A Gentle Introduction to ReSTIR
Path Reuse in Real-Time

Chris Wyman Markus Kettunen Dagqi Lin
Benedikt Bitterli Cem Yuksel Wojciech Jarosz
Pawel Kozlowski Giovanni De Francesco

March 4, 2024

More information: https://intro-to-restir.cwyman.org

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

SIGGRAPH ’23 Courses, August 6-10, 2023, Los Angeles, CA, USA
© 2023 Copyright is held by the owner/author(s).

ACM ISBN 979-8-4007-0145-0/23/08.

https:/ /doi.org/10.1145/3587423.3595511

https://intro-to-restir.cwyman.org
https://doi.org/10.1145/3587423.3595511

Abstract

In recent years, reservoir-based spatiotemporal importance resampling
(ReSTIR) algorithms appeared out of nowhere to take parts of the real-time
rendering community by storm, with sample reuse speeding direct lighting
from millions of dynamic lights [1], diffuse multi-bounce lighting [2],
participating media [3], and even complex global illumination paths [4].
Highly optimized variants (e.g. [5]) can give 100X efficiency improvement
over traditional ray- and path-tracing methods; this is key to achieve 30
or 60 Hz framerates. In production engines, tracing even one ray or path
per pixel may only be feasible on the highest-end systems, so maximizing
image quality per sample is vital.

ReSTIR builds on the math in Talbot et al.’s [6] resampled importance
sampling (RIS), which previously was not widely used or taught, leaving
many practitioners missing key intuitions and theoretical grounding. A firm
grounding is vital, as seemingly obvious "optimizations" arising during
ReSTIR engine integration can silently introduce conditional probabilities
and dependencies that, left ignored, add uncontrollable bias to the results.

In this course, we plan to:

1. Provide concrete motivation and intuition for why ReSTIR works,
where it applies, what assumptions it makes, and the limitations of
today’s theory and implementations;

2. Gently develop the theory, targeting attendees with basic Monte Carlo
sampling experience but without prior knowledge of resampling
algorithms (e.g., Talbot et al. [6]);

3. Give explicit algorithmic samples and pseudocode, pointing out
easily-encountered pitfalls when implementing ReSTIR;

4. Discuss actual game integrations, highlighting the gotchas, chal-
lenges, and corner cases we encountered along the way, and high-
lighting ReSTIR’s practical benefits.

Course Format & Prerequisites

This is 3 hr course of intermediate difficulty level.

We assume attendees understand basic ray tracing and calculus. We hope
attendees will have seen the rendering equation, Monte Carlo integra-
tion, importance sampling, and related statistics, but we will provide a
brief review of these concepts as we gently introduce the mathematics of
resampling and ReSTIR.

Target Audience

This course targets students, researchers, and rendering engineers inter-
ested in the efficiency gains resampling promises for real-time rendering
but have not read or closely followed recent papers, have difficulty gaining
intuition for the mathematics of resampling, have questions about corner
cases, desire to hear about the challenges and benefits of integrating ReSTIR

[1]: Bitterli et al. (2020), ‘Spatiotemporal
Reservoir Resampling for Real-Time Ray
Tracing with Dynamic Direct Lighting’
[2]: Ouyang et al. (2021), ‘ReSTIR GI: Path
Resampling for Real-Time Path Tracing’
[3]: Lin et al. (2021), ‘Fast Volume Render-
ing with Spatiotemporal Reservoir Resam-
pling’

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

[5]: Wyman et al. (2021), ‘Rearchitecting
Spatiotemporal Resampling for Produc-
tion’

[6]: Talbot et al. (2005), ‘Importance Re-
sampling for Global Illumination’

[6]: Talbot et al. (2005), ‘Importance Re-
sampling for Global Illumination’

in production renderers, or wonder what open problems remain that may
motivate future research.

Our technical content starts by reviewing basic Monte Carlo integration,
but we will not spend significant time on this review. Our audience should
have at least passing familiarity with traditional Monte Carlo integration
and importance sampling, e.g., from a graduate computer graphics or
image synthesis course.

Why a SIGGRAPH Course in 2023?

After our first ReSTIR paper [1], the algorithm looked very compelling
but we felt our knowledge of its full abilities and constraints was limited.
With subsequent papers expanding our knowledge [2-5, 7, 8] and our
experience taking the research to shipping products [9-11], we now feel
confident we can present a usable, understandable, and theoretically sound
introduction.

Contemporaneous to our work, we have seen a large uptick in ReSTIR
Twitter discussions, blog posts on deciphering our theory [12-14], vir-
tual graphics meetups to learn ReSTIR, slides from graduate graphics
courses [15], indie and R&D game developer experiments [16, 17], publi-
cations from other labs [18-23], plugins for modelling packages [24, 25],
and student final project implementations floating around on the web, in
addition to the usual smattering of e-mail queries asking for more details.

This variety and quantity of interest suggests a coherent, gentle introduction
to resampling theory would be welcomed by the rendering community,
help accelerate further research and adoption, and reduce independently
duplicated stumbles on the more common pitfalls encountered when using
ReSTIR.

Course Syllabus (3 hours)

Topic Speaker

5min Welcome and introduction Wyman
15 min Motivation; why consider ReSTIR? Yuksel
20 min Resampled importance sampling (RIS) Kettunen
15 min RIS and direct lighting Bitterli
15 min Spatiotemporal sample reuse and MIS Bitterli
15 min Reusing samples between domains Kettunen
20 min Extending sample reuse to paths Lin
15 min Making ReSTIR fast: sampler optimization Lin
15 min Making ReSTIR fast: low-level optimization Wyman
25min ReSTIR integration in Cyberpunk 2077 Kozlowski &
De Francesco

10 min Open problems and future directions All
10 min Audience Q & A All

[1]: Bitterli et al. (2020), ‘Spatiotemporal
Reservoir Resampling for Real-Time Ray
Tracing with Dynamic Direct Lighting’

[2]: Ouyang et al. (2021), ‘ReSTIR GI: Path
Resampling for Real-Time Path Tracing’
[3]: Lin et al. (2021), ‘Fast Volume Render-
ing with Spatiotemporal Reservoir Resam-
pling’

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

[5]: Wyman et al. (2021), ‘Rearchitecting
Spatiotemporal Resampling for Produc-
tion’

[7]: Bitterli (2022), ‘Correlations and Reuse
for Fast and Accurate Physically Based
Light Transport’

[8]: Boksansky et al. (2021), ‘Rendering
Many Lights with Grid-Based Reservoirs’

[9]: NVIDIA (2021), NVIDIA® RTX Direct
Illumination

[10]: Battaglia (2021), Sword and Fairy 7 is
the cutting-edge PC exclusive nobody’s talking
about

[11]: Burnes (2022), Portal with RTX Out
Now: A Breathtaking Reimagining Of Valve's
Classic With Full Ray Tracing & DLSS 3

[12]: Cao (2022), Understanding The Math
Behind ReSTIR DI

[13]: Guertault (2022), Reading list on Re-
STIR

[14]: Sachdeva (2021), Spatiotemporal Reser-
voir Resampling (ReSTIR) - Theory and Basic
Implementation

[15]: Bikker (2023), Lecture 14 - “TAA &
ReSTIR”

[16]: Stachowiak (2022), Global Illumination
in ‘kajiya’ Renderer

[17]: Zyanide (2023), Shared Twitter results
for Jedi Outcast integration

[18]: Badke (2021), ‘Next event estimation
via reservoir-based spatio-temporal im-
portance resampling’

[19]: Ciklabakkal et al. (2022), ‘Single-Pass
Stratified Importance Resampling’

[20]: Boissé (2021), “World-Space Spa-
tiotemporal Reservoir Reuse for Ray-
Traced Global Illumination’

[21]: Hermans (2022), “The Effectiveness
of the ReSTIR Technique When Ray Trac-
ing a Voxel World’

[22]: Liuetal. (2023), ‘Light Subpath Reser-
voir for Interactive Ray-Traced Global Il-
lumination’

[23]: Ogaki (2021), “Vectorized Reservoir
Sampling’

[24]: Krake (2021), hdRstr: A
ReSTIR/RTXDI-based ~ Hydra Render
Delegate

[25]: Krake (2022),
ReSTIR/RTXDI-based

der Engine

bIRstr: A
Blender Ren-

https://twitter.com/twominutepapers/status/1532063615842656256
https://twitter.com/h3r2tic/status/1523586889416318978
https://twitter.com/lisyarus/status/1580590085489430530
https://twitter.com/iquilezles/status/1580477701466382337
https://twitter.com/diharaw94/status/1583986428005842944
https://twitter.com/Pjbomb2/status/1622400029561606144
https://twitter.com/GraphicsMeetup/status/1613410256385880065
https://twitter.com/GraphicsMeetup/status/1616705848235143169
https://github.com/TheSmokeyGuys/Volume-ReSTIR-Vulkan
https://github.com/lukedan/ReSTIR-Vulkan
https://github.com/HummaWhite/ReSTIR
https://nicholasmoon.github.io/projects.html

About the Contributors

All authors discussed and will help prepare course directions, ideas,
schedule, and notes. But due to other obligations, not all will actually
present at SIGGRAPH. Please see the proposed schedule for details.

Chris Wyman (Organizer) is a Distinguished Research Scientist at NVIDIA,
in Redmond, WA, overseeing and participating in research improving sam-
ple reuse, including helping transfer knowledge to (internal and external)
product groups looking to accelerate their renderers. He has spoken in,
co-authored, or organized six different SIGGRAPH courses and was an
Associate Professor at the University of Iowa for 10 years. Chris has a PhD
from the University of Utah and a BS from the University of Minnesota.

Markus Kettunen (Speaker) is a Senior Research Scientist at NVIDIA,
in Helsinki, and has been vital in evolving the statistical theory behind
resampling to remain robust and unbiased even when borrowing samples
from different integration domains. Before joining NVIDIA as a postdoc,
he received a PhD from Aalto University, a MSc from the University of
Helsinki, and has experience working on Weta’s Manuka renderer and
developing graphics solutions for the automotive industry.

Daqi Lin (Speaker) is a Research Scientist at NVIDIA, in Redmond, WA. As
a graduate student, he led development and implementation of complex
path resampling in volumetric media and for complex non-diffuse paths.
At NVIDIA he helped make this code faster and more robust, and is
continuing to evolve ReSTIR to better reduce variance and correlations for
more complex path types. He has a PhD from the University of Utah and a
BS from the National University of Singapore.

Benedikt Bitterli (Speaker) is a Senior Research Scientist at NVIDIA, in
Redmond, WA, where he has been investigating a variety of rendering
problems including sampling, new material models, and applications of
deep learning in real-time rendering. He led the research for the first
ReSTIR paper targeting direct lighting for dynamic many-light scenes. He
has a PhD from Dartmouth College, a BS and MSc from ETH Zurich, and
has both research and production experience from Disney Research and
Walt Disney Animation Studios.

Cem Yuksel (Speaker) is an Associate Professor at the University of Utah in
Salt Lake City, UT, a Senior Scientist at Roblox Research, and the Founder
of Cyber Radiance LLC. His research covers numerous areas in computer
graphics, from hardware to physically-based simulations to geometry and
modeling to sampling and rendering. He has co-authored and organized
two prior SIGGRAPH courses. Before joining the University of Utah, he
did a postdoc at Cornell University and has a PhD from Texas A&M
University.

Wojciech Jarosz (Co-Author) is an Associate Professor at Dartmouth College,
where he co-founded the Visual Computing Lab. Before joining Dartmouth,
he was a Senior Research Scientist in charge of rendering at Disney Research
Zurich and an adjunct lecturer at ETH Zurich. He has a PhD and MS

from UC San Diego and a BS from the University of Illinois at Urbana-
Champaign.

Pawel Kozlowski (Speaker) is a Principal Developer Technology Engineer
in the Developer and Performance Technology group at NVIDIA with over
10 years of experience in computer graphics. He focuses on integrating
path tracing into the current game engines, which spans the domains of
sampling and denoising algorithms, and delivering the best GPU perfor-
mance possible to gamers on the GeForce platform. Unconventionally, he
developed his interest in real-time graphics while pursuing his Ph.D. in
medical imaging at GE Healthcare and the University of Oslo, Norway,
where he worked with volume rendering for 3D cardiac ultrasound.

Giovanni De Francesco (Speaker) is a Senior Lighting Technical Artist at
CD Projekt Red where he strives for world-class aesthetics in games. He
designs and tests tools for the lighting team, ensuring best practices even
when using cutting edge rendering techniques. Before joining CD Projekt
Red, he worked at inVRsion on lighting in VR, Clay Milano on commercials,
in addition to lighting roles elsewhere.

Contents

Abstract
Course format & Prerequisites
Why a SIGGRAPH Coursein 20237

Course Syllabus
About the Contributors
Contents
1 Introduction
11 Motivationfor ReSTIR
2 Preliminaries
21 Monte Carlointegration
2.2 Supports
2.3 Multiple Importance Sampling
2.4 Unbiased Contribution Weights
3 Resampled Importance Sampling
3.1 Resampled Importance Sampling
32 MISweights
3.3 Example: resampled importance sampling (RIS) between
BSDFand NEE
3.4 Inputs with unknown probability density functions (PDFs)
4 ReSTIR: Spatiotemporal Reservoir Resampling
41 Weighted Reservoir Sampling
4.2 Spatiotemporalreuse
4.3 Example: ReSTIR for direct illumination
44 Historylength
45 Advancedtopics
5 Reusing Between Domains
51 Preliminaries o
511 Shiftmappings.
5.1.2 Jacobian determinants
5.2 Reusing samples between domains
53 MiISbetweendomains, ..
6 ReSTIR Path Tracing

6.1 Thepathintegral
6.2 RISwithapathtracer
6.3 Reusepathsamples
6.4 Whatis a good shift mapping?
6.5 Common shift mappings
6.6 An efficient shift mapping for real-time rendering
6.7 Volumerendering

ii
ii
iii

N O G N

[e)

12

13
13

15
15
16
17
19
20

22
22
22
23
23
24

7 Making reservoir-based spatiotemporal importance resampling

(ReSTIR) fast
7.1 Sampler optimization

711 Neighbor rejection as approximate “MIS weights” .

71.2 Contribution MIS weights
71.3 Pairwise MIS weights . .

714 Biased multiple importance sampling (MIS) Weights

7.2 Low-level optimization

721 Sample tilingin ReSTIRDI
7.2.2 Lighting with many analytic light types.

7.2.3 Accelerating hybrid shift
8 Experiences in game integration
9 Advice for getting started
Bibliography
List of Abbreviations

Symbols

47

48

50

53

54

Introduction

Real-time path tracing targeting movie-quality results is a challenging goal.
Real-time renderers are often limited to 16 ms per frame on one graphics
processing unit (GPU), not hours or days on a render farm, as in many
offline renderers. In a real-time context, maximizing efficiency is the primary
goal, and this goal encourages cross-reuse of information between different
pixels and across frames. ReSTIR [1], the iterated application of RIS [6],
allows unbiased sample reuse from a large number of frames by repeatedly
aggregating multiple neighbor samples into one sample of higher quality.

A common question from experienced practitioners asks, “how can you
even ensure neighboring samples are relevant to your current pixel?” This
is a perceptive question. And the answer is, “very, very carefully.” In fact,
accounting for sample supports and domains is the key challenge with
ReSTIR (e.g., see Section 3.2).

But with a bit of thought, it is not very surprising that sample reuse works.
After all, modern denoisers [26, 27] and upsamplers reuse and filter colors
across pixels. That, too, can be seen as sample reuse between integrands
with varying domains. Usually post-process denoisers entirely ignore the
support issue, which is why they often reduce energy (among other kinds
of bias).

The enormous advantage of RIS and ReSTIR is they (largely) filter, resam-
ple, and reuse samples before throwing any information away. This allows
constructing unbiased algorithms as we have access to intermediate proba-
bilities, distributions, and samples; post-process denoising can only access
colors plus a few explicit guide buffers (usually from the G-buffer [28]).

Hence, one way to understand ReSTIR is: a filtering technique for sampling
distributions—aggregating multiple samples into one with a better PDF.
If blending colors in a denoiser improves image quality, maybe we could
reduce noise by filtering our PDFs?

In fact, path guiding techniques [29] have shown filtering PDFs can help:
they learn sample distributions by fitting PDF families to old samples.
ReSTIR streamlines this by skipping the learning—the PDF improves
by repeated weighted reuse of existing samples from other pixels and
frames.

In any case, the fact ReSTIR works should not be surprising; it resembles
many prior, widely used sampling techniques. One of its key contributions
is allowing lazy, streaming, GPU-accelerated variants of these algorithms
using weighted reservoir sampling [30].

1.1 Motivation for ReSTIR 2

[1]: Bitterli et al. (2020), ‘Spatiotemporal
Reservoir Resampling for Real-Time Ray
Tracing with Dynamic Direct Lighting’

[6]: Talbot et al. (2005), ‘Importance Re-
sampling for Global Illumination’

[26]: Schied et al. (2017), ‘Spatiotemporal
Variance-Guided Filtering’

[27]: Schied et al. (2018), ‘Gradient Esti-
mation for Real-Time Adaptive Temporal
Filtering’

[28]: Saito et al. (1990), ‘Comprehensible
Rendering of 3-D Shapes’

[29]: Vorba et al. (2019), ‘Path Guiding in
Production’

[30]: Chao (1982), ‘A General Purpose Un-
equal Probability Sampling Plan’

1.1 Motivation for ReSTIR

We assume that the reader is familiar with the path integral formulation
of light transport [31]: the incident radiance to a pixel is given by the total
over all possible paths from all emitters to the sensor:

Ii=./£)hi(x)f(x)dx, (1.1)

where Q) contains all paths of all lengths, /; is the image filter for the pixel,
f is the measurement contribution function, and dx is the product-area
measure.

With a box filter assumption (generalizing to more complex filters is
straightforward), we can define a per-pixel domain €); that only includes
paths that pass through the pixel,

I = ‘/Qi f(x)dx . 1.2)

Path tracers utilize this by randomly sampling paths X from the camera
to the scene, letting the paths bounce at interactions, and contributing the
radiance f(X) carried by the path, divided by its sampling probability
density p(X), giving a Monte Carlo estimator for I;:

_ X

(Ii) = o x) I;.

(1.3)

This estimate (I;) is unbiased, i.e., correct on average (in terms of signed
error), but noisy. The more the PDF p deviates from f, the noisier (I;)
becomes. A perfect match, where p ~ f, gives no noise, i.e., a zero-variance
estimate.

This noise can also be decreased by averaging more samples as

L1 & fXp
(Iiy = ﬁ;} (%) (1.4)

but averaging quickly becomes inefficient. Each halving of noise magnitude
requires four times the samples. Whenever possible, it is better to make
the density p more closely match f. But, this is the fundamental challenge
of light transport: predicting the paths that carry a lot of light is hard, so
matching p to f is hard.

