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Abstract

Multimodal neuroimaging research plays a pivotal role in understanding the complexities of the
human brain and its disorders. Independent component analysis (ICA) has emerged as a widely
used and powerful tool for disentangling mixed independent sources, particularly in the analysis
of functional magnetic resonance imaging (fMRI) data. This paper extends the use of ICA as a
unifying framework for multimodal fusion, introducing a novel approach termed parallel multilink
group joint ICA (pmg-jICA). The method allows for the fusion of gray matter maps from structural
MRI (sMRI) data to multiple fMRI intrinsic networks, addressing the limitations of previous
models. The effectiveness of pmg-jICA is demonstrated through its application to an Alzheimer's
dataset, yielding linked structure-function outputs for 53 brain networks. Our approach leverages
the complementary information from various imaging modalities, providing a unique perspective
on brain alterations in Alzheimer's disease. The pmg-jICA identifies several components with
significant differences between HC and AD groups including thalamus, caudate, putamen with in
the subcortical (SC) domain, insula, parahippocampal gyrus within the cognitive control (CC)
domain, and the lingual gyrus within the visual (VS) domain, providing localized insights into the
links between AD and specific brain regions. In addition, because we link across multiple brain
networks, we can also compute functional network connectivity (FNC) from spatial maps and
subject loadings, providing a detailed exploration of the relationships between different brain
regions and allowing us to visualize spatial patterns and loading parameters in SMRI along with
intrinsic networks and FNC from the fMRI data. In essence, developed approach combines
concepts from joint ICA and group ICA to provide a rich set of output characterizing data-driven
links between covarying gray matter networks, and a (potentially large number of) resting fMRI
networks allowing further study in the context of structure/function links. We demonstrate the
utility of the approach by highlighting key structure/function disruptions in Alzheimer’s
individuals.

Keywords: Multimodal fusion, group ICA, joint ICA, pmg-jICA, gray matter, fMRI, intrinsic
connectivity network, joint spatial maps and subject loadings.
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Introduction

Independent component analysis (ICA) strives to disentangle mixed independent sources. ICA has
shown great promise in the analysis of fMRI data and is a widely used tool. When applied to fMRI
data, ICA can effectively segregate sources that are independent either spatially or temporally,
performing well under appropriate assumptions (Calhoun et al., 2001b; Calhoun & de Lacy, 2017;
Calhoun et al., 2021; T. Adali, 2014). ICA is also used for multimodal fusion, allowing joint
analysis of multiple modalities that can enhance our comprehension of the human brain and its
disorders, offering a more comprehensive perspective compared to studies focusing on a single
modality (Calhoun & Sui, 2016; Sendi et al., 2020). Employing multiple modalities can harness
the complementary information they offer, enhancing the overall depth of understanding.
However, multimodal fusion is also a challenging task, as it requires combining data with different
properties, dimensions, and scaling. An additional complexity is that multiple datasets from an
individual are likely not statistically independent and identically distributed.

The current landscape of multimodal neuroimaging research has seen notable contributions, yet
challenges persist in seamlessly integrating information from multimodal data. (Luo et al., 2020)
demonstrated a structural-functional relationship using a dataset comprising over 1500
individuals, employing a two-step process with separate analyses rather than a joint approach. In
a similar vein, (Sendi et al., 2020) investigated the transition from a normal brain to very mild
Alzheimer's disease (vmAD) through separate multimodal analyses. The joint analysis of multiple
imaging data types from the same individual has been shown to be particularly valuable in this
context. (Qi et al., 2022) innovatively developed a three-way parallel group ICA fusion method to
distinguish between schizophrenia and control subjects while linking data together with different
dimensionality. Additionally, (Duan et al., 2020) introduced a multimodal fusion approach known
as aNy-way ICA, capable of detecting interconnected sources across any number of modalities
without imposing orthogonality constraints on the sources.

Many multimodal approaches operate under the assumption that various modalities originate from
a shared distribution. Additionally, in these approaches, the high-dimensional fMRI data are often
condensed into a singular map for each subject, for example, the amplitude of low frequency
fluctuation (ALFF) (Hare et al., 2017; Jia et al., 2021; Turner et al., 2012) or a single intrinsic
network like default mode. The use of a highly summarized measure like the ALFF map is quite
lossy and may not capture the full spatial complexity of the fMRI data. This reduction can lead to
a loss of detailed spatial information, making it challenging to integrate with other modalities that
might benefit from more nuanced spatial representations. Our previous model called parallel
multilink joint ICA (pml-jICA) provides a powerful approach that allows us to fuse gray matter
maps to multiple functional networks simultaneously while also allowing for different
distributions (Khalilullah et al., 2023). Our pml-jICA approach focused on multiple brain networks
but did not fully capture the inter-relationship among brain networks nor did it optimize for
individual sets of linked networks and gray matter. This paper aims to bridge the existing gap in
integrating multimodal MRI data by extending ICA as a unifying framework for multimodal
fusion. We developed a novel approach that combines concepts from Group ICA and parallel
multilink joint ICA, to fuse information about multiple brain networks, their temporal information,
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and links to brain structure via gray matter. As we show, this represents a powerful approach that
allows network specific fusion to gray matter, estimation of functional network connectivity (FNC)
within the fused model, and network specific gray matter decompositions. The method is called
parallel multilink group joint ICA (pmg-jICA). The effectiveness of the group ICA hinges on the
separability of the estimated mixing matrix among subjects. The proposed approach allows us to
leverage back-reconstruction to estimate spatial maps for individual brain networks from a
functional-structural fusion algorithm which can be individually tested for group difference or
association with a variable of interest. We apply our approach to an Alzheimer’s dataset resulting
in linked structure-function output including a total of 53 brain networks from our NeuroMark
spatially constrained ICA pipeline (Du et al., 2020).

