k) is polynomially bounded means that (1.31) holds with

(4.9) H:={h:h=k"" with k € K}.

The plan is to apply Corollary 4.1, showing that the heat-flow estimate (4.1) is satisfied
using the following theorem.

THEOREM 4.3. (Heat-equation estimate from [23]) Suppose that O_, A, ¢, Ry, and
Ry are as in Definition 1.2. In addition, assume that O_ is analytic, and that A and
¢ are C* everywhere and analytic in Br, for some Ry < R, < Ry. Let Pg denote
the associated black-box reference operator on the torus (as described in §2.1).

Given p € CS2. with supp p C Bpg,, there exists C > 0 such that for all t € (0,1]

comp

and for all T € [0,1]

(4.10) Hpaaeth”ﬂ? < exp(t=T)|al ¢l Dlol/2,

L2— L2
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2 pt

Note that the operator e Fr is just the variable coefficient heat operator for time

t.

References for the proof of Theorem 4.3. When 7 = 1, (4.10) is essentially [23,
Theorem 1.1], and when 7 = 0, (4.10) is a more-standard heat-equation estimate [23,
Equation 1.5], attributed there to [26, Part 3, §3].

Indeed, the bound with 7 = 1 follows from [23, Lemma 2.7] with the choice of
their parameter 6 equal to 1 (via an argument using Sobolev embedding in time, as
discussed immediately before [23, Lemma 2.7]). The bound with 7 = 0 follows from
[23, Lemma 2.7] with § = ¢ (since o = 1 for the heat equation in the notation of [23,
§2]), as highlighted in [23, Remark 2.8]. The bound for general 7 € [0, 1] then follows
from [23, Lemma 2.7] with § = ¢177.

The main difference between the set up of [23] and the hypotheses of Theorem 4.3
is that [23] works on a bounded domain with Dirichlet boundary conditions, whereas
Theorem 4.3 works on the torus with a Dirichlet obstacle inside. However, these global
considerations only enter the arguments in [23] in deriving time-analyticity estimates
of the heat semi group in [23, Lemma 2.1], and these estimates hold equally well on
the torus with a Dirichlet obstacle. O

As in Corollary 4.1, we choose p to be equal to one near Bg,, and further assume
that p is supported in B(p,yr.)/2 (i.e., in a region where A and ¢ are known to be
analytic). Given i € $ and a multi-index «, let 7 = 7(h, @) € [0, 1], depending only
on A and a, to be fixed later. By letting t — th? in Theorem 4.3, we see that the
heat-flow estimate (4.1) is satisfied with D(«) := 0%,

C(a, i t) := exp ((F*t) ) [at Ol (R2)T=DIl/2and Ik, a) = (0,h2];

note that the heat-flow given by the functional calculus, appearing in (4.1), is indeed
the solution of the heat equation; see, e.g., [60, Theorem VIIIL.7].

We can therefore apply Corollary 4.1 with an arbitrary Ry > R, and we obtain
ugz € D¥ and uy € D%’OO with ug = uf{" + u satisfying (1.35), (1.36), (1.37),
and the bounds (4.2)—(4.4). Observe that ugy2 and u 4 satisfy the Dirichlet boundary
condition (1.6) since they are in D¥ (2.4).

The low-frequency bounds (4.3)—(4.4) give directly the low-frequency bound away
from the obstacle (1.12) and the error bound (1.13). The rest of the proof therefore
consists in obtaining the low-frequency bound near the obstacle (1.11) from (4.2) and
the high-frequency bound (1.10) from (1.36).

To obtain (1.11), by (4.2), we only have to show that, for some 7 € [0,1] and
C >0,

(4.11)

(ionfg . <exp [(R%t)"7 + At]|al! C’lo‘(th)(T_l)ln/2> <clel max{\aﬂo", hi‘al}
te(0,h~

We first prove (4.11) when |a| > A~!, i.e., when the max on the right equals Cl*lal®l.
If =1and t = h™!, then the quantity in the infimum on the left-hand side of (4.11)
equals

exp [(1+ A)p[atClol < (C)lel ]l

(by Stirling’s formula) as required.
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To prove (4.11) when |a] < A1, we seek to choose ¢ and 7 such that
(4.12) (R2t)(T=Dlel/2 — p=lel|jg|=leland ¢ = (R%) 7.

Under the second equality in (4.12), the left-hand side of the first equality becomes
hlelt=1el; we therefore let t = |a|, which is allowed since || < A~' < h=2. We now
choose 7 such that the second equality in (4.12) holds; i.e.,

o log |
~ log(h=2[a|~1)"

When 1 < |a| < A7, 0 < 7 < 1, and so this choice of 7 is allowed. Under the
equalities in (4.12), the quantity in the infimum on the left-hand side of (4.11) equals

exp [(1+ Dlaf] [l h 1ol o] ol < (E)lelplel,

which is the right-hand side of (4.11) when |a| < A=!. We have therefore proved
(4.11), and thus the low-frequency bound near the obstacle (1.11).

