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Abstract
The detection of low-frequency gravitational waves on Earth requires the
reduction of displacement noise, which dominates the low-frequency band.
One method to cancel test mass displacement noise is a neutron displacement-
noise-free interferometer (DFI). This paper proposes a new neutron DFI con-
figuration, a Sagnac-type neutron DFI, which uses a Sagnac interferometer in
place of the Mach–Zehnder interferometer. We demonstrate that a sensitivity
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of the Sagnac-type neutron DFI is higher than that of a conventional neutron
DFI with the same interferometer scale. This configuration is particularly sig-
nificant for neutron DFIs with limited space for construction and limited flux
from available neutron sources.

Keywords: gravitational wave, neutron interferometer,
displacement-noise free interferometer, Sagnac interferometer

1. Introduction

Since 2015, when LIGO first detected gravitational waves (GWs), numerous GW events have
been observed [1–3]. The frequencies of GWs depend on their sources. For example, GWs in
the low-frequency band around 1 Hz include important physical phenomena such as ‘primor-
dial gravitational waves (PGWs)’ [4]. However, the sensitivity of GW detectors in the low fre-
quency band is limited by displacement noise. This noise arises from the fluctuating displace-
ment of the detector’s test masses, due to thermal noise, noise from the suspension system, and
seismic noise. One way to minimize this displacement noise is to send GW detectors up into
space, as for LISA [5, 6] and DECIGO [7, 8]. Space-based GW detectors can reduce some dis-
placement noise, such as suspension system noise, and ground vibration noise by floating the
test mass in space. Cooling mirrors and suspension systems in space can also reduce thermal
noise. However, space-based detectors require a significant amount of time, effort, and cost.
The sensitivity in the low-frequency band also is limited by radiation pressure noise, which is
one of the sources of displacement noise. Thus, reducing displacement noise is also essential.
Displacement-noise-free interferometery (DFI) is one of the methods for canceling all dis-
placement noise [9]. In a coordinate system in the transverse-traceless gauge, GW signals and
displacement noise can be distinguished [10, 11]. Therefore, multiple interferometer signals
can be used to cancel displacement noise while preserving GW signals [12, 13]. This is the
principle behind a DFI.

DFI is most sensitive in a limited frequency band that corresponds to the inverse of the
time required for the beam to propagate between test masses. For example, a DFI with several
kilometers of arm length is mostly sensitive near 105Hz, which is much higher than the 1 Hz
range where displacement noise is dominant. This is because of the high propagation speed of
the laser light. Therefore, the neutron DFI was devised, in which a neutron beam is injected
into the DFI. Neutrons have a finite mass, and their speed is much slower than that of photons.
Therefore, even a DFI with several kilometers of arm length has good sensitivity around 1 Hz.
Furthermore, the ability to select the speed of the incident neutrons is an advantage for optim-
izing the sensitivity of a DFI.

Various configurations of neutron DFI have already been developed [14–16]. In this paper,
we present a neutron DFI configuration that uses a Sagnac-type interferometer. In the conven-
tional configuration (single, two-velocity), shown in figure 1, a single Mach–Zehnder interfer-
ometer is injected with neutrons of two velocities from two relative directions [15]. The solid
arrows are the trajectories of neutrons incident through beamsplitter (BS) A, while the dashed
arrows represent the trajectories of neutrons incident through BS B. After entering the Mach–
Zehnder interferometer, the neutrons are divided into right and left paths by a beamsplitter
(BS) and propagate along the two sides of the interferometer under the influence of GWs. The
photodetector (PD) observes the interference state of the neutrons in the right and left paths. A
Sagnac-type neutron DFI is injected with neutrons of four velocities from one direction. The
PD observes the interference state of clockwise- and counterclockwise-propagating neutrons.
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Figure 1. Configuration of single two-velocity neutron DFI as viewed from the z-axis
direction. The black bars represent the test masses, mirrors and beamsplitters. The red
and blue arrows show the trajectories of the neutrons with incident velocity v1 and v2
projected into horizontal plane, respectively. The solid arrows are the trajectories of
neutrons incident through beamsplitter (BS) A, while the dashed arrows represent the
trajectories of neutrons incident through BS B. Mirrors C and D are located on the x-
axis and BSs A and B are located on the y-axis. The origin in the xy-plane represents
the center of the square formed by the neutron orbits.

This configuration allows a Sagnac-type neutron DFI to achieve higher sensitivity than a con-
ventional neutron DFI of the same size interferometer and with the same number of neutrons.

In this paper, we discuss the Sagnac-type neutron DFI in terms of configuration and sens-
itivity. We discuss the configuration in section 2, the method of canceling displacement noise
in section 3, the GW signals from neutron DFIs in section 4, noise and sensitivity comparis-
ons with the single, two-velocity neutron DFI in section 5, and consider characteristics of the
sensitivity curve in section 6. Finally we present conclusions in section 7.

