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Abstract— Many semiconductor fabrication plants (fabs) pre-
fer simulation-based decision making for vehicle dwelling policies
because it can capture a fab’s scalability and complexity. Vehicle
dwelling policies assign idle vehicles to intra-bay and outer loops
in automated material handling systems (AMHSs) to respond
quickly to transportation demands. Fabs are motivated to con-
trol vehicle dwelling policies when fabs experience significant
fluctuations, i.e., changes in product mix. Fab operators evaluate
manually designed candidate solutions because it is time-intensive
to run a large-scale simulation with numerous potential solutions.
To determine a vehicle dwelling policy, we propose a simulation
optimization approach based on Bayesian optimization (BO)
with class-based clustering. BO adaptively traces efficient vehicle
dwelling policies based on a surrogate model and an acquisition
function. Class-based clustering alleviates the high dimensionality
of the design space by grouping bays into a small number of
classes. By striking a balance between the complexity of the
design space and the quality of the solutions, our proposed policy
significantly reduces the number of simulation runs required to
determine efficient vehicle dwelling policies. We conclude that
BO with class-based clustering is more advantageous than using
a genetic algorithm (GA) and using heuristics.

Note to Practitioners— This study is motivated by the diffi-
culties in simulation-based decision making for optimal vehicle
dwelling policies in a semiconductor wafer fab’s AMHS. While
existing research has demonstrated the effectiveness of simulation
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analysis on operational planning in a fab, simulation optimization
for a vehicle dwelling policy is still problematical due to the
heavy computation burden for simulation runs and its large
design space with the increased number of control variables in
a fab. Therefore, we develop a simulation optimization approach
using BO with class-based clustering. The proposed approach
significantly reduces the number of simulation runs to obtain
efficient vehicle dwelling policies, resulting in decreased delivery
times and vehicle utilization rates.

Index Terms— Automated material handling system, semi-
conductor fab, vehicle dwelling policy, simulation, Bayesian
optimization.

I. INTRODUCTION

UTOMATED material handling systems (AMHSs) auto-

mate and optimize material flows in manufacturing
facilities, using process and material route information from
a facility’s manufacturing information system. The semicon-
ductor wafer manufacturing industry uses AMHSs to transfer
and store wafers between fabrication steps because they can
achieve high delivery speeds and operational reliability [1],
[2], [3]. The industry prefers a vehicle-based AMHS with an
overhead hoist transport (OHT) that travels on guided paths
and transfers front-opening unified pods (FOUPs) to temporary
storages and stockers in bays [4]. Fig. 1 illustrates a conceptual
layout of an AMHS in a 300mm semiconductor fabrication
plant (fab).

Typically, large wafer fabs are partitioned into multiple
bays, and hundreds of OHTs are assigned to transfer the
wafers between the bays via internal routes. Unassigned OHT's
generally circulate through the internal route of a designated
bay. To respond quickly to transportation demands, fabs try to
maintain a minimum number of idle OHTs within each bay.
Since too many OHTs in a bay could lead to a vehicle shortage
from other bays, fab operators need to control the minimum
and the maximum number of idle OHTs for each bay.

A black-box problem, also termed derivative-free optimiza-
tion, is identified by a partial or total lack of closed-form
equations with constraints and an objective. Since the AMHS
performance under a vehicle dwelling policy represents a
black-box function due to the unknown interactions among
vehicles and machines, simulation analysis has been used
to evaluate AMHS performance under high uncertainties
and achieve optimal policies [5], [6]. Many fabs prefer
simulation-based decision making for vehicle dwelling policies
because it can capture a fab’s scalability and complexity,
and fabs can control vehicle dwelling policies when they
experience significant fluctuations.
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Fig. 1. Conceptual layout of an AMHS in a 300mm fab.

However, a high fidelity of simulation with the increased
number of vehicles, machines, and intra-bays is computation-
ally expensive and often requires several hours for a single
run. Further, the increase in the number of control variables
requires extensive simulation runs to obtain optimal solutions
(e.g., in a d-dimensional design space, an n-point discretiza-
tion of each dimension provides n¢ candidate solutions to be
explored). As a result, many fab operators evaluate manually
designed candidates within a limited simulation budget that
may not provide optimal solutions [7].

In this study, we propose a simulation optimization
approach based on Bayesian optimization (BO) with
class-based clustering to determine the vehicle dwelling
policy within a limited number of simulation runs. Bayesian
optimization (BO) has proven to be an efficient alternative to
simulation optimization [8] because it can replace exhaustive
simulation runs with the predictions from a surrogate
model based on the outcomes from past simulation runs.
We study an application-specific BO for optimizing a vehicle
dwelling policy when the dimensionality of the design space
increases proportionally to the number of bays. To reduce
the dimensionality, we group the bays into a small number
of classes by similarity and determine the same number of
dwelling limits for the same class. Our class-based clustering
approach strikes a balance between the complexity of the
design space and the quality of the solutions.

