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Macroscopic quantum entanglement between an optomechanical cavity and a continuous
field in presence of non-Markovian noise
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Probing quantum entanglement with macroscopic objects allows us to test quantum mechanics in new regimes.
One way to realize such behavior is to couple a macroscopic mechanical oscillator to a continuous light field via
radiation pressure. In view of this, the system that is discussed comprises an optomechanical cavity driven by
a coherent optical field in the unresolved sideband regime where we assume Gaussian states and dynamics. We
develop a framework to quantify the amount of entanglement in the system numerically. Different from previous
work, we treat non-Markovian noise and take into account both the continuous optical field and the cavity mode.
We apply our framework to the case of the Advanced Laser Interferometer Gravitational-Wave Observatory and
discuss the parameter regimes where entanglement exists, even in the presence of quantum and classical noises.
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I. INTRODUCTION

Entanglement is one of the hallmarks of the “quantumness”
of physical systems. Ideally, it is possible for macroscopic
objects, massive and/or containing a high number of degrees
of freedom, to be entangled with each other. Yet in practice,
such macroscopic entanglement can be very delicate in the
presence of decoherence. It is an intriguing challenge to create
and verify macroscopic entanglement, which is often viewed
as expanding the limits of the quantum regime.

Optomechanical systems are promising candidates for
experimental demonstration of macroscopic entanglement,
partly due to their theoretical robustness against mechanical
decoherence imposed by coupling to a possibly highly pop-
ulated thermal bath [1]. They can also be used to engineer
the quantum state of the mechanical system [2], where the
entanglement is generated by the momentum exchange be-
tween the light reflecting from the mechanical oscillator—a
phenomenon known as radiation pressure. It is theoretically
well understood and broadly discussed in the literature [3—8];
see, for example, Refs. [1,9] for a review.
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Entanglement in optomechanical devices has been widely
studied, and there have been several successful experimental
realizations: stationary entanglement between simultaneous
light tones mediated by an optomechanical device [10,11],
generation of entanglement between spaced mechanical os-
cillators both in the micro and macro regime via radiation
pressure [12—15], and optomechanical entanglement between
the light field and the mechanical oscillator in a pulsed scheme
[16] are examples of such demonstrations. There also exist
many proposals in the literature to further study macroscopic
quantum phenomena in optomechanical systems [17-21] and
entanglement between coupled oscillators in the presence
of non-Markovian baths [22]. In this work, we consider
stationary optomechanical entanglement, where the system
parameters (e.g., the driving), and statistical behavior thereof,
are not changing over time. Schemes to verify stationary
optomechanical entanglement were proposed in [4,6,23-25],
whereas to the best of our knowledge an experimental demon-
stration has not been performed yet.

Our system consists of a single mechanical mode inter-
acting with an optical cavity mode and the quadratures of
the light field exiting the cavity. At any time ¢, we study
the bipartite entanglement that is present in the joint quan-
tum state between mechanical mode, optical mode, and the
light that has exited the system during ¢’ < ¢. See Fig. 1 of
Ref. [6], which includes a space-time diagram that illustrates
the configuration. In the regime where the dynamics are linear,
the state is Gaussian, and the noise processes are Markovian
(white), the open-system optomechanical dynamics is solv-
able analytically, and the state of the system can be known
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FIG. 1. Figurative representation of the two different partitions
that is used while testing for entanglement, which are partitioning by
tracing over (top row) and not tracing over (bottom row) the cavity.
Note that the system configuration is not changed, i.e., the cavity is
still present for both partitions.

exactly [3]. The white-noise model describes well devices
with high-frequency oscillators, where only thermal excita-
tions are expected, and in the limit of large bath temperature
where kgT > hw,,, T is the temperature of the bath and w,, is
the resonance frequency of the oscillator [26].

In this work, we extend the description to non-Markovian
Gaussian noise processes where analytical results are, to our
knowledge, not available, thus requiring numerical methods.
This approach is applicable whenever non-white-noise pro-
cesses, such as structural damping [27-30], are relevant. We
extend the methods developed in [6], incorporating a cav-
ity, and, more importantly, non-Markovian noise processes.
The technique consists in computing the minimal symplectic
eigenvalue of the partially transposed covariance matrix of the
system, constructed with numerical methods, which provides
a measure of appropriate bipartite entanglement.

We first investigate entanglement in a generalized setting,
considering a heavy suspended oscillator with a low mechan-
ical resonance frequency. This corresponds to the free-mass
limit, where the mechanical resonance frequency is much
smaller than the other characteristic frequencies of the sys-
tem. We work in this limit to study the general behavior
of heavy suspended oscillators affected by environmental
decoherence, however the algorithm does not require this
assumption. Subsequently, we stop working in the free-mass
limit and focus our attention on the Advanced Laser Interfer-
ometer Gravitational-Wave Observatory (aLIGO), [31] using
it as a case study. It has been recently shown that by inject-
ing squeezed vacuum, the detector’s quantum noise can in
principle surpass the free-mass standard quantum limit (SQL)
by 3 dB [32]. It is natural to ask whether this can already
imply that aLIGO has built quantum entanglement between

the mirrors and the light field. The answer to this question is
nontrivial. First, from [32], we see that the level of classical
noise is not yet below the SQL [33]. Second, the strict defini-
tion of entanglement we use here requires integrating over all
frequencies: it remains uncertain whether having noise below
the SQL within a certain finite frequency band automatically
leads to entanglement. Therefore, we parametrize alLIGO’s
noise curves to investigate regimes where entanglement, ac-
cording to its strict definition, exists.

This paper is organized as follows: In Sec. II, we introduce
the dynamics of the system and its equations of motion. In
Sec. III, we state our entanglement criterion and the covari-
ance matrix of the system for two partitions of interest. To
show the usefulness of our technique for systems with low me-
chanical resonance frequencies, we investigate entanglement
in a generalized setting in Sec. IV. In Sec. V, we give details
about alLIGO’s noise budget, and talk about how we model it
in our calculations. Finally, in Sec. VI, we investigate whether
there is entanglement between the mechanical oscillator and
the light field at aLIGO for the partitions of interest, given
different parametrizations of the classical noise curves.

II. SYSTEM DYNAMICS

Let us consider an optical cavity with a movable mirror,
driven by a laser with frequency wy close to one of the reso-
nant frequencies of the cavity, wy + A [34]. The quantity A is
often referred to as the detuning frequency of the cavity. For
such a system, the linearized Hamiltonian in the interaction
picture with the rotating-wave approximation (RWA) is given
by [35]

H = hw,B'B + hAATA — hGR(AT + A)
; FdQ fat
+ ihy/2y E[A Clwo + Q) — Ac' (wy + Q)]

©dQ
+ [ S0 @ + @in + ()
o0 2T
where B and B' are the annihilation and creation operators of
the mechanical mode (center-of-mass motion of the mirror),
X is the position of the center of mass of the mirror, w,, is the
mechanical resonance frequency, A and A" are the annihilation
and creation operators of the cavity mode, ¢(wy + 2) and
¢"(wo + Q) are the annihilation and creation operators of the
external vacuum light field at frequency wg + €2, G is the lin-
ear optomechanical coupling constant, and y is the decay rate
of the cavity mode. The position and momentum operators of
the mirror are related to the creation and annihilation operators
of the mechanical mode by

(2a)

b= ibtan B2 (2b)

Note that for the sake of convenience, we chose a displaced
frame where all operators have zero mean. The mode opera-
tors satisfy the canonical commutation relations,

~

[A, A" =[B,BT1=1. 3)

013175-2



MACROSCOPIC QUANTUM ENTANGLEMENT BETWEEN AN ...

