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Gaussian Process-based Storage Location Assignments with
Risk Assessments for Progressive Zone Picking Systems

Abstract
E-commerce warehouses are under constant pressure to adapt their order picking systems and reassign
product storage locations to meet fluctuating customer demands. Most existing approaches optimize
storage location reassignments based on customer orders and operational configurations to maintain
high order picking performance. This paper presents a Gaussian process surrogate model (GPSM)
approach to predict the performance metrics for storage location reassignments. The GPSM estimates
the expected flow time of orders from the historical data on previous storage location assignments and
aids in identifying the new assignments that yield the minimum estimated average flow times.
Management can also take advantage of the GPSM’s uncertainty quantification capability to assess
the probability of improvement for a given storage reassignment and its implementation. The
proposed model and assignment policy are validated using discrete-event simulations and industrial
data. Experimental results demonstrate that the GPSM can improve expected flow time by 7.51% and

reduce unnecessary reassignment operations by 43.25%.

Keywords: Facilities planning and design; Zone order picking; Storage location assignment;

Gaussian process approach.

1. Introduction

Zone picking (ZP) systems are popular owing to their high-throughput capability, flexibility to handle
small and large order volumes, and adaptability to a wide range of product sizes with a variety of
order pickers (Gaast et al., 2020). By separating an order picking area into zones and assigning one
picker per zone, ZP systems can reduce travel time and congestion among pickers (De Koster et al.,
2007).

In ZP systems, performance bottlenecks can still occur due to workload imbalances or other
reasons. Therefore ZP comes with order picking planning policies, such as order batching (Pan, Shih,
& Wu, 2015), order sequencing (Huang et al., 2018), and storage assignment (Jane, 2000). Order
batching reduces order picking variability and mitigates workload gaps between zones by grouping
orders so that each zone’s workload is evenly distributed between batches. Order sequencing adjusts
tote release sequences to improve the distribution of workload balances. Storage assignment balances
workloads over zones by assigning products to each zone during a long picking time. Optimizing
product assignments is referred to as the storage location assignment problem (SLAP) (Gu et al.,

2007).
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This paper investigates the SLAP for a progressive bypass ZP flow-rack system with an
automated storage/retrieval (S/R) crane. The flow-rack system is popular in warehouse management
systems for e-commerce businesses because it handles small and frequent orders and daily demand
fluctuations under short flow times. In many warehouses, since assignment capabilities are limited in
terms of resources and time, the SLAP problem is optimized by reassigning selected products instead
of reallocating all products in an order. As illustrated in Figure 1, prior to order picking, the S/R crane
relocates a few storage locations of products between the zones to rebalance the workloads
(Roodbergen & Vis, 2009). We study the optimization of the swap operations considering the current

assignment of products and estimates of the expected workload over daily orders.
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Figure 1. Progressive bypass ZP system with an S/R crane (Kim and Hong (2022)).

Solutions to the SLAP use workload proxies to approximate current workloads and exploit
them for a simple rebalancing of the estimated workloads. Popular workload proxies include the
number of picks (Jane & Laih, 2005; Jewkes et al., 2004; Kim & Hong, 2022), the expected walk time
from a picker’s loading depot (Jewkes et al., 2004), picker’s skill level (Bartholdi & Eisenstein,
1996), and picker’s route distance (De Koster et al., 2012). However, it is still unclear whether the
proxies accurately represent workloads, and it is questionable whether using the proxies is effective in
optimizing an order picking performance metric such as the average flow time of orders. In this paper,
we propose to use a data driven approach to directly estimate the order picking performance metric as
a function of current workloads, and we exploit the data-driven estimation to solve SLAP.

To our knowledge, only a few studies have used a data-driven approach to the workload
balancing and storage location reassignment problems. Building an analytical model to estimate order
picking performance from order picking data has been challenging due to the noise-included
uncertainty of complex ZP systems. We develop a Gaussian process surrogate model (GPSM) for a
data-driven estimation of the average flow time of orders from the historical data of previous storage
location assignments. Surrogate modeling usually uses the Gaussian process, due to good analytical
inference, computational flexibility, and straightforward uncertainty quantification (Rasmussen &
Williams, 2006). GPSM can measure whether a new storage assignment is likely to improve order

picking performance by means of the posterior prediction uncertainty. Based on the GPSM, we



develop a storage location reassignment method that sequentially runs one swap operation at a time
and suggests the reliable optimal swap operation with respect to the GPSM’s average flow time
estimate.

Contributions of this study are summarized as follows:

e  Model-driven approach vs. data-driven approach. We directly estimate order picking
performance with a data-driven approach by implementing the GPSM. Since estimating
order picking performance is challenging due to warchouse complexity, size, and noise in
the data, implicit workload proxies have been used to estimate performance in traditional
methods (De Koster et al., 2012; Jane & Laih, 2005; Jane, 2000; Jewkes et al., 2004; Kim &
Hong, 2020). Instead of approximating workload proxies, we optimize storage location
assignments by using historical order picking data to estimate the average flow time with
GPSM.

e  Domain knowledge-based performance improvement. We improve the GPSM’s
estimation performance with our domain specific feature generation and training data
configuration. As a result, we present an accurate learning model that effectively estimates
order picking performance to solve SLAP.

e Risk assessment using GPSM. We propose a screening test based on the improvement
probability obtained from the GP estimates and the storage reassignment procedure based
on the estimation model and screening test The procedure optimizes storage space with
minimal adjustments, reduces material handling costs, and enhances customer service in the
warehouse.

e  Performance evaluation. We use discrete event simulation and statistical tests to
demonstrate the proposed models’ ability to reduce flow time and reassignment effort,

thereby improving warehouse management systems and operational efficiency.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature.
Section 3 explains the fulfillment system and the proposed GPSM for average flow-time estimation.
Section 4 introduces the proposed storage reassignment method using the flow-time estimation.
Section 5 describes the experiment validating the model, and the simulations, results, and sensitivity

analysis. Section 6 concludes and suggests future research.

2. Literature review

2.1 General storage location assignment

Most studies of the SLAP use travel distance and travel time as the performance measurements. Caron

et al. (2010) developed an optimization model that minimizes the travel distance and travel time, and



they also developed an estimation model that estimates the two performance measurements. Brynzér
and Johansson (1996) suggested that grouping products by characterizing their variant information
could reduce the product movements for traveling and picking. Muppani and Adil (2008) used
nonlinear integer programming to capture the impact of a class-based storage system on the required
space and material handling cost. Several studies have used probabilistic models and Markov chains
to estimate travel distance or travel time to evaluate order picking performance and analyze the
optimal storage assignment policy (Le-Duc & De Koster, 2005; Pan et al., 2014; Pan & Wu, 2009).

Motivated by a real problem, SLAP studies have also considered controlling the number of
reassignment operations. Quintanilla et al. (2014) developed heuristic algorithms to maximize the
available storage space by reoptimizing pallet locations in a random storage system. Kiibler et al.
(2020) suggested the ABC class-based iterative storage reassignment method considering order
batching and picker routing together, and evaluated the reassignment effort with the future travel
distance to identify promising reassignment. Pazour and Carlo (2015) developed mathematical model
formulations for reassignment operating policies using an automated S/R crane and quantified the
total loaded and unloaded travel distances while optimizing the reassignment operations.

In progressive zone picking systems, the SLAP has been focused on balancing workloads
between zones for operational efficiency. Studies of workload balancing include Jane (2000), who
proposed a heuristic algorithm to balance pickers’ workloads by adjusting the number of storage
zones. Pan, Shih, Wu, et al. (2015) developed a heuristic based on a genetic algorithm to solve the
SLAP considering workload balance in a progressive zone picking system. Kim and Hong (2022)
used mixed-integer programming to construct the storage location reassignment (SLR) model and
applied it to a progressive bypass ZP system with a circulation conveyor and an S/R crane. The
authors’ model relocated the storage locations of products considering workload balance and
recirculation reduction.

The models above, however, require solver tools, experts who can adapt the model to the
warehouse environment, and lengthy computation to solve the kinds of large-size problems
encountered by e-commerce warchouses. Most model-based optimization assumes a static operational
environment, while data-driven optimization allows solving SLAP in an uncertain environment. Thus,

we focus on data-driven storage location assignments for more agile and flexible SLAP optimization.

2.2 Data-driven storage location assignments

Various types of data-driven approaches have been developed for SLAP, and several studies have
utilized clustering algorithms. Jane and Laih (2005) suggested a clustering algorithm to distribute the
frequently requested products into several zones for workload balance in a synchronized zone picking
system. Chuang et al. (2012) clustered associated items into groups and determined the sequence of

the order groups for SLAP to minimize picking distance.



Chiang et al. (2011) used a data association algorithm to group products into similarity groups
by order frequency and other product characteristics and introduced a data-mining based storage
assignment (DMSA), which aimed to increase the association index (AIX) between products and their
storage locations. Chiang et al. (2014) extended their research using a weighted support count (WSC)
to calculate each AIX. The heuristic considered the relationship between a family and a cluster of
products.

Pang and Chan (2016) developed a data mining-based assignment using association rules to
minimize travel distances by controlling storage locations of correlated items and items near entry
points. In a dynamic environment, Li et al. (2016) optimized the storage assignment based on the
ABC classification and mutual affinity of products. The product affinity-based heuristic (PABH)
identified the relationship between products. The authors used a greedy genetic algorithm because the
problem was a quadratic assignment problem.

Regression techniques have been investigated for their use in storage location assignments.
Sadiq et al. (1996) built a regression model to analyze the performance of storage location
assignments considering order picking time and reassignment. Larco et al. (2016) used linear
regression models to estimate worker discomfort factor and order cycle times. Larco et al. (2016)
solved SLAP using the estimated values as the parameters of bi-objective optimization. Larco et al.
(2016); Sadiq et al. (1996) estimated order picking performance with simple linear models based on
factors such as storage location, bin type, product life cycle, and management policies, but neglected
workload balance factors, a key influence on the performance of ZP systems.

Two practical issues deserve further investigation. Previous studies of data-driven SLAP
consider the allocation of storage locations for entire products, yet when real-world reassignments are
both resource- and cost-intensive, many warehouses choose to reallocate a limited range of products
due to demand and operational uncertainty. The reassignment benefit should outweigh the
reassignment cost while considering variables such as order sequence, workload balance, and rack
storage policy. We use the Gaussian process to solve the data-driven SLAP with limited reassignment
capacity and to quantify the reassignment risk to screen for reassignment operations with high

potential for improvement.

3. Progressive ZP system and GPSM

In this section, we describe the progressive ZP system and explain the average flow time estimation
using GPSM. We consider order picking in the concept of wave management, where a large set of
orders is scheduled to be picked during a time period (pick wave) (Bartholdi & Hackman, 2008). We
define the set of orders in a pick wave as an order list. Prior to the pick wave, there is an opportunity to
reassign the storage location of items within the picking zones. The flow time of order refers to the

time interval between the time a tote enters to the time it exits the ZP system. Flow time is a critical



performance metric that needs to be reduced to shorten in-transit inventory and ensure fast delivery
(Bartholdi & Hackman, 2008). According to practitioners, when considering throughput time or other
indicators, it is challenging to operate a smooth transition to a post-process (e.g., packing), so the
average flow time of orders is considered. We propose a learning model that estimates the average
flow times of upcoming order lists based on workload balance information from historical order

picking data.

3.1 Progressive ZP system characteristics

Our progressive zone picking system consists of an S/R crane and multiple zones. S/R cranes are
automated material handling systems that are used in numerous manufacturing and warehousing
systems to handle, store and retrieve discrete products (Ghomri & Sari, 2017). The S/R crane transfers
each carton of products from a reserve rack to a flow rack, between reserve racks, or from the
entrance or exit of the fulfillment center to any racks. The S/R crane can exchange the storage
locations of a pair of products at a time by temporarily placing the products to be exchanged in the
reserve rack area, which we refer to as a swap operation. Figure 2 shows an S/R crane replenishing a
flow rack area with cartons from the reserve rack area.

Each zone has a flow rack and one zone-dedicated picker. Pickers pick products from cells in
the flow rack and place them in totes. The totes travel on a conveyor through the zones. Each tote
visits only the zones containing the products to be picked. When a zone has no room for a tote to
enter, the tote skips over (bypasses) the zone and keeps traveling on the conveyor until a room is

available.
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Figure 2. Progressive ZP flow-rack system with S/R crane (a) side view and (b) front view (modified

from Cahyo (2017)).



A zone consists of multiple flow racks, and a flow rack consists of multiple cells to store
products. We consider a simplified model, i.e., each cell contains only one product type. An order list
is the batch of orders handled in the same shift or time window, and an order is the types and amounts
of products.

We use the following notations.

Set and indices

0,0 The set of orders, and an order o € O

L1 The set of order lists, and an order list [ € L

Z,z The set of zones, and a zone z € Z

Kk The set of cells, and acell k € K

P,p The set of products, and a product p € P

R,T The set of relative rack column positions in a zone, and a rack position r € R

Order and storage location representation

Let C be the [0| X |P| matrix representing products in orders with ¢, as its (0, p) th element, where
Cop be a binary variable indicating whether order o contains product p; ¢, is 1 if order o contains
product p, and 0 otherwise. Let S denote a |P| X |K| matrix describing the relationship between the
products and cells with its (p, k) th element s, being a binary variable indicating whether product p

is located on cell k. Let W be a |0| X |K| matrix representing the relationship between the orders and
cells with its (o, k) th element w,;, being a binary variable indicating whether order o requires a

product to be picked from cell k. The matrix W is related to matrices C and S through

A = C-S
|:C “ee CllPl l I e SllKll
Clojx = C|0||P| Sipie 7t Sip|ik|

Abstract representation by order list and Zone/Rack locations

Let Abe a |K| X |L| matrix of a;;'s that represents the total number of picks from cell k € K required
to fill order list [ € L. Let B represent a |L| X |Z| matrix with by, as its ([, z) th element which

represents the total number of picks from zone z € Z to fill order listl € L. Let G be a |L| X |R| matrix
of g;;'s that represents the total number of picks from flow rack r € R required to fill order list [ € L .
Let 0, denote the set of orders in the order list l. Let K, and K,- denote the set of cells assigned in zone

z and the set of cells assigned in rack position 7, respectively. We can calculate a;;, using the matrix

W as
iy = Z Wok-

0€0;

We can calculate b, as



b, = Z A1k,

keK,

Iir = Z ag-

kEK,

and calculate g;,- as

Below, we summarize the constant matrices for the problem formulation.