The remainder of this study is organized as follows.
Section II reviews the related literature and the associated
challenges. Section III discusses the vehicle dwelling policy
and the minimum and maximum number of vehicles required
for each dwell point. Section IV summarizes our simulation
optimization approach based on BO with class-based clus-
tering to optimize the vehicle dwelling policy in an AMHS.
Section V provides the details of the simulation experiments
and discusses the results. Section VI concludes and provides
suggestions for future research.

II. LITERATURE REVIEW

A vehicle dwelling policy assigns vehicles to specific dwell
points so they can respond quickly to transfer requests [9]. The
policy’s objective is to reduce delivery time by minimizing
lot waiting time, empty travel time, loaded travel time, and
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blocking time simultaneously. Lot waiting time corresponds
to the time a lot must wait for an available vehicle that
initiates the transfer request at an origin machine. Empty travel
time corresponds to the interval between the time a vehicle
is initiated and the time it starts to load a lot at the origin
port. Loaded travel time corresponds to the interval between
the time a vehicle finishes loading at an origin port and the
time it starts to unload at a destination port. Blocking time
corresponds to the time a vehicle waits for other vehicles to
complete their loading/unloading operations.

Various analytical approaches have been considered to eval-
uate and improve the performance of vehicle-based systems.
Maxwell and Muckstadt [10] proposed an analytical method-
ology to determine the number of required vehicles, their
routes, and the total number of travels over routes. Egbelu
[11] addressed the problem of selecting dwell points holding
vehicles in a single loop-type automated guided network and
proposed an analytical model. Hu and Egbelu [12] developed
two models with different objectives for determining dwell
points to minimize maximum and mean response times in a
guided path system. Bruno et al. [13] introduced linear heuris-
tics to dynamically determine the dwell points of automated
guided vehicles in a material handling system. Nishida and
Nishi [14] presented an integer programming model and a
heuristic for a conflict-free routing problem based on a just-
in-time delivery concept, and investigated the relationships
between delivery completion times and tardiness/earliness
penalties under dynamic task arrivals. Nazzal and McGinnis
[15] developed an analytical model to estimate the blocking
time in an AMHS under the assumption that the sum of the
lot waiting time and empty travel time was independent of
the lot’s original location. Baykasoglu et al. [16] presented a
novel integer programming model for freight planning, fleet
composition, fleet allocation, idle vehicle repositions, and
fleet outsourcing problems. Nazzal et al. [17] investigated a
queuing-based analytical model to estimate the performance
of a conveyor-based AMHS in a fab; experiments under
the Poisson assumption indicated that the analytical model
performed well, with an average error of 4.2%, but showed
relatively high errors under heavy traffic.

Simulation analysis provides important details for real-time
operational control of system dynamics, i.e., vehicle downtime
and product mix changes, in fabs [18], [19]. Ahn and Park
[20] proposed a cooperative zone-based rebalancing algorithm
based on multi-agent reinforcement learning to dynamically
reallocate vehicles in a fab; experiments indicated that the
real-time control algorithm significantly reduced the empty
travel time and vehicle utilization rate. Hwang and Jang [21]
investigated a reinforcement learning-based dynamic routing
algorithm to avoid time-variant vehicle congestion in a fab’s
AMHS. Ahn et al. [22] suggested a dynamic routing algorithm
using a sequence of graphs to consider historic traffic informa-
tion in a fab’s AMHS; experiments indicated that the proposed
model dynamically rerouted vehicles to find efficient paths.
Lee et al. [23], who addressed vehicle repositioning based on
multi-task learning that considered traffic patterns in multiple
areas, demonstrated that a robust high-accuracy performance
could be obtained under dynamic variability.
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Operational planning approaches for vehicle management
in fabs have examined system reliability and efficiency [19].
The approaches have the merit of model validity to provide
explicit relationships between input and output variables for
strategic management. Lee et al. [24] developed a routing
algorithm using novel congestion metrics to identify the
systematic bottlenecks in an actual fab. The results of their
simulation indicated that the proposed algorithm reduced
the delivery time and saved the loss in production. Kim and
Park [25] showed that vehicle dwelling policies significantly
impacted AMHS productivity in various simulation scenarios.
Kiba et al. [26] discussed a vehicle dwelling policy with the
potential to improve AMHS performance, considering the
minimum and maximum number of required idle vehicles for
each dwell point. Lin et al. [27] investigated the minimum
and maximum number of vehicles required for each dwell
point by designing and evaluating several candidate solutions
for their simulation study.