This leads to ReSTIR’s key premise: while nearby pixels clearly see some-
what different light paths, similar paths still tend to be important for
neighbors. Hence, a good path for pixel a2, when reused for pixel b with
minor modifications, tends to be useful for pixel b. This allows improving
pixel b’s estimate by reusing good samples from pixel a.

But, how do we know what paths are good? Good paths carry radiance,
i.e., have large f. But we cannot arbitrarily choose to reuse some paths

1 Introduction 2

[31]: Veach (1997), ‘Robust Monte Carlo
Methods for Light Transport Simulation”

more without relying on solid mathematical theory, or we will introduce
bias. Besides, our goal is producing samples with probability density
proportional to f. We do not aim to just produce the high-contribution
samples.

This is where resampled importance sampling (RIS) helps [6]. Given a
sequence of inputs (Xj, ..., Xp), RIS calculates weights w; for all inputs
and chooses one sample proportionally to the w;’s such that this selected
sample’s probability density is (usually) closer to f. RIS aggregates many
samples into one sample that is better-distributed. Simplifying a bit, this
is why RIS is useful: RIS is an aggregation machine. It takes a number of
candidate samples as inputs, and aggregates them into one sample with a
better p, decreasing noise.

While this one output sample is not better than all inputs combined,
aggregration has a clear advantage: the output is just one sample, not M
samples. Processing just one sample is generally cheaper than processing
M samples, and this cost difference increases drastically if we chain RIS, i.e.,
resample from RIS-aggregated samples. Assume a RIS resampling from M,
samples, that each aggregate M; samples from the prior frame. The output
is an aggregation of M; X M, samples, while it costs less than M; + M,
samples, as borrowing samples tends to be cheaper than generating new
ones and the M; part was already paid for in the previous frame.

Imagine RIS aggregation iteratively over frames. Every frame, take a new
sample for each pixel. Then, combine this new sample with aggregated
samples from the previous frame plus samples borrowed from neighboring
pixels. While the RIS results are at best as good as combining the individual
inputs, imagine if we could aggregate (for instance) 1920 x 1080 x 10
samples for each pixel, but at roughly the cost of one sample each frame. While
such massive aggregation may not be possible in practice, iterated RIS
(also known as ReSTIR), often improves image quality equivalent to using
hundreds of independent samples per pixel, but at minimal cost.

1 Introduction 3

[6]: Talbot et al. (2005), ‘Importance Re-
sampling for Global Illumination’

Preliminaries

Before we go into the details of RIS and ReSTIR, we will briefly cover some
preliminaries. Readers already familiar with random variables, supports,
and Monte Carlo integration may want to skip to 3.

2.1 Monte Carlo integration

Monte Carlo (MC) integration is a technique for numerically approximating
integrals. Given an integral of the form

I= Lf(x)dx , (2.1)

which may be intractable to compute in closed form, Monte Carlo integra-
tion approximates I using M randomly-selected samples Xj, ..., Xp. The
function f is evaluated only M times, once for each of these samples.

Notation: We use capital letters X to refer to random variables, in contrast to
traditional variables x in Equation 2.1. This will be important when writing
equations that include both random and traditional variables, making the
math more readable and the potential issues easier to spot.

When using a uniform distribution for selecting random samples X1, . . ., Xj1,
we can write the Monte Carlo (MC) estimator as

1 M
I~ (D) = Q] 37 >3 f(X0) (22)
i=1

Thus, the MC estimator in this case is a simple average of f(X;) values
computed at M sample values, scaled by the size of the integration domain
|Q|. Here, (I} is an estimator of I. It is itself a random variable, which
implies that its exact value may not necessarily match the integral. However,
provided that the random samples X; cover the entire integration domain
Q, (I) will have the correct expected value: E[(I)] = I. In other words, it will
return the correct answer on average. Moreover, this estimator is consistent,
meaning that as M goes to infinity, (I) converges to I.

It is often advantageous to use a non-uniform distribution of random
samples, such that each sample X is associated with a probability of
selecting it. The probability density of a continuous random variable X is
given by its probability density function (PDF), often denoted p, as p(X).
With a non-uniform distribution, we can no longer use a simple average
and expect to get the correct result. Instead, we must weigh the function
evaluations based on their chance of being sampled: locations that have a
lower chance of being sampled should get a higher weight to ensure that

2.1 Monte Carlo integration. . . 4
22Supports 5
2.3 Multiple Importance Sam-
pling 6
2.4 Unbiased Contribution
Weights 7

Definition 2.1.1 (Uniform distribution)
In a uniform distribution, every possible
sample value has an equal probability (den-
sity).

Definition 2.1.2 (Convergence in prob-
ability) Estimator (I) converges in prob-
ability if, regardless of threshold &, the
probability that |{I) — I| > e approaches
zero for large M.

E[(I)] = I. This leads to a more general form of MC estimator

M .
= I

LPACON 23
M pi(X;) @3)

i=1

where the contribution of each sample X; is divided by its probability
density! p;(X;). Notice that the probability density function p; can be
different for each sample. Though it is commonplace to use the same
PDF for all samples, combining samples with different PDFs is a crucial
component of ReSTIR.

Typically, as M increases, (I) becomes more likely to be close to I. Yet, it is
also possible to use M = 1, such that

_f®
p(X)

One might expect this to be a highly inaccurate estimator, but, in fact, its
accuracy depends on the PDF and how it relates to f. For example, if
f(x)/p(x) is a constant value for all x € , such a p is considered a perfect
PDF? and a single sample is sufficient to perfectly estimate I. Yet, defining a
perfect PDF is typically impractical, because it requires knowing the value
of I ahead of integration®. The goal of ReSTIR is to bring the effective PDF
as close as possible to the perfect PDF, such that a small number of samples
(such as a single sample) can provide a good MC estimator.

I (2.4)

We measure the quality /accuracy of an MC estimator by its variance*, which
is the expected (squared) difference of a particular estimation (I) from the
expected value E[(I)]. The lower the variance, the better the accuracy of
the MC estimator, which means less noise. Two common approaches for
reducing the variance are increasing the sample count M and improving
the PDF by making p a better representative of f (times a constant scale
factor). ReSTIR provides a mechanism for the latter approach.

Deviation of the expected value E[(I)] from [is called bias; an algorithm
without bias is called unbiased. The MC estimator described above is
unbiased under relatively mild conditions we explain below, but breaking
the conditions can introduce bias.

2.2 Supports

A function’s support is simply a fancy name for the part where it is nonzero.

For example, the support of the path contribution function f is all paths

that carry radiance to the camera. The support of max(1 — |x|,0) is (-1, 1).

We denote the support of a function f by supp(f).

A random variable’s support is the values it can take. A uniform random
variable X from 0 to 1 has support supp(X) = [0,1]. A discrete random
variable’s support is the values it can take with a positive probability. A
continuous random variable’s support is the values it can take with a
positive probability density.

2 Preliminaries 5

1: The uniform distribution corresponds
to a constant PDF of p;(X;)=1/|Q|,
which reduces Equation 2.3 to Equa-
tion 2.2.

2: A perfect PDF p(x) would differ from
f(x) by a constant scale factor.

3: With a perfect PDF, f(x)/p(x) = I for
allx € Q.

4: MC estimator variance can be written

as Var (1)) = E[((1) - E[D1) 1.

Definition 2.2.1 (Function support)

The support of function f, supp(f), is
the set of all x where f(x) # 0.

Definition 2.2.2 (Variable support) The
support of random variable X, supp(X),
is the set of all values that X can take.

The connection between the two concepts with the same name is that if
X has PDF p, then supp(X) = supp(p), and similarly for discrete random
variables and probabilities.

MC integration requires only one condition for unbiasedness: The support
of X must contain the support of f, i.e., supp(f) C supp(X); we say X
“covers” f for short. It is easy to see why:

£(x)
E = . dx = dx. .
EL(D)] /supp(x) [pdy /supp<x>f(") @5

MC integration only occurs over the support of X, and any values of f that
lie outside of it will be ignored. Traditionally, this requirement is written
as p(x) > 0if f(x) > 0; although it is generally well-known, it rarely poses
an issue in practice and does not usually factor into algorithm design.

However, ReSTIR-derived techniques differ from the norm and easily
run afoul of this requirement. Because ReSTIR mixes samples from many
distributions (neighboring or past pixels, etc.) that do not necessarily cover
the integrand, we need to take extra care to ensure unbiasedness. We
will point these issues out throughout this course, and it is an important
issue to keep in mind when designing and implementing ReSTIR-based
techniques.

2.3 Multiple Importance Sampling

MIS [32] is a way of efficiently combining samples from multiple random
variables. Consider the naive MC estimator in Equation 2.3. There are
two big problems with it: not every random variable is equally good at
sampling f everywhere, but in Equation 2.3 we add their variances, giving
us the worst of all worlds. Simultaneously, we may end up with bias if any
of the random variables do not cover f.

MIS solves both of these issues by performing a weighted combination
instead:

M (X))
Iy = ; mz(X,)—pi X (2.6)

where m;(X;) is the MIS weight of the ith random variable. In order for
Equation 2.6 to be unbiased, the MIS weights must satisfy two conditions:

» >, m;(x) =1 for any x within the support of f, and
» m;(x) =0if x ¢ supp(X;).
This ensures unbiased results when the union of all supp(X;) covers f.°

The simple average in Equation 2.3 corresponds to m; = 1/M and is only
unbiased if all X; cover f. Usually, a better choice is the balance heuristic

mi(x) = pit)

=5 2.7)

2 Preliminaries 6

Tip 2.1 It would be confusing to write

]
- [P(x) - </s.upp(x) f(X) a

overloading the same symbol x to
mean a specific random variable (x)
and an integration variable (x). It is
unclear which lowercase x refers to the
random variable; hence, our capitaliza-
tion convention:

f@] _
- [P(X) - [upp(X) f(X) v

[32]: Veach et al. (1995), ‘Optimally Com-
bining Sampling Techniques for Monte
Carlo Rendering’

5: In fact, the conditions guarantee the
union of all supp(X;) covers f.

which is an “optimal” weighting scheme in a variance sense®.

2.4 Unbiased Contribution Weights

So far, we assumed that the PDF p(x) can be evaluated in closed form.

However, if generating a sample from X is a complicated process—such
as Woodcock tracking [34] or photon mapping [35]—evaluating p(X)
may be completely intractable. Luckily, we can still perform unbiased MC
integration as long as we know a random variable Wx whose expected value,
given X, matches the reciprocal PDF, E[Wx|X] = 1/p(X). Then we may use
the modified MC estimator”

(I)=f(X)-Wx with E[f(X) Wx]=E[f(X)/p(X)] =1 (2.8)

It is very surprising that there should be simple formulas allowing such
Wx to be evaluated even when p(X) cannot! Yet, multiple instances of this
exist in graphics [36, 37] and many more in other fields.

Samples produced with RIS also fall into this category: p(X) is completely
intractable (a high-dimensional integral, dimensionality growing at each
resampling!) but a corresponding Wy exists, with a very cheap formula [1,
6]. In the context of RIS, we term Wy an unbiased contribution weight [4],
and it is key to generalized reuse across domains, as we will soon see.

2 Preliminaries 7

6: That is, if the m; are assumed positive.
Negative weights can do even better [33].

[34]: Woodcock et al. (1965), ‘“Techniques
Used in the GEM Code for Monte Carlo
Neutronics Calculations in Reactors and
Other Systems of Complex Geometry’

[35]: Jensen (1996), ‘Global Illumination
Using Photon Maps’

7: With the assumption that X covers f.

[36]: Qin et al. (2015), “Unbiased Photon
Gathering for Light Transport Simulation’
[37]: Zeltner et al. (2020), ‘Specular
Manifold Sampling for Rendering High-
Frequency Caustics and Glints’

[1]: Bitterli et al. (2020), ‘Spatiotemporal
Reservoir Resampling for Real-Time Ray
Tracing with Dynamic Direct Lighting’
[6]: Talbot et al. (2005), ‘Importance Re-
sampling for Global Illumination”

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

Resampled Importance Sampling

The effectiveness of importance sampling depends on the PDF used for
generating the samples. However, we often do not have an explicit formula-
tion for the ideal PDF and, even when we do, it may be difficult/impossible
to generate random samples with the exact PDF we want.

Resampled importance sampling (RIS) provides a solution for these prob-
lems. It takes as input a sequence of candidate samples (X, ..., Xp), gives
each candidate a resampling weight w;, picks one of the X; at random,
proportionally to the weights w;, and outputs the selected sample. This
process is equivalent to generating samples with a PDF that can be different
than the one used for generating the candidate samples. We can control
the resulting PDF based on how we assign the resampling weights.

Candidates are continuous random variables, and the output is a con-
tinuous random variable—hence, despite the discrete selection, RIS can
be compared to path guiding: it is given random variables (“samples”),
and it outputs a continuous random variable with a different distribution.
In contrast to traditional path guiding, however, RIS does not learn a
distribution based on existing samples, but reuses one (or more) of them at
random, effectively aggregating multiple samples into one with a better
probability density, sometimes compared to filtering the distributions. Simi-
lar to path guiding, the output is a continuous random variable with an
improved distribution, a PDF p that matches f better and thus produces
less variance.

But of course, there is a catch.

The PDF of the sample produced by RIS is typically intractable and cannot
be evaluated in real-time. Evaluating the PDF is at least as hard as shading
the pixel. So why do RIS and ReSTIR work? Why do we talk about them, if
the PDFs cannot be evaluated? Didn’'t Monte Carlo integration require the
p so that we can evaluate f(x)/p(x)?

Let’s think—what’s the role of 1/p(X) in the f(X)/p(X) estimator? It's a
weight for the sample f(X). Is this weight needed? Yes, absolutely. Does the
weight need to be a PDF? Not exactly. What? Well, you see, RIS provides
the sample X a weight, which we denote Wx. This weight produces an
unbiased contribution f(X)Wx that estimates the integral of f. Weights
are needed, but they need not be PDFs.

This Wy replaces the weight 1/p(X), but a single sample X can have many
different valid Wy, depending on which candidate samples (X, ..., Xum)
were used to select X. In other words, Wy is not a deterministic function of
X.Itis a random variable. These weights Wy replace the 1/p(X) factor, and
they are ubiquitous in RIS and ReSTIR theory. Hence, we should give them
a name. What could be a name for a weight that produces an unbiased
contribution? How about unbiased contribution weight?

The original exposition of resampled importance sampling [6], as well as

3.1 Resampled Importance

Sampling 9
3.2MISweights 12
3.3 Example: RIS between BSDF

andNEE............. 13

3.4 Inputs with unknown PDFs 13

Definition 3.0.1 (Unbiased Contribu-
tion Weight) An unbiased contribution
weight Wy is a random variable such that
regardless of f:

E[F(X)Wy] = /Q) dx.

Tip 3.1 We write Wy instead of W (X):
this is not a function since it cannot be
evaluated at arbitrary X. Do not use in
MIS weights!

[6]: Talbot et al. (2005), ‘Importance Re-
sampling for Global Illumination”

3 Resampled Importance Sampling | 9

early ReSTIR papers (before the generalized theory [4]), used formulas
1 M
M le wl) ’

to choose the result X from the X; proportionally to resampling weights
w;. Above, p(x) is the target function that the PDF of X approximates better
and better with more and more candidates. The unbiased contribution weight
for the chosen X is Wy, and it replaces 1/p(X). Even though the PDF is
intractable, it certainly exists and, if everything is done according to the
theory, converges to being proportional to p when we add more samples.

_PXi) _ 1
vy M T

(3.1)

We follow the generalized formulation [4] that moves the 1/M factor into
the resampling weights w;. This is equivalent, but gives simpler math and
algorithms. As we will see, the job of the 1/M is a resampling MIS weight. It
is not there to average of the w; weights, as suggested by Equation 3.1. The
exposition of RIS that we lay out is thus more akin to

_ 1 pXi)

1
W = L
M p(X;)

M
5 24

i=1

and Wy = (3.2)

where the 1/M weight will later turn into a resampling MIS weight m;,
and the variance of the sum Zf\i w; now has an intimate connection to
convergence: when the variance of Z?ﬁl w; approaches zero [4], the output
PDF approaches the target PDF, p = p/ / p. The contribution weight Wy
also approaches 1/p(X). Choosing f = f turns RIS into a zero-variance
estimator in the limit, producing samples proportionally to f.

The target function p is also sometimes (inaccurately) called the target PDF,
but this misnomer should be avoided; p is an unnormalized function, often
just the integrand, p = f, or at least close to it. The p however defines the
target PDF p; with more and more candidate samples, p approaches p.

3.1 Resampled Importance Sampling

We define resampled importance sampling by the following process:
1. Take candidates (X3, ..., X)) in a common domain Q.

2. Evaluate resampling MIS weights m;(X;) for all X;.

3. Evaluate resampling weights w; = m;(X;) p(X;)Wx, for all X;.

4. Choose X randomly from the X; proportionally to w;.

5. Evaluate the unbiased contribution weight Wx = ﬁ Z].Ail w;j.

This process gives us a sample X drawn from a PDF that is approximately
proportional to the target function p; increasingly so with more candidate
samples. While X is one sample, it in a sense represents many; this repre-
sentation is encoded into its improved PDF, and reflected in the unbiased
contribution weight Wy, as the PDF cannot in practice be evaluated. The
returned sample X can be at best as good for integration as the candidates

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

Tip 3.2 Factor ﬁ cancels out in

wi
M
=1

Pr [choose i] =

Tip 3.3 The sum Zf\il w; estimates p’s
normalization: By Equation 3.2,

M

Z w; = ﬁ(X)WX

i=1

and with Definition 3.0.1,

M
S
i=1

E

= E[p(X)Wy] = /Q p(x)dr.

Domain: (intuitively) where an object
“lives”: real numbers live in R, path
vertices live on the scene surfaces. A
generic domain is often denoted Q.

m;(X;): the resampling MIS weight of X;.
If all X; are identically distributed, use
m; =1 / M.

Wx;: unbiased contribution weight

of X;. If X; has a known PDF p(X;), use
|

Wx; = p(Xi)

Pr[choose i] = —r

=1 7j
Treat Wx as 1/p(X) but note it is
an unbiased estimate, not a function of X.

1

g G R W N

10
11
12

13
14
15
16

17

18

3 Resampled Importance Sampling | 10

Algorithm 1: Resampled importance sampling.