G, cop Order-Product inclusion matrix and its elements ¢,,, Yo € O and p € P

W, w,, Order-Cell inclusion matrix and its elements w,,., Vo € O and k € K

S, Spk Product-Cell inclusion matrix and its elements s,,, Vp € P and k € K

A ay, Order list-Cell relationship matrix and its values ay, VI € L and k € K

B, by, Order list-Zone relationship matrix and its values b;,, VI € Land z € Z

G, gm Order list-Rack position relationship matrix and its values g;,, VI € L and h € H

3.2 GPSM for Average flow time estimation

Feature Generation

To estimate the average flow time of orders in an order list (FT), an estimation model requires the key
input variables (i.e., features) that are expected relate to FT. We generate features from historical
order picking data that can represent the picking time and workload balance across zones. Picker’s
travel distance and workload balancing measures, such as standard deviations of workload between
zones, and zones’ maximum and minimum numbers of workload, are potentially related to FT (Huang
et al. (2018), Vanheusden et al. (2022)). We develop GPSM using three features of zone workload
balance and a feature of rack storage policy to estimate the average flow time FT.

Let x; represent the three input features extracted from order list [ € L, and let X ={x;,l € L}
We consider three models. The first GPSM, which we refer to as GPSMaz, is only based on the first

input feature, i.e., picker’s travel distance. We define a total travel distance to complete order list [ €

TD, = Z dr * Gurs

TER

L as

where d, is the distance from the picker’s loading depot to a rack position r € R.
The second GPSM, which we call GPSMwmw, uses three input features: TD; and the maximum

and minimum number of workloads of zones. We calculate the maximum number of picks among

zones b{"** and the minimum numbers of picks among zones b/™" as
b["** = max by,
VzeZ
b™™ = min b,.
L vzez 2



The third GPSM, which we refer to as GPSMsp, also uses TD; and one additional input, the
standard deviation of the number of picks per zone. We let b; Prepresent the standard deviation for

order list [ € L, which can be obtained as

bSD — Zzez(blz_ %Zzez(blz))z
t |z]-1

GPSM
Gaussian process (GP) regression, a popular surrogate model for computer and physical experiments
(Mackay, 1998; Murphy, 2012), provides a predictive relation between input and response variables.
For our problem, the input is an input feature set x, and the response variable y would be the average
flow time FT. Suppose that we have training data of input features and associated response values for
orders in order list L. We denote the training data by (X,y), where X = (x;,l € L) andy = (y;, 1 =
1 € L) represent the training inputs and responses. The inputs and responses are related via an
unknown regression model f(x) as

yi=f(x) + e, ~N(O,07).

We assume the regression function f(x) is a zero-mean Gaussian process with covariance
function K(x, x"). Given the training data, we like to predict the posterior distribution of f(x,) for a
test input x,, which follows a Gaussian distribution with mean fi(x«) and variance £(x«) (Rasmussen
& Williams, 2006),

1
A(xs) = KxX)[KXX) + 217y, W

2
2(xx) = K(Xn, %) — K& X)[KXX) + 0217 K (%+,X), @

where I is an |L| X |L| identity matrix, and K (X4, X3) is the matrix of the covariance function values
evaluated between X1 and X,. We use the covariance function composed of a squared exponential
(SE) covariance function and noise variance function,

3

2
k(x:,%;) = ofexp (— w> +078(x,,%;),

where variable length scale 4, signal variance sz, and noise variance g control the correlation
between observations X; and X;, and § is the Kronecker delta function. The kernel-function option

depends on the input and expected patterns in the data, e.g., Richardson et al. (2017) considered SE

and Matérn covariance as the kernel function.

4. Storage location reassignment with risk assessment

In this section we define a storage location reassignment as the sequential determination of swap

operations, each of which is optimized to minimize the average flow-time of orders based on the



GPSM’s output. We also use the GPSM estimate to evaluate the improvement probability of the swap

operations by screening out the less promising ones.

4.1 Swap operation

The storage location reassignment adjusts the locations of products to minimize the average flow-time
estimate from the GPSM. We use a series of swap operations (i.e., switch a pair of product cartons) to
optimize storage locations with limited handling capacity. For each swap operation, we assume that
o Each picker stays in his/her zone and independently retrieves each product per tote.
e Each product occupies one zone and one rack.
e Each zone has the same number of racks.
e Constant picking time includes search time, pick time, and inspection time.
e Management has sufficient time to reassign locations for new order lists (Sadiq et al., 1996).
e All products are available before an order enters the system.
e A swap operation swaps two cartons of products across flow racks at a time.
e The total number of the swaps is finite and determined dynamically.
e The swap distance as defined by the physical distance between two rack locations, and the
number of cartons affect swap time.
e The number of swap operation is not predetermined; after a swap, management determines if
another swap is necessary.
e The reserved area has empty racks; therefore, swap operations can be performed without
additional handling.
e The swap operation utilizes the reserved area to temporarily store the products to be
reassigned. The reserved area has empty racks; therefore, swap operations can be performed

without additional handling.

Each swap operation is optimized so that the choice minimizes the average flow time
estimated by the pre-trained GPSM described in Section 3.2. A swap operation is represented by a
column swap of the original product-pick-face inclusion matrix S. For example, suppose there are five
products (P = {1,2,3,4,5}) in each pick-face. If the swap operation occurs between the product 2 and

product 4, then it makes a change of the original product-pick-face inclusion matrix S to S’

[10000] [100001
[0 1 0 0 Of [0 0 0 1 0
s=|00100|, S‘=|00100.
l00010 l01000J
000 0 1 000 0 1

After the update to S, we can calculate the corresponding testing input x, and then get the associate

posterior predictive distribution f (x,) from the GPSM to get the estimated distribution of the average

10



flow time resulting from the swap. We repeat this for a list of N feasible swap operations and select
the best swap operation that minimizes the expected average flow time, i.e., E[f (x,)]. We consider
all possible swap cases among |P| products, which gives N equal to two-out-of-|P| combination caes.

We iterate the swap operation to the maximum number of swaps M determined by management.

4.2 Feedforward heuristic

Since exact algorithm for an optimal sequence of M swap operations is not suitable due to the
combinatorial nature of the problem, we propose Algorithm 1, where the best solutions from the
precedence process become the input of the next process. The steps of the feedforward heuristic are as

follows.

Algorithm 1. Feedforward heuristic.

Step 1. Set M (based on warehouse experience and considering the number of storage locations
that can be reassigned), and set i =1 and set S to be the current product-pick-face

inclusion matrix.

Step 2. Generate N candidates {S§, S5, ..., S§} from S'. (See 4.1 Swap operation)

Step 3. Calculate the corresponding input features {xilxiz, o, Xt N} corresponding to the N
candidates.
Step 4. Obtain ﬁ(xi) from each candidate and find the optimal swap operation based on

equation (4).
Step 5. Update S'.
Step 6. Ifi<M,i=i+1 and go to step 2, otherwise STOP.

Let S’ represent the ith storage location matrix for the iteration i = 1..., M, where M controls

the maximum number of swap operations set according to the warehouse environment. For every
iteration i, generate storage location candidates {Si, S, ..., S,‘V} with swap operations from former
storage locations S¢~1. Each candidate generates the testing inputs {Xilxiz, o, X N} to be evaluated
with the proposed average flow-time estimation model. Next, determine the storage locations S*
according to the best x! that yields the minimum ﬂ(xi) using Equation (1). Obtain the expected

average flow time of the storage locations S as

. o )
E[FT($H)] = min{a(x})

xt e {xiy, xiy, .., xin ]

Considering an initial storage location S° for an order list [ and obtaining the historical data in
the form listed, use Algorithm 1 to find the new storage location (S?) at iteration 1 that minimizes the
average flow time for an order list I. Note that the new storage location S* from the first stage is

considered as the initial storage location St~ of the second stage and obtains the new storage location

11



S? that yields the minimum FT at the second stage. Run these procedures until iteration i reaches the

maximum number of swaps M.

4.3 Screening out less promising swaps

Quantifying uncertainty is critical in managing operational risks. The probability that a system will
not improve can be estimated with the estimates of Gaussian process model (Bect et al., 2012). We
conduct a screening test using the posterior predictive distribution from GPSM. We use the posterior
predictive distribution of the average flow time after a swap to evaluate the probability of
improvement in the average flow time, compared to the average flow time before that swap. If the

improvement probability is not sufficiently high, we revoke the determined swap operation.

( N
Train a GPSM on fraining dataset X
and set M and i=1
A ¢ S
4 N
« | Generate the testing inputs from the storage
”~ . . . .
location at iteration i-1
A ¢ S
' A
Set o and estimate the average flow
time from each candidate
A J
'S ¢ 3
Find the optimal testing input
A J

1-P(improvement ) < a?

.

Figure 3. Flowchart of a screening test applied to Algorithm 1.
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Given the means and variances of the two mutually independent Gaussian distributions, we
use a one-tailed test to statistically compare the difference between the mean values of two
distributions. GPSM is used to obtain the mean({i(-)) and variance(2(*)) of X% and xi~1, where x! is
the testing input expected to be the optimal case from the relocated cases {Xil, xt,, ., xt N}, and xi~1
is the testing input of the reassigned order list at iteration i — 1. The null hypothesis is that the FT of
xi1 is less than or equal to the FT of x!. The probability of the null hypothesis (p-value) denotes the
probability that the reassignment operation will not improve. We set significance level a for the one-

tailed test to classify the case with the risk to increase FT. We obtain the Z-score of the difference

between the two FT values and the improvement probability from the Z-score as

1 — P(improvement) = P(FT(S"1) —FT(S") <0) =P(Z > M) )
SN +2(xh)

We compare the one-tailed p-value with the significance level a. Note that the improvement
probability of reassignment cannot be guaranteed if the p-value is greater than the significance level.
If the p-value becomes smaller than the significance level, the GPSM expects that the flow time of the
GPSM optimal assignment is significantly shorter than the flow time of the original assignment;

therefore, it executes the determined swap operation.

5. Industrial application of GPSM

In this section we describe our simulation experiment and the results. Ten scenarios from a real e-
commerce warehouse configuration and historical order data were used to evaluate the performance of
the proposed model. We analyze the effectiveness of reassignment decisions and conduct sensitivity

tests over various warehouse configurations.

5.1 Workload scenarios

To obtain accurate and reliable estimates, we use different workload scenarios to train the proposed
models on various storage policy factors. We consider the four zone workload distribution types and

two rack storage policies shown in Table 1.

Table 1 Zone workload distribution types and rack storage policies.

Zone workload distribution type Rack storage policy
Uniform ABC(5:3:2)
Bottleneck zone Random

Descending demand
Irregular demand

We note that a uniform zone workload distribution type is the most workload-balanced

scenario with almost uniformly distributed workloads over zones. We generate Scenarios 1 and 2 with
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this type to make workload balanced scenarios. The bottleneck zone distribution type refers to the
case that one randomly chosen zone is assigned 25% of total orders when all other zones have a
uniform workload distribution. The bottleneck zone scenarios can occur in situations when demand
for particular products increase dramatically that often arises in e-commerce warehouses. We generate
Scenarios 3 and 4 with this type. A descending demand zone distribution type has a descending trend
in workload. The first zone has the largest demand volume and the demand gradually decreases
toward the last zone. Many warechouse managements set descending demand in progressive zone
picking system to avoid blocking delay between zones. We distribute the workload ratio of each zone
as the ratio of each zone index to the sum of zone indexes. We generate Scenarios 5 and 6 with this
type. An irregular demand-zone distribution type represents the most workload-unbalanced scenario
with an uneven distribution of workloads across zones. We demonstrate worst-case workload
balancing by randomly shuffling storage locations for descending demand scenarios and generating
irregular demand scenarios. We generate Scenarios 7 and 8 with this type.

The rack storage policy defines how products’ storage locations are assigned over rack
column positions. The ABC (5:3:2) class-based rack storage policy classifies products to classes A, B
and C in a ratio (0.5:0.3:0.2) for allocating high-demand products in the rack column positions with
the picker’s shortest travel distance. The random rack-storage policy refers to the random assignment
of products within zones.

We generate the first eight workload scenarios using a full factorial design with four zone
workload distribution types and two rack storage policies and two additional scenarios. To train
GPSM even with scenarios that cannot be considered by the full factorial design, we generate
scenarios 9 and 10 by switching a randomly chosen pair of product locations from Scenario 1.
Scenarios 9 and 10 have balanced workloads, but the storage locations of products differ from the
preset rack storage policy due to demand fluctuations and a series of previous storage relocations. We
classify Scenarios 1, 2, 9, and 10 as workload balanced scenarios and Scenarios 3, 4, 5, 6, 7, and 8 as
workload unbalanced scenarios. In Table 2, the average FT of 50 order lists per scenario measured by
simulation shows that zone workload distribution type and rack storage policy directly influence order
picking performance. The workload balanced Scenarios 1, 2, 9, and 10 provide shorter average FT.
We conduct statistical tests to validate the significance of difference between scenarios (Please see

Table B1 and Table B2 in Appendix B for detail).

Table 2. Ten workload distribution scenarios.

Scenario  Zone workload distribution type Rack storage policy =~ Average FT
1 Uniform ABC (5:3:2) 1250.03
2 Uniform Random 1309.47
3 Bottleneck zone ABC (5:3:2) 1440.65
4 Bottleneck zone Random 1523.62
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5 Descending demand ABC (5:3:2) 1513.42
6 Descending demand Random 1593.70
7 Irregular demand ABC (5:3:2) 1522.98
8 Irregular demand Random 1586.75
9 24 times random switch from scenario 1 1284.24
10 100 times random switch from scenario 1 1312.51

5.2 Experimental configuration

To validate our proposed GPSM, we configure a warehouse and its order profiles based on an e-
commerce company’s progressive bypass ZP system in Korea. We run 200 experiments per
configuration, i.e., 20 different order lists per each of the 10 scenarios. We train GPSM on 300
training datasets consisting of 10 scenarios with 30 different order lists. We use Tecnomatix® Plant
Simulation 12 to build the simulation model. We generate synthetic historical data based on the order
profiles and modified sizes of the ZP system. Since recirculation and bypass disrupt the order
sequence, the order release sequence follows the First-Come-First-Serve rule. We use Python 3.7 and

scikit-learn toolbox to analyze the data. Table 3 reports the details.