Model Development

We introduce the proposed parallel multilink group jICA model in Figure-1. The analysis stages
of this model include: a) preprocessing, b) designing data matrix and data reduction, c) joint
independent component estimation, and d) z-scored filtering and interpretation of results. Our
proposed model estimates joint spatial map and subject loading from gray matter (GM), denoted
as @ and intrinsic connectivity networks (ICN), denoted as fg;where,s =1,2..,N; s
represents subject number. The first stage (a) represents transformation T(.) of the raw data,
mainly including reslicing and smoothing. The number of ICNs can be arbitrary, but here we
include 53 ICNs, indexed as 1, 2, ..., k; k = 53, from our NeuroMark pipeline (Du et al., 2020) in
the subsequent application of our new approach. The second stage (b) consists of designing the
data matrix and dimensionality reduction. Data from the fMRI modality were organized into 53
distinct matrices, one for each of the 53 ICNs, containing spatial maps from all subjects for that
particular ICN. Data reduction for these combinations is performed in two steps, first one on data
from each matrices (Rffl,l), . szl,c), where C = 1,2, ...,c) for the ICNs of all matrices, C
represents number of distinct matrices, ¢ is the 53rd ICN, and second one on the concatenated
whitening signals from the first steps (GJFI). It is used to reduce the computational load of simply
taking all subjects’ data and identify common spatial patterns across a group of individual ICN for
all subjects. All gray matter (GM) images are reduced in one step, demonstrated in Figure 1. The
third stage (c) involves joint independent component estimation. Since, the GM and ICN come
from different distributions, we use our previous algorithm parallel multilink joint ICA (pml-jICA)
(Khalilullah et al., 2023), which performs alternating initialization and estimation, thus relaxing
the original jJICA assumption of same distribution for all modalities. This also prevents one
modality from dominating the other in the estimation of the maximally independent components.
The fourth stage (d) consists of filtering the resulting spatial maps and estimating subject loadings.
In the figure, d represents number of independent sources. Finally, we reconstructed network-
specific maps and loadings using dual regression (Erhardt et al., 2011).


https://doi.org/10.1101/2024.03.21.586091
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.21.586091; this version posted June 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

@ ®) © @  a
Preprocessing Designing Data Matrix and Reduction GM__ _ICN d
| | Parallel Multilink jICA w Z;" z
~ — \ | Lodbd =
? Subject 1 () <V 9> Yy 1 axV E
z . N/ ; Gy =
- ’ : = o
5 Subject N T, () gn ] _ “:"
: =
— d z
£ N :
~ y (———\ \ i
= [l g A | JE
D O T I o s
© . f ) 1 7 S 2
x | Subject1 J1||| : (1) R-1y 4
> Vxr ® fatfa 1 Dual g
X : — : 1 : Gy . =
z ) : P R‘1Yf . Regression =
2P | 10 1. E
C  |Subject N —4 @ c 7 (k nC xV l @ g
Vxr ® f2( ) Yf,C EI ot o e l wn

H (f.0) ' ]

— |7 () N X V| ) Network- Network- ‘

Specific Specific g |

SMs SLs

Fig. 1: Model for Parallel Multilink Group jICA allows linking of an arbitrary number of resting
networks with gray matter maps, and resulting testing of loading parameters, voxel values, and
functional network connectivity maps; the states (a)-(d) are explained in the above section.

Mathematical Formulation

In this model, data from the GM maps and their corresponding ICNs are first subjected to data
reduction across all GM maps, then concatenated in the reduced dimension. This concatenated
matrix is then further reduced in a second data-reduction stage. The resulting matrix can be used
as an input of the ICA estimation stage. The spatial maps for each ICN are then back-reconstructed
from the aggregated mixing matrix. In our prior work, we showed that the individual unmixing
matrices will be approximately separable across subjects and the back-reconstructed data will be
a function of primarily the data within subjects rather than across subjects (Calhoun et al., 2001a),
which is the basic foundation of our model.

ICA Estimation

Let, Xf; = RJZ'l-lYf,i be the n X V reduced data matrix of ICN from combination i, where ¥ ; is
the s X V data matrix, R]le is the n X s reduction matrix of the ICN, which is computed via a PCA
decomposition. The reduced data of the ICN from all combination are then concatenated into a
matrix and reduced this matrix to the number of components, d, to be estimated. The d X V
reduced matrix (second stage reduction) of all the matrices is
R;1Yr4
X, =61 | (1)
RrcYrc
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where Gfl are the two d X nC dimension reduction matrices for fMRI. All GMs are reduced in
one step, let , Xy = Gg_lYg be the d X V reduced data matrix of all GMs, where Y, is the s X V
data matrix after the preprocessing stage, G, is the d X s reduction matrix, which is computed
via a PCA decomposition.

In the ICA estimation, we can write
Xg =AgSg ande :Afo, (2)

where A, and Ay are d X d mixing matrices and S, and Sy are the d X V independent source maps
of the GM and ICN, respectively.