2. Configuration of a Sagnac-type neutron DFI

The configuration of a Sagnac-type interferometer is shown in figure 2 from a bird’s-eye view
(xy plane) and in figure 3 from the side view (yz plane). Gravity acts in the z direction. The
propagation of the neutron trajectory in the xy plane is a squarewith a side length of L. BSA and
mirrors B, C, and D are placed at the vertices of the square. Neutrons incident on A are divided
into two directions and propagate in the interferometer in clockwise and counterclockwise
orbits. Neutrons with four different velocities vi (i = 1,2,3,4) are injected into the Sagnac-
type neutron DFI. The horizontal and vertical velocities of neutrons with incident velocity vi
(ni) are denoted by vhi and v

v
i , respectively. As shown in figure 3, ni hit mirrors Ci and Di after

a time Ti(= L/vhi ) from the incident, and at mirror Bi after another Ti. Mirror Bi is angled
in the xz plane so that it is perpendicular to the trajectory of ni in the yz plane. Then, only
the x-component of the neutron velocity is preserved, and the neutron is reflected back. After
reflection at mirror Bi, both clockwise and counterclockwise orbits are symmetrical about the
y-axis. Then, 2Ti after the reflection at mirror Bi the clockwise neutrons pass through BS A,
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Figure 2. Configuration of a Sagnac-type neutron DFI viewed along the z-axis. The
black bars represent test masses, mirrors and beamsplitter. The blue lines show the tra-
jectories of the neutrons. Mirrors C and D are placed on the x-axis, while BS A and
mirror B are placed on the y-axis. The origin in the xy-plane is the center of the square
drawn by the neutron orbit. The origin on the z-axis is the height at which a neutron
trajectory intersects the plane of BS A.

and the counterclockwise neutrons are reflected at BS A. Their interference states are observed
by the PD. In this paper, we set t= 0 to be the time when the clockwise and counterclockwise
neutrons are simultaneously reflected by mirror Bi. Thus, neutrons are reflected by mirror Ci

and Di at t=±Ti, and hit BS A at t=±2Ti. This means that neutrons with different velocities
are reflected simultaneously only at mirror Bi and hit mirrors Ci and Di and BS A at different
times.

2.1. Neutron trajectory

Let us consider the trajectory of ni taking into account the effect of falling due to gravity. Here,
we ignore the mirror displacement temporarily and focus only on the neutrons trajectories. The
coordinate at which the neutrons collide with A is denoted by

xiA =

(
0,

L√
2
,0
)
. (1)

The velocity of the neutrons incident on A is denoted by

vi =
(

1√
2
vhi ,−

1√
2
vhi ,v

v
i

)
. (2)

After a time interval Ti elapses after the neutrons’ incidence on A, the neutrons collide with
mirrors C and D. The velocities of the neutrons as they propagate from A to C and from A to
D are given by

viAC (t) =
(
− 1√

2
vhi ,−

1√
2
vhi ,v

v
i − g(t+ 2Ti)

)
(−2Ti ! t!−Ti) , (3)

viAD (t) =
(

1√
2
vhi ,−

1√
2
vhi ,v

v
i − g(t+ 2Ti)

)
(−2Ti ! t!−Ti) . (4)
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Figure 3. Pathway of neutrons in the yz plane. Rectangles and squares indicate mirrors
and beamsplitters, respectively. Mirrors located in the same position are the same, while
mirrors located in different positions are distinct. Mirrors Bi (i = 1 to 4) are angled in
the yz-plane to be perpendicular to the trajectories of ni. The height at which all neutrons
hit the BS A is 0m.

The coordinates at where the neutrons impact mirrors C and D are

xiC =

(
− L√

2
,0,vvi Ti −

1
2
gT2i

)
, (5)

xiD =

(
L√
2
,0,vvi Ti −

1
2
gT2i

)
. (6)

The velocities of the neutrons as they propagate fromC to B and fromD to B and the coordinate
where they impact mirror B are given by

viCB (t) =
(

1√
2
vhi ,−

1√
2
vhi ,v

v
i − g(t+ 2Ti)

)
(−Ti < t! 0) , (7)

viDB (t) =
(
− 1√

2
vhi ,−

1√
2
vhi ,v

v
i − g(t+ 2Ti)

)
(−Ti < t! 0) , (8)

xiB =

(
0,− L√

2
,2vvi Ti −

1
2
g(2Ti)

2
)
. (9)

After reflection at mirror B, oriented in the yz plane to be perpendicular to the trajectories of
the neutrons, the clockwise-propagating neutrons propagate from B to C and from C to A. The
counterclockwise-propagating neutrons propagate fromB to D and fromD to A. The velocities
of the neutrons are given by

viBD (t) =
(

1√
2
vhi ,

1√
2
vhi ,−vvi − g(t− 2Ti)

)
(0< t! Ti) , (10)

viDA (t) =
(
− 1√

2
vhi ,

1√
2
vhi ,−vvi − g(t− 2Ti)

)
(Ti < t! 2Ti) , (11)
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Figure 4. Neutron pathways for complete displacement noise cancelation. Each colored
line corresponds to the trajectory of one group of neutrons, ni. All neutrons enter the
interferometer through the same point on A. The neutrons represented by the red and
blue lines impact the same point, C1,2, while the neutrons represented by the yellow and
green lines impact the same points, C3,4. All neutrons are then reflected by the mirrors
Bi and follow trajectories that are symmetric about the y-axis.

viBC (t) =
(
− 1√

2
vhi ,

1√
2
vhi ,−vvi − g(t− 2Ti)

)
(0< t! Ti) , (12)

viCA (t) =
(

1√
2
vhi ,

1√
2
vhi ,−vvi − g(t− 2Ti)

)
(Ti < t! 2Ti) . (13)

Mirror Bi is rotated about the x-axis to be perpendicular to the trajectory of neutrons projec-
ted on the yz plane. Thus, the z component of the velocity of the neutrons reverses its sign
after reflection by mirror Bi. Neutrons ni propagate through this trajectory. The velocities of
clockwise- and counterclockwise-propagating neutrons vli (l= c,cc) can be defined as

vci (t) =






viAD (t) (−2Ti ! t!−Ti)
viDB (t) (−Ti < t! 0)
viBC (t) (0< t! Ti)
viCA (t) , (Ti < t! 2Ti)

(14)

vcci (t) =






viAC (t) (−2Ti ! t!−Ti)
viCB (t) (−Ti < t! 0)
viBD (t) (0< t! Ti)
viDA (t) , (Ti < t! 2Ti)

(15)

2.2. Neutron pathway for DFI realization

The realization DFI necessitates combining pairs of neutron signals that contain the displace-
ment noise from the same test mass. This is because displacement noise from different points,
even on the same test mass, are not correlated. To cancel the displacement noise at a point on
C(D), two neutron signals that hit the same point on C(D) are required. Similarly, to cancel
the displacement noise at a point on A, we need two signals that reflect at the same point on
A, with the displacement noise at a point on C(D) already canceled. To summarize, n1 and
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Table 1. Phase changes that the neutrons groups, ni, receive.

