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Gaussian Process-based Storage Location Assignments with 
Risk Assessments for Progressive Zone Picking Systems 

Abstract 

E-commerce warehouses are under constant pressure to adapt their order picking systems and reassign 

product storage locations to meet fluctuating customer demands. Most existing approaches optimize 

storage location reassignments based on customer orders and operational configurations to maintain 

high order picking performance. This paper presents a Gaussian process surrogate model (GPSM) 

approach to predict the performance metrics for storage location reassignments. The GPSM estimates 

the expected flow time of orders from the historical data on previous storage location assignments and 

aids in identifying the new assignments that yield the minimum estimated average flow times. 

Management can also take advantage of the GPSM’s uncertainty quantification capability to assess 

the probability of improvement for a given storage reassignment and its implementation. The 

proposed model and assignment policy are validated using discrete-event simulations and industrial 

data. Experimental results demonstrate that the GPSM can improve expected flow time by 7.51% and 

reduce unnecessary reassignment operations by 43.25%. 

Keywords: Facilities planning and design; Zone order picking; Storage location assignment; 

Gaussian process approach. 

1. Introduction

Zone picking (ZP) systems are popular owing to their high-throughput capability, flexibility to handle 

small and large order volumes, and adaptability to a wide range of product sizes with a variety of 

order pickers (Gaast et al., 2020). By separating an order picking area into zones and assigning one 

picker per zone, ZP systems can reduce travel time and congestion among pickers (De Koster et al., 

2007).  

In ZP systems, performance bottlenecks can still occur due to workload imbalances or other 

reasons. Therefore  ZP comes with order picking planning policies, such as order batching (Pan, Shih, 

& Wu, 2015), order sequencing (Huang et al., 2018), and storage assignment (Jane, 2000). Order 

batching reduces order picking variability and mitigates workload gaps between zones by grouping 

orders so that each zone’s workload is evenly distributed between batches. Order sequencing adjusts 

tote release sequences to improve the distribution of workload balances. Storage assignment balances 

workloads over zones by assigning products to each zone during a long picking time. Optimizing 

product assignments is referred to as the storage location assignment problem (SLAP) (Gu et al., 

2007).  
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This paper investigates the SLAP for a progressive bypass ZP flow-rack system with an 

automated storage/retrieval (S/R) crane. The flow-rack system is popular in warehouse management 

systems for e-commerce businesses because it handles small and frequent orders and daily demand 

fluctuations under short flow times. In many warehouses, since assignment capabilities are limited in 

terms of resources and time, the SLAP problem is optimized by reassigning selected products instead 

of reallocating all products in an order. As illustrated in Figure 1, prior to order picking, the S/R crane 

relocates a few storage locations of products between the zones to rebalance the workloads 

(Roodbergen & Vis, 2009). We study the optimization of the swap operations considering the current 

assignment of products and estimates of the expected workload over daily orders. 

 
Figure 1. Progressive bypass ZP system with an S/R crane (Kim and Hong (2022)).  

Solutions to the SLAP use workload proxies to approximate current workloads and exploit 

them for a simple rebalancing of the estimated workloads. Popular workload proxies include the 

number of picks (Jane & Laih, 2005; Jewkes et al., 2004; Kim & Hong, 2022), the expected walk time 

from a picker’s loading depot (Jewkes et al., 2004), picker’s skill level (Bartholdi & Eisenstein, 

1996), and picker’s route distance (De Koster et al., 2012). However, it is still unclear whether the 

proxies accurately represent workloads, and it is questionable whether using the proxies is effective in 

optimizing an order picking performance metric such as the average flow time of orders. In this paper, 

we propose to use a data driven approach to directly estimate the order picking performance metric as 

a function of current workloads, and we exploit the data-driven estimation to solve SLAP. 

To our knowledge, only a few studies have used a data-driven approach to the workload 

balancing and storage location reassignment problems. Building an analytical model to estimate order 

picking performance from order picking data has been challenging due to the noise-included 

uncertainty of complex ZP systems. We develop a Gaussian process surrogate model (GPSM) for a 

data-driven estimation of the average flow time of orders from the historical data of previous storage 

location assignments. Surrogate modeling usually uses the Gaussian process, due to good analytical 

inference, computational flexibility, and straightforward uncertainty quantification (Rasmussen & 

Williams, 2006). GPSM can measure whether a new storage assignment is likely to improve order 

picking performance by means of the posterior prediction uncertainty. Based on the GPSM, we 
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develop a storage location reassignment method that sequentially runs one swap operation at a time 

and suggests the reliable optimal swap operation with respect to the GPSM’s average flow time 

estimate. 

Contributions of this study are summarized as follows: 

 Model-driven approach vs. data-driven approach. We directly estimate order picking 

performance with a data-driven approach by implementing the GPSM. Since estimating 

order picking performance is challenging due to warehouse complexity, size, and noise in 

the data, implicit workload proxies have been used to estimate performance in traditional 

methods (De Koster et al., 2012; Jane & Laih, 2005; Jane, 2000; Jewkes et al., 2004; Kim & 

Hong, 2020). Instead of approximating workload proxies, we optimize storage location 

assignments by using historical order picking data to estimate the average flow time with 

GPSM.  

 Domain knowledge-based performance improvement. We improve the GPSM’s 

estimation performance with our domain specific feature generation and training data 

configuration. As a result, we present an accurate learning model that effectively estimates 

order picking performance to solve SLAP.  

 Risk assessment using GPSM. We propose a screening test based on the improvement 

probability obtained from the GP estimates and the storage reassignment procedure based 

on the estimation model and screening test The procedure optimizes storage space with 

minimal adjustments, reduces material handling costs, and enhances customer service in the 

warehouse. 

 Performance evaluation. We use discrete event simulation and statistical tests to 

demonstrate the proposed models’ ability to reduce flow time and reassignment effort, 

thereby improving warehouse management systems and operational efficiency. 

 

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature. 

Section 3 explains the fulfillment system and the proposed GPSM for average flow-time estimation. 

Section 4 introduces the proposed storage reassignment method using the flow-time estimation. 

Section 5 describes the experiment validating the model, and the simulations, results, and sensitivity 

analysis. Section 6 concludes and suggests future research. 

2. Literature review 

2.1 General storage location assignment 

Most studies of the SLAP use travel distance and travel time as the performance measurements. Caron 

et al. (2010) developed an optimization model that minimizes the travel distance and travel time, and 
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they also developed an estimation model that estimates the two performance measurements. Brynzér 

and Johansson (1996) suggested that grouping products by characterizing their variant information 

could reduce the product movements for traveling and picking. Muppani and Adil (2008) used 

nonlinear integer programming to capture the impact of a class-based storage system on the required 

space and material handling cost. Several studies have used probabilistic models and Markov chains 

to estimate travel distance or travel time to evaluate order picking performance and analyze the 

optimal storage assignment policy (Le-Duc & De Koster, 2005; Pan et al., 2014; Pan & Wu, 2009).  

Motivated by a real problem, SLAP studies have also considered controlling the number of 

reassignment operations. Quintanilla et al. (2014) developed heuristic algorithms to maximize the 

available storage space by reoptimizing pallet locations in a random storage system. Kübler et al. 

(2020) suggested the ABC class-based iterative storage reassignment method considering order 

batching and picker routing together, and evaluated the reassignment effort with the future travel 

distance to identify promising reassignment. Pazour and Carlo (2015) developed mathematical model 

formulations for reassignment operating policies using an automated S/R crane and quantified the 

total loaded and unloaded travel distances while optimizing the reassignment operations.   

In progressive zone picking systems, the SLAP has been focused on balancing workloads 

between zones for operational efficiency. Studies of workload balancing include Jane (2000), who 

proposed a heuristic algorithm to balance pickers’ workloads by adjusting the number of storage 

zones. Pan, Shih, Wu, et al. (2015) developed a heuristic based on a genetic algorithm to solve the 

SLAP considering workload balance in a progressive zone picking system. Kim and Hong (2022) 

used mixed-integer programming to construct the storage location reassignment (SLR) model and 

applied it to a progressive bypass ZP system with a circulation conveyor and an S/R crane. The 

authors’ model relocated the storage locations of products considering workload balance and 

recirculation reduction.  

The models above, however, require solver tools, experts who can adapt the model to the 

warehouse environment, and lengthy computation to solve the kinds of large-size problems 

encountered by e-commerce warehouses. Most model-based optimization assumes a static operational 

environment, while data-driven optimization allows solving SLAP in an uncertain environment. Thus, 

we focus on data-driven storage location assignments for more agile and flexible SLAP optimization.  

2.2 Data-driven storage location assignments 

Various types of data-driven approaches have been developed for SLAP, and several studies have 

utilized clustering algorithms. Jane and Laih (2005) suggested a clustering algorithm to distribute the 

frequently requested products into several zones for workload balance in a synchronized zone picking 

system. Chuang et al. (2012) clustered associated items into groups and determined the sequence of 

the order groups for SLAP to minimize picking distance.  
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Chiang et al. (2011) used a data association algorithm to group products into similarity groups 

by order frequency and other product characteristics and introduced a data-mining based storage 

assignment (DMSA), which aimed to increase the association index (AIX) between products and their 

storage locations. Chiang et al. (2014) extended their research using a weighted support count (WSC) 

to calculate each AIX. The heuristic considered the relationship between a family and a cluster of 

products.  

Pang and Chan (2016) developed a data mining-based assignment using association rules to 

minimize travel distances by controlling storage locations of correlated items and items near entry 

points. In a dynamic environment, Li et al. (2016) optimized the storage assignment based on the 

ABC classification and mutual affinity of products. The product affinity-based heuristic (PABH) 

identified the relationship between products. The authors used a greedy genetic algorithm because the 

problem was a quadratic assignment problem.  

Regression techniques have been investigated for their use in storage location assignments. 

Sadiq et al. (1996) built a regression model to analyze the performance of storage location 

assignments considering order picking time and reassignment. Larco et al. (2016) used linear 

regression models to estimate worker discomfort factor and order cycle times. Larco et al. (2016) 

solved SLAP using the estimated values as the parameters of bi-objective optimization. Larco et al. 

(2016); Sadiq et al. (1996) estimated order picking performance with simple linear models based on 

factors such as storage location, bin type, product life cycle, and management policies, but neglected 

workload balance factors, a key influence on the performance of ZP systems. 

Two practical issues deserve further investigation. Previous studies of data-driven SLAP 

consider the allocation of storage locations for entire products, yet when real-world reassignments are 

both resource- and cost-intensive, many warehouses choose to reallocate a limited range of products 

due to demand and operational uncertainty. The reassignment benefit should outweigh the 

reassignment cost while considering variables such as order sequence, workload balance, and rack 

storage policy. We use the Gaussian process to solve the data-driven SLAP with limited reassignment 

capacity and to quantify the reassignment risk to screen for reassignment operations with high 

potential for improvement. 

3. Progressive ZP system and GPSM 

In this section, we describe the progressive ZP system and explain the average flow time estimation 

using GPSM. We consider order picking in the concept of wave management, where a large set of 

orders is scheduled to be picked during a time period (pick wave) (Bartholdi & Hackman, 2008). We 

define the set of orders in a pick wave as an order list. Prior to the pick wave, there is an opportunity to 

reassign the storage location of items within the picking zones. The flow time of order refers to the 

time interval between the time a tote enters to the time it exits the ZP system. Flow time is a critical 
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performance metric that needs to be reduced to shorten in-transit inventory and ensure fast delivery 

(Bartholdi & Hackman, 2008). According to practitioners, when considering throughput time or other 

indicators, it is challenging to operate a smooth transition to a post-process (e.g., packing), so the 

average flow time of orders is considered. We propose a learning model that estimates the average 

flow times of upcoming order lists based on workload balance information from historical order 

picking data. 

3.1 Progressive ZP system characteristics 

Our progressive zone picking system consists of an S/R crane and multiple zones. S/R cranes are 

automated material handling systems that are used in numerous manufacturing and warehousing 

systems to handle, store and retrieve discrete products (Ghomri & Sari, 2017). The S/R crane transfers 

each carton of products from a reserve rack to a flow rack, between reserve racks, or from the 

entrance or exit of the fulfillment center to any racks. The S/R crane can exchange the storage 

locations of a pair of products at a time by temporarily placing the products to be exchanged in the 

reserve rack area, which we refer to as a swap operation. Figure 2 shows an S/R crane replenishing a 

flow rack area with cartons from the reserve rack area.  

Each zone has a flow rack and one zone-dedicated picker. Pickers pick products from cells in 

the flow rack and place them in totes. The totes travel on a conveyor through the zones. Each tote 

visits only the zones containing the products to be picked. When a zone has no room for a tote to 

enter, the tote skips over (bypasses) the zone and keeps traveling on the conveyor until a room is 

available.  

 
Figure 2. Progressive ZP flow-rack system with S/R crane (a) side view and (b) front view (modified 

from Cahyo (2017)). 
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A zone consists of multiple flow racks, and a flow rack consists of multiple cells to store 

products. We consider a simplified model, i.e., each cell contains only one product type. An order list 

is the batch of orders handled in the same shift or time window, and an order is the types and amounts 

of products. 

We use the following notations.  
Set and indices 

 𝑂, 𝑜 The set of orders, and an order 𝑜 ∈ 𝑂 

 𝐿, 𝑙 The set of order lists, and an order list 𝑙 ∈ 𝐿 

 𝑍, 𝑧 The set of zones, and a zone z ∈ 𝑍 

 𝐾, 𝑘 The set of cells, and a cell 𝑘 ∈ 𝐾 

 𝑃, 𝑝 The set of products, and a product 𝑝 ∈ 𝑃 

 𝑅, 𝑟 The set of relative rack column positions in a zone, and a rack position 𝑟 ∈ 𝑅 

Order and storage location representation 

Let C be the |𝑂| × |𝑃| matrix representing products in orders with 𝑐𝑜𝑝  as its (𝑜, 𝑝) th element, where 

𝑐𝑜𝑝 be a binary variable indicating whether order 𝑜 contains product 𝑝; 𝑐𝑜𝑝 is 1 if order 𝑜 contains 

product 𝑝, and 0 otherwise. Let S denote a |𝑃| × |𝐾| matrix describing the relationship between the 

products and cells with its (𝑝, 𝑘) th element 𝑠𝑝𝑘 being a binary variable indicating whether product 𝑝 

is located on cell 𝑘. Let W be a |𝑂| × |𝐾| matrix representing the relationship between the orders and 

cells with its (𝑜, 𝑘) th element 𝑤𝑜𝑘 being a binary variable indicating whether order 𝑜 requires a 

product to be picked from cell 𝑘. The matrix W is related to matrices C and S through 

W = C ∙ S  

 = [

𝑐11 ⋯ 𝑐1|𝑃|
⋮ ⋱ ⋮

𝑐|𝑂|1 ⋯ 𝑐|𝑂||𝑃|
] ∙ [

𝑠11 ⋯ 𝑠1|𝐾|
⋮ ⋱ ⋮

𝑠|𝑃|1 ⋯ 𝑠|𝑃||𝐾|
].  

Abstract representation by order list and Zone/Rack locations 

Let A be a |𝐾| × |𝐿| matrix of 𝑎𝑙𝑘′𝑠 that represents the total number of picks from cell 𝑘 ∈ 𝐾 required 

to fill order list 𝑙 ∈ 𝐿. Let B represent a |𝐿| × |𝑍| matrix with 𝑏𝑙𝑧 as its (𝑙, 𝑧) th element which 

represents the total number of picks from zone 𝑧 ∈ 𝑍 to fill order list𝑙 ∈ 𝐿. Let G be a |𝐿| × |𝑅| matrix 

of 𝑔𝑙𝑟′𝑠 that represents the total number of picks from flow rack 𝑟 ∈ 𝑅 required to fill order list 𝑙 ∈ 𝐿 . 

Let 𝑂𝑙 denote the set of orders in the order list 𝑙. Let 𝐾𝑧 and 𝐾𝑟 denote the set of cells assigned in zone 

𝑧 and the set of cells assigned in rack position 𝑟, respectively. We can calculate 𝑎𝑙𝑘 using the matrix 

W as 

𝑎𝑙𝑘 = ∑ 𝑤𝑜𝑘

𝑜∈𝑂𝑙

. 

We can calculate 𝑏𝑙𝑧 as 
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𝑏𝑙𝑧 = ∑ 𝑎𝑙𝑘
𝑘∈𝐾𝑧

, 

and calculate 𝑔𝑙𝑟 as 

 𝑔𝑙𝑟 = ∑ 𝑎𝑙𝑘
𝑘∈𝐾𝑟

. 

Below, we summarize the constant matrices for the problem formulation. 

