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There may exist stellar-mass binary black holes (BBH) which merge while orbiting nearby a
supermassive black hole (SMBH). In such a triple system, the SMBH will modulate the gravitational
waveform of the BBH through orbital Doppler shift and de Sitter precession of the angular momentum.
Future space-based gravitational wave (GW) observatories focused on the milli- and decihertz band will be
uniquely poised to observe these waveform modulations, as the GW frequency from stellar-mass BBHs
varies slowly in this band while modulation effects accumulate. In this work, we apply the Fisher
information matrix formalism to estimate how well space-borne GW detectors can measure properties of
BBHþ SMBH hierarchical triples using the GW from orbiting BBH. We extend previous work by
considering the more realistic case of an eccentric orbit around the SMBH, and notably include the effects
of orbital pericenter precession. We find that for detector concepts such as LISA, B-DECIGO, and TianGO,
we can extract the SMBHmass and semimajor axis of the orbit with a fractional uncertainty below the 0.1%
level over a wide range of triple system parameters. Furthermore, we find that the effects of pericenter
precession and orbital eccentricity significantly improve our ability to measure this system. We also find
that while LISA could measure these systems, the decihertz detector concepts B-DECIGO and TianGO
would enable better sensitivity to the triple’s parameters.
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I. INTRODUCTION

Since the first detection of gravitational waves (GWs),
GW astronomy by ground-based detectors has cemented
itself as an advantageous method for studying binary
systems of compact objects, the majority of which are
binary black holes (BBHs) [1–3]. Within the population of
observed BBHs, there are systems with progenitors whose
masses exceed the predictions of stellar evolution [4–7].
One possible explanation of this detection could be that the
progenitors themselves were themselves products of pre-
vious mergers [8–11]. The deep potential wells created by
supermassive black holes (SMBHs) and their host galactic
nuclei could trap the products of stellar mass BBHmergers,
making galactic nuclei ideal locations for generating many
repeated compact object mergers [10–12]. Numerical
simulations of BBH formation in galactic nuclei due to
gas friction [13,14] and dynamic capture through gravita-
tional interactions [15] suggest that the cosmological
merger rate of BBH near galactic nuclei could be of order
∼ a few Gpc−3 yr−1. Studying the properties of these
repeated merger systems and of the SMBHs which encour-
age their formation could open a new window on under-
standing the dynamics of galactic nuclei and the processes

which drive galaxy evolution. The most recent analysis of
the BBH population in GWTC-3 is consistent with con-
tributions from both isolated and AGN formations [16],
though more observations are needed.
In a hierarchical triple system consisting of a stellar-mass

BBH orbiting an SMBH, as depicted in Fig. 1, the presence
of the SMBH would modulate the BBH GW signal through
many effects. For example, the velocity of the BBH in its
orbit will produce a Doppler shift in the waveform [17–19].
Allowing the BBH to take an eccentric orbit around the
SMBH introduces relativistic effects such as pericenter
precession as the outer orbital path approaches near the
SMBH [20]. Furthermore, the presence of the SMBH will
cause the orbital angular momentum of the inner binary
L̂i to experience de Sitter precession about the orbital
angular momentum of the outer binary L̂o [21]. This effect
modulates the inclination angle of the BBH angular
momentum relative to an observatory in the Solar
System. The Lidov-Kozai and Lense-Thirring effects also
play a role in the evolution of hierarchical triples [22,23].
By measuring the effects of Doppler shifts, pericenter

precession, and de Sitter precession on the stellar-mass
BBH gravitational waveform, one can measure the proper-
ties of this triple system, including the SMBH mass,
semimajor axis of the outer orbit, and various angles
describing the system geometry [17–20,22–24]. In order*alaeuger@caltech.edu
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to substantially modulate the GW signal, these effects must
accumulate over timescales on the order of an orbital
period, which for typical BBHþ SMBH triple systems
can range from months to years. But because the current
ground detectors in LIGO/Virgo/KAGRA are most sensi-
tive between 10 Hz to a few kHz, which correspond to only
the final seconds before merger for a stellar-mass BBH,
current GW observatories are not optimal for extracting
hierarchical triple system parameters through the influence
of the SMBH on the waveform [25,26].
However, the coming decades could see the construction