Test mass A C B D A

clockwise φc,dis
i 0 φdis

iC(Ti) φdis
iB(0) φdis

iD(−Ti) 0
counterclockwise φcc,dis

i φdis
iA(−2Ti) φdis

iC(−Ti) φdis
iB(0) φdis

iD(Ti) φdis
iA(2Ti)

n2 and n3 and n4 must impact the same point on C(D), and all four neutrons must impact the
same point on A.We determine vhi and v

v
i for each neutron group, ni, to satisfy these conditions

using the following procedure:

1. Set four horizontal incident neutron velocities vhi (i = 1 to 4).
2. Set vh2 as the slowest horizontal velocity and v

h
4 as the fastest horizontal velocity.

3. Determine vv2,v
v
4 such that v2 and v4 are within the range of neutron velocities that can be

injected. In this paper, we set the slowest neutron velocity as 75 m s−1 and the fastest neut-
ron velocity as 100 m s−1. (This is the range of neutron velocities for which comparable
fluxes can be expected.)

4. Calculate zCi, the height at which ni impact mirror Ci (Di) as

zCi = vvi Ti −
1
2
gT2i , (16)

and determine vv1 and v
v
3 to satisfy zC1 = zC2 and zC3 = zC4. Note that the height at which

all neutrons impact mirror A is 0m. Figure 4 shows the neutron pathways that satisfy the
conditions for the neutron velocities.

3. Method of canceling displacement noise

3.1. Displacement noise in the time domain

First, let us consider only the displacement noise experienced by neutrons, ni. When consider-
ing the displacement noise that the neutrons receive from mirrors Bi, Ci, and Di, we omit the
subscripts for the mirrors B, C, and D. We set dj as the displacement of test mass j (j =A, B,
C, D) in the direction normal to its surface. The magnitude of the phase change of the neutrons,
φdisi j (t) caused by dj is expressed in terms of the wavenumber of the neutrons, ki as

φdisi j (t) = 2kli (t) · dj (t) , kli =
m
! v

l
i (t) . (17)

Here, m is the mass of the neutrons, and ! is Dirac’s constant. Table 1 shows the displacement
noise that the clockwise and counterclockwise-propagating neutrons experience. Note that
t= 0 corresponds to the timewhen the neutrons are simultaneously reflected bymirror B. Also,
since clockwise-propagating neutrons traverse BS A twice, they do not receive displacement
noise from BS A.

The total phase change of clockwise- and counterclockwise-propagating ni is given by

φc,disi = φdisiC (Ti)+φdisiB (0)+φdisiD (−Ti) , (18)

φcc,disi = φdisiA (−2Ti)+φdisiC (−Ti)+φdisiB (0)+φdisiD (Ti)+φdisiA (2Ti) . (19)

7
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The phase change of the interfered neutrons at the PD is given by

φdisi ≡ φci −φcci

=−
[
φdisiA (2Ti)+φdisiA (−2Ti)

]
+
[
φdisiC (Ti)−φdisiC (−Ti)

]
+
[
φdisiD (−Ti)−φdisiD (Ti)

]
. (20)

The clockwise- and counterclockwise-propagating neutrons impact the same point on mirror
B simultaneously, thus they receive identical displacement noise from the motion of B. As a
result, the signal φi after they interfere contains no displacement noise from B. However, due
to the fact that the clockwise- and counterclockwise-propagating neutrons interact with A, C,
and D at different times, displacement noise cannot be fully eliminated.

3.2. Displacement noise in frequency domain

In order to cancel the displacement noise of A, C, and D, we must consider the displacement
noise in the frequency domain. In this paper, we define the Fourier transform as follows

f(t)≡
ˆ
F(ω)e−iωtdω. (21)

Note that lowercase letters represent variables in the time domain and uppercase letters rep-
resent variables in the frequency domain. We can express dj(t) as

dj (t)≡
ˆ
Dj (ω)e−iωtdω, (22)

where Dj(ω) is the complex amplitude of the mirror displacement at frequency ω. We can
express φdisi j (t) in the frequency domain as

Φdis
i j (ω) = 2ki ·Dj (ω) . (23)

Since the normals of the surfaces of test masses A, C, and D have only x-components,
equation (17) can be rewritten using the unit vector in the x direction ex as

φdisi j (t) =
2m
! (vi (t) · ex)(dj (t) · ex) =

2mvix
! dj (t) , (24)

where vix is the x component of vi. Although the z component of ki changes with time due to
gravity, it does not affect φdisi j (t), which is proportional to the inner product of ki and Dj. We
treat ki as a time-invariant variable because the calculation of Φij(ω) (in equation (23)) does
not require consideration of the time variation of ki. Considering the velocity of the neutrons
at the time they impact each test mass, the ω component of equation (20) is given by

Φdis
i (ω) =−2ki ·

[
DA

(
e−i2ωTi − ei2ωTi

)

+DC
(
e−iωTi − eiωTi

)
−DD

(
eiωTi − e−iωTi

)]
.