Table 3. Warehouse configuration.

Parameter Values
Number of swaps (1) 1,2,3,4
Number of zones 8

Number of rack columns per zone 6

Order size Uniform (3,9)
Number of orders in each order list 100

Note: Default values of each parameter are underscored.

We label the GPSMs as stages 14 by setting M = 4. GPSM(n) denotes the first stage
resulting in the swapping of n pairs of storage locations. We compare the GPSM to Kim and Hong
(2022), who proposed an MIP model to reassign a limited number of storage locations for the same
order picking system. For simplicity, we call their model SLR(7), where # is stage number (i.e., the
number of the swap operations). We also compare the GPSM with the heuristic algorithm proposed
by Jane (2000) for workload balancing in a zone picking system. For simplicity, we call their heuristic
algorithm the JA. Unlike the GPSM and SLR, the JA reassigns all storage locations without limiting
the number of reassignments.

The objective of the GPSM is to minimize the average flow time; the objective of the SLR(#n)
model is to minimize the maximum number of picks and the maximum number of order visits among

all zones; and the objective of the Jane is to distribute the number of picks evenly across all zones.
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Since all three models aim to balance the workload in the progressive ZP system to minimize order

flow time, we compare the models’ performance.

5.3 GPSM effectiveness analysis

Figure 4 illustrates the percentage reductions of average FT between the original assignment and three
GPSMs, and between the original assignment and SLR(#) when swapping multiple pairs of products.
Without the screening test, GPSMsp(1) yields a 3.23% average reduction, GPSMsp(4) yields an
8.87% average reduction, SLR(1) yields a 2.93% average reduction, and Jane yields an 8.21% in FT.
The workload unbalanced scenarios (1, 2, 9, and 10) have larger FT reductions than the workload
balanced scenarios (3, 4, 5, 6, 7, and 8). For the same zone workload distribution type scenarios in the
GPSMs, the random storage policy yields a high reduction percentage of FT. The results indicate that

the workload unbalanced scenarios have scope for further improvement than the workload balanced

scenarios.
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Figure 4. Percentage reductions of average FT by workload scenarios without the screening test.

Without the screening test, we observe 24 failures of reassignment that yield a 1.13% increase
in the average FT compared with the original assignment when GPSMsp(1) runs for 200 instances.
For the same instances, Jane obtains 49 failures of reassignment with an increase of 2.96% in the
average FT over the original assignment, and SLR(1) results in 28 failures of reassignment with an
increase of 1.13%. The screening test excludes the reassignment that is expected to improve with low
probability.

Table 4 reports the results of the paired t-tests for each scenario and stage to identify
statistically significant differences between SLR and GPSMgp. The differences are insignificant in the
balanced scenarios (1, 2, 9, 10) or low stages (n = 1,2). Where swap operations are performed more

than three times, GPSMsp has shorter FT than SLR in the unbalanced scenarios (3, 4, 5, 6, 7, 8).
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Table 4. Paired t-test results on FT of SLR(n) — GPSMsp(n)

Stage Scenario Paired t-test on the average FT
Mean difference t-value DF  P-value
n=1 1 11.405 2.082 19 0.051
2 -1.286 -0.227 19 0.823
3 8.831 1.322 19 0.202
4 -6.932 -1.246 19 0.228
5 -3.917 -0.638 19 0.531
6 3.569 0.451 19 0.657
7 3.630 0.476 19 0.639
8 17.554 1.960 19 0.065
9 -0.853 -0.206 19 0.839
10 11.577 2.059 19 0.053
n=2 1 16.198 3.604 19 0.002
2 3.657 0.700 19 0.493
3 13.045 1.613 19 0.123
4 -3.310 -0.379 19 0.709
5 -3.297 -0.608 19 0.551
6 0.542 0.075 19 0.941
7 6.574 0.775 19 0.448
8 7.898 1.730 19 0.100
9 4,738 0.792 19 0.438
10 4,738 0.792 19 0.438
n=3 1 -0.846 -0.154 19 0.879
2 7.804 2.075 19 0.052
3 15.395 1.676 19 0.110
4 23.124 4.068 19 0.001
5 19.973 2.827 19 0.011
6 20.554 2.211 19 0.040
7 0.025 0.003 19 0.998
8 23.433 3.167 19 0.005
9 3.494 0.973 19 0.343
10 2.883 0.453 19 0.656
n=4 1 -1.753 -0.277 19 0.785
2 0.667 0.126 19 0.901
3 24.278 2.614 19 0.017
4 18.841 2.228 19 0.038
5 25.310 3.224 19 0.004
6 25.168 2.154 19 0.044
7 16.812 2.512 19 0.021
8 30.869 4215 19 0.000
9 -7.403 -1.706 19 0.104
10 -5.434 -1.075 19 0.296

Figure 5 illustrates the screening test’s effects on productivity for 200 assignments from SLR,
SD-GPSM before the screening test, GPSMsp after the screening test, and the original assignments
without reassignment. We adopt Youden’s J statistic for the significance levels of the screening tests
(Youden, 1950). We set swapping time (ST) weight, considering the replenishment time in the real e-
commerce warehouse. On the x-axis, we classify experimental cases by different reassignment
strategies, stage number, and ST weight. The black bars indicate the time difference between the start
and finish of a sequence of an order list (C,,,,; makespan), and the dotted white bars indicate the total
swapping time (T'ST). The y-axis represents the average total elapsed time including C,, 4, and TST.

The makespan distinctly decreases as the stages increase. GPSMsp after the screening test
yields a shorter TST because the screening test filters out the number of swap operations. When ST =

2.5, the total swapping time of GPSMsp(2) before the screening test averages 300 seconds, and the
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total swapping time of GPSMsp(3) after the screening test averages 256.5 seconds. Before the

screening test, the makespan of GPSMsp(2) averages 2449.90 seconds, and the makespan of

GPSMsp(3) averages 2413.62 seconds. After the screening test, GPSMsp frequently shows a large

makespan reduction with less swapping time.

Total elapsed time (s)

3400
3200

W
(=
(=3
S

2800
2600
2400
2200
2000

3600

I
—_— [ S [5) o [5) k= [5) ot [5) i [} =1 [5) - [5) —
< =4 = Q ~ = Q ~ = Q < = Q ~ = Q ~ = Q < = Q ~ = Q
g o & A o & - S = - o & A o & S & o & A o &
W N g s g 8 g s g "8 »n g 8 yn g 8 g 8 g <
';O: ° © © o° © © ° ©

=
|
—_
=
Il
[\S)
=3
Il
w
=
Il
~
=}
|
—_
=3
I
[\8)
=
I
w
=}
I
N

ST=2.5 ST=5
B Cmax TST

Figure 5. Screening test effectiveness analysis considering swapping times.

5.4 Sensitivity analysis of GPSM with a screening test

We consider different warehouse configurations (i.e., increasing the number of zones, rack columns,

orders in an order list, and order sizes). We also consider non-identical picker skill configuration (i.e.,

two slow-moving pickers in eight zones) (Bartholdi and Eisenstein (1996), Hong (2019)).We use the

following measurements:

Before: The average FT reduction before the screening test (%)
a: The significance level for the screening test

#swaps: The average number of swaps after the screening test
Avg: The average FT reduction (%)

Worst: The FT reduction of the worst case (%)

Table 5 reports the sensitivity analysis results. In Appendix C, we conduct statistical analyses

to identify which methods have statistically significant differences across order picking environments.

As a result of the fact that the data variances for each group are not equal, we use Welch’s ANOVA
test (Table C1) and Games-Howell as post-hoc tests (Table C2, Table C3, Table C4, Table C5, Table

C6, and Table C7) for each order picking environment.
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Table 5. Results of GPSM sensitivity analysis with screening tests.

Environment JA GPSMaz(n) GPSMmm(n) GPSMsp(n)
Avg. Worst #swaps Avg. Worst Before «a #swaps Avg Worst Before a #swaps Avg Worst Before «a #swaps Avg Worst
Default 821 -813 | n=11| 100 416 192 039 027 089 -1.76 3.02 0.14 055 228 -0.82 323 0.15 059 256 -190
n=2 | 2.00 -398 3.06 044 050 137 -1.76 532 032 1.00 386 -0.10 560 026 1.15 454 0.00
n=3 | 3.00 -3.75 390 046 070 178 -1.76 726 037 140 506 -0.10 7.59 031 171 623 0.00
n=4 | 4.00 -222 440 048 090 206 -1.76 840 037 1.72 554 -0.10 888 037 227 751 0.00
12 zones 941 -869 | n=1 | 1.00 -6.22  2.00 041 028 094 -260 271 027 051 214 -384 240 036 042 1.69 -3.30
n=2 1 2.00 -6.43 3.00 050 056 147 -284 462 037 086 344 -384 420 041 081 298 -3.99
n=3 | 3.00 -485 438 050 069 1.62 -090 582 039 1.14 432 -384 564 044 120 388 -3.18
n=4 | 4.00 -522 532 050 072 1.66 -090 696 041 138 507 -3.84 644 044 154 450 -3.18
12 rack columns| 7.00 -17.59| n=1 | 1.00 -568 153 042 025 075 -037 283 0.16 052 18 -283 269 0.18 051 183 -1.39
n=2 1 2.00 285 286 045 045 1.12 -237 472 032 099 3.14 -2.83 494 035 1.02 339 -047
n=3 1| 3.00 241 357 049 063 148 -1.11 648 036 145 438 -283 6.72 031 151 467 0.00
n=4 | 4.00 -2.02 448 050 080 1.70 0.00 804 040 190 526 -2.83 828 035 200 579 0.00
Unif(10,20) 727 -8.68 | n=1 | 1.00 -247 141 047 080 138 -723 243 0.19 079 246 -1.31 253 0.19 0.77 254 -131
Order size n=2 1 2.00 -2.04 250 041 118 220 -723 412 028 142 395 -131 436 025 146 420 -0.72
n=3 1| 3.00 -2.07 333 041 132 252 -723 554 043 204 521 -131 582 035 215 556 0.00
n=4 | 4.00 -232 398 046 142 267 -723 673 039 265 631 -131 7.14 038 283 6.75 0.00
200 orders in 13.59 -7.60 | n=1 | 1.00 -1.19  3.08 043 053 219 -360 403 024 086 393 -042 373 0.18 038 155 -042
each order list n=2 1| 2.00 -1.05 544 040 079 324 -360 696 040 1.67 672 000 6.76 027 0.69 2.64 -042
n=3 | 3.00 -1.58  6.84 040 080 327 -360 921 039 239 88 0.00 9.5 033 093 335 -042
n=4 | 4.00 -093 7.60 050 081 329 -360 10.88 042 3.05 1030 0.00 1092 039 1.15 376 -042
Non-identical 7.74 -1047| n=1 | 1.00 -499 3,60 041 093 344 -275 285 037 073 270 -2.14 299 033 052 248 -2.03
picker skill n=2 1 2.00 -6.42 622 039 143 492 -246 522 043 132 478 -3.16 540 040 1.03 421 -1.12
n=3 1| 3.00 -425 819 047 191 589 -246 7.14 043 1.82 601 -3.16 720 043 154 569 -1.12
n=4 | 4.00 -527 9.64 048 237 6.67 -246 844 044 224 694 -3.16 860 043 205 6.67 -1.12
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Sensitivity analysis over default order picking environment

Table 5 reports only four failures of reassignment with a 1.09% increase in FT compared with the
original assignment when GPSMsp(1) runs for 200 instances. When the stage increases, the SLR
model swaps the number of product pairs equal to the stage number, whereas the GPSM policies swap
fewer product pairs because the screening test filters out the swap operation with a low improvement
probability. Both GPSMsp and GPSMw significantly reduce FT and swapping time. JA swaps the
unlimited number of storage locations and yields 8.21% of the average FT reduction. GPSMsp(4)
swaps on average 2.27 times to yield 7.51% of the average FT reduction, but SLR needs to swap three
times to yield 6.82% of the average FT reduction. GPSMsp yields 0.00% for the FT reduction of the
worst cases, whereas SLR(4) and JA yield -2.22% and -8.13%, respectively. Appendix Table C2
shows that FT reduction rates of SLR(4) and JA are not significantly different from GPSMsp(4) and
GPSMwmm(4) before performing screening tests. The results indicate that GPSM is a reliable, cost-

effective tool for warehouse management.

Sensitivity analysis over 12 zones

Table 5 also shows that reassignment performance decreases when the number of zones increases.
SLR vyields 2.66% of the average FT reduction with one swap operation and 4.59% of the average FT
reduction with two swap operations. After the screening test, the GPSM policies skip the low
improvement cases and reduce the average number of swap operations. GPSMsp yields 4.50% of the
FT with average 1.54 swap operations, and GPSMww yields 5.07% of the FT with average 1.38 swap
operations. GPSMgp yields -3.18% for the FT reduction of the worst cases, whereas JA and SLR(4)
yield -8.69% and -5.22%, respectively. Appendix Table C3 shows that FT reduction rates of SLR(4)
and GPSMsp(4) are not significantly different before performing screening tests. The results indicate

that GPSM performs well over large-scale assignments with limited training data resources.

Sensitivity analysis over 12 rack columns per zone

As the number of rack columns in each zone increases, picker’s travel distance has a large effect on
order picking performance. SLR yields 3.85% for the average FT reduction with 2 swap operations,
and GPSMsp and GPSMww yield 5.79% for the average FT reduction with average 2.00 swap
operations and 5.26%, respectively, with 1.90 swap operations. The results indicate that both GPSMgp

and GPSMwmwm balance the workloads well between zones when travel distance is critical.