PHYSICAL REVIEW RESEARCH 6, 013175 (2024)

aLIGO detectors are power- and signal-recycled Fabry-
Pérot Michelson interferometers, which contain a high
number of degrees of freedom. However, the core optome-
chanics can still be studied by the Hamiltonian given above;
this reduction manifests itself in the “scaling-law” relations
governing aLIGO’s sensitivity as parameters of the signal-
recycling cavity are modified [34]. From the scaling-law, the
coupling constant G is related to the parameters of the inter-

ferometer by
G— 2(1)0Pc ( 4)
V' hLc’

where L is the arm length of the interferometer (i.e., the cavity
length), P. is the power circulating inside the cavity, and c is
the speed of light in vacuum.

We can transform the Hamiltonian such that the cavity
mode (A, A") couples with the traveling wave at z = 0 (where
the pointwise cavity interface is located). We derive this
transformation in Appendix A. We use & and ? to label the
field right before entering and right after exiting the cavity,
respectively.

In this paper, we restrict ourselves to A = 0. In this reso-
nant case, the system is unconditionally stable and it reaches a
steady state, in which the Heisenberg equations can be solved
using Fourier transformation [36]. To write down and solve
the Heisenberg equations, instead of annihilation and creation
operators we use the Caves-Schumaker quadrature operators
[37,38]:

i(wy + Q) + i (wy — Q)

m(2) = 7 ; (52)
i it ewn —
0r(Q) = i(wy + Q)ﬁblt (o Q)’ (5b)

where 12;(52) = 11;(—S2). Quadratures 9;(2) and D,(2) are
defined from v(wg + ) and (wy — 2) in a similar fashion.
Their commutation relations are [39]

[ (), ()] = [01(Q), 22(R)] = 278(Q + Q), (6)

[;(), 4;(Q)] = [0;(R), 2,(Q)] =0 (6b)
for j = 1, 2. Then, in the time domain, we have
A 00 dQ ~ —iQt
itj(t) = [m EMJ(Q)E , (7a)
[ (1), B2 (t")] = i8(t — 1), (7b)
[ (1), 21 ()] = [8a(t), 2 ()] = O (7¢)

for j = 1,2. We similarly define quadrature operators A; ,
and B », in the time domain, with

A@) + AT @t) i _ Ao -4

A(t) = ; 8
1(t) 7 2(1) i ®)
and similarly for B, ,. We also have
[A1(£), A1 ()] = [Ax(t), A>(t)] = 0, ©
[A1(0), A ()] = i, (10)

and the same for B, ,. Note here that the commutators are for
same-time operators.

We include two classes of “classical” noises [39] in our
system: a force noise /i and a sensing noise 71y, originally
arising from a quantum treatment of the interaction of the
system with its environment. We label them as “classical”
noises because we assume that the details—and possible
quantum limit—of a microscopic model of these noises are
irrelevant (typically because they arise from thermal baths
in the high-temperature limit) unlike the noise arising from
vacuum fluctuations, ii;(2) and #,(£2). Force noise affects
the center-of-mass motion of the mechanical oscillator by
introducing fluctuations in its momentum. We also introduce a
velocity damping of the oscillator, with a damping rate y,,. ¥,
and np are associated with the heat bath(s) the mass is coupled
to, with the value of y,, and the spectrum of np related by
the fluctuation-dissipation theorem [40]. Sensing noise affects
how the position is measured by the light field. In our model
below it arises from fluctuations of the reflecting surface that
introduces noise in the cavity field.

In the Heisenberg picture, the dynamics are given by the
Langevin equations of motion. In the Fourier domain, they
are written as

—iQA, = —yA, + 2y, (11a)
—iQA;, = —yAy + 2y, + V2G(& + x),  (11b)
—iQ% = p/M, (11c)

—iQp = —Yup — M2 + V2hGA, + fip,  (11d)

0 = —2vA,, (11e)

by = iy — /2y As. (11£)

We refer to Egs. (11) as the Heisenberg equations for the rest
of the article. It is straightforward to solve them to obtain
(%, [3,141,2, D12) in terms of the input fields, (&2, fix, i),
referred to as the input-output relations of the system. More
specifically, quantum fluctuations in the ingoing quadra-
tures i1 »(€2) drive the system’s quantum noise [41]. From
Egs. (11e) and (11f), reading the outgoing field quadratures
are subject to noises in #; and i, giving rise to the shot noise
(SN) for that readout strategy [41]. On the other hand, from
Eq. (11a), we see that #; drives Ay, which in Eq. (11d) drives
the momentum of the test mass, which then shows up in the
position of the test mass via Eq. (11c), giving rise to quantum
radiation pressure noise (QRPN), also known as backaction
noise in the literature. In general, the power spectrum of the
SN is inversely proportional to circulating power in the cavity,
while that of the QRPN is proportional to circulating power.

III. ENTANGLEMENT CRITERIA AND PARTITIONS

The canonical commutation relations imply that V + %K
is positive—serr)ideﬁrlite, AwhereA V is the covarianci: rrlatrix
with Vij = ({Xl - <Xi),Xj - <X1>}>/2, and K,‘j = [Xi,Xj] is
the commutator matrix of the quadratures in the system. This
relation can be stated as

V+3K>0. (12)

Here for an N-partite system containing N harmonic oscilla-
tors, the matrices V and K are 2N-dimensional.
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To test for bipartite entanglement in a multimode system,
we use the positivity of the partial transpose (PPT) criterion,
which is necessary and sufficient to test for the separability
of one of the modes from the rest for Gaussian systems
[42—44]. To use the PPT criterion in this context, one obtains
the partial-transposed covariance matrix Vp, by reverting the
momentum of that one mode (which puts a minus sign on the
column and the row that contains the momentum in question)
[45]. The PPT criterion for separability is expressed as

Vo + 3K > 0 & Separability. (13)

The amount of entanglement is quantified by the logarith-
mic negativity, Ex [46]. For a Gaussian state of N modes, it is
defined as

N
Ex =) max{0, —log,(¥;)}, (14)

J=1

where 7, j =1, ..., N are the symplectic eigenvalues of the
partially transposed covariance matrix, Vp, which are given
by the absolute values of the eigenvalues of K“Vpl. For 1
versus N — 1 mode partitions, only one of the symplectic
eigenvalues of V; can have a magnitude smaller than 1 [47],
therefore there can be at most one negative eigenvalue of
Vo + %K We label the corresponding symplectic eigenvalue
as Umin-

Using the PPT criterion, we test for entanglement between
the mechanical oscillator and the optical field in two ways:
first, we construct the covariance matrix V with the mechan-
ical mode and the modes of the light field, essentially tracing
out the cavity mode. Here, we perform the partial transpose
operation with respect to the mechanical oscillator. Second,
we include the cavity mode in the covariance matrix while
still taking the partial transpose with respect to the mechanical
oscillator, which corresponds to measuring the entanglement
between the oscillator and the joint system of the cavity plus
external light field. The two ways of partitioning are depicted
in Fig. 1. The elements of the covariance matrix V for both
types of partitions, as well as the discretization of V, can be
found in Appendix D.