We now complete the proof by proving the high-frequency bound (1.10). The
bound (1.36) implies that

(228 \|L2(T;§u\o,) +E2V - (AVUHZ)HLQ(T‘}%\O,) SE2flL2(Brno.)s

and then Green’s first identity (see, e.g., [47, Lemma 4.3]) and the fact that A satisfies
(1.4) imply that

g ”L?(szu\(?,) + k[ Vuge ”L?(Téu\o,) +E2V - (AVUH2)||L2(T§ﬁ\o,)
(4.13) SEN L2 (Brnoy);

see, e.g., [33, Lemma 3.10]. That is, (1.10) holds for || = 0 and 1. To obtain (1.10)
for || = 2, we combine (4.13) with the H? regularity result of, e.g., [47, Part (i) of
Theorem 4.18, pages 137-138], applied with 7 = BRNO4 and Qs = B(ryRry)2N0O+.
Finally, the fact that uf\“ is analytic in Br and u} is analytic in (B RI)C follows
from Lemma 1.1 and the bounds (1.11) and (1.12), respectively.

4.2. Proof of Theorem C. The plan is to apply Corollary 4.2. Let h := k™!,
g := h%f, and define # and Pj, as in Lemma 2.3. By Lemma 2.3, Py is a semiclassical
black-box operator on H.

The assumption that Cso(k) is polynomially bounded means that (1.31) holds
with $ given by (4.9) and thus we only need to show that the regularity estimate
(4.6) is satisfied for appropriate D(«a), Co(c, h), and L(«).

We claim that for n even with n < 2m

n/2
~ ¢
(4.14) ”w”H”(Of)@H"(T%pOH = ZZCK(") H(V' (AV)) w”L%O-)EBL%T%ﬁﬁOQ
=0

for all w € D%"X’, where 65(71) also depends on O_, A, and c. If (4.14) holds, then the
regularity estimate (4.6) is satisfied with (i) D(«a) := (0%|o_, 0|0, ), (ii) A consisting
of multi-indices a such that || is even and |«| < 2m, (iii) L(«) := |a|/2, and (iv)

(4.15) Colov, h) == h=2Cy(|a)).
41



We assume that (4.14) holds, and show how the result of the theorem follows from
Corollary 4.2. Applying this corollary, we obtain ugz,u 4 satisfying (1.35), (1.36),
and (4.7). Observe that ugz and uy4 satisfy the transmission conditions (1.22) since
they are in DF. By (4.15), there exists Cy = Ca(m) > 0 such that, for |a| < 2m,

L(a)

Z Coa, k) < Co(m)R 1oL,
=0

The low-frequency bound (4.7) therefore gives (1.24) for all a € 2, i.e., for all «
with |a| even and < 2m. The bound (1.24) then holds for all « with |a| < 2m by
interpolation (see, e.g., [47, Theorem B.8|, [12, §4.2]). Finally, (1.23) follows from
the high-frequency estimate (1.36), together with Green’s identity and (4.14) applied
with n = 2 (similar to the end of the proof of Theorem B).

We therefore only need to prove (4.14). The two ingredients to do this are the
regularity result

||U|\Hn+2(o_)@m+2(mr§nmo+)

(4.16) SV (AVU)HH"(O,)@H”(T%uﬁO+) + ||v||H1(O,)@H1(TgumO+)

for all integers n < 2m — 2, and the bound
(4.17)

1ol 0 yom g, 00, S IV - (AVOlL2 0 yor2my noy) + 120 yer2rg, no.)

where both bounds are valid for all v € D®™, and the omitted constants in both
depend on A, ¢, and 5.

The bound (4.17) is proved using Green’s first identity (see, e.g., [47, Lemma
4.3]), the fact that v satisfies the transmission conditions in (2.10), and the fact that
A satisfies (1.4); see, e.g., [33, Lemma 3.10] for an analogous bound in R? for the case
8 =1.

Regarding (4.16): elliptic regularity results imply that, given Q1,9 with O_ &€
Qe e Bpgs,

]| zn+20_ Y@ +2(01004)
SV (AVY) |l an o yarr(@uno) + VI (0 )@ H (92004)

(4.18) <[V (AVU)||Hn(o,)eeHn(1r;§ﬁmo+) + HU”Hl(O,)@Hl('JI‘%uﬂOJr)v

for all v € D! and integers n < 2m — 2, where the omitted constant depends on A, ¢, 3;
see, e.g., [47, Theorem 4.20], [16, Theorem 5.2.1, Part (i)]. Since the torus is compact
(and is thus covered by a finite number of {2;s), (4.18) holds with the left-hand side
replaced by ||v||Hn+2(Of)@Hn+2(0+mr(lz%n) and (4.16) follows.