The joint mixing matrix, A4, is estimated from the A, and As using parallel multilink joint ICA
(pml-jICA) (Khalilullah et al., 2023). Thus, the equation becomes

91
G,as, = |92, 3)
g
R71Yr1
GeAS,=| | (4)
R:tYrc

Back-reconstruction

Dual regression is an indirect back reconstruction approach using least square to estimate subject-
specific loadings and spatial maps. This approach first estimates time courses using aggregated
ICA maps as regressor, then subject specific spatial maps were estimated using the timecourses as
regressor (Erhardt et al., 2011). In this joint analysis, we first estimate network-specific loadings,
then ICN level joint spatial maps using the aggregated joint source maps from parallel multilink
group jICA (pmg-jICA). For each combination, i = 1, ..., ¢, let the input multimodal data be the
product of network-specific subject loadings (SLs) and spatial maps (SMs), F; and S;, plus error,
€

Yi =Fl-Sl-+£i. (5)

The highly correlated components are grouped into the same component in the ICA analysis.
Therefore, variation among networks may have network specific SMs that are a mixture of a few
aggregate SMs. In dual regression based back-reconstruction, the first assumption is that all ICNs
share a common SM, §; =S5,i=1,...,C.

Then, from ICA in equation (2), regression expression becomes,
Y] =STF] + ¢}, (6)

where § is an aggregate joint SMs from equation (2), § = [S S f], and the estimated joint mixing
matrix, A.
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Least square estimation for the joint F? gives FT = (§ST)_1§Yl-T, or the transpose (Calhoun et al.,
2004),

F,=YSt =y, 87(ss7) . (7)
It is noted that the product of the joint aggregate SM and ICN specific loading is a perpendicular
projection of the data onto the column space of 87, denoted as n(S7); STF = ST (§§T)_1§YiT =
PayYi-
Thus, the original assumption of common SMs is relaxed for network-specific joint spatial maps
estimation. Based on the estimated F;, let

Y, =FS; + & (8)
with E[g,;] = 0. Least square estimation for the network-specific spatial maps, S;, gives
. . . -1 . . —~ +
$i=(F[F)) FlY;=F}Y,=(v$)'Y, )

where the ‘+’ sign represents Moore-Penrose pseudoinverse.
The product of each network-specific subject loading (SL) and spatial map (SM) gives

.« . . . . -1 .

Fi§; = F(F[F)) F[Y;=P,;)Y:i = PyysnYi (10)
where Pn(pi) = Pn(yi§+) is a perpendicular projection onto the column space of ¥;S*, denoted as
TL(YL'§+).

This paper utilizes experimental data derived from the longitudinal Open Access Series of Imaging
Studies (OASIS-3). The data collection spanned 15 years and originated from various ongoing
studies conducted at the Washington University Knight Alzheimer Disease Research Center
(Pamela J. LaMontagne, 2019). The dataset comprises MRI and PET imaging, along with relevant
clinical data for a total of 1098 participants. Our analysis focused on utilizing sMRI and resting
state BOLD sequences. To assess neural activity during rest, participants were instructed to remain
quietly with open eyes while two 6-minute resting state BOLD sequences were recorded. The
OASIS-3 dataset includes a total of 2165 MR sessions (236 from 1.5T scanner and 1929 from 3.0T
scanner) for SMRI with T1w scan type, 1691 MR sessions (2 from 1.5T scanner and 1689 from
3.0T scanner) with BOLD-resting state scan type, and various other scan types. Segmentation of
TIw images was performed using statistical parameter mapping (SPM12,
http://www.fil.ion.ucl.ac.uk/spm/). For each participant, we employed imaging data,
demographics information, and the clinical dementia rating (CDR) scale at any cognitive
functionality stage. As per the CDR scale, participants were required to have CDR < 1 during the
clinical core assessment. Participants who reached a CDR of 2 were no longer eligible for the
study. Among the 1098 participants, 850 initially presented as cognitively normal adults. Out of
these, 605 remained normal, while 245 transitioned to cognitive impairment at various stages, with
ages ranging from 42 to 95 years. The CDR scale for the remaining 248 participants exceeded
Zero.

The fMRI data underwent preprocessing using SPM12. Initially, rigid body motion correction
followed by slice-timing correction was conducted to address subject head motion and timing


https://doi.org/10.1101/2024.03.21.586091
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.21.586091; this version posted June 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

disparities in slice acquisition. Subsequently, the fMRI data were normalized to the Montreal
Neurological Institute (MNI) standards and resliced into 3 mm x 3 mm x 3 mm isotropic voxels.
These resliced images were further subjected to smoothing using a Gaussian kernel with a full
width at half maximum (FWHM) of 6 mm. The analysis phase involved the identification of 53
intrinsic connectivity networks (ICNs) using the NeuroMark pipeline—a fully automated, spatially
constrained independent component analysis (ICA) approach (Du et al., 2020). Spatial priors were
established using the Neuromark fMRI 1.0 component templates. Simultaneously, sMRI data
underwent segmentation and spatial normalization using the SPM unified segmentation approach,
followed by Gaussian smoothing with a FWHM of 6 mm. For quality control, gray matter (GM)
images were randomly grouped, and scans were flagged if the spatial correlation with the group
average images fell below 0.95. This quality control process refined the dataset, reducing the initial
1098 subjects to 784, comprising 648 healthy controls (HCs) and 136 individuals with Alzheimer's
disease (AD). We conducted an analysis on a conclusive subset, randomly choosing 260
participants from both the healthy control (HC) and Alzheimer's disease (AD) groups within the
refined dataset. This selection ensured equal sample sizes for both the control and patient cohorts.
HCs were defined as cognitively normal with a Clinical Dementia Rating (CDR) score of 0, while
AD subjects were categorized as having AD dementia with a CDR > 0.5. The final dataset
underwent additional preprocessing, including reslicing and Gaussian smoothing to harmonize
voxel sizes, though this step was not strictly required. To facilitate joint analysis, both types of
data—sMRI GM and fMRI ICNs—were normalized to unit variance across all subjects within
each modality. The demographic and clinical details of the refined experimental data are succinctly
presented in Table 1.