IV. ENTANGLEMENT IN THE PRESENCE
OF NON-MARKOVIAN NOISES

Due to the numerical nature of the algorithm, we can tackle
any noise spectral density associated with &;(2), #,(€2),
nir(S2), and 7ix (€2) using the PPT criterion defined in Eq. (13)
to determine whether entanglement is present for a given
partition. Conversely, this problem is analytically solvable
only for some simplified noise models to our knowledge, such
as assuming all the noise sources to have a white spectrum
[6,23].

To show the usefulness of the method, we investigate en-
tanglement in heavy suspended oscillators with relatively low
mechanical resonance frequencies. Examples of such systems
are aLIGO, KAGRA [48], and VIRGO [49], but also smaller
devices such as those in [50,51]. For such systems, the me-
chanical resonance frequency, w,,, is much smaller than the
other frequencies of the system, which is referred to as the
free-mass limit. In this setting, w,, essentially does not affect

the dynamics. Furthermore, in this limit where Q > w,,;, Y,
the tradeoff between shot noise and QRPN gives rise to the
SQL [52], given by

2h

SsoL(R2) = IYioeh

s)

In the context of suspended oscillators, 71 (£2) is the force
that gives rise to the suspension thermal noise, whereas 7iy ($2)
is an effective displacement that gives rise to coating thermal
noise. When thermal noise is due to the internal friction of
the suspension or the oscillator, the noise spectrum of 7y (€2)
and 7ix (2) decreases as 1/$2 above internal resonances, which
is referred to as structural damping [27,28,53]. Evidently,
structural damping gives rise to non-Markovian noises, and
the position-referred noise spectral densities of 71x(€2) and
ix (2) are given, in the free-mass limit, by

2h Q3

Sp(Q) = = _"E | 16

F(2) AE (16a)
2h 1

Sx(Q) = — , (16b)
M Qx|

where Qp and Qx are the frequencies where the respective
noise curves cross the SQL, given in Eq. (15). Accordingly,
they encode the strength of the noise processes nyg and ny,
relative to the SQL level. For 7ip(€2), the position-referred
spectrum is related to the noise spectral density, labeled as
Sip (2), with Sp(2) = S, (Q)/M2524, whereas for 71y (£2), the
position-referred spectrum Sy (€2) is also the noise spectral
density S, (€2) [54]. The incoming field quadratures #; have
uncorrelated white spectra given by Eq. (DS8), since we as-
sume the incoming field to be at vacuum state.

In the limit of a large cavity bandwidth, y > €, the cavity
can be eliminated adiabatically. Then, the equations of motion
in (11) are modified as

01(Q) = i (%), (17a)

0,(Q) = () + a(®R(Q) + Ax(R)),  (17b)
—iQP(RQ) = —YuP(Q) — Mw, ()

+ hafi () + i (), (17¢)

—iQX(Q) = p(Q)/M, (17d)

where o = Q,/M/h, and Q,; = 2G/h/My is the charac-
teristic interaction frequency. In the context of structural
damping, there is no velocity damping, Instead, the damping
arises from a complex spring constant associated with the
mechanical oscillator. Accordingly, Eq. (17b) is modified as

—iQPQ) = — Moy, (1 +i p(Q)E(RQ)
+ hait (2) + p (2), (18)

where ¢(2) is referred to as the loss angle. When structural
damping is present, ¢(€2) is constant for a large band of fre-
quencies and goes to zero as 2 — 0, however the dependence
of ¢(£2) to 2 depends on the properties of the material [27].
Numerically, we choose to model this with ¢(2) = ¢2/(2 +
Q.), so that ¢(2) ~ ¢ for Q > Q. and ¢(0) = 0 for some
cutoff frequency €2.. Then, 2. determines the noise power of
fir and 71y at O Hz.
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FIG. 2. Logarithmic negativity between the mechanical oscilla-
tor and the outgoing light field in the free mass limit as a function of
Qy /Qp for various ©,/Qp. We plot the results for Markovian and
non-Markovian force and sensing noise with dashed and plain lines,
respectively. Note that entanglement does not exist for Qx/Qp < 1
with Markovian and for Qx/Qr < 2.6 with non-Markovian noise
sources, for w,/(27) =1 Hz, y,,/(27) = 0.01 Hz, ¢ = 0.05, and
a cutoff frequency of Q./(27) = 0.05 Hz.

We fix w,,/(2w) = 1 Hz, Qr/(27) = 100 Hz, Q./(27) =
0.05 Hz, and ¢ = 0.05, and we vary Qy and £2,. Note that
the aim of these choices is to ensure that Qr > w,,, i.e., that
the free-mass limit is justified. This choice also implies the
large bath temperature limit where kg7 > hw,,, T being the
temperature of the bath. Furthermore, €2, > w,, ensures that
the measurement of the system performed by light is faster
than the dynamics of the system. Lastly, we perform the sim-
ulations by sampling the covariance matrix for 7 = 0.1 s, from
t = —0.1 to O s, where ¢ indicates the time (for the sampling
of the covariance matrix; see Appendix D). Hence, we cannot
resolve the very low frequency regime of €2.. Physically, this
corresponds to the finite detection frequency resolution that
renders the behavior of ¢ at the cutoff inaccessible. In this
sense, one might expect €2, to be irrelevant. However, we see
that it does affect the final characterization of entanglement,
due to its contribution to the total variance of the quadratures
of the mechanical oscillator.

After specifying the low-frequency behavior of ¢ with €,
the relevant parameters on which the presence of entangle-
ment depends are 2,, Qr, and Qy. Then, working in the
free-mass limit enables us to examine the general behavior
of suspended oscillators with low mechanical resonance fre-
quencies, classified by their coating materials and suspension
systems (i.e., the low-frequency behavior of ¢). Therefore, we
look for entanglement between the oscillator and the outgo-
ing light field by varying the ratio Qx/QF for various €,
in Fig. 2, and we plot the results with plain lines. We find
that for Q2./(27) = 0.05 Hz, entanglement does not exist for
Qx/QF < 2.6 for any value of Q,. For Qx/Qr 2 2.6, the
system is entangled for any (finite) €2,, and the entangle-
ment increases monotonously with increasing Q2x /2. This
implies the existence of “universal” entanglement, meaning
that whether the system is entangled or not is independent of
24, the interaction frequency (or, in other words, how fast the
system is measured by light). When the system is entangled,
the amount of entanglement increases when €2, is increased.