(25)

3.2.1. Method of cancelling displacement noise of mirrors C and D. First, we consider the
displacement noise of mirrors C and D in the frequency domain. Table 2 shows the displace-
ment noise of C and D in the interferometer signals of the neutrons.

Φdis
i (ω) contains the displacement noise of mirrors C and D. In order to normalize the

interferometer signals with different neutron velocities, we divide Φdis
i (ω) by vhi /

√
2c and we

obtain

8
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Table 2. Displacement noise of the test masses C and D.

Test masses C D

Clockwise Φc
i 2ki ·DC(ω)e−iωTi 2ki ·DD(ω)eiωTi

Counterclockwise Φcc
i 2ki ·DC(ω)eiωTi 2ki ·DD(ω)e−iωTi

Interferometer Signal Φi 2ki ·DC(ω)(e−iωTi − eiωTi) 2ki ·DD(ω)(eiωTi − e−iωTi)

Φdis ′
i (ω)≡

√
2c
vhi

Φdis
i (ω)=−4mc

! [DA(ω)(−isin2ωTi)+DC(ω)(−isinωTi)+DD(ω)(−isinωTi)] .

(26)

Here, we take into account n1 and n2. Since the ratio of the magnitudes of the displacement
noise caused by C and D in Φdis ′

1 (ω) and Φdis ′
2 (ω) is sinωT1 : sinωT2, they can be eliminated

by the following signal processing:

Φdis
12 (ω)≡ α1Φ

dis ′
1 (ω)−α2Φ

dis ′
2 (ω), (27)

α1 = sinωT2, α2 = sinωT1. (28)

We can explain the fact that Φdis
12 (ω) has no displacement noise from C and D with a phasor

diagram as shown in figure 5. The green and yellow lines represent the displacement noise
in Φdis

1 (ω) and Φdis
2 (ω), respectively. Since the green and yellow lines (both solid and dashed

arrows, which represent the displacement noise due to mirrors Ci and Di, respectively) are
parallel in the phasor diagram, they can be simultaneously eliminated by subtracting a real
coefficient. The details of the calculations are as follows:

Φdis
12 (ω) =−4mc

! [DA (−isinωT2 sin2ωT1)+ (DC +DD)(−isinωT1 sinωT2)]

+
4mc
! [DA (−isinωT1 sin2ωT2)+ (DC +DD)(−isinωT1 sinωT2)] ,

=−i4mc! DA (sinωT1 sin2ωT2 − sinωT2 sin2ωT1) . (29)

Similarly, we can obtain Φdis
34 (ω), that has no displacement noise from C and D as

Φdis
34 (ω)≡ α3Φ

dis ′
3 (ω)−α4Φ

dis ′
4 (ω),

=−i4mc! DA (sinωT3 sin2ωT4 − sinωT4 sin2ωT3) . (30)

α3 = sinωT4, α4 = sinωT3. (31)

3.2.2. Method of canceling displacement noise of A. In this subsection, we will focus on the
displacement noise of BSA in the frequency domain. In the Sagnac-type neutron DFI configur-
ation, the clockwise-propagating neutrons always pass through A and are thus not affected by
its displacement. However, the counterclockwise neutrons accumulate the displacement noise
of A twice, at t=−2Ti and t= 2Ti. If A is displaced by dA at t=−2Ti, the counterclockwise
neutron propagation distance increases, leading to an advance in the neutron phase. Conversely,
if A is displaced by dA at t= 2Ti, the counterclockwise neutron propagation distance decreases,

9
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Figure 5. Phasor diagram that illustrates the cancelation of displacement noise from
mirrors C and D. Each arrow represents the displacement noise that the neutrons receive
with the length of the arrows indicating the amplitude of the displacement noise, and
the direction indicating the phase of the displacement noise. The solid arrow represents
the displacement noise of mirror C, and the dashed arrow represents the displacement
noise of mirror D. The color of the arrows correspond to the source of the displacement
noise. The red line represents the displacement noise of mirror C or D in Φc,dis

1 (ω). The
blue line represents the displacement noise in Φc,dis

1 (ω), while the pink and purple lines
represent the displacement noise in Φc,dis

2 (ω), respectively. The green and yellow lines
represent the displacement noise inΦdis

1 (ω) andΦdis
2 (ω), respectively. Finally, the black

line represents the displacement noise at t= 0.

resulting in a delay in the neutron phase. As a result, the sign of the displacement noise of A is
opposite for t=−2Ti and t= 2Ti. The impact of the displacement noise of A on Φdis

i (ω) can
be expressed as

Φdis
i (ω) =−2ki ·DA (ω)

(
e−i2ωTi − ei2ωTi

)
. (32)

Similar to themethod for canceling the displacement noise of mirrors C andD in equation (27),
the displacement noise of A can be cancelled by combining two signals containing the dis-
placement noise of A. If we cancel the displacement noise of A using Φdis

12 (ω) and Φdis
34 (ω),

which contain noise components from A only, we can obtain a signal ΦSagnacDFI(ω) that has
all displacement noise of the Sagnac-type DFI canceled:

Φdis
SagnacDFI (ω) = β1Φ

dis
12 (ω)−β2Φ

dis
34 (ω) = 0, (33)

where

β1 = sin2ωT3 sinωT4 − sin2ωT4 sinωT3 and β2 = sin2ωT1 sinωT2 − sin2ωT2 sinωT1.
(34)

Specifically, the coefficient of DA in Φdis
12 (ω) (= β2) and that in Φdis

34 (ω) (= β1) are multiplied
by Φdis

34 (ω) and Φdis
12 (ω), respectively, and subtracted to cancel the BS A displacement noise.