Table I: Demographics and clinical information

Subset Metric Count/Range
Full Data Total N (HC/AD) 260 (130/130)

HCs Gender (M/F) 54/76
Age at entry (years)  42.45-94.93
CDR Score (range)  0-0
Sum of Boxes (SOB) 0.0-0.5
ADs Gender (M/F) 68/62
Age at entry (years)  50.29-95.57
CDR Score (range)  0.5-2.0
SOB 0.5-12.0

Joint components and loading parameter estimation

The GM and resting fMRI data are preprocessed separately prior to data matrix creation. Next, we
generate 53 combinations from each of 130 HC and 130 AD subjects. In the first stage of fMRI
reduction, each combination is reduced in dimensionality across subject using principal component
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analysis (PCA). The concatenated PCA signals of rest fMRI networks are subsequently reduced at
the group level, followed by parallel optimization of the weights of the rest fMRI networks and
GM to reach convergence using our previous pml-jICA algorithm (Khalilullah et al., 2023), where
we also showed that separately learning the two distributions provided performance improvements
and avoided one modality dominating the other.

We estimated 10 independent joint components in the final step. Based on the empirical results
using an information theoretic approach (Li et al., 2007), the estimated component number was
selected and found to separate noise and signals into different independent source maps.

Results

Results from the reconstructed loadings showed highly significant group differences between AD
and HC, also exposed several interesting patterns from the reconstructed source maps that provide
network specific coupling between GM and fMRI. In the following section, we present statistically
significant network specific loadings after reconstruction with their corresponding independent
source maps.
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Fig. 2: Summary of output from pmg-jICA model including group differences, FNC and Mean GM
computation from reconstructed subject maps and subject loading parameters.

In the following, we present two main sets of results, the first set of results represents eleven
GM/fMRI component pairs (out of 10 joint components per ICN/GM combination, or 530 pairs)
showing significant group differences. Each combination represents a set of joint GM/ICN
components derived from an ICN-GM pairing across all subjects estimated in each group ICA
block. The second set of results comes from grouping the output into 10 pairs of 53 ICNs w/ their
aggregate GM map, and computing the FNC matrix by cross correlating the loading parameters
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for the 53 ICNs. This provides insight into the interrelationship among ICNs for a given ICN/GM
pairing. The significant joint source maps and FNC computation are demonstrated in Figure 2.

Network Specific Reconstructed Maps

We computed joint reconstructed maps from the aggregated independent joint components for the
ICNs and GMs to analyze network specific coupling between GM and fMRI and also to identify
differences between HC and AD. The collection of 53 reconstructed joint maps is referred to as
'53 combinations,' and in connection with the 53 individual ICN combinations, denoted as com —
1,com — 2, ...,com — 53. We computed two-sample t-tests between healthy controls versus
patients for each combination. The false discovery rate (FDR) approach was used to correct for
multiple comparisons (g < 0.05). There are several ICN level significant component based on the
threshold for statistically significant, which was set at corrected < 0.001. Figure 3 shows the t-
test results of the ICN level significant components and their corresponding logarithmic p-values

by group.
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Fig. 3: Network specific average loading and statistically significant components; (a) average loading
parameter values of the significant components by group; (b) Two-sample t-test results after
correction (corrected at p < 0.001).

Figures 4-8 demonstrated spatial maps of the significant ICN. Figure 3 indicates that nine
components of combinations (1, 2, 3, 4, 20, 23, 25, 51, and 53) contained areas where the absolute
value of the joint source values showed reductions in AD and two components of combinations
(28 and 42) showed increase in AD, relative to controls. The p-values for the significantly group
differing spatial maps and their directions are shown in Figures 4-8. In component 2 of
combination 1(Figures 4a-b), the most activated voxels of the GM are mostly in the middle
temporal gyrus of the auditory regions, which is increased in AD; most regions in the fMRI are
caudate of the subcortical domain and cognitive control areas of the brain, where the activated
subcortical regions are lower in AD, but the activated regions of the cognitive control are
combination of increases and decreases in AD. In GM of the component 4 of combination
2(Figures 4c-d), insula, inferior frontal gyrus of cognitive control and superior temporal gyrus of
AU are lower in AD; in the fMRI thalamus of the subcortical and lingual gyrus of the visual are
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lower in AD, but some parts of the cognitive control nearly at hippocampal are functionally
increased in AD.

(c) Component-4 of combination-2(GM)  (d) Component-4 of combination-2(fMRI)

Fig. 4: ICN level significant source maps; (a) activated region in GM: middle temporal gyrus, (b)
activated region in fMRI: caudate and areas of CC; p — value = 0.0008 and HC > AD; (c)
activated region in GM: superior temporal gyrus, insula, inferior frontal gyrus, (d) activated regions
in fMRI: thalamus and lingual gyrus; p — value = 0.00009 and HC > AD.