of a number of proposed space-based detectors which
would be sensitive to frequencies below ∼1–10 Hz.
Building low frequency detectors in space is necessary

due to technical challenges from seismic noise [27,28] and
the need to create arms which are large compared to the
curvature of the Earth. The LISA [29], TianQin [30], and
Taiji [31,32] detectors will target the millihertz GW band,
while detector concepts such as B-DECIGO [33,34] and
TianGO [35,36] will focus on the decihertz band. Since the
instantaneous orbital decay timescale due to GW emission
during inspiral scales roughly with ω−8=3

orb [37], space-based
low-frequency detectors could observe stellar mass BBH
for much longer times than ground detectors, making them
more favorable for measurements of SMBH-driven effects
in the BBH waveform.
Measuring a SMBH with an orbiting binary’s GW

would be useful for studying the environment at the
center of galaxies. In a recent work by Yu and Chen, it
is shown that these proposed low-frequency GW observa-
tories could feasibly measure properties of interest to the
few percent level over a wide range of possible BBHþ
SMBH systems [24]. Current observational methods for
measuring properties of SMBHs and their local environ-
ments include tracking the orbital dynamics of nearby test
masses, like stars, and reverberation mapping of the
emission line fluxes from the accretion disk, if the
SMBH is active [38]. Recent advances in observational
technology and modeling active galactic nuclei have
enabled constraints of the masses of their central
SMBHs to roughly 10% precision [39–42], though the
results obtained by each method do not always agree [43].
Adding a GW-based technique to this toolkit could expand
the set of observable SMBHs with well-constrained
properties to those which may have few electromagnetic
radiation sources nearby [24] or foster improvements in
established electromagnetic techniques through compar-
isons of joint measurements. Indeed, there has been
significant progress in understanding how space-based
GW observatories may be able to measure properties of
SMBHs and the objects orbiting them through a variety of
triple system phenomena [23,44–47].
The initial work of Yu and Chen assumes a cir-

cular Newtonian outer orbit in the BBHþ SMBH triple
system [24]; however, it is expected that formation
channels for these systems, especially those which are
dynamical in nature, should produce a sizeable population
of triples with eccentric outer orbits [48]. In this work, we
examine how adding a nonzero eccentricity to the outer
orbit affects parameter measurement uncertainties. We
demonstrate that a nonzero outer eccentricity can signifi-
cantly improve these uncertainties compared to the
circular case, primarily through the inclusion of outer
orbit pericenter precession. In order to estimate parameter
uncertainties, we rely on the Fisher information matrix, a
method which has been frequently used in the past to
gauge the measurability of compact binary parameters by
ground-based GW observatories [49]. In short, we find
that uncertainties in triple system parameters can

FIG. 1. Top: Geometry of the SMBHþ BBH triple system.
Bottom, inset: View of the triple system normal to the plane of the
outer orbit. The outer orbit angular momentum L̂o points out of
the page. See the discussion below and Table I for definition of all
parameters. Figure dimensions are not an indication of true scale.
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consistently fall below the 0.1% level, and that these
parameters are measured more precisely with larger eo
and by detectors targeting the decihertz band. We also
find that the general trends in parameter measurement are
influenced almost entirely by pericenter and de Sitter
precession.
In Sec. II, we outline the mathematical description of the

gravitational waveform emitted from a BBH in a hierarchical
triple and detected by a space-borne observatory. In Sec. III,
we outline the Fisher matrix calculation as applied to
parameter estimation and explain some simplifications we
make to the computation. In Sec. IV, we present the results of
our Fisher matrix computations, and in Sec. V, we offer
conclusions and possible directions for thiswork to proceed in
the future. In this work, we use geometrized unitsG ¼ c ¼ 1.