3.2.3. Sagnac effect in Sagnac-type neutron DFI. In the Sagnac-type neutron DFI, neutrons
undergo the Sagnac effect and experience a phase change when they are detected after circling
the interferometer, if the interferometer rotates with a certain angular frequency ω0. From the
perspective of the inertial system, the rotation of the interferometer can be expressed by the
displacement of each test mass. However, in the DFI, all displacement noise is canceled. Thus,
the signals obtained from a Sagnac-type neutron DFI,ΦSagnacDFI(ω), do not include the Sagnac
effect.

10
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4. Gravitational wave signal of neutron DFI

4.1. Gravitational wave signal in a Sagnac-type neutron DFI

Let us consider the Klein–Gordon equation for a particle with mass m,

(
− 1
c2
∂2

∂t2
+∇2 − m2c2

!2

)
φ(t,x) = 0. (35)

The wave function at time t and position x with wavenumber vector k and angular frequency
of neutrons Ω is

φ0 (t,x) = ei(Ωt−k·x). (36)

Due to the effect of GWs, equation (36) becomes

φ(t,x) = φ0(t,x) [1+ iφgw((t,x)] . (37)

In the TT gauge, if the GWs propagate through flat spacetime, we can write

ds2 =−(cdt)2 + [ηab+ hab (t,x)]dxadxb (a,b= 1,2,3) . (38)

Here, ηab is a metric of a flat space. In this coordinate system, from equation (35) we obtain

1
c2

(
Ω+

∂φgw

∂t

)2

− kakb
(
1− hab

)2
= 0. (39)

The leading order term in hab is

∂φgw

∂t
=−habkakbc2

2Ω
(40)

≈−habkakb!
2m

. (41)

Here, assuming that the wavenumber vector is sufficiently small, we can make the following
approximation,

Ω2

c2
≈ m2c2

!2 . (42)

As mentioned in section 2, ni propagate through the interferometer on the trajectories rep-
resented by equations (1)–(13). Here we reset the time, that is, we set the time to be t0 when
the ni cross the surface of BS A. The wavenumber vectors of the neutrons during propagation
are given by

kiAC (t) =
m
!

(
− 1√

2
vhi ,−

1√
2
vhi ,v

v
i − g(t− t0)

)
, (43)

kiAD (t) =
m
!

(
1√
2
vhi ,−

1√
2
vhi ,v

v
i − g(t− t0)

)
, (44)

kiCB (t) =
m
!

(
1√
2
vhi ,−

1√
2
vhi ,v

v
i − g(t− t0)

)
, (45)

kiDB (t) =
m
!

(
− 1√

2
vhi ,−

1√
2
vhi ,v

v
i − g(t− t0)

)
, (46)

11
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kiBD (t) =
m
!

(
1√
2
vhi ,

1√
2
vhi ,−vvi − g(t− t0 − 4Ti)

)
, (47)

kiBC (t) =
m
!

(
− 1√

2
vhi ,

1√
2
vhi ,−vvi − g(t− t0 − 4Ti)

)
, (48)

kiDA (t) =
m
!

(
− 1√

2
vhi ,

1√
2
vhi ,−vvi − g(t− t0 − 4Ti)

)
,and (49)

kiCA (t) =
m
!

(
1√
2
vhi ,

1√
2
vhi ,−vvi − g(t− t0 − 4Ti)

)
. (50)

The phase change of φgwi caused by GWs is given by

∂φgwi
∂t

≈−habkiakib
2m

!. (51)

Therefore, the phase change induced by the GWs during propagation between points red D
and B is

φgwiDB (t) =− !
2m

ˆ t+Ti

t
hab (t ′,xDB (t ′))kiDBa (t ′)kiDBb (t ′)dt ′. (52)

Defining Hab(ω) as the Fourier transform of the GWs at angular frequency ω,

hab (t,x(t)) =
ˆ
Hab (ω)e−iωtdω. (53)

If we expand hab(t) at the position x(t), we obtain the second term of order kgw · x(t). (kgw
is a GW wave vector.) However, this second term is negligible because the typical size of a
Sagnac-type DFI is x∼ 100m, and kgwx∼ x/λgw is much smaller for GWs at 1 Hz [14]. For
simplicity, we ignore the x(t)-dependence of Hab(ω). In this paper, we calculate the response
of a Sagnac-type neutron DFI to cross-mode GWs traveling in the z-axis direction. The Fourier
transform of the GW signal received by a neutron with velocity vi is:

Φgw
iDB (ω)≈− !

2m

{
P0 (ω)kiDBakiDBbHab (ω)

}
, (54)

where

P0 (ω) =− i
ω

(
1− e−iωTi

)
. (55)

When GWs of amplitude hab, polarization angle ψ, and angle of incidence (θ,ϕ) arrive, the
corresponding rotation matrix is

R=




cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1








cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ








cosψ sinψ 0
−sinψ cosψ 0

0 0 1



 , (56)

and the GW strain h
′

ab is

h
′

ab =RapRbqhpq =
(
RhRT)

ab . (57)

Similarly, the GW signals received by the clockwise- and counterclockwise-propagating neut-
rons are given by

φc,gwi (t) = φgwAD (t− Ti)+φgwDB (t)+φgwBC (t+ Ti)+φgwCA (t+ 2Ti) , (58)

φcc,gwi (t) = φgwAC (t− Ti)+φgwCB (t)+φgwBD (t+ Ti)+φgwDA (t+ 2Ti) . (59)

12
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The Fourier transforms of equations (58) and (59) are