(a) Component-6 of combination-3(GM)  (b) Component-6 of combination-3(fMRI)

(c) Component-6 of combination-4(GM) (d) Component-6 of combination-4(fMRI)

Fig. 5: ICN level significant source maps; (a) activated region in GM: superior temporal gyrus,
thalamus, caudate, insula, inferior frontal gyrus, (b) activated region in fMRI: superior temporal
gyrus, middle temporal gyrus, caudate, putamen, parahippocampal; p — value = 0.0005 and HC <
AD:; (c) activated region in GM: areas of CC, (d) activated regions in fMRI: caudate, putamen; p —
value = 0.0006 and HC < AD.

In component 6 of combination 3 (Figures 5a-b), the significant voxels of the GM are mostly in
the thalamus, caudate of the subcortical regions, in addition to auditory (superior temporal gyrus)
and cognitive control (insula, inferior frontal gyrus) regions, which are lower in AD. Most
activated voxels in the fMRI are located in the superior temporal and middle temporal gyrus of the
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auditory domain, and subcortical domain and are additive in AD, whereas caudate and putamen as
well as parahippocampal regions of the cognitive control domain are lower in AD. One of the
strengths of our approach is it can separate overlapping regions into different components, where
one is subtractive and another one is additive, functionally and/or structurally. Component 6 of
combination 4 (Figures 5c-d) indicates joint relationships between cognitive control GM volume
and subcortical and cognitive control fMRI connectivity.

Component 8 of combination 20 (Figures 6a-b) highlights joint relationships between subcortical
(e.g., caudate, thalamus), cerebellum in GM and visual regions in fMRI, where subcortical
(especially caudate and thalamus) and cerebellum regions of the GM are lower in AD, whereas
primary visual cortex in fMRI is mostly additive in AD. In component 8§ of combination 23
(Figures 6¢-d), cerebellum regions in the GM are lower in AD; Visual areas including middle

occipital gyrus and auditory areas including middle temporal gyrus are functionally subtractive in
AD.

(a) Component-8 of combination-20(GM)  (b) Component-8 of combination-20(fMRI)

(c) Component-8 of combination-23(GM) (d) Component-8 of combination-23(fMRI)

Fig. 6: ICN level significant source maps; (a) activated region in GM: caudate, thalamus, areas of

CB, (b) activated region in fMRI: areas of VS; p — value = 0.00009 and HC > AD; (c) activated

region in GM: areas of CB, (d) activated regions in fMRI: middle temporal gyrus, middle occipital
gyrus; p — value = 0.0009 and HC > AD.

In component 6 of combination 25 (Figures 7a-b), activated voxels of the GM are mostly in the
superior temporal gyrus within the auditory domain as well as insula inferior frontal gyrus, and
parahippocampal gyrus within the cognitive control domain, all of which are lower in AD; in
fMRI, middle temporal gyrus and inferior temporal gyrus in the auditory domain are increased in
AD, and some areas of the visual domain are decreased in AD. In component 4 of combination
51(Figures 7c-d), GM cerebellar regions are decreased in AD; whereas in fMRI, we see a
combination of increases and decreases, and in addition, the cerebellum is divided into different
parts, where one is subtractive and another one is additive; some visual regions in fMRI are
increased in AD. In component 2 of combination 53 (Figures 7e-f), activated voxels in the GM are
cerebellum areas and inferior temporal gyrus region of the auditory domain, which are lower in
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AD; most regions in fMRI are cerebellum and visual, where cerebellum is a combination of
increases and decreases in AD and visual are increased in AD.

(c) Component-4 of combination-51(GM)  (d) Component-4 of combination-51(fMRI)

(e) Component-2 of combination-53(GM)  (f) Component-2 of combination-53(fMRI)

Fig. 7: ICN level significant source maps; (a) activated regions in GM: superior temporal gyrus,
insula, inferior temporal gyrus, parahippocampal gyrus, (b) activated regions in fMRI: middle
temporal gyrus, inferior temporal gyrus, areas of VS; p — value = 0.0008 and HC < AD; (c)
activated regions in GM: areas of CB, (d) activated regions in fMRI: areas of VS and CB; p —

value = 0.00004 and HC > AD; (e) activated regions in GM: inferior temporal gyrus, areas of CB,
(f) activated regions in fMRI: Areas of VS and CB; p — value = 0.00007 and HC > AD.

In component 3 of combination 28 (Figures 8a-b), GM regions include thalamus and caudate
within the subcortical domain, superior temporal gyrus in the auditory domain, and some areas of
the cerebellum including declive, uvula, and tuber, all lower in AD; in fMRI, superior frontal gyrus
and medial frontal gyrus are increased in AD, but middle frontal gyrus are decreased in AD. In
component 3 of combination 42 (Figures 8c-d), cerebellum areas of the GM, e.g., cerebellar tonsil,
culmin, are increased in AD; in the fMRI, middle temporal gyrus of the auditory and some areas,
most likely posterior cingulate, of the default mode network are increased in AD whereas middle
frontal gyrus and medial frontal gyrus of the cognitive control and supramarginal gyrus are
decreased in AD.
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(a) Component-3 of combination-28(GM)  (b) Component-3 of combination-28(fMRI)

(c) Component-3 of combination-42(GM)  (d) Component-3 of combination-42(fMRI)

Fig. 8: ICN level significant source maps; (a) activated region in GM: superior temporal gyrus,
caudate, thalamus, declive, uvula, tuber, (b) activated region in fMRI: superior frontal gyrus, medial
frontal gyrus, middle frontal gyrus; p — value = 0.0004 and HC < AD; (¢) activated region in GM:
areas of CB, (d) activated regions in fMRI: middle temporal gyrus, posterior cingulate gyrus, middle

frontal gyrus, medial frontal gyrus, supramarginal gyrus; p — value = 0.0002 and HC < AD.