We now use (4.16) and (4.17) to prove (4.14) by induction. The bound (4.14) with
n = 2 follows from combining (4.16) with n = 0 and v = w and (4.17) with v = w
(observe that choosing v = w in both is allowed since w € D). We now assume that
we have proved (4.14) for n even and n < 2q for some 0 < g < m — 1; i.e,,

q
(4.19) [wlrze <Y (V- (AV) wl]|,,  for all w € D™,
{=0
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where we have omitted the ¢g-dependent constants and the domains of the norms for
brevity.
Applying (4.16) with n = 2¢ and v = w, we have

(4.20) [0l grzave SV - (AVW)|| 20 + [[w]] g1

(again omitting the domains of the norms for brevity). The desired bound (4.14) with
n = 2q + 2 then follows by using in (4.20) the inequality (4.19) with w replaced by
V- (AVw) (which is allowed since w € Dnh’oo implies that Pfgw € D%’Oo by (2.13)), and
then using (4.17) with v = w.

4.3. Proof of Theorem D. Let h:= k™!, g:= h%f, and define H# and P; as in
Lemma 2.3 with O_ = (). By Lemma 2.3, Py is a semiclassical black-box operator on
‘H. The reference operator is given by Prg = —h2c?V - (AV), acting on the torus T%u'

The assumption that Cyo (k) is polynomially bounded means that the bound
(1.31) holds with $) given by (4.9); i.e., the assumption in Point 1 of Theorem A is
satisfied.

We now construct £ and F satisfying the assumptions in Point 2 of Theorem A.
Let A > 0 be as in Theorem A, and let £ € Cg5,,,(R) be such that £ =1 in [-A, A],

com

and £ = 0 outside [—2A,2A]. The results of Helffer-Robert [35] (see the account in

[62]) imply that E(P,g) = E(—h2c*V - (AV)) is a pseudo-differential operator on the

torus T%n. Then, the same argument as in the proof of Lemma 2.8 shows that
WF, E( - RV - (AV)) C ¢ ' (supp &),

where q(z,€) = c(z)?(A(2)E, €) is the semi-classical principal symbol of —h2c?>V-(AV).
Hence, since £ is compactly supported and A satisfies (1.4), there exists Ag > 0 such
that

A
(4.21) WFE(—h’V - (AV)) C Tg, x B (0, 2°> .
Let ¢ € C,,, be compactly supported in B(0, A3) and equal to one on B(0,A%/4). By

comp

(4.21) and (A.11), WFy, (1 - Og:” (2(1€%)) NWF, E(=h*c?V - (AV)) = 0, therefore,
by (A.10),

E(— 2T - (AV)) = Op,* (F(EP)E( — BBV - (AV)) + O(h%) g
Then, by Lemma A.3,
(4.22) E(—h**V - (AV)) = p(=h*A)E(—h**V - (AV)) + O(hoo)q,goo.
We now define
(4.23) E:=3(—RPA)E(-RPV - (AV)),
and thus (4.22) implies that
E(Pf) = E+ O(h™)ps - pre-

We now need to show that a low-frequency estimate of the form (1.33) is satisfied.
Since @ is compactly supported in B(0,A3), the definition of E (4.23) and the same
argument used to show the bound (3.48) imply that

||8aEvHL2(T%u) < Aloa\h—law||g(—h2czv. (Avv))vnp(%)
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for all v € LZ(T%) and for all multi-indices o. Then, since £(—h*c?V - (AV)) €
\Ilgoo(']l‘%n), there exists C' > 0 such that

0% Evl|p2(re, y < C’Alf“h_lo‘| [ollz2rg y  forallve LQ(']I‘%u) and multi-indices a.
f ]

Therefore, the assumption in Point 2 of Theorem A is satisfied with D(«) := 0%,
Ce(a,h) := CAl'h=1ol and p = 1. The result then follows from Theorem A; indeed,
the bound (1.27) follows immediately from (1.42), and (1.26) follows from (1.36) after
using Green’s identity and elliptic regularity in the same way as at the end of the
proof of Theorem B — see (4.13) and the surrounding text.