Φc,gw
i (ω) = Φgw

AD (ω)e
iωTi +Φgw

DB (ω)+Φgw
BC (ω)e

−iωTi +Φgw
CA (ω)e

−2iωTiand (60)

Φcc,gw
i (ω) = Φgw

AC (ω)e
iωTi +Φgw

CB (ω)+Φgw
BD (ω)e

−iωTi +Φgw
DA (ω)e

−2iωTi . (61)

For the DFI scheme, detection timing is crucial. In practice, the timing of neutron detection
is affected by clock noise τ . Clock noise in terms of neutrons’ phase is the cumulative effect
of clock deviations at each mirror or BS due to reflections. We define the phase clock noise
φc,clocki (t) and φcc,clocki (t) and their Fourier transforms Φcc,clock

i (ω) and Φcc,clock
i (ω) as

φc,clocki (t) = φcc,clocki (t) =
mc2

! (τA (t+ 2Ti)− τA (t− 2Ti)) , (62)

Φc,clock
i (ω) = Φcc,clock

i (ω) =
mc2

!
(
e−2ωTiτA (ω)− e2ωTiτA (ω)

)
. (63)

The phase of the ni are given by

Φc
i (ω) = Φc,gw

i (ω)+Φc,dis
i (ω)+Φc,clock

i (ω) , (64)

Φcc
i (ω) = Φcc,gw

i (ω)+Φcc,dis
i (ω)+Φcc,clock

i (ω) . (65)

The GW signal that the ni receive during propagation between A and C is given by

Φgw
iDB ≈− !

2m

{
P0 (ω)kDBakDBbH

ab (ω)
}
,

= ihgw
m
2!ω

(
vhi
)2 (

1− e−iωTi
)
, (66)

where hgw is the GW amplitude. Because of the difference in neutron propagation direction,
GW signals that neutrons receive during propagation along each side of the Sagnac-type neut-
ron DFI are expressed as

Φgw
iAD =−Φgw

iDB, Φgw
iBC =−Φgw

iDB, Φgw
iCA = Φgw

iDB. (67)

Substituting equations (66) and (67) into equation (58), Φc,gw
i (ω) can be written explicitly as

Φc,gw
i (ω) = Φgw

iDB

(
−eiωT1 + 1− e−iωT1 + e−2iωT1

)

= Φgw
iDB

[
−
(
eiωTi + e−iωTi

)
+ e−iωTi

(
eiωTi + e−iωTi

)]

= Φgw
iDB

[
2
(
−1+ e−iωTi

)
cos(ωTi)

]

= ihgw
m
!ω

(
vhi
)2 (

1− e−iωTi
)(

−1+ e−iωTi
)
cosωTi,

=−ihgw m
!ω

(
vhi
)2
e−iωTi

(
ei

ωTi
2 − e−i

ωTi
2

)2
cosωTi,

=−ihgw m
!ω

(
vhi
)2
e−iωTi

(
2i sin

ωTi
2

)2

cosωTi

= 4ihgw
m
!ω

(
vhi
)2
e−iωTi (1− cosωTi)cosωTi. (68)
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The sign of the GW signal from the z direction received by the neutrons depends on the velocity
of the neutrons in the xy-plane. The sign of the GW signal received by neutrons traveling along
the same path in the opposite direction is opposite. Thus, Φc,gw

i (ω) =−Φcc,gw
i (ω).

By combining signals for displacement noise cancellation in Φc,gw
i (ω) and Φcc,gw

i (ω), the
GW signal Φgw

SagnacDFI contained in ΦSagnacDFI is calculated as

Φgw
i (ω) = Φc,gw

i (ω)−Φcc,gw
i (ω) = 2Φc,gw

i (ω) . (69)

Thus,

Φgw
12 (ω) = α1

√
2c
v1

Φgw
1 (ω)−α2

√
2c
v2

Φgw
2 (ω) , Φgw

34 (ω) = α3

√
2
c
v3Φ

gw
3 (ω)−α4

√
2
c
v4Φ

gw
4 (ω) ,

(70)

and

Φgw
SagnacDFI (ω) = β1Φ

gw
12 (ω)−β2Φ

gw
34 (ω) . (71)

4.2. Gravitational wave signal of a single, two-velocity neutron DFI

Similar to the GW signals in the Sagnac-type neutron DFI, the GW signals in the single, two-
velocity neutron DFI Φgw

SingleDFI, are obtained as follows:

Φgw
SingleDFI = ihgw

m
!ω

[
γ1

(
vh1SingleDFI

)2 (
1− e−iωT1

)2 − γ2
(
vh2SingleDFI

)2 (
1− e−iωT2

)2]
, (72)

where

γ1 =

√
2csinωT2
vh1SingleDFI

and γ2 =

√
2csinωT1
vh2SingleDFI

. (73)

5. Sensitivity

DFI signal, as its name implies, is free from displacement noise. Therefore, the sensitivity of
a DFI to GW signals is limited by neutron shot noise. If the flux of the neutrons ni is Fi, then
their shot noise Ni is given by

Ni =
1√
Fi
. (74)

In a neutron DFI, a signal without any displacement noise is obtained by combining signals
from neutrons with four velocities. Since N1,N2,N3, and N4 are all independent of each other,
the shot noise NSagnacDFI after DFI combination is given by

NSagnacDFI =

√(
α1β1

√
2c
vh1

N1

)2

+

(
α2β1

√
2c
vh2

N2

)2

+

(
α3β2

√
2c
vh3

N3

)2

+

(
α4β2

√
2c
vh4

N4

)2

. (75)

Similarly, the shot noise of a single, two-velocity neutron DFI is given by [15]

NSingleDFI =
√
2(γ1N1)

2 + 2(γ2N2)
2. (76)
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Table 3. Neutron velocity.