Sensitivity analysis over order size = Uniform(10,20)

GPSMsp and GPSMwmw consistently reduce the average FT from stages 1-4 and provide assignments
with a high probability to improve. Intuitively, increasing the order size causes congestion because the
totes stay longer in the system. JA yields 7.27% for the average FT reduction with unlimited swaps,
whereas SLR yields 3.51% when swapping two pairs of products, and 4.87% when swapping three
pairs of products, respectively. GPSMgp yields 6.75 % when swapping an average 2.83 pairs of
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products, whereas GPSMwmw yields 6.31% when swapping an average 2.65 pairs of products.
Appendix Table C5 shows that FT reduction rates of SLR(4), JA, GPSMsp(4), and GPSMwmm(4) are
not significantly different before performing screening tests. The results confirm well-balanced

workloads between zones when the order size is large.

Sensitivity analysis over number of orders = 200

To analyze GPSM performance over a large problem size, we increase the number of orders in each
order list. As the number of orders increases, the average FT reduction between the original and
reassignment increases: GPSMwmm(4) yields 10.30% on average and 0.00% in the worst case with the
average number of swaps = 3.05, and SLR yields 9.22% on average and —1.58% in the worst case
with three swap operations, whereas JA yields 13.59% on average and -7.60% in the worst case with

the unlimited number of swap operations.

Sensitivity analysis over non-identical picker skill

GPSMa; yields the largest FT reduction before the screening test, 2.11% and 1.90% higher than
SLR(4) and JA, respectively. Despite the poor performance of GPSMyz in other configurations, it
does capture the zones with slow picking speeds and assigns fewer loads to them, which balances the
workload in a non-identical picker-skill environment. Appendix Table C7 shows that FT reduction
rates of GPSMaz(4) is significantly larger than SLR(4) before performing screening tests. The results
indicate that the GPSM policies effectively reassign storage to reduce FT when pickers are non-

identical in skill and speed.

6. Conclusion

This paper proposed an average flow-time estimation model for estimating travel time and a storage
location reassignment with risk assessment in an automated zone picking system. During the storage
location reassignment procedure, warehouse management applied the screening test for each
reassignment stage to assess the risk of the reassignment decision’s failure. Ten scenarios from a real
e-commerce warehouse configuration and historical order data were used to evaluate the performance
of the proposed model.

The GPSM estimated the average flow time from the historical data with three different types
of features: the number of picks in all zones, the min-max number of picks, standard deviation of the
number of picks, and the standard deviation of the number of picks. Given storage location
assignments, it enabled the GPSM to adjust the storage location by evaluating the minimum estimated
average flow time. The GPSM identified new storage location assignments and assessed the risk of a
reassignment failure with the probability of improvement.

The simulation experiments and statistical tests validated that the proposed models
significantly reduced the average flow time of orders in large-scale order picking and non-identical

picker skill environments, and that the screening test limited the number of swap operations.
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Future research will investigate constructing the features extracted from an order list based on
domain knowledge of the picking system. More analysis should confirm the accuracy of an estimation
model that relies on feature extraction from large-scale order picking data with no loss of data
integrity. Further investigation of the sequential sampling and kernel functions should indicate

improved model performance with limited data.
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Appendix A. Numerical validation

We measure the Pearson correlation coefficient (Pearson’s r) of the average flow time estimation
model. Figure A1 plots the correlation along with the Pearson’s r value between the actual and
predicted values of true average flow time for 200 different order lists generated using simulation data
from industry (see Sections 5.1 and 5.2 for details of the dataset). For the three different GPSMs,

Pearson’s r values ranging from 0.537 to 0.950 indicate a relatively strong correlation between

simulations and predictions.
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Figure A1l. Correlation between the values obtained by simulations and by the three GPSMs.

We also calculate the mean absolute percentage error (MAPE) and R? score of the three

GPSMs for the dataset. Table A1 reports the values denoting the regression accuracy of the proposed

average flow-time estimation models.

Table A1. MAPE and R2 scores of GPSM.

Model MAPE (%) R?

GPSMaz 5.85 0.26
GPSMwwm 2.74 0.79
GPSMsp 2.26 0.89
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Appendix B. Statistical analysis between workload scenarios

Table B1. Welch’s ANOVA tests of performance between workload scenarios.

Source Statistic? DF Num DF Den P-value

FT 262.032 9 199.157 <0.001

@ Asymptotically F distributed

Table B2. Multiple comparisons of mean differences in the average FT between workload scenarios
based on Games-Howell post-hoc tests.

Scenario| 1 2 3 4 5 6 7 8 9 10

1 -59.445"  -190.629" -273.590" -263.397" -343.676" -272.955" -336.721" -34.219" -62.487"
2 -131.180" -214.141" -203.948" -284.226" -213.505" -277.271" 25.231 -3.037

3 -82.961"  -72.768" -153.046" -82.326" -146.091" 156.410" 128.143"
4 10.193 -70.086" 0.635 -63.130"  239.371" 211.104"
5 -80.279"  -9.558 -73.323"  229.178" 200.911"
6 70.721  6.955 309.457" 281.189"
7 -63.766"  238.736" 210.468"
8 302.501" 274.234*
9 -28.267
10

* Mean difference significant at the 0.05 level
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Appendix C. Statistical analysis between methods

Table C1. Welch’s ANOVA tests of performance between methods.

Environment Stage Statistic? DF Num DF Den P-value
default n=1 75.511 5 524212 <0.001
n=2 51.969 5 531.754 <0.001

n=>3 40.901 5 537.173 <0.001

n=4 42.488 5 542384 <0.001

12 zones n=1 100.042 5 526.994 <0.001
n=2 78.095 5 534.856 <0.001

n=3 59.942 5 539.904 <0.001

n=4 48.484 5 543.359 <0.001

12 rack n=1 49.255 5 509.983 <0.001
columns n=2 33.982 5 514.926 <0.001

n=>3 26.549 5 519.378 <0.001

n=4 24.391 5 523.325 <0.001

Unif(10,20) n=1 94.673 5 507.882 <0.001
Order size n=2 70.097 5 514.426 <0.001
n=3 53.633 5 521.611 <0.001

n=4 44.641 5 527.161 <0.001

200 orders in n=1 178.769 5 495.630 <0.001
each order list n=2 137.922 5 503.428 <0.001
n=3 105.377 5 510.265 <0.001

n=4 86.137 5 517.059 <0.001

Non-identical n=1 47813 5 510.657 <0.001
picker skill n=2 28.858 5 518.685 <0.001
n=>3 20.066 5 527.084 <0.001

n=4 20.938 5 535.300 <0.001

@ Asymptotically F distributed

Table C2. Multiple comparisons of mean differences in the average FT in the default environment
based on Games-Howell post-hoc tests.

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMwmm(n) GPSMsp(n)

n=1 Original 129.097" 44.031" 29.906 45.268" 48.389"
JA -85.065" -99.190" -83.828" -80.708"
SLR(n) -14.125 1.237 4.358
GPSMaz(n) 15.362 18.483
GPSMwmwm(n) 3.121
GPSMsp(n)

n=2 Original 129.097" 79.480" 47.641" 79.993" 83.985"
JA -49.617" -81.456" -49.104" -45.112"
SLR(n) -31.838" 0.513 4.505
GPSMaz(n) 32.351° 36.344*
GPSMmm(n) 3.992
GPSMsp(n)

n=3 Original 129.097" 102.719* 60.490" 109.162" 114.303"
JA -26.378" -68.606" -19.934 -14.794
SLR(n) -42.228" 6.444 11.584
GPSMaz(n) 48.672° 53.812°
GPSMwmm(n) 5.140
GPSMsp(n)

n=4 Original 129.097" 121.378" 68.870" 126.214* 134.113"
JA -7.719 -60.226" -2.883 5.017
SLR(n) -52.507" 4.8336 12.735
GPSMaz(n) 57.344" 65.243"
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7.899

GPSMwmwm(n)
GPSMsp(n)

* Mean difference significant at the 0.05 level

Table C3. Multiple comparison of mean differences in the average FT in the 12 zones environment
based on Games-Howell post-hoc tests.

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMmm(n)  GPSMsp(n)

n=1 Original 142.240" 39.719" 30.324 40.209* 35.453
JA -102.521" -111.916" -102.031" -106.787"
SLR(n) -9.395 0.491 -4.266
GPSMaz(n) 9.885 5.129
GPSMwmwm(n) -4.756
GPSMsp(n)

n=2 Original 142.240" 68.487" 45.252* 68.572" 62.562"
JA -73.753" -96.988" -73.668" -79.677"
SLR(n) -23.235 0.085 -5.924
GPSMaz(n) 23.320 17.310
GPSMwmm(n) -6.010
GPSMsp(n)

n=3 Original 142.240" 89.270" 65.932" 86.845" 83.713"
JA -52.970" -76.308" -55.395" -58.527"
SLR(n) -23.338 -2.425 -5.557
GPSMaz(n) 20.913 17.782
GPSMwmm(n) -3.132
GPSMsp(n)

n=4 Original 142.240" 108.714" 80.106 104.562" 96.093"
JA -33.526" -62.134" -37.678" -46.147"
SLR(n) -28.608" -4.153 -12.622
GPSMaz(n) 24.455* 15.986
GPSMwmm(n) -8.469
GPSMsp(n)

* Mean difference significant at the 0.05 level

Table C4. Multiple comparisons of mean differences in the average FT in the 12 rack columns
environment based on Games-Howell post-hoc tests.

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMmm(n)  GPSMsp(n)

n=1 Original 144.657" 42.460 29.165 52.112 49.528
JA -102.196" -115.492" -92.545" -95.129*
SLR(n) -13.295 9.652 7.068
GPSMaz(n) 22.947 20.363
GPSMwmm(n) -2.584
GPSMsp(n)

n=2 Original 144.657" 72.334" 54.881" 87.701" 91.614*
JA -72.323" -89.776" -56.956" -53.044"
SLR(n) -17.453 15.367 19.279
GPSMaz(n) 32.821 36.733
GPSMwmm(n) 3.912
GPSMsp(n)

n=3 Original 144.657" 94.480" 68.615" 120.754" 125.059"
JA -50.177" -76.042" -23.904 -19.598
SLR(n) -25.865 26.274 30.579
GPSMaz(n) 52.138" 56.444"
GPSMwmm(n) 4.306
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GPSMsp(n)

Original

JA

SLR(n)
GPSMaz(n)
GPSMmm(n)
GPSMsp(n)

144.657"

113.849" 85.417"
-30.808 -59.240°
-28.432

150.018"
5.361
36.169
64.601"

154.481"
9.823
40.632
69.064"
4.462

* Mean difference significant at the 0.05 level

Table C5. Multiple comparisons of mean differences in the average FT in the Unif(10,20) order size
environment based on Games-Howell post-hoc tests.

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMmm(n)  GPSMsp(n)

n=1 Original 216.892" 54.461 41.753 68.556" 71.486"
JA -162.431" -175.139" -148.336" -145.406"
SLR(n) -12.708 14.095 17.025
GPSMaz(n) 26.803 29.733
GPSMwmm(n) 2.930
GPSMsp(n)

n=2 Original 216.892" 100.288" 73.472* 116.596" 123.383"
JA -116.604" -143.419" -100.296" -93.509"
SLR(n) -26.815 16.308 23.095
GPSMaz(n) 43.124 49.910
GPSMwmm(n) 6.787
GPSMsp(n)

n=3 Original 216.892" 138.916" 98.224* 157.297* 164.920"
JA -77.976" -118.668" -59.595 -51.971"
SLR(n) -40.692 18.381 26.004
GPSMaz(n) 59.073" 66.696"
GPSMwmm(n) 7.623
GPSMsp(n)

n=4 Original 216.892" 171.478" 116.889" 191.426" 202.302"
JA -45.414" -100.002" -25.466 -14.589
SLR(n) -54.589" 19.948 30.824
GPSMaz(n) 74.537" 85.413"
GPSMwmm(n) 10.876
GPSMsp(n)

* Mean difference significant at the 0.05 level

Table C6. Multiple comparisons of mean differences in the

environment based on Games-Howell post-hoc tests.

average FT in 200 orders in the order list

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMmm(n)  GPSMsp(n)

n=1 Original 235.929" 69.321" 53.654 67.399" 62.195"
JA -166.607" -182.274 -168.530" -173.734"
SLR(n) -15.667 -1.923 -7.126
GPSMaz(n) 13.744 8.541
GPSMwmwm(n) -5.204
GPSMsp(n)

n=2 Original 235.929" 118.812" 94.709" 116.800" 112.905"
JA -117.117° -141.220" -119.129" -123.024"
SLR(n) -24.103 -2.012 -5.907
GPSMaz(n) 22.091 18.196
GPSMwmm(n) -3.895
GPSMsp(n)
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n=3 Original 235.929" 155.636" 118.416" 154.732" 153.536"
JA -80.292" -117.518" -81.196" -82.393"
SLR(n) -37.220" -0.904 -2.101
GPSMaz(n) 36.316" 35.120
GPSMmm(n) -1.197
GPSMsp(n)

n=4 Original 235.929" 182.875" 132.236" 183.524" 184.098"
JA -53.054" -103.693" -52.405" -51.830"
SLR(n) -50.639" 0.649 1.224
GPSMaz(n) 51.288" 51.863"
GPSMmwmi(n) 0.575
GPSMsp(n)

* Mean difference significant at the 0.05 level

Table C7. Multiple comparisons of mean differences in the average FT in the non-identical picker
skill environment based on Games-Howell post-hoc tests.