Input :M: number of candidates to generate.
Output:Sample Y and its unbiased contribution weight Wy

function randomIndex(w1, ..., wp) // Choose s proportionally to the w;
r « rand()
fors «— 1to M do
if ws > 0 then
P T —ws /3 w;
if r < 0 then
L return s

return ()

function ResampledImportanceSampling(M)
// Generate candidates (Xi,...,Xpm)
fori < 1to M do
L generate X;
w; « mi(X;) p(X;)Wx,

// Select Y from the candidates
Y, Wy «< 0,0

s « randomIndex(w1, ..., wps)
if s # 0 then

Y « Xg
Wyhﬁzz‘wi

return Y, Wy

X1, ..., Xm combined (with the resampling MIS weights ;). The unbiased
contribution weight Wx works as the unknown 1/p(X) in Monte Carlo
integration. In fact, on average! Wy is 1/p(X).

To use the returned X, we must know what values it may take, i.e., its
support. This support is the union of the input supports, with x where
p(x) = 0 removed?. To integrate f using X, the target function p must be
positive whenever f is non-zero, and the inputs must together cover the
support of f.If p(x) = 0, x is never selected by RIS. To avoid biasing our
estimate, we must be able to select samples across all of f’s support.

Given such a support, this allows unbiased integration without knowing
PDFs. Assuming the inputs together cover f’s support with positive p,
then so does the output, and the estimator

(I) = F(X)Wx (3.4)

is an unbiased estimate of the integral of f:>
E[(I)] = '/Qf(x)dx =1 (3.6)
We show pseudo-code of basic RIS in Algorithm 1.

No samples produced? If all w; are zero and no sample can be chosen,
return a null sample, 0, with Wy = 0. As usual, do not replace the null

1: Formally, as conditional expectation,

1
E[Wx|X] = Tl 3.3)

2: Since most MIS weights have m; > 0
when p > 0, implying w; > 0, supp(X)
contains all x with p(x) > 0 that can
be generated by some of the inputs:

supp(X) = (ile supp(Xl-)) N supp(p).

3: The general form is (see Equation 2.8)

E[F()Wy] = /

f(x)dx, (35)
supp(X)

which again shows supp(X) must cover
supp(f).

3 Resampled Importance Sampling | 11

sample by immediately drawing another, as that causes bias—it is what

it is.* If passing a random variable with null sample realization to RIS,

include it in other samples” MIS weights as usual: a null sample realization
does not invalidate the distribution.

Example 3.1.1 (Simple integration) Let us first study a simple case with
independent and identically distributed (iid) samples (X, . .., Xpr) with
known PDF p that covers f,and p > 0in f’s support. Since we know the
input PDFs, we set Wx, = 1/p(X;), and since the samples are identically
distributed, we use constant MIS weights®: n;(x) = 1/ M.

We then evaluate the resampling weights
w; = mi(X;) p(Xi)Wx,

_ 1 pX)
M p(X;)’

and choose index s proportionally to the w;. We then set X = X and
evaluate

1 M
Wy = o S w.
. P(X)]Z:;‘ /

Since the support of X now covers f, (I) = f(X)Wx is an unbiased
estimate of the integral of f, i.e.,

ELFCOWx = |).

In this example, we took M iid candidates, selected one of them, and
integrated f with the result. This can be done, but if all we did was
integrate, simply averaging the M individual contributions would have
been just as good. But, we also got a sample X that aggregates the
others in its PDF. In the next example, we will use this to improve
direction-sampling in a path tracer.

Example 3.1.2 (BSDF importance sampling) Let us repeat the previous
steps, but forget about the function f. Our task is simply to provide a
sample with PDF approximately proportional to p. We repeat the above
steps: evaluate m;, w;, choose X and evaluate Wx. Assuming each input
sample covers j, we know that X covers exactly p’s support.

Let us then pretend the X; are directions, importance sampled with a
PDF p. Our p is, say, a cheaper proxy for the full BSDF f [6] with the same
support. We select one of the M candidates proportionally to the w;. This
results in a sample X with improved distribution, PDF approximately
proportional to the proxy p. We trace a ray in that direction and continue
path tracing. Our Monte Carlo estimator uses Wy in place of 1/p(X) for
the sampled direction.

This method of improving the sample distribution can sometimes be

4: Other than f(0) = p(0) = 0, the null
sample gets no special treatment.

5: The choice m;j(x) = ﬁ can only be
used if all samples individually cover
supp(f), which is the case here.

Could we use the chosen sample’s contri-
bution weight, Wy = Wx,? That would
lead to bias! The sampling process must
be respected.

Since Wx is an unbiased contribution
weight, Equation 2.5 says

E[F(X)Wx] = /

supp(X)

f(x)dx.

Since supp(X) covers supp(f), we have
the result.

[6]: Talbot et al. (2005), ‘Importance Re-
sampling for Global Illumination”

3 Resampled Importance Sampling | 12

useful with the right parameters, but a lot more can be done if we
allow mixing samples from different distributions, such as reusing from
different pixels or mixing BSDF-guided samples with light sampling.
Since the different samples cover different parts of the integration domain,
we need MIS weights.

3.2 MIS weights

While we began our introduction by talking about integrating a function f,
the direct purpose of RIS is to produce samples approximately proportion-
ally to p. It is only then that we worry about integration: if the union of the
candidates X; covers supp(p), and supp(p) covers supp(f), then X joined
with UCW Wy integrates f without bias.

Earlier, we emphasized that in RIS and ReSTIR, supports matter. If the
candidate samples have different PDFs, such as when we reuse across
pixels, or we resample from candidates generated with a light sampler
and candidates generated with a BSDF importance sampler, we need more
advanced MIS weights than 1/M.

If all inputs individually cover the support of the target function, 1/M
MIS weights are technically unbiased. They could still result in terrible
outliers in areas hard for even one of the inputs. If even one input has zero
PDF anywhere where p # 0, the 1/M weights result in a biased Wx.

When the input samples’ PDFs are known, we can replace the 1/M weights
with the balance heuristic [32], removing the bias:

pi(x) .
=, pi(x)

mi(x) = (3.7)

The balance heuristic evaluates the probability density of the given x in all
the input distributions. While the MIS weight cares about the distributions
of the other inputs, it does not care about their realized values. An imple-
mentation that includes the other realizations in a sample’s MIS weight is
most likely wrong.

The Achilles” heel of the balance heuristic is that it becomes expensive with
large sample counts: the MIS weight for each of the M samples requires
evaluating M PDFs, giving a O(M?) time complexity. This is not a problem
for small sample counts, but large sample counts may benefit from more
advanced MIS weights such as the pairwise MIS [4, 7] (see Section 7.1.3 for
more discussion).

With correctly-computed MIS weights, the supports of individual distribu-
tions no longer must all cover the support of p. Instead their union must
cover p. In practice, this can be tricky to guarantee unless we have at least
one candidate X; designed to directly target : a sample that covers all of
p’s support. We call such a sample canonical (Definition 3.2.1), understand-
ing that advanced contexts may add more requirements. This enforces
supp(X) = supp(p) for the RIS output, allowing unbiased integration
within the support of p.

Tip 3.4 Rule of thumb: Use 1/M
weights if and only if all inputs are
identically distributed.

[32]: Veach et al. (1995), ‘Optimally Com-
bining Sampling Techniques for Monte
Carlo Rendering’

Tip 3.5 A MIS weight is a function
of one x. A weight that mixes PDFs
or other functions at different input
realizations x; is most likely wrong.

Tip 3.6 Keep things simple during
implementation. Only replace the bal-
ance heuristic with an advanced vari-
ant once everything works and it is
time for performance!

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

[7]: Bitterli (2022), ‘Correlations and Reuse
for Fast and Accurate Physically Based
Light Transport’

Definition 3.2.1 (Canonical sample,
simple case) An input X; to RIS is called
canonical if it covers p (i.e., suppp C
supp X;).

3 Resampled Importance Sampling | 13

In other words, by including a canonical sample covering supp(f), or oth-
erwise covering supp(p) with the candidates, the RIS output X integrates
without bias any function within the support of p:

ELCOW = [frar,)

supp(p)

3.3 Example: RIS between BSDF and NEE

Assume we want to produce a sample for direct illumination that we can
reuse. We draw M candidates from a BSDF importance sampler with PDF
p1, and M, candidates from a light sampler with PDF p,. The PDFs must
be converted to the same measure.

The balance heuristic [32] for the BSDF samples is then

p1(x)
Mipi(x) + Mapa(x)

mi(x) = (3.9)

We evaluate the resampling weights

w; = mi(X;) p(Xi)Wx,

_ p1(Xi) IO
=\ v+ vmm)P X

and similarly for the light samples but using p, in the numerator in m;
and in the denominator in Wy,. We recommend initially using p = f, the
full path contribution, for ease of implementation, and only testing more
performant alternatives after validating everything works with p = f.

Next, we choose index s proportionally to the w;, set X = X;, and

1 Mi+M;

w]‘.

This unbiased contribution weight replaces the intractable 1/p(X) factor.
We now have a better-distributed sample X for direct illumination, covering
the full support of f, which is ready to share with other pixels.

Technically, using 1/(M; + M;) MIS weights does not result in bias,
since both PDFs cover all contributing direct illumination. However, the
noise level would be as if evaluating direct illumination with only BSDF
sampling—terrible. MIS weights in RIS are just as important as in traditional
Monte Carlo integration.

3.4 Inputs with unknown PDFs

As before, assume a sequence of inputs (Xy, ..., Xp) with varying dis-
tributions. Assume the inputs are sampled with RIS, and we only know
unbiased contribution weights Wx,, ..., Wx,,.

Tip 3.7 Area PDFs can be converted
to solid angle by multiplying by the
geometry term, and solid angle PDFs
to area PDFs by dividing by it.

Tip 3.8 Start simple during implemen-
tation. Use the full integrand f as p
and explicitly testand include visibility
terms. Only optimize for performance
once everything works!

Tip 3.9 Do you love difficult, very
frustrating debugging? Implement all
performance optimizations simultane-
ously, rather than starting with a base-
line implementation.

Tip 3.10 If p = f (the ideal case), the
contribution of one RIS sample X is

M
FEOWx = > mi(Xi) f(Xi)Wy,
=1

(3.10)
which does not depend on the cho-
sen candidate, and equals the Monte
Carlo estimate with the same candi-
dates. (When p is not proportional to
f, the estimate may have more noise.)

3 Resampled Importance Sampling | 14

We already know how to use RIS with unbiased contribution weights.
The challenge is the MIS weights: we cannot use anything that requires
knowing the PDFs.

Asinputsamples are generated with RIS, they are distributed approximately
proportionally to the target functions p; used for resampling; we assume
each input is associated with a target function p; that we will use as a proxy
for the unknown PDFs p;.

This results in the following, generalized balance heuristic [4]:

pi(x)
Z?ﬁl ﬁ](X)

mi(x) = (3.11)

At each iteration, we guarantee that the random variables’ supports exactly
match that of their target function®; this guarantees unbiasedness. We do
this by adding a canonical sample if the candidates X; would not otherwise
cover the target function p.

We form a canonical sample X, by RIS from one or more iid samples with
PDF covering supp(p). Multiple candidates are often recommended for a
good distribution, but a single candidate can be used as well.

With these MIS weights, we are well equipped for reusing samples be-
tween pixels and frames, but only within the same domain and without
modification at reuse.

Tip 3.11 Samples coming from RIS
have the same supports as their tar-
get functions, supp(p;) = supp(X;) =
supp(p;), and generally approximate
the target PDF better with more inputs,
especially after iterative resampling.

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

Tip 3.12 Since the f pi are not normal-
ized, this could distort MIS weights
if the f pi have significant variation
across pixels.

6: Le., p = 0exactly whenp =0.

Definition 3.4.1 (Canonical sample,
pi-MIS) An input X; to RIS is called
canonical if it uses p; = p and covers p
(i.e., supp p C supp X;).

Tip 3.13 A sample X; that does not
come from RIS can be used with p;-
based MIS weights, if X;

» is given a target function p;

» covers supp(p;)

» is replaced with a null sample
0 if p; = 0.

This guarantees supp(X;) = supp(p),
making p;-based MIS weights unbi-
ased, even if not always ideal.

Tip 3.14 MIS weights of null samples
always zero, m;(0) = 0.

ReSTIR: Spatiotemporal Reservoir
Resampling

The RIS algorithm is an effective way of improving the distribution of
samples. However, for complex target functions p and poorly distributed
initial candidates, the number M of candidates required for good sampling
might far exceed the computational budget. Spatiotemporal Reservoir
Resampling (ReSTIR) addresses this issue by chaining invocations of RIS
and reusing samples spatially and temporally. We begin this chapter by
introducing reservoir resampling, a practical improvement on RIS, before
describing spatiotemporal reuse.

4.1 Weighted Reservoir Sampling

In order to select the output sample, the RIS algorithm in Algorithm 1 needs
to generate and store all candidates! up-front before selecting the output
sample in a second pass. This can be a nuisance in practice, especially on
parallel systems such as GPUs.

Weighted reservoir sampling (WRS) [30] is a family of algorithms for
sampling one (or more) elements from a (weighted) stream of samples in
a single pass over the data without storing it, and is a perfect fit for RIS.
Weighted reservoir sampling (WRS) processes the elements of the input
stream in order, maintaining a reservoir of the currently selected sample. At
any point in the stream, WRS possibly replaces the sample in the reservoir
with the next sample in the stream. It does so with a with probability such
that the sample in the reservoir is drawn from the desired distribution over
all elements processed thus far. When the stream ends, the reservoir is
returned?.

WRS comes in many flavors and can be extended to maintain multiple
samples in the reservoir. We refer to Chao [30] and Bitterli et al. [1] for
details. We give pseudo-code of RIS implemented with WRS in Algorithm 2,
the combination of which we call reservoir resampling.

4.1 Weighted Reservoir Sam-

pling 15
4.2 Spatiotemporal reuse 16
4.3 Example: ReSTIR for direct

illumination 17
4.4 History length 19
4.5 Advanced topics 20

1: ReSTIR literature often also calls the
RIS inputs candidate samples. Both terms
are correct.

[30]: Chao (1982), ‘A General Purpose Un-
equal Probability Sampling Plan’

2: Evaluating MIS weights m;(X;) may
require knowing the distributions of the
other inputs, but not their realizations.

[1]: Bitterli et al. (2020), ‘Spatiotemporal

Reservoir Resampling for Real-Time Ray
Tracing with Dynamic Direct Lighting’

1
2
3
4
5
6
7

®

10
11
12
13

14
15

16

4 ReSTIR: Spatiotemporal Reservoir Resampling | 16

Algorithm 2: Reservoir Resampling.

class Reservoir
Y, Wy < 0,0
Wsum < 0
function update(X;, w;)
Wsum ¢~ Wsum t+ W;
if rand() < (w;/wWsym) then
L Y « X;

// The output sample
// The sum of weights

function Resample(M)

Reservoir r

fori < 1to M do
generate X;
w; — mi(X;) p(X;)Wx,
r.update(X;, w;)

if 7.Y # 0 then
L r.Wy «— W;’.wsum

return r

4.2 Spatiotemporal reuse

The idea of spatiotemporal reuse is simple: Say we render an image, and use
RIS at each pixel to produce a sample. We can only invest in M candidates
for each pixel, which limits the sample quality we can obtain. However, the
integrands (and target distributions) of pixels within a small neighborhood
are likely to be similar. Hence, for a given pixel, the samples produced by
RIS at its neighbors are great reuse candidates. This immediately inspires
spatial and temporal reuse, leading to the following reuse pattern:

Initial candidates We produce a sample, approximately distributed
proportionally to p by RIS, from one or more independent samples. If the
inputs have identical distributions, we may use m; = 1/M.

Spatial reuse After producing a new sample for each pixel with RIS, each
pixel identifies a set of spatial neighbors (e.g., picked randomly from a disk)
and invokes RIS again, resampling from its own sample and the sample
of each selected neighbor. This process can be repeated multiple times,
repeatedly improving the distributions, at the cost of increased correlation.
Since the distributions of the inputs vary, advanced MIS weights like the
generalized balance heuristic are required.

Temporal reuse Reuse can be extended in time as well. In an animation,
a pixel’s ideal distribution across two adjacent frames is often similar. This
allows combining samples of prior frames and the current frame using
RIS, after matching pixels with appropriate motion vectors. If temporal
reuse occurs each frame, samples feed forward through time indefinitely,
continually improving the sampling distribution. If temporal reuse is

Tip 4.1 Do not choose which spatial
neighbors to reuse based on the ran-
dom samples stored at these neighbors,
as this causes bias!

4 ReSTIR: Spatiotemporal Reservoir Resampling | 17

followed by spatial reuse, samples from prior frames can also spread
spatially, leading to very rapid spread of good samples. Temporal reuse
also requires advanced MIS weights; access to previous frames’ target
functions is required to remove all bias.

One natural order of these steps, per frame, is initial candidate genera-
tion followed by temporal reuse, followed by spatial reuse, followed by
integration with the selected sample as (I) = f(X)Wx.

4.3 Example: ReSTIR for direct illumination

Now, let’s apply RIS and ReSTIR to direct lighting.

Direct lighting encompasses the contributions of all length-3 paths, i.e.,
light paths that originate from a light source, are reflected off a surface
or particle, and directly reach the sensor. Indexing from the sensor, direct
illumination thus consists of paths [xo, X1, x2], where xp is on the image
plane, x; is the primary hit, and x; lies on a emissive light surface. See
Figure 4.1 for an illustration. Define the set of points on emissive surfaces
as A; then, x, € A.

Vertices xg and x; may be deterministic or depend on randomized lens
coordinates. Post-randomization, we treat their values as fixed, making x,
the only free variable. In this context, our paths are functions of only x,,
expressed in the tuple form:®

¥ =[x, x1,%2] . 4.1)

The remaining challenge is to integrate x, over the surface geometry. We
plan to improve the distribution of x; by spatiotemporal sharing between
pixels and frames. We treat xo and x; as constants, possibly randomized
independently for each pixel and frame.

Assuming we have chosen x¢ and x;, we still need to estimate L(x; — x)
to finish the pixel color estimate (Equation 1.2). We need to integrate

L — x0) = / £ — %1 —)Gl o x)V (1 © x2)Lelxz — x1) dxa,
A

(4.2)
where f; is the BSDF at x1, L, is the emission from x; in the Xpx7 direction,
G is the geometry term, and V is the visibility term. Treating xo and x; as
constants, the integrand is a function of only x;,

Lo —x) = [foa)d, 43)

The vertices xo and x; vary by pixel index i, giving us a pixel-dependent
integrands f; over the same space A. This defines our ReSTIR context: We
aim to improve the distribution of our direct illumination paths by sharing
vertices x, between pixels. To do so, we resample x, from one or more
independent canonical samples covering the current pixel, plus samples
borrowed from other pixels and frames.