C, 𝑐𝑜𝑝   Order-Product inclusion matrix and its elements 𝑐𝑜𝑝, ∀𝑜 ∈ 𝑂 and 𝑝 ∈ 𝑃 

W, 𝑤𝑜𝑘 Order-Cell inclusion matrix and its elements 𝑤𝑜𝑟 , ∀𝑜 ∈ 𝑂 and 𝑘 ∈ 𝐾 

S, 𝑠𝑝𝑘  Product-Cell inclusion matrix and its elements 𝑠𝑝𝑟 , ∀𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾 

A, 𝑎𝑙𝑘  Order list-Cell relationship matrix and its values 𝑎𝑙𝑘, ∀𝑙 ∈ 𝐿 and 𝑘 ∈ 𝐾 

B, 𝑏𝑙𝑧  Order list-Zone relationship matrix and its values 𝑏𝑙𝑧, ∀𝑙 ∈ 𝐿 and 𝑧 ∈ 𝑍 

G, 𝑔𝑙ℎ  Order list-Rack position relationship matrix and its values 𝑔𝑙ℎ, ∀𝑙 ∈ 𝐿 and ℎ ∈ 𝐻 

3.2 GPSM for Average flow time estimation 

Feature Generation 

To estimate the average flow time of orders in an order list (𝐹𝑇̅̅̅̅ ), an estimation model requires the key 

input variables (i.e., features) that are expected relate to 𝐹𝑇̅̅̅̅ . We generate features from historical 

order picking data that can represent the picking time and workload balance across zones. Picker’s 

travel distance and workload balancing measures, such as standard deviations of workload between 

zones, and zones’ maximum and minimum numbers of workload, are potentially related to 𝐹𝑇̅̅̅̅  (Huang 

et al. (2018), Vanheusden et al. (2022)). We develop GPSM using three features of zone workload 

balance and a feature of rack storage policy to estimate the average flow time 𝐹𝑇̅̅̅̅ . 

Let 𝐱𝒍 represent the three input features extracted from order list 𝑙 ∈ 𝐿, and let X ={𝐱𝒍, 𝒍 ∈ 𝑳} 

We consider three models. The first GPSM, which we refer to as GPSMAZ, is only based on the first 

input feature, i.e., picker’s travel distance. We define a total travel distance to complete order list 𝑙 ∈

𝐿 as 

𝑇𝐷𝑙 =∑𝑑𝑟 ∙ 𝑔𝑙𝑟
𝑟∈𝑅

, 

where 𝑑𝑟 is the distance from the picker’s loading depot to a rack position 𝑟 ∈ 𝑅. 

The second GPSM, which we call GPSMMM, uses three input features: 𝑇𝐷𝑙 and the maximum 

and minimum number of workloads of zones. We calculate the maximum number of picks among 

zones 𝑏𝑙𝑚𝑎𝑥 and the minimum numbers of picks among zones 𝑏𝑙𝑚𝑖𝑛 as 

𝑏𝑙
𝑚𝑎𝑥 = max

∀𝑧∈𝑍
𝑏𝑙𝑧, 

𝑏𝑙
𝑚𝑖𝑛 = min

∀𝑧∈𝑍
𝑏𝑙𝑧. 
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The third GPSM, which we refer to as GPSMSD, also uses 𝑇𝐷𝑙 and one additional input, the 

standard deviation of the number of picks per zone. We let 𝑏𝑙𝑆𝐷represent the standard deviation for 

order list 𝑙 ∈ 𝐿, which can be obtained as 

𝑏𝑙
𝑆𝐷 = √

∑ (𝑏𝑙𝑧− 
1

|𝑍|
∑ (𝑏𝑙𝑧)𝑧∈𝑍 )2𝑧∈𝑍

|𝑍|−1
. 

GPSM 

Gaussian process (GP) regression, a popular surrogate model for computer and physical experiments 

(Mackay, 1998; Murphy, 2012), provides a predictive relation between input and response variables. 

For our problem, the input is an input feature set 𝒙, and the response variable y would be the average 

flow time 𝐹𝑇̅̅̅̅ . Suppose that we have training data of input features and associated response values for 

orders in order list L. We denote the training data by (𝑿, 𝒚), where 𝑿 = (𝒙𝒍, 𝑙 ∈ 𝐿) and 𝒚 = (𝑦𝑙 , 𝑙 =

1 ∈ 𝐿) represent the training inputs and responses. The inputs and responses are related via an 

unknown regression model 𝑓(𝒙) as  

𝑦𝑙 = 𝑓(𝒙𝑙) + 𝜖𝑙 , 𝜖𝑙 ∼ 𝑁(0, 𝜎𝑛
2). 

We assume the regression function 𝑓(𝒙) is a zero-mean Gaussian process with covariance 

function K(𝒙, 𝒙′). Given the training data, we like to predict the posterior distribution of 𝑓(𝒙∗) for a 

test input 𝒙∗, which follows a Gaussian distribution with mean 𝜇̂(𝐱*) and variance Σ̂(𝐱*) (Rasmussen 

& Williams, 2006), 

 𝜇̂(𝐱*) = 𝐾(x*,X)[𝐾(X,X) + 𝜎𝑛
2𝜤]−1y, 

(1) 

 Σ̂(𝐱*) =  𝐾(x*, x*) − 𝐾(x*,X)[𝐾(X,X) + 𝜎𝑛
2𝜤]−1𝐾(x*,X), 

(2) 

where 𝑰 is an |𝑳| × |𝑳| identity matrix, and 𝑲(𝑿𝟏, 𝑿𝟐) is the matrix of the covariance function values 

evaluated between 𝑿𝟏 and 𝑿𝟐. We use the covariance function composed of a squared exponential 

(SE) covariance function and noise variance function,  

𝑘(x𝑖, x𝑗) = 𝜎𝑓
2𝑒𝑥𝑝 (−

‖x𝑖 − x𝑗‖
2

2𝜆2
) + 𝜎𝑛

2𝛿(x𝑖, x𝑗),  
(3) 

where variable length scale 𝜆, signal variance 𝜎𝑓2, and noise variance 𝜎𝑏2 control the correlation 

between observations x𝑖 and x𝑗, and 𝛿 is the Kronecker delta function. The kernel-function option 

depends on the input and expected patterns in the data, e.g., Richardson et al. (2017) considered SE 

and Matérn covariance as the kernel function. 

4. Storage location reassignment with risk assessment 

In this section we define a storage location reassignment as the sequential determination of swap 

operations, each of which is optimized to minimize the average flow-time of orders based on the 
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GPSM’s output. We also use the GPSM estimate to evaluate the improvement probability of the swap 

operations by screening out the less promising ones.  

4.1 Swap operation 

The storage location reassignment adjusts the locations of products to minimize the average flow-time 

estimate from the GPSM. We use a series of swap operations (i.e., switch a pair of product cartons) to 

optimize storage locations with limited handling capacity. For each swap operation, we assume that  

 Each picker stays in his/her zone and independently retrieves each product per tote.  

 Each product occupies one zone and one rack. 

 Each zone has the same number of racks. 

 Constant picking time includes search time, pick time, and inspection time.  

 Management has sufficient time to reassign locations for new order lists (Sadiq et al., 1996). 

 All products are available before an order enters the system.  

 A swap operation swaps two cartons of products across flow racks at a time. 

 The total number of the swaps is finite and determined dynamically.  

 The swap distance as defined by the physical distance between two rack locations, and the 

number of cartons affect swap time.  

 The number of swap operation is not predetermined; after a swap, management determines if 

another swap is necessary. 

 The reserved area has empty racks; therefore, swap operations can be performed without 

additional handling. 

 The swap operation utilizes the reserved area to temporarily store the products to be 

reassigned. The reserved area has empty racks; therefore, swap operations can be performed 

without additional handling. 

 

Each swap operation is optimized so that the choice minimizes the average flow time 

estimated by the pre-trained GPSM described in Section 3.2. A swap operation is represented by a 

column swap of the original product-pick-face inclusion matrix S. For example, suppose there are five 

products (𝑃 = {1,2,3,4,5}) in each pick-face. If the swap operation occurs between the product 2 and 

product 4, then it makes a change of the original product-pick-face inclusion matrix S to S`  

S=

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

,   S` =

[
 
 
 
 
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1]

 
 
 
 

. 

After the update to S`, we can calculate the corresponding testing input 𝒙∗ and then get the associate 

posterior predictive distribution 𝑓(𝒙∗) from the GPSM to get the estimated distribution of the average 
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flow time resulting from the swap. We repeat this for a list of N feasible swap operations and select 

the best swap operation that minimizes the expected average flow time, i.e., 𝐸[𝑓(𝒙∗)]. We consider 

all possible swap cases among |𝑃| products, which gives N equal to two-out-of-|𝑃| combination caes. 

We iterate the swap operation to the maximum number of swaps M determined by management. 

4.2 Feedforward heuristic 

Since exact algorithm for an optimal sequence of M swap operations is not suitable due to the 

combinatorial nature of the problem, we propose Algorithm 1, where the best solutions from the 

precedence process become the input of the next process. The steps of the feedforward heuristic are as 

follows. 

Algorithm 1. Feedforward heuristic. 
Step 1. Set M (based on warehouse experience and considering the number of storage locations 

that can be reassigned), and set i =1 and set 𝑆1 to be the current product-pick-face 

inclusion matrix. 

Step 2. Generate 𝑁 candidates {𝐒𝟏𝒊 , 𝐒𝟐𝒊 , … , 𝐒𝑵
𝒊 } from Si-1. (See 4.1 Swap operation) 

Step 3. Calculate the corresponding input features {𝐱∗𝟏𝒊 𝐱∗𝟐𝒊 , … , 𝐱∗𝑵
𝒊 } corresponding to the N 

candidates. 

Step 4. Obtain 𝜇̂(𝐱∗𝒊) from each candidate and find the optimal swap operation based on 

equation (4). 

Step 5. Update Si. 

Step 6. If i < M, i = i +1 and go to step 2, otherwise STOP. 

 

Let Si represent the ith storage location matrix for the iteration i = 1…, M, where M controls 

the maximum number of swap operations set according to the warehouse environment. For every 

iteration i, generate storage location candidates {𝐒𝟏𝒊 , 𝐒𝟐𝒊 , … , 𝐒𝑵
𝒊 } with swap operations from former 

storage locations 𝐒𝒊−𝟏. Each candidate generates the testing inputs {𝐱∗𝟏𝒊 𝐱∗𝟐𝒊 , … , 𝐱∗𝑵
𝒊 } to be evaluated 

with the proposed average flow-time estimation model. Next, determine the storage locations 𝐒𝒊 

according to the best 𝐱∗𝒊  that yields the minimum 𝜇̂(𝐱∗𝒊) using Equation (1). Obtain the expected 

average flow time of the storage locations 𝐒𝒊 as  

 E[𝐹𝑇̅̅̅̅ (𝐒𝒊)] = min{𝜇̂(𝐱∗
𝒊)|𝐱∗

𝒊 ∈ {𝐱∗𝟏
𝒊 , 𝐱∗𝟐

𝒊 , … , 𝐱∗𝑵
𝒊 }}. 

(4) 

Considering an initial storage location 𝐒0 for an order list 𝑙 and obtaining the historical data in 

the form listed, use Algorithm 1 to find the new storage location (𝐒𝟏) at iteration 1 that minimizes the 

average flow time for an order list 𝑙. Note that the new storage location 𝐒𝟏 from the first stage is 

considered as the initial storage location 𝐒𝒊−𝟏 of the second stage and obtains the new storage location 
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𝐒𝟐 that yields the minimum 𝐹𝑇̅̅̅̅  at the second stage. Run these procedures until iteration i reaches the 

maximum number of swaps M. 

4.3 Screening out less promising swaps 

Quantifying uncertainty is critical in managing operational risks. The probability that a system will 

not improve can be estimated with the estimates of Gaussian process model (Bect et al., 2012). We 

conduct a screening test using the posterior predictive distribution from GPSM. We use the posterior 

predictive distribution of the average flow time after a swap to evaluate the probability of 

improvement in the average flow time, compared to the average flow time before that swap. If the 

improvement probability is not sufficiently high, we revoke the determined swap operation. 

 
Figure 3. Flowchart of a screening test applied to Algorithm 1. 
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Given the means and variances of the two mutually independent Gaussian distributions, we 

use a one-tailed test to statistically compare the difference between the mean values of two 

distributions. GPSM is used to obtain the mean(𝜇̂(∙)) and variance(Σ̂(∙)) of 𝐱∗𝒊  and 𝐱∗𝒊−𝟏, where 𝐱∗𝒊  is 

the testing input expected to be the optimal case from the relocated cases {𝐱∗𝟏𝒊 , 𝐱∗𝟐𝒊 , … , 𝐱∗𝑵
𝒊 }, and 𝐱∗𝒊−𝟏 

is the testing input of the reassigned order list at iteration 𝑖 − 1. The null hypothesis is that the 𝐹𝑇̅̅̅̅  of 

𝐱∗
𝒊−𝟏 is less than or equal to the 𝐹𝑇̅̅̅̅  of 𝐱∗𝒊 . The probability of the null hypothesis (p-value) denotes the 

probability that the reassignment operation will not improve. We set significance level 𝛼 for the one-

tailed test to classify the case with the risk to increase 𝐹𝑇̅̅̅̅ . We obtain the Z-score of the difference 

between the two 𝐹𝑇̅̅̅̅  values and the improvement probability from the Z-score as 

 

 

 
1 − 𝑃(𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡) = 𝑃(𝐹𝑇̅̅̅̅ (𝐒𝒊−𝟏) − 𝐹𝑇̅̅̅̅ (𝐒𝒊) ≤ 0) = 𝑃(𝑍 ≥

𝜇̂(𝐱∗
𝒊−𝟏)−𝜇̂(𝐱∗

𝒊)

√Σ̂(𝐱∗
𝒊−𝟏)+Σ̂(𝐱∗

𝒊 )

). (5) 

We compare the one-tailed p-value with the significance level 𝛼. Note that the improvement 

probability of reassignment cannot be guaranteed if the p-value is greater than the significance level. 

If the p-value becomes smaller than the significance level, the GPSM expects that the flow time of the 

GPSM optimal assignment is significantly shorter than the flow time of the original assignment; 

therefore, it executes the determined swap operation.  

5. Industrial application of GPSM  

In this section we describe our simulation experiment and the results. Ten scenarios from a real e-

commerce warehouse configuration and historical order data were used to evaluate the performance of 

the proposed model. We analyze the effectiveness of reassignment decisions and conduct sensitivity 

tests over various warehouse configurations. 

5.1 Workload scenarios 

To obtain accurate and reliable estimates, we use different workload scenarios to train the proposed 

models on various storage policy factors. We consider the four zone workload distribution types and 

two rack storage policies shown in Table 1. 

Table 1 Zone workload distribution types and rack storage policies. 

Zone workload distribution type Rack storage policy 
Uniform ABC(5:3:2) 
Bottleneck zone Random 
Descending demand  
Irregular demand  

 

We note that a uniform zone workload distribution type is the most workload-balanced 

scenario with almost uniformly distributed workloads over zones. We generate Scenarios 1 and 2 with 
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this type to make workload balanced scenarios. The bottleneck zone distribution type refers to the 

case that one randomly chosen zone is assigned 25% of total orders when all other zones have a 

uniform workload distribution. The bottleneck zone scenarios can occur in situations when demand 

for particular products increase dramatically that often arises in e-commerce warehouses. We generate 

Scenarios 3 and 4 with this type. A descending demand zone distribution type has a descending trend 

in workload. The first zone has the largest demand volume and the demand gradually decreases 

toward the last zone. Many warehouse managements set descending demand in progressive zone 

picking system to avoid blocking delay between zones. We distribute the workload ratio of each zone 

as the ratio of each zone index to the sum of zone indexes. We generate Scenarios 5 and 6 with this 

type. An irregular demand-zone distribution type represents the most workload-unbalanced scenario 

with an uneven distribution of workloads across zones. We demonstrate worst-case workload 

balancing by randomly shuffling storage locations for descending demand scenarios and generating 

irregular demand scenarios. We generate Scenarios 7 and 8 with this type. 

The rack storage policy defines how products’ storage locations are assigned over rack 

column positions. The ABC (5:3:2) class-based rack storage policy classifies products to classes A, B 

and C in a ratio (0.5:0.3:0.2) for allocating high-demand products in the rack column positions with 

the picker’s shortest travel distance. The random rack-storage policy refers to the random assignment 

of products within zones.  

We generate the first eight workload scenarios using a full factorial design with four zone 

workload distribution types and two rack storage policies and two additional scenarios. To train 

GPSM even with scenarios that cannot be considered by the full factorial design, we generate 

scenarios 9 and 10 by switching a randomly chosen pair of product locations from Scenario 1. 

Scenarios 9 and 10 have balanced workloads, but the storage locations of products differ from the 

preset rack storage policy due to demand fluctuations and a series of previous storage relocations. We 

classify Scenarios 1, 2, 9, and 10 as workload balanced scenarios and Scenarios 3, 4, 5, 6, 7, and 8 as 

workload unbalanced scenarios. In Table 2, the average 𝐹𝑇̅̅̅̅  of 50 order lists per scenario measured by 

simulation shows that zone workload distribution type and rack storage policy directly influence order 

picking performance. The workload balanced Scenarios 1, 2, 9, and 10 provide shorter average 𝐹𝑇̅̅̅̅ . 