1 0—1 3 -
Quantum Vacuum

10—1 50
— — Seismic
N
T 10-17+ Suspension Thermal
~
= Coating Thermal
2 1071
o
b4
=) -21 L
= 10
=}
(9]

10-28F

1 0—25 L I L I

100 10 102 10° 104 10°

Frequency [Hz]

FIG. 3. aLIGO noise budget obtained from pygwinc. Only the
dominant classical noise sources are plotted, along with the quantum
noise. The total force noise in the system is the sum of the seismic
noise and the suspension thermal noise, which is effective at low
frequencies. The coating Brownian thermal noise is taken as the main
constituent of the sensing noise. As can be seen from the figure,
quantum noise dominates over the sensing noise by a large margin
at high frequencies.

We also note that the threshold for Qx /Q2F above which the
system is entangled depends on the low-frequency cutoff 2,
chosen in our model for the spectra of 71 and 71y . We saw that
the threshold is inversely proportional to the cutoff frequency.

To see the significance of non-Markovianity on the
results, we repeat the same procedure with a white
force and sensing noise. The noise spectra are given
by Su, (Q) = 2AMQ2, Sp(RQ) = 2iQ2/MQ*, and S, (Q) =
Sx () = 21i/MQ%. The results can again be found in Fig. 2,
plotted with dashed lines, where the system is not entangled
for any 2, when Qx/Qr < 1, whereas for Qx/Qr 2 1, en-
tanglement exists for all €2, and the amount of entanglement
increases with increasing €2,. Since we see this behavior for
both Markovian and non-Markovian noise, we prove that the
universality of the entangling-disentangling phase transition
is independent of the power spectral densities of the classical
noises, and that the power spectral densities only determine
the threshold above which we have entanglement for all 2, in
a manuscript that is currently in preparation.

V. NOISE MODEL OF aLIGO

The primary noise sources in aLIGO, other than the
quantum noise, are the following [31]: seismic noise and
suspension thermal noise are the main constituents of the force
noise, and mirror coating thermal noise constitutes the sens-
ing noise. The noise spectrum is dominated by seismic and
thermal noise at low frequencies (until 100 Hz), and quantum
noise at high frequencies, cf. Fig. 3. The interferometer noise
is stationary and Gaussian to very good approximation in the
absence of glitches (i.e., transient noise artifacts) [55].

Seismic noise occurs because of the ground motion at
the interferometer sites. This motion is ~10~° m/+/Hz at
10 Hz [56]. To provide isolation from this motion, the mirrors
are suspended from quadruple pendulums [57]. The primary
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components of thermal noise are suspension thermal noise and
coating Brownian noise. Suspension thermal noise occurs due
to loss in the fused silica fibers used in the final suspension
stage [31], whereas the coating Brownian noise (which is
classified as a sensing noise) occurs due to the mechanical
dissipation in the coatings [58]. Other types of sensing noise
comprise many noise sources that are dominant at high fre-
quencies, such as thermal fluctuations of the mirrors shape,
optical losses, or photodetection inefficiency [59]. The noise
budget of aLIGO can be found in Fig. 3.

Due to the classification above, we represent the sum of
the seismic and the suspension thermal noise with 71 (£2),
and the coating thermal noise with 7y (£2). We use the aLIGO
noise budgets as given by the Python Gravitational Wave In-
terferometer Noise Calculator library (pygwinc) [60] and we
model them with rational functions of Q2. The noise spectra
are modeled by

T
S}T,IGO(Q) — FOF

__wen (192)
(%O‘FZ)M +1

a\2
SIX;IGO(Q) = 1y, <w—> ay, + Tx,0x,, (19b)
X

where SHCO(Q) is the spectrum of the force noise, and
SHGO(Q) is the spectrum of the sensing noise. We model
SHGO(Q) to decay as Q7% instead of Q!¢ (which is the
expected behavior for quadruple suspension systems) since
it performs better at approximating the global behavior. The
power spectral densities are characterized by the time con-
stants Tr, Tx,, Tx, and cutoff frequencies wr, wy. The values
of these parameters can be found in Appendix B, Table I. af,,
ap, o, , and o, are dimensionless constants that will be used
to change the noise curves in Sec. VI. Their effect on the noise
curves can be seen in Fig. 4. If we set all of them to be unity,
we get our model of aLIGO noise curves.

Even though the parameters of aLIGO are well known, they
need to be recomputed since we are reducing the antisymmet-
ric mode of the interferometer to a single cavity. The relation
between the parameters of the antisymmetric mode and the
parameters of the reduced cavity have already been computed
[34], however we choose to work numerically and find the
parameters of the reduced cavity G, y, M, Y, @n, and L by
fitting alLIGO’s quantum noise spectrum found in pygwinc.
The modeled classical and quantum noise curves can be found
in Appendix C, Fig. 7. The fitted parameters can be found in
Appendix B, Table II.

VI. ENTANGLEMENT IN aLIGO

In aLIGO, the spectrum is dominated by force noise for low
frequencies and quantum noise for high frequencies, therefore
we expect the sensing noise not to affect the entanglement
significantly, which we observed with our numerics. Then, we
focus on the effect of the force noise on the entanglement and
use the parameters a5, and of, to modify the force noise spec-
trum, and set ay, = ax, = 1 throughout all of the following
subsections. We also introduce resonant modes to investigate
the system as accurately as possible. Intuitively, we expect the
entanglement to be destroyed in the presence of high classical
noise levels.

— 10710} ——
N
= o \
@ 10715+ \
I5)
Z.
=
§ 10—20 L \
’ N\
10-%5 ‘ ‘ ‘ ‘ |
1073 1072 107" 10° 10! 10?
Frequency [Hz]
aLIGO's Noise ap =10 ap,=1 == ap=10"15 ap,=20
— t!F1=1cYF2=1 = ap =1 ap2:20
107
— 10—22 L y
N s
T yd
= 1081
2 1072
g
s
& 10725+
-1 0—26 L L L
102 10° 10* 10° 106
Frequency [Hz]

aLIGO's Noise ax=lax,=10"2 == ax,=10% ax,=10"2

— axj=lax,=l = ax; =10 ay,=1

FIG. 4. Force (top row) and sensing noise (bottom row) spectra
parametrized by o, , @, oy, , and ay, . The effect of ap, is to rise and
lower the nominal noise strength below the cutoff frequency and oy,
shifts the cutoff frequency. Similarly, ay, shifts the cutoff frequency
where the sensing noise starts increasing as Q2, whereas ay, shifts
the nominal noise level.