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMwmm(n)  GPSMsp(n)

n=1 Original 147.011" 49.026 61.845" 50.186 52.989
JA -97.985" -85.166" -96.825" -94.022"
SLR(n) 12.819 1.160 3.962
GPSMaz(n) -11.659 -8.856
GPSMwmm(n) 2.303
GPSMsp(n)

n=2 Original 147.011" 84.656" 106.695" 91.732" 94.720"
JA -62.356" -40.316" -55.279" -52.291"
SLR(n) 22.040 7.076 10.064
GPSMaz(n) -14.963 -11.975
GPSMwmwm(n) 2.988
GPSMsp(n)

n=3 Original 147.011" 114.430" 141.455" 125.281" 127.133"
JA -32.581" -5.556 -21.730 -19.878
SLR(n) 27.025 10.851 12.703
GPSMaz(n) -16.174 -14.322
GPSMwmwm(n) 1.852
GPSMsp(n)

n=4 Original 147.011" 134.200" 167.025" 148.532" 151.843"
JA -12.811 20.014 1.521 4.832
SLR(n) 32.825" 14.332 17.643
GPSMaz(n) -18.494 -15.182
GPSMwmwm(n) 3.311
GPSMsp(n)

* Mean difference significant at the 0.05 level
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Gaussian Process-based Storage Location Assignments with
Risk Assessments for Progressive Zone Picking Systems

Abstract
E-commerce warehouses are under constant pressure to adapt their order picking systems and reassign
product storage locations to meet fluctuating customer demands. Most existing approaches optimize
storage location reassignments based on customer orders and operational configurations to maintain
high order picking performance. This paper presents a Gaussian process surrogate model (GPSM)
approach to predict the performance metrics for storage location reassignments. The GPSM estimates
the expected flow time of orders from the historical data on previous storage location assignments and
aids in identifying the new assignments that yield the minimum estimated average flow times.
Management can also take advantage of the GPSM’s uncertainty quantification capability to assess
the probability of improvement for a given storage reassignment and its implementation. The
proposed model and assignment policy are validated using discrete-event simulations and industrial
data. Experimental results demonstrate that the GPSM can improve expected flow time by 7.51% and

reduce unnecessary reassignment operations by 43.25%.

Keywords: Facilities planning and design; Zone order picking; Storage location assignment;

Gaussian process approach.

1. Introduction

Zone picking (ZP) systems are popular owing to their high-throughput capability, flexibility to handle
small and large order volumes, and adaptability to a wide range of product sizes with a variety of
order pickers (Gaast et al., 2020). By separating an order picking area into zones and assigning one
picker per zone, ZP systems can reduce travel time and congestion among pickers (De Koster et al.,
2007).

In ZP systems, performance bottlenecks can still occur due to workload imbalances or other
reasons. Therefore ZP comes with order picking planning policies, such as order batching (Pan, Shih,
& Wu, 2015), order sequencing (Huang et al., 2018), and storage assignment (Jane, 2000). Order
batching reduces order picking variability and mitigates workload gaps between zones by grouping
orders so that each zone’s workload is evenly distributed between batches. Order sequencing adjusts
tote release sequences to improve the distribution of workload balances. Storage assignment balances
workloads over zones by assigning products to each zone during a long picking time. Optimizing
product assignments is referred to as the storage location assignment problem (SLAP) (Gu et al.,

2007).



This paper investigates the SLAP for a progressive bypass ZP flow-rack system with an
automated storage/retrieval (S/R) crane. The flow-rack system is popular in warehouse management
systems for e-commerce businesses because it handles small and frequent orders and daily demand
fluctuations under short flow times. In many warehouses, since assignment capabilities are limited in
terms of resources and time, the SLAP problem is optimized by reassigning selected products instead
of reallocating all products in an order. As illustrated in Figure 1, prior to order picking, the S/R crane
relocates a few storage locations of products between the zones to rebalance the workloads
(Roodbergen & Vis, 2009). We study the optimization of the swap operations considering the current

assignment of products and estimates of the expected workload over daily orders.

S/R crane [ D ]
IHHIleHlH [TTTT1]
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Figure 1. Progressive bypass ZP system with an S/R crane (Kim and Hong (2022)).

Solutions to the SLAP use workload proxies to approximate current workloads and exploit
them for a simple rebalancing of the estimated workloads. Popular workload proxies include the
number of picks (Jane & Laih, 2005; Jewkes et al., 2004; Kim & Hong, 2022), the expected walk time
from a picker’s loading depot (Jewkes et al., 2004), picker’s skill level (Bartholdi & Eisenstein,
1996), and picker’s route distance (De Koster et al., 2012). However, it is still unclear whether the
proxies accurately represent workloads, and it is questionable whether using the proxies is effective in
optimizing an order picking performance metric such as the average flow time of orders. In this paper,
we propose to use a data driven approach to directly estimate the order picking performance metric as
a function of current workloads, and we exploit the data-driven estimation to solve SLAP.

To our knowledge, only a few studies have used a data-driven approach to the workload
balancing and storage location reassignment problems. Building an analytical model to estimate order
picking performance from order picking data has been challenging due to the noise-included
uncertainty of complex ZP systems. We develop a Gaussian process surrogate model (GPSM) for a
data-driven estimation of the average flow time of orders from the historical data of previous storage
location assignments. Surrogate modeling usually uses the Gaussian process, due to good analytical
inference, computational flexibility, and straightforward uncertainty quantification (Rasmussen &
Williams, 2006). GPSM can measure whether a new storage assignment is likely to improve order

picking performance by means of the posterior prediction uncertainty. Based on the GPSM, we



develop a storage location reassignment method that sequentially runs one swap operation at a time
and suggests the reliable optimal swap operation with respect to the GPSM’s average flow time
estimate.

Contributions of this study are summarized as follows:

e  Model-driven approach vs. data-driven approach. We directly estimate order picking
performance with a data-driven approach by implementing the GPSM. Since estimating
order picking performance is challenging due to warechouse complexity, size, and noise in
the data, implicit workload proxies have been used to estimate performance in traditional
methods (De Koster et al., 2012; Jane & Laih, 2005; Jane, 2000; Jewkes et al., 2004; Kim &
Hong, 2020). Instead of approximating workload proxies, we optimize storage location
assignments by using historical order picking data to estimate the average flow time with
GPSM.

e  Domain knowledge-based performance improvement. We improve the GPSM’s
estimation performance with our domain specific feature generation and training data
configuration. As a result, we present an accurate learning model that effectively estimates
order picking performance to solve SLAP.

e Risk assessment using GPSM. We propose a screening test based on the improvement
probability obtained from the GP estimates and the storage reassignment procedure based
on the estimation model and screening test The procedure optimizes storage space with
minimal adjustments, reduces material handling costs, and enhances customer service in the
warehouse.

e  Performance evaluation. We use discrete event simulation and statistical tests to
demonstrate the proposed models’ ability to reduce flow time and reassignment effort,

thereby improving warehouse management systems and operational efficiency.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature.
Section 3 explains the fulfillment system and the proposed GPSM for average flow-time estimation.
Section 4 introduces the proposed storage reassignment method using the flow-time estimation.
Section 5 describes the experiment validating the model, and the simulations, results, and sensitivity

analysis. Section 6 concludes and suggests future research.

2. Literature review

2.1 General storage location assignment

Most studies of the SLAP use travel distance and travel time as the performance measurements. Caron

et al. (2010) developed an optimization model that minimizes the travel distance and travel time, and



they also developed an estimation model that estimates the two performance measurements. Brynzér
and Johansson (1996) suggested that grouping products by characterizing their variant information
could reduce the product movements for traveling and picking. Muppani and Adil (2008) used
nonlinear integer programming to capture the impact of a class-based storage system on the required
space and material handling cost. Several studies have used probabilistic models and Markov chains
to estimate travel distance or travel time to evaluate order picking performance and analyze the
optimal storage assignment policy (Le-Duc & De Koster, 2005; Pan et al., 2014; Pan & Wu, 2009).

Motivated by a real problem, SLAP studies have also considered controlling the number of
reassignment operations. Quintanilla et al. (2014) developed heuristic algorithms to maximize the
available storage space by reoptimizing pallet locations in a random storage system. Kiibler et al.
(2020) suggested the ABC class-based iterative storage reassignment method considering order
batching and picker routing together, and evaluated the reassignment effort with the future travel
distance to identify promising reassignment. Pazour and Carlo (2015) developed mathematical model
formulations for reassignment operating policies using an automated S/R crane and quantified the
total loaded and unloaded travel distances while optimizing the reassignment operations.

In progressive zone picking systems, the SLAP has been focused on balancing workloads
between zones for operational efficiency. Studies of workload balancing include Jane (2000), who
proposed a heuristic algorithm to balance pickers’ workloads by adjusting the number of storage
zones. Pan, Shih, Wu, et al. (2015) developed a heuristic based on a genetic algorithm to solve the
SLAP considering workload balance in a progressive zone picking system. Kim and Hong (2022)
used mixed-integer programming to construct the storage location reassignment (SLR) model and
applied it to a progressive bypass ZP system with a circulation conveyor and an S/R crane. The
authors’ model relocated the storage locations of products considering workload balance and
recirculation reduction.

The models above, however, require solver tools, experts who can adapt the model to the
warehouse environment, and lengthy computation to solve the kinds of large-size problems
encountered by e-commerce warchouses. Most model-based optimization assumes a static operational
environment, while data-driven optimization allows solving SLAP in an uncertain environment. Thus,

we focus on data-driven storage location assignments for more agile and flexible SLAP optimization.

2.2 Data-driven storage location assignments

Various types of data-driven approaches have been developed for SLAP, and several studies have
utilized clustering algorithms. Jane and Laih (2005) suggested a clustering algorithm to distribute the
frequently requested products into several zones for workload balance in a synchronized zone picking
system. Chuang et al. (2012) clustered associated items into groups and determined the sequence of

the order groups for SLAP to minimize picking distance.



Chiang et al. (2011) used a data association algorithm to group products into similarity groups
by order frequency and other product characteristics and introduced a data-mining based storage
assignment (DMSA), which aimed to increase the association index (AIX) between products and their
storage locations. Chiang et al. (2014) extended their research using a weighted support count (WSC)
to calculate each AIX. The heuristic considered the relationship between a family and a cluster of
products.

Pang and Chan (2016) developed a data mining-based assignment using association rules to
minimize travel distances by controlling storage locations of correlated items and items near entry
points. In a dynamic environment, Li et al. (2016) optimized the storage assignment based on the
ABC classification and mutual affinity of products. The product affinity-based heuristic (PABH)
identified the relationship between products. The authors used a greedy genetic algorithm because the
problem was a quadratic assignment problem.

Regression techniques have been investigated for their use in storage location assignments.
Sadiq et al. (1996) built a regression model to analyze the performance of storage location
assignments considering order picking time and reassignment. Larco et al. (2016) used linear
regression models to estimate worker discomfort factor and order cycle times. Larco et al. (2016)
solved SLAP using the estimated values as the parameters of bi-objective optimization. Larco et al.
(2016); Sadiq et al. (1996) estimated order picking performance with simple linear models based on
factors such as storage location, bin type, product life cycle, and management policies, but neglected
workload balance factors, a key influence on the performance of ZP systems.

Two practical issues deserve further investigation. Previous studies of data-driven SLAP
consider the allocation of storage locations for entire products, yet when real-world reassignments are
both resource- and cost-intensive, many warehouses choose to reallocate a limited range of products
due to demand and operational uncertainty. The reassignment benefit should outweigh the
reassignment cost while considering variables such as order sequence, workload balance, and rack
storage policy. We use the Gaussian process to solve the data-driven SLAP with limited reassignment
capacity and to quantify the reassignment risk to screen for reassignment operations with high

potential for improvement.

3. Progressive ZP system and GPSM

In this section, we describe the progressive ZP system and explain the average flow time estimation
using GPSM. We consider order picking in the concept of wave management, where a large set of
orders is scheduled to be picked during a time period (pick wave) (Bartholdi & Hackman, 2008). We
define the set of orders in a pick wave as an order list. Prior to the pick wave, there is an opportunity to
reassign the storage location of items within the picking zones. The flow time of order refers to the

time interval between the time a tote enters to the time it exits the ZP system. Flow time is a critical



performance metric that needs to be reduced to shorten in-transit inventory and ensure fast delivery
(Bartholdi & Hackman, 2008). According to practitioners, when considering throughput time or other
indicators, it is challenging to operate a smooth transition to a post-process (e.g., packing), so the
average flow time of orders is considered. We propose a learning model that estimates the average
flow times of upcoming order lists based on workload balance information from historical order

picking data.

3.1 Progressive ZP system characteristics

Our progressive zone picking system consists of an S/R crane and multiple zones. S/R cranes are
automated material handling systems that are used in numerous manufacturing and warehousing
systems to handle, store and retrieve discrete products (Ghomri & Sari, 2017). The S/R crane transfers
each carton of products from a reserve rack to a flow rack, between reserve racks, or from the
entrance or exit of the fulfillment center to any racks. The S/R crane can exchange the storage
locations of a pair of products at a time by temporarily placing the products to be exchanged in the
reserve rack area, which we refer to as a swap operation. Figure 2 shows an S/R crane replenishing a
flow rack area with cartons from the reserve rack area.

Each zone has a flow rack and one zone-dedicated picker. Pickers pick products from cells in
the flow rack and place them in totes. The totes travel on a conveyor through the zones. Each tote
visits only the zones containing the products to be picked. When a zone has no room for a tote to
enter, the tote skips over (bypasses) the zone and keeps traveling on the conveyor until a room is

available.

S/R crane

Carton

F 3

Reserve
rack area

Reserve
rack area

crane

Product cartons
in each cell
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e
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k.
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Figure 2. Progressive ZP flow-rack system with S/R crane (a) side view and (b) front view (modified

from Cahyo (2017)).



A zone consists of multiple flow racks, and a flow rack consists of multiple cells to store
products. We consider a simplified model, i.e., each cell contains only one product type. An order list
is the batch of orders handled in the same shift or time window, and an order is the types and amounts
of products.

We use the following notations.

Set and indices

0,0 The set of orders, and an order o € O

L1 The set of order lists, and an order list [ € L

Z,z The set of zones, and a zone z € Z

Kk The set of cells, and acell k € K

P,p The set of products, and a product p € P

R,T The set of relative rack column positions in a zone, and a rack position r € R

Order and storage location representation

Let C be the [0| X |P| matrix representing products in orders with ¢, as its (0, p) th element, where
Cop be a binary variable indicating whether order o contains product p; ¢, is 1 if order o contains
product p, and 0 otherwise. Let S denote a |P| X |K| matrix describing the relationship between the
products and cells with its (p, k) th element s, being a binary variable indicating whether product p

is located on cell k. Let W be a |0| X |K| matrix representing the relationship between the orders and
cells with its (o, k) th element w,;, being a binary variable indicating whether order o requires a

product to be picked from cell k. The matrix W is related to matrices C and S through

A = C-S
|:C “ee CllPl l I e SllKll
Clojx = C|0||P| Sipie 7t Sip|ik|

Abstract representation by order list and Zone/Rack locations

Let Abe a |K| X |L| matrix of a;;'s that represents the total number of picks from cell k € K required
to fill order list [ € L. Let B represent a |L| X |Z| matrix with by, as its ([, z) th element which

represents the total number of picks from zone z € Z to fill order listl € L. Let G be a |L| X |R| matrix
of g;;'s that represents the total number of picks from flow rack r € R required to fill order list [ € L .
Let 0, denote the set of orders in the order list l. Let K, and K,- denote the set of cells assigned in zone

z and the set of cells assigned in rack position 7, respectively. We can calculate a;;, using the matrix

W as
iy = Z Wok-

0€0;

We can calculate b, as



b, = Z A1k,

keK,

Iir = Z ag-

kEK,

and calculate g;,- as

Below, we summarize the constant matrices for the problem formulation.