Simulation optimization approaches have been proposed for
finding optimal input variables for complex and stochastic
functions within limited computation budgets. Lin and Huang
[28], who studied optimizing combinatorial dispatching rules
due to the limited number of simulation runs, proposed
a genetic algorithm-based simulation optimization to deter-
mine the combination dealing with system dynamics in a
fab’s AMHS. Chang et al. [29], who proposed a genetic
algorithm-based simulation optimization to find the optimal
combination of vehicle dispatching rules, analyzed the trans-
fer delays with the increased number of simulation runs.
Lee et al. [30] presented a space-filling design method with a
classification model to accelerate the simulation optimization
of combinatorial dispatching rules in an LCD manufacturing
system. Huang et al. [31], who suggested a mathematically for-
mulated model for determining the optimal number of vehicles
for dwell points, employed a simulation optimization approach
to iteratively trace optimal solutions via a discrete-event simu-
lation. The experimental results confirmed that their approach
increased throughput with the increased number of simulation
runs. Chang et al. [32] proposed a sequential surrogate to
determine the number of required vehicles for an AMHS.
Their surrogate model, which was based on the quadratic
relationship between the input and output variables of an
objective function, employed a sampling scheme to enhance
the solution quality with fewer evaluations. Kuo et al. [33]
investigated a neural network (NN)-based surrogate model
with a uniform design to expedite decision making in a
fab’s AMHS; the results indicated that the model estimated
simulation outcomes within a relatively small number of
training data. Can and Heavey [34] provided a comparative
analysis of genetic programming- and NN-based surrogate
models to predict the inventory cost of a fab’s AMHS.
Even though the genetic programming-based surrogate model
required more computing resources, it was still competitive
in model validity because it produced explicit functions for
strategic advantage in operational management. Although the
alternative approaches can handle a wide range of problems,
they often require larger numbers of simulation runs and
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Fig. 2. AMHS layout of the wafer fab.

long computation times, both of which become troublesome
bottlenecks in decision making.

BO approaches with Gaussian process (GP) are suitable for
solving black-box objective functions in cases with a limited
number of evaluations. Since GP is a non-linear and flexible
surrogate with uncertainty quantification, the BO adaptively
and deliberately samples the next design point considering the
exploration and exploitation of the design space [35], [36].
Candelieri et al. [37] solved the pump operation scheduling
problem in water distribution systems based on BO with a
limited number of evaluations. Hickish et al. [38] utilized
BO to find an acceptable solution in rail network operations.
Kang et al. [39] proposed BO to optimize collaborative oper-
ations between twin yard cranes in an automated container
terminal; the results indicated that BO accounted for complex
and uncertain factors in the terminal.

Most studies have applied BO to problems with moderate
dimensions of up to 10 [40]. Although the BO approach is
known as a powerful scheme for optimization with limited
evaluations, it still suffers from high dimensionality [35],
[41], [42], [43], [44]. To relax BO complexity and speed
up convergence, Salem et al. [45] proposed a sequential
dimension reduction method by identifying the influential
input variables. Chen and Liao [46] proposed a dimension
reduction method that decomposed high dimensionality into a
union of low dimensionality, and built a surrogate model with
a small amount of training data.

This study contributes to the published literature as follows:
(1) We investigate the optimization of the minimum and
the maximum numbers of vehicles for an entire AMHS,
rather than using manually designed candidate solutions; (2)
We expedite simulation-based decision making for vehicle
operations by constructing a surrogate model and sampling
schema using BO; and (3) We show how BO with class-based
clustering is able to balance between the complexity of the
design space and the quality of the solutions.

ITII. PROBLEM DEFINITION
A. AHMS Layout With Intra-Bay and Outer Loops

In this study, we investigate a hypothetical 300mm fab. The
AMHS layout has 16 intra-bays, intra-bay loops, and inter-bay
and outer loops as shown in Fig. 2. Each intra-bay consists
of machines that perform one of the eight processes (such as
photolithography, etching, and diffusion). The inter-bay loop
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Fig. 3. Examples of vehicle initiation under different vehicle dwelling Fig- 4. Examples of vehicle movements under different vehicle dwelling

conditions: (a) vehicle initiating the incoming lot; (b) vehicle shortage for
the incoming lot.

connecting with the intra-bays allows direct delivery by a
single vehicle. The outer loops unite the intra-bays and the
inter-bay. All loops are unidirectional. An intra-bay has two
dwelling loops for the vehicles. The wafer fab uses a vehicle
dwelling policy to manage the number of vehicles staying in an
intra-bay. The vehicle dwelling policy distributes idle vehicles
over the inter-bay and the outer loops. A distributed vehicle
travels on its designated dwelling point until a transfer request
initiates the vehicle.