A. Effect of force noise

First, we investigate the effect of the force noise spectrum
on entanglement and we calculate the logarithmic negativity
Ex as a function of ap, and ap, for both of the partitions
described in Sec. III. For all pairs o, and «p, here, we find
larger logarithmic negativity values when we do not trace
over the cavity. The results for the partition where we do not
trace over the cavity can be found in Fig. 5. The amount of
entanglement in the system diminishes when the force noise
increases: that is, towards the bottom-right of the plot where
af, increases (proportional to the dc noise power) and of,
decreases (inversely proportional to the noise bandwidth), cf.
Sec. V and Fig. 4. Our fit of aLIGO’s force noise level is
for ap, = ap, = 1, hence this plot is for a comparatively low
level of force noise. Further to the bottom-right, the numerics
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24:
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FIG. 5. The effect of the force noise spectrum on the logarithmic
negativity when we do not trace over the cavity. Note that the force
noise levels increase toward the bottom-right of the figure, and our
fit of aLIGO’s operation regime is for oy, = oy, = 1.

become unstable and do not converge due to the wide range of
orders of magnitude entering the calculation; see Appendix E
for a discussion of the numerical implementation. Therefore,
we cannot give a definite answer about optomechanical entan-
glement in aLIGO with our model yet.

Next, we look for entanglement in the absence of the
seismic noise, since it is the dominating contribution to the
force noise of the system. Not being subjected to seismic
noise is a realistic scenario for space-based gravitational-wave
interferometers, such as the Laser Interferometer Space An-
tenna (LISA) [61]. For aLIGO, in the absence of seismic
noise, suspension thermal noise dominates the spectrum for
low frequencies, which is modeled as

Ssr(82) = ——5——, (20)

(o) +1
similar to how the total force noise was modeled in Sec. V.
The parameters tst and wst can be found in Table 1. Without
changing the other parameters in the system, we find that we
can achieve negativities of 1.52 and 1.72 for the partitions
where we do and do not trace over the cavity respectively.
This means that, in the absence of seismic noise, alLIGO has
stationary optomechanical entanglement in its current operat-
ing regime.

B. Effect of low-frequency resonances

Both the classical and the quantum noise curves contain
many resonances, as can be seen from Fig. 3. The resonances
in the seismic and suspension thermal noise arise from the
displacement noises of the rigid-body resonant modes of the
four-stage suspension system [57]. These modes can be mod-
eled with a sum of Lorentzians multiplying the force noise
spectrum defined in Eq. (19). Then, the new formula defining

G'AAQQAAAA
A

A
A AAaa

A AAAAAAAAA

4F A

000 0 0o
9800 éoOoooooooooo

o A
o A,
o A
° A
° A

ot 000008860

O Cav. traced, no Lorent. O Cav. traced, with Lorent.

-2F A Cav. not traced, no Lorent. A Cav. not traced, with Lorent.

10'-19 10'-‘8 10'-17 10'-16 10'-‘5 10'-14 10'-13 10'-12

Q’Fl

FIG. 6. The effect of resonant modes on the logarithmic negativ-
ity, Ex, for both partitions. We see that the negativity reduces with
increasing o, or with the introduction of resonant modes. Note that
ap, = 1.

the spectrum of the force noise is given as

tFaFI

(sran) " +1

A2
x 1+Z i -] with@ >0,
~ (2 — Q,)* + (1)

(21a)
(21b)

SHQ) =

SR(Q) = SR(-Q),

where the sum is over the resonant modes. The parameters
Q,,, I'y,, and A,, are the mode frequencies, full widths at half-
maximum (FWHM), and the amplitudes of the Lorentzians,
respectively, and they are listed in Appendix B, Table III for
the modes with the biggest relative amplitudes.

We investigate the effect of the resonant modes on the
entanglement. In Fig. 6, with low force noise guaranteeing
well-behaved numerics and setting oy, = 1, we plot Ex for
noise curves with and without these modes (orange and gray,
respectively) and for both partitions (circles when the cavity is
traced out). We see explicitly here that there is more entangle-
ment in the partition where we do not trace over the cavity. For
low noise (low o, ), the negativity remains unchanged, hence
the resonant modes do not affect the entanglement signifi-
cantly in this regime. As the level of noise increases, resonant
modes cause the logarithmic negativity to decrease faster than
the negativities calculated without the resonant modes for
both partitions. The system becomes separable when resonant
modes are included for ar, &~ 107" and af ~ 10712 when
we do and do not trace over the cavity, respectively. It seems
reasonable to expect that entanglement will not emerge when
force noise becomes stronger. Hence, extrapolating o, — 1,
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this is evidence (but not a rigorous proof) that aLIGO in its
current operation regime (but without squeezed input) proba-
bly contains no optomechanical entanglement.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we developed a framework to determine and
quantify bipartite entanglement in an optomechanical system
in the non-sideband-resolved regime in the presence of non-
Markovian Gaussian noises. The main novelty of our work
is to enable the study of non-Markovian noise drives, which
are common in devices with low mechanical frequencies,
typically associated with large/macroscopic masses. Hence,
we focused on macroscopic entanglement and used a free
mass with structural damping and coating Brownian noise as
an initial example, and then aLIGO as a more detailed case
study. However, non-Markovian noise can also be found in op-
tomechanical systems with higher frequencies [29,30,62,63],
and our framework can be applied to them in the same
way. Besides improving the quality and accuracy of predic-
tions, modeling non-Markovian dynamics is rich in interesting
physics and possibly useful phenomena: for example, in
Ref. [63], they find that squashing/squeezing the mechanical
state is less demanding in the presence of structural damping
compared to Markovian viscous damping.

We tested for bipartite entanglement by looking at the sepa-
rability between the mechanical oscillator and (i) the outgoing
light field, and (ii) the joint system of the cavity and the
outgoing light field. For low levels of classical noise, we saw
that the latter partition is more entangled compared to the
former. However, for high levels of classical noise, we did
not see a significant advantage in using one partition over the
other.

In the low mechanical frequency regime, where the free-
mass limit approximation holds, we found that the presence of
entanglement is independent of the coherent optomechanical
interaction strength and depends only on the relative strength
of force and sensing noise. This result is similar to that already
found in [4] for white noise drive. Beyond the free-mass
limit approximation, by parametrizing the noise curves of
aLIGO, we were able to find a region of noise curves where
entanglement exists, and we showed that there is a tradeoff
between the overall noise level and the cutoff frequency. Due
to the high level of the current classical noise in aLIGO, we
were not able to reach a definite conclusion in terms of the
existence of entanglement in the system, even though it is
unlikely to have a significant amount of entanglement based
on our simulations. However, we saw that entanglement exists
if we assume a system without seismic noise, even when the
suspension thermal noise is still present. This is an important
result since it shows that classical noises, even at very low
frequencies, are able to demolish entanglement.