G, cop Order-Product inclusion matrix and its elements ¢,,, Yo € O and p € P

W, w,, Order-Cell inclusion matrix and its elements w,,., Vo € O and k € K

S, Spk Product-Cell inclusion matrix and its elements s,,, Vp € P and k € K

A ay Order list-Cell relationship matrix and its values ay, VI € L and k € K

B, by, Order list-Zone relationship matrix and its values b;,, VI € Land z € Z

G, gm Order list-Rack position relationship matrix and its values g;,, VI € L and h € H

3.2 GPSM for Average flow time estimation

Feature Generation

To estimate the average flow time of orders in an order list (FT), an estimation model requires the key
input variables (i.e., features) that are expected relate to FT. We generate features from historical
order picking data that can represent the picking time and workload balance across zones. Picker’s
travel distance and workload balancing measures, such as standard deviations of workload between
zones, and zones’ maximum and minimum numbers of workload, are potentially related to FT (Huang
et al. (2018), Vanheusden et al. (2022)). We develop GPSM using three features of zone workload
balance and a feature of rack storage policy to estimate the average flow time FT.

Let x; represent the three input features extracted from order list [ € L, and let X ={x;,l € L}
We consider three models. The first GPSM, which we refer to as GPSMaz, is only based on the first

input feature, i.e., picker’s travel distance. We define a total travel distance to complete order list [ €

TD, = Z dr * Gurs

TER

L as

where d, is the distance from the picker’s loading depot to a rack position r € R.
The second GPSM, which we call GPSMww, uses three input features: TD; and the maximum

and minimum number of workloads of zones. We calculate the maximum number of picks among

zones b{"** and the minimum numbers of picks among zones b/™" as
b["** = max by,
VzeZ
b™™ = min b,.
L vzez 2



The third GPSM, which we refer to as GPSMsp, also uses TD; and one additional input, the
standard deviation of the number of picks per zone. We let b; Prepresent the standard deviation for

order list [ € L, which can be obtained as

bSD — Zzez(blz_ %Zzez(blz))z
t |z]-1

GPSM
Gaussian process (GP) regression, a popular surrogate model for computer and physical experiments
(Mackay, 1998; Murphy, 2012), provides a predictive relation between input and response variables.
For our problem, the input is an input feature set x, and the response variable y would be the average
flow time FT. Suppose that we have training data of input features and associated response values for
orders in order list L. We denote the training data by (X,y), where X = (x;,l € L) andy = (y;, 1 =
1 € L) represent the training inputs and responses. The inputs and responses are related via an
unknown regression model f(x) as

yi=f(x) + e, ~N(O,07).

We assume the regression function f(x) is a zero-mean Gaussian process with covariance
function K(x, x"). Given the training data, we like to predict the posterior distribution of f(x,) for a
test input x,, which follows a Gaussian distribution with mean fi(x«) and variance £(x«) (Rasmussen
& Williams, 2006),

1
A(xs) = KxX)[KXX) + 217y, W

2
2(xx) = K(Xn, %) — K& X)[KXX) + 0217 K (%+,X), @

where I is an |L| X |L| identity matrix, and K (X4, X3) is the matrix of the covariance function values
evaluated between X1 and X,. We use the covariance function composed of a squared exponential
(SE) covariance function and noise variance function,

3

2
k(x:,%;) = ofexp (— w> +078(x,,%;),

where variable length scale 4, signal variance sz, and noise variance g control the correlation
between observations X; and X;, and § is the Kronecker delta function. The kernel-function option

depends on the input and expected patterns in the data, e.g., Richardson et al. (2017) considered SE

and Matérn covariance as the kernel function.

4. Storage location reassignment with risk assessment

In this section we define a storage location reassignment as the sequential determination of swap

operations, each of which is optimized to minimize the average flow-time of orders based on the



GPSM’s output. We also use the GPSM estimate to evaluate the improvement probability of the swap

operations by screening out the less promising ones.

4.1 Swap operation

The storage location reassignment adjusts the locations of products to minimize the average flow-time
estimate from the GPSM. We use a series of swap operations (i.e., switch a pair of product cartons) to
optimize storage locations with limited handling capacity. For each swap operation, we assume that
o Each picker stays in his/her zone and independently retrieves each product per tote.
e Each product occupies one zone and one rack.
e Each zone has the same number of racks.
e Constant picking time includes search time, pick time, and inspection time.
e Management has sufficient time to reassign locations for new order lists (Sadiq et al., 1996).
e All products are available before an order enters the system.
e A swap operation swaps two cartons of products across flow racks at a time.
e The total number of the swaps is finite and determined dynamically.
e The swap distance as defined by the physical distance between two rack locations, and the
number of cartons affect swap time.
e The number of swap operation is not predetermined; after a swap, management determines if
another swap is necessary.
e The reserved area has empty racks; therefore, swap operations can be performed without
additional handling.
e The swap operation utilizes the reserved area to temporarily store the products to be
reassigned. The reserved area has empty racks; therefore, swap operations can be performed

without additional handling.

Each swap operation is optimized so that the choice minimizes the average flow time
estimated by the pre-trained GPSM described in Section 3.2. A swap operation is represented by a
column swap of the original product-pick-face inclusion matrix S. For example, suppose there are five
products (P = {1,2,3,4,5}) in each pick-face. If the swap operation occurs between the product 2 and

product 4, then it makes a change of the original product-pick-face inclusion matrix S to S’

[10000] [100001
[0 1 0 0 Of [0 0 0 1 0
s=|00100|, S‘=|00100.
l00010 l01000J
000 0 1 000 0 1

After the update to S, we can calculate the corresponding testing input x, and then get the associate

posterior predictive distribution f (x,) from the GPSM to get the estimated distribution of the average
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flow time resulting from the swap. We repeat this for a list of N feasible swap operations and select
the best swap operation that minimizes the expected average flow time, i.e., E[f (x,)]. We consider
all possible swap cases among |P| products, which gives N equal to two-out-of-|P| combination caes.

We iterate the swap operation to the maximum number of swaps M determined by management.

4.2 Feedforward heuristic

Since exact algorithm for an optimal sequence of M swap operations is not suitable due to the
combinatorial nature of the problem, we propose Algorithm 1, where the best solutions from the
precedence process become the input of the next process. The steps of the feedforward heuristic are as

follows.

Algorithm 1. Feedforward heuristic.

Step 1. Set M (based on warehouse experience and considering the number of storage locations
that can be reassigned), and set i =1 and set S to be the current product-pick-face

inclusion matrix.

Step 2. Generate N candidates {S§, S5, ..., S§} from S'. (See 4.1 Swap operation)

Step 3. Calculate the corresponding input features {xilxiz, o, Xt N} corresponding to the N
candidates.
Step 4. Obtain ﬁ(xi) from each candidate and find the optimal swap operation based on

equation (4).
Step 5. Update S'.
Step 6. Ifi<M,i=i+1 and go to step 2, otherwise STOP.

Let S’ represent the ith storage location matrix for the iteration i = 1..., M, where M controls

the maximum number of swap operations set according to the warehouse environment. For every
iteration i, generate storage location candidates {Si, S, ..., S,‘V} with swap operations from former
storage locations S¢~1. Each candidate generates the testing inputs {Xilxiz, o, X N} to be evaluated
with the proposed average flow-time estimation model. Next, determine the storage locations S*
according to the best x! that yields the minimum ﬂ(xi) using Equation (1). Obtain the expected

average flow time of the storage locations S as

. o )
E[FT($H)] = min{a(x})

xt e {xiy, xiy, .., xin ]

Considering an initial storage location S° for an order list [ and obtaining the historical data in
the form listed, use Algorithm 1 to find the new storage location (S?) at iteration 1 that minimizes the
average flow time for an order list I. Note that the new storage location S* from the first stage is

considered as the initial storage location S¢~1 of the second stage and obtains the new storage location

11



S? that yields the minimum FT at the second stage. Run these procedures until iteration i reaches the

maximum number of swaps M.

4.3 Screening out less promising swaps

Quantifying uncertainty is critical in managing operational risks. The probability that a system will
not improve can be estimated with the estimates of Gaussian process model (Bect et al., 2012). We
conduct a screening test using the posterior predictive distribution from GPSM. We use the posterior
predictive distribution of the average flow time after a swap to evaluate the probability of
improvement in the average flow time, compared to the average flow time before that swap. If the

improvement probability is not sufficiently high, we revoke the determined swap operation.

( N
Train a GPSM on fraining dataset X
and set M and i=1
A ¢ S
4 N
« | Generate the testing inputs from the storage
”~ . . . .
location at iteration i-1
A ¢ S
' A
Set o and estimate the average flow
time from each candidate
A J
'S ¢ 3
Find the optimal testing input
A J

1-P(improvement ) < a?

.

Figure 3. Flowchart of a screening test applied to Algorithm 1.
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Given the means and variances of the two mutually independent Gaussian distributions, we
use a one-tailed test to statistically compare the difference between the mean values of two
distributions. GPSM is used to obtain the mean({i(-)) and variance(2(*)) of X% and xi~1, where x! is
the testing input expected to be the optimal case from the relocated cases {Xil, xt,, ., xt N}, and xi~1
is the testing input of the reassigned order list at iteration i — 1. The null hypothesis is that the FT of
xi1 is less than or equal to the FT of x!. The probability of the null hypothesis (p-value) denotes the
probability that the reassignment operation will not improve. We set significance level a for the one-

tailed test to classify the case with the risk to increase FT. We obtain the Z-score of the difference

between the two FT values and the improvement probability from the Z-score as

1 — P(improvement) = P(FT(S"1) —FT(S") <0) =P(Z > M) )
SN +2(xh)

We compare the one-tailed p-value with the significance level a. Note that the improvement
probability of reassignment cannot be guaranteed if the p-value is greater than the significance level.
If the p-value becomes smaller than the significance level, the GPSM expects that the flow time of the
GPSM optimal assignment is significantly shorter than the flow time of the original assignment;

therefore, it executes the determined swap operation.

5. Industrial application of GPSM

In this section we describe our simulation experiment and the results. Ten scenarios from a real e-
commerce warehouse configuration and historical order data were used to evaluate the performance of
the proposed model. We analyze the effectiveness of reassignment decisions and conduct sensitivity

tests over various warehouse configurations.

5.1 Workload scenarios

To obtain accurate and reliable estimates, we use different workload scenarios to train the proposed
models on various storage policy factors. We consider the four zone workload distribution types and

two rack storage policies shown in Table 1.

Table 1 Zone workload distribution types and rack storage policies.

Zone workload distribution type Rack storage policy
Uniform ABC(5:3:2)
Bottleneck zone Random

Descending demand
Irregular demand

We note that a uniform zone workload distribution type is the most workload-balanced

scenario with almost uniformly distributed workloads over zones. We generate Scenarios 1 and 2 with
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this type to make workload balanced scenarios. The bottleneck zone distribution type refers to the
case that one randomly chosen zone is assigned 25% of total orders when all other zones have a
uniform workload distribution. The bottleneck zone scenarios can occur in situations when demand
for particular products increase dramatically that often arises in e-commerce warehouses. We generate
Scenarios 3 and 4 with this type. A descending demand zone distribution type has a descending trend
in workload. The first zone has the largest demand volume and the demand gradually decreases
toward the last zone. Many warechouse managements set descending demand in progressive zone
picking system to avoid blocking delay between zones. We distribute the workload ratio of each zone
as the ratio of each zone index to the sum of zone indexes. We generate Scenarios 5 and 6 with this
type. An irregular demand-zone distribution type represents the most workload-unbalanced scenario
with an uneven distribution of workloads across zones. We demonstrate worst-case workload
balancing by randomly shuffling storage locations for descending demand scenarios and generating
irregular demand scenarios. We generate Scenarios 7 and 8 with this type.

The rack storage policy defines how products’ storage locations are assigned over rack
column positions. The ABC (5:3:2) class-based rack storage policy classifies products to classes A, B
and C in a ratio (0.5:0.3:0.2) for allocating high-demand products in the rack column positions with
the picker’s shortest travel distance. The random rack-storage policy refers to the random assignment
of products within zones.

We generate the first eight workload scenarios using a full factorial design with four zone
workload distribution types and two rack storage policies and two additional scenarios. To train
GPSM even with scenarios that cannot be considered by the full factorial design, we generate
scenarios 9 and 10 by switching a randomly chosen pair of product locations from Scenario 1.
Scenarios 9 and 10 have balanced workloads, but the storage locations of products differ from the
preset rack storage policy due to demand fluctuations and a series of previous storage relocations. We
classify Scenarios 1, 2, 9, and 10 as workload balanced scenarios and Scenarios 3, 4, 5, 6, 7, and 8 as
workload unbalanced scenarios. In Table 2, the average FT of 50 order lists per scenario measured by
simulation shows that zone workload distribution type and rack storage policy directly influence order
picking performance. The workload balanced Scenarios 1, 2, 9, and 10 provide shorter average FT.
We conduct statistical tests to validate the significance of difference between scenarios (Please see

Table B1 and Table B2 in Appendix B for detail).

Table 2. Ten workload distribution scenarios.