II. MATHEMATICAL DESCRIPTION OF THE
SMBH+BBH TRIPLE SYSTEM

A. Geometry

We first describe the full geometry of the SMBHþ BBH
triple system with an eccentric outer orbit. Table I below
outlines the set of relevant parameters used in calculating
the waveform measured by a space-borne GWobservatory.
In Fig. 1, the barred coordinates demarcate a Solar System
centered coordinate system, while the unbarred coordinates
demarcate a coordinate system based on the orientation of
the observatory.
In order to compute the antenna response, we need to be

able to convert from the unbarred coordinates to the barred
coordinates, which for a constellation-preserving observa-
tory such as LISA, is as follows [50]:

x̂ ¼ −
1

4
sinð2ϕdÞ ˆ̄xþ

3þ cosð2ϕdÞ
4

ˆ̄yþ
ffiffiffi
3

p

2
sinðϕdÞ ˆ̄z ð1Þ

ŷ ¼ −3þ cosð2ϕdÞ
4

ˆ̄xþ 1

4
sinð2ϕdÞ ˆ̄y −

ffiffiffi
3

p

2
cosðϕdÞ ˆ̄z ð2Þ

ẑ ¼ −
ffiffiffi
3

p

2
cosðϕdÞ ˆ̄x −

ffiffiffi
3

p

2
sinðϕdÞ ˆ̄yþ

1

2
ˆ̄z: ð3Þ

We note that even though B-DECIGO will posses a
different detector geometry than LISA during its orbit,
we use the same configuration to simplify the analysis. The
sky location of the hierarchical triple is ðθ̄S; ϕ̄SÞ, which
points along the vector N̂, and has a luminosity distance of
DL. The triple itself consists of a BBH with black holes of

masses M1 and M2, or equivalently, a chirp mass of M ¼
ðM1M2Þ3=5
ðM1þM2Þ1=5

and mass ratio of q ¼ M2=M1, and an SMBH of

mass M3. The shape of the BBH’s orbit around the SMBH
can be determined by the semimajor axis ao, the eccen-
tricity eo, the angle γo, analogous to the initial Keplerian
argument of pericenter,1 and the initial BBH azimuthal
coordinate φo.
The unit vector of the angular momentum of the two

lighter black holes in the binary system is L̂i, and the unit
vector of the angular momentum of the binary’s orbit about
the SMBH is L̂o. The opening angle λL is defined by

cos λL ¼ L̂o · L̂i: ð4Þ

For jL⃗oj ≫ jL⃗ij and neglecting long timescale orbital
effects as well as the spin of the SMBH (see Sec. II D),
the opening angle stays constant in time, but the orientation
of L̂i traces a cone around L̂o due to de Sitter precession,
with

dL̂i

dt
¼ ΩdSL̂o × L̂i: ð5Þ

Based on Eq. (9.200) of [52], we use the instantaneous de
Sitter precession frequency2

ΩdSðtÞ ¼
3

2

M3

rðtÞ
φ̇ðtÞ; ð6Þ

TABLE I. Relevant parameters in BBHþ SMBH triple system
for GWobserved by detectors. Bars over angles indicate the Solar
System coordinate frame.

θa Definition

logMz Detector frame chirp mass: μ3=5ðm1 þm2Þ2=5

q Mass ratio M2=M1

logDL Luminosity distance
tc Coalescence time
ϕc Coalescence phase

θ̄S, ϕ̄S Line of sight of BBHþ SMBH triple

θ̄J, ϕ̄J Orientation of total angular momentum J

λL Angle between Li and Lo

α0 Initial phase of Li Around Lo

logM3 SMBH mass
log ao Outer orbit semimajor axis
γo Initial outer orbit argument of pericenter (See Note 1)
eo Outer orbit eccentricity
φ0 Initial BBH azimuthal coordinate

1Of course, the outer orbit is not strictly Keplerian. A rigorous
definition of the instantaneous argument of pericenter is subtle,
though the picture of an elliptical orbital path with a pericenter
that rotates in space at the 1PN-accurate angular velocity of

3M3

aoð1−e2oÞ
is appropriate as a rough approximation. Within the

mathematical framework of [51], γo is implemented as a simple
arbitrary rotation of the orbital plane, as in Eq. (12).