B. Intra-Bay Dwelling Policy With the Minimum and
Maximum Number of Required Idle Vehicles

When a vehicle becomes idle at an intra-bay after a transfer,
all intra-bays in order of nearest to the intra-bay where
the vehicle completed its transfer, check their minimum and
maximum bounds. If there is room for the vehicle below
the minimum bound, the intra-bay keeps the vehicle ready
in the intra-bay with an exclusive priority. Transfer requests
from other intra-bays cannot initiate the vehicle belonging to
the minimum number of required vehicles for the intra-bay.
If all intra-bays have idle vehicles over the minimum bounds
and there is still room for the vehicle under the maximum
bound, the intra-bay keeps the vehicle ready in the intra-bay
without an exclusive priority. If the maximum bounds of all
of the intra-bay loops are filled, the vehicle moves to the
outer loop. We use «; and B; to denote the minimum and
maximum number of idle vehicles, respectively, required for
intra-bay i. We define the following parameters, sets, and
decision variables.

Parameters and Sets

I, i: Set of bays and its index i € I.
Decision variables

o; :Minimum number of required idle vehicles in intra-bay i.

Bi :Maximum number of required idle vehicles in intra-bay i.

The vehicle dwelling policy determines the vehicle’s distri-
bution over the intra-bays. Fig. 3(a) and (b) are examples of
vehicle initiation under different vehicle dwelling conditions.
In Fig. 3(a), the transfer request generated from intra-bay
2 cannot initiate the vehicle belonging to «;, but it can

conditions: (a) vehicle redistribution to the other intra-bay; (b) vehicle
circulation in the intra-bay where the vehicle completed its transfer request.

initiate the one belonging to B;. In Fig. 3(b), although intra-
bay 1 keeps a sufficient number of idle vehicles, intra-bay
1 does not distribute the vehicles to intra-bay 2 to quickly
respond to upcoming requests from intra-bay 1. The transfer
request generated from intra-bay 2 cannot initiate the vehicle
belonging to oy, so the transfer request must wait until to be
initiated by another vehicle belonging to o, 8,, or ;.

Fig. 4(a) and (b) are examples of vehicle movements under
different vehicle dwelling conditions. In Fig. 4(a), intra-bay
2 redistributes the vehicle as soon as the lot is unloaded to
avoid vehicle shortage from an upcoming lot requested from
intra-bay 1. In Fig. 4(b), as soon as the vehicle unloads its lot
at intra-bay 2, it circulates in intra-bay 2 for an upcoming lot
requested from intra-bay 2.

IV. SIMULATION OPTIMIZATION FOR THE VEHICLE
DWELLING PoLICY

Wafer fabs need to determine an optimal vehicle dwelling
policy within a limited planning period. While a determination
of the minimum/maximum bounds for each intra-bay could
improve delivery time, the increased dimensionality of the
solution space requires an exponentially increased number
of simulations to guarantee the optimal vehicle dwelling
policy. This section explains how to address the problem of
high dimensionality when using BO to predict the simulation
outcomes of the vehicle dwelling policy and determine the
minimum and maximum number of vehicles in all intra-bays.

A. Class-Based Clustering for Relaxing High Dimensionality

We begin by grouping the intra-bays into classes according
to similar transportation demands. Inspired by inventory and
storage management studies, we call it class-based clustering
[47], [48]. The practitioners can estimate upcoming transporta-
tion demands for the eight fabrication steps [2], [15], [49].
Next, we set the classes’ minimum/maximum bounds based
on the estimated transportation demands.

Both «, and B, denote the minimum and the maximum num-
bers of idle vehicles, respectively, required for the intra-bays in
class c. The impact of «, and B, on intra-bay i in class c, i.e.,
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Fig. 5. Example of a dwelling condition with decision variables «. and B,
based on the class-based clustering with |C| = 2.

i € I, is highly sensitive to the demand patterns of the transfer
requests. The demand patterns are determined by the stationary
and transaction matrices generated from a production sequence
[15], [49]. To manage «. and B., we sort them in order of
demand and assign them to different classes, e.g., given the
number of classes |C|, where the number of bays (B) > |C]|,
we assign intra-bay i to class I.. We set the upper bound of the
number of required idle vehicles based on an expected vehicle
utilization rate and the total number of vehicles. In this study,
we set u as 0.85. We define the following parameters, sets,
decision variables, and objectives.

Parameters and Sets

C, c: Set of classes and its index ¢, | I. =1, () I. = 9.
eC ceC
P, p;: Set of stationary probabilitiesc and its element.

0, q.: Set of |C|-quantiles with boundaries and its element.

u: Expected vehicle utilization rate, 0 <u < 1.

N: Number of vehicles.

Decision variables
o, :Minimum number of required idle vehicles per intra-bay
in class c.
B :Maximum number of required idle vehicles per intra-bay
in class c.
Objectives

We aim to minimize the delivery time such that

0<a.<[N{ —u)], for all c.

0<B.<[N({ —u)l, for all c.

I.={i:q.—1 < pi <4, i€ l}, for all c.

90=0,gc41 = 1.