Scenario  Zone workload distribution type Rack storage policy ~ Average FT
1 Uniform ABC (5:3:2) 1250.03
2 Uniform Random 1309.47
3 Bottleneck zone ABC (5:3:2) 1440.65
4 Bottleneck zone Random 1523.62
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5 Descending demand ABC (5:3:2) 1513.42
6 Descending demand Random 1593.70
7 Irregular demand ABC (5:3:2) 1522.98
8 Irregular demand Random 1586.75
9 24 times random switch from scenario 1 1284.24
10 100 times random switch from scenario 1 1312.51

5.2 Experimental configuration

To validate our proposed GPSM, we configure a warehouse and its order profiles based on an e-
commerce company’s progressive bypass ZP system in Korea. We run 200 experiments per
configuration, i.e., 20 different order lists per each of the 10 scenarios. We train GPSM on 300
training datasets consisting of 10 scenarios with 30 different order lists. We use Tecnomatix® Plant
Simulation 12 to build the simulation model. We generate synthetic historical data based on the order
profiles and modified sizes of the ZP system. Since recirculation and bypass disrupt the order
sequence, the order release sequence follows the First-Come-First-Serve rule. We use Python 3.7 and

scikit-learn toolbox to analyze the data. Table 3 reports the details.

Table 3. Warehouse configuration.

Parameter Values
Number of swaps (1) 1,2,3,4
Number of zones 8

Number of rack columns per zone 6

Order size Uniform (3,9)
Number of orders in each order list 100

Note: Default values of each parameter are underscored.

We label the GPSMs as stages 14 by setting M = 4. GPSM(n) denotes the first stage
resulting in the swapping of # pairs of storage locations. We compare the GPSM to Kim and Hong
(2022), who proposed an MIP model to reassign a limited number of storage locations for the same
order picking system. For simplicity, we call their model SLR(7), where # is stage number (i.e., the
number of the swap operations). We also compare the GPSM with the heuristic algorithm proposed
by Jane (2000) for workload balancing in a zone picking system. For simplicity, we call their heuristic
algorithm the JA. Unlike the GPSM and SLR, the JA reassigns all storage locations without limiting
the number of reassignments.

The objective of the GPSM is to minimize the average flow time; the objective of the SLR(n)
model is to minimize the maximum number of picks and the maximum number of order visits among

all zones; and the objective of the Jane is to distribute the number of picks evenly across all zones.
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Since all three models aim to balance the workload in the progressive ZP system to minimize order

flow time, we compare the models’ performance.

5.3 GPSM effectiveness analysis

Figure 4 illustrates the percentage reductions of average FT between the original assignment and three
GPSMs, and between the original assignment and SLR(n) when swapping multiple pairs of products.
Without the screening test, GPSMsp(1) yields a 3.23% average reduction, GPSMsp(4) yields an
8.87% average reduction, SLR(1) yields a 2.93% average reduction, and Jane yields an 8.21% in FT.
The workload unbalanced scenarios (1, 2, 9, and 10) have larger FT reductions than the workload
balanced scenarios (3, 4, 5, 6, 7, and 8). For the same zone workload distribution type scenarios in the
GPSMs, the random storage policy yields a high reduction percentage of FT. The results indicate that

the workload unbalanced scenarios have scope for further improvement than the workload balanced

scenarios.
30 A
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Figure 4. Percentage reductions of average FT by workload scenarios without the screening test.

Without the screening test, we observe 24 failures of reassignment that yield a 1.13% increase
in the average FT compared with the original assignment when GPSMsp(1) runs for 200 instances.
For the same instances, Jane obtains 49 failures of reassignment with an increase of 2.96% in the
average FT over the original assignment, and SLR(1) results in 28 failures of reassignment with an
increase of 1.13%. The screening test excludes the reassignment that is expected to improve with low
probability.

Table 4 reports the results of the paired t-tests for each scenario and stage to identify
statistically significant differences between SLR and GPSMsp. The differences are insignificant in the
balanced scenarios (1, 2, 9, 10) or low stages (n = 1,2). Where swap operations are performed more

than three times, GPSMsp has shorter FT than SLR in the unbalanced scenarios (3, 4, 5, 6, 7, 8).
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Table 4. Paired t-test results on FT of SLR(n) — GPSMsp(n)

Stage Scenario Paired t-test on the average FT
Mean difference t-value DF  P-value
n=1 1 11.405 2.082 19 0.051
2 -1.286 -0.227 19 0.823
3 8.831 1.322 19 0.202
4 -6.932 -1.246 19 0.228
5 -3.917 -0.638 19 0.531
6 3.569 0.451 19 0.657
7 3.630 0.476 19 0.639
8 17.554 1.960 19 0.065
9 -0.853 -0.206 19 0.839
10 11.577 2.059 19 0.053
n=2 1 16.198 3.604 19 0.002
2 3.657 0.700 19 0.493
3 13.045 1.613 19 0.123
4 -3.310 -0.379 19 0.709
5 -3.297 -0.608 19 0.551
6 0.542 0.075 19 0.941
7 6.574 0.775 19 0.448
8 7.898 1.730 19 0.100
9 4.738 0.792 19 0.438
10 4.738 0.792 19 0.438
n=3 1 -0.846 -0.154 19 0.879
2 7.804 2.075 19 0.052
3 15.395 1.676 19 0.110
4 23.124 4.068 19 0.001
5 19.973 2.827 19 0.011
6 20.554 2.211 19 0.040
7 0.025 0.003 19 0.998
8 23.433 3.167 19 0.005
9 3.494 0.973 19 0.343
10 2.883 0.453 19 0.656
n=4 1 -1.753 -0.277 19 0.785
2 0.667 0.126 19 0.901
3 24.278 2.614 19 0.017
4 18.841 2.228 19 0.038
5 25.310 3.224 19 0.004
6 25.168 2.154 19 0.044
7 16.812 2.512 19 0.021
8 30.869 4215 19 0.000
9 -7.403 -1.706 19 0.104
10 -5.434 -1.075 19 0.296

Figure 5 illustrates the screening test’s effects on productivity for 200 assignments from SLR,
SD-GPSM before the screening test, GPSMsp after the screening test, and the original assignments
without reassignment. We adopt Youden’s J statistic for the significance levels of the screening tests
(Youden, 1950). We set swapping time (ST) weight, considering the replenishment time in the real e-
commerce warehouse. On the x-axis, we classify experimental cases by different reassignment
strategies, stage number, and ST weight. The black bars indicate the time difference between the start
and finish of a sequence of an order list (C,,,,; makespan), and the dotted white bars indicate the total
swapping time (T'ST). The y-axis represents the average total elapsed time including C,, 4, and TST.

The makespan distinctly decreases as the stages increase. GPSMsp after the screening test
yields a shorter TST because the screening test filters out the number of swap operations. When ST =

2.5, the total swapping time of GPSMsp(2) before the screening test averages 300 seconds, and the
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total swapping time of GPSMgp(3) after the screening test averages 256.5 seconds. Before the

screening test, the makespan of GPSMsp(2) averages 2449.90 seconds, and the makespan of

GPSMsp(3) averages 2413.62 seconds. After the screening test, GPSMsp frequently shows a large

makespan reduction with less swapping time.
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Figure 5. Screening test effectiveness analysis considering swapping times.

5.4 Sensitivity analysis of GPSM with a screening test

We consider different warehouse configurations (i.e., increasing the number of zones, rack columns,

orders in an order list, and order sizes). We also consider non-identical picker skill configuration (i.e.,

two slow-moving pickers in eight zones) (Bartholdi and Eisenstein (1996), Hong (2019)).We use the

following measurements:

Before: The average FT reduction before the screening test (%)
a: The significance level for the screening test

#swaps: The average number of swaps after the screening test
Avg: The average FT reduction (%)

Worst: The FT reduction of the worst case (%)

Table 5 reports the sensitivity analysis results. In Appendix C, we conduct statistical analyses

to identify which methods have statistically significant differences across order picking environments.

As a result of the fact that the data variances for each group are not equal, we use Welch’s ANOVA
test (Table C1) and Games-Howell as post-hoc tests (Table C2, Table C3, Table C4, Table C5, Table

C6, and Table C7) for each order picking environment.
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Table 5. Results of GPSM sensitivity analysis with screening tests.

Environment JA GPSMaz(n) GPSMwmwm(n) GPSMsp(n)
Avg. Worst #swaps Avg. Worst Before «a #swaps Avg Worst Before a #swaps Avg Worst Before «a #swaps Avg Worst
Default 821 -813 | n=11| 1.00 416 192 039 027 089 -1.76 3.02 0.14 055 228 -0.82 323 0.15 059 256 -190
n=2 1 2.00 -398 3.06 044 050 137 -1.76 532 032 1.00 386 -0.10 560 026 1.15 454 0.00
n=3 | 3.00 -3.75 390 046 070 178 -1.76 726 037 140 506 -0.10 7.59 031 171 623 0.00
n=4 | 4.00 -222 440 048 090 206 -1.76 840 037 1.72 554 -0.10 888 037 227 751 0.00
12 zones 941 -869 | n=1 | 1.00 -6.22  2.00 041 028 094 -260 271 027 051 214 -384 240 036 042 1.69 -3.30
n=2 1 2.00 -6.43 3.00 050 056 147 -284 462 037 086 344 -384 420 041 081 298 -3.99
n=3 | 3.00 -485 438 050 069 1.62 -090 582 039 1.14 432 -384 564 044 120 388 -3.18
n=4 | 4.00 -522 532 050 072 1.66 -090 696 041 138 507 -3.84 644 044 154 450 -3.18
12 rack columns| 7.00 -17.59| n=1 | 1.00 -568 153 042 025 075 -037 283 0.16 052 18 -283 269 0.18 051 183 -1.39
n=2 1 2.00 285 286 045 045 1.12 -237 472 032 099 3.14 -2.83 494 035 1.02 339 -047
n=3 | 3.00 241 357 049 063 148 -1.11 648 036 145 438 -283 6.72 031 151 467 0.00
n=4 | 4.00 -2.02 448 050 080 1.70 0.00 804 040 190 526 -2.83 828 035 200 579 0.00
Unif(10,20) 727  -8.68 | n=1 | 1.00 -247 141 047 080 138 -723 243 0.19 079 246 -1.31 253 0.19 0.77 254 -131
Order size n=2 1 2.00 -2.04 250 041 118 220 -723 412 028 142 395 -131 436 025 146 420 -0.72
n=3 1| 3.00 -2.07 333 041 132 252 -723 554 043 204 521 -131 582 035 215 556 0.00
n=4 | 4.00 -232 398 046 142 267 -723 673 039 265 631 -131 7.14 038 283 6.75 0.00
200 orders in 13.59 -7.60 | n=1 | 1.00 -1.19  3.08 043 053 219 -360 403 024 086 393 -042 373 0.18 038 155 -042
each order list n=2 1| 2.00 -1.05 544 040 079 324 -360 696 040 1.67 672 000 6.76 027 0.69 2.64 -042
n=3 | 3.00 -1.58  6.84 040 080 327 -360 921 039 239 88 0.00 9.5 033 093 335 -042
n=4 | 4.00 -093 7.60 050 081 329 -360 10.88 042 3.05 1030 0.00 1092 039 1.15 376 -042
Non-identical 7.74 -1047| n=1 | 1.00 -499 3,60 041 093 344 -275 285 037 073 270 -2.14 299 033 052 248 -2.03
picker skill n=2 1 2.00 -6.42 622 039 143 492 -246 522 043 132 478 -3.16 540 040 1.03 421 -1.12
n=3 1| 3.00 -425 819 047 191 589 -246 7.14 043 1.82 601 -3.16 720 043 154 569 -1.12
n=4 | 4.00 -527 9.64 048 237 6.67 -246 844 044 224 694 -3.16 860 043 205 6.67 -1.12
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Sensitivity analysis over default order picking environment

Table 5 reports only four failures of reassignment with a 1.09% increase in FT compared with the
original assignment when GPSMsp(1) runs for 200 instances. When the stage increases, the SLR
model swaps the number of product pairs equal to the stage number, whereas the GPSM policies swap
fewer product pairs because the screening test filters out the swap operation with a low improvement
probability. Both GPSMsp and GPSM significantly reduce FT and swapping time. JA swaps the
unlimited number of storage locations and yields 8.21% of the average FT reduction. GPSMgp(4)
swaps on average 2.27 times to yield 7.51% of the average FT reduction, but SLR needs to swap three
times to yield 6.82% of the average FT reduction. GPSMsp yields 0.00% for the FT reduction of the
worst cases, whereas SLR(4) and JA yield -2.22% and -8.13%, respectively. Appendix Table C2
shows that FT reduction rates of SLR(4) and JA are not significantly different from GPSMsp(4) and
GPSMwmm(4) before performing screening tests. The results indicate that GPSM is a reliable, cost-

effective tool for warehouse management.

Sensitivity analysis over 12 zones

Table 5 also shows that reassignment performance decreases when the number of zones increases.
SLR vyields 2.66% of the average FT reduction with one swap operation and 4.59% of the average FT
reduction with two swap operations. After the screening test, the GPSM policies skip the low
improvement cases and reduce the average number of swap operations. GPSMsp yields 4.50% of the
FT with average 1.54 swap operations, and GPSMw yields 5.07% of the FT with average 1.38 swap
operations. GPSMgp yields -3.18% for the FT reduction of the worst cases, whereas JA and SLR(4)
yield -8.69% and -5.22%, respectively. Appendix Table C3 shows that FT reduction rates of SLR(4)
and GPSMsp(4) are not significantly different before performing screening tests. The results indicate

that GPSM performs well over large-scale assignments with limited training data resources.

Sensitivity analysis over 12 rack columns per zone

As the number of rack columns in each zone increases, picker’s travel distance has a large effect on
order picking performance. SLR yields 3.85% for the average FT reduction with 2 swap operations,
and GPSMsp and GPSMy yield 5.79% for the average FT reduction with average 2.00 swap
operations and 5.26%, respectively, with 1.90 swap operations. The results indicate that both GPSMgp

and GPSMwmwm balance the workloads well between zones when travel distance is critical.

Sensitivity analysis over order size = Uniform(10,20)

GPSMsp and GPSMw consistently reduce the average FT from stages 1-4 and provide assignments
with a high probability to improve. Intuitively, increasing the order size causes congestion because the
totes stay longer in the system. JA yields 7.27% for the average FT reduction with unlimited swaps,
whereas SLR yields 3.51% when swapping two pairs of products, and 4.87% when swapping three
pairs of products, respectively. GPSMgp yields 6.75 % when swapping an average 2.83 pairs of
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products, whereas GPSMwmw yields 6.31% when swapping an average 2.65 pairs of products.
Appendix Table C5 shows that FT reduction rates of SLR(4), JA, GPSMsp(4), and GPSMwwm(4) are
not significantly different before performing screening tests. The results confirm well-balanced

workloads between zones when the order size is large.