i vi (ms−1) vhi (ms−1) vvi (ms−1)

1 93.31 87.00 33.74
2 75.00 69.00 29.39
3 77.04 77.00 2.59
4 100.00 100.00 0

Note that the factor of 2 in γ1N1 and γ2N2 comes from the fact that a single, two-velocity
neutron DFI uses two neutron beams with velocities v1 and v2. In the GW detection, the GW
signal is expressed in the unit of /

√
Hz as,

SDFI (ω) = |Φgw
DFI|ω

1/2. (77)

Setting SDFI/NDFI = 1, we obtain the amplitude spectral density of shot noise limited sensitivity
to GW amplitude hn of the Sagnac-type neutron DFI in /

√
Hz.

hn (ω)≡ Hn (ω)ω
1/2

=
NDFI (ω)

Φnorm
DFI (ω)

, (78)

where Φnorm
DFI (ω) is the GW signal normalized by the GW amplitude hgw,

Φnorm
DFI (ω)≡ SDFI (ω)

hgw
. (79)

In this paper, we optimize the sensitivity by varying the velocity of neutrons incident on the
DFI. We have calculated the sensitivity for various combinations of neutron velocities in the
range of vi = 75ms−1 to 100ms−1, where similar fluxes are expected. Note that the neut-
ron velocities were varied at 1ms−1 intervals, and we assume a constant neutron flux at all
velocities (Fi = 106 /s). Table 3 shows the most sensitive combinations of neutron velocities.

Let us compare the sensitivity of a Sagnac-type neutron DFI and a single, two-velocity
neutron DFI with the same interferometer size (L= 100m), four-velocity neutron sources, and
the same neutron flux. These sensitivities are optimized for the incident neutron velocities. The
sensitivity of the single, two-velocity neutron DFI is calculated with v1SingleDFI = 75ms−1 and
v2SingleDFI = 100ms−1.

Figure 6 shows that the sensitivity of the Sagnac-type neutron DFI is higher than that of the
single, two-velocity neutron DFI around 0.4Hz. This is indicated by the dip in the Sagnac-type
curve being lower than that of the single, two-velocity curve at that frequency. The signal-to-
noise ratio (SNR) is defined as

(SNR)2 ≡ 4
ˆ fmax

fmin

|hgw ( f) |2

hn ( f)
2 df, (80)

where fmax = 10Hz, fmin = 10−2Hz. The ratio of SNR of the Sagnac-type neutron DFI to the
single, two-velocity DFI, Sr, for GW signals from binary stars proportional to f−

7
6 [8, 17] with

arbitrary magnitude is

Sr ≡
SNRSagnacDFI

SNRSingleDFI
≈ 1.57. (81)
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Figure 6. Sensitivities of a Sagnac-type neutron DFI and a single two-velocity neutron
DFI.

6. Discussion

First, let us consider the amount of phase change experienced by ni as they propagate inside
the interferometer due to GWs traveling in the z direction. Newtrons, ni traverse one side of
the interferometer in time, Ti. When cross-mode GWs with a period of 2Ti pass the interfer-
ometer, the neutrons undergo the maximum phase shift. In the Sagnac-type neutron DFI, the
neutrons are affected by GWs as they propagate through four sides of the interferometer. In
a single, two-velocity neutron DFI the neutrons are affected by GWs only as they propagate
through two sides of the interferometer. The neutrons in the Sagnac-type neutron DFI experi-
ence twice the phase change,Φgw

i (ω), compared to those in a single two-velocity neutron DFI.
Thus, the ratio of Φgw

i (ω) to Ni in the Sagnac-type neutron DFI is twice that in a single two-
velocity neutron DFI. Figure 6 shows the best sensitivity, hn, of the Sagnac-type neutron DFI
is 1.9× 10−15 /

√
Hz, and that of the single two-velocity neutron DFI is 2.9× 10−15 /

√
Hz.

These magnitudes differ only by a factor of about 1.5, due to a difference in signal processing.
The frequency (period) of the GWs that produce the largest phase change depends on the vhi of
the neutrons used to calculate the DFI signal. Since several neutrons, ni, (i = 1 to 4) are used,
the DFI signal is calculated by subtracting the neutron signals with different velocities from
each other, and a part of the GW signals is also subtracted. The Sagnac-type neutron DFI with
more subtractions of neutron signals loses more GW signals in the signal processing than a
single, two-velocity neutron DFI. Thus, the best sensitivity hn of the Sagnac-type neutron DFI
and that of the single, two-velocity neutron DFI differ only by a factor of about 1.6.

Next, let us consider the peaks that appear in the Sagnac-type neutron DFI sensitivity curve.
These peaks have two origins. The first is that neutrons traverse square orbits, and the second
is the coefficients αi and βi used in signal processing. According to equation (68),Φ

gw
i ∝ (1−

cosωTi)cosωTi = 0 when ω = 2nπ
Ti

or π
Ti
(n− 1

2 )(n= 1,2, . . .). This means that the sums
of the GW signals with periods of Ti/n or 2Ti/(n− 1

2 ) (n= 1,2, . . .) on the ni is zero. First,
when ni propagate along one side of the interferometer, cross-mode GWs with a period of
Ti/n induce a positive (or negative) phase change and an equal and opposite phase change.
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Second, the ni are not sensitive to GWs with a period of Ti/n. Neutrons with vhi reflected from
the mirrors bend their propagation direction by 90 degrees every Ti. Cross-mode GWs with a
period of 2Ti/(n− 1

2 ) give a constant phase change while the neutrons propagate along one
side of the interferometer, and an equal and opposite phase change while they propagate along
the opposite. Therefore, the round trip phase change induced by the cross-mode GWs with a
periods of 2Ti/(n− 1

2 ) is zero. Since the neutron signals Φi(ω) do not have a GW signal with
a specific period (frequency), the DFI is not sensitive to GWs at that frequency.