5. Proofs of Theorems B1 and C1 (the frequency-explicit results about
the convergence of the FEM).

5.1. Recap of FEM convergence theory. The two ingredients for the proof
of Theorems B1 and C1 are
e Lemma 5.4, which is the standard duality argument giving a condition for
quasioptimality to hold in terms of how well the solution of the adjoint prob-
lem is approximated by the finite-element space (measured by the quantity
1n(Vn) defined by (5.4)), and
e Lemma 5.5 that bounds n(Vy) using the decomposition from Theorems B and
C.
Regarding Lemma 5.4: this argument came out of ideas introduced in [64], was then
formalised in [63], and has been used extensively in the analysis of the Helmholtz
FEM; see, e.g., [1, 39, 48, 63, 51, 52, 75, 73, 20, 14, 45, 15, 30, 34, 29, 43].
Before stating Lemma 5.4 we need to introduce some notation. Let Ceony =
Ceont (A, ™2, R, ko) be the continuity constant of the sesquilinear form a(-,-) (defined
in (1.15)) in the norm || - |51 (Brno, )3 i-e-

la(u, v)| < Ceont 1ull g3 (Brros) 1V H2 (BrAo,) — for all u,v e H'(BR N O4).
By the Cauchy-Schwarz inequality and (1.16),
(51> C’cont S maX{Amaxa C;liQn} + C‘DtN-

The following definitions are stated for the sesquilinear form of the Dirichlet problem
(1.15). For the sesquilinear form of the transmission problem with the transmission
parameter 8 = 1, one only needs to replace B N O4 by Bpr and define ¢ to be equal
to one in BRNO,.

DEFINITION 5.1 (The adjoint sesquilinear form a*(-,-)). The adjoint sesquilinear
form, a*(u,v), to the sesquilinear form a(-,-) defined in (1.15) is given by

o (u,v) = a(o,u) = /BRH(9+ ((AVu) Vo — ]zzuv> — (u, DENK(0)) -

DEFINITION 5.2 (Adjoint solution operator S*). Given f € L>(BrRNO,), let S*f
be defined as the solution of the variational problem: find S*f € H'(Br N O4) such
that

(5.2) a*(S*f,v):/BnO fv  forallve HY(BrNO,).
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Green’s second identity applied to solutions of the Helmholtz equation sat-

isfying the Sommerfeld radiation condition (1.2) implies that <DtNk1/J,$> oBn =

<DtNk¢, $>8BR for all ¢, € H/?(0Bg) (see, e.g., [67, Lemma 6.13]); thus a(7, u) =
a(w,v) and so the definition (5.2) implies that
(5.3) a(S*f,v) = (f,v)r2(py) forallve H' (BN Oy).

DEFINITION 5.3 (n(Wn)). Given a sequence (VN)NZ, of finite-dimensional sub-
spaces of HY(Br N Oy), let

1™ f — UN”H;(BROOJF)

(5.4) n(W) = sup min
0#FEL(BrNO4) NEW ||fHL2(BRr‘|O+)

LEMMA 5.4 (Conditions for quasioptimality). If N and k are such that

1 Amin
Ceont | 2(Amin + Cuin)

kn(W) <

then the Galerkin equations (1.18) have a unique solution which satisfies

2C(cont .
lu = unllary zano) < g 2\ iy, e = o8l gm0, ) -

References for the proof. See, e.g., [43, Lemma 6.4]. 0

The following two lemmas are proved in the next subsections.

LEMMA 5.5 (Bound on 7n(Vy) for the exterior Dirichlet problem). Let d =2 or
3. Suppose that O_, A, ¢, R, R,, and R, are as in Theorem B, and that Cso (k) is
polynomially bounded for k € K.

Let (V)R be the piecewise-polynomial approximation spaces described in [51,

§5], [52, §5.1.1].
Given kg > 0 and N > 0 there exist
e C1,Cy,0 >0, depending on A, c, R, d, and kg, but independent of k, h, p, and
N, and
o Cy depending on A,c, R, d, kg, and N, but independent of k, h, p,
such that, for k € K N [kg,00),

(5.5)  kn(Va) SCI% (1+ z)k) + CokM (( h >p+k (hk>p) + CnEN.

h+o op

LEMMA 5.6 (Bound on n(Vy) for the transmission problem). Let d = 2 or 3
and let B = 1. Suppose that A,c, and O_ are as in Definition 1.8 and, given an
integer p, satisfy the regularity assumptions in Theorem C1. Suppose that Cso1(k) is
polynomially bounded for k € K.

Let (WW)R2 be a sequence of piecewise-polynomial approzimation spaces of degree
p satisfying Assumption 1.10.

Given kg > 0, there exist C1,Cs, depending on A,c, R, d, ko, and p, but indepen-
dent of k and h, such that

(5.6)  kn(Va) < (1 + hk) ((th +Cs kM“(hk)P) for all k € K N [ko, 00).
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Proof of Theorems B1/C1 assuming Lemmas 5.5/5.6. Theorem C1 follows im-
mediately by combining Lemmas 5.4 and 5.6 and the inequality (5.1).