The joint loadings provide us with information about group differences between the control and
AD groups, as well as spatial maps indicating the implicated areas, which are summarized in Table
IT and illustrate the structure-function coupling. Additional details are presented in the
supplementary materials (Supplementary materials 1). The next section demonstrated functional
network connectivity (FNC) that enables is to visualize the coupling between brain networks.

Table II: Summarized structure-function correlation

Modali Brain Networks Inference
GM AU: Middle temporal gyrus Increased in AD
Component 2 of -
Combination-1 fMRI Areas of CC Increased in AD
SC: Caudate; Areas of CC Lower in AD
" aor GM AU: Superior temporal gyrus Lower in AD
Comp(.men. - CC: Insula, Inferior frontal gyrus Lower in AD
ombination-2 } .
fMRI SC: Thalamus; VS: Lingual gyrus Lower in AD
GM AU: Superior temporal gyrus; Lower in AD
SC: Thalamus, Caudate;
c ot CC: Insula, Inferior frontal gyrus
C(I:;I;:i)::::li:m-; fMRI  AU: Superior temporal gyrus, Middle Increased in AD
temporal gyrus
SC: Caudate, Putamen; Lower in AD
CC: Parahippocampal
GM AU: Superior temporal gyrus; Lower in AD

Component 3 of
Combination-28

SC: Thalamus, Caudate;
CB: Declive, Uvula, Tuber
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fMRI CC: Superior frontal gyrus, Medial Increased in AD

Frontal Gyrus
CC: Middle frontal gyrus Lower in AD
GM Areas of CB Increased in AD
T fMRI AU: Middlq temporal gyrus Increased in AD
Combination 42 DM: Posterior Cingulate
CC: Middle frontal gyrus, Lower in AD
Supramarginal gyrus;
GM AU: Inferior temporal gyrus; Lower in AD

Areas of CB (Declive, Uvula)

Component 2 of fMRI Areas of VS; Areas of CB (cerebellar Increased in AD
Combination-53 tonsil)

Areas of CB (Declive, Uvula, Tuber, Lower in AD
Pyramis)

Functional Network Connectivity (FNC)

Each reconstructed joint map has a subject loading with the size of N X d, where N = 260 and
d = 10 represent number of subject and independent components, respectively. From the 53
reconstructed joint loadings, we have generated ten component-wise loadings for all ICNs, which
are the 260x53 matrices. Next, we calculated the pairwise linear correlation coefficient between
each pair of brain networks, resulting in ten FNC matrices. To streamline presentation, we have
highlighted key findings from these matrices, with additional details provided in the supplementary
materials (Supplementary Materials 2). These figures illustrate the statistical relationship between
two networks. Note that the connectivity strengths show increases or decreases between networks.
The ten aggregated GM maps are calculated from the reconstructed gray matter spatial maps by
taking average across all combinations (Figure 2).

In Figure 9a, FNC and connectogram of the left image demonstrates some increased functional
connections within DM, CB, SC, CC, along with certain components of SM and visual networks.
In inter-network connectivity, we observed heightened functional connectivity, denoted by a
positive correlation, between specific brain regions. Notably, we detected increased connectivity
between the hippocampus of the CC and the postcentral gyrus within the SM network.
Furthermore, we identified enhanced connectivity between the precuneus of the DM network and
the inferior frontal gyrus of the CC. Additionally, our findings revealed elevated connectivity
between the inferior occipital gyrus within the visual network and the inferior parietal lobule of
the CC. GM exhibits positive pattern in cerebellum and visual regions of the brain. These regions
activate together and share functional and anatomical characteristics that lead to synchronized
activity during rest. In the Figure 9c, subcortical, cerebellar and visual regions exhibit the most
prominent functional network connectivity within the networks, while the cognitive control
domain displays a mixture of connections within intra and inter-networks. In inter-domain
connectivity, we found increased FNC between component inferior parietal lobule and superior
medial gyrus of CC and precuneus of DM. Furthermore, we identified positive connection between
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Fig. 9: FNC from reconstructed component 4 and 8 of all ICNs; highly correlated regions are (a)
hippocampus, inferior parietal lobule, inferior frontal gyrus, middle frontal gyrus, precuneus,
postcentral gyrus, paracentral lobule, precentral gyrus, and superior parietal lobule; (¢) precuneus,
middle temporal gyrus, inferior parietal lobule, superior medial frontal gyrus, supplementary motor
area, middle frontal gyrus, inferior frontal gyrus and SC domain; (b) and (d) represent mean GM
maps for component 7 and 8, respectively. Connectogram shown in the middle for both FNC, left
image for Figure 9a and right image for Figure 9c.
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Fig. 10: FNC from reconstructed component 9 and 10 of all ICNs; highly correlated regions are (a)
hypothalamus, thalamus, superior temporal gyrus, middle occipital gyrus, middle cingulate cortex,
insula, inferior frontal gyrus, middle frontal gyrus, posterior cingulate cortex, precuneus, and
precentral gyrus, (c) anterior cingulate cortex, posterior cingulate cortex, insula, inferior frontal
gyrus, middle frontal gyrus, hippocampus, precentral gyrus, and paracentral lobule; (¢) and (d)
represent mean GM maps for component 9 and 10, respectively. Connectogram shown in the middle
for both FNC, left image for Figure 10a and right image for Figure 10c.
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inferior parietal lobule from CC and middle temporal gyrus within AU. The subcortical,
cerebellum regions of GM are also structurally connected. Although there isn't much cross-domain
connectivity observed in these figures, the convergence of positive connectivity in both FNC and
GM spatial maps for the SC, visual, and cerebellum suggests a strong relationship between the
functional and structural aspects of these brain regions. Furthermore, the activation of SC, visual,
and cerebellar regions in both GM and fMRI data implies a significant role of the basal ganglia
(BG) in facilitating connections across multiple cognitive domains.