We conduct statistical tests to validate the significance of difference between scenarios (Please see 

Table B1 and Table B2 in Appendix B for detail). 

Table 2. Ten workload distribution scenarios. 
Scenario Zone workload distribution type Rack storage policy Average 𝐹𝑇̅̅̅̅  

1 Uniform ABC (5:3:2) 1250.03 

2 Uniform Random 1309.47 

3 Bottleneck zone ABC (5:3:2) 1440.65 

4 Bottleneck zone Random 1523.62 



15 

 

5 Descending demand ABC (5:3:2) 1513.42 

6 Descending demand Random 1593.70 

7 Irregular demand ABC (5:3:2) 1522.98 

8 Irregular demand Random 1586.75 

9 24 times random switch from scenario 1 1284.24 

10 100 times random switch from scenario 1 1312.51 

 

5.2 Experimental configuration 

To validate our proposed GPSM, we configure a warehouse and its order profiles based on an e-

commerce company’s progressive bypass ZP system in Korea. We run 200 experiments per 

configuration, i.e., 20 different order lists per each of the 10 scenarios. We train GPSM on 300 

training datasets consisting of 10 scenarios with 30 different order lists. We use Tecnomatix© Plant 

Simulation 12 to build the simulation model. We generate synthetic historical data based on the order 

profiles and modified sizes of the ZP system. Since recirculation and bypass disrupt the order 

sequence, the order release sequence follows the First-Come-First-Serve rule. We use Python 3.7 and 

scikit-learn toolbox to analyze the data. Table 3 reports the details.  

Table 3. Warehouse configuration. 
Parameter Values 

Number of swaps (n) 1, 2, 3, 4 

Number of zones 8 

Number of rack columns per zone 6 

Order size 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (3,9) 

Number of orders in each order list 100 

Note: Default values of each parameter are underscored. 

 

We label the GPSMs as stages 1–4 by setting M = 4. GPSM(n) denotes the first stage 

resulting in the swapping of n pairs of storage locations. We compare the GPSM to Kim and Hong 

(2022), who proposed an MIP model to reassign a limited number of storage locations for the same 

order picking system. For simplicity, we call their model SLR(n), where n is stage number (i.e., the 

number of the swap operations). We also compare the GPSM with the heuristic algorithm proposed 

by Jane (2000) for workload balancing in a zone picking system. For simplicity, we call their heuristic 

algorithm the JA. Unlike the GPSM and SLR, the JA reassigns all storage locations without limiting 

the number of reassignments. 

The objective of the GPSM is to minimize the average flow time; the objective of the SLR(n) 

model is to minimize the maximum number of picks and the maximum number of order visits among 

all zones; and the objective of the Jane is to distribute the number of picks evenly across all zones. 
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Since all three models aim to balance the workload in the progressive ZP system to minimize order 

flow time, we compare the models’ performance. 

5.3 GPSM effectiveness analysis  

Figure 4 illustrates the percentage reductions of average 𝐹𝑇̅̅̅̅  between the original assignment and three 

GPSMs, and between the original assignment and SLR(n) when swapping multiple pairs of products. 

Without the screening test, GPSMSD(1) yields a 3.23% average reduction, GPSMSD(4) yields an 

8.87% average reduction, SLR(1) yields a 2.93% average reduction, and Jane yields an 8.21% in 𝐹𝑇̅̅̅̅ . 

The workload unbalanced scenarios (1, 2, 9, and 10) have larger 𝐹𝑇̅̅̅̅  reductions than the workload 

balanced scenarios (3, 4, 5, 6, 7, and 8). For the same zone workload distribution type scenarios in the 

GPSMs, the random storage policy yields a high reduction percentage of 𝐹𝑇̅̅̅̅ . The results indicate that 

the workload unbalanced scenarios have scope for further improvement than the workload balanced 

scenarios.  

 

 
Figure 4. Percentage reductions of average 𝐹𝑇̅̅̅̅  by workload scenarios without the screening test. 

Without the screening test, we observe 24 failures of reassignment that yield a 1.13% increase 

in the average 𝐹𝑇̅̅̅̅  compared with the original assignment when GPSMSD(1) runs for 200 instances. 

For the same instances, Jane obtains 49 failures of reassignment with an increase of 2.96% in the 

average 𝐹𝑇̅̅̅̅  over the original assignment, and SLR(1) results in 28 failures of reassignment with an 

increase of 1.13%. The screening test excludes the reassignment that is expected to improve with low 

probability. 

Table 4 reports the results of the paired t-tests for each scenario and stage to identify 

statistically significant differences between SLR and GPSMSD. The differences are insignificant in the 

balanced scenarios (1, 2, 9, 10) or low stages (n = 1,2). Where swap operations are performed more 

than three times, GPSMSD has shorter 𝐹𝑇̅̅̅̅  than SLR in the unbalanced scenarios (3, 4, 5, 6, 7, 8). 
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Table 4. Paired t-test results on 𝐹𝑇̅̅̅̅  of SLR(n) – GPSMSD(n) 
Stage Scenario Paired t-test on the average 𝐹𝑇̅̅̅̅  

Mean difference t-value DF P-value 
n = 1 1 11.405 2.082 19 0.051 
 2 -1.286 -0.227 19 0.823 
 3 8.831 1.322 19 0.202 
 4 -6.932 -1.246 19 0.228 
 5 -3.917 -0.638 19 0.531 
 6 3.569 0.451 19 0.657 
 7 3.630 0.476 19 0.639 
 8 17.554 1.960 19 0.065 
 9 -0.853 -0.206 19 0.839 
 10 11.577 2.059 19 0.053 
n = 2 1 16.198 3.604 19 0.002 
 2 3.657 0.700 19 0.493 
 3 13.045 1.613 19 0.123 
 4 -3.310 -0.379 19 0.709 
 5 -3.297 -0.608 19 0.551 
 6 0.542 0.075 19 0.941 
 7 6.574 0.775 19 0.448 
 8 7.898 1.730 19 0.100 
 9 4.738 0.792 19 0.438 
 10 4.738 0.792 19 0.438 
n = 3 1 -0.846 -0.154 19 0.879 
 2 7.804 2.075 19 0.052 
 3 15.395 1.676 19 0.110 
 4 23.124 4.068 19 0.001 
 5 19.973 2.827 19 0.011 
 6 20.554 2.211 19 0.040 
 7 0.025 0.003 19 0.998 
 8 23.433 3.167 19 0.005 
 9 3.494 0.973 19 0.343 
 10 2.883 0.453 19 0.656 
n = 4 1 -1.753 -0.277 19 0.785 
 2 0.667 0.126 19 0.901 
 3 24.278 2.614 19 0.017 
 4 18.841 2.228 19 0.038 
 5 25.310 3.224 19 0.004 
 6 25.168 2.154 19 0.044 
 7 16.812 2.512 19 0.021 
 8 30.869 4.215 19 0.000 
 9 -7.403 -1.706 19 0.104 
 10 -5.434 -1.075 19 0.296 

 

Figure 5 illustrates the screening test’s effects on productivity for 200 assignments from SLR, 

SD-GPSM before the screening test, GPSMSD after the screening test, and the original assignments 

without reassignment. We adopt Youden’s J statistic for the significance levels of the screening tests 

(Youden, 1950). We set swapping time (𝑆𝑇) weight, considering the replenishment time in the real e-

commerce warehouse. On the x-axis, we classify experimental cases by different reassignment 

strategies, stage number, and 𝑆𝑇 weight. The black bars indicate the time difference between the start 

and finish of a sequence of an order list (𝐶𝑚𝑎𝑥; makespan), and the dotted white bars indicate the total 

swapping time (𝑇𝑆𝑇). The y-axis represents the average total elapsed time including 𝐶𝑚𝑎𝑥 and 𝑇𝑆𝑇. 

The makespan distinctly decreases as the stages increase. GPSMSD after the screening test 

yields a shorter 𝑇𝑆𝑇 because the screening test filters out the number of swap operations. When 𝑆𝑇 =

2.5, the total swapping time of GPSMSD(2) before the screening test averages 300 seconds, and the 
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total swapping time of GPSMSD(3) after the screening test averages 256.5 seconds. Before the 

screening test, the makespan of GPSMSD(2) averages 2449.90 seconds, and the makespan of 

GPSMSD(3) averages 2413.62 seconds. After the screening test, GPSMSD frequently shows a large 

makespan reduction with less swapping time.  

 
Figure 5. Screening test effectiveness analysis considering swapping times. 

5.4 Sensitivity analysis of GPSM with a screening test 

We consider different warehouse configurations (i.e., increasing the number of zones, rack columns, 

orders in an order list, and order sizes). We also consider non-identical picker skill configuration (i.e., 

two slow-moving pickers in eight zones) (Bartholdi and Eisenstein (1996), Hong (2019)).We use the 

following measurements: 

 Before: The average 𝐹𝑇̅̅̅̅  reduction before the screening test (%) 

 𝛼: The significance level for the screening test 

 #swaps: The average number of swaps after the screening test 

 Avg: The average 𝐹𝑇̅̅̅̅  reduction (%) 

 Worst: The 𝐹𝑇̅̅̅̅  reduction of the worst case (%) 

Table 5 reports the sensitivity analysis results. In Appendix C, we conduct statistical analyses 

to identify which methods have statistically significant differences across order picking environments. 

As a result of the fact that the data variances for each group are not equal, we use Welch’s ANOVA 

test (Table C1) and Games-Howell as post-hoc tests (Table C2, Table C3, Table C4, Table C5, Table 

C6, and Table C7) for each order picking environment.
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Table 5. Results of GPSM sensitivity analysis with screening tests. 
 

 

Environment JA Stage SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
Avg. Worst  #swaps Avg. Worst Before 𝛼 #swaps Avg Worst Before 𝛼 #swaps Avg Worst Before 𝛼 #swaps Avg Worst 

Default 8.21 -8.13 n = 1 1.00 2.93 -4.16 1.92 0.39 0.27 0.89 -1.76 3.02 0.14 0.55 2.28 -0.82 3.23 0.15 0.59 2.56 -1.90 
  n = 2 2.00 5.28 -3.98 3.06 0.44 0.50 1.37 -1.76 5.32 0.32 1.00 3.86 -0.10 5.60 0.26 1.15 4.54 0.00 
  n = 3 3.00 6.82 -3.75 3.90 0.46 0.70 1.78 -1.76 7.26 0.37 1.40 5.06 -0.10 7.59 0.31 1.71 6.23 0.00 
  n = 4 4.00 8.06 -2.22 4.40 0.48 0.90 2.06 -1.76 8.40 0.37 1.72 5.54 -0.10 8.88 0.37 2.27 7.51 0.00 

12 zones 9.41 -8.69 n = 1 1.00 2.66 -6.22 2.00 0.41 0.28 0.94 -2.60 2.71 0.27 0.51 2.14 -3.84 2.40 0.36 0.42 1.69 -3.30 
  n = 2 2.00 4.59 -6.43 3.00 0.50 0.56 1.47 -2.84 4.62 0.37 0.86 3.44 -3.84 4.20 0.41 0.81 2.98 -3.99 
  n = 3 3.00 5.98 -4.85 4.38 0.50 0.69 1.62 -0.90 5.82 0.39 1.14 4.32 -3.84 5.64 0.44 1.20 3.88 -3.18 
  n = 4 4.00 7.31 -5.22 5.32 0.50 0.72 1.66 -0.90 6.96 0.41 1.38 5.07 -3.84 6.44 0.44 1.54 4.50 -3.18 

12 rack columns 7.00 -17.59 n = 1 1.00 2.26 -5.68 1.53 0.42 0.25 0.75 -0.37 2.83 0.16 0.52 1.82 -2.83 2.69 0.18 0.51 1.83 -1.39 
  n = 2 2.00 3.85 -2.85 2.86 0.45 0.45 1.12 -2.37 4.72 0.32 0.99 3.14 -2.83 4.94 0.35 1.02 3.39 -0.47 
  n = 3 3.00 5.02 -2.41 3.57 0.49 0.63 1.48 -1.11 6.48 0.36 1.45 4.38 -2.83 6.72 0.31 1.51 4.67 0.00 
  n = 4 4.00 6.04 -2.02 4.48 0.50 0.80 1.70 0.00 8.04 0.40 1.90 5.26 -2.83 8.28 0.35 2.00 5.79 0.00 

Unif(10,20) 

Order size 

7.27 -8.68 n = 1 1.00 1.91 -2.47 1.41 0.47 0.80 1.38 -7.23 2.43 0.19 0.79 2.46 -1.31 2.53 0.19 0.77 2.54 -1.31 
  n = 2 2.00 3.51 -2.04 2.50 0.41 1.18 2.20 -7.23 4.12 0.28 1.42 3.95 -1.31 4.36 0.25 1.46 4.20 -0.72 
  n = 3 3.00 4.87 -2.07 3.33 0.41 1.32 2.52 -7.23 5.54 0.43 2.04 5.21 -1.31 5.82 0.35 2.15 5.56 0.00 
  n = 4 4.00 6.01 -2.32 3.98 0.46 1.42 2.67 -7.23 6.73 0.39 2.65 6.31 -1.31 7.14 0.38 2.83 6.75 0.00 

200 orders in 

each order list 

13.59 -7.60 n = 1 1.00 4.14 -1.19 3.08 0.43 0.53 2.19 -3.60 4.03 0.24 0.86 3.93 -0.42 3.73 0.18 0.38 1.55 -0.42 
  n = 2 2.00 7.06 -1.05 5.44 0.40 0.79 3.24 -3.60 6.96 0.40 1.67 6.72 0.00 6.76 0.27 0.69 2.64 -0.42 
  n = 3 3.00 9.22 -1.58 6.84 0.40 0.80 3.27 -3.60 9.21 0.39 2.39 8.80 0.00 9.15 0.33 0.93 3.35 -0.42 
  n = 4 4.00 10.82 -0.93 7.60 0.50 0.81 3.29 -3.60 10.88 0.42 3.05 10.30 0.00 10.92 0.39 1.15 3.76 -0.42 

Non-identical 

picker skill 

7.74 -10.47 n = 1 1.00 2.78 -4.99 3.60 0.41 0.93 3.44 -2.75 2.85 0.37 0.73 2.70 -2.14 2.99 0.33 0.52 2.48 -2.03 
  n = 2 2.00 4.77 -6.42 6.22 0.39 1.43 4.92 -2.46 5.22 0.43 1.32 4.78 -3.16 5.40 0.40 1.03 4.21 -1.12 
  n = 3 3.00 6.49 -4.25 8.19 0.47 1.91 5.89 -2.46 7.14 0.43 1.82 6.01 -3.16 7.20 0.43 1.54 5.69 -1.12 
  n = 4 4.00 7.53 -5.27 9.64 0.48 2.37 6.67 -2.46 8.44 0.44 2.24 6.94 -3.16 8.60 0.43 2.05 6.67 -1.12 
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Sensitivity analysis over default order picking environment 

Table 5 reports only four failures of reassignment with a 1.09% increase in 𝐹𝑇̅̅̅̅  compared with the 

original assignment when GPSMSD(1) runs for 200 instances. When the stage increases, the SLR 

model swaps the number of product pairs equal to the stage number, whereas the GPSM policies swap 

fewer product pairs because the screening test filters out the swap operation with a low improvement 

probability. Both GPSMSD and GPSMMM significantly reduce 𝐹𝑇̅̅̅̅  and swapping time. JA swaps the 

unlimited number of storage locations and yields 8.21% of the average 𝐹𝑇̅̅̅̅  reduction. GPSMSD(4) 

swaps on average 2.27 times to yield 7.51% of the average 𝐹𝑇̅̅̅̅  reduction, but SLR needs to swap three 

times to yield 6.82% of the average 𝐹𝑇̅̅̅̅  reduction. GPSMSD yields 0.00% for the 𝐹𝑇̅̅̅̅  reduction of the 

worst cases, whereas SLR(4) and JA yield -2.22% and -8.13%, respectively. Appendix Table C2 

shows that 𝐹𝑇̅̅̅̅  reduction rates of SLR(4) and JA are not significantly different from GPSMSD(4) and 

GPSMMM(4) before performing screening tests. The results indicate that GPSM is a reliable, cost-

effective tool for warehouse management. 

Sensitivity analysis over 12 zones 

Table 5 also shows that reassignment performance decreases when the number of zones increases. 