2Eq. (1) of the previous work [24] gave the orbit-averaged de
Sitter precession rate, which agrees with Eq. (6).
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where r is the distance from the SMBH to the center of the
BBH and φðtÞ is the azimuthal coordinate of the BBH in its
orbit (as shown in the inset of Fig. 1). The orbit-averaged
precession rate is

hΩdSi ¼
3

2

M3

aoð1 − e2oÞ
Ωo; ð7Þ

where Ωo ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3=a3o

p
is the Newtonian orbital frequency.

The phase of L̂i in this cone, as shown in the inset of Fig. 1,
can be found by integrating the time-dependent de Sitter
precession rate:

αðtÞ ¼ α0 þ
Z

tc

t
ΩdSðt0Þdt0; ð8Þ

where α0 is the phase at the time of the binary coales-
cence tc.
It is also useful to define the inclination angle ιJ of the

outer orbit angular momentum, given by

cos ιJ ¼ N̂ · L̂o: ð9Þ

B. BBH orbit in Schwarzschild spacetime

Despite the fact that there does not exist an analytic
description of an elliptical orbit in Schwarzschild space-
time, there are well-established methods for computing
Schwarzschild geodesics which can be applied to numeri-
cally calculate the BBH orbital trajectory [51,53–56]. In
particular, we follow the procedure of [51]. Defining
p ¼ ao

M3
ð1 − e2oÞ for semimajor axis ao and eo, we find a

minimum and maximum orbital radius

rmin¼
pM3

1þeo
; rmax ¼

pM3

1−eo
ð10Þ

Stable orbits only exist for p > 6þ 2eo [51], and we will
exclude unstable systems from this analysis.
A relativistic anomaly χ, which ranges from 0 to 2π, is

defined so that

rðχÞ ¼ pM3

1þ eo cos χ
; ð11Þ

Furthermore, the azimuthal coordinate is given by

φðχÞ ¼ 2

"
p

p − 6þ 2eo

#
1=2

$
F
"
χ
2
þ π

2
; k2

#

− F
"
π
2
; k2

#%
þ γo; ð12Þ

where k2 ¼ 4eo
p−6þ2eo

, F is the incomplete elliptic integral of
the first kind, and γo denotes the initial argument of
pericenter for the outer orbit (see Note 1).

The relationship between time and the relativistic
anomaly is given by

tðχÞ ¼ p2M3ðp − 2 − 2eoÞ1=2ðp − 2þ 2eoÞ1=2

×
Z

χ

0
dχ0fðp − 2 − 2eo cos χ0Þ−1ð1þ eo cos χ0Þ−2

× ðp − 6 − 2eo cos χ0Þ−1=2g: ð13Þ

In the end, the geodesic has a doubly periodic structure,
and the radius has a period of rðχÞ has a period of
Pr ¼ tð2πÞ. During a time of Pr, however, the azimuthal
variable travels further than 2π, which is the relativistic
pericenter precession. It is useful to define the shift in angle
over a radial period. This is equal to

Δφ ¼ 4

"
p

p − 6þ 2eo

#
1=2

Fðπ=2; k2Þ: ð14Þ

We note that this matches the 1PN GR result [57] for the
amount of precession during a radial period in the limit
p ≫ 1