In the context of intra-domain connectivity, FNC exhibits positive connectivity in CB, SC, and VS
(Figure 10a). There isn’t extensive cross-connection, except for that observed between the
precuneus of the DM and the inferior frontal gyrus originating from the CC. GM also shows
positive connectivity in CB, VS, and DM (Figure 10a). Figure 10a and connectogram of the left
image suggests that some of networks within SC, CB, and SM are more activated than others.

Figure 10c and connectogram of the right image illustrates positive connectivity in SC, CB, SM,
along with a combination of some highly correlated positive and negative connections in cognitive
control; GM also structurally increased in CC, SM, AU, and CB. Regions within the identified
networks exhibit positive functional connectivity and share similar gray matter structural
characteristics, this correlation suggests a relationship between functional dynamics and
underlying structural architecture within the network. In addition, we observed that the CC exhibits
greater interaction with other brain regions compared to other domains. We identified positive
connectivity between insula, inferior frontal gyrus, middle frontal gyrus from CC and components
precentral gyrus, paracentral lobule within SM. Besides, we observed decreased connectivity
between components insula, inferior frontal gyrus, middle frontal gyrus, hippocampus from CC
and posterior cingulate cortex from DM; between insula, inferior frontal gyrus, hippocampus of
CC and component caudate of SC. The precentral gyrus of SM is negatively activated with middle
frontal gyrus of CC and posterior cingulate gyrus of DM. The paracentral lobule is also negatively
activated with the component caudate of SC.

Discussion

The current identification of brain disorders heavily depends on observing clinical symptoms.
While neuroimaging techniques offer a potentially more objective and biology-driven way to
quantify brain abnormalities, the intricacies of the human brain and the presence of various sources
of noise in neuroimaging signals pose challenges. In addition, multimodal brain imaging studies
can provide a more complete understanding of the brain and its disorders (Calhoun & Sui, 2016).
Numerous studies are currently underway, gathering multimodal brain imaging data and
comprehensive information from the same participants. It is crucial to capitalize on these various
imaging data types to extract complementary information. For instance, fMRI captures the
dynamic hemodynamic response associated with neural activity in the brain, while sMRI allows
us to estimate tissue types for each voxel in the brain, including GM, white matter and
cerebrospinal fluid. Additionally, diffusion MRI offers insights into the integrity of white matter
tracts and structural connectivity. The primary motivation behind concurrently analyzing
multimodal data lies in harnessing the cross-information present in the dataset. Multimodal
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approaches unveil essential relationships that might remain undetected when relying on a single
modality alone.

Multimodal methods are mostly limited to highly reduced summaries, e.g., a single map for fMRI
like ALFF. Different imaging modalities may have varying spatial resolutions and anatomical
landmarks. A single ALFF map may lack the detailed anatomical information needed for accurate
alignment with other modalities, posing challenges in the fusion process. We are focused on
incorporating information about multiple brain networks linked to brain structure. Our first work
represents a step forward, but only focused on a limited number of networks including posterior
DM, cerebellum, and SC. In this work, we present a significant extension by expanding our focus
to include all 53 ICNs that allow us to evaluate network specific functions as well as inter-network
connectivity information (functional network connectivity). This work presents a technique to fuse
gray matter and multiple rest fMRI networks using a novel approach that combines concepts in
group ICA and joint ICA. This approach minimizes those fusion challenges by combining the
strengths of group ICA and parallel multilink jICA (Khalilullah et al., 2023). The inclusion of
group ICA also facilitates the use of back-reconstruction to estimate spatial maps for individual
brain networks, which was not part of the previous algorithm. These maps are derived from a
functional-structural fusion algorithm, allowing for individual testing to assess group differences
or associations with variables of interest in the Alzheimer disease data. In addition, we can
compute the relationship among brain networks via FNC from the results. This provides an
extremely rich set of multimodal and unimodal output that has not been available in prior
approaches.

In this approach, we observed structural and functional alterations between healthy controls (HCs)
and Alzheimer's disease (AD) patients. Particularly noteworthy patterns in both structural and
functional aspects were identified, with a focus on the auditory, visual, subcortical, cognitive
control, and cerebellum regions that are recognized as being notably impacted areas for psychiatric
disease, particularly for the Alzheimer’s disease (Agosta et al., 2023; Azeem A, 2023; Cai et al.,
2015; Cheng et al., 2023; Elvira-Hurtado et al., 2023; Kawabata et al., 2022; Khalilullah et al.,
2023; Kim et al., 2023; Lesh et al., 2011; Lin et al., 2017; Liu et al., 2018; Mavroudis, 2019;
McEvoy et al., 2023; Sendi et al., 2023; Tang et al., 2021; Tarawneh et al., 2022; Tentolouris-
Piperas et al., 2017; Xiao et al., 2022).