Figure 4.1: An example direct lighting
path.

3: We gray xo and x; to emphasize the
path is now a function of only x;.

Tip 4.2 A canonical sample fully cov-
ers the support of the target function,
while samples reused from neighbors
might not, e.g., due to differences in
visibility.

4 ReSTIR: Spatiotemporal Reservoir Resampling | 18

In summary, our goal is to leverage resampling to cheaply generate or
borrow multiple candidate samples for x, such that it obtains an accurate
distribution that gives low integration variance.

Next, we outline how to perform the sampling. All resampling steps require
defining the target functions, so we start with it.

Target function To define the target function, we build on the integrand
in Equation 4.2. For simplicity of notation, we replace x, with x and treat
xp and x; as implicit constants. The integrand for direct illumination (with
unspecified pixel index) is f(x) = fs(x)G(x)V (x)L,(x), and we recommend
starting with the same target function, p = f:

p(x) = fs(x)G(x)V (x)Le(x). (4.4)

Talbot et al. [6] drops the visibility term from the target function p for
performance reasons, using p(x) = f;(x)G(x)L.(x). This worsens the theo-
retical limit distribution and requires guaranteeing additional conditions
to remain correct, but may lead to better efficiency in practice.

Initial candidates ReSTIR starts by generating canonical samples for each
pixel, e.g., with RIS from multiple canonical inputs. In the case of direct
lighting, we may pick some number M samples on emitting surfaces with
a standard light sampler, and pick one with RIS, with 1/M MIS weights.
We present alternatives in Section 4.5, but again recommend first finishing
the simplest possible correct base implementation.

After initial candidate generation, we perform spatial and temporal reuse.

This is relatively straightforward. We propose starting with the generalized
balance heuristic MIS weights, using target functions p;(x), depending on
pixel j’s sensor and primary vertices x; 0 and x;,1, and x in place of x,. The
MIS weights are then

pi(x)
mi(x) = —————. (4.5)
Z]‘Ail pj(x)
For example, with p = f, we have
mi(x) = fx = i = Xio) (4.6)

E]-Aﬁl flx = x1 > x0)

with f = £,- G-V - L.

Spatial reuse For spatial reuse, we recommend picking a suitable number
of pixels from the relative vicinity of the current pixel, e.g., a square or
a disk®. Looking at G-buffer values to heuristically choose similar pixels
should be fine, as long as the decisions are not based on the samples stored
in the reservoirs. Using 1/M weights generally leads to non-convergence
to p distribution, and, bias®.

Tip 4.3 We strongly recommend first
including visibility in your target func-
tion. Correcting an optimized method
is exponentially harder than retaining
correctness while optimizing.

[6]: Talbot et al. (2005), ‘Importance Re-
sampling for Global Illumination’

4: Section 7.1.1 discusses heuristics for in-
put pixel selection.

5: The bias from 1/M weights can be re-
moved with contribution MIS weights (see
Section 7.1.2).

4 ReSTIR: Spatiotemporal Reservoir Resampling | 19

Temporal reuse Effective temporal reuse requires careful tracking of
motion vectors, i.e., how pixels move between frames. For temporal reuse,
we do RIS between the current pixel and the motion-matched pixel in the
previous frame. Correctness again requires proper MIS weights, with the
potential challenge that the advanced MIS weights require evaluating last
frame’s p, which may require the ability to perform visibility queries in
the previous frame’s scene (and hence storing the previous frame’s ray
acceleration structure).

4.4 History length

The above method describes a basic version of ReSTIR for direct illumination.
However, it has certain, critical, inefficiencies. For example, the temporal
reuse assigns equal weights to the previous frame’s sample and the new
sample. This is not ideal, since it loses roughly 50% of the accumulated
history each frame. This can be fixed by weighted MIS, introducing so-called
confidence weights.

Confidence weights We give samples confidence weights, denoted here
¢j, and stored in the pixels” reservoirs. We use the c; for weighting the
samples in resampling,

cipi(x)

mi(x) = —PY
Y, cipj(x)

47)

The more we trust a random variable, the higher its confidence c; should
be. If one of the inputs corresponds to 7 independent samples of a kind,
while another corresponds to 2 similar samples, the confidences should
be 7 and 2, making MIS favor the more trustworthy sample. The notion
of corresponding to N samples is often known as effective sample count. But,
in RIS, we mix samples from different distributions, and effective sample
counts are hard to track. We approximate them by simply tracking the
number of total input samples the sample has aggregated over its history,
summing the confidence weights c; of all the inputs as the confidence of
the result.

When aggregating samples of confidences ¢; and ¢, with RIS, we set the
confidence to cq + ¢;. This is, in reality, an upper bound of the effective
sample count, but a more accurate estimate is hard to get, hence we
use the sum as the confidence. Over multiple frames, these confidences
would grow exponentially, each spatial reuse multiplying the confidences.
However, only a limited number of new samples are truly added to the
pool each frame. Summing confidences is a drastic overestimate and means
giving new samples exponentially decreasing relative weights, leading
to convergence to a wrong result if not tackled. In practice, the sample
confidence is capped® to a constant that defines the balance between noise
and correlation in the final image’. Capping the confidence weights is vital
to combat the correlations in ReSTIR [4].

Tip 4.4 We recommend implementing
and validating integration with only
candidate samples before implement-
ing spatial reuse, spatial reuse before
temporal reuse, and temporal reuse
first without motion. By validation we
mean that averaging a large number
of still frames converges to the path
tracing ground truth.

6: We commonly cap the sample confi-
dence to somewhere between 5-30. Start-
ing with a cap of 20 is usually good.

7. For historical reasons related to WRS,
the confidence weight in the reservoirs is
often stored with variable name M, and
confidence capping is called M-capping.
We adopt the convention of denoting con-
fidence by ¢ and its cap by ccap-

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

10
11
12
13
14
15

16
17

18
19

4 ReSTIR: Spatiotemporal Reservoir Resampling | 20

Algorithm 3: Resampling with Confidence Weights.

class Reservoir
Y, Wy «< 0,0 // The output sample
Weum <— 0 // The sum of weights
c—0 // Confidence weight of output
function update(X;, w;, ¢;)

Wsum <~ Wsum + W;j

c«—c+c; // Update the confidence.

if rand() < (w;/wsym) then

L Y « X;

function Resample(M)

Reservoir r

fori «— 1to M do
generate X;
wi — mi(X;) p(Xi)Wx,
r.update(X;, w;, ¢;)

if 7.Y # 0 then
L r Wy « Wr.wsum

r.c <= min(r.c, Ccap)
return r

A new independent sample is given confidence 1, and RIS-selecting one
from M new samples yields confidence M. Pixels entering the screen as the
camera moves (no temporal precedessor) get their M reset to 0, and it often

makes sense to reset M also when detecting occlusions or disocclusions.

Resetting confidence is allowed only if it can be done based on examining
(changes to) the G-buffer; resets depending on sample details leads to
bias.

4.5 Advanced topics

Earlier, we proposed using a standard light sampler for direct illumination
ReSTIR, with emphasis on easier implementation. A standard light sampler
might not be the ideal way of generating samples with ReSTIR, and glossy
materials would benefit from BSDF sampling. There is also a conceptual
problem in temporal reuse that we will use as a segue to the next chapter.

Improved light sampling Candidate samples can be cheaply generated
with, e.g., power-based importance sampling [1]. A light source can be
stochastically selected based on its power (total emitted flux over the

surface) and a sample point can be picked uniformly from its surface area.

Bitterli et al. [1] generate 32 candidate light samples and pick one using
WRS, observing real-time performance. The performance can be further
improved by precomputing the light samples into “light tiles” shared by
screen pixel blocks [5] (to be introduced in Chapter 7).

[1]: Bitterli et al. (2020), ‘Spatiotemporal
Reservoir Resampling for Real-Time Ray
Tracing with Dynamic Direct Lighting’

Tip 4.5 ReSTIR consists of multiple
parts that all must work. Resist the
temptation to optimize, and start by
building a principled, simple base sys-
tem. Once ready and fully validated,
improve it piece by piece, thoroughly
validating each step.

[5]: Wyman et al. (2021), ‘Rearchitecting
Spatiotemporal Resampling for Produc-
tion’

4 ReSTIR: Spatiotemporal Reservoir Resampling | 21

Although each candidate sample is suboptimal, having many of them
quickly reduces the variance of the selected sample. Note that power-based
light sampling does not consider the properties of the shading point, and
the sampling quality can be poor for glossy surfaces. For glossy surfaces,
using BSDF sampling as a different strategy turns out to greatly improve
the sampling quality [7].

Mixing BSDF and light sampling Section 3.3 explains how to do MIS
between BSDF and light sampling for the initial candidates, taking M;
samples with a BSDF importance sampler and M, samples with a light
sampler. This may also be used with ReSTIR—remember to transform the
PDFs into area measure before applying RIS. Proper treatment of glossy
materials, however, requires shift mappings from the next chapter.

RIS and domains ReSTIR, as we presented it, reuses samples within the
same domain. What if objects move, and the domain changes between
frames? This is not handled by RIS without extensions! Samples need
to be modified to enable reuse between frames®. This also requires shift
mappings, and an extension of RIS to reuse between domains.

[7]: Bitterli (2022), ‘Correlations and Reuse
for Fast and Accurate Physically Based
Light Transport’

Tip 4.6 We recommend first finalizing
and validating the base implementa-
tion without BSDF sampling. Debug-
ging multiple parts simultaneously can
be hard.

8: Imagine moving a path to the next
frame by gluing its vertices to moving
objects, matching the triangle index and
UV coordinates in both frames. This is
an example of a shift mapping between
frames.

Reusing Between Domains

More advanced sample reuse often requires that samples are modified at
reuse. The scene changes between frames, and different pixels see different
path spaces. Simply reusing vertices without modification does not allow
reuse through mirrors or glass. The law of ideal reflection must be obeyed,
and paths need to be modified to allow effective reuse.

We now generalize RIS to reuse between domains with shift mappings.

5.1 Preliminaries

In light transport, shift mappings allow reusing paths between domains,
such as path spaces seen by different pixels.

5.1.1 Shift mappings

The term shift mapping originates from gradient-domain rendering [38],
where samples are moved from one pixel to another—shifted on the image
plane—for evaluating discrete image gradients (AI/Ax, AI/Ay); the image
is then reconstructed from the combination of color and (discrete) gradient
estimates. The path consists of multiple vertices, some of which need to be
modified for the path to remain interesting for the other pixel.

Such shift mappings allow reusing paths for other pixels with minimal
modifications, taking into account the constraints set by materials such as
shiny metals or glass.

A shift mapping T from A to B (e.g., path spaces of different pixels) maps
paths in A to paths in B by a relation y = T(x). An example shift mapping
is the reconnection shift [38] that maps a path to another pixel, reconnecting
the deterministic beginning to the same secondary vertex x,, retaining all
free vertices:

Tisj ([0, %11, %2, %3 ..]) = [%,0,%),1, %2, X3, - . .], (5.1

using the notation of Section 4.3. This shift mapping works well for diffuse
and rough surfaces, but not for glossy or specular surfaces, as it does not
respect the law of ideal reflection, unlike, for example the half-vector shift
[39], the random replay shift, and their hybrids [4, 40].

Lin et al. [4] formally define shift mappings. The definition encodes the
following, partially overlapping properties for a shift mapping T between
two domains:

» The shift mapping is deterministic.
» A path may shift to at most one path in the target domain.
» Two paths may not shift to the same path; an inverse shift must exist.

5.1 Preliminaries......... 22
5.1.1 Shift mappings 22
5.1.2 Jacobian determinants . . . 23

5.2 Reusing samples between
domains............ 23

5.3 MIS between domains . . . 24

[38]: Lehtinen et al. (2013), ‘Gradient-
Domain Metropolis Light Transport’

Tip 5.1 Implement the reconnection
shift first. Always first validate that
shifting to the same pixel retains the
path and its radiance, and that the Ja-
cobian determinant is then 1:

Tii(x) = x,
fTisi(x)) = f(x),
TG0l = 1.

Report also small discrepancies: path
tracers often have bugs only discovered
when implementing shift mappings.

[39]: Kettunen et al. (2015), ‘Gradient-
Domain Path Tracing’

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

[40]: Hua et al. (2019), ‘A Survey on
Gradient-Domain Rendering’

Definition 5.1.1 (shift mapping) A shift
mapping T from A to B is a bijective
function from a subset D(T) C A to its
image F(T) C B.

Note that a shift mapping from A to B is
not always a function from A to B, but
from a subset of A, its domain D(T), to a
subset of B, its image J(T).

» The inverse shift must shift back to the original.
» Not all paths need to be shiftable.

In practical implementations, invertibility is often guaranteed by symmetric
shift mappings, making sure that if y = T, ;(x), then x = T;,;(y). Invert-
ibility is also required for undefined shifts: if x cannot be shifted with T;, ;,
then no path y in the target domain is allowed to shift to x.

In practical implementations, the code implementing the shift T;—,;(x)
may, during the shifting process, find a show-stopper condition, such
as an occlusion in the reconnection shift, forcing T;,; to halt and return
undefined.

5.1.2 Jacobian determinants

Imagine mapping close-by real numbers x; and x, by the same function.
The distance between x; and x; usually grows or shrinks: mapping changes
the density of numbers. The local scaling factor is given by the derivative!.

As shift mappings map paths between domains as y = T(x), they also
modify the paths’ densities; Jacobian determinants |T’(x)| capture the
local scaling factor, which also changes probability densities when passing
random variables? through mappings. Unbiased contribution weights
also change in shift mappings. The Jacobian determinants (often just
“Jacobians”) are numbers, usually given by relatively simple formulas, that
must be included here and there, for example the resampling weights w;
and MIS weights m;, to retain correctness and help protect from outliers.

The rendering literature knows many good shift mappings along with
formulas for their Jacobian determinants [4, 40], precise implementation
details, and sample code. We discuss specific shift mappings useful for
path reuse in more detail starting in Section 6.4.

5.2 Reusing samples between domains

We replay our previous exposition of RIS, this time with shift mappings
included:

1. Take inputs (X3, ..., Xum), each from its own domain ;.

2. Map the samples into the target domain Q as Y; = T;(X;).

3. Evaluate resampling MIS weights m;(Y;) for all ;.

4. Evaluate resampling weights w; = m;(Y;) p(Y;)Wx; |T/(X;)| for all i.
5. Choose Y randomly from the Y; proportionally to w;.

6

. Evaluate the unbiased contribution weight Wy = rﬁ Z?ﬁl w;.

This process gives us a sample Y in the target domain () that we can use
for integration or chaining RIS. Its PDF is approximately proportional to
the target function p; increasingly so with more input samples.

5 Reusing Between Domains | 23

1: In multivariate calculus the derivative
is called the Jacobian matrix, and the scal-
ing factor is its determinant. Our Jacobian
determinants have simple geometric for-
mulas.

2: IfY = T(X), then

_ rxX)
[T"(X)|”

py(Y) (5.2)

Similarly, comparing Wy to 1/py(Y),
Wy = Wx|T'(X)]. (:3)

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

[40]: Hua et al. (2019), ‘A Survey on
Gradient-Domain Rendering’

The domains may or may not be the same,
and the samples may or may not be to be
statistically independent.

Wy;: unbiased contribution weight
of X; in its own domain.

|T’(X;)| Jacobian determinant of
the shift mapping from Q; to Q.

Wi

Pr[choose i] = .
=1 7]
Treat Wy as 1/p(Y) but note it is

an unbiased estimate, not a function of Y.

1
2
3
4
5
6

10
11

Algorithm 4: RIS Between Domains

function Resample(M)
Reservoir r
fori < 1to M do
generate X; // E.g., take from reservoirs
Y; « T;(X;) // shift into Q
w; — m;i(Y;) pO)Wx, [Ty (X;)| if Y; #0 else 0// 0 if shift
failed
r.update(Y;, w;, c;)

if .Y # 0 then
L r.Wy « ﬁr.wsum

r.c < min(r.c, ccap)

return r

While the resampling weight formula (step 3) looks different with the
addition of the Jacobian determinant, it is essentially the same formula
as before, if we use the unbiased contribution weight transformation rule
(Equation 5.3) to substitute

Wx, T/ (Xi)| = Wy, (5.4)

recovering
w; = m;(Y;) p(Y;)Wy,. (5.5)

In order to chain RIS or integrate, the inputs, shifted to €, should together
cover the support of p. We often guarantee this by letting one of the reuse
candidates be a canonical sample with an importance sampler directly
targeting p and using an identity shift T;(x) = x with Jacobian determinant
/()] = 1.

5.3 MIS between domains

The generalized balance heuristic® uses the inputs’ target functions p; as
proxies for the intractable PDFs. Now, the samples X; come from domains
Q;, and their target functions p; cannot be evaluated at the shifted Y; € (),
where the MIS weights m;(Y;) are evaluated. In other words, the MIS
weights require p; evaluations at the input pixels.

Let us, for a second, pretend that we have access to the source PDFs p; in the
input domains. Ideally, we would use the traditional balance heuristic,

mily) = py.(y)

= 57

where y € Q) is in the current domain, and the PDFs py, are for the mapped
random variables Y; = T;(X;). How can we possibly achieve this?

The PDF transformation rule* says py.(y) = px,(x;)/|T’(x;)|, where y =
Ti(x;). This is a good start. What's x;? We find x; by shifting y back into Q;,

5 Reusing Between Domains

24

3: Generalized balance heuristic in a
single-domain case:

mi(x) =

2

pi(x) _
]'I\il ﬁ](x)

(5.6)

4: PDF transformation rule (Equa-

tion 5.2):

py(Y)

_ pxX)
[T"(X)]

if Y =T(X).

X; = Tl.‘l(y). How about the division by |T/(x;)|? Easy: we already evaluate
Xi = Ti‘l(y), so we multiply by its Jacobian determinant, |Ti‘1'(y)|. This
achieves the division by |T’(x;)|, by the inverse function theorem.

Our equation appears more daunting than it truly is:

pr(v) = px (17 W) 17). 68
Simply shift y back into €); and multiply by the simple formula given for
the shift’s Jacobian determinant. With the understanding that py,(y) = 0 if
y cannot be shifted into €);, this allows using the balance heuristic between

domains (Equation 5.7)—when the PDFs are known.

We assume the PDFs are not known, and use p; as a proxy for px;. As such,
we define “p from i” [4]. We simply replace px, by p;, and encode the same
zero-condition as:

T \(y)) [TV if y € T;(supp X;)

otherwise (5.9)

P(—z(]/) {

The condition y € T;(supp X;) simply means that we return 0 if y cannot be
shifted into Q;, or if x; = Tl._1 (y) has zero PDF. When the candidates come
from RIS, we can simplify this test into “if cannot shift, return 0”, since
we recursive guarantee p; = 0 exactly when px, = 0, by giving a canonical
sample to RIS if supp(p) is not otherwise be covered.