Fig. 5 shows a dwelling condition when decision variables
(a1,B1) and (ap,By) are (1, 1) and (2,2), respectively. The
intra-bays in Class 2 with the higher demand have higher
minimum and maximum number of required idle vehicles than
the intra-bays in Class 1 with the lower demand. |C|, which
is the number of classes, determines the number of feasible
solutions as [N(1 — u)]1?'“!. When the number of classes is
two, the number of feasible solutions is [N(1 — u)]* with
decision variables (o, f.) identified as (1, 81) and (a2, 7).

B. Simulation Modelling for the Fab’s AMHS

We build a simulation model with Plant Simulation software
that provides basic objects, to build the relationship of a
hierarchy and inheritance between the objects, and use the

Remove the initiated lot
from the waiting queue

Apply the vehicle dispatching policy
to vehicles available to initiate the lot

‘ Deliver the lot to its destination |

Apply the vehicle routing policy
to the vehicle

Apply the vehicle dwelling policy
to the vehicle

)

Fig. 6. Discrete-event modelling for our AMHS simulation.

built-in programming language to implement the operational
policies in a simulated wafer fab after Bartlett et al. [49]
and Bartlett [S0]. The simulation considers realistic vehicle
traffic patterns, operation policies, and other input parameters.
We consider an AMHS with 200 vehicles, 16 intra-bays,
and 1,100 loading/unloading stations. The maximum velocity
of vehicles on straight and curved rails is 3m/s and 1m/s,
respectively. We account for vehicle sizes and acceleration at
50cm and 3m/s>.

The fab uses vehicle dispatching, lot dispatching, and vehi-
cle routing. The vehicle dispatching determines which vehicle
among those available initiates a requested lot. We dispatch
the nearest idle vehicle to a requested lot. If no vehicle is
available, the lot will be added to a waiting queue. The lot
dispatching chooses which lot among those in the waiting
queue initiates an available vehicle. We dispatch the closest
lot to a vehicle available to be initiated. The vehicle routing
determines the routes of vehicles from current to destination
locations. We guide the shortest-travel-distance route for an
initiated vehicle.

We consider the following assumptions: (1) The production
schedule corresponds to the loading/unloading operations,
which require 10 s deterministically; (2) The inter-arrival time
between transfer requests follows an exponential distribution
(mean 0.9s); and (3) The stationary and transaction matrices
from the production sequence data of a prototype product
determine the origin and destination of a transfer request.
Fig. 6 shows the flowchart of our discrete-event modelling.

To identify the major performance measurements, a vehicle
utilization rate and delivery time, based on the sum of a
lot waiting time, empty travel time, loaded travel time, and
blocking time, we run a few trials to validate the simulation
model and determine a warm-up period. Next, we run each
simulation for 12 hours including the warm-up period of
6 hours. We note that the statistics vary slightly in our
simulation model.
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C. Bayesian Optimization With the Class-Based Clustering

BO consists of a surrogate function and an acquisition
function. Applications of surrogate functions have proven to
reduce computational costs [51]. As a surrogate function,
we use GP suitable to consider flexible covariances with
uncertainty quantification [52]. The GP approximates the full
covariance over all possible solutions with a small set of data
based on a kernel function. The GP, which is characterized by
a Gaussian distribution with mean and covariance functions,
draws a posterior distribution of the delivery time according
to the minimum and maximum number of vehicles required
for each dwell point.

With a limited number of trials, the acquisition function
adaptively decides where to sample; we note that some studies
have used the alternative approaches EI, knowledge-gradient,
and entropy search [35], [53]. We employ the EI as an
acquisition function for optimizing an underlying function.
We took the negative of the objective value to represent a
benefit required to be minimized. The EI evaluates the amount
of expected improvement for the potential solutions based on
a posterior distribution from the GP and recommends the next
solution with the maximum expected improvement.

We let x € R?Cl represent a 2|C|-dimensional vector as the
simulation input variables {«q,...,o., B1,...,B:}, and f(x)
represents an unknown response of the simulator described in
Section IV-B for a given input x. We model f(x) as GP with
mean function m and covariance function k as

f(x) ~ GP(m(x),k(x,x’)). (D

The kernel function k(x;, x;) uses the prior distribution to
be inferred for posterior. We use the RBF kernel function &,
the most widely used covariance function,

[lxi = x|

et )

k(xi,x;) =0 exp

where amplitude parameter 6 represents the overall variance,
length scale parameter / controls the smoothness of the poste-
rior probability distribution, and the noise term o2 represents
the noise variance.