Δφ ≈ 2πð1þ 3=pÞ ¼ 6π=pþ 2π: ð15Þ

Defining the azimuthal frequencyΩφ ≡ Δφ=Pr, it is shown
that φðtÞ −Ωφt is Pr–periodic [51]. We note that φðtÞ itself
is not periodic—since the orbit precesses, it takes < Pr
time for φ to move through 2π radians. Even though the
precession angle over a full orbit remains constant, the time
it takes to move through the precession angle will depend
on the BBH distance from the SMBH (conserving angular
momentum), so for an eccentric orbit, the time to complete
a full 2π in φ will depend on the starting value of φ itself.
To find rðtÞ and φðtÞ numerically over many full orbits,

we calculate the orbit over χ ∈ ½0; 2π& and utilize the
periodicity of rðχÞ and φðtÞ − Ωφt. We furthermore choose
some χ0 ≡ χðt ¼ 0Þ so that φðχ0Þ ¼ φ0, where φ0 is the
initial azimuthal coordinate of the BBH in the plane of the
outer orbit (see the bottom of Fig. 1). Furthermore, ṙðtÞ and
φ̇ðtÞ can be calculated by application of the chain rule to the
expressions relating r, φ, and t to χ above.

C. Waveform

We can now proceed to calculate the strain detected by
the space-based observatory, using the formalism of [21].
The overall measured signal is

h̃ðfÞ ¼ h̃C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþFþÞ2 þ ðA×F×Þ2

q

× expf−i½ΦP þ 2ΦT þΦD&g; ð16Þ

where h̃C is the carrier waveform of the BBH, Aþ;× and
Fþ;× are the polarization amplitude and antenna response,
respectively, and ΦP, ΦD, and ΦT are the polarization,
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Thomas, and Doppler phases. The carrier waveform in
the frequency domain to leading post-Newtonian (PN)
order is [58]

h̃CðfÞ¼
"
5

96

#
1=2 M5=6

π2=3DL
f−7=6

× exp
&
i
$
2πftc−ϕc−

π
4
þ3

4
ð8πMfÞ−5=3

%'
; ð17Þ

where tc and ϕc are the time and phase at coalescence. To
the leading PN order, the relationship between GW
frequency and time is given by

tðfÞ ≈ tc −
5

256π8=3
1

M5=3f8=3
: ð18Þ

The two polarizations of the strain, hþ and h×, are
modified by the amplitude factors

Aþ ¼ 1þ ðL̂i · N̂Þ2 ð19Þ

A× ¼ −2L̂i · N̂; ð20Þ

and furthermore, the antenna responses for a 90-degree
detector are

FþðθS;ϕS;ψSÞ ¼
1

2
ð1þ cos2θSÞ cos 2ϕS cos 2ψS

− cos θS sin 2ϕS sin 2ψS; ð21Þ

F×ðθS;ϕS;ψSÞ ¼
1

2
ð1þ cos2θSÞ cos 2ϕS sin 2ψS

þ cos θS sin 2ϕS cos 2ψS; ð22Þ

where

tanψSðtÞ ¼
L̂i · ẑ − ðL̂i · N̂Þðẑ · N̂Þ

N̂ · ðL̂i × ẑÞ
: ð23Þ

Note the use of the detector-frame coordinates in Eqs. (21)
and (22). For a triangular detector such as LISA or
B-DECIGO, the antenna pattern acquires a factor offfiffiffi
3

p
=2 and there are two effective detectors [59].
Let us now specify the phases in Eq. (16). Since the

phases are slowly varying functions of time, the stationary
phase approximation is used to convert them into frequency-
dependent components via Eq. (18)—i.e., for some function
gðtÞ appearing in the time-domain waveform hðtÞ, gðfÞ ≈
gðtðfÞÞ [60]. The polarization phase is given by

tanΦPðtÞ ¼ −
A×ðtÞF×ðtÞ
AþðtÞFþðtÞ

: ð24Þ

The Thomas phase arises from the evolution of the principle
þ–polarization axis [21], and thus the inner orbital phase of

the two stellar mass BH in the BBH, as the angular
momentum L̂i precesses. It is given by