Based on our results, we find the thalamus, caudate, and putamen of the subcortical regions of the
brain represent functionally lower connectivity in AD group as well as structurally reduced in AD.
The subcortical regions act as pivotal sensory gates, facilitating the exchange of information with
the cortical regions. The previous studies (Cai et al., 2015; Khalilullah et al., 2023; Kim et al.,
2023; Lesh et al., 2011; Tentolouris-Piperas et al., 2017; Xiao et al., 2022) also found abnormalities
in the psychiatric diseases, particularly for the schizophrenia and Alzheimer’s patients. Our
analysis of FNC and mean GM spatial maps (Figure 9c-d) also suggests positive engagement of
the caudate nucleus and thalamus with multiple domains. It appears that the basal ganglia (BG)
network may be more directly linked to each of these regions. This finding represents a novel
discovery not observed in our previous work. Additionally, we identified structural and functional
reductions in cognitive control regions. Specifically, we observed structural reductions in the
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insula and inferior frontal gyrus in Alzheimer's disease (AD), while the parahippocampal region,
crucial for memory, showed both lower functional activity and structural reductions in AD.
Emerging research indicates that the insula, inferior frontal gyrus of the cognitive control network
stand as a pivotal hub within human brain networks and is identified as the most susceptible region
to the effects of Alzheimer's disease (AD) (Agosta et al., 2023; Lin et al., 2017; Liu et al., 2018;
Schwab et al., 2020; Sendi et al., 2023), which are also in line with our research findings. In
addition to the cognitive control regions of the brain, previous studies have shown that individuals
with Alzheimer's disease may experience difficulties in processing auditory information (Azeem
A, 2023; Khalilullah et al., 2023; McEvoy et al., 2023; Tarawneh et al., 2022).

Structural and functional changes in the auditory domain were observed in our study. The superior
temporal gyrus is structurally reduced whereas the middle temporal gyrus and inferior temporal
gyrus are functionally increased in AD; the middle temporal gyrus of the auditory is also
structurally increased in AD. These changes relative to controls may contribute to the deficits in
auditory processing for the AD patients. In the visual network, the lingual gyrus and middle
occipital gyrus show lower functional connectivity in AD. These results consistent with the
previous studies (Elvira-Hurtado et al., 2023; Kawabata et al., 2022; Liu et al., 2017). We also
notice structural-functional alternation in lingual gyrus and middle occipital gyrus of visual
network. The changes observed in the structure and function of the visual network in Alzheimer's
disease can have a profound impact on information processing within the brain. This, in turn, may
contribute to cognitive deficits and give rise to various clinical symptoms associated with
Alzheimer's disease.

In cerebellum regions, we find both increases and decreases functionally as well as structurally.
Changes in the cerebellum may thus contribute to the cognitive symptoms observed in Alzheimer's
disease. The cerebellum is interconnected with various brain regions through extensive neural
networks. Alterations in the cerebellum may impact these functional networks and contribute to
the overall cognitive decline seen in Alzheimer's disease. Emerging evidence suggests that the
cerebellum, traditionally associated with motor function, may undergo structural and functional
changes in Alzheimer's disease (Cheng et al., 2023; Mavroudis, 2019; Tang et al., 2021).
Understanding the extent and implications of cerebellar involvement is crucial for gaining a
comprehensive understanding of the disease and may open new avenues for therapeutic
interventions. Another interesting finding of our joint analysis is to separate overlapping regions
of the brain networks which show opposite correlation from one another. Our findings include
detailed spatial maps of altered activation patterns in key regions of the brain networks. This
provides localized insights into the impact of AD on specific brain regions.

Conclusions

In conclusion, our study presents a robust framework, pmg-jICA, for the joint analysis of
multimodal MRI data, enabling the fusion of structural and functional information. By overcoming
challenges in integrating different imaging modalities, our approach enhances the depth of
understanding of brain alterations in Alzheimer's disease, by linking together and jointly
decomposing data while still preserving the richness of the information available. The
investigation into structural and functional alterations between healthy controls and Alzheimer's
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patients highlights notable patterns in regions such as the auditory, visual, subcortical, cognitive
control, and cerebellum. By conducting a joint analysis with group ICA, it facilitates the
comprehensive utilization of the variability among structural connections to specific functional
networks and we can leverage the combined distribution of multimodal imaging data, ultimately
enhancing our capability to discern between health and disease. The identified changes in
connectivity and structure provide insights into the impact of Alzheimer's disease on essential brain
functions and behaviors. Moreover, the findings emphasize the importance of multimodal
approaches in unraveling complex relationships that may remain elusive in unimodal studies. The
study's contributions extend beyond Alzheimer's disease, offering a methodological advancement
for the joint analysis of diverse neuroimaging data to enhance our understanding of brain disorders.
Considering the current approach and the state of multimodal neuroimaging research, possible
future directions may include: a) using temporal information of fMRI data for a more
comprehensive understanding of brain dynamics; b) integrating additional modalities for better
understanding of the underlying biological mechanisms associated with brain structure and
function; ¢) incorporating improved machine learning and deep learning approaches to further
optimize the integration of multimodal data.
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