Given the data D, ={x1., fin}, Where x1,, = x1,__x,
and f1.,, = flix1). . f(x,), the kernel matrix K represents
a multivariate Gaussian distribution. We express the joint
distribution of Gaussian processes, fi., and f,41 as

fl:n ~ K k
|:fn+l :| N(O’ |:kT k(xXnt1, xn+l)i|)7 )

k(xy, x1)

where

k(x1, xn)
K = : : + 021, 4)
k(xnvxl) k(xnaxn)

k = [k(xn+lv -xl)s k(xn+11 xz)v ey k(-xn+1s xn)]- (5)

We obtain the posterior probability distribution with the
mean and standard deviation of the unobserved x,.; using
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Bayesian statistics [52] as

P(f(xus1) | Diza) = N (w(@ns1), 02 (Xng))s (6)
uni1) = kK y1, oo ) (7)
02 (Xns1) = ki1, Xop1) —kTK k. (8)

The EI evaluates the amount of expected improvement over
the black-box objective function and chooses the next sample
point x;_,, considering the trade-off between exploitation and
exploration of the search space [54] as

Xy = argmax,. EI(x). ©)

Exploitation samples the next point with a high objective
value and exploration samples the next point with high uncer-
tainty. We let y be a hyperparameter controlling the trade-off
between exploration and exploitation, y* be the current best
solution, and ¢ and @ be the PDF and CDF, respectively,
of the standard normal distribution Z. Then,

Y .
El(x) = (@) = y" —y)2(Z)+0(x)¢(Z) ?f o(X) >0,
if O'(X) = O’
(10)
u) =yt -y .
z=1" o) if o(X) >0, an
0 if 0(X) = 0.

Fig. 7 shows the procedure of our proposed approach. The
procedure optimizes the GP hyperparameters given data, D,,
and builds a surrogate model of the objective function using
Bayesian statistics. The acquisition function recommends the
next point, and the discrete-event simulation evaluates it and
updates the observed data D, ; as D,. This process repeats
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Fig. 8. nRMSE with the increased number of training data.
until the number of simulation evaluations reaches the maxi-
mum number of simulation runs.

V. EXPERIMENT AND RESULTS

In this section, we investigate the alternatives for determin-
ing the optimal vehicle dwelling policy. We run all simulations
on a personal computer (PC) equipped with Windows 10,
Intel Core i5, 2.7-GHz, 12 GB RAM, and 64-bit using Siemens
Tecnomatix 12.0.

A. Accuracy of the GP Surrogate Model

An accurate prediction of a surrogate model expedites
the convergence of optimization. We obtain 1000 data from
Latin Hypercube Design (LHD) with three classes (|C| =
2, 4, and 8), respectively. We use k-fold cross-validation
(k= 5) to evaluate the accuracy. Fig. 8 shows the ranges of
the normalized root mean squared error (nRMSE) with the
increased number of training data for the three classes. When
the dimensionality of the input variables increases, the number
of required simulation runs to converge also increases. The
nRMSE converges to 0.05, 0.07, and 0.09 with the class-based
clusterings |C| = 2, 4, and 8, respectively, with 200 training
data. We note that the GP with the high dimensionality of
the input variables is data-hungry and shows high prediction
errors.

B. Comparison With Simulation Optimization Alternatives

Since the performances of vehicle dwelling policies vary
depending on vehicle utilization rate and vehicle congestion,
we evaluate the robustness of our proposed approach with 190,
200, and 210 numbers of vehicles. We use the cumulative
best delivery time to confirm which simulation optimization
alternatives obtain an efficient vehicle dwelling policy with a
limited number of simulation runs. We repeat each simulation
optimization five times.

We design a GA-based simulation optimization with the
class-based clustering |C| = 8 modified from Pinedo [55].
Appendix A details the GA-based simulation optimization.
We set the maximum number of individuals in a population as
(P) = 10, the maximum number of generations as (G) = 45,
and the probability of mutations as 0.05. We set the simulation

budget for the GA-based simulation optimization as the total
number of simulation runs including the initial population and
all generations. Since each generation requires two simulation
runs to evaluate offspring, the total number of simulation runs
for the GA-based simulation optimization is 100.

Due to slight variations in prediction errors over 100 training
data (See Fig. 8), we set the maximum number of simula-
tion runs as 100 including initial data and all iterations for
the BO-based simulation optimizations with the class-based
clusterings |C| = 2, 4, and 8. We use LHD to obtain the
initial data with the number of input variables, and use the
scikit-learn Python library to model the GP and optimize
its hyperparameters of the kernel function using L-BFGS-B
algorithm which is a widely used gradient-based optimization
method.

Fig. 9 shows the cumulative minimum delivery time with
the increased number of simulation runs. The BO |C| =
8 improves the mean cumulative delivery time by 5.27%,
4.33%, and 4.32% with the different numbers of vehicles com-
pared to the GA |C| = 8, and decreases the standard deviations
of the mean cumulative delivery time by 58.32%, 61.62%,
and 22.2%. The BO |C| = 8 shows a high mean and standard
deviation compared to the BO |C| = 2 and 4 because the high
dimensionality of the input variables reduces the convergency
of the optimization. When the AMHS uses 190 vehicles, the
BO |C| = 4 finds the balance between design space complexity
and solution quality robustness. When the AMHS uses 200 and
210 vehicles, the BO |C| = 2 is more advantageous compared
to the BO |C| = 8.