The generalized balance heuristic between multiple domains is then

pei(y)

ml(y) = - ’
=Y Pei(y)

(5.10)

and we can also include the confidence weights ¢; used by ReSTIR in

Section 4.4. A
ci Peily)

mi(y) =
S ¢ pei(y)

(5.1)

Note how Equation 5.10 and 5.11 satisfy the MIS weight requirement

M
Z m;i(y) = 1.

i=1
y€T;(supp X;)

(5.12)

with the definition in Equation 5.9. Figure 5.1 shows an illustration.

The generalized balance heuristic is good for a small numbers of candidates,
but becomes slow for large numbers due to the total of O(M?) pj terms.
We explore more lightweight alternatives in Section 7.1.1 and Section 7.1.2,
but we recommend starting using this simple balance heuristic. Correctness
first, performance after.

5 Reusing Between Domains | 25

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

Definition 5.3.1 (Canonical sample)
An input X; € Q; to RIS is called canon-
ical if Q; = Q), it uses the identity shift
map T;(x) = x, uses p; = p, and covers p
(i.e., supp p C supp Xi).

\\ o //

Uneven
partial overlaps

0! °0-0°

Need MIS weights
to normalize

(e]
(e] Oo

Figure 5.1: Candidate samples from mul-
tiple domains can contribute to the same
integration at a target domain via shift
mapping. But the contribution has to be
normalized by MIS weights. Each point in
the target domain must be covered exactly
once in total.

Tip 5.2 Slow down to speed up! We rec-
ommend first implementing a correct,
principled and slow version of ReSTIR.
Not because bias is always bad, but
because this saves a lot of time.

N

w

Algorithm 5: Generalized Balance Heuristic

Input :y € Q where m;(y) is evaluated.
Input :Original x € (; that yielded y. We assume y = T;(x).
Input :Jacobian determinant \Tl' (x)| of the shift y = T;(x).
Output:Generalized balance heuristic weight m;(y).
function pHatFrom(j, y) // p;(y) for generic y € Q.
xj, Jxj < Tj_l(y), |Tj_1/(y)| // shift y into Q; and eval Jacobian.
if Xj# Q then // If shift succeeded
L return fJ]-(x]-) Jxj /7 ﬁ,(T/"(}/)) \T/."'(;/)|

return 0

function pHatFrom_opt(j, x, |T]’(x)|) /7 pej(y) optimized for y = Tj(x)
| xeturn pi()/IT/COl 77 5T) 1T).

function GenBalanceHeuristic(i, y; x, Ti’(x)|) // mi(y), optimized (y = T;(x))
Mpum < ¢; - pHatFrom_opt(i, x, Tl'(x)l) // Numerator: ¢;p;i(y)
Mden €~ Mnum // Case j=1i. Denominator: Z‘,.‘il cjpe—jly)
forj«—1toM;j+#ido// Cases j#i
L Mden < Mden + ¢ - pHatFrom(j, y)
return Mnum /Mden
Note:

Return 0 if y is a null sample; this avoids 0/0. See Tip 3.13.

5 Reusing Between Domains

26

ReSTIR Path Tracing

In this chapter, we show how to apply generalized RIS to the path sampling
problem for general global illumination, based on the implementation
of ReSTIR Path Tracing (ReSTIR PT) [4]. We will first formalize the path
sampling problem, followed by applying RIS to a path tree. We then explore
shift mapping design and introduce the efficient shift mapping for real-time
rendering developed in ReSTIR PT. Finally, we briefly introduce Volumetric
ReSTIR [3] which adds support for participating media.

6.1 The path integral

A light path can have an arbitrary number of bounces. To extend our path
integral to account for global illumination, we need to sample in the union
of product spaces US_ s¢P~!, where o is the set of all scene surfaces. The
full path space integral extends Equation 4.2:

) D-1
L(xi — x)) = > (I—[fs(xj+1 = x; = xj-1)G(xj © Xj+1)
D=2 /AP V=1 (6.1)

V(xj < Xj+1))Lg(XD — xp_1)dxy...dxp .

A path sample of D — 1 bounces can be written in the following tuple form
in area measure:
(6.2)

[XO/ X1,X2,X3, 4+, XD]

6.2 RIS with a path tracer

With next-event estimation (NEE) at every path vertex, a path tracer usually
creates a path tree. We want to use RIS to pick one path from the entire
path tree, which we can then input into the ReSTIR pipeline.

Assume all light vertices are sampled by NEE, and label paths (from the
same path tree) from 1 to k bounces as x1, X2, . . . Xk, we can still apply the
RIS resampling weight formula: w; = m;(x;)p(x;)Wy,. Note that m;(x;) = 1
here, since each path sample is responsible for a different path subspace
and different path subspaces are disjoint (a sampling technique for one
subspace will have zero PDF for any sample outside the subspace). It is
common to set f(x;) = f(x;), the path contribution [2, 4]. And it is easy to
know that Wy, = 1/p(x;), the reciprocal of path PDF. Both f(x;) and p(x;)
are easily obtained from a path tracer.

6.1 The path integral 27
6.2 RIS with a path tracer27
6.3 Reuse path samples 28
6.4 What is a good shift map-
ping?............... 28

6.5 Common shift mappings . .29
6.6 An efficient shift mapping
for real-time rendering . . .30

6.7 Volume rendering 34

[2]: Ouyang et al. (2021), ‘ReSTIR GI: Path
Resampling for Real-Time Path Tracing’
[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

It is common for a path tracer to MIS NEE light sample with light samples
found by next hits of scattered rays (BSDF sampling). To account for this
in RIS, both NEE and BSDF light samples are used as candidate paths,
doubling the candidate samples. Each m;(x;) now accounts for the other
light sampling technique of the same length and is generally less than 1'.

6.3 Reuse path samples

The simplest way to reuse samples is to use identity shift (in area measure):

T([x0, x1,%2,...,xp]) = [y, V;.%X2,...,xD] . (6.3)

This resembles the direct lighting case (Section 4.3), but the whole sequence
of vertices [xy, . .., xp] is reused.This shift mapping is used by ReSTIR GI
[2]. A proper implementation requires connecting from y; to xp, which
involves the re-evaluation of two BSDFs, a geometry factor, and shooting a
shadow ray. A biased implementation may prioritize computational speed
or minimal memory usage at the expense of render accuracy.

For example, ReSTIR GI precomputes the outgoing radiance along xx1
when the sample is produced by a path tracer, and assume it is unchanged
along the reconnected direction X,y;, during reuse. Obviously, this is only
true for a very limited set of materials like Lambertian diffuse material.

Biased implementation like ReSTIR GI cannot generate faithful results if x,
is specular. With an unbiased implementation, the average of independent
renders will converge to the ground truth. But reusing paths with specular
vertices can increase the variance instead of reducing it.

6.4 What is a good shift mapping?

What's anideal shift mapping? Assuming all pixels have precedent samplers
(prior to reuse) with comparable quality, when shifting from pixel 7 to pixel
j, we want the shift mapping to create shifted samples y = T(x) such that
its distribution is as good as a sample produced by pixel j’s sampler. If
we assume that each pixel has a low variance importance sampler for the
target function , i.e. px = p, an ideal shift mapping should make the target
PDF of the shifted sample approximately equal to the original target PDF
(with density transformation) [41], i.e. 2

pi(T(x))

JaT| _
e pix) . (6.4)

With the identity shift in area measure (simply reusing all free path vertices),
this is likely to be true when reusing a distant x, on a diffuse surface from
a neighboring pixel.

But p;(T(x)) and p;(x) can be extremely different for x with x; /y; and/or
xz on specular surfaces. A path sample with significant contribution on

6 ReSTIR Path Tracing | 28

1: Alternatively, the path integral can
be partitioned into two integrals for the
two light sampling techniques with the
light sampling MIS weights being part of
path contribution f(x;) for each technique,
which preserves m;(x;) = 1in RIS.

[2]: Ouyang et al. (2021), ‘ReSTIR GI: Path
Resampling for Real-Time Path Tracing’

p(x) = p(x)/ oy plx)dx

[41]: Tokuyoshi (2023), ‘Efficient Spatial
Resampling Using the PDF Similarity”

2: Lin et al. [4] proposes a stronger (but
not necessary) condition: p; (T (x)) = p;(x)

IT |
and‘ax ~ 1.

the source pixel may end up having zero or near-zero path contribution
when shifted to another pixel due to the delta or low roughness specular
material (see Figure 6.1 for an illustration). Even with diffuse material,
the situation that reconnection segment x,y; having a drastically different
length than x;x; also breaks Equation 6.4 by huge or tiny ratios of the
geometry terms. A good shift mapping should avoid these two scenarios,
which means all vertices should not be simply reused. Still, we want to reuse
as many vertices as possible for the reason that shifted path segments that
are coincident with the corresponding original segments yields identity
Jacobians and equal terms in p.

6.5 Common shift mappings

Shift mappings have been studied extensively in gradient domain rendering
[38-40, 42]. Assuming smooth local variation of image intensity, for nearby
pixels i and j, p; and p; should have similar normalization factors. With
this assumption and p = f, Equation 6.4 can be equivalently tested using

SiT) (5= | = filx),

oT
o= (6.5)

which is the same condition used by gradient domain rendering [39]. This
means that shift mappings developed for gradient domain rendering can
also be used for path resampling.

For an example, we examine the shift mapping introduced in gradient
domain path tracing [39]. To shift a path, gradient domain path tracing
sequentially constructs the offset path vertex by vertex by copying the
tangent-space half-vector at the corresponding base path vertex to trace
next offset path vertex using the conforming reflection or refraction direc-
tion. This is repeatedly performed until two consecutive diffuse vertices
(classified using a threshold on material roughness) xx_1, Xx on the base
path are encountered, where the offset path vertex y,_; connects to the
base path vertex xx. Due to the invertibility requirement of shift mappings,
Yi_; also needs to be diffuse for the shift to be successful.

Half-vector shift tends to preserve the path throughput through (near-)spec-
ular vertices, as the importance-sampled specular reflection directions are
centered around the perfect mirror reflection direction. An in-depth anal-
ysis is provided by Kaplanyan et al. [43] to show that the half-vector
parameterization yields a mostly smooth path throughput function for
glossy materials. However, as the bounce count increases, the shifted ver-
tices tend to diverge from the original path, enlarging the difference of
path throughputs. Therefore, it is still desirable to connect back to the base
path when the material types are proper.

Noticeably, the shift mapping of Kettunen et al. [39] is comprised of two
local shift decisions: half-vector copy and vertex reconnection local shift
mapping. Lin et al. [4] provide an overview of common local shift decisions.
In comparison, global methods like manifold exploration [44] allows more

6 ReSTIR Path Tracing | 29

Figure 6.1: An example case where recon-
nection shift fails. Note that the shifted
path (blue) connects to a glossy surface
which gives near-zero BSDF value in the
new direction.

[38]: Lehtinen et al. (2013), ‘Gradient-
Domain Metropolis Light Transport’
[39]: Kettunen et al. (2015), ‘Gradient-
Domain Path Tracing’

[40]: Hua et al. (2019), ‘A Survey on
Gradient-Domain Rendering’

[42]: Manzi et al. (2014), ‘Improved Sam-
pling for Gradient-Domain Metropolis
Light Transport’

[43]: Kaplanyan et al. (2014), “The Natural-
Constraint Representation of the Path
Space for Efficient Light Transport Simu-
lation”

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

[44]: Jakob et al. (2012), ‘Manifold Explo-
ration’

tightly preserving the path contribution. But global operations like solving
the specular chain between two diffuse vertices are more computationally

intensive3.

6.6 An efficient shift mapping for real-time
rendering

To better combine with ReSTIR’s real-time rendering goal, ReSTIR PT [4]
presents an efficient shift mapping suitable for the GPU. The shift mapping
postpones the reconnection similar to Gradient Domain Path Tracing [39],
but features three differences.

» It precomputes the reconnection vertex on the base path and uses
random replay [40] to shift earlier path segments so that the base
path does not have to be stored. Random replay copies the base path’s
random numbers at each bounce to re-trace the next bounce with the
method used by the base path. It usually makes decisions similar to
copying the half-vector or direction (depending on the BSDF type),
or a light source’s position in the case of next-event-estimation.

» It uses an additional distance condition similar to Manzi et al. [42] to
avoid creating short reconnection segments.

» It classifies a vertex using only roughness of the sampled lobe,
optimizing resampling on multi-layer materials.

This is called hybrid shift in ReSTIR PT. Note that this shift mapping can
be integrated nicely with a modern path tracer and only requires constant
storage per pixel — only a reconnection vertex and a random-number-
generating seed in addition to other reservoir data like the unbiased
contribution weight. Compared to reconnection shift discussed in Section
6.4, hybrid shift can significantly improve the quality of glossy and refractive
material.

To ensure a successful implementation of hybrid shift in ReSTIR PT, it is
crucial to focus on the following key details:

Ensuring Invertibility For a x; on the base path to be connectible, it
needs to satisfy two conditions:

» Distance Condition:

min(|[xx = xg-1ll, |1xk = yg_111) = dmin (6.6)
» Roughness Condition:
min(axkﬂ (bk-1), Ay, 4 (612_1)/ A (k) = Amin (6.7)

Note that {;_1, Uk, El’(_l are sampled lobes (e.g. Lambertian diffuse, Mi-
crofacet glossy with GGX distribution) on xx_1, Xk, y_;, respectively.
ax(f) measures the roughness of the lobe ¢ (usually in a [0, 1] range

for specular material and it can be set to a large value for diffuse

6 ReSTIR Path Tracing | 30

3: Since manifold exploration can solve
the specular chain between two diffuse
vertices, the two diffuse vertices in the
shifted path need not to be consecutive,
making it share more vertices with the
base path.

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

[39]: Kettunen et al. (2015), ‘Gradient-
Domain Path Tracing’

[40]: Hua et al. (2019), ‘A Survey on
Gradient-Domain Rendering’

[42]: Manzi et al. (2014), ‘Improved Sam-
pling for Gradient-Domain Metropolis
Light Transport’

Figure 6.2: A hybrid shift mapping. The
base path selects x4 for reconnection, since
both x3 and x4 are rough (k = 4). The off-
set path copies the random numbers of the
base at x1; and x; to construct similar scat-
ter directions for y; and y, and reconnects
y3 to x4. This is the earliest reconnection
giving two consecutive rough/diffuse ver-
tices. Without connectability conditions
the offset path would connect y; to xz (a
glossy vertex), potentially giving a path of
near-zero contribution as y; <> xz <>x3 is
far from an ideal reflection. Figure taken
from ‘Generalized Resampled Importance
Sampling’ [4].

material) at vertex x. Some vertices in the sampled path may contain
more than one lobe* (like vertices that samples lights for NEE and
evaluates all lobes). In that case, ReSTIR PT picks the lobe ¢ that
maximizes a(?).

When the base path is initially traced by a path tracer, the vertex x; with
the smallest k (k > 2) that satisfies

||Xk - Xk—l” > dmin (6.8)

and

min(axk_1 (ek—l)/ axk (fk)) Z amin (69)
is stored as the reconnection vertex.
When shifted, the offset path is generated using random replay until y,_,
which is then connected to xi. To be invertible, it is also required that

[1Xk = Y11l = dmin (6.10)

and®
min(ayk_l (ek—l)/ Oéxk(ek)) 2 Qmin - (6.11)

Importantly, there cannot be a k” < k that satisfies the same conditions, i.e.

lyx = ¥pr_1ll = dmin and min(a(é;,_,), a(€},)) = dmin cannot be both true
for a k' < k. Otherwise, the offset path could have computed a different k
(had it been the base path) and the invertibility is broken. Non-invertible
samples get zero weight in RIS.

Path Samples with Lobe/Technique Tags To have a unique mapping
between path space and primary sample spaces (for the random number
sequence), ReSTIR PT extends path samples with lobe and light sampling
technique tags. An extend path sample is represented as

X = [Xl)/ (X] /[1)/ (XZI €2)/ ey (XD—ll eD—l)/ XD] (612)

where 0 < ¢ < Nigbe is an index representing the sampled lobe® at vertex
x;. Specially, when the light is sampled by NEE, the lobe tag {p-1 = Niope is
set to indicate the case, and all lobes are contained in xp_1. With these lobe
and technique tags, random replay can produce the exact same (sub)path
produced by a path tracer ”.

When reconnecting to Xy, it is important to copy the lobe index #;_; to
ensure bijection. If such lobe does not exist on y,_;, then the shift fails.

Additional math notes: Denote the set of all possible lobe/technique index
sequences {=1[t,0,...] for length-(D + 1) paths as £p, and the set of
lobe-tagged length-(D + 1) paths as Qp, the path integral can be rewritten
into the following form:

6 ReSTIR Path Tracing | 31

4: We will introduce the concept of ex-
tended path sample used in ReSTIR PT
shortly.

5: {i_1 is copied to the offset path such
that & | = 61

6: Niope is the total number of lobes in the
scene.

7: The actual implementation may need
to skip random numbers used towards
other parts of the path tree than the path
being reused.

I= i 5 f(x)dx = Z Z mt(x)fg(x) dx, (6.13)
D=1 D

1@6‘%[)

where f; is a partial path contribution only evaluating the sampled BSDF
at each path vertex, m;(x) is the light sampling technique MIS weight
(t € {0, 1} indicates whether the light vertex is sampled by BSDF or NEE,
and is inferred from fp_;). From this relationship, we can see that the
integrand for an extended path sample f () = m;(x) fy(x) contains the light
sampling technique MIS weight and only uses partial path contribution.

Primary Sample Spaces ReSTIR PT uses primary sample space parame-
terization for the paths. There are two benefits:

» Path integrands can be expressed as sampled path throughput (prod-
uct of "f /p" terms at each bounce), which can be directly provided
by a path tracer. And initial candidate path PDF is always 1. This
also prevents potential floating point number overflows by tracking
f and p separately.

» PSS is the more convenient choice for the shift mapping. The random
replay part of the shift mapping has an identity Jacobian determinant.
Only the reconnection phase computes terms for the Jacobian of the
full shift. (If not using PSS, each random replayed path vertex needs
to compute terms for the Jacobian.)

In PSS, the path integral can be expressed as
I=> F(a)da (6.14)
D=1YUp

where 1 is a random number sequence suitable for producing length-
(D +1) paths, Up = [0, 1] (P) is a unit hypercube with N (D) (length of
i) dimensions, and F(@) = f(% (@))/p(% (1)) is the integrand (% maps
@ to the corresponding extended path sample ¥, and p(X) is the PDF
of the path sample in path space parameterization). Note the one-to-
one correspondence between Equation 6.14 and the left-hand side of
Equation 6.13.