SLR yields 2.66% of the average 𝐹𝑇̅̅̅̅  reduction with one swap operation and 4.59% of the average 𝐹𝑇̅̅̅̅  

reduction with two swap operations. After the screening test, the GPSM policies skip the low 

improvement cases and reduce the average number of swap operations. GPSMSD yields 4.50% of the 

𝐹𝑇̅̅̅̅  with average 1.54 swap operations, and GPSMMM yields 5.07% of the 𝐹𝑇̅̅̅̅  with average 1.38 swap 

operations. GPSMSD yields -3.18% for the 𝐹𝑇̅̅̅̅  reduction of the worst cases, whereas JA and SLR(4) 

yield -8.69% and -5.22%, respectively. Appendix Table C3 shows that 𝐹𝑇̅̅̅̅  reduction rates of SLR(4) 

and GPSMSD(4) are not significantly different before performing screening tests. The results indicate 

that GPSM performs well over large-scale assignments with limited training data resources. 

Sensitivity analysis over 12 rack columns per zone  

As the number of rack columns in each zone increases, picker’s travel distance has a large effect on 

order picking performance. SLR yields 3.85% for the average 𝐹𝑇 ̅̅ ̅̅̅ reduction with 2 swap operations, 

and GPSMSD and GPSMMM yield 5.79% for the average 𝐹𝑇̅̅̅̅  reduction with average 2.00 swap 

operations and 5.26%, respectively, with 1.90 swap operations. The results indicate that both GPSMSD 

and GPSMMM balance the workloads well between zones when travel distance is critical. 

Sensitivity analysis over order size = Uniform(10,20) 

GPSMSD and GPSMMM consistently reduce the average 𝐹𝑇̅̅̅̅  from stages 1–4 and provide assignments 

with a high probability to improve. Intuitively, increasing the order size causes congestion because the 

totes stay longer in the system. JA yields 7.27% for the average 𝐹𝑇̅̅̅̅  reduction with unlimited swaps, 

whereas SLR yields 3.51% when swapping two pairs of products, and 4.87% when swapping three 

pairs of products, respectively. GPSMSD yields 6.75 % when swapping an average 2.83 pairs of 
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products, whereas GPSMMM yields 6.31% when swapping an average 2.65 pairs of products. 

Appendix Table C5 shows that 𝐹𝑇̅̅̅̅  reduction rates of SLR(4), JA, GPSMSD(4), and GPSMMM(4)  are 

not significantly different before performing screening tests. The results confirm well-balanced 

workloads between zones when the order size is large. 

Sensitivity analysis over number of orders = 200 

To analyze GPSM performance over a large problem size, we increase the number of orders in each 

order list. As the number of orders increases, the average 𝐹𝑇̅̅̅̅  reduction between the original and 

reassignment increases: GPSMMM(4) yields 10.30% on average and 0.00% in the worst case with the 

average number of swaps = 3.05, and SLR yields 9.22% on average and −1.58% in the worst case 

with three swap operations, whereas JA yields 13.59% on average and -7.60% in the worst case with 

the unlimited number of swap operations. 

Sensitivity analysis over non-identical picker skill 

GPSMAZ yields the largest 𝐹𝑇̅̅̅̅  reduction before the screening test, 2.11% and 1.90% higher than 

SLR(4) and JA, respectively. Despite the poor performance of GPSMAZ in other configurations, it 

does capture the zones with slow picking speeds and assigns fewer loads to them, which balances the 

workload in a non-identical picker-skill environment. Appendix Table C7 shows that 𝐹𝑇̅̅̅̅  reduction 

rates of GPSMAZ(4) is significantly larger than SLR(4) before performing screening tests. The results 

indicate that the GPSM policies effectively reassign storage to reduce 𝐹𝑇̅̅̅̅  when pickers are non-

identical in skill and speed. 

6. Conclusion 

This paper proposed an average flow-time estimation model for estimating travel time and a storage 

location reassignment with risk assessment in an automated zone picking system. During the storage 

location reassignment procedure, warehouse management applied the screening test for each 

reassignment stage to assess the risk of the reassignment decision’s failure.  Ten scenarios from a real 

e-commerce warehouse configuration and historical order data were used to evaluate the performance 

of the proposed model.  

The GPSM estimated the average flow time from the historical data with three different types 

of features: the number of picks in all zones, the min-max number of picks, standard deviation of the 

number of picks, and the standard deviation of the number of picks. Given storage location 

assignments, it enabled the GPSM to adjust the storage location by evaluating the minimum estimated 

average flow time. The GPSM identified new storage location assignments and assessed the risk of a 

reassignment failure with the probability of improvement. 

 The simulation experiments and statistical tests validated that the proposed models 

significantly reduced the average flow time of orders in large-scale order picking and non-identical 

picker skill environments, and that the screening test limited the number of swap operations.  
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Future research will investigate constructing the features extracted from an order list based on 

domain knowledge of the picking system. More analysis should confirm the accuracy of an estimation 

model that relies on feature extraction from large-scale order picking data with no loss of data 

integrity. Further investigation of the sequential sampling and kernel functions should indicate 

improved model performance with limited data.  
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Appendix A. Numerical validation 

We measure the Pearson correlation coefficient (Pearson’s r) of the average flow time estimation 

model. Figure A1 plots the correlation along with the Pearson’s r value between the actual and 

predicted values of true average flow time for 200 different order lists generated using simulation data 

from industry (see Sections 5.1 and 5.2 for details of the dataset). For the three different GPSMs, 

Pearson’s r values ranging from 0.537 to 0.950 indicate a relatively strong correlation between 

simulations and predictions. 

Figure A1. Correlation between the values obtained by simulations and by the three GPSMs. 

 

We also calculate the mean absolute percentage error (MAPE) and R2 score of the three 

GPSMs for the dataset. Table A1 reports the values denoting the regression accuracy of the proposed 

average flow-time estimation models. 

Table A1. MAPE and R2 scores of GPSM. 
Model  MAPE (%) R2 

GPSMAZ  5.85 0.26 

GPSMMM  2.74 0.79 

GPSMSD  2.26 0.89 
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Appendix B. Statistical analysis between workload scenarios 

Table B1. Welch’s ANOVA tests of performance between workload scenarios. 
Source Statistica DF Num DF Den P-value 

𝐹𝑇̅̅̅̅  262.032 9 199.157 < 0.001 
a Asymptotically F distributed 

Table B2. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  between workload scenarios 
based on Games-Howell post-hoc tests. 

Scenario 1 2 3 4 5 6 7 8 9 10 
1  -59.445* -190.629* -273.590* -263.397* -343.676* -272.955* -336.721* -34.219* -62.487* 
2   -131.180* -214.141* -203.948* -284.226* -213.505* -277.271* 25.231 -3.037 
3    -82.961* -72.768* -153.046* -82.326* -146.091* 156.410* 128.143* 
4     10.193 -70.086* 0.635 -63.130* 239.371* 211.104* 
5      -80.279* -9.558 -73.323* 229.178* 200.911* 
6       70.721* 6.955 309.457* 281.189* 
7        -63.766* 238.736* 210.468* 
8         302.501* 274.234* 
9          -28.267 
10           

* Mean difference significant at the 0.05 level 
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Appendix C. Statistical analysis between methods 

Table C1. Welch’s ANOVA tests of performance between methods. 
Environment Stage Statistica DF Num DF Den P-value 
default n = 1 75.511 5 524.212 < 0.001 

n = 2 51.969 5 531.754 < 0.001 
n = 3 40.901 5 537.173 < 0.001 
n = 4 42.488 5 542.384 < 0.001 

12 zones n = 1 100.042 5 526.994 < 0.001 
n = 2 78.095 5 534.856 < 0.001 
n = 3 59.942 5 539.904 < 0.001 
n = 4 48.484 5 543.359 < 0.001 

12 rack 
 columns 

n = 1 49.255 5 509.983 < 0.001 
n = 2 33.982 5 514.926 < 0.001 
n = 3 26.549 5 519.378 < 0.001 
n = 4 24.391 5 523.325 < 0.001 

Unif(10,20) 
Order size 

n = 1 94.673 5 507.882 < 0.001 
n = 2 70.097 5 514.426 < 0.001 
n = 3 53.633 5 521.611 < 0.001 
n = 4 44.641 5 527.161 < 0.001 

200 orders in 
each order list 

n = 1 178.769 5 495.630 < 0.001 
n = 2 137.922 5 503.428 < 0.001 
n = 3 105.377 5 510.265 < 0.001 
n = 4 86.137 5 517.059 < 0.001 

Non-identical 
picker skill 

n = 1 47.813 5 510.657 < 0.001 
n = 2 28.858 5 518.685 < 0.001 
n = 3 20.066 5 527.084 < 0.001 
n = 4 20.938 5 535.300 < 0.001 

a Asymptotically F distributed 

Table C2. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  in the default environment 
based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  129.097* 44.031* 29.906 45.268* 48.389* 
 JA   -85.065* -99.190* -83.828* -80.708* 
 SLR(n)    -14.125 1.237 4.358 
 GPSMAZ(n)     15.362 18.483 
 GPSMMM(n)      3.121 
 GPSMSD(n)       
n = 2 Original  129.097* 79.480* 47.641* 79.993* 83.985* 
 JA   -49.617* -81.456* -49.104* -45.112* 
 SLR(n)    -31.838* 0.513 4.505 
 GPSMAZ(n)     32.351* 36.344* 
 GPSMMM(n)      3.992 
 GPSMSD(n)       
n = 3 Original  129.097* 102.719* 60.490* 109.162* 114.303* 
 JA   -26.378* -68.606* -19.934 -14.794 
 SLR(n)    -42.228* 6.444 11.584 
 GPSMAZ(n)     48.672* 53.812* 
 GPSMMM(n)      5.140 
 GPSMSD(n)       
n = 4 Original  129.097* 121.378* 68.870* 126.214* 134.113* 
 JA   -7.719 -60.226* -2.883 5.017 
 SLR(n)    -52.507* 4.836 12.735 
 GPSMAZ(n)     57.344* 65.243* 
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 GPSMMM(n)      7.899 
 GPSMSD(n)       
* Mean difference significant at the 0.05 level 

Table C3. Multiple comparison of mean differences in the average 𝐹𝑇̅̅̅̅  in the 12 zones environment 
based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  142.240* 39.719* 30.324 40.209* 35.453 
 JA    -102.521*  -111.916*  -102.031*  -106.787* 
 SLR(n)    -9.395 0.491 -4.266 
 GPSMAZ(n)     9.885 5.129 
 GPSMMM(n)      -4.756 
 GPSMSD(n)       
n = 2 Original  142.240* 68.487* 45.252* 68.572* 62.562* 
 JA    -73.753*  -96.988*  -73.668*  -79.677* 
 SLR(n)    -23.235 0.085 -5.924 
 GPSMAZ(n)     23.320 17.310 
 GPSMMM(n)      -6.010 
 GPSMSD(n)       
n = 3 Original  142.240* 89.270* 65.932* 86.845* 83.713* 
 JA    -52.970*  -76.308*  -55.395*  -58.527* 
 SLR(n)    -23.338 -2.425 -5.557 
 GPSMAZ(n)     20.913 17.782 
 GPSMMM(n)      -3.132 
 GPSMSD(n)       
n = 4 Original  142.240* 108.714* 80.106* 104.562* 96.093* 
 JA    -33.526*  -62.134*  -37.678*  -46.147* 
 SLR(n)     -28.608* -4.153 -12.622 
 GPSMAZ(n)     24.455* 15.986 
 GPSMMM(n)      -8.469 
 GPSMSD(n)       

* Mean difference significant at the 0.05 level 

Table C4. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  in the 12 rack columns 
environment based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  144.657* 42.460 29.165 52.112 49.528 
 JA   -102.196* -115.492* -92.545* -95.129* 
 SLR(n)    -13.295 9.652 7.068 
 GPSMAZ(n)     22.947 20.363 
 GPSMMM(n)      -2.584 
 GPSMSD(n)       
n = 2 Original  144.657* 72.334* 54.881* 87.701* 91.614* 
 JA   -72.323* -89.776* -56.956* -53.044* 
 SLR(n)    -17.453 15.367 19.279 
 GPSMAZ(n)     32.821 36.733 
 GPSMMM(n)      3.912 
 GPSMSD(n)       
n = 3 Original  144.657* 94.480* 68.615* 120.754* 125.059* 
 JA   -50.177* -76.042* -23.904 -19.598 
 SLR(n)    -25.865 26.274 30.579 
 GPSMAZ(n)     52.138* 56.444* 
 GPSMMM(n)      4.306 
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 GPSMSD(n)       
n = 4 Original  144.657* 113.849* 85.417* 150.018* 154.481* 
 JA   -30.808 -59.240* 5.361 9.823 
 SLR(n)    -28.432 36.169 40.632 
 GPSMAZ(n)     64.601* 69.064* 
 GPSMMM(n)      4.462 
 GPSMSD(n)       
* Mean difference significant at the 0.05 level 

Table C5. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  in the Unif(10,20) order size 
environment based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  216.892* 54.461 41.753 68.556* 71.486* 
 JA    -162.431*  -175.139*  -148.336*  -145.406* 
 SLR(n)    -12.708 14.095 17.025 
 GPSMAZ(n)     26.803 29.733 
 GPSMMM(n)      2.930 
 GPSMSD(n)       
n = 2 Original  216.892* 100.288* 73.472* 116.596* 123.383* 
 JA    -116.604*  -143.419*  -100.296*  -93.509* 
 SLR(n)    -26.815 16.308 23.095 
 GPSMAZ(n)     43.124 49.910 
 GPSMMM(n)      6.787 
 GPSMSD(n)       
n = 3 Original  216.892* 138.916* 98.224* 157.297* 164.920* 
 JA    -77.976*  -118.668* -59.595  -51.971* 
 SLR(n)    -40.692 18.381 26.004 
 GPSMAZ(n)     59.073* 66.696* 
 GPSMMM(n)      7.623 
 GPSMSD(n)       
n = 4 Original  216.892* 171.478* 116.889* 191.426* 202.302* 
 JA    -45.414*  -100.002* -25.466 -14.589 
 SLR(n)     -54.589* 19.948 30.824 
 GPSMAZ(n)     74.537* 85.413* 
 GPSMMM(n)      10.876 
 GPSMSD(n)       

* Mean difference significant at the 0.05 level 

Table C6. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  in 200 orders in the order list 
environment based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  235.929* 69.321* 53.654 67.399* 62.195* 
 JA   -166.607*  -182.274*  -168.530*  -173.734* 
 SLR(n)    -15.667 -1.923 -7.126 
 GPSMAZ(n)     13.744 8.541 
 GPSMMM(n)      -5.204 
 GPSMSD(n)       
n = 2 Original  235.929* 118.812* 94.709* 116.800* 112.905* 
 JA   -117.117* -141.220* -119.129* -123.024* 
 SLR(n)    -24.103 -2.012 -5.907 
 GPSMAZ(n)     22.091 18.196 
 GPSMMM(n)      -3.895 
 GPSMSD(n)       
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n = 3 Original  235.929* 155.636* 118.416* 154.732* 153.536* 
 JA   -80.292* -117.518* -81.196* -82.393* 
 SLR(n)    -37.220* -0.904 -2.101 
 GPSMAZ(n)     36.316* 35.120 
 GPSMMM(n)      -1.197 
 GPSMSD(n)       
n = 4 Original  235.929* 182.875* 132.236* 183.524* 184.098* 
 JA   -53.054* -103.693* -52.405* -51.830* 
 SLR(n)    -50.639* 0.649 1.224 
 GPSMAZ(n)     51.288* 51.863* 
 GPSMMM(n)      0.575 
 GPSMSD(n)       
* Mean difference significant at the 0.05 level 

Table C7. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  in the non-identical picker 
skill environment based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  147.011* 49.026 61.845* 50.186 52.989 
 JA   -97.985* -85.166* -96.825* -94.022* 
 SLR(n)    12.819 1.160 3.962 
 GPSMAZ(n)     -11.659 -8.856 
 GPSMMM(n)      2.803 
 GPSMSD(n)       
n = 2 Original  147.011* 84.656* 106.695* 91.732* 94.720* 
 JA   -62.356* -40.316* -55.279* -52.291* 
 SLR(n)    22.040 7.076 10.064 
 GPSMAZ(n)     -14.963 -11.975 
 GPSMMM(n)      2.988 
 GPSMSD(n)       
n = 3 Original  147.011* 114.430* 141.455* 125.281* 127.133* 
 JA   -32.581* -5.556 -21.730 -19.878 
 SLR(n)    27.025 10.851 12.703 
 GPSMAZ(n)     -16.174 -14.322 
 GPSMMM(n)      1.852 
 GPSMSD(n)       
n = 4 Original  147.011* 134.200* 167.025* 148.532* 151.843* 
 JA   -12.811 20.014 1.521 4.832 
 SLR(n)    32.825* 14.332 17.643 
 GPSMAZ(n)     -18.494 -15.182 
 GPSMMM(n)      3.311 
 GPSMSD(n)       
* Mean difference significant at the 0.05 level 
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Gaussian Process-based Storage Location Assignments with  
Risk Assessments for Progressive Zone Picking Systems 

 

Abstract 

E-commerce warehouses are under constant pressure to adapt their order picking systems and reassign 

product storage locations to meet fluctuating customer demands. Most existing approaches optimize 

storage location reassignments based on customer orders and operational configurations to maintain 

high order picking performance. This paper presents a Gaussian process surrogate model (GPSM) 

approach to predict the performance metrics for storage location reassignments. The GPSM estimates 

the expected flow time of orders from the historical data on previous storage location assignments and 

aids in identifying the new assignments that yield the minimum estimated average flow times. 