We also looked at how resonances in the noise curves of the
system affect the amount of entanglement, and we saw that
entanglement is more resistant (i.e., it disappears for higher
levels of classical noise) for the partition where we test for
the separability between the mechanical oscillator and the
joint system of the cavity and the outgoing light field. For
future work, we plan to develop better sampling strategies to
overcome numerical instabilities.
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APPENDIX A: TRANSFORMATION OF THE
OPTOMECHANICAL HAMILTONIAN

Strictly speaking, the Hamiltonian in Eq. (1) is written
in terms of Schrodinger operators. The symbol €2 in Eq. (1)
is used to label a spatial mode which has a reduced wave
number of €2/c and a free oscillation frequency of 2. More
specifically, wy + 2 is used to indicate a spatial mode whose
wave number is (wy + €2)/c, where c is the speed of light. We
can also write the same Hamiltonian in the spatial domain.
Following [35] and setting ¢ = 1, we define

R ©dQ, 192
¢(z) = 5w + 2)e™*, (AD)
oo 2T

which represents a spatial mode of the light field with wave
number Q2—or a temporal mode of the free light field with
frequency €2, since we assume no dispersion. The Hamilto-

nian can then be rewritten as
H = lw,B'B + hAATA — hGR(AT + A)
+ih/2y[ATe(z = 0) — Aét(z = 0)]

—ih / &'(2)0.¢(2) dz.

o]

(A2)

The only nonzero commutators for the creation and annihi-
lation operators, as well as the spatial modes of the light field
are

Mwo+ Q)] =278(2 — ), (A3a)
[6(z), &'@)=68Gz—12), (A3b)

where § is the Dirac delta distribution.

[E(wo + £2),

APPENDIX B: PARAMETER TABLES

This Appendix contains the tables with the numerical val-
ues of the parameters used in modeling the classical and
quantum noise curves, including the resonant modes. The
parameters were calculated by minimizing the mean-squared
error between the actual noise curves of aLIGO taken from
pygwinc and the theoretical models, characterized by the pa-
rameters of interest, sampled logarithmically in frequency.
Table I contains the parameters for the classical force and
sensing noise in alLIGO defined in Egs. (19), Table II contains
the parameters of aLIGO introduced in the optomechanical
Hamiltonian of Sec. II, and lastly, Table III contains the
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TABLE I. Classical noise model parameters.

TABLE III. Resonant mode parameters.

Parameter Symbol Value Units Parameter Symbol Value Units
Force noise time constant T 1.6 x 10720 S Mode frequency Q,, 2r x 0.441 rad/s
Force noise cutoff frequency wF 2w x 0.25 rad/s Q,, 2 % 0.995 rad/s
Sensing noise time constant 1 ¥, 1073 s Qs 27 x 1.98 rad/s
Sensing noise time constant 2 T, 10748 s Q, 27 x 2.37 rad/s
Sensing noise cutoff frequency wyx 27 x 10* rad/s Q,, 2w x 3.38 rad/s
Suspension thermal noise time ST 3.1 x 107% s Qy 27 x 3.81 rad/s
constant Q, 2w x 9.73 rad/s
Suspension thermal noise cutoff wst 27 x 1.9 x 10° rad/s Full width at half-maximum vy 27 x 1.92 x 1073 rad/s
frequency Fv, 27 x5.63x107%  rad/s
Fv; 27 x2.11 x 107°  rad/s
v, 27 x 1.44 x 10! rad/s
I'vs 2w x 1.45x 107*  rad/s
parameters of the resonant modes present in alLIGO’s noise Fve 27 x 1.65x 107 rad/s
curves, modeled with Eq. (21). Fv; 27 x 1.03x 107 rad/s
Amplitude Ay, 159 rad/s
A, 93.8 rad/s
APPENDIX C: NOISE MODEL Ay, 538 rad/s
Our model for the total classical and quantum noise in Ay, 235 rad/s
aLIGO is displayed in Fig. 7. Note that the coating Brownian Ay 353 rad/s
noise, which is the dominating classical noise source above Avg 274 rad/s
~10 Hz, is modeled in a piecewise manner: a white noise in Ay 78.0 rad/s
the 10-10° Hz band and a noise source increasing as Q2 for
frequencies larger than 10° Hz. Even though the sensing noise
in the 10-10° Hz band decreases as Q%8 in the power spectral ) 0 is(t —1')
density, we choose to model it with a frequency-independent K'= [—iS(r —1") 0 i| (D2)

white noise for simplified calculations. Our choice is justified
since the quantum noise dominates over the coating Brownian
noise in that region.

APPENDIX D: STRUCTURE OF THE COVARIANCE
MATRIX

The mirror and the cavity, at ¢t = 0, constitute two modes,
whereas there are an infinite number of modes in the outgoing
light field given by the quadratures 9,(¢), 0,(¢), t € (—00, 0).
In continuum coordinates, we can first write down the com-
mutator matrix,

KB
K= KA , DD
KU
with
0 i
A _ B _
K =K"= [—i 0}

TABLE II. aLLIGO parameters.
Parameter Symbol Value Units
Mechanical resonant frequency (o 27 x 0.9991  rad/s
Mirror mass M 9.446 kg
Cavity decay rate y 2w x 424.6  rad/s
Arm length L 3.995 km
Circulating power P, 322.7 kW
Laser wavelength A 1064 nm
Mechanical damping Vin 27 x 107 rad/s

Note that K" is a 2 x 2 block matrix, but each block is
infinite-dimensional, with columns and rows indexed by ¢ and
t’, respectively. The indices 7 and ¢’ each run through all neg-
ative real numbers, (—oo, 0]. To represent these covariance
matrices in a less ambiguous and more operational way, we
shall adopt an index notation, in which j, k, [, m are discrete
and run through 1 and 2, while # and ¢’ are continuous and run
through negative real numbers. We can then write

A : B : v . /
K =i€jk, K, = i€im, K,y = i€1m8( — ).

: (D3)

Note that for K” we have a two-dimensional row index (/, 1),
as well as a two-dimensional column index (i, "), to label
quadrature and arrival time.
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< 10716+ —— Total Classical Noise |

£ ]
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<
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10724
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FIG. 7. Modeled noise spectrum for aLIGO.
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The covariance matrix V of the system contains the steady-
state correlations between the mechanical mode at r = 0, the
cavity mode at t = 0, and the outgoing light field modes for
t < 0. It can be written as

VBB VBA VBU
00 ()
V=| VAB yad | yAv E[“;Q “//} (D4)
VUB VvA | 2L

Here each of A and B represent two dimensions, while v rep-
resents an infinite number of dimensions. For computational
purposes, we can group A and B together as Q, or

Qs = 0a234) = By, By, Ay, A).

Here we shall use upper-case Latin indices to run from 1 to 4
to label quadratures in the mechanical and cavity modes. We
can write

1 . . A *dQ
Vi = 540:0k + 0k 0s) = /0 57 500(@). (D)

(D5)

where the (one-sided) cross spectrum is defined via

Sxr()8(Q — Q) = 27 (X (Y (Q) + V(@)X (),
D7)

and they can be obtained from solutions to the Heisenberg
equations, as well as the spectra

Suu; (§2) = 6ij, (D8)

and the prescriptions we use for the spectra of S,, (€2) and
S, (€2). The uncorrelated white spectra between i and i, in
Eq. (D8) result from the ingoing light field being in its vacuum
state. We shall discuss the magnitude and frequency depen-
dence of S, (2) and S, (€2) in depth in the next Appendix.