In following text, we provide a deriviation of the hybrid shift Jacobian
determinant PSS in parameterization.

For shifting base path x to offset path y, we denote by w;_, the unit vector
from x;_1 to x¢, and the corresponding random numbers leading from
vertex Xx—1 to xi by ﬁ’]g_l

When using the common solid angle parametrization, the Jacobian for the
reconnection shift is (e.g., [39])

y
€08 O | [xx = xg-1 |

[=y 12

o 6.15
a (*)

¥
k-1
x
k-

w cos 9

1

6 ReSTIR Path Tracing

[39]: Kettunen et al. (2015),
Domain Path Tracing’

32

‘Gradient-

for 07 the angle between w}_,
Yk
In PSS, the Jacobian determinant of hybrid shift is equal to the local

Jacobian determinant of the reconnection step. The shift mapping changes
the random numbers for both xx_; and x;. We have

and the geometric surface normal at x; =

ouv| |ow) . ||ow] 616)
Jut| |duy ,||duf '
Gl
(the %’ term is dropped when x; =y, is a light vertex (xx4+; does not

exist).) where

=Y =Y Y ¥
i, _ A, [|dw,_, ||dwy_, P(w l)}l:1(yk) dw,_, 6.17)
I, 960{_1 dwy_, || 96, p(w 0 1(xk) dwy_,
and
oa)| |9a]||dwF| Py Vi)
k| | ok) (6.18)
| |dw] [19UF] Pla,n; (Xke1)
where

Py, (xx) = Por (xx) - pe | is the joint PDF in solid angle measure for
sampling lobe ¢;_; 8 and direction wy_, on path x (the PDF and PMF may
implicitly depend on other path vertices, for example, x¢_», as common
BSDF sampling procedures do) and the other terms are similarly defined
on other vertices.

Note that w; = w; 7 and b, = f{_l by our reconnection definition (assuming
the scene is static). Although wy = a)z , their sampling PDFs are different
due to different outgoing directions towards the previous path vertices.

Reservoir and implementation details in ReSTIRPT. Algorithm 6 details
the reservoir structure used by ReSTIR PT. In particular, the path sample Y
is represented by the reconnection vertex, the random number generator
(RNG) seeds, and some other information that are sufficient for the shift
mapping and sample evaluation. We explain these class members together
with a typical resampling process (Assume the reconnection vertex y, is
not a light vertex. The other case is simpler and can be processed similarly.)
as follows:

The RNG seed &; generates the offset sub-path [y,,ys, ..., y,_;] with a
throughput . With y, = xx computed using the triangle Id (A) and the
barycentrics tuple (A1, A2) 9, and the incident direction w (same as wz)
with corresponding radiance estimate L, and the lobe indices f, {x.1, the
reconnected PSS path contribution can be evaluated as F(Y) = p(Y) =

Bem(@])f, ot §IPay 5 Fo o een) Pt () - L%, where my(@])
is the MIS weight for sampling @, using technique ¢ (t € {0, 1} indicates
BSDF or NEE and is inferred from the lobe index). mt(a)Z) =1lify,,4
is not a light vertex, and is the traditional light sampling MIS weight

6 ReSTIR Path Tracing | 33

8: If the path vertex x; is a light vertex
directly sampled by NEE, thenp_v (y;)
k-1

is the light sampling PDF converted to
solid angle measure and p o= = 1 (similar

for x41 if X471 is a NEE l1ght vertex).

9: If the scene changes, (A, A1, A7) auto-
matically maps y; to the potentially ani-
mated triangle. But a temporal shift map-
ping is required to update L due to po-
tential geometry or lighting changes. One
way is to reuse the world space direction
w to find vertex y; . ; and reuse RNG seed
&2 recorded on xg41 to generate the rest
of the path [y, ...].

10: If y, is the light vertex, the path con-
tribution is written with reduced terms

B- mt(wifl)fs,wﬁl (Yk)/pw%,l (yi) - L.

Algorithm 6: Reservoir in ReSTIR PT.

1 class Reservoir

2 struct Y

3 struct RcVertex

4 L w/L/ (A//\l/AZ)/Ek—llek

5 RcVertex, &1, &2, k, |

6 Y, Wy «< 0,0 // The output sample
7 Wsum < 0 // The sum of weights
8 c—20 // Confidence weight of output

otherwise. The Jacobian for the shift mapping can be computed using
Equation 6.16. Note that the reservoir stores the part associated with the
base path (] = por | (xk)-| cos O | /| [xk —Xk-1] |? Pt (Xk+1)) which is updated
after each RIS to avoid the duplicated effort of re-computing it in the next
resampling.

6.7 Volume rendering

ReSTIR can also be extended to handle general light transport with par-
ticipating media [3]. With participating media, the per-bouce integration
domain becomes the union of surface area and volume, i.e. Ml = o U Y.

The pixel intensity can be written as an integral of measurement contribu-
tion

o0 . B D-1
I = Z We(])(xl — x0)T(xp < x1)G(xg < Xl)(l_[fs(xj1 = x;
o1 Jup+ i=1

— xj_l)G(xj o xj31)T(xj & x]-+1))l:g(xD — xp-1) dxgdx;dx; ...dxp ,

. (6.19)
where We(]) is the pixel response function of pixel j (importance function
multiplied with pixel filter) and xo is a point on the camera sensor (image
plane).

Assume a pinhole camera and we are interested only in the radiance
arriving at a specific subpixel location, we can write an equation similar to
Equation 4.2

L(wo — xp) = T(xp <> x])(Le(x] — x0) + P(x0, x]))+

‘ (6.20)
/ T(xo © x1)(Ga ()L™ (61 — x0) + Plxo, x1)) dz1 ,
0

where z; is the collision distance with the relationship x; = xp + z1@g (wo
is determined by the subpixel location), x] is the closest opaque surface
intersected with s = [|x] — xol[, and

6 ReSTIR Path Tracing | 34

[3]: Lin et al. (2021), ‘Fast Volume Render-
ing with Spatiotemporal Reservoir Resam-

pling’

0 D-1
P(xo,x1) = Z/ (I—[fs(js = xj = xj-1)
D=2 MP V=1

(_}(x]- o xj+1)T(x; & xj+1))L_e(xD — xp-1)dxz...dxp

(6.21)

is a shorthand for the "in-scattered" path contribution from a point x; to xg.
j_‘s ,G,L, are generalized bidirectional scattering function, geometry term,
and vertex emission, respectively: f; = o (xj))p(xj+1 — xj — xj-1) if x; isin
volume and f; = f; if x; is on surface, G= 1/]1xj — xj41? if xj is in volume
and G = G is x; is on surface, L.(xp — xp-1) = 0,(xp)L'(xp — xp-1) if
Xp is in volume and L, = L, if xp is on surface.

The main difference from surface-only light transport is that a path vertex
can live in the entire 3D space instead of only 2D manifolds in 3D. Thus,
path sampling usually needs to include the sampling of collision distance.
In addition, the integrand includes transmittance terms which may not be
obtainable in closed form!!. Note that

Tx & y)=e" /UZ yor(x—yw)dy (6.22)

defines the transmittance between x and y along direction w = % where
z = ||y —x]|. Because the transmittance contains an integral which is usually
costly to evaluate, Volumetric ReSTIR [3] uses a simplified p which has
transmittance terms approximated by ray marching. The ray marching step
size controls the accuracy of approximation and trades between speed and
sampling variance'. Besides, Volumetric ReSTIR evaluates transmittance
in p with low resolution volumes to minimize memory cost. A piece-wise
constant, low resolution volume is used for initial path sampling so that
the transmittance function can be inverted analytically to produce distance
samples with closed-form path PDFs. By reserving the accurate evaluation
of path transmittance for final shading, Volumetric ReSTIR achieves efficient
resampling, allowing low-noise, interactive volume rendering in complex
lighting scenarios.

Because x; depends on the sampled collision distance, Volumetric ReSTIR
copies the collision distance z; to create the shifted x; in a different pixelB.
For the remaining path, Volumetric ReSTIR presented two reuse methods.
The first method (vertex reuse) copies the vertex sequence [xa, ..., xp]
like reconnection shift in ReSTIR PT. The second method (direction reuse)
copies the scattering direction and collision distance of all path segments
to retrace the shifted path except for the last one where the light vertex is

reconnected, i.e. the sequence [z1, w1, 22, W2, ..., Zp-1,XD].

While vertex reuse has performance advantage, Lin et al. [3] observed
excessive amount of fireflies caused by geometric singularity, so they
opted for the slower direction reuse by default. To improve direction reuse,
ideas from ReSTIR PT’s hybrid shift could be combined: for example,
reconnection should happen whenever the reconnection segment length is
longer than the distance threshold. Since a distance sample can be generated
using only one random number (sampling the transmittance and solve for

6 ReSTIR Path Tracing | 35

o} = extinction coefficient
05 1= scattering coefficient
0, = absorption coefficient

01(x) = 05(x) + 04(x), ¥x

11: In some cases where the spatial distri-
bution o is piecewise "simple" (e.g. piece-
wise constant or trilinearly interpolated by
neighboring grid points), the close form
can be computed.

[3]: Lin et al. (2021), ‘Fast Volume Render-
ing with Spatiotemporal Reservoir Resam-

pling’

12: For general volumes, collision dis-
tances can be sampled according to trans-
mittance by delta tracking [34] but the
PDFs are unknown.

13: If x1 is on a surface, the shift mapping
in Volumetric ReSTIR puts the shifted x;
on the closest surface in the target pixel.
The same applies for the remaining path
vertices. Bijection is maintained by requir-
ing both the original and the shifted vertex
to be on the closest surfaces or in the (un-
occluded) media.

6 ReSTIR Path Tracing | 36

the distance), replacing distance/direction reuse with random replay is
also feasible.

Making ReSTIR fast

One key appeal of resampling, and ReSTIR in particular, is it offers high
quality sampling for real-time rendering, so high-performing implemen-
tations are vital for real applications. But before talking about specific
optimizations, let’s step back and ask what we should optimize.

After all, ReSTIR is a general sampling technique. Sampling techniques are
usually evaluated based on sampling efficiency, combining sample cost and
quality into a single metric. Because ReSTIR is based on resampling, the
efficiency of the sampler is affected by what neighbors it chooses to reuse
and the choice of MIS weights. In addition, efficiency can be improved by
low-level optimizations, improving sample quality at a given performance,
or both. As a result, we categorize the optimization techniques into sampler
optimization and low-level optimization.

7.1 Sampler optimization

One way to look at RIS and ReSTIR: fundamentally, they are simply ways of
combining multiple estimators together using MIS weights. Each pixel we
borrow from is actually a different estimator we can use to draw samples for
our current pixel. Frequently, people learn about MIS by exploring Veach
et al.’s [32] sample combination of BSDF and light samples, but MIS can
be used to combine almost any estimators together, including our strange
resampled-neighbor estimators.

An easily overlooked, but important point is that combining estimators with
MIS is not guaranteed to improve sampling quality. Generally, combining
BSDF and light samples is almost always a win, so it is easy to forget this
point. But when reusing neighbor pixel samples, it is fairly easy to select
neighbors that are horrible estimators for your current pixel.

Consider the sea anemone in Figure 7.1, where nearby neighbors may have
surface normals in, essentially, opposite directions. The set of paths that
contribute to both these neighbors is largely empty. Because of this, reusing
samples across these neighbors is unlikely to prove beneficial. In fact, such
reuse typically increases noise.

Defining a way to skip reuse from obviously irrelevant neighbors can, thus,
provide an efficiency gain.

This need not bias the result, if done carefully. For instance, skipping reuse
if the surface normals at primary hits vary too much is fine. Heuristics for
skipping reuse are unbiased if they do not look at individual samples or
weights. Reasoning about their domains is fine, but making decisions on
specific samples generally conditions them, moving reuse into conditional
probability spaces.

7.1 Sampler optimization . .. 37
7.1.1 Neighbor rejection as ap-
proximate “MIS weights” . 38
7.1.2 Contribution MIS weights 38
7.1.3 Pairwise MIS weights . . . 39
7.1.4 Biased MIS Weights 41

7.2 Low-level optimization . . 42
7.2.1 Sample tiling in ReSTIR

DI 43
7.2.2 Lighting with many ana-
lytic light types 45

7.2.3 Accelerating hybrid shift . 45

[32]: Veach et al. (1995), ‘Optimally Com-
bining Sampling Techniques for Monte
Carlo Rendering’

Figure 7.1: Sea anemone, with spindly fea-
tures where neighbor pixels might be poor
estimators for the current pixel. (Image
CC-by-5A-3.0, Massimiliano De Martino).

https://creativecommons.org/licenses/by-sa/3.0/deed.en

Heuristics we have found useful include ensuring surface normals, depths,
and material properties do not vary significantly between reused pixels.

7.1.1 Neighbor rejection as approximate “MIS weights”

As discussed repeatedly, e.g., in Section 2.2 and Section 3.2, ensuring that
resampling remains unbiased requires careful tracking of each sample’s
supports, i.e., understanding which pixels could generate a particular
sample. Without such tracking, it is extremely easy to under or overcount
contributions in certain parts of the integration domains. This leads to bias
in the form of unexpected brightening or darkening. Computing correct
MIS weights is generally required for RIS or GRIS to remain unbiased if
the candidate samples were produced from different sampling techniques
(e.g., come from different pixels).

A problem of using the balance heuristic for MIS as described in Section 5.3
is the O(M?) cost grows quickly when M is large. One way to optimize
performance is to use an incorrect, constant 1/ M MIS weights (as in Bitterli
et al’s [1] biased implementation) and reduce the bias using neighbor rejec-
tion. In fact, neighbor rejection can then be thought of as an approximation
of Veach’s cutoff heuristic [31], where techniques with too low PDF values
simply have their terms discarded in the MIS weight (neighbor rejection
presumes that samples from a pair of incompatible domains have low
importance on each other’s domain).

Besides the biased approximate “MIS weights” offered by neighbor rejection,
there are cheap, correct MIS weights we can use to make the estimator fully
unbiased.

7.1.2 Contribution MIS weights

Bitterli et al. [1] show that it is possible to only evaluate the MIS weight for
the selected sample and stay unbiased. This is called a contribution MIS in
the GRIS framework [4].

For M-sample GRIS with resampling weights w; = m;(T;(X;))p(Ti(X;))W; -

% ’, denote the selected index as s, it has been shown [4] that the selected

sample Y = T;(X;) can use the following unbiased contribution weight:

_ cs(Y) 1 M '
W= [ms(Y)} ()]; w; 7.1)
as long as
M
Z ci(y) = 1. (7.2)

i=1
yeTi(supp X;)

Each m; can pretty much be an arbitrary function as long as it guarantees
that w; > 0 iff X; € D(T;) and p(Y;) > 0. If m; satisfies the same equation
(Equation 7.2) as c;, it is a proper resampling MIS weight and cancels c; in

7 Making ReSTIR fast | 38

[1]: Bitterli et al. (2020), ‘Spatiotemporal
Reservoir Resampling for Real-Time Ray
Tracing with Dynamic Direct Lighting’
[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

Equation 7.1, yielding the familiar unbiased contribution weight equation
(Equation 3.2).

Bitterli et al. [1] use constant m;(x) = % and (generalized) balance heuristic
for c;. Since ¢; is not in w; and only ¢ (c; of the selected sample) needs to
be evaluated, the cost is reduced to O(M). Although debiasing with only
contribution MIS weights performs reasonably well in direct lighting, it
can add excessive noise to a selected sample’s contribution if the difference
between domains is large, which is especially noticeable in participating
media [3]. In addition, convergence of sample distribution to the target
PDF can only be achieved with proper resampling MIS weights m; [4].

7.1.3 Pairwise MIS weights

To obtain a cheap resampling MIS weight, Bitterli [7] proposes pairwise
MIS. A common assumption for multiple importance sampling is that the
developer has no advance knowledge about which estimator might be
better; each estimator may have places it ends up superior to others, but
over the whole integration domain no clear winner exists.

Instead, pairwise MIS considers a setting with M sampling techniques
where one of them is canonical—this estimator covers the entire integration
domain and produces relatively high-quality samples compared to other
techniques. As an example, note that the canonical technique corresponds
to the “current pixel” in spatial resampling and non-canonical techniques
correspond to the neighboring pixels.

The core idea of pairwise MIS is to compute a "pairwise" balance heuristic
MIS weight between pairs of samples: each sample pairs with the canonical
sample (the sample produced by the canonical technique). This yields the
following MIS weights (the canonical technique is assigned index c):

PN pi(x) j
mi(x) = M-1 Pi(x) + Pc(x) 07 (7.3)
() — 1 i Pc(x)

M-1 e pi(x) + pe(x) ’

It is easy to verify that this set of weights satisfies the requirements of valid
MIS weights. Note that pairing with the canonical technique allows the
MIS weight to account for how each technique compares to the canonical
technique.

However, Equation 7.3 assigns disproportionally large weight to the canon-
ical sample. To see why, assume that all sampling techniques are identical,
ie. pi(x) =pj(x) foralli,j, m.(x) will be M — 1 times larger than all other
m;(x). To correct this, it is important to downweight p.(x). By requiring
that the MIS weights are the same with identical techniques, it can be
solved that the weighting factor for p.(x) needs to be 1/(M — 1). This gives
the modified equation:

7 Making ReSTIR fast | 39

[1]: Bitterli et al. (2020), ‘Spatiotemporal
Reservoir Resampling for Real-Time Ray
Tracing with Dynamic Direct Lighting’

[3]: Lin et al. (2021), ‘Fast Volume Render-
ing with Spatiotemporal Reservoir Resam-

pling’
[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

[7]: Bitterli (2022), ‘Correlations and Reuse
for Fast and Accurate Physically Based
Light Transport’

1 pi(x)
M =1 pi(0) + pe®) /(M —1)
1 3 p/M-1)
M) = T 2+ pe M=)

J#C

m;i(x) = (i#c¢)

(7.4)

Like in MIS using the balance heuristic, p can be used as proxy PDFs in the
ReSTIR scenario, yielding the generalized pairwise MIS:

1 pi(x) .
") = ST B+ he @M =) (%) .
1M p(x)/(M=1) 7-5)
mc(x)

M =1 22 50 + e/ —T)
Because p; are approximations, it is possible that m;(x), for i # c, are large
even if samples are poor; this gives the canonical sample too low of a weight.
To protect against this effect, pairwise MIS [7] can be designed to give the
canonical sample a defensive constant in the weight by adding 1 to the sum.
This gives the defensive form of pairwise MIS:

pi(x) ‘
mi(x) = Mﬁ Pc(x)/(M) (i #)
mo(x) = — [1 pe(x)/(M —1) (7.6)
C M]#c p](x)+Pc(x)/(M 1)

Similar to balance heuristic (Equation 5.11), pairwise MIS weights have
forms using confidence weights, rather than explicit sample counts based
on M. Enabling confidence weights and shift mappings, using the shortcuts
P i (Equation 5.9), the non-defensive form (Equation 7.5) generalizes to

mily) = P i) (i #c)
(Zﬁia Ck) Pei(y) + ccpe(y)
u . che(y) (7.7)
mC(y) = Z (!) CPC y ’
Jj#e z“k;&c (Z;{Vfﬁc Ck) }%—j(l/) +ccpe(y)
and the defensive form (Equation 7.6) generalizes to
ZM c iA<—i
nmw=(zfﬂ Cipily) (i %0
Zi% ek (SM,) peiy) + ccpely)
(7.8)

M

Ce Cj) cepe(y)
+ Z .
S, Ck m(Zﬁwk(zg;Q@ﬁ@wwmaw

me(y) =

ReSTIR PT [4] observes the O(M) pairwise MIS gives comparable conver-
gence behavior as the O(M?) balance heuristic and adopts the defensive

7 Making ReSTIR fast | 40

[7]: Bitterli (2022), ‘Correlations and Reuse
for Fast and Accurate Physically Based
Light Transport’

Tip 7.1 If pej = p—j = pc forall i, j,
non-defensive pairwise MIS reduces to
mi= —— foralli.