ΦTðtÞ ¼ −
Z

tc

t
dt
$

L̂i · N̂
1 − ðL̂i · N̂Þ2

%
ðL̂i × N̂Þ · dL̂i

dt
: ð25Þ

The final phase term is the Doppler phase shift, the phase
shift induced by the changing distance between the detector
and the GW source. There are two contributions to this
phase. The first is the contribution from the detector, given
at a particular time t by

ΦD;det ¼ 2πf × ð1 AUÞ sin θS cosðϕdet − ϕSÞ: ð26Þ

The other is from the source, which is modulated by the
changing orbital radius as well as the inclination of the outer
orbit and the position of the BBH in that orbit:

ΦD;src ¼ 2πf × r sin ιJ sinφ: ð27Þ

Gravitational lensing from the SMBH and its host
galactic nucleus is neglected in this waveform, though
its effects on parameter estimation have been studied
in [44,61].

D. Neglected orbital dynamics

A three body system is complicated, and exhibits some
interesting phenomenology. We will now discuss several
additional well-known behaviors, and why we neglect
them. A useful benchmark for comparison is that the
characteristic frequency for de Sitter precession scales as

ΩdS ¼ 1

1.1 yr

"
100

ao=M3

#
5=2

"
108M⊙
M3

#"
1 − 0.32

1 − e2

#
: ð28Þ

We consider the implications of nonzero BH spins on
the orbital dynamics. The precession of L̂o around the
spin of the SMBH Ŝ3 with S3 ¼ χ3M2

3 has characteristic
frequency [23]

ΩLo;S3 ¼
S3ð4þ 3ðM1 þM2Þ=M3Þ

2a3oð1 − e2oÞ3=2
: ð29Þ

If we consider the case M3 ≫ M1 þM2

1

tLo;S3
¼ 1

9.7 yr

"
χ3
0.7

#"
100

ao=M3

#
3
"
1 − 0.32

1 − e2

#
3=2

: ð30Þ

Even for rapidly spinning SMBHs, this effect is about one
order of magnitude slower than de Sitter precession, so for
now, we neglect it. It is worth noting that each successive
effect included in the waveform modulation generally
increases the amount of Fisher information. As such, we
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expect that future inclusion of this effect will lead to further
improved parameter estimation uncertainties.
Lense-Thirring precession of L̂i around Ŝ3 also contrib-

utes to the orbital dynamics, with

ΩLi;S3 ¼
S3

2a3oð1 − e2oÞ3=2
: ð31Þ

This precession frequency is one-quarter of ΩLo;S3 , and
thus, since we treat ΩLo;S3 as small in this work, we do the
same for ΩLi;S3.
As in [24], we also neglect the precession of L̂i around

the spins of the two stellar mass BH. The opening angle of
this precession will be of order 1°, much less than a typical
value of λL [62]. Also, the effects of this spin-induced
precession should be easily distinguishable from the
Doppler shift or de Sitter precession because the spin-
induced precession will occur over just days, rather than
years, for GW frequencies in the bands of space-based
observatories.
We also consider Lidov-Kozai oscillations, the

Newtonian tidal effect which exchanges inner orbit eccen-
tricity with inclination between L̂o and L̂i [63]. These
oscillations have a characteristic frequency of [23]

ΩLK ¼ Ωi
M3

M1 þM2

"
ai

ao
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2o

p
#

3

; ð32Þ

where Ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM1 þM2Þ=a3i

p
. The LK timescale is

1

tLK
¼ 1

67 yr

"
108M⊙
M3

#
2
"

100

ao=M3

#
3

×
"
1 − 0.32

1 − e2

#
3=2

"
10−2 Hz

f

#
: ð33Þ

In our frequency band of interest, this effect occurs over
much longer timescales than the de Sitter precession, and
since both de Sitter precession and Lidov-Kozai oscilla-
tions modulate Li, we neglect the slower of the two
processes. We refer the reader to Fig. 1 of [24] for a
depiction of the accumulation timescales of various effects
in the outer orbit evolution across the parameter space of
SMBH masses and outer orbit semimajor axes that we
consider.
We furthermore assume that the eccentricity of the inner