For elements that involve v, we shall still use /¢ for column
indices and mt’ for row indices. We then have

1. L
Vo = §<Q1ffm(t’) + D (tH0y)

1 [T°dQ

— s ; Q i’ D
Z[w e 00, (§2)e (DY)

and

1
Vit = 5 (010 @") + 0001 ()

1 [t dQ it
- 5/ e Sy, (2)e =,
—00

Note that V2, = V'¢ .

In numerical computations, we will have to convert the
continuum of ¢, ¢t < 0 into a finite grid. This means we will
sample a finite duration 7 with a step size of Ar. We shall still
use lower-case Latin indices to run from 1 to 2, and upper-case
Latin indices to run from 1 to 4, while we use Greek indices,
for example, « =0,1,2,...,T/At =N — 1, to replace r.
We shall write

(D10)

KU

It ,mt

(D11)

v .
g Kla,ma’ = lElm(Saa/.

Note that a Kronecker 6 now replaces the Dirac §. For the
covariance matrix, we replace

v sy = VAL
2

J,mt’ J,ma’

(00w (te) + Du(ta)Qy),  (D12)

which are (4 x 2N)- and (2N x 4)-dimensional matrices
(with V2 ), and

At R R R
Vl;}};m’ e szfma/ = 7<vl(t0l)v171(t0(/) + Um(tot)vl(toc’»y
(D13)

which is a 2N x 2N)-dimensional matrix. For the discrete
sampling times, we have defined

to = —(a + 3)Ar, (D14)

where the additional %At provides a faster convergence in
numerics. The entire covariance matrix is then [(2N + 4) x
(2N + 4)]-dimensional.

Our particular convention of inserting At at various places
of the matrix is associated with our convention of discretizing
vectors. For a generic variable, in the continuum form, we can
always express it as

0
X:afAj+ﬁfBj+/ E(1)0;(t)dt
—0o0

0
=70+ [ g (D15)
—00
where we have used upper indices for vector components, and
we have grouped o/ and B/ into y”. The variance of X, which
is formally written as X*"VX, will then be

+ L oA A A ALK
X'vX =3V (Q;0k + Ok 0))Y

0
+ / Y Qs 0w () + Du(t)Qs)E™ (¢t

oo

1 0
+5 // ENA)(D1(1) 0 (1)) + D ()0 () E™ (¢ Yd 2t
(D16)

As we convert the integrals in Eq. (D16) into summations,
f will become X, while dt will become At¢. We shall take

é;.mrx — Sm(l‘a)\/A_l‘. (D17)

Together with Egs. (D12) and (D13), the fully discretized
version of Eq. (D16) will then be
X'VX =y VYK 4y V2 g 4 PV 8 K

J,mo
Il
+ S OtVlZl,)mﬁéjmﬂ‘

In this convention, the usual vector norm for the discretized
version of a function of time coincides with the L>-norm of
that function. It can also be checked that discretized matrices
in Egs. (D11)—-(D13), when contracted with vectors in this
convention, lead to the appropriate integrals. Note that if a
8(ty —t,) shows up in Eq. (D13), we will take Ar8(f, —
1) = 844, as in Eq. (D11).

Corresponding to the discussion at the end of Sec. III (also
shown in Fig. 1), here we consider entanglement between (i)
mass at ¢ = 0 and the outgoing light field that had emerged
during ¢ < 0, and (ii) mass and the joint system of the cavity
mode as well as light that had emerged during ¢ < 0. In case
(i), we simply throw away elements involving A in both K
and V, while in case (ii) we consider the full matrices. In both

(D18)

013175-10



MACROSCOPIC QUANTUM ENTANGLEMENT BETWEEN AN ...

PHYSICAL REVIEW RESEARCH 6, 013175 (2024)

cases, Vp is obtained by adding a minus sign to the column
involving B, and the row involving B,—but not the diagonal
element at which they intersect.

APPENDIX E: NUMERICAL IMPLEMENTATION
FOR ALIGO’s NOISE

In our simulations, we use dft = 0.25 ms and T = 0.1 s,
which corresponds to sampling the light field at 4000 Hz
and working with the outgoing field emitted from the cavity
betweent = —0.1 and 0 s. We achieve numerical convergence
with these parameters. To quantify the amount of entangle-
ment in the system, we use the logarithmic negativity defined
in Eq. (14). However, this is possible only for low levels
of classical noise. For high levels of classical noise, classi-
cal correlations dominate over quantum correlations, which
causes the cross-correlation values in the system to cover a
wide range of orders of magnitude, mostly due to the 14th
power of  in our force noise model Eq. (19). For aLIGO
parameters, the entries of the covariance matrix span about 20
orders of magnitudes, while we attempt to find a symplectic
eigenvalue of order 1—this is numerically an extremely chal-
lenging problem.

Numerical errors also arise because of time-binning with
an insufficient resolution. Thus, we lose precision on the
numerically determined covariance matrices. This affects the
smallest symplectic eigenvalue Dy, to the point that it cannot
be used to measure entanglement with the logarithmic nega-
tivity. Numerical imprecision can lead to covariance matrices
that do not satisfy Heisenberg uncertainty bound Eq. (12),
they thus do not correspond to a bona fide state and we call
them nonphysical. One way to get around this loss of precision
is to use the PPT criterion as a yes/no test only, renouncing
the magnitude information of ¥y,;,. The sampling frequency
during time binning should be higher than the Nyquist rate
of the system (i.e., twice the largest frequency in the system),
since the entries of the covariance matrix contain correlations
from all frequencies. In our system, the largest frequency
is the cavity decay rate y = 424 Hz. Therefore, we choose
dt < 1/(2 x 424) ~ 1.2 ms. However, as we decrease dt, we
are limited by computational resources, such as the RAM
size, or time. The parameter dt is limited to an optimal range
determined by this tradeoff. We thus develop the following
strategy: we first quantify the amount of numerical errors in
the system by computing the most negative eigenvalue (if it
exists) of V 4 %K before and after the partial transpose op-
eration, denoted as Ag and A, respectively. Then, we decide
that entanglement exists if Ag > 0 and Ay < 0, orif Ag < O
and |Ay| > |Ag|. Furthermore, we decide that the system is
separable if Ag > 0 and A > O.