2= Ck

Tip 7.2 Defensive pairwise MIS lerps
between non-defensive and giving all
weight to the canonical sample with
te =cc/Zkck-BEg, if pei = f’<—j =P
for all 7, j, it reduces to

Ci .
mi = (1—1tc)- (i#c)
=
Cc
me =te+(1—tc)- i
k=1 Ck

[4]: Lin et al. (2022), ‘Generalized Resam-
pled Importance Sampling’

N

NI

(5]

)

g

®

10

11
12

13

14

15

16
17
18
19

20

7 Making ReSTIR fast

Algorithm 7: Generalized Pairwise MIS (Defensive Variant)

Input :y € Q where m;(y) is evaluated.
Input :Original x € ; that yielded y. We assume y = T;(x).
Input :Jacobian determinant \Tl' (x)| of the shift y = T;(x).
Output:Generalized defensive pairwise MIS weight m;(y).
function pHatFrom(j, y) // p;(y) for generic y € Q.
xj, Jxj < Tj_l(y), |Tj_1/(y)| // shift y into Q; and eval Jacobian.
if Xj# Q then // If shift succeeded
L return p;(x;) - Jx;j // }5;(T/" () \T/"'(;/)|

return 0

function pHatFrom_opt(j, x, |T]’(x)|) // peijly) optimized for y =Tj(x)
| xeturn pi()/IT/COl 77 5T) 1T).

function GenPairwiseMIS_canonical(y) // mc(y)
Ctot — Zﬁil Ck

Me < %

Mpum < C¢ * FA’C(}/)

forj —1toM;j#cdo// 2 -

L Mden €~ Mnum + (Ctot - CC) : pHatFrom(j/ y) // Mpum + (le\\lt CA)fN—N/)

c
] Mnum
«— .
e e Ctot ~ Mden

. ¢ B (y)
return m. // —— + Z(\ic MJ . Cefe (}/)‘
Sz Ok] 22 Ck (Z‘}#(Ck }l7<—j(y)+('t'ﬁﬁ‘(}/)

function GenPairwiseMIS_noncanonical(i, y; x,
Ctot < 2211 Ck

Mnum = (Ctot — ¢¢) - pHatFrom_opt(i, x, [T/ (x)[) // (2 cx) peily)
Mden = Mnum + ¢~ Pey) /7 (S)L. ci) peily) +ccpe(y)

¢ m ek cipeily)
return = . 'num ‘,Vltr < - 1»}«—/' Y) .
Ctot Mden Ty ok (e e Peily)teche(y)

T/(X)) 7/ miy) (y =Ti(x))

Note:
Return 0 if y is a null sample; this avoids 0/0. See Tip 3.13.

form as the default choice for spatial resampling in GRIS (see Algorithm 7
for pseudocode). A generalized family of pairwise MIS weights is also
discussed in Lin et al. [4].

7.1.4 Biased MIS Weights

With an understanding how the bias arises, careful algorithmic modifica-
tions can compute slightly incorrect MIS weights (on purpose) in the name
of efficiency.

Imagine reuse between pixels i and j, which have selected samples X;
and X;. Using the balance heuristic for MIS weights requires evaluating
either:
pi(Xi)
mi(Xj) = ————=~ or mi(X;)=
i(Xi) pi(Xi) + pj(Xi) i

pi(X;)

— (79
pi(Xj) + pi(Xj) @)

41

While p;(X;) and p;(X;) are already computed as part of resampling, p;(X;)
and p;(X;) require reevaluating a sample in a pixel that did not generate
it. This is new computation. Very concretely, if our samples X are rays or
paths, reevaluating them at a neighbor requires tracing new rays! This can be
expensive or simply add complex new engineering to make it possible.

For example, when doing temporal reuse where pixel j comes from the
previous frame, then p;(X;) requires taking candidate X;, generated during
the current frame i, and reevaluating its path using the previous frame’s
data. This includes using the prior frame BVH ray acceleration structure,
which is obviously unappealing.

Fortunately, after understanding the causes of bias, you can make informed
decisions on whether biased approaches are objectionable. For instance,
using the current frame BVH as a stand in for the prior frame BVH;
assuming p;(X;) = 0; or recomputing p;(X;) using last frame’s data but
assuming visibility does not change.

In particular, consider the simple balance heuristic MIS weight from
Equation 7.9:

pi(Xi)

pi(X;) +

The boxed weight p;(X;) is the tricky one, requiring more expensive
computations using last frame’s data. But you can consider the expected bias
in very simplistic terms. If you replace p;(X;) by some biased approximation
pj(X;), either:

mi(X;) = (7.10)

» Pi(Xi) > pj(X;), lowering m;(X;) and adding a darkening bias;
» p;(Xi) = pj(X;), adding no bias for X;; or
» Pj(Xi) < pj(X;), increasing m;(X;) and adding a brightening bias.

And obviously, approximations fj; are not limited to always be greater than
or less than the correct probability density. For some X;, p; > p; and for
others fj; < pj. This can cause both darkening and brightening biases in
different parts the image or under different type of motion or animation.

As a quick example, assuming p;(X;) = 0 means any sample generated this
frame could not have been selected last frame. This is clearly not (always)
true, especially in static scenes. Some such samples were likely selected
last frame and forwarded via spatiotemporal reuse to the current frame.
Because of this simplistic assumption, these samples are over-represented
in our sample pool; this means we overcount, giving a brightening bias.

7.2 Low-level optimization

For low-level optimization, defining specific performance goals can be
vital to achieving a target budget. These performance goals usually need
to consider the computation model of the hardware. Various metrics you
could reasonably optimize exist, including:

7 Making ReSTIR fast

42

» Minimize the per-pixel shadow ray count (Bitterli et al.’s [1] original
goal, targeting scenes with millions of lights).

» Minimize the number of paths traced.

» Maximize sample reuse; path samples are costly, so reuse each as
much as possible to minimize cost per reuse.

» Minimize correlation in final shading, so denoisers behave better.

» Maximize parallelization and streaming reuse for GPU utilization
(e.g., using weighted reservoir sampling [30]).

» Minimize size of intermediate buffers (e.g., reservoir size).

» Minimize memory bandwidth.

» Minimize execution divergence (ensuring maximal thread counts
active in each GPU warp).

» Minimize memory divergence (to avoid thrashing caches and mini-
mizing memory access costs).

» Minimize frame time. (ReSTIR benefits significantly from temporal
reuse, so overall quality may improve by reducing the quality gained
per-frame if you can instead reuse across frames much more quickly.)

» Plus other traditional low-level optimization targets, e.g., minimizing
register usage.

Additionally, some optimization techniques remain unbiased, while others
fundamentally add bias. Others add bias unless you apply more sophisti-
cated mathematics; this may not be a desirable trade for your application.

An obvious question that occurs to every experienced rendering engineer
considering ReSTIR is, “why not sparsely sample on some world-space
grid to improve performance?” (e.g., [8, 20]). This reduces ray (or path)
count and total reservoir memory in a relatively linear way, but ReSTIR
memory usage is already fairly minimal and ray count is only vital on very
low-end ray tracing hardware. But in exchange, grid based reuse adds bias
that we are only just learning to control (with as-yet unpublished theory).
Other optimizations might give you more well-rounded performance
improvements with less bias baggage. Here we provide three examples of
low-level optimizations in ReSTIR DI and ReSTIR PT.

7.2.1 Sample tiling in ReSTIR DI

When we first started optimizing Bitterli et al.’s [1] ReSTIR for direct lighting,
we asked folks on our performance team for advice. Our AMUSEMENT
Park has over 3 million emissive triangles and just picking random light
candidates took up to 25 milliseconds, without any fancy spatiotemporal
reuse!

One fact obvious from any basic profiling was: as lighting complexity
increased, so did our memory access costs. Essentially, we were thrashing
our memory caches. Each random light sample selected a light residing
in a different cache line. The first, and only somewhat facetious, response
from our performance analysis team was, “design a different algorithm,
without random sampling!”

7 Making ReSTIR fast | 43

[1]: Bitterli et al. (2020), ‘Spatiotemporal
Reservoir Resampling for Real-Time Ray
Tracing with Dynamic Direct Lighting’

[30]: Chao (1982), ‘A General Purpose Un-
equal Probability Sampling Plan’

[8]: Boksansky et al. (2021), ‘Rendering
Many Lights with Grid-Based Reservoirs’
[20]: Boissé (2021), ‘World-Space Spa-
tiotemporal Reservoir Reuse for Ray-
Traced Global Illumination’

Figure 7.2: Amusement Park with over 3
million emissive triangle lights.

But what they really meant was “redesign the algorithm to avoid accessing
multiple random cache lines every pixel,” or more simply “amortize the
memory access costs.” So... how to do this?

The great thing about the AMusEMENT Park scene is its over-the-top lighting
complexity helps identify places where naive algorithms are wasteful. In a
1920 x 1080 image, we have around 2 million pixels. If each pixel selects
one light (via ReSTIR) to shade, we at most use two thirds of the lights for
shading each frame! We could clearly reduce cache thrash if we reorganize
(and compact) the lights each frame so we only search those relevant for
that frame’s shading.

But determining which lights are relevant to each frame is non-obvious.
Perhaps we should start simpler, maybe with a stratification approach?

What if we used only a quarter of the lights in the scene? If we always
picked from this same small subset of lights, the other 3/4 would never
appear to emit light. But if frames alternate which 1/4 of the lights are
sampled, over time we could pick from any light. And because ReSTIR
reuses samples spatiotemporally, very important lights selected two or
three frames ago can still impact lighting this frame.

But this can be amplified to dramatically reduce memory access costs.

While sampling from a rotating subset of only 1/4 of the lights each frame
seems reasonable, sampling from only 1/1000 of the lights is not obviously
still useful.

But what if only considering sampling for a small image region, say a
16 x 16 pixel tile? If each pixel in that tile selected a random light via ReSTIR,
that tile needs at most 256 unique lights. Perhaps we could pick that set of
samples from a subset of 1024 or 2048 scene lights?

That is the basic idea behind sample tiling, giving the following simple
algorithm:

1. Each frame, generate light subsets S, each containing a random
selection of all scene lights. Select lights for subsets using the PDF p
normally used to select candidates without sample tiling (e.g., pick
lights proportional to their intensity).

2. For each screen tile (e.g., 8 X 8 or 16 X 16 pixels), pick one of this
frame’s light subsets S; to use.

3. For each pixel in a screen tile, select the needed number of candidates
from tile i’s selected subset S;. Pick from the lights in the tile uniformly
randomly (i.e., probabilty of 1/N each, if each tile has N lights).

Usually, generating 128 light subsets each containing 1024 light samples is
sufficient across a wide variety of scenes, including the AMusemMENT PRk [5].
However, for simple scenes with few lights (i.e., < 128,000) the overhead of
building these tiles (under 0.1 ms) may overwhelm any caching benefits.

It turns out this precomputed sample tiling is a degenerate form of resam-
pled importance sampling (see Wyman and Panteleev [5]), where the target
function of this RIS step is p.

7 Making ReSTIR fast | 44

[5]: Wyman et al. (2021), ‘Rearchitecting
Spatiotemporal Resampling for Produc-
tion’

This degenerate sample tiling is a way of using RIS to reorganize sampling
to be more cache coherent. This is an extremely powerful idea, and can be
used in more complex sampling scenarios than direct lighting.

7.2.2 Lighting with many analytic light types

Many applications may have multiple light types, each with its own (po-
tentially expensive) sampling code. For instance, you might have emissive
spheres, quad, cylinders, triangles, environment maps, lines, points, spot-
lights, meshes, etc.

If each pixel selects a different analytic type to sample, you likely inject both
execution divergence and cache thrashing into the per-pixel sampling code.
For instance, one pixel might sample a sphere light while its neighbors
sample a triangle and an environment map. If these three pixels are part
of a single GPU warp, the three sampling procedures will likely happen
serially (due to execution divergence) rather than in parallel.

By first creating buffers of presampled locations on each type of emissive,
and then feeding these buffers as input to the sample tiling in Section 7.2.1,
this execution divergence can be moved out of the inner loop.

Essentially, per pixel during the render loop, we sample from precomputed
point lights that all have the same structure. Some of these came from
sphere lights, some from triangles, some from environment maps, etc., but
the potentially expensive, per-primitive sampling procedures happen once
per frame in a coherent way.

7.2.3 Accelerating hybrid shift

Hybrid shift in ReSTIR PT performs random replay and vertex reconnection
to reuse a path. This includes multiple tasks: tracing new subpath, testing
visibility rays, and re-evaluating BSDFs. A naive implementation directly
following Algorithm 7 usually results in inflated shader time. This has two
main causes.

» A shader that contains multiple complex procedures that are depen-
dent on each other or have a nested structure often very high register
usage, lowering the warp occupancy, and potentially causes register
spilling to inflate memory cost.

» Having large execution divergence across threads can lower the
effective computation throughput. A small percentage of pixels
having path tracing work can be as expensive as all pixels doing path
tracing.

To tackle these problems, we recommend two optimizations:

1. Use smaller kernels instead of a big kernel: have a dedicated random
replay kernel that only does path tracing and a dedicated reconnection
kernel that performs BSDF re-evaluatation and visibility ray tests.

7 Making ReSTIR fast

45

2. Perform stream compaction to map threads only to non-empty ray
tracing tasks: since many path samples do not need random replay to
reconnect, performing path tracing in a compact way avoids having
idle threads running within the warp doing nothing.

But such optimizations have additional memory overhead: because the
RIS step happens after the complete evaluation of the target function p,
intermediate results of random replay (containing partial path throughput)
need to be written to the global memory in the end of the random replay
shader and read from the global memory in the reconnection shader. But
the additional memory overhead is usually small compared to overall
reduced shader time. Using the Veach Ajar scene for example, with the
first optimization, we have observed about 40% reduction in shader time
related to spatiotemporal resampling. The second optimization further
reduces 40% of shader time on top of the first optimization.

7 Making ReSTIR fast

46

Experiences in game integration

Please see Pawel and Giovanni’s slides from SIGGRAPH 2023, available
on our course webpage, which discuss some of their key experiences and
take-aways from integrating ReSTIR into CD Project Red’s Cyberpunk 2077
as part of its RT Overdrive Mode and recent Phantom Liberty expansion.

https://intro-to-restir.cwyman.org/

Advice for getting started

As authors of this course, we have all thought about resampling and ReSTIR
for years. We've collectively written (and rewritten) code, prototypes, demos,
SDKs, and integrated ReSTIR into more complex code bases.

You should start simple.

Probably every ReSTIR implementation around today has confusing bits
you will not initially understand. This is akin to how usually everyone’s first
path tracer has “off by 7” issues; as researchers and rendering engineers
we're still wrapping our minds around how to best write this code in a
clean and understandable way. Sometimes the first paper is not the right
place to go, even if it’s simpler to understand. (Sorry.)

So some advice from us to you, after helping out numerous researchers
and engineers get up to speed on ReSTIR:

» Start with a simple ground-truth Monte Carlo path tracer. No need to
have fancy importance sampling, but it needs to run in the same
code, on the same scenes where you plan to use ReSTIR. You do not
want to spend months debugging your ReSTIR implementation or
integration only to discover, at the very end, that it is biased in some
unacceptable way. (This has happened.) You want to discover this
bias when you introduce it. Compare to ground truth. Frequently.

» Start simple, with basic RIS. Talbot’s basic RIS [6] is fairly straightfor-
ward to implement without bias. It’s pretty easy to understand. If
RIS will not converge to ground truth, neither will your experiments
with spatiotemporal reuse.

» Think about rendering bias. Most real-time engineers without an offline
rendering background never worry about bias... after all, we always
approximate in real-time rendering! Many of us felt the same way:.
Now, we have all concluded that managing bias is super important,
even in game. With spatiotemporal sample reuse, bias spreads around
the screen extremely quickly. And with multi-bounce paths, it shows
up in extremely odd ways. Your art director may disapprove.

» Spatial reuse alone is easier to debug; combining with temporal reuse
gives better quality. Moving beyond basic RIS, next add spatial reuse.
Without scene changes between samples (as in temporal reuse), it
is much easier to validate. Spatial reuse should give clearly visible
improvement. But move on quickly after validating that spatial
reuse works correctly, since interleaving spatial and temporal reuse
improves quality much more significantly than spatial reuse alone.

» Don't try to get too clever too fast. If you grab RTXDI [9], there are
a ton of options. Checkerboarding, sample permutations, boiling
suppression, etc., etc. Many were never intended to be unbiased, and
options may not have been tested in all permutations. Wait to try

clever techniques until you know the basics work (and you need the
improvements those clever techniques provide).

Basic ReSTIR gives you probability distributions at a point. Generally, a
reservoir is not valid over, say, an entire voxel. You can store and use
reservoirs that way, but it is very difficult to avoid adding bias (and
magnifying correlations within the voxel).

Reuse visibility very carefully. An original appeal of ReSTIR was the
ability to reduce ray budgets by reusing visibility samples. Visibility
reuse also causes many problematic biases people have great diffi-
culty debugging. (Arguably, it causes most difficult-to-debug biases.)
Consider always using visibility in your target functions and MIS
weights until you have validated your code works with full visibility.
Only then accelerate your algorithm by incrementally starting to
reuse ray queries.

ReSTIR accelerates in multiple ways. One is by amortizing sample costs
across pixels. This benefit remains, even when not reusing visibility.