Next, let us focus on the coefficients used for signal processing αi and βi. When ω =
nπ
T2
, α1 ≡ sinωT2 = 0. When ω = nπ

T3
, nπT4 or cosωT3 − cosωT4 = 0, β1 ≡ sin2ωT3 sinωT4 −

sin2ωT4 sinωT3 = 2sinωT3 sinωT4(cosωT3 − cosωT4) = 0. To summarize, α1β1Φ
gw
1 = 0

when

ω =
2nπ
T1

,
π

T1

(
n− 1

2

)
,
nπ
T2

,
nπ
T3

,
nπ
T4

(n= 1,2, . . .) or cosωT3 − cosωT4 = 0. (82)

Similarly, α1β1Φ
gw
2 = 0 when

ω =
2nπ
T2

,
π

T2

(
n− 1

2

)
,
nπ
T1

,
nπ
T3

,
nπ
T4

(n= 1,2, . . .) or cosωT3 − cosωT4 = 0. (83)

Thus, β1(α1Φ
gw
1 −α2Φ

gw
2 ) = 0 when

ω =
2nπ
T1

,
2nπ
T2

,
nπ
T3

,
nπ
T4

(n= 1,2, . . .) or cosωT3 − cosωT4 = 0. (84)

The lowest frequencies that satisfy each of these conditions derived from 1
T1
, 1
T2
, 1
2T3

, 1
2T4

, and
cosωT3 − cosωT4 = 0 are respectively,

f = 0.870Hz,0.69Hz,0.385Hz,0.500Hz, and f≈ 0.435Hz. (85)

Similarly, β2(α3Φ
gw
3 −α4Φ

gw
4 ) = 0 when

ω =
nπ
T1

,
nπ
T2

,
2nπ
T3

,
2nπ
T4

(n= 1,2, . . .) or cosωT1 − cosωT2 = 0. (86)

The lowest frequencies that satisfy each of these conditions derived from 1
2T1

, 1
2T2

, 1
T3
, 1
T4
, and

cosωT1 − cosωT2 = 0 are respectively,

f = 0.435Hz,0.345Hz
(
=

1
2T2

)
,0.770Hz,1.000Hz, and f≈ 0.385Hz. (87)

According to equations (85) and (87), Φgw
SagnacDFI = 0 when

f =
n
T1

,
n
T2

,
n
T3

,
n
T4

,(n= 1,2, . . .) (88)

in addition,Φgw
SagnacDFI ≈ 0 at the frequencies corresponding to ( 1

2T1
and cosωT3 − cosωT4 = 0)

and ( 1
2T3

and cosωT1 − cosωT2 = 0), respectively,

f ≈ 0.435Hz and f≈ 0.385Hz. (89)

Thus, the sensitivity curve of Φgw
DFI(ω) in figure 6 has the peaks at the frequencies in

equations (88) and (89).
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7. Conclusion

In this paper, we propose a Sagnac-type neutron DFI and have confirmed analytically that DFI
can be realized by injecting neutrons into a Sagnac-type neutron interferometer considering the
influence of gravity. We have also shown that the sensitivity of the Sagnac-type neutron DFI
is superior to that of the conventional single, two-velocity DFI. When canceling displacement
noise with multiple signals, the location and time at which the neutrons receive the displace-
ment noise are important. In order to cancel the displacement noise of all test masses with four
neutron signals, we adjust the neutrons’ velocities and injection angles to satisfy the following
conditions: (1) The neutron trajectories are symmetrical about the y-axis. (2) The four neutron
groups are incident on the interferometer at the same point on BS A. (3) Neutrons, neutrons1
and neutrons2 (neutrons3 and neutrons4) hit the same points on C1 and C2 (D1 and D2) in
figure 4, respectively. Additionally, we optimize the incident neutron velocities to achieve the
best sensitivity for both the Sagnac-type neutron DFI and the single, two-velocity neutron DFI.

One of the technical challenges we face in realizing a Sagnac-type neutron DFI is the neut-
ron reflection angle. Currently, mirrors with a reflection angle of only a few degrees have been
created using current technology. However, there is no fundamental principle that limits the
reflection angle. Thus, it is possible to develop a mirror with a large reflection angle, such as
45◦. Other practical issue that must be considered when demonstrating neutron DFI experi-
mentally is the accuracy and capability of the instrument. The sensitivity of neutron DFI is
affected by factors such as the accuracy of the distance between test masses, the reflectivity of
the mirrors, the flux of neutrons and the accuracy of the displacement noise cancellation. For
example, neutron beamswith velocity ranging from 75m s−1 to 100m s−1 are limited to a flux
of about 106 s−1 using the PF2 beamline at the ILL reactor in France. In the future, fluxes of up
to 109 s−1 can be anticipated using beams from the ESS accelerator neutron source, which is
currently under construction.We anticipate that even higher fluxes will be possible in principle,
although we will have to wait for future facilities to be built. The accuracy of noise cancel-
lation depends on the precision of neutron velocity determination (this is frequency noise).
Increasing the distance from the neutron source to the interferometer increases the required
accuracy of velocity determination. If the velocity is determined with an accuracy of 0.1 % or
better, the sensitivity curve will not be affected as long as the mirror displacement is below
10−11m

√
Hz

−1
. For these reasons, developing such a technique is challenging, but we believe

it is feasible. A more detailed study of these technical issues will be the subject of future work.
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