C. Operational Impacts of the Vehicle Dwelling Policies on
the AMHS

Each simulation optimization alternative provides a different
distribution of idle vehicles «. and B. by each repeti-
tion. Therefore, we use the average value of «,. and B, to
validate the performance of each optimization alternative.
We use intuitive heuristics for the vehicle dwelling policy
for comparative results, outer-loop-circulatory policy (OLCP)
and inner-loop-circulatory-policy (ILCP) modified from the
“move-when-necessary policy” and “continuous-move-policy”
in [25]. Under the OLCP, an idle vehicle continues to circulate
in the outer loop until it initiates another transfer request
to alleviate congestion in the inner-bay loops. The OLCP is
advantageous when a vehicle’s speed is relatively fast, but
the AMHS experiences heavy congestion. Under the ILCP,
an idle vehicle circulates in the bay where the vehicle unloads
its transfer request until the vehicle initiates another transfer
request. The ILCP is advantageous when vehicle inflow and
outflow balance for each intra-bay.

Fig. 10 shows the boxplots for the lot waiting time and
the empty travel time with the different numbers of vehicles.
The GA shows the longest delivery time because it keeps
more minimum vehicles than the intra-bays require. When the
AMHS uses 190 vehicles, BO |C| = 4 and 8 increase the lot
waiting time by 20.26% and 26.80%, but decreases the empty
travel time by 7.60% and 8.93%, respectively, compared to
the ILCP. Because the improvement in the empty travel time
compensates for the loss of the lot waiting time, BO |C| =
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Fig. 10. Performance measurements of the vehicle dwelling policies with

190, 200, and 210 vehicles: (a) average lot waiting time; (b) average empty
travel time.

4 and 8 reduce the delivery time. The improvements in the
sum of the lot waiting time and the empty travel time from BO
|C| = 4 and 8 are 1.55% and 1.16%, respectively, compared
to the ILCP. When the AMHS uses 200 vehicles, BO |C| =
2 outperforms the OLCP, ILCP, and BO |C| = 4 and 8 by
4.11%, 2.11%, 1.61%, and 1.30%, respectively. When the
AMHS uses 210 vehicles, the vehicle dwelling policies have
small impacts on the lot waiting time and the empty travel
time. Further, the vehicle dwelling policies have a marginal
impact on the loaded travel time compared to the waiting time
and empty travel time (See Appendix B).

Fig. 11 shows the vehicle utilization rates over the vehicle
dwelling policies with the different numbers of vehicles.
As mentioned, the prompt reaction for the next transfer request
and redistribution of vehicles saves the empty travel time and
vehicle utilization rate. Since the heuristics cannot consider the
minimum number of required vehicles for the intra-bays, they
show high vehicle utilization rates. Contrary to the OLCP and
ILCP, the GA |C| = 8 shows the lowest vehicle utilization rate

Number of simulation runs

Number of simulation runs

2. 9. Cumulative minimum delivery times of the optimization alternatives over the increased number of simulation runs.
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Fig. 11.  Average vehicle utilization rates with the different numbers of

vehicles.

with the longest delivery time among the alternatives because
it assigns more vehicles than the intra-bays require. When
the AMHS uses 190 vehicles, the BO |C| = 4 and 8 reduce
the vehicle utilization rates by 2.84% and 3.32%, respectively,
with improvements in the delivery time compared to the ILCP.
When the AMHS uses 210 vehicles, the alternatives, except
for the OLCP, show small differences between the vehicle
utilization rates.

As residual analyses are satisfied at the 95% confidence
level, we run statistical significance tests to obtain the p-values
of the different vehicle dwelling policies on the delivery time.
Table I shows that vehicle dwelling policies have significant
impacts on the delivery time when the AMHS uses 190 vehi-
cles. The ILCP and the BO-based dwelling policies (|C| =
2 and 4) have no statistical differences when the AMHS
uses 210 vehicles. The results confirm the need to set the
number of classes carefully because a larger number of classes
cannot guarantee more improvement, depending on the vehicle
utilization rate and vehicle congestion, even if the required
number of simulation runs increases.