Theorem Bl follows in a similar way (and is essentially the same as the proof of
[52, Theorem 5.8]), except that we first choose N > 1, and then let k&1 > 0 be such

that
1 Ami
Cokl=N < min for all £ > k.
N - 2Ccont Q(Amin + Cr;i2n) ' -

Theorem B1 then follows by using this bound in (5.5) and then combining the resulting
inequality with Lemma 5.4 and the inequality (5.1). |

5.2. Proof of Lemma 5.5. Given f € L?(BgRN0,), let v=8*f. By (5.3) and
Theorem B, v = vy2 4+ v.4, where vg2 and vy satisfy the bounds (1.10)—(1.13) with u
replaced by v.

The proof of Lemma 5.5 is very similar to the proofs of [51, Theorem 5.5] and [52,
Proposition 5.3] (covering the constant-coefficient Helmholtz equation in, respectively,
R¢ and the exterior of an analytic Dirichlet obstacle).

The only difference is that in [51], [52] the function v 4 is analytic on the whole
of B N O4, whereas here v4 = vﬁo + vy with vﬁo and v’ analytic in subsets of
the domain and O(k~°°) in the complements of these subsets; see (1.11)-(1.13) and
Figure 1.1. The consequence is that Cy k'~ appears on the right-hand side of (5.5),
but this term is not present on the right-hand sides of the analogous bounds in [51,
Theorem 5.5] and [52, Proposition 5.3 and Equation 5.11]. Since this term can be
made arbitrarily-small for & sufficiently large, the only consequence is that Lemma
5.5 and Theorem B1 are valid for k sufficiently large (as opposed to for all k > kg
with ko arbitrary).

Exactly as in the proof of [51, Theorem 5.5], there exists C3 > 0 (dependent only
on the constants in [51, Assumption 5.2] defining the element maps from the reference
element) such that

. h hk
(5.7) o v — wN”H;(BRmo” < Cg; (1 + p) [0l 12(BrAO. )

for all v € H?(Br N O4); recall that this result follows from the polynomial-
approximation result of [51, Theorem B.4] and the definition (1.7) of the norm |- ||z
Applying the bound (5.7) to vgy2 and using (1.10) with |a| = 2, we obtain

_ h hk
Join lvgz — wNHH;(BRmoJr) <CCh » (1 + p) 1f1lL2(Brnoy) 5

we then let C; := C1 Cs.
To prove (5.5), therefore, we only need to show that

wI,erH\}N lva — U/NHH;(Ban)

8 < (CokM hpkhkp Onk™
(5.8) < (G o + op +CnN Hf||L2(BRmO+)’

for some Cy > 0 independent of k, h, p, and N and some C'y > 0 independent of k, h,
and p. Recall the regions where vﬁo and v} are analytic (see Figure 1.1). Given Vy,
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choose D such that (i) D; is a union of elements of the triangulation associated with
Vn and (11) BRIH €D e BRIV' Thus, by (113),

wll?ei{}N ||”fzO - “’NHH;(BRmo” < wﬁleh‘}N H”ﬁo - wNHH;(DmOH + H”ﬁOHH;(BRm(DI)C)

. R, /! 1.—N
< min (o2 —wnl g p,no,) + ONE I 12 (gano.)
for some C > 0 independent of k, h, and p. Similarly, with Dy a union of elements
of the triangulation and such that B r, € D2 @ Bg_,

. Jore) . %) 1" 13.—N
omn 0% =wnll 1y (paro,) < eV 1% =8l Banoaye) + ONE T Il ano
for some CY; > 0, independent of k, h, and p. To prove (5.8), therefore, we only need
to show that

C hro\? hk\?
. R, 2 M
(5.9) wI;leH\}N HUAO_wNHH;(DmOJ,) < > k ((h+a> +k <ap) > ||f||L2(BRﬂO+)

and
(5.10)
h

o _ G P (R
Juin ([ =l 50000 < 5 o) TR o) ) lemano.

for some Cy > 0, independent of k, h,p, and N. Note that (i) we introduced D; and
D5 so that the domains on which vf{‘” and v are approximated in (5.9) and (5.10) are
exactly triangulated by the mesh, and (ii) for the approximation (5.9), it is important
that vﬁ“ = 0 on OOT, since the space Vy has this zero Dirichlet boundary condition
imposed.

The bounds (5.9) and (5.10) then follow from [52, Proposition 5.3] (which uses
[51, Theorem 5.5]); the key point is that v and vf{‘“ satisfy the same type of bound
— namely that in Part (iii) of Lemma 1.1 — as u4 in [52] (see the second displayed
equation in [52, Theorem 4.20], and note that « in [52] equals our M).