Management can also take advantage of the GPSM’s uncertainty quantification capability to assess 

the probability of improvement for a given storage reassignment and its implementation. The 

proposed model and assignment policy are validated using discrete-event simulations and industrial 

data. Experimental results demonstrate that the GPSM can improve expected flow time by 7.51% and 

reduce unnecessary reassignment operations by 43.25%. 

 

Keywords: Facilities planning and design; Zone order picking; Storage location assignment; 

Gaussian process approach. 

 

1. Introduction 

Zone picking (ZP) systems are popular owing to their high-throughput capability, flexibility to handle 

small and large order volumes, and adaptability to a wide range of product sizes with a variety of 

order pickers (Gaast et al., 2020). By separating an order picking area into zones and assigning one 

picker per zone, ZP systems can reduce travel time and congestion among pickers (De Koster et al., 

2007).  

In ZP systems, performance bottlenecks can still occur due to workload imbalances or other 

reasons. Therefore  ZP comes with order picking planning policies, such as order batching (Pan, Shih, 

& Wu, 2015), order sequencing (Huang et al., 2018), and storage assignment (Jane, 2000). Order 

batching reduces order picking variability and mitigates workload gaps between zones by grouping 

orders so that each zone’s workload is evenly distributed between batches. Order sequencing adjusts 

tote release sequences to improve the distribution of workload balances. Storage assignment balances 

workloads over zones by assigning products to each zone during a long picking time. Optimizing 

product assignments is referred to as the storage location assignment problem (SLAP) (Gu et al., 

2007).  

REVISED Manuscript (Marked)
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This paper investigates the SLAP for a progressive bypass ZP flow-rack system with an 

automated storage/retrieval (S/R) crane. The flow-rack system is popular in warehouse management 

systems for e-commerce businesses because it handles small and frequent orders and daily demand 

fluctuations under short flow times. In many warehouses, since assignment capabilities are limited in 

terms of resources and time, the SLAP problem is optimized by reassigning selected products instead 

of reallocating all products in an order. As illustrated in Figure 1, prior to order picking, the S/R crane 

relocates a few storage locations of products between the zones to rebalance the workloads 

(Roodbergen & Vis, 2009). We study the optimization of the swap operations considering the current 

assignment of products and estimates of the expected workload over daily orders. 

 
Figure 1. Progressive bypass ZP system with an S/R crane (Kim and Hong (2022)).  

Solutions to the SLAP use workload proxies to approximate current workloads and exploit 

them for a simple rebalancing of the estimated workloads. Popular workload proxies include the 

number of picks (Jane & Laih, 2005; Jewkes et al., 2004; Kim & Hong, 2022), the expected walk time 

from a picker’s loading depot (Jewkes et al., 2004), picker’s skill level (Bartholdi & Eisenstein, 

1996), and picker’s route distance (De Koster et al., 2012). However, it is still unclear whether the 

proxies accurately represent workloads, and it is questionable whether using the proxies is effective in 

optimizing an order picking performance metric such as the average flow time of orders. In this paper, 

we propose to use a data driven approach to directly estimate the order picking performance metric as 

a function of current workloads, and we exploit the data-driven estimation to solve SLAP. 

To our knowledge, only a few studies have used a data-driven approach to the workload 

balancing and storage location reassignment problems. Building an analytical model to estimate order 

picking performance from order picking data has been challenging due to the noise-included 

uncertainty of complex ZP systems. We develop a Gaussian process surrogate model (GPSM) for a 

data-driven estimation of the average flow time of orders from the historical data of previous storage 

location assignments. Surrogate modeling usually uses the Gaussian process, due to good analytical 

inference, computational flexibility, and straightforward uncertainty quantification (Rasmussen & 

Williams, 2006). GPSM can measure whether a new storage assignment is likely to improve order 

picking performance by means of the posterior prediction uncertainty. Based on the GPSM, we 

. . .   

Recirculation 
conveyor

Load Unload

Zone 1 Zone 2 Zone z
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develop a storage location reassignment method that sequentially runs one swap operation at a time 

and suggests the reliable optimal swap operation with respect to the GPSM’s average flow time 

estimate. 

Contributions of this study are summarized as follows: 

 Model-driven approach vs. data-driven approach. We directly estimate order picking 

performance with a data-driven approach by implementing the GPSM. Since estimating 

order picking performance is challenging due to warehouse complexity, size, and noise in 

the data, implicit workload proxies have been used to estimate performance in traditional 

methods (De Koster et al., 2012; Jane & Laih, 2005; Jane, 2000; Jewkes et al., 2004; Kim & 

Hong, 2020). Instead of approximating workload proxies, we optimize storage location 

assignments by using historical order picking data to estimate the average flow time with 

GPSM.  

 Domain knowledge-based performance improvement. We improve the GPSM’s 

estimation performance with our domain specific feature generation and training data 

configuration. As a result, we present an accurate learning model that effectively estimates 

order picking performance to solve SLAP.  

 Risk assessment using GPSM. We propose a screening test based on the improvement 

probability obtained from the GP estimates and the storage reassignment procedure based 

on the estimation model and screening test The procedure optimizes storage space with 

minimal adjustments, reduces material handling costs, and enhances customer service in the 

warehouse. 

 Performance evaluation. We use discrete event simulation and statistical tests to 

demonstrate the proposed models’ ability to reduce flow time and reassignment effort, 

thereby improving warehouse management systems and operational efficiency. 

 

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature. 

Section 3 explains the fulfillment system and the proposed GPSM for average flow-time estimation. 

Section 4 introduces the proposed storage reassignment method using the flow-time estimation. 

Section 5 describes the experiment validating the model, and the simulations, results, and sensitivity 

analysis. Section 6 concludes and suggests future research. 

2. Literature review 

2.1 General storage location assignment 

Most studies of the SLAP use travel distance and travel time as the performance measurements. Caron 

et al. (2010) developed an optimization model that minimizes the travel distance and travel time, and 
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they also developed an estimation model that estimates the two performance measurements. Brynzér 

and Johansson (1996) suggested that grouping products by characterizing their variant information 

could reduce the product movements for traveling and picking. Muppani and Adil (2008) used 

nonlinear integer programming to capture the impact of a class-based storage system on the required 

space and material handling cost. Several studies have used probabilistic models and Markov chains 

to estimate travel distance or travel time to evaluate order picking performance and analyze the 

optimal storage assignment policy (Le-Duc & De Koster, 2005; Pan et al., 2014; Pan & Wu, 2009).  

Motivated by a real problem, SLAP studies have also considered controlling the number of 

reassignment operations. Quintanilla et al. (2014) developed heuristic algorithms to maximize the 

available storage space by reoptimizing pallet locations in a random storage system. Kübler et al. 

(2020) suggested the ABC class-based iterative storage reassignment method considering order 

batching and picker routing together, and evaluated the reassignment effort with the future travel 

distance to identify promising reassignment. Pazour and Carlo (2015) developed mathematical model 

formulations for reassignment operating policies using an automated S/R crane and quantified the 

total loaded and unloaded travel distances while optimizing the reassignment operations.   

In progressive zone picking systems, the SLAP has been focused on balancing workloads 

between zones for operational efficiency. Studies of workload balancing include Jane (2000), who 

proposed a heuristic algorithm to balance pickers’ workloads by adjusting the number of storage 

zones. Pan, Shih, Wu, et al. (2015) developed a heuristic based on a genetic algorithm to solve the 

SLAP considering workload balance in a progressive zone picking system. Kim and Hong (2022) 

used mixed-integer programming to construct the storage location reassignment (SLR) model and 

applied it to a progressive bypass ZP system with a circulation conveyor and an S/R crane. The 

authors’ model relocated the storage locations of products considering workload balance and 

recirculation reduction.  

The models above, however, require solver tools, experts who can adapt the model to the 

warehouse environment, and lengthy computation to solve the kinds of large-size problems 

encountered by e-commerce warehouses. Most model-based optimization assumes a static operational 

environment, while data-driven optimization allows solving SLAP in an uncertain environment. Thus, 

we focus on data-driven storage location assignments for more agile and flexible SLAP optimization.  

2.2 Data-driven storage location assignments 

Various types of data-driven approaches have been developed for SLAP, and several studies have 

utilized clustering algorithms. Jane and Laih (2005) suggested a clustering algorithm to distribute the 

frequently requested products into several zones for workload balance in a synchronized zone picking 

system. Chuang et al. (2012) clustered associated items into groups and determined the sequence of 

the order groups for SLAP to minimize picking distance.  



5 

 

Chiang et al. (2011) used a data association algorithm to group products into similarity groups 

by order frequency and other product characteristics and introduced a data-mining based storage 

assignment (DMSA), which aimed to increase the association index (AIX) between products and their 

storage locations. Chiang et al. (2014) extended their research using a weighted support count (WSC) 

to calculate each AIX. The heuristic considered the relationship between a family and a cluster of 

products.  

Pang and Chan (2016) developed a data mining-based assignment using association rules to 

minimize travel distances by controlling storage locations of correlated items and items near entry 

points. In a dynamic environment, Li et al. (2016) optimized the storage assignment based on the 

ABC classification and mutual affinity of products. The product affinity-based heuristic (PABH) 

identified the relationship between products. The authors used a greedy genetic algorithm because the 

problem was a quadratic assignment problem.  

Regression techniques have been investigated for their use in storage location assignments. 

Sadiq et al. (1996) built a regression model to analyze the performance of storage location 

assignments considering order picking time and reassignment. Larco et al. (2016) used linear 

regression models to estimate worker discomfort factor and order cycle times. Larco et al. (2016) 

solved SLAP using the estimated values as the parameters of bi-objective optimization. Larco et al. 

(2016); Sadiq et al. (1996) estimated order picking performance with simple linear models based on 

factors such as storage location, bin type, product life cycle, and management policies, but neglected 

workload balance factors, a key influence on the performance of ZP systems. 

Two practical issues deserve further investigation. Previous studies of data-driven SLAP 

consider the allocation of storage locations for entire products, yet when real-world reassignments are 

both resource- and cost-intensive, many warehouses choose to reallocate a limited range of products 

due to demand and operational uncertainty. The reassignment benefit should outweigh the 

reassignment cost while considering variables such as order sequence, workload balance, and rack 

storage policy. We use the Gaussian process to solve the data-driven SLAP with limited reassignment 

capacity and to quantify the reassignment risk to screen for reassignment operations with high 

potential for improvement. 

3. Progressive ZP system and GPSM 

In this section, we describe the progressive ZP system and explain the average flow time estimation 

using GPSM. We consider order picking in the concept of wave management, where a large set of 

orders is scheduled to be picked during a time period (pick wave) (Bartholdi & Hackman, 2008). We 

define the set of orders in a pick wave as an order list. Prior to the pick wave, there is an opportunity to 

reassign the storage location of items within the picking zones. The flow time of order refers to the 

time interval between the time a tote enters to the time it exits the ZP system. Flow time is a critical 
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performance metric that needs to be reduced to shorten in-transit inventory and ensure fast delivery 

(Bartholdi & Hackman, 2008). According to practitioners, when considering throughput time or other 

indicators, it is challenging to operate a smooth transition to a post-process (e.g., packing), so the 

average flow time of orders is considered. We propose a learning model that estimates the average 

flow times of upcoming order lists based on workload balance information from historical order 

picking data. 

3.1 Progressive ZP system characteristics 

Our progressive zone picking system consists of an S/R crane and multiple zones. S/R cranes are 

automated material handling systems that are used in numerous manufacturing and warehousing 

systems to handle, store and retrieve discrete products (Ghomri & Sari, 2017). The S/R crane transfers 

each carton of products from a reserve rack to a flow rack, between reserve racks, or from the 

entrance or exit of the fulfillment center to any racks. The S/R crane can exchange the storage 

locations of a pair of products at a time by temporarily placing the products to be exchanged in the 

reserve rack area, which we refer to as a swap operation. Figure 2 shows an S/R crane replenishing a 

flow rack area with cartons from the reserve rack area.  

Each zone has a flow rack and one zone-dedicated picker. Pickers pick products from cells in 

the flow rack and place them in totes. The totes travel on a conveyor through the zones. Each tote 

visits only the zones containing the products to be picked. When a zone has no room for a tote to 

enter, the tote skips over (bypasses) the zone and keeps traveling on the conveyor until a room is 

available.  

 
Figure 2. Progressive ZP flow-rack system with S/R crane (a) side view and (b) front view (modified 

from Cahyo (2017)). 
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A zone consists of multiple flow racks, and a flow rack consists of multiple cells to store 

products. We consider a simplified model, i.e., each cell contains only one product type. An order list 

is the batch of orders handled in the same shift or time window, and an order is the types and amounts 

of products. 

We use the following notations.  
Set and indices 

 𝑂, 𝑜 The set of orders, and an order 𝑜 ∈ 𝑂 

 𝐿, 𝑙 The set of order lists, and an order list 𝑙 ∈ 𝐿 

 𝑍, 𝑧 The set of zones, and a zone z ∈ 𝑍 

 𝐾, 𝑘 The set of cells, and a cell 𝑘 ∈ 𝐾 

 𝑃, 𝑝 The set of products, and a product 𝑝 ∈ 𝑃 

 𝑅, 𝑟 The set of relative rack column positions in a zone, and a rack position 𝑟 ∈ 𝑅 

Order and storage location representation 

Let C be the |𝑂| × |𝑃| matrix representing products in orders with 𝑐𝑜𝑝  as its (𝑜, 𝑝) th element, where 

𝑐𝑜𝑝 be a binary variable indicating whether order 𝑜 contains product 𝑝; 𝑐𝑜𝑝 is 1 if order 𝑜 contains 

product 𝑝, and 0 otherwise. Let S denote a |𝑃| × |𝐾| matrix describing the relationship between the 

products and cells with its (𝑝, 𝑘) th element 𝑠𝑝𝑘 being a binary variable indicating whether product 𝑝 

is located on cell 𝑘. Let W be a |𝑂| × |𝐾| matrix representing the relationship between the orders and 

cells with its (𝑜, 𝑘) th element 𝑤𝑜𝑘 being a binary variable indicating whether order 𝑜 requires a 

product to be picked from cell 𝑘. The matrix W is related to matrices C and S through 

W = C ∙ S  

 = [

𝑐11 ⋯ 𝑐1|𝑃|
⋮ ⋱ ⋮

𝑐|𝑂|1 ⋯ 𝑐|𝑂||𝑃|
] ∙ [

𝑠11 ⋯ 𝑠1|𝐾|
⋮ ⋱ ⋮

𝑠|𝑃|1 ⋯ 𝑠|𝑃||𝐾|
].  

Abstract representation by order list and Zone/Rack locations 

Let A be a |𝐾| × |𝐿| matrix of 𝑎𝑙𝑘′𝑠 that represents the total number of picks from cell 𝑘 ∈ 𝐾 required 

to fill order list 𝑙 ∈ 𝐿. Let B represent a |𝐿| × |𝑍| matrix with 𝑏𝑙𝑧 as its (𝑙, 𝑧) th element which 

represents the total number of picks from zone 𝑧 ∈ 𝑍 to fill order list𝑙 ∈ 𝐿. Let G be a |𝐿| × |𝑅| matrix 

of 𝑔𝑙𝑟′𝑠 that represents the total number of picks from flow rack 𝑟 ∈ 𝑅 required to fill order list 𝑙 ∈ 𝐿 . 

Let 𝑂𝑙 denote the set of orders in the order list 𝑙. Let 𝐾𝑧 and 𝐾𝑟 denote the set of cells assigned in zone 

𝑧 and the set of cells assigned in rack position 𝑟, respectively. We can calculate 𝑎𝑙𝑘 using the matrix 

W as 

𝑎𝑙𝑘 = ∑ 𝑤𝑜𝑘

𝑜∈𝑂𝑙

. 

We can calculate 𝑏𝑙𝑧 as 
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𝑏𝑙𝑧 = ∑ 𝑎𝑙𝑘
𝑘∈𝐾𝑧

, 

and calculate 𝑔𝑙𝑟 as 

 𝑔𝑙𝑟 = ∑ 𝑎𝑙𝑘
𝑘∈𝐾𝑟

. 

Below, we summarize the constant matrices for the problem formulation. 