Two case studies about this strategy can be found in Fig. 8,
where we fix T = 0.1 s, change dt, and examine how Ay
and Lg change by plotting Ax and Ag. We decide on en-
tanglement if Ag > 0 and Ay < 0, or Ag <0, Ay <0, and
[An| = 100|Ag|. Our criteria for convergence is a relative
change smaller than 5% for both Ay and Ag as we change dr.
In Fig. 8(a), we work with a low level of classical force noise
and set oo, = 1071, ap, = 151n Eq. (19). We see that A 5 and
Ag converge with Ax changing by 0.053%, 0.068%, and Ag

0 n 5060606 0606060
2
o 0O o o
> 0.1 O o o o o o
)
~ 5x10°t0 O ©O o0 |08
-0.2F
a OAAAA—O.OQDDUD
0403 0.2 0.1 0403 02 0.1
10 5 1 0.5 0.1
dt (ms)
N
o Cav. traced, Ag Cav. traced, Ay
A Cav. not traced, Ag O Cav. not traced, Ay
J
8
8 0.042¢ © °o o
L o
0.15 A N
> 0036t® o & c
= ot a
8 04 02 04
a 0
0.05F B g 2 2 o o
8 8 = B
10 5 1 0.5 0.1
dt (ms)
N
o Cav. traced, Ag Cav. traced, Ay
A Cav. not traced, Ag O Cav. not traced, Ay

J

FIG. 8. Ag and Ay for af, = 107" and ap, = 15 [top row, (a)];
ar, = 1078, ap, = 10, and ax, = 10° [bottom row, (b)]. We set T =
0.1 sand dt € [0.1, 10] ms. Note that dt decreases to the right of the
plots. In (a), entanglement exists for both partitions, and Lg(Ay) is
replotted in the inset on the left (right) for d¢ € [0.1, 0.5] ms. In (b),
the state is separable for both partitions, and Ag and A are replotted
in the inset for dr € [0.1, 0.5] ms.

changing by 4.9%, 0.77% before and after tracing over the
cavity, respectively, for dt = 0.1 ms. The system is entangled
for both partitions since Ag > 0 and Ay < 0. Furthermore,
Ag becomes positive and converges after dt ~ 1 ms, or a
sampling frequency of 1000 Hz, consistent with the discussion
above relating physicality to Nyquist rate of ~850 Hz. We also
see that A converges for similar values of dt from Fig. 8(a).

In Fig. 9, we plot the light-field section of the eigenvec-
tor associated with the (converged) minimal eigenvalue of
Vo + %K, for the partition where we do not trace over the
cavity and with ay = 1071, ap, = 15. It corresponds to a
temporal mode of the free electromagnetic field outside the
cavity. It is that particular mode associated with the (sole)
negative eigenvalue that is entangled with the joint system
mechanics plus cavity. The four curves correspond to the
real and imaginary parts of 9;(t) and 0,(¢). They have the
form of smooth decaying oscillations with the same frequency
and decay rate, but differing by a phase. This form of the
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FIG. 9. The real and imaginary parts of the eigenvector for the
negative eigenvalue of Vy, + 3K for ay = 107, ap, = 15, denoted
by e; and e,, which correspond to the first and second halves of
the entire eigenvector, respectively. The reason behind this slicing is
the block-matrix structure of the light-field sector of the covariance
matrix. Furthermore, since the light field modes are continuous in
time, e; and e, are also functions of time.

mode functions was predicted for a white force noise in [6],
which gives us confidence in the correctness of our study.
Also, exponentially decaying demodulation pulses were used
to demonstrate optomechanical entanglement [8,16] and pro-
posed for a demonstration in the stationary regime [23]. We
fit functions in the form of e " sin (w,¢ + @) to each curve,
which results in w,/(27) ~ 40 Hz, and y,/(27) ~ 25 Hz.

20+

10;

CL’F2

1078 1076 1074 1072

1

FIG. 10. Contour plot depicting the effect of the force noise spec-
trum on our numerical precision for both partitions. The force noise
levels increase toward the bottom-right of the figure. The black and
the red dashed lines separate the regions where numerics converge
from the regions where numerics fail for the partition where we
do and do not trace over the cavity, respectively. The region where
numerics converge for both partitions is marked in gray, whereas
numerics fail for both partitions toward the bottom right of the figure,
past the red dashed line, in the yellow region.
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FIG. 11. Examples of force noise spectra along the boundary
where we lose numerical precision (defined with |Ay| = 100|1g|)
for the partition where we do not trace over the cavity, plotted in
black. aLIGO noise curves are also plotted for comparison. The
black curves are parametrized with (from left to right) as, = 1 and
ap, = 200; af, = 107% and ap, = 14; a5, = 107'% and o, = 1; and
op = 107" and o, = 0.029.

In the frequency domain, exponentially decaying harmonic
oscillations are Lorentzians, centered at +w, and with a
bandwidth (FWHM) 2y,. In aLIGO’s noise budget (Fig. 3),
these Lorentzians are on the low-frequency side of the low-
noise band and their halfwidth at half-maximum to the left
crosses the quantum noise, where it is not yet dominated
by suspension thermal and seismic noises—although we saw
in Sec. VIA that the latter is probably the main mecha-
nism preventing optomechanical entanglement. We add that
Lorentzians are heavy-tail distributions, being a possible rea-
son why even lower frequency components matter.

In Fig. 8(b), we set o, = 1078, ap = 10, and oy, = 103,
causing the sensing noise to dominate over quantum noise
for frequencies in the 30-2000 Hz band. We again see that
Ay and Ag converge with Ay changing by 1.3%, 1.2%, and
Ag changing by 1.2%, 1.1% before and after tracing over
the cavity, respectively, for df = 0.1 ms. Since Ag and Ay
are positive for both partitions, we conclude that there is no
entanglement in the system for either partition. When we
increase the classical noise level, we see that convergence is
much harder to achieve. Furthermore, g and A 5 are negative,
and Ag ~ Ay for every value of dt regardless of when we do
or do not trace over the cavity. Therefore, we cannot conclude
that there is entanglement for either of the partitions. These
case studies show that we can use Ag as an indicator of
the “nonphysicality” of the covariance matrix V introduced
by finite-sampling and high levels of classical noise in the
system, and that the negativity of A is not enough to decide
on entanglement when we consider the numerics.

For our model of aLIGO’s non-Markovian noises,
Egs. (19), we study the numerical stability of broad noise
regimes, parametrized by the pair ar,, j = 1,2. We set ay; =
1, j =1, 2, since we saw that force noise had a greater impact
on numerical stability than sensing noise in our simulations
for aLIGO’s noise. In Fig. 10, we plot the boundary between
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noise regimes where the numerics converge and the computed
covariance matrices are physical (in gray) and those regimes
where the numerics fail (either at converging or at generat-
ing physical covariance matrices or both) with the available
computing resources (in yellow). As a matter of fact, in all the
operation regimes in the gray region where the numerics work,
the system is entangled. This means that our model predicts
optomechanical entanglement in aLIGO if its classical noise is
in this gray region. Recall that the current status of aLIGO cor-
responds to aF, = ox;, = 1, j = 1, 2, far to the bottom-right in
the undecidable yellow region.

If we follow the red dashed line in Fig. 10, we continuously
sample the force noise spectrum over the boundary where
our numerics converge, and the system is entangled, for the
partition where we do not trace over the cavity. This boundary
corresponds to a lower limit of the maximum amount of classi-
cal noise allowed in the system in order to have entanglement.
We plot some of these noise curves in Fig. 11. Note that if we
set ap, or oy, to be unity, the corresponding pairs of «r,, ap,
situated on this boundary would be oy, = 1 and o, > 200, or
forap, = 1land af < 10719, The corresponding noise curves
are also plotted in Fig. 11.
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