Think a bit about ReSTIR as subsampling the integration domain. If doing
environment lighting using a light probe, an obvious way to gain
performance is to coarsen the probe texture. Now, if your integration
domain isn’t a hemisphere of incident colors, but rather a high-
dimensional path space, how do you "coarsen” that domain? Perhaps
you could reuse samples rather than tracing new independent ones
all the time?

9 Advice for getting started

49

Bibliography

Here are the references in citation order.

(1

(2]

(3]

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech Jarosz. ‘Spatiotem-
poral Reservoir Resampling for Real-Time Ray Tracing with Dynamic Direct Lighting’. In: ACM Transactions
on Graphics (Proceedings of SIGGRAPH) 39.4 (July 8, 2020). por: 10/9g8xc7. (Visited on 08/23/2020) (cited
on pages i, ii, 1,7, 15, 20, 38, 39, 43).

Yaobin Ouyang, Shigiu Liu, Markus Kettunen, Matt Pharr, and Jacopo Pantaleoni. ‘ReSTIR GI: Path
Resampling for Real-Time Path Tracing’. In: Computer Graphics Forum 40.8 (2021), pp. 17-29. por: 10/gqwmdx
(cited on pages i, ii, 27, 28).

Dagqi Lin, Chris Wyman, and Cem Yuksel. ‘Fast Volume Rendering with Spatiotemporal Reservoir
Resampling’. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 40.6 (Dec. 10, 2021),
279:1-279:18. por: 10/grrjdé6 (cited on pages i, ii, 27, 34, 35, 39).

Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and Chris Wyman.
‘Generalized Resampled Importance Sampling: Foundations of ReSTIR’. In: ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 41.4 (July 22, 2022), 75:1-75:23. por: 10/9qjn7b. (Visited on 07/23/2022) (cited
on pagesi,ii, 7,9,12,14,19, 22, 23, 25, 27-30, 38—41).

Chris Wyman and Alexey Panteleev. ‘Rearchitecting Spatiotemporal Resampling for Production’. In:
High-Performance Graphics - Symposium Papers. Eurographics Association, 2021. por: 10/grrjkk (cited on
pages i, ii, 20, 44).

Justin F. Talbot, David Cline, and Parris Egbert. ‘Importance Resampling for Global Illumination’. In:
Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering). Eurographics Association,
June 2005, pp. 139-146. por: 10/gfzsm2 (cited on pages i, 1, 3,7, 8, 11, 18, 48).

Benedikt Bitterli. ‘Correlations and Reuse for Fast and Accurate Physically Based Light Transport’. PhD
thesis. Hanover, NH: Dartmouth College, Jan. 1, 2022 (cited on pages ii, 12, 21, 39, 40).

Jakub Boksansky, Paula Jukarainen, and Chris Wyman. ‘Rendering Many Lights with Grid-Based
Reservoirs’. In: Ray Tracing Gems I1: Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX. Ed. by
Adam Marrs, Peter Shirley, and Ingo Wald. Berkeley, CA: Apress, 2021, pp. 351-365. por: 10.1007/978-1-
4842-7185-8_23. (Visited on 02/10/2023) (cited on pages ii, 43).

NVIDIA. NVIDIA® RTX Direct lllumination. 2021. urL: https://developer.nvidia.com/rtxdi (visited
on 05/28/2021) (cited on pages ii, 48).

Alex Battaglia. Sword and Fairy 7 is the cutting-edge PC exclusive nobody’s talking about. 2021. urL: https:
//www . eurogamer . net /digitalfoundry - 2021 - sword - and - fairy - 7 - tech - review (visited on
02/07/2023) (cited on page ii).

Andrew Burnes. Portal with RTX Out Now: A Breathtaking Reimagining Of Valve’s Classic With Full Ray
Tracing & DLSS 3. 2022. urL: https://www.nvidia.com/en-us/geforce/news/portal-with-rtx-ray-
tracing/ (visited on 02/07/2023) (cited on page ii).

Jiayin Cao. Understanding The Math Behind ReSTIR DI. 2022. urL: https://agraphicsguynotes.com/
posts/understanding_the math_behind_restir_di/ (visited on 02/07/2023) (cited on page ii).
Julien Guertault. Reading list on ReSTIR. 2022. urL: https://lousodrome.net/blog/light/2022/05/14/
reading-list-on-restir/ (visited on 02/07/2023) (cited on page ii).

Shubham Sachdeva. Spatiotemporal Reservoir Resampling (ReSTIR) - Theory and Basic Implementation. 2021.
URL: https://gamehacker1999.github.io/posts/restir/ (visited on 02/07/2023) (cited on page ii).

https://doi.org/10/gg8xc7
https://doi.org/10/gqwmdx
https://doi.org/10/grrjd6
https://doi.org/10/gqjn7b
https://doi.org/10/grrjkk
https://doi.org/10/gfzsm2
https://doi.org/10.1007/978-1-4842-7185-8_23
https://doi.org/10.1007/978-1-4842-7185-8_23
https://developer.nvidia.com/rtxdi
https://www.eurogamer.net/digitalfoundry-2021-sword-and-fairy-7-tech-review
https://www.eurogamer.net/digitalfoundry-2021-sword-and-fairy-7-tech-review
https://www.nvidia.com/en-us/geforce/news/portal-with-rtx-ray-tracing/
https://www.nvidia.com/en-us/geforce/news/portal-with-rtx-ray-tracing/
https://agraphicsguynotes.com/posts/understanding_the_math_behind_restir_di/
https://agraphicsguynotes.com/posts/understanding_the_math_behind_restir_di/
https://lousodrome.net/blog/light/2022/05/14/reading-list-on-restir/
https://lousodrome.net/blog/light/2022/05/14/reading-list-on-restir/
https://gamehacker1999.github.io/posts/restir/

(17]

(18]

(19]

[20]

[27]

(28]

[29]

Jacco Bikker. Lecture 14 - “TAA & ReSTIR”. 2023. urL: http://www.cs.uu.nl/docs/vakken/magr/2022-
2023/slides/lecture%s2014%20-%20ReSTIR. pdf (visited on 02/07/2023) (cited on page ii).

Tomasz Stachowiak. Global Illumination in ‘kajiya’ Renderer. 2022. urL: https://github.com/EmbarkStudios/
kajiya/blob/main/docs/gi-overview.md (visited on 02/07/2023) (cited on page ii).

Mr. Zyanide. Shared Twitter results for Jedi Outcast integration. 2023. URL: https://twitter.com/MZyanide/
status/1610172199146586112 (visited on 02/07/2023) (cited on page ii).

Adam Badke. ‘Next event estimation via reservoir-based spatio-temporal importance resampling’. MA
thesis. Simon Fraser University, June 2021 (cited on page ii).

Ege Ciklabakkal, Adrien Gruson, Iliyan Georgiev, Derek Nowrouzezahrai, and Toshiya Hachisuka.
‘Single-Pass Stratified Importance Resampling’. In: Computer Graphics Forum (Proceedings of the Eurographics
Symposium on Rendering) 41.4 (2022). por: 10.1111/cgf.14585. (Visited on 07/21/2022) (cited on page ii).

Guillaume Boissé. “World-Space Spatiotemporal Reservoir Reuse for Ray-Traced Global Illumination’. In:
SIGGRAPH Asia 2021 Technical Communications. New York, NY, USA: ACM Press, Dec. 14, 2021, pp. 1-4.
por: 10/grrjbg (cited on pages ii, 43).

Xander Hermans. ‘The Effectiveness of the ReSTIR Technique When Ray Tracing a Voxel World’. MA thesis.
Utrecht University, July 2022. (Visited on 02/10/2023) (cited on page ii).

Fuyan Liu and Junwen Gan. ‘Light Subpath Reservoir for Interactive Ray-Traced Global Illumination’. In:
Computers & Graphics 111 (Apr. 1, 2023), pp. 37—46. por: 10/grrjgw (cited on page ii).

Shinji Ogaki. “Vectorized Reservoir Sampling’. In: SIGGRAPH Asia 2021 Technical Communications. New
York, NY, USA: ACM Press, Dec. 14, 2021, pp. 1-4. por: 10/grrjhq. (Visited on 02/09/2023) (cited on
page ii).

Stefan Krake. hdRstr: A ReSTIR/RTXDI-based Hydra Render Delegate. 2021. urL: https://stkrake.net/
(visited on 02/07/2023) (cited on page ii).

Stefan Krake. bIRstr: A ReSTIR/RTXDI-based Blender Render Engine. 2022. urL: https://stkrake.net/
blRstr/ (visited on 02/07/2023) (cited on page ii).

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla Chaitanya, John
Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. ‘Spatiotemporal Variance-
Guided Filtering: Real-Time Reconstruction for Path-Traced Global Illumination’. In: Proceedings of High
Performance Graphics. New York, NY, USA: ACM, 2017, 2:1-2:12. por: 10/ggd8dg. (Visited on 12/10/2019)
(cited on page 1).

Christoph Schied, Christoph Peters, and Carsten Dachsbacher. ‘Gradient Estimation for Real-Time

Adaptive Temporal Filtering’. In: Proceedings of the ACM on Computer Graphics and Interactive Techniques 1.2
(Aug. 2018), 24:1-24:16. por: 10/ggd8dh. (Visited on 12/10/2019) (cited on page 1).

Takafumi Saito and Tokiichiro Takahashi. ‘Comprehensible Rendering of 3-D Shapes’. In: Computer
Graphics (Proceedings of SSIGGRAPH) 24.4 (Sept. 1990), pp. 197-206. por: 10/ fp3t53 (cited on page 1).

Jifi Vorba, Johannes Hanika, Sebastian Herholz, Thomas Miiller, Jaroslav K¥ivanek, and Alexander Keller.
‘Path Guiding in Production’. In: ACM SIGGRAPH 2019 Courses. SIGGRAPH "19. Los Angeles, California,
2019. por: 10.1145/3305366.3328091 (cited on page 1).

Min-Te Chao. ‘A General Purpose Unequal Probability Sampling Plan’. In: Biometrika 69.3 (Dec. 1, 1982),
pp. 653-656. por: 10/fd87zs (cited on pages 1, 15, 43).

Eric Veach. ‘Robust Monte Carlo Methods for Light Transport Simulation’. PhD thesis. Stanford University,
Dec. 1997 (cited on pages 2, 38).

Eric Veach and Leonidas J. Guibas. ‘Optimally Combining Sampling Techniques for Monte Carlo
Rendering’. In: Annual Conference Series (Proceedings of SIGGRAPH). Vol. 29. ACM Press, Aug. 1995,
pp- 419-428. por: 10/d7b6n4 (cited on pages 6, 12,13, 37).

http://www.cs.uu.nl/docs/vakken/magr/2022-2023/slides/lecture%2014%20-%20ReSTIR.pdf
http://www.cs.uu.nl/docs/vakken/magr/2022-2023/slides/lecture%2014%20-%20ReSTIR.pdf
https://github.com/EmbarkStudios/kajiya/blob/main/docs/gi-overview.md
https://github.com/EmbarkStudios/kajiya/blob/main/docs/gi-overview.md
https://twitter.com/MZyanide/status/1610172199146586112
https://twitter.com/MZyanide/status/1610172199146586112
https://doi.org/10.1111/cgf.14585
https://doi.org/10/grrjbg
https://doi.org/10/grrjgw
https://doi.org/10/grrjhq
https://stkrake.net/
https://stkrake.net/blRstr/
https://stkrake.net/blRstr/
https://doi.org/10/ggd8dg
https://doi.org/10/ggd8dh
https://doi.org/10/fp3t53
https://doi.org/10.1145/3305366.3328091
https://doi.org/10/fd87zs
https://doi.org/10/d7b6n4

[33]

[34]

[35]

(36]

(371

[40]

[41]

[42]

Ivo Kondapaneni, Petr Vevoda, Pascal Grittmann, Tom&s Skfivan, Philipp Slusallek, and Jaroslav Kfivanek.
‘Optimal Multiple Importance Sampling’. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH)
38.4 (July 2019), 37:1-37:14. por: 10/9f5jbj. (Visited on 07/29/2019) (cited on page 7).

E. R. Woodcock, T. Murphy, P. J. Hemmings, and T. C. Longworth. “Techniques Used in the GEM Code
for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry’. In:
Applications of Computing Methods to Reactor Problems. Argonne National Laboratory. 1965 (cited on pages 7,
35).

Henrik Wann Jensen. ‘Global Illumination Using Photon Maps’. In: Rendering Techniques (Proceedings of the
Eurographics Workshop on Rendering). Vienna: Springer-Verlag, June 1996, pp. 21-30. por: 10/fzc6t9 (cited
on page 7).

Hao Qin, Xin Sun, Qiming Hou, Baining Guo, and Kun Zhou. ‘Unbiased Photon Gathering for Light
Transport Simulation’. In: ACM Transactions on Graphics 34.6 (Oct. 26, 2015). por: 10/ f7wrc6 (cited on
page 7).

Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob. ‘Specular Manifold Sampling for Rendering High-
Frequency Caustics and Glints’. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH) 39.4 (July 8,
2020). por: 10/9g8xc8. (Visited on 08/23/2020) (cited on page 7).

Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. ‘Gradient-
Domain Metropolis Light Transport’. In: ACM Transactions on Graphics (Proceedings of SSIGGRAPH) 32.4
(July 2013), 95:1-95:12. por: 16/gbdghd (cited on pages 22, 29).

Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker.
‘Gradient-Domain Path Tracing’. In: ACM Transactions on Graphics (Proceedings of SSGGRAPH) 34.4 (July 27,
2015), p. 123. por: 10/gfzrhn (cited on pages 22, 29, 30, 32).

Binh-Son Hua, Adrien Gruson, Victor Petitjean, Matthias Zwicker, Derek Nowrouzezahrai, Elmar
Eisemann, and Toshiya Hachisuka. ‘A Survey on Gradient-Domain Rendering’. In: Computer Graphics
Forum. Vol. 38. 2. Wiley Online Library. 2019, pp. 455-472 (cited on pages 22, 23, 29, 30).

Yusuke Tokuyoshi. ‘Efficient Spatial Resampling Using the PDF Similarity’. In: Proceedings of the ACM on
Computer Graphics and Interactive Techniques 6.1 (2023), pp. 1-19 (cited on page 28).

Marco Manzi, Fabrice Rousselle, Markus Kettunen, Jaakko Lehtinen, and Matthias Zwicker. ‘Improved
Sampling for Gradient-Domain Metropolis Light Transport’. In: ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia) 33.6 (2014). por: 10/f6r2hp (cited on pages 29, 30).

Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. ‘'The Natural-Constraint Representation
of the Path Space for Efficient Light Transport Simulation’. In: ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 33.4 (July 2014), 102:1-102:13. por: 10/ f6cz85 (cited on page 29).

Wenzel Jakob and Steve Marschner. ‘Manifold Exploration: A Markov Chain Monte Carlo Technique
for Rendering Scenes with Difficult Specular Transport’. In: ACM Transactions on Graphics (Proceedings of
SIGGRAPH) 31.4 (July 2012), 58:1-58:13. por: 10/gfzg4p (cited on page 29).

https://doi.org/10/gf5jbj
https://doi.org/10/fzc6t9
https://doi.org/10/f7wrc6
https://doi.org/10/gg8xc8
https://doi.org/10/gbdghd
https://doi.org/10/gfzrhn
https://doi.org/10/f6r2hp
https://doi.org/10/f6cz85
https://doi.org/10/gfzq4p

Abbreviations

GPU
graphics processing unit. 1

MC
Monte Carlo. 4-7
MIS
multiple importance sampling. vi, 6, 8-14, 28, 32, 33, 37-42

NEE
next-event estimation. 27, 28, 31-33

PDF
probability density function. v, 1, 2, 4-14, 38

ReSTIR

reservoir-based spatiotemporal importance resampling. vi, 1, 4-6, 9, 37-46
RIS

resampled importance sampling. v, 1, 3, 4, 7-14, 37, 38, 44-46
RNG

random number generator. 33

WRS
weighted reservoir sampling. 15

Symbols

Page Symbol Description Notation
List
6,9 m(X) The MIS weight of the random variable X. MIS weight
8,9 w; The probability of selecting candidate i from the list resampling weight
of candidates (X1, ..., Xpm).
22 T A shift mapping. shift mapping
5 supp(X), supp(f) The support of a random variable X or a function f. support
9 p(x) The target function at x. target function
9 p(x) The target PDF at x. target PDF
7-9 Wx The unbiased contribution weight of X. If X has unbiased contribution weight

known PDF p(X), use Wx = Iﬁ.

	Abstract
	Course format & Prerequisites
	Why a SIGGRAPH Course in 2023?
	Course Syllabus
	About the Contributors
	Contents
	Introduction
	Motivation for ReSTIR

	Motivation for ReSTIR
	Preliminaries
	Monte Carlo integration

	Monte Carlo integration
	Supports

	Supports
	Multiple Importance Sampling

	Multiple Importance Sampling
	Unbiased Contribution Weights

	Unbiased Contribution Weights
	Resampled Importance Sampling
	Resampled Importance Sampling

	Resampled Importance Sampling
	MIS weights

	MIS weights
	Example: RIS between BSDF and NEE

	Example: RIS between BSDF and NEE
	Inputs with unknown PDF

	Inputs with unknown PDF
	ReSTIR: Spatiotemporal Reservoir Resampling
	Weighted Reservoir Sampling

	Weighted Reservoir Sampling
	Spatiotemporal reuse

	Spatiotemporal reuse
	Example: ReSTIR for direct illumination

	Example: ReSTIR for direct illumination
	History length

	History length
	Advanced topics

	Advanced topics
	Reusing Between Domains
	Preliminaries

	Preliminaries
	Shift mappings
	Jacobian determinants
	Reusing samples between domains

	Reusing samples between domains
	MIS between domains

	MIS between domains
	ReSTIR Path Tracing
	The path integral

	The path integral
	RIS with a path tracer

	RIS with a path tracer
	Reuse path samples

	Reuse path samples
	What is a good shift mapping?

	What is a good shift mapping?
	Common shift mappings

	Common shift mappings
	An efficient shift mapping for real-time rendering

	An efficient shift mapping for real-time rendering
	Volume rendering

	Volume rendering
	Making ReSTIR fast
	Sampler optimization

	Sampler optimization
	Neighbor rejection as approximate ``MIS weights''
	Contribution MIS weights
	Pairwise MIS weights
	Biased MIS Weights
	Low-level optimization

	Low-level optimization
	Sample tiling in ReSTIR DI
	Lighting with many analytic light types
	Accelerating hybrid shift
	Experiences in game integration
	Advice for getting started
	Bibliography
	List of Abbreviations
	Symbols