C, 𝑐𝑜𝑝   Order-Product inclusion matrix and its elements 𝑐𝑜𝑝, ∀𝑜 ∈ 𝑂 and 𝑝 ∈ 𝑃 

W, 𝑤𝑜𝑘 Order-Cell inclusion matrix and its elements 𝑤𝑜𝑟 , ∀𝑜 ∈ 𝑂 and 𝑘 ∈ 𝐾 

S, 𝑠𝑝𝑘  Product-Cell inclusion matrix and its elements 𝑠𝑝𝑟 , ∀𝑝 ∈ 𝑃 and 𝑘 ∈ 𝐾 

A, 𝑎𝑙𝑘  Order list-Cell relationship matrix and its values 𝑎𝑙𝑘, ∀𝑙 ∈ 𝐿 and 𝑘 ∈ 𝐾 

B, 𝑏𝑙𝑧  Order list-Zone relationship matrix and its values 𝑏𝑙𝑧, ∀𝑙 ∈ 𝐿 and 𝑧 ∈ 𝑍 

G, 𝑔𝑙ℎ  Order list-Rack position relationship matrix and its values 𝑔𝑙ℎ, ∀𝑙 ∈ 𝐿 and ℎ ∈ 𝐻 

3.2 GPSM for Average flow time estimation 

Feature Generation 

To estimate the average flow time of orders in an order list (𝐹𝑇̅̅̅̅ ), an estimation model requires the key 

input variables (i.e., features) that are expected relate to 𝐹𝑇̅̅̅̅ . We generate features from historical 

order picking data that can represent the picking time and workload balance across zones. Picker’s 

travel distance and workload balancing measures, such as standard deviations of workload between 

zones, and zones’ maximum and minimum numbers of workload, are potentially related to 𝐹𝑇̅̅̅̅  (Huang 

et al. (2018), Vanheusden et al. (2022)). We develop GPSM using three features of zone workload 

balance and a feature of rack storage policy to estimate the average flow time 𝐹𝑇̅̅̅̅ . 

Let 𝐱𝒍 represent the three input features extracted from order list 𝑙 ∈ 𝐿, and let X ={𝐱𝒍, 𝒍 ∈ 𝑳} 

We consider three models. The first GPSM, which we refer to as GPSMAZ, is only based on the first 

input feature, i.e., picker’s travel distance. We define a total travel distance to complete order list 𝑙 ∈

𝐿 as 

𝑇𝐷𝑙 =∑𝑑𝑟 ∙ 𝑔𝑙𝑟
𝑟∈𝑅

, 

where 𝑑𝑟 is the distance from the picker’s loading depot to a rack position 𝑟 ∈ 𝑅. 

The second GPSM, which we call GPSMMM, uses three input features: 𝑇𝐷𝑙 and the maximum 

and minimum number of workloads of zones. We calculate the maximum number of picks among 

zones 𝑏𝑙𝑚𝑎𝑥 and the minimum numbers of picks among zones 𝑏𝑙𝑚𝑖𝑛 as 

𝑏𝑙
𝑚𝑎𝑥 = max

∀𝑧∈𝑍
𝑏𝑙𝑧, 

𝑏𝑙
𝑚𝑖𝑛 = min

∀𝑧∈𝑍
𝑏𝑙𝑧. 



9 

 

The third GPSM, which we refer to as GPSMSD, also uses 𝑇𝐷𝑙 and one additional input, the 

standard deviation of the number of picks per zone. We let 𝑏𝑙𝑆𝐷represent the standard deviation for 

order list 𝑙 ∈ 𝐿, which can be obtained as 

𝑏𝑙
𝑆𝐷 = √

∑ (𝑏𝑙𝑧− 
1

|𝑍|
∑ (𝑏𝑙𝑧)𝑧∈𝑍 )2𝑧∈𝑍

|𝑍|−1
. 

GPSM 

Gaussian process (GP) regression, a popular surrogate model for computer and physical experiments 

(Mackay, 1998; Murphy, 2012), provides a predictive relation between input and response variables. 

For our problem, the input is an input feature set 𝒙, and the response variable y would be the average 

flow time 𝐹𝑇̅̅̅̅ . Suppose that we have training data of input features and associated response values for 

orders in order list L. We denote the training data by (𝑿, 𝒚), where 𝑿 = (𝒙𝒍, 𝑙 ∈ 𝐿) and 𝒚 = (𝑦𝑙 , 𝑙 =

1 ∈ 𝐿) represent the training inputs and responses. The inputs and responses are related via an 

unknown regression model 𝑓(𝒙) as  

𝑦𝑙 = 𝑓(𝒙𝑙) + 𝜖𝑙 , 𝜖𝑙 ∼ 𝑁(0, 𝜎𝑛
2). 

We assume the regression function 𝑓(𝒙) is a zero-mean Gaussian process with covariance 

function K(𝒙, 𝒙′). Given the training data, we like to predict the posterior distribution of 𝑓(𝒙∗) for a 

test input 𝒙∗, which follows a Gaussian distribution with mean 𝜇̂(𝐱*) and variance Σ̂(𝐱*) (Rasmussen 

& Williams, 2006), 

 𝜇̂(𝐱*) = 𝐾(x*,X)[𝐾(X,X) + 𝜎𝑛
2𝜤]−1y, 

(1) 

 Σ̂(𝐱*) =  𝐾(x*, x*) − 𝐾(x*,X)[𝐾(X,X) + 𝜎𝑛
2𝜤]−1𝐾(x*,X), 

(2) 

where 𝑰 is an |𝑳| × |𝑳| identity matrix, and 𝑲(𝑿𝟏, 𝑿𝟐) is the matrix of the covariance function values 

evaluated between 𝑿𝟏 and 𝑿𝟐. We use the covariance function composed of a squared exponential 

(SE) covariance function and noise variance function,  

𝑘(x𝑖, x𝑗) = 𝜎𝑓
2𝑒𝑥𝑝 (−

‖x𝑖 − x𝑗‖
2

2𝜆2
) + 𝜎𝑛

2𝛿(x𝑖, x𝑗),  
(3) 

where variable length scale 𝜆, signal variance 𝜎𝑓2, and noise variance 𝜎𝑏2 control the correlation 

between observations x𝑖 and x𝑗, and 𝛿 is the Kronecker delta function. The kernel-function option 

depends on the input and expected patterns in the data, e.g., Richardson et al. (2017) considered SE 

and Matérn covariance as the kernel function. 

4. Storage location reassignment with risk assessment 

In this section we define a storage location reassignment as the sequential determination of swap 

operations, each of which is optimized to minimize the average flow-time of orders based on the 
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GPSM’s output. We also use the GPSM estimate to evaluate the improvement probability of the swap 

operations by screening out the less promising ones.  

4.1 Swap operation 

The storage location reassignment adjusts the locations of products to minimize the average flow-time 

estimate from the GPSM. We use a series of swap operations (i.e., switch a pair of product cartons) to 

optimize storage locations with limited handling capacity. For each swap operation, we assume that  

 Each picker stays in his/her zone and independently retrieves each product per tote.  

 Each product occupies one zone and one rack. 

 Each zone has the same number of racks. 

 Constant picking time includes search time, pick time, and inspection time.  

 Management has sufficient time to reassign locations for new order lists (Sadiq et al., 1996). 

 All products are available before an order enters the system.  

 A swap operation swaps two cartons of products across flow racks at a time. 

 The total number of the swaps is finite and determined dynamically.  

 The swap distance as defined by the physical distance between two rack locations, and the 

number of cartons affect swap time.  

 The number of swap operation is not predetermined; after a swap, management determines if 

another swap is necessary. 

 The reserved area has empty racks; therefore, swap operations can be performed without 

additional handling. 

 The swap operation utilizes the reserved area to temporarily store the products to be 

reassigned. The reserved area has empty racks; therefore, swap operations can be performed 

without additional handling. 

 

Each swap operation is optimized so that the choice minimizes the average flow time 

estimated by the pre-trained GPSM described in Section 3.2. A swap operation is represented by a 

column swap of the original product-pick-face inclusion matrix S. For example, suppose there are five 

products (𝑃 = {1,2,3,4,5}) in each pick-face. If the swap operation occurs between the product 2 and 

product 4, then it makes a change of the original product-pick-face inclusion matrix S to S`  

S=

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

,   S` =

[
 
 
 
 
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1]

 
 
 
 

. 

After the update to S`, we can calculate the corresponding testing input 𝒙∗ and then get the associate 

posterior predictive distribution 𝑓(𝒙∗) from the GPSM to get the estimated distribution of the average 
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flow time resulting from the swap. We repeat this for a list of N feasible swap operations and select 

the best swap operation that minimizes the expected average flow time, i.e., 𝐸[𝑓(𝒙∗)]. We consider 

all possible swap cases among |𝑃| products, which gives N equal to two-out-of-|𝑃| combination caes. 

We iterate the swap operation to the maximum number of swaps M determined by management. 

4.2 Feedforward heuristic 

Since exact algorithm for an optimal sequence of M swap operations is not suitable due to the 

combinatorial nature of the problem, we propose Algorithm 1, where the best solutions from the 

precedence process become the input of the next process. The steps of the feedforward heuristic are as 

follows. 

Algorithm 1. Feedforward heuristic. 
Step 1. Set M (based on warehouse experience and considering the number of storage locations 

that can be reassigned), and set i =1 and set 𝑆1 to be the current product-pick-face 

inclusion matrix. 

Step 2. Generate 𝑁 candidates {𝐒𝟏𝒊 , 𝐒𝟐𝒊 , … , 𝐒𝑵
𝒊 } from Si-1. (See 4.1 Swap operation) 

Step 3. Calculate the corresponding input features {𝐱∗𝟏𝒊 𝐱∗𝟐𝒊 , … , 𝐱∗𝑵
𝒊 } corresponding to the N 

candidates. 

Step 4. Obtain 𝜇̂(𝐱∗𝒊) from each candidate and find the optimal swap operation based on 

equation (4). 

Step 5. Update Si. 

Step 6. If i < M, i = i +1 and go to step 2, otherwise STOP. 

 

Let Si represent the ith storage location matrix for the iteration i = 1…, M, where M controls 

the maximum number of swap operations set according to the warehouse environment. For every 

iteration i, generate storage location candidates {𝐒𝟏𝒊 , 𝐒𝟐𝒊 , … , 𝐒𝑵
𝒊 } with swap operations from former 

storage locations 𝐒𝒊−𝟏. Each candidate generates the testing inputs {𝐱∗𝟏𝒊 𝐱∗𝟐𝒊 , … , 𝐱∗𝑵
𝒊 } to be evaluated 

with the proposed average flow-time estimation model. Next, determine the storage locations 𝐒𝒊 

according to the best 𝐱∗𝒊  that yields the minimum 𝜇̂(𝐱∗𝒊) using Equation (1). Obtain the expected 

average flow time of the storage locations 𝐒𝒊 as  

 E[𝐹𝑇̅̅̅̅ (𝐒𝒊)] = min{𝜇̂(𝐱∗
𝒊)|𝐱∗

𝒊 ∈ {𝐱∗𝟏
𝒊 , 𝐱∗𝟐

𝒊 , … , 𝐱∗𝑵
𝒊 }}. 

(4) 

Considering an initial storage location 𝐒0 for an order list 𝑙 and obtaining the historical data in 

the form listed, use Algorithm 1 to find the new storage location (𝐒𝟏) at iteration 1 that minimizes the 

average flow time for an order list 𝑙. Note that the new storage location 𝐒𝟏 from the first stage is 

considered as the initial storage location 𝐒𝒊−𝟏 of the second stage and obtains the new storage location 
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𝐒𝟐 that yields the minimum 𝐹𝑇̅̅̅̅  at the second stage. Run these procedures until iteration i reaches the 

maximum number of swaps M. 

4.3 Screening out less promising swaps 

Quantifying uncertainty is critical in managing operational risks. The probability that a system will 

not improve can be estimated with the estimates of Gaussian process model (Bect et al., 2012). We 

conduct a screening test using the posterior predictive distribution from GPSM. We use the posterior 

predictive distribution of the average flow time after a swap to evaluate the probability of 

improvement in the average flow time, compared to the average flow time before that swap. If the 

improvement probability is not sufficiently high, we revoke the determined swap operation. 

 
Figure 3. Flowchart of a screening test applied to Algorithm 1. 
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Given the means and variances of the two mutually independent Gaussian distributions, we 

use a one-tailed test to statistically compare the difference between the mean values of two 

distributions. GPSM is used to obtain the mean(𝜇̂(∙)) and variance(Σ̂(∙)) of 𝐱∗𝒊  and 𝐱∗𝒊−𝟏, where 𝐱∗𝒊  is 

the testing input expected to be the optimal case from the relocated cases {𝐱∗𝟏𝒊 , 𝐱∗𝟐𝒊 , … , 𝐱∗𝑵
𝒊 }, and 𝐱∗𝒊−𝟏 

is the testing input of the reassigned order list at iteration 𝑖 − 1. The null hypothesis is that the 𝐹𝑇̅̅̅̅  of 

𝐱∗
𝒊−𝟏 is less than or equal to the 𝐹𝑇̅̅̅̅  of 𝐱∗𝒊 . The probability of the null hypothesis (p-value) denotes the 

probability that the reassignment operation will not improve. We set significance level 𝛼 for the one-

tailed test to classify the case with the risk to increase 𝐹𝑇̅̅̅̅ . We obtain the Z-score of the difference 

between the two 𝐹𝑇̅̅̅̅  values and the improvement probability from the Z-score as 

 

 

 
1 − 𝑃(𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡) = 𝑃(𝐹𝑇̅̅̅̅ (𝐒𝒊−𝟏) − 𝐹𝑇̅̅̅̅ (𝐒𝒊) ≤ 0) = 𝑃(𝑍 ≥

𝜇̂(𝐱∗
𝒊−𝟏)−𝜇̂(𝐱∗

𝒊)

√Σ̂(𝐱∗
𝒊−𝟏)+Σ̂(𝐱∗

𝒊 )

). (5) 

We compare the one-tailed p-value with the significance level 𝛼. Note that the improvement 

probability of reassignment cannot be guaranteed if the p-value is greater than the significance level. 

If the p-value becomes smaller than the significance level, the GPSM expects that the flow time of the 

GPSM optimal assignment is significantly shorter than the flow time of the original assignment; 

therefore, it executes the determined swap operation.  

5. Industrial application of GPSM  

In this section we describe our simulation experiment and the results. Ten scenarios from a real e-

commerce warehouse configuration and historical order data were used to evaluate the performance of 

the proposed model. We analyze the effectiveness of reassignment decisions and conduct sensitivity 

tests over various warehouse configurations. 

5.1 Workload scenarios 

To obtain accurate and reliable estimates, we use different workload scenarios to train the proposed 

models on various storage policy factors. We consider the four zone workload distribution types and 

two rack storage policies shown in Table 1. 

Table 1 Zone workload distribution types and rack storage policies. 

Zone workload distribution type Rack storage policy 
Uniform ABC(5:3:2) 
Bottleneck zone Random 
Descending demand  
Irregular demand  

 

We note that a uniform zone workload distribution type is the most workload-balanced 

scenario with almost uniformly distributed workloads over zones. We generate Scenarios 1 and 2 with 
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this type to make workload balanced scenarios. The bottleneck zone distribution type refers to the 

case that one randomly chosen zone is assigned 25% of total orders when all other zones have a 

uniform workload distribution. The bottleneck zone scenarios can occur in situations when demand 

for particular products increase dramatically that often arises in e-commerce warehouses. We generate 

Scenarios 3 and 4 with this type. A descending demand zone distribution type has a descending trend 

in workload. The first zone has the largest demand volume and the demand gradually decreases 

toward the last zone. Many warehouse managements set descending demand in progressive zone 

picking system to avoid blocking delay between zones. We distribute the workload ratio of each zone 

as the ratio of each zone index to the sum of zone indexes. We generate Scenarios 5 and 6 with this 

type. An irregular demand-zone distribution type represents the most workload-unbalanced scenario 

with an uneven distribution of workloads across zones. We demonstrate worst-case workload 

balancing by randomly shuffling storage locations for descending demand scenarios and generating 

irregular demand scenarios. We generate Scenarios 7 and 8 with this type. 

The rack storage policy defines how products’ storage locations are assigned over rack 

column positions. The ABC (5:3:2) class-based rack storage policy classifies products to classes A, B 

and C in a ratio (0.5:0.3:0.2) for allocating high-demand products in the rack column positions with 

the picker’s shortest travel distance. The random rack-storage policy refers to the random assignment 

of products within zones.  

We generate the first eight workload scenarios using a full factorial design with four zone 

workload distribution types and two rack storage policies and two additional scenarios. To train 

GPSM even with scenarios that cannot be considered by the full factorial design, we generate 

scenarios 9 and 10 by switching a randomly chosen pair of product locations from Scenario 1. 

Scenarios 9 and 10 have balanced workloads, but the storage locations of products differ from the 

preset rack storage policy due to demand fluctuations and a series of previous storage relocations. We 

classify Scenarios 1, 2, 9, and 10 as workload balanced scenarios and Scenarios 3, 4, 5, 6, 7, and 8 as 

workload unbalanced scenarios. In Table 2, the average 𝐹𝑇̅̅̅̅  of 50 order lists per scenario measured by 

simulation shows that zone workload distribution type and rack storage policy directly influence order 

picking performance. The workload balanced Scenarios 1, 2, 9, and 10 provide shorter average 𝐹𝑇̅̅̅̅ . 