5.3. Proof of Lemma 5.6. Given f € L%(Bg), let v = S*f. By (5.3) and
Theorem C, v = vg2 + v4, where vyz and v 4 satisfy the bounds (1.23) and (1.24)
with u replaced by v.

By the definition of the H} norm (1.7) and the bound (1.25), there exists Cint =
Cint(£,d) > 0 such that
(5.11)

min | = w5y < Cin(6:d) (4 BER (s lggens gm0, + 0= a0 )

for all w = (wy,w_) € H*Y(BrN O4) x HY(O_). Applying (5.11) with £ = 1 to
viz and using (1.23) with |a] = 2, we obtain that

(612)  min o~ onlliggsgy < Con(Ld) (14 RE) RO oz,
Let Csob(p, d) be such that

if [0 . <C forall @ with |a| <p, then ||v||gp1 < Csob(p,d)C;

i.e., Csop depends only on the normalisations in the definition of || - || go+1.
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The regularity assumptions on O_, A, and ¢ and the regularity results of, e.g., [47,
Theorem 4.20], [16, Theorem 5.2.1, Part (i)] imply that uy 4 € HP™! for p odd and
HP*2 for p even. For p odd we apply Theorem C with m = (p+ 1)/2 and for p even
with m = (p + 2)/2. In both cases, we apply (5.11) with £ =p to v4 = (va+,v4,—)
and use (1.24) with |a| = p + 1 to obtain that
(5.13)

min [Joa = wnll gy sy < Con(p)(1+ ) B () Calp) K s -

The bound on n(Vy) in (5.6) then follows from combining (5.12) and (5.13), with
C1 1= Cint(1,d)C1 and Ca 1= Cint(p, d)Csob(p; d)Cs.

Appendix A. Semiclassical pseudodifferential operators on the torus.
Recall that for Ry > 0 we defined the torus

T%, == R?/(2RyZ)".

This appendix reviews the material about semiclassical pseudodifferential operators
on Tan used in §3.2, and appearing in Lemma 2.8, with our default references being
[76] and [22, Appendix EJ.

Semiclassical Sobolev spaces.. We consider functions or distributions on the torus
as periodic functions or distributions on R%. To eliminate confusion between Fourier
series and integrals, for f € L? (T%n) we define the Fourier coefficients

where j € Z¢ and the integral is over the cube of side 2Ry, and where the Fourier
basis given by the L?-normalized functions

(A1) ej(z) = (2Ry) "2 exp (imj - 2/ Ry)

for j € Z%. The Fourier inversion formula is then

F=>" Fie;

jezd

The action of the operator (D)% on the torus is therefore

(hD)*f =" (hjm/Re)* (j)e;.

jezd
We work on the spaces defined by the boundedness of these operators, namely
Hi(Th,) = {u € IA(T4,), ()" F() € #@h},
and use the norm

(A2) el o,y = D_IFGIE (D"

see [76, §8.3], [22, §E.1.8]. In this appendix, we abbreviate H;’LR(T?@) to H* and
L2(T%,) to L2.
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Since these spaces are defined for positive integer m by boundedness of (hD)® with
|a] = m (and can be extended to m € R by interpolation and duality), they agree with
localized versions of the corresponding spaces on R? defined by semiclassical Fourier
transform

Fru(§) == /Rd exp (— iz - &/h)u(z) dz,

and
[ullfrpe gy = @a7) =4 [ (€)™ | Fru(€)[ dé.
h Rd
We note for later use that the inverse semiclassical Fourier transform has a pre-factor
of (2rh)~¢ in this normalisation.
Phase space.. The set of all possible positions  and momenta (i.e. Fourier vari-
ables) ¢ is denoted by T*TdRu; this is known informally as “phase space”. Strictly,

T*"]I"%n = T%n x (R)*, but for our purposes, we can consider T*Tﬁl%ﬁ as {(z,) 1 x €
T(}%n,f € R?}. We also use the analogous notation for T*R? where appropriate.

To deal uniformly near fiber-infinity with the behavior of functions on phase space,
we also consider the radial compactification in the fibers of this space,

T"T4, =T x BY,

where B? denotes the closed unit ball, considered as the closure of the image of R¢
under the radial compactification map

RC: &= &/(1+(6);

see [22, §E.1.3]. Near the boundary of the ball, |£|~! o RC™! is a smooth function,
vanishing to first order at the boundary, with (|¢[~!oRC™, go RC™') thus furnishing
local coordinates on the ball near its boundary. The boundary of the ball should be
considered as a sphere at infinity consisting of all possible directions of the momen-
tum variable. Where appropriate (e.g., in dealing with finite values of £ only), we
abuse notation by dropping the composition with RC from our notation and simply
identifying R? with the interior of B%.