Sensitivity analysis over number of orders = 200

To analyze GPSM performance over a large problem size, we increase the number of orders in each
order list. As the number of orders increases, the average FT reduction between the original and
reassignment increases: GPSMmm(4) yields 10.30% on average and 0.00% in the worst case with the
average number of swaps = 3.05, and SLR yields 9.22% on average and —1.58% in the worst case
with three swap operations, whereas JA yields 13.59% on average and -7.60% in the worst case with

the unlimited number of swap operations.

Sensitivity analysis over non-identical picker skill

GPSMa; yields the largest FT reduction before the screening test, 2.11% and 1.90% higher than
SLR(4) and JA, respectively. Despite the poor performance of GPSMyz in other configurations, it
does capture the zones with slow picking speeds and assigns fewer loads to them, which balances the
workload in a non-identical picker-skill environment. Appendix Table C7 shows that FT reduction
rates of GPSMaz(4) is significantly larger than SLR(4) before performing screening tests. The results
indicate that the GPSM policies effectively reassign storage to reduce FT when pickers are non-

identical in skill and speed.

6. Conclusion

This paper proposed an average flow-time estimation model for estimating travel time and a storage
location reassignment with risk assessment in an automated zone picking system. During the storage
location reassignment procedure, warehouse management applied the screening test for each
reassignment stage to assess the risk of the reassignment decision’s failure. Ten scenarios from a real
e-commerce warehouse configuration and historical order data were used to evaluate the performance
of the proposed model.

The GPSM estimated the average flow time from the historical data with three different types
of features: the number of picks in all zones, the min-max number of picks, standard deviation of the
number of picks, and the standard deviation of the number of picks. Given storage location
assignments, it enabled the GPSM to adjust the storage location by evaluating the minimum estimated
average flow time. The GPSM identified new storage location assignments and assessed the risk of a
reassignment failure with the probability of improvement.

The simulation experiments and statistical tests validated that the proposed models
significantly reduced the average flow time of orders in large-scale order picking and non-identical

picker skill environments, and that the screening test limited the number of swap operations.
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Future research will investigate constructing the features extracted from an order list based on
domain knowledge of the picking system. More analysis should confirm the accuracy of an estimation
model that relies on feature extraction from large-scale order picking data with no loss of data
integrity. Further investigation of the sequential sampling and kernel functions should indicate

improved model performance with limited data.
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Appendix A. Numerical validation

We measure the Pearson correlation coefficient (Pearson’s r) of the average flow time estimation
model. Figure A1 plots the correlation along with the Pearson’s r value between the actual and
predicted values of true average flow time for 200 different order lists generated using simulation data
from industry (see Sections 5.1 and 5.2 for details of the dataset). For the three different GPSMs,

Pearson’s r values ranging from 0.537 to 0.950 indicate a relatively strong correlation between

simulations and predictions.
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Figure A1l. Correlation between the values obtained by simulations and by the three GPSMs.

We also calculate the mean absolute percentage error (MAPE) and R? score of the three

GPSMs for the dataset. Table A1 reports the values denoting the regression accuracy of the proposed

average flow-time estimation models.

Table A1. MAPE and R2 scores of GPSM.

Model MAPE (%) R?

GPSMaz 5.85 0.26
GPSMwwm 2.74 0.79
GPSMsp 2.26 0.89
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Appendix B. Statistical analysis between workload scenarios

Table B1. Welch’s ANOVA tests of performance between workload scenarios.

Source Statistic? DF Num DF Den P-value

FT 262.032 9 199.157 <0.001

@ Asymptotically F distributed

Table B2. Multiple comparisons of mean differences in the average FT between workload scenarios
based on Games-Howell post-hoc tests.

Scenario| 1 2 3 4 5 6 7 8 9 10

1 -59.445"  -190.629" -273.590" -263.397" -343.676" -272.955" -336.721" -34.219" -62.487"
2 -131.180" -214.141" -203.948" -284.226" -213.505" -277.271" 25.231 -3.037

3 -82.961"  -72.768" -153.046" -82.326" -146.091" 156.410" 128.143"
4 10.193 -70.086"  0.635 -63.130"  239.371" 211.104"
5 -80.279"  -9.558 -73.323"  229.178" 200.911"
6 70.721°  6.955 309.457" 281.189"
7 -63.766"  238.736" 210.468"
8 302.501" 274.234"
9 -28.267
10

* Mean difference significant at the 0.05 level
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Appendix C. Statistical analysis between methods

Table C1. Welch’s ANOVA tests of performance between methods.

Environment Stage Statistic? DF Num DF Den P-value
default n=1 75.511 5 524.212 <0.001
n=2 51.969 5 531.754 <0.001

n=>3 40.901 5 537.173 <0.001

n=4 42.488 5 542.384 <0.001

12 zones n=1 100.042 5 526.994 <0.001
n=2 78.095 5 534.856 <0.001

n=3 59.942 5 539.904 <0.001

n=4 48.484 5 543.359 <0.001

12 rack n=1 49.255 5 509.983 <0.001
columns n=2 33.982 5 514.926 <0.001

n=>3 26.549 5 519.378 <0.001

n=4 24391 5 523.325 <0.001

Unif(10,20) n=1 94.673 5 507.882 <0.001
Order size n=2 70.097 5 514.426 <0.001
n=3 53.633 5 521.611 <0.001

n=4 44.641 5 527.161 <0.001

200 orders in n=1 178.769 5 495.630 <0.001
each order list n=2 137.922 5 503.428 <0.001
n=3 105.377 5 510.265 <0.001

n=4 86.137 5 517.059 <0.001

Non-identical n=1 47813 5 510.657 <0.001
picker skill n=2 28.858 5 518.685 <0.001
n=>3 20.066 5 527.084 <0.001

n=4 20.938 5 535.300 <0.001

@ Asymptotically F distributed

Table C2. Multiple comparisons of mean differences in the average FT in the default environment
based on Games-Howell post-hoc tests.

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMwmm(n)  GPSMsp(n)

n=1 Original 129.097" 44.031" 29.906 45.268" 48.389"
JA -85.065" -99.190" -83.828" -80.708"
SLR(n) -14.125 1.237 4.358
GPSMaz(n) 15.362 18.483
GPSMwmwm(n) 3.121
GPSMsp(n)

n=2 Original 129.097" 79.480" 47.641" 79.993" 83.985"
JA -49.617" -81.456" -49.104" -45.112"
SLR(n) -31.838" 0.513 4.505
GPSMaz(n) 32.351° 36.344%*
GPSMmm(n) 3.992
GPSMsp(n)

n=3 Original 129.097" 102.719* 60.490" 109.162" 114.303"
JA -26.378" -68.606" -19.934 -14.794
SLR(n) -42.228" 6.444 11.584
GPSMaz(n) 48.672° 53.812°
GPSMwmwm(7) 5.140
GPSMsp(n)

n=4 Original 129.097" 121.378" 68.870" 126.214" 134.113"
JA -7.719 -60.226" -2.883 5.017
SLR(n) -52.507" 4.836 12.735
GPSMaz(n) 57.344" 65.243"
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7.899

GPSMwmwm(n)
GPSMsp(n)

* Mean difference significant at the 0.05 level

Table C3. Multiple comparison of mean differences in the average FT in the 12 zones environment
based on Games-Howell post-hoc tests.

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMwmm(n)  GPSMsp(n)

n=1 Original 142.240" 39.719" 30.324 40.209* 35.453
JA -102.521" -111.916" -102.031" -106.787"
SLR(n) -9.395 0.491 -4.266
GPSMaz(n) 9.885 5.129
GPSMwmwm(n) -4.756
GPSMsp(n)

n=2 Original 142.240" 68.487" 45.252° 68.572" 62.562°
JA -73.753" -96.988" -73.668" -79.677"
SLR(n) -23.235 0.085 -5.924
GPSMaz(n) 23.320 17.310
GPSMmm(n) -6.010
GPSMsp(n)

n=3 Original 142.240" 89.270" 65.932" 86.845" 83.713"
JA -52.970" -76.308" -55.395° -58.527"
SLR(n) -23.338 -2.425 -5.557
GPSMaz(n) 20.913 17.782
GPSMwmm(n) -3.132
GPSMsp(n)

n=4 Original 142.240" 108.714" 80.106" 104.562" 96.093"
JA -33.526" -62.134" -37.678" -46.147"
SLR(n) -28.608" -4.153 -12.622
GPSMaz(n) 24.455" 15.986
GPSMwmm(n) -8.469
GPSMsp(n)

* Mean difference significant at the 0.05 level

Table C4. Multiple comparisons of mean differences in the average FT in the 12 rack columns
environment based on Games-Howell post-hoc tests.

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMmm(n)  GPSMsp(n)

n=1 Original 144.657" 42.460 29.165 52.112 49.528
JA -102.196" -115.492" -92.545" -95.129*
SLR(n) -13.295 9.652 7.068
GPSMaz(n) 22.947 20.363
GPSMwmm(n) -2.584
GPSMsp(n)

n=2 Original 144.657" 72.334" 54.881" 87.701" 91.614*
JA -72.323" -89.776" -56.956" -53.044"
SLR(n) -17.453 15.367 19.279
GPSMaz(n) 32.821 36.733
GPSMwmwm(n) 3.912
GPSMsp(n)

n=3 Original 144.657" 94.480" 68.615" 120.754" 125.059"
JA -50.177" -76.042" -23.904 -19.598
SLR(n) -25.865 26.274 30.579
GPSMaz(n) 52.138" 56.444"
GPSMwmm(n) 4.306
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GPSMsp(n)

Original

JA

SLR(n)
GPSMaz(n)
GPSMmm(n)
GPSMsp(n)

144.657"

113.849" 85.417"
-30.808 -59.240°
-28.432

150.018"
5.361
36.169
64.601"

154.481"
9.823
40.632
69.064"
4.462

* Mean difference significant at the 0.05 level

Table C5. Multiple comparisons of mean differences in the average FT in the Unif(10,20) order size
environment based on Games-Howell post-hoc tests.

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMwmm(n)  GPSMsp(n)

n=1 Original 216.892" 54.461 41.753 68.556" 71.486"
JA -162.431" -175.139" -148.336" -145.406"
SLR(n) -12.708 14.095 17.025
GPSMaz(n) 26.803 29.733
GPSMwmwm(n) 2.930
GPSMsp(n)

n=2 Original 216.892" 100.288" 73.472" 116.596" 123.383"
JA -116.604" -143.419" -100.296" -93.509"
SLR(n) -26.815 16.308 23.095
GPSMaz(n) 43.124 49.910
GPSMwmm(n) 6.787
GPSMsp(n)

n=3 Original 216.892" 138.916" 98.224" 157.297" 164.920"
JA -77.976" -118.668" -59.595 -51.971"
SLR(n) -40.692 18.381 26.004
GPSMaz(n) 59.073" 66.696"
GPSMwmm(n) 7.623
GPSMsp(n)

n=4 Original 216.892" 171.478" 116.889" 191.426" 202.302"
JA -45.414" -100.002" -25.466 -14.589
SLR(n) -54.589" 19.948 30.824
GPSMaz(n) 74.537* 85.413"
GPSMwmm(n) 10.876
GPSMsp(n)

* Mean difference significant at the 0.05 level

Table C6. Multiple comparisons of mean differences in the

environment based on Games-Howell post-hoc tests.

average FT in 200 orders in the order list

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMmm(n)  GPSMsp(n)

n=1 Original 235.929" 69.321" 53.654 67.399* 62.195"
JA -166.607" -182.274 -168.530" -173.734"
SLR(n) -15.667 -1.923 -7.126
GPSMaz(n) 13.744 8.541
GPSMwmwm(n) -5.204
GPSMsp(n)

n=2 Original 235.929" 118.812" 94.709" 116.800 112.905"
JA -117.117° -141.220" -119.129" -123.024"
SLR(n) -24.103 -2.012 -5.907
GPSMaz(n) 22.091 18.196
GPSMwmm(n) -3.895
GPSMsp(n)
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n=3 Original 235.929" 155.636" 118.416" 154.732" 153.536"
JA -80.292" -117.518" -81.196" -82.393"
SLR(n) -37.220" -0.904 -2.101
GPSMaz(n) 36.316" 35.120
GPSMmm(n) -1.197
GPSMsp(n)

n=4 Original 235.929" 182.875" 132.236" 183.524" 184.098"
JA -53.054" -103.693" -52.405" -51.830"
SLR(n) -50.639" 0.649 1.224
GPSMaz(n) 51.288" 51.863"
GPSMmwmi(n) 0.575
GPSMsp(n)

* Mean difference significant at the 0.05 level

Table C7. Multiple comparisons of mean differences in the average FT in the non-identical picker
skill environment based on Games-Howell post-hoc tests.

Stage Method Original JA SLR(n) GPSMaz(n)  GPSMwmm(n)  GPSMsp(n)

n=1 Original 147.011" 49.026 61.845" 50.186 52.989
JA -97.985" -85.166" -96.825" -94.022"
SLR(n) 12.819 1.160 3.962
GPSMaz(n) -11.659 -8.856
GPSMwmm(n) 2.303
GPSMsp(n)

n=2 Original 147.011" 84.656" 106.695" 91.732" 94.720"
JA -62.356" -40.316" -55.279* -52.291"
SLR(n) 22.040 7.076 10.064
GPSMaz(n) -14.963 -11.975
GPSMwmwm(n) 2.988
GPSMsp(n)

n=3 Original 147.011" 114.430" 141.455" 125.281" 127.133"
JA -32.581" -5.556 -21.730 -19.878
SLR(n) 27.025 10.851 12.703
GPSMaz(n) -16.174 -14.322
GPSMwmwm(n) 1.852
GPSMsp(n)

n=4 Original 147.011" 134.200" 167.025" 148.532" 151.843"
JA -12.811 20.014 1.521 4.832
SLR(n) 32.825" 14.332 17.643
GPSMaz(n) -18.494 -15.182
GPSMwmwm(n) 3.311
GPSMsp(n)

* Mean difference significant at the 0.05 level
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