We conduct statistical tests to validate the significance of difference between scenarios (Please see 

Table B1 and Table B2 in Appendix B for detail). 

Table 2. Ten workload distribution scenarios. 
Scenario Zone workload distribution type Rack storage policy Average 𝐹𝑇̅̅̅̅  

1 Uniform ABC (5:3:2) 1250.03 

2 Uniform Random 1309.47 

3 Bottleneck zone ABC (5:3:2) 1440.65 

4 Bottleneck zone Random 1523.62 
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5 Descending demand ABC (5:3:2) 1513.42 

6 Descending demand Random 1593.70 

7 Irregular demand ABC (5:3:2) 1522.98 

8 Irregular demand Random 1586.75 

9 24 times random switch from scenario 1 1284.24 

10 100 times random switch from scenario 1 1312.51 

 

5.2 Experimental configuration 

To validate our proposed GPSM, we configure a warehouse and its order profiles based on an e-

commerce company’s progressive bypass ZP system in Korea. We run 200 experiments per 

configuration, i.e., 20 different order lists per each of the 10 scenarios. We train GPSM on 300 

training datasets consisting of 10 scenarios with 30 different order lists. We use Tecnomatix© Plant 

Simulation 12 to build the simulation model. We generate synthetic historical data based on the order 

profiles and modified sizes of the ZP system. Since recirculation and bypass disrupt the order 

sequence, the order release sequence follows the First-Come-First-Serve rule. We use Python 3.7 and 

scikit-learn toolbox to analyze the data. Table 3 reports the details.  

Table 3. Warehouse configuration. 
Parameter Values 

Number of swaps (n) 1, 2, 3, 4 

Number of zones 8 

Number of rack columns per zone 6 

Order size 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (3,9) 

Number of orders in each order list 100 

Note: Default values of each parameter are underscored. 

 

We label the GPSMs as stages 1–4 by setting M = 4. GPSM(n) denotes the first stage 

resulting in the swapping of n pairs of storage locations. We compare the GPSM to Kim and Hong 

(2022), who proposed an MIP model to reassign a limited number of storage locations for the same 

order picking system. For simplicity, we call their model SLR(n), where n is stage number (i.e., the 

number of the swap operations). We also compare the GPSM with the heuristic algorithm proposed 

by Jane (2000) for workload balancing in a zone picking system. For simplicity, we call their heuristic 

algorithm the JA. Unlike the GPSM and SLR, the JA reassigns all storage locations without limiting 

the number of reassignments. 

The objective of the GPSM is to minimize the average flow time; the objective of the SLR(n) 

model is to minimize the maximum number of picks and the maximum number of order visits among 

all zones; and the objective of the Jane is to distribute the number of picks evenly across all zones. 
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Since all three models aim to balance the workload in the progressive ZP system to minimize order 

flow time, we compare the models’ performance. 

5.3 GPSM effectiveness analysis  

Figure 4 illustrates the percentage reductions of average 𝐹𝑇̅̅̅̅  between the original assignment and three 

GPSMs, and between the original assignment and SLR(n) when swapping multiple pairs of products. 

Without the screening test, GPSMSD(1) yields a 3.23% average reduction, GPSMSD(4) yields an 

8.87% average reduction, SLR(1) yields a 2.93% average reduction, and Jane yields an 8.21% in 𝐹𝑇̅̅̅̅ . 

The workload unbalanced scenarios (1, 2, 9, and 10) have larger 𝐹𝑇̅̅̅̅  reductions than the workload 

balanced scenarios (3, 4, 5, 6, 7, and 8). For the same zone workload distribution type scenarios in the 

GPSMs, the random storage policy yields a high reduction percentage of 𝐹𝑇̅̅̅̅ . The results indicate that 

the workload unbalanced scenarios have scope for further improvement than the workload balanced 

scenarios.  

 

 
Figure 4. Percentage reductions of average 𝐹𝑇̅̅̅̅  by workload scenarios without the screening test. 

Without the screening test, we observe 24 failures of reassignment that yield a 1.13% increase 

in the average 𝐹𝑇̅̅̅̅  compared with the original assignment when GPSMSD(1) runs for 200 instances. 

For the same instances, Jane obtains 49 failures of reassignment with an increase of 2.96% in the 

average 𝐹𝑇̅̅̅̅  over the original assignment, and SLR(1) results in 28 failures of reassignment with an 

increase of 1.13%. The screening test excludes the reassignment that is expected to improve with low 

probability. 

Table 4 reports the results of the paired t-tests for each scenario and stage to identify 

statistically significant differences between SLR and GPSMSD. The differences are insignificant in the 

balanced scenarios (1, 2, 9, 10) or low stages (n = 1,2). Where swap operations are performed more 

than three times, GPSMSD has shorter 𝐹𝑇̅̅̅̅  than SLR in the unbalanced scenarios (3, 4, 5, 6, 7, 8). 
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Table 4. Paired t-test results on 𝐹𝑇̅̅̅̅  of SLR(n) – GPSMSD(n) 
Stage Scenario Paired t-test on the average 𝐹𝑇̅̅̅̅  

Mean difference t-value DF P-value 
n = 1 1 11.405 2.082 19 0.051 
 2 -1.286 -0.227 19 0.823 
 3 8.831 1.322 19 0.202 
 4 -6.932 -1.246 19 0.228 
 5 -3.917 -0.638 19 0.531 
 6 3.569 0.451 19 0.657 
 7 3.630 0.476 19 0.639 
 8 17.554 1.960 19 0.065 
 9 -0.853 -0.206 19 0.839 
 10 11.577 2.059 19 0.053 
n = 2 1 16.198 3.604 19 0.002 
 2 3.657 0.700 19 0.493 
 3 13.045 1.613 19 0.123 
 4 -3.310 -0.379 19 0.709 
 5 -3.297 -0.608 19 0.551 
 6 0.542 0.075 19 0.941 
 7 6.574 0.775 19 0.448 
 8 7.898 1.730 19 0.100 
 9 4.738 0.792 19 0.438 
 10 4.738 0.792 19 0.438 
n = 3 1 -0.846 -0.154 19 0.879 
 2 7.804 2.075 19 0.052 
 3 15.395 1.676 19 0.110 
 4 23.124 4.068 19 0.001 
 5 19.973 2.827 19 0.011 
 6 20.554 2.211 19 0.040 
 7 0.025 0.003 19 0.998 
 8 23.433 3.167 19 0.005 
 9 3.494 0.973 19 0.343 
 10 2.883 0.453 19 0.656 
n = 4 1 -1.753 -0.277 19 0.785 
 2 0.667 0.126 19 0.901 
 3 24.278 2.614 19 0.017 
 4 18.841 2.228 19 0.038 
 5 25.310 3.224 19 0.004 
 6 25.168 2.154 19 0.044 
 7 16.812 2.512 19 0.021 
 8 30.869 4.215 19 0.000 
 9 -7.403 -1.706 19 0.104 
 10 -5.434 -1.075 19 0.296 

 

Figure 5 illustrates the screening test’s effects on productivity for 200 assignments from SLR, 

SD-GPSM before the screening test, GPSMSD after the screening test, and the original assignments 

without reassignment. We adopt Youden’s J statistic for the significance levels of the screening tests 

(Youden, 1950). We set swapping time (𝑆𝑇) weight, considering the replenishment time in the real e-

commerce warehouse. On the x-axis, we classify experimental cases by different reassignment 

strategies, stage number, and 𝑆𝑇 weight. The black bars indicate the time difference between the start 

and finish of a sequence of an order list (𝐶𝑚𝑎𝑥; makespan), and the dotted white bars indicate the total 

swapping time (𝑇𝑆𝑇). The y-axis represents the average total elapsed time including 𝐶𝑚𝑎𝑥 and 𝑇𝑆𝑇. 

The makespan distinctly decreases as the stages increase. GPSMSD after the screening test 

yields a shorter 𝑇𝑆𝑇 because the screening test filters out the number of swap operations. When 𝑆𝑇 =

2.5, the total swapping time of GPSMSD(2) before the screening test averages 300 seconds, and the 
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total swapping time of GPSMSD(3) after the screening test averages 256.5 seconds. Before the 

screening test, the makespan of GPSMSD(2) averages 2449.90 seconds, and the makespan of 

GPSMSD(3) averages 2413.62 seconds. After the screening test, GPSMSD frequently shows a large 

makespan reduction with less swapping time.  

 
Figure 5. Screening test effectiveness analysis considering swapping times. 

5.4 Sensitivity analysis of GPSM with a screening test 

We consider different warehouse configurations (i.e., increasing the number of zones, rack columns, 

orders in an order list, and order sizes). We also consider non-identical picker skill configuration (i.e., 

two slow-moving pickers in eight zones) (Bartholdi and Eisenstein (1996), Hong (2019)).We use the 

following measurements: 

 Before: The average 𝐹𝑇̅̅̅̅  reduction before the screening test (%) 

 𝛼: The significance level for the screening test 

 #swaps: The average number of swaps after the screening test 

 Avg: The average 𝐹𝑇̅̅̅̅  reduction (%) 

 Worst: The 𝐹𝑇̅̅̅̅  reduction of the worst case (%) 

Table 5 reports the sensitivity analysis results. In Appendix C, we conduct statistical analyses 

to identify which methods have statistically significant differences across order picking environments. 

As a result of the fact that the data variances for each group are not equal, we use Welch’s ANOVA 

test (Table C1) and Games-Howell as post-hoc tests (Table C2, Table C3, Table C4, Table C5, Table 

C6, and Table C7) for each order picking environment.
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Table 5. Results of GPSM sensitivity analysis with screening tests. 
 

 

Environment JA Stage SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
Avg. Worst  #swaps Avg. Worst Before 𝛼 #swaps Avg Worst Before 𝛼 #swaps Avg Worst Before 𝛼 #swaps Avg Worst 

Default 8.21 -8.13 n = 1 1.00 2.93 -4.16 1.92 0.39 0.27 0.89 -1.76 3.02 0.14 0.55 2.28 -0.82 3.23 0.15 0.59 2.56 -1.90 
  n = 2 2.00 5.28 -3.98 3.06 0.44 0.50 1.37 -1.76 5.32 0.32 1.00 3.86 -0.10 5.60 0.26 1.15 4.54 0.00 
  n = 3 3.00 6.82 -3.75 3.90 0.46 0.70 1.78 -1.76 7.26 0.37 1.40 5.06 -0.10 7.59 0.31 1.71 6.23 0.00 
  n = 4 4.00 8.06 -2.22 4.40 0.48 0.90 2.06 -1.76 8.40 0.37 1.72 5.54 -0.10 8.88 0.37 2.27 7.51 0.00 

12 zones 9.41 -8.69 n = 1 1.00 2.66 -6.22 2.00 0.41 0.28 0.94 -2.60 2.71 0.27 0.51 2.14 -3.84 2.40 0.36 0.42 1.69 -3.30 
  n = 2 2.00 4.59 -6.43 3.00 0.50 0.56 1.47 -2.84 4.62 0.37 0.86 3.44 -3.84 4.20 0.41 0.81 2.98 -3.99 
  n = 3 3.00 5.98 -4.85 4.38 0.50 0.69 1.62 -0.90 5.82 0.39 1.14 4.32 -3.84 5.64 0.44 1.20 3.88 -3.18 
  n = 4 4.00 7.31 -5.22 5.32 0.50 0.72 1.66 -0.90 6.96 0.41 1.38 5.07 -3.84 6.44 0.44 1.54 4.50 -3.18 

12 rack columns 7.00 -17.59 n = 1 1.00 2.26 -5.68 1.53 0.42 0.25 0.75 -0.37 2.83 0.16 0.52 1.82 -2.83 2.69 0.18 0.51 1.83 -1.39 
  n = 2 2.00 3.85 -2.85 2.86 0.45 0.45 1.12 -2.37 4.72 0.32 0.99 3.14 -2.83 4.94 0.35 1.02 3.39 -0.47 
  n = 3 3.00 5.02 -2.41 3.57 0.49 0.63 1.48 -1.11 6.48 0.36 1.45 4.38 -2.83 6.72 0.31 1.51 4.67 0.00 
  n = 4 4.00 6.04 -2.02 4.48 0.50 0.80 1.70 0.00 8.04 0.40 1.90 5.26 -2.83 8.28 0.35 2.00 5.79 0.00 

Unif(10,20) 

Order size 

7.27 -8.68 n = 1 1.00 1.91 -2.47 1.41 0.47 0.80 1.38 -7.23 2.43 0.19 0.79 2.46 -1.31 2.53 0.19 0.77 2.54 -1.31 
  n = 2 2.00 3.51 -2.04 2.50 0.41 1.18 2.20 -7.23 4.12 0.28 1.42 3.95 -1.31 4.36 0.25 1.46 4.20 -0.72 
  n = 3 3.00 4.87 -2.07 3.33 0.41 1.32 2.52 -7.23 5.54 0.43 2.04 5.21 -1.31 5.82 0.35 2.15 5.56 0.00 
  n = 4 4.00 6.01 -2.32 3.98 0.46 1.42 2.67 -7.23 6.73 0.39 2.65 6.31 -1.31 7.14 0.38 2.83 6.75 0.00 

200 orders in 

each order list 

13.59 -7.60 n = 1 1.00 4.14 -1.19 3.08 0.43 0.53 2.19 -3.60 4.03 0.24 0.86 3.93 -0.42 3.73 0.18 0.38 1.55 -0.42 
  n = 2 2.00 7.06 -1.05 5.44 0.40 0.79 3.24 -3.60 6.96 0.40 1.67 6.72 0.00 6.76 0.27 0.69 2.64 -0.42 
  n = 3 3.00 9.22 -1.58 6.84 0.40 0.80 3.27 -3.60 9.21 0.39 2.39 8.80 0.00 9.15 0.33 0.93 3.35 -0.42 
  n = 4 4.00 10.82 -0.93 7.60 0.50 0.81 3.29 -3.60 10.88 0.42 3.05 10.30 0.00 10.92 0.39 1.15 3.76 -0.42 

Non-identical 

picker skill 

7.74 -10.47 n = 1 1.00 2.78 -4.99 3.60 0.41 0.93 3.44 -2.75 2.85 0.37 0.73 2.70 -2.14 2.99 0.33 0.52 2.48 -2.03 
  n = 2 2.00 4.77 -6.42 6.22 0.39 1.43 4.92 -2.46 5.22 0.43 1.32 4.78 -3.16 5.40 0.40 1.03 4.21 -1.12 
  n = 3 3.00 6.49 -4.25 8.19 0.47 1.91 5.89 -2.46 7.14 0.43 1.82 6.01 -3.16 7.20 0.43 1.54 5.69 -1.12 
  n = 4 4.00 7.53 -5.27 9.64 0.48 2.37 6.67 -2.46 8.44 0.44 2.24 6.94 -3.16 8.60 0.43 2.05 6.67 -1.12 
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Sensitivity analysis over default order picking environment 

Table 5 reports only four failures of reassignment with a 1.09% increase in 𝐹𝑇̅̅̅̅  compared with the 

original assignment when GPSMSD(1) runs for 200 instances. When the stage increases, the SLR 

model swaps the number of product pairs equal to the stage number, whereas the GPSM policies swap 

fewer product pairs because the screening test filters out the swap operation with a low improvement 

probability. Both GPSMSD and GPSMMM significantly reduce 𝐹𝑇̅̅̅̅  and swapping time. JA swaps the 

unlimited number of storage locations and yields 8.21% of the average 𝐹𝑇̅̅̅̅  reduction. GPSMSD(4) 

swaps on average 2.27 times to yield 7.51% of the average 𝐹𝑇̅̅̅̅  reduction, but SLR needs to swap three 

times to yield 6.82% of the average 𝐹𝑇̅̅̅̅  reduction. GPSMSD yields 0.00% for the 𝐹𝑇̅̅̅̅  reduction of the 

worst cases, whereas SLR(4) and JA yield -2.22% and -8.13%, respectively. Appendix Table C2 

shows that 𝐹𝑇̅̅̅̅  reduction rates of SLR(4) and JA are not significantly different from GPSMSD(4) and 

GPSMMM(4) before performing screening tests. The results indicate that GPSM is a reliable, cost-

effective tool for warehouse management. 

Sensitivity analysis over 12 zones 

Table 5 also shows that reassignment performance decreases when the number of zones increases. 