Symbols, quantisation, and semiclassical pseudodifferential operators.. A symbol
on R? is a function on T*R? that is also allowed to depend on A, and thus can be
considered as an fi-dependent family of functions. Such a family a = (ap)o<h<n,, With
ap € C®(RY), is a symbol of order m on the R?, written as a € S™(R?), if for any
multi-indices «a, 8

1020 a(@, &) < Cap(€)™ 11 for all (z,€) € T*R? and for all 0 < /i < g,

where C, g does not depend on £; see [76, p. 207], [22, §E.1.2].
For a € S™(R%), we define the semiclassical quantisation of a on R?, denoted by

Opp(a)

(A3)  (Opp(a)) (@) == (2rh)~ /

£€R4

[ e (=) €/1) ale. 0l dud:

[76, §4.1] [22, Page 543]. The integral in (A.3) need not converge, and can be under-
stood either as an oscillatory integral in the sense of [76, §3.6], [37, §7.8], or as an
iterated integral, with the y integration performed first; see [22, Page 543]. It can be
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shown that for any symbol a, Opy(a) preserves Schwartz functions, and extends by
duality to act on tempered distributions [76, §4.4]
We use below that if a = a(§) depends only on ¢, then

Opy(a) = F; ' My Fi,

where M, denotes multiplication by a; i.e., in this case Opy(a) is simply a Fourier
multiplier on R<.

We now return to considering the torus: if a(z, &) € S™(R?) and is periodic, and
if v is a distribution on the torus, we can view v as a periodic (hence, tempered)
distribution on R?, and define

(Opy ™ (a)0) = (Opp(a)y).

since the right side is again periodic; for details see, e.g., [76, §5.3.1].

d

If A can be written in the form above, i.e. A = OpiR” (a) with a € 8™, we say
that A is a semiclassical pseudodifferential operator of order m on the torus and we
write A € \Il%”(']l‘%ﬁ); furthermore that we often abbreviate \I/%"(T%u) to U in this
Appendix. We use the notation a € A'S™ if h=la € S™; similarly A € AU if
h~'A € U, We say that A € U, if Ae U,V forall N > 1.

THEOREM A.l. (Composition and mapping properties of semiclassical pseudodif-
ferential operators [76, Theorem 8.10], [22, Proposition E.17 and Proposition E.19])
If Ac V" and B € U™, then

(i) AB € wytmz,

(i) [A, B] € hytma—t

(iii) For any s € R, A is bounded uniformly in h as an operator from Hjf to

H;~™.

Residual class.. We say that A = O(hw)q,;oo if, for any s > 0 and N > 1, there
exists Cs y > 0 such that

(A.4) 1A o e < Onsh™;

i.e. A € U ° and furthermore all of its operator norms are bounded by any algebraic
power of A.

Principal symbol o,.. Let the quotient space S™/hS™~! be defined by identifying
elements of S™ that differ only by an element of 2S™~!. For any m, there is a linear,
surjective map

om W s 8™ /pS™mL
called the principal symbol map, such that, for a € S™,

d
11‘R

(A.5) o' (Opy, *(a)) =a mod AS™

see [76, Page 213], [22, Proposition E.14] (observe that (A.5) implies that ker(o}) =
RO,

When applying the map o}* to elements of U, we denote it by oy, (i.e. we omit
the m dependence) and we use o, (A) to denote one of the representatives in S™ (with
the results we use then independent of the choice of representative).
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Operator wavefront set WFy.. We say that (xq,(p) € T*T(Ii%u is not in the semi-

Td
classical operator wavefront set of A = Op;’j (a) € ¥}, denoted by WE}, A, if there
exists a neighbourhood U of (zg, (p) such that for all multi-indices «, 8 and all N > 1
there exists Cq g,u,n > 0 (independent of /) such that, for all 0 < h < hyg,

(A.6) 020Z a(x,&)| < Capunh™ (€)™Y for all (v,RC(E)) € U.

For ¢y = RC(&) in the interior of B?, the factor <§>_N is moot, and the definition
merely says that outside its semiclassical operator wavefront set an operator is the
quantization of a symbol that vanishes faster than any algebraic power of f; see [76,
Page 194], [22, Definition E.27]. For (, € 0B? = S9~1, by contrast, the definition
says that the symbol decays rapidly in a conic neighborhood of the direction (p, in
addition to decaying in A.

Three properties of the semiclassical operator wavefront set that we use in §3.2
are

(A7) WF,A=0 ifandonlyif A=O(R>)y-,

(see [22, E.2.3)),

(A.8) WFp(A+ B) C WF, AUWF}, B,

(see [22, E.2.4]),

(A.9) WF(AB) C WF, ANWF,, B,

(see [76, §8.4], [22, E.2.5]),

(A.10) WFy(A) N\WF,(B) =0 implies that ~ AB = O(h) -,
(as a consequence of (A.7) and (A.9)), and

(A11) WEF}, (Opp,(a)) C suppa

(since (suppa)® C (WE5(Opy(a))° by (A.6)).