D. The GP Versus Three Surrogate Alternatives:
Comparative Results

In this subsection, we conducted comparative experiments
using three surrogate alternatives (SVR: Support Vector
Regression, RF: Random Forest, and ANN: Artificial Neural
Network). We used the scikit-learn library for the implemen-
tations and chose the hyperparameters with a grid search.
Fig. 12 and Fig. 13 show that the GP outperforms the SVR,
the RF, and the ANN in delivery time by 5.02%, 7.30%, and
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TABLE I

THE P-VALUES OF THE DIFFERENT VEHICLE DWELLING POLICIES ON THE
AVERAGE DELIVERY TIME

#Vehicles: 190

#OHT 190 | ILCP BO|C|=2 BO|C|=4 BO|C|=8 GA|C|=8
OLCP 0.0003 <0.0001* <0.0001* <0.0001* <0.0001*
ILCP - <0.0001* <0.0001* <0.0001* <0.0001*

BO|C| =2 - - <0.0001* <0.0001* <0.0001*

BO|C| =4 - - - 0.0899 <0.0001*

BO|C|=8 - - - - <0.0001*

#Vehicles: 200

#OHT200 | ILCP BO|C|=2 BO|C|=4 BO|C|=8 GA|C|=8
OLCP <0.0001* <0.0001* <0.0001* <0.0001* <0.0001*
ILCP - <0.0001* <0.0001* <0.0001* <0.0001*

BO|C| =2 - - 0.0024 <0.0001* <0.0001*

BO|C| =4 - - - 0.0893 0.0008

BO|C| =8 - - - - 0.1219

#Vehicles: 210
ILCP BO|C|=2 BO|C|=4 BO|C|=8 GA|C|=8
OLCP <0.0001* <0.0001* <0.0001* <0.0001* <0.0001*
ILCP - 0.1084 0.3246 0.0168 <0.0001*

BO|C| =2 - - 0.4593 <0.0001* <0.0001*

BO|C| =4 - - - <0.0001* <0.0001*

BO|C| =8 - - - - <0.0001%

*: P-value lower than 0.0001
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Fig. 12. Cumulative minimum delivery times of the GP and the three
surrogate alternatives over the increased number of simulation runs.
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Fig. 13. Cumulative maximum throughputs of the GP and the three surrogate
alternatives over the increased number of simulation runs.

6.23% within 50 simulation runs, and by 5.02%, 5.17%, and
6.23% within 100 simulation runs, respectively. The SVR, the
RF, and the ANN underperform in processing the expected
throughput (number of lots to be transferred) by 1.77%, 2.71%,
and 3.83%, respectively, compared to the GP. In summary, the

GP speeds up the convergence and achieves an efficient vehicle
dwelling policy.

VI. CONCLUSION

This study proposed a simulation optimization approach
based on the BO with the class-based clustering to determine
the minimum and maximum number of idle vehicles required
to respond to transfer requests in a fab’s AMHS. In practice,
industry simulation models require intensive searches over
simulation scenarios with combinatorial decision variables.
We suggest that wafer fabs operating over hundreds of OHT's
could save millions of dollars in OHT investments because the
BO with the class-based clustering uses fewer runs and shorter
computation times to obtain efficient solutions.

Our interviews with industry experts confirmed the ongoing
problem of inflow and outflow imbalances in wafer fabs with
an AMHS. The problem arose when some stockers filled
empty FOUPs using material handling devices such as manual
carts, and the bays connected with the stockers requested
more outflows than the inflows to the AMHS. Imbalances also
occurred when vehicles could not access an area if a material
handling device became inoperable.

We suggest the following topics for future research. One:
A full investigation of intra-bay imbalance problems between
inflows and outflows in semiconductor wafer fabs with an
AMHS. Two: A surrogate model-based simulation optimiza-
tion for layout problems with complex constraints in a fab’s
AMHS. Three: An optimization of the number of classes and
clusters for future transportation demands based on histori-
cal vehicle operations and transportation demands. Four: An
assessment and integrated analysis of the impacts of vehicle
dwelling policies on various configurations of an AMHS and
its operational policies, i.e., dynamic vehicle routing and
initiating policies.

APPENDIX
A. The GA-Based Simulation Optimization

This section details the GA-based simulation optimization.
The GA randomly generates solutions for an initial population
and generates two offspring based on the best two solutions
via crossover and mutation operators, iteratively. We use the
two-point crossover operator, which randomly selects crossing
points and then exchanges the genes from the parents (See
Fig. 14). The mutation operator randomly determines all genes
in an individual. Fig. 15 shows the flowchart of the GA-based
simulation optimization.

B. Impacts of the Vehicle Dwelling Policies on the Loaded
Travel Time

Fig. 16 shows the loaded travel time over the vehicle
dwelling policies with the different numbers of vehicles.
The results indicated that the vehicle dwelling policies have
marginal impacts on the loaded travel time compared to the
waiting and empty travel times (See Fig. 10). The loaded
travel time has no statistical difference between the alternatives
under 210 vehicles. The GA |C| = 8 slightly outperforms
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alternatives in the loaded travel time under 190 vehicles.

Because the GA |C| = 8 shows the lowest vehicle utilization
rate (See Fig. 11), it mitigates vehicle congestion.
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