SLR yields 2.66% of the average 𝐹𝑇̅̅̅̅  reduction with one swap operation and 4.59% of the average 𝐹𝑇̅̅̅̅  

reduction with two swap operations. After the screening test, the GPSM policies skip the low 

improvement cases and reduce the average number of swap operations. GPSMSD yields 4.50% of the 

𝐹𝑇̅̅̅̅  with average 1.54 swap operations, and GPSMMM yields 5.07% of the 𝐹𝑇̅̅̅̅  with average 1.38 swap 

operations. GPSMSD yields -3.18% for the 𝐹𝑇̅̅̅̅  reduction of the worst cases, whereas JA and SLR(4) 

yield -8.69% and -5.22%, respectively. Appendix Table C3 shows that 𝐹𝑇̅̅̅̅  reduction rates of SLR(4) 

and GPSMSD(4) are not significantly different before performing screening tests. The results indicate 

that GPSM performs well over large-scale assignments with limited training data resources. 

Sensitivity analysis over 12 rack columns per zone  

As the number of rack columns in each zone increases, picker’s travel distance has a large effect on 

order picking performance. SLR yields 3.85% for the average 𝐹𝑇 ̅̅ ̅̅̅ reduction with 2 swap operations, 

and GPSMSD and GPSMMM yield 5.79% for the average 𝐹𝑇̅̅̅̅  reduction with average 2.00 swap 

operations and 5.26%, respectively, with 1.90 swap operations. The results indicate that both GPSMSD 

and GPSMMM balance the workloads well between zones when travel distance is critical. 

Sensitivity analysis over order size = Uniform(10,20) 

GPSMSD and GPSMMM consistently reduce the average 𝐹𝑇̅̅̅̅  from stages 1–4 and provide assignments 

with a high probability to improve. Intuitively, increasing the order size causes congestion because the 

totes stay longer in the system. JA yields 7.27% for the average 𝐹𝑇̅̅̅̅  reduction with unlimited swaps, 

whereas SLR yields 3.51% when swapping two pairs of products, and 4.87% when swapping three 

pairs of products, respectively. GPSMSD yields 6.75 % when swapping an average 2.83 pairs of 
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products, whereas GPSMMM yields 6.31% when swapping an average 2.65 pairs of products. 

Appendix Table C5 shows that 𝐹𝑇̅̅̅̅  reduction rates of SLR(4), JA, GPSMSD(4), and GPSMMM(4)  are 

not significantly different before performing screening tests. The results confirm well-balanced 

workloads between zones when the order size is large. 

Sensitivity analysis over number of orders = 200 

To analyze GPSM performance over a large problem size, we increase the number of orders in each 

order list. As the number of orders increases, the average 𝐹𝑇̅̅̅̅  reduction between the original and 

reassignment increases: GPSMMM(4) yields 10.30% on average and 0.00% in the worst case with the 

average number of swaps = 3.05, and SLR yields 9.22% on average and −1.58% in the worst case 

with three swap operations, whereas JA yields 13.59% on average and -7.60% in the worst case with 

the unlimited number of swap operations. 

Sensitivity analysis over non-identical picker skill 

GPSMAZ yields the largest 𝐹𝑇̅̅̅̅  reduction before the screening test, 2.11% and 1.90% higher than 

SLR(4) and JA, respectively. Despite the poor performance of GPSMAZ in other configurations, it 

does capture the zones with slow picking speeds and assigns fewer loads to them, which balances the 

workload in a non-identical picker-skill environment. Appendix Table C7 shows that 𝐹𝑇̅̅̅̅  reduction 

rates of GPSMAZ(4) is significantly larger than SLR(4) before performing screening tests. The results 

indicate that the GPSM policies effectively reassign storage to reduce 𝐹𝑇̅̅̅̅  when pickers are non-

identical in skill and speed. 

6. Conclusion 

This paper proposed an average flow-time estimation model for estimating travel time and a storage 

location reassignment with risk assessment in an automated zone picking system. During the storage 

location reassignment procedure, warehouse management applied the screening test for each 

reassignment stage to assess the risk of the reassignment decision’s failure.  Ten scenarios from a real 

e-commerce warehouse configuration and historical order data were used to evaluate the performance 

of the proposed model.  

The GPSM estimated the average flow time from the historical data with three different types 

of features: the number of picks in all zones, the min-max number of picks, standard deviation of the 

number of picks, and the standard deviation of the number of picks. Given storage location 

assignments, it enabled the GPSM to adjust the storage location by evaluating the minimum estimated 

average flow time. The GPSM identified new storage location assignments and assessed the risk of a 

reassignment failure with the probability of improvement. 

 The simulation experiments and statistical tests validated that the proposed models 

significantly reduced the average flow time of orders in large-scale order picking and non-identical 

picker skill environments, and that the screening test limited the number of swap operations.  
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Future research will investigate constructing the features extracted from an order list based on 

domain knowledge of the picking system. More analysis should confirm the accuracy of an estimation 

model that relies on feature extraction from large-scale order picking data with no loss of data 

integrity. Further investigation of the sequential sampling and kernel functions should indicate 

improved model performance with limited data.  
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Appendix A. Numerical validation 

We measure the Pearson correlation coefficient (Pearson’s r) of the average flow time estimation 

model. Figure A1 plots the correlation along with the Pearson’s r value between the actual and 

predicted values of true average flow time for 200 different order lists generated using simulation data 

from industry (see Sections 5.1 and 5.2 for details of the dataset). For the three different GPSMs, 

Pearson’s r values ranging from 0.537 to 0.950 indicate a relatively strong correlation between 

simulations and predictions. 

Figure A1. Correlation between the values obtained by simulations and by the three GPSMs. 

 

We also calculate the mean absolute percentage error (MAPE) and R2 score of the three 

GPSMs for the dataset. Table A1 reports the values denoting the regression accuracy of the proposed 

average flow-time estimation models. 

Table A1. MAPE and R2 scores of GPSM. 
Model  MAPE (%) R2 

GPSMAZ  5.85 0.26 

GPSMMM  2.74 0.79 

GPSMSD  2.26 0.89 
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Appendix B. Statistical analysis between workload scenarios 

Table B1. Welch’s ANOVA tests of performance between workload scenarios. 
Source Statistica DF Num DF Den P-value 

𝐹𝑇̅̅̅̅  262.032 9 199.157 < 0.001 
a Asymptotically F distributed 

Table B2. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  between workload scenarios 
based on Games-Howell post-hoc tests. 

Scenario 1 2 3 4 5 6 7 8 9 10 
1  -59.445* -190.629* -273.590* -263.397* -343.676* -272.955* -336.721* -34.219* -62.487* 
2   -131.180* -214.141* -203.948* -284.226* -213.505* -277.271* 25.231 -3.037 
3    -82.961* -72.768* -153.046* -82.326* -146.091* 156.410* 128.143* 
4     10.193 -70.086* 0.635 -63.130* 239.371* 211.104* 
5      -80.279* -9.558 -73.323* 229.178* 200.911* 
6       70.721* 6.955 309.457* 281.189* 
7        -63.766* 238.736* 210.468* 
8         302.501* 274.234* 
9          -28.267 
10           

* Mean difference significant at the 0.05 level 
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Appendix C. Statistical analysis between methods 

Table C1. Welch’s ANOVA tests of performance between methods. 
Environment Stage Statistica DF Num DF Den P-value 
default n = 1 75.511 5 524.212 < 0.001 

n = 2 51.969 5 531.754 < 0.001 
n = 3 40.901 5 537.173 < 0.001 
n = 4 42.488 5 542.384 < 0.001 

12 zones n = 1 100.042 5 526.994 < 0.001 
n = 2 78.095 5 534.856 < 0.001 
n = 3 59.942 5 539.904 < 0.001 
n = 4 48.484 5 543.359 < 0.001 

12 rack 
 columns 

n = 1 49.255 5 509.983 < 0.001 
n = 2 33.982 5 514.926 < 0.001 
n = 3 26.549 5 519.378 < 0.001 
n = 4 24.391 5 523.325 < 0.001 

Unif(10,20) 
Order size 

n = 1 94.673 5 507.882 < 0.001 
n = 2 70.097 5 514.426 < 0.001 
n = 3 53.633 5 521.611 < 0.001 
n = 4 44.641 5 527.161 < 0.001 

200 orders in 
each order list 

n = 1 178.769 5 495.630 < 0.001 
n = 2 137.922 5 503.428 < 0.001 
n = 3 105.377 5 510.265 < 0.001 
n = 4 86.137 5 517.059 < 0.001 

Non-identical 
picker skill 

n = 1 47.813 5 510.657 < 0.001 
n = 2 28.858 5 518.685 < 0.001 
n = 3 20.066 5 527.084 < 0.001 
n = 4 20.938 5 535.300 < 0.001 

a Asymptotically F distributed 

Table C2. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  in the default environment 
based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  129.097* 44.031* 29.906 45.268* 48.389* 
 JA   -85.065* -99.190* -83.828* -80.708* 
 SLR(n)    -14.125 1.237 4.358 
 GPSMAZ(n)     15.362 18.483 
 GPSMMM(n)      3.121 
 GPSMSD(n)       
n = 2 Original  129.097* 79.480* 47.641* 79.993* 83.985* 
 JA   -49.617* -81.456* -49.104* -45.112* 
 SLR(n)    -31.838* 0.513 4.505 
 GPSMAZ(n)     32.351* 36.344* 
 GPSMMM(n)      3.992 
 GPSMSD(n)       
n = 3 Original  129.097* 102.719* 60.490* 109.162* 114.303* 
 JA   -26.378* -68.606* -19.934 -14.794 
 SLR(n)    -42.228* 6.444 11.584 
 GPSMAZ(n)     48.672* 53.812* 
 GPSMMM(n)      5.140 
 GPSMSD(n)       
n = 4 Original  129.097* 121.378* 68.870* 126.214* 134.113* 
 JA   -7.719 -60.226* -2.883 5.017 
 SLR(n)    -52.507* 4.836 12.735 
 GPSMAZ(n)     57.344* 65.243* 
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 GPSMMM(n)      7.899 
 GPSMSD(n)       
* Mean difference significant at the 0.05 level 

Table C3. Multiple comparison of mean differences in the average 𝐹𝑇̅̅̅̅  in the 12 zones environment 
based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  142.240* 39.719* 30.324 40.209* 35.453 
 JA    -102.521*  -111.916*  -102.031*  -106.787* 
 SLR(n)    -9.395 0.491 -4.266 
 GPSMAZ(n)     9.885 5.129 
 GPSMMM(n)      -4.756 
 GPSMSD(n)       
n = 2 Original  142.240* 68.487* 45.252* 68.572* 62.562* 
 JA    -73.753*  -96.988*  -73.668*  -79.677* 
 SLR(n)    -23.235 0.085 -5.924 
 GPSMAZ(n)     23.320 17.310 
 GPSMMM(n)      -6.010 
 GPSMSD(n)       
n = 3 Original  142.240* 89.270* 65.932* 86.845* 83.713* 
 JA    -52.970*  -76.308*  -55.395*  -58.527* 
 SLR(n)    -23.338 -2.425 -5.557 
 GPSMAZ(n)     20.913 17.782 
 GPSMMM(n)      -3.132 
 GPSMSD(n)       
n = 4 Original  142.240* 108.714* 80.106* 104.562* 96.093* 
 JA    -33.526*  -62.134*  -37.678*  -46.147* 
 SLR(n)     -28.608* -4.153 -12.622 
 GPSMAZ(n)     24.455* 15.986 
 GPSMMM(n)      -8.469 
 GPSMSD(n)       

* Mean difference significant at the 0.05 level 

Table C4. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  in the 12 rack columns 
environment based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  144.657* 42.460 29.165 52.112 49.528 
 JA   -102.196* -115.492* -92.545* -95.129* 
 SLR(n)    -13.295 9.652 7.068 
 GPSMAZ(n)     22.947 20.363 
 GPSMMM(n)      -2.584 
 GPSMSD(n)       
n = 2 Original  144.657* 72.334* 54.881* 87.701* 91.614* 
 JA   -72.323* -89.776* -56.956* -53.044* 
 SLR(n)    -17.453 15.367 19.279 
 GPSMAZ(n)     32.821 36.733 
 GPSMMM(n)      3.912 
 GPSMSD(n)       
n = 3 Original  144.657* 94.480* 68.615* 120.754* 125.059* 
 JA   -50.177* -76.042* -23.904 -19.598 
 SLR(n)    -25.865 26.274 30.579 
 GPSMAZ(n)     52.138* 56.444* 
 GPSMMM(n)      4.306 
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 GPSMSD(n)       
n = 4 Original  144.657* 113.849* 85.417* 150.018* 154.481* 
 JA   -30.808 -59.240* 5.361 9.823 
 SLR(n)    -28.432 36.169 40.632 
 GPSMAZ(n)     64.601* 69.064* 
 GPSMMM(n)      4.462 
 GPSMSD(n)       
* Mean difference significant at the 0.05 level 

Table C5. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  in the Unif(10,20) order size 
environment based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  216.892* 54.461 41.753 68.556* 71.486* 
 JA    -162.431*  -175.139*  -148.336*  -145.406* 
 SLR(n)    -12.708 14.095 17.025 
 GPSMAZ(n)     26.803 29.733 
 GPSMMM(n)      2.930 
 GPSMSD(n)       
n = 2 Original  216.892* 100.288* 73.472* 116.596* 123.383* 
 JA    -116.604*  -143.419*  -100.296*  -93.509* 
 SLR(n)    -26.815 16.308 23.095 
 GPSMAZ(n)     43.124 49.910 
 GPSMMM(n)      6.787 
 GPSMSD(n)       
n = 3 Original  216.892* 138.916* 98.224* 157.297* 164.920* 
 JA    -77.976*  -118.668* -59.595  -51.971* 
 SLR(n)    -40.692 18.381 26.004 
 GPSMAZ(n)     59.073* 66.696* 
 GPSMMM(n)      7.623 
 GPSMSD(n)       
n = 4 Original  216.892* 171.478* 116.889* 191.426* 202.302* 
 JA    -45.414*  -100.002* -25.466 -14.589 
 SLR(n)     -54.589* 19.948 30.824 
 GPSMAZ(n)     74.537* 85.413* 
 GPSMMM(n)      10.876 
 GPSMSD(n)       

* Mean difference significant at the 0.05 level 

Table C6. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  in 200 orders in the order list 
environment based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  235.929* 69.321* 53.654 67.399* 62.195* 
 JA   -166.607*  -182.274*  -168.530*  -173.734* 
 SLR(n)    -15.667 -1.923 -7.126 
 GPSMAZ(n)     13.744 8.541 
 GPSMMM(n)      -5.204 
 GPSMSD(n)       
n = 2 Original  235.929* 118.812* 94.709* 116.800* 112.905* 
 JA   -117.117* -141.220* -119.129* -123.024* 
 SLR(n)    -24.103 -2.012 -5.907 
 GPSMAZ(n)     22.091 18.196 
 GPSMMM(n)      -3.895 
 GPSMSD(n)       
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n = 3 Original  235.929* 155.636* 118.416* 154.732* 153.536* 
 JA   -80.292* -117.518* -81.196* -82.393* 
 SLR(n)    -37.220* -0.904 -2.101 
 GPSMAZ(n)     36.316* 35.120 
 GPSMMM(n)      -1.197 
 GPSMSD(n)       
n = 4 Original  235.929* 182.875* 132.236* 183.524* 184.098* 
 JA   -53.054* -103.693* -52.405* -51.830* 
 SLR(n)    -50.639* 0.649 1.224 
 GPSMAZ(n)     51.288* 51.863* 
 GPSMMM(n)      0.575 
 GPSMSD(n)       
* Mean difference significant at the 0.05 level 

Table C7. Multiple comparisons of mean differences in the average 𝐹𝑇̅̅̅̅  in the non-identical picker 
skill environment based on Games-Howell post-hoc tests. 

Stage Method Original JA SLR(n) GPSMAZ(n) GPSMMM(n) GPSMSD(n) 
n = 1 Original  147.011* 49.026 61.845* 50.186 52.989 
 JA   -97.985* -85.166* -96.825* -94.022* 
 SLR(n)    12.819 1.160 3.962 
 GPSMAZ(n)     -11.659 -8.856 
 GPSMMM(n)      2.803 
 GPSMSD(n)       
n = 2 Original  147.011* 84.656* 106.695* 91.732* 94.720* 
 JA   -62.356* -40.316* -55.279* -52.291* 
 SLR(n)    22.040 7.076 10.064 
 GPSMAZ(n)     -14.963 -11.975 
 GPSMMM(n)      2.988 
 GPSMSD(n)       
n = 3 Original  147.011* 114.430* 141.455* 125.281* 127.133* 
 JA   -32.581* -5.556 -21.730 -19.878 
 SLR(n)    27.025 10.851 12.703 
 GPSMAZ(n)     -16.174 -14.322 
 GPSMMM(n)      1.852 
 GPSMSD(n)       
n = 4 Original  147.011* 134.200* 167.025* 148.532* 151.843* 
 JA   -12.811 20.014 1.521 4.832 
 SLR(n)    32.825* 14.332 17.643 
 GPSMAZ(n)     -18.494 -15.182 
 GPSMMM(n)      3.311 
 GPSMSD(n)       
* Mean difference significant at the 0.05 level 
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