Ellipticity.. We say that B € U} is elliptic at (20,(o) € T*T%u if there exists a
neighborhood U of (xg,(p) and ¢ > 0, independent of A, such that

<§>—7n’0.h(B)(x7£)| >c¢ forall (z,RC(§)) € U and for all 0 < h < hy.

A key feature of elliptic operators is that they are microlocally invertible; this is
reflected in the following result, proved by inverting at the level of principal symbols,
and then using the composition property.

THEOREM A.2. (Elliptic parametrix [22, Proposition E.32]) 2 Let A € \I/%(’]I‘an)
and B € \I/}L"(']I‘%n) be such that B is elliptic on WFy(A). Then there exist S, 5" €
\I/f;m(']l“}%u) such that

A=BS+0(h)g— =5'B+0(h*)y

with
WFE, S c WF; A, WEF S’ c WF; A.
2We highlight that working in a compact manifold allows us to dispense with the proper-support
assumption appearing in [43, §4], [22, Proposition E.32, Theorem E.33].
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Functional Calculus.. The main properties of the functional calculus in the black-
box context are recalled in §2.3; here we record a simple result that we need about
functions of the flat Laplacian.

For f a Borel function, the operator f(—hA2A) is defined on smooth functions on
the torus (and indeed on distributions if f has polynomial growth) by the functional
calculus for the flat Laplacian, i.e., by the Fourier multiplier

(A.12) F=R2 D) =" 0(j) f(R2]jPm® /R e

JEZA

It is reassuring to discover that indeed it is precisely the quantization of f(|£]?). Since
our quantization procedure was defined in terms of Fourier transform rather than
Fourier series, this is not obvious a priori.

LEMMA A.3. For f € S™(RY) (i.e., f is a function of only one variable),

F(=h*A) = Op, f(I€).

Proof. First note that for v € C*° (T%n),

v= Y 00)e; = (2R 2 [ 37 G)(E s/ Ry explic /) dé
R jeza
(A.13) = (2rh)"(2Ry) "2 F 1 Y B(5)d(€ — hj/ Ry). O
jezd
Thus, if we take the semiclassical Fourier transform of v, regarded as a periodic
function,

Fro(€) = (2nh) (2Ry) ™2 Y~ 5(j)6( — hmj/ Ry).

jEeZd

Consequently,

Fulf(=R*A)w](&) = (2nh)*(2Ry)~? Y~ f(h*x|j|?/R3)8(4)8(& — hj/Ry)

jezd
= (2rh)*(2Ry) ™ > F(IE17)5(5)6(& — hrj/ Ry)
jEZd

= f(IE*)Fulv (&),

by (A.13), from which
F(=1*A)v = Op,f(|€*) (v).

Appendix B. Proof of (BB5) for the transmission problem.
By the min-max principle for self-adjoint operators with compact resolvent (see,
e.g., [61, Page 76, Theorem 13.1])

p# ¢
(B.1) A= inf sup 3 < U7u>f 2 ;
X€Pn (D) ueXx ||U+||L2(T%ﬁ\of) + B~ ||’U/7/CHL2(07)

where (\,),>1 denotes the ordered eigenvalues of P#, D is the domain of P# defined
by (2.4) (with D given by (2.10)), ®,,(D*) the set of all n-dimensional subspaces of DF,
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and (-,-)g,c is the scalar product defined implicitly by the norm in the denominator
(which is the norm in Lemma 2.4).
By Green’s identity and the definition of D,

(BQ) <P#u, U>5,C = hz <A+Vu+, VU+>L2(Tan\O_) -+ 5717712 (A_Vu_, VU_>L2(@7).

Furthermore,
(A4 Vuy, VU+>L2(Tgﬁ\o,) + B HAVu_, Vu_)20_)
Hu-‘rHQLZ(T%u\O,) + 471 Hu—/CHZH(o,)
min((A Ymins B (A ) mi )||VUHi2(Td )
(B.3) > +Jmin; s s S

_ _ 2
max (1, 87 (¢min) ~2) Hu||L2(1r7w)

The definition of D implies that
(B.4)
D C {(ur,us) € Hl(T%u\Of) @ H'(O_) such that u; = up on 90_} = Hl('ll“}%u).

Using (B.2), (B.3), and (B.4) in (B.1), we have

2 2
min (A )mins B1(A ) min) . PVl )

inf su
max (1, B—l(cmin)—Q) XeD, (H(Th,)) ugg

2
||U||L2(1rt,gﬁ)

The result then follows from the min-max principle for the eigenvalues of the Laplacian
on the torus.
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