binary ei is zero. As explained in [24], the inner eccentricity
does not affect any component of themeasured strain outside
of the carrier waveform h̃CðfÞ, and thus should influence
parameter estimation uncertainties primarily through the
SNR. Furthermore, the eccentric Kozai-Lidov mechanism
can drive periodic modulation of ei between moderate and
very high values. The GW signal frequency from a stellar-
mass BBH can be pushed into the sensitivity range of space-
based observatories when the inner eccentricity is high, so

the eccentric Kozai-Lidov mechanism can produce periodic
high SNR bursts in these detectors, driving up the total
SNR measured for that particular binary [64,65]. However,
the timescale of this periodic burst behavior scales roughly
as [66]Ω−2

o fð1 − e2oÞ3=2. These effects therefore occurmuch
more slowly than de Sitter and pericenter precession, and
thus are left for implementation into future analyses.
A higher ei also leads to faster merger times; however,

high eccentricity BBHs can still remain in the millihertz
and decihertz frequency bands throughout the entire
observation period with just a larger initial separation
between the two stellar mass BHs. So, it is expected that
even for ei approaching 1, such BBHs will offer long
enough integration times to generate a moderate SNR, and
therefore the inner eccentricity should not significantly alter
the results of the simplified Fisher matrix analysis (see
Ref. [24] for a more detailed discussion).

III. PARAMETER ESTIMATION WITH
THE FISHER INFORMATION MATRIX

In this analysis, we implement the Fisher information
matrix method (as done in [24]) as a simple estimator for
how well properties of a BBHþ SMBH triple system can
be measured. We make a number of well-supported
assumptions to reduce the complexity of the numerical
methods used to estimate parameter uncertainties.

A. Parameter uncertainties from
the Fisher information matrix

We first outline how the Fisher information matrix (from
now on, Fisher matrix) is used to estimate parameter
measurement uncertainties. The elements of the Fisher
matrix are defined as

Γab ≡
"
∂h̃ðfÞ
∂θa

((((
∂h̃ðfÞ
∂θb

#
; ð34Þ

where

ðg̃jh̃Þ ¼ 4Re
Z

∞

0

g̃'ðfÞh̃ðfÞ
SnðfÞ

df; ð35Þ

h̃ is the frequency-domain waveform, SnðfÞ is the PSD of
the detector noise,3 and θa are the various parameters of the
system. In practice, we limit the frequency bounds of
integration to ½fmin; fmax&, where fmax is at the upper edge
of the detector sensitivity range and tðfmaxÞ − tðfminÞ ¼
5 years [via Eq. (18)]—see Sec. IV.

3We make the approximation that the PSD SnðfÞ varies slowly
enough so that SnðfÞ for the GW frequency in the BBH frame and
the Doppler-shifted GW frequency in the observer frame are
roughly equal. See Appendix A.
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We note that we use a finite difference method to
compute ∂h̃=∂θa. To choose a finite parameter difference
Δθa from which to estimate ∂h̃=∂θa, we minimize the
quantity ϵ, analogous to waveform mismatch,

ϵ ¼ 1 −
ð∂½Δθa&h̃j∂½4Δθa&h̃Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð∂½Δθa&h̃j∂½Δθa&h̃Þð∂½4Δθa&h̃j∂½4Δθa&h̃Þ
q ; ð36Þ

where

∂½Δθ&h̃ ¼ h̃ðθ þ ΔθÞ − h̃ðθ − ΔθÞ
2Δθ

: ð37Þ

Empirically choosing Δθa to make ϵ small gives us the best
accuracy in computing the numerical derivative, as ϵ begins
to increase once Δθa becomes so small that the changes in
h̃ are smaller than computer precision. The choice of 4Δθa
to compare to Δθa is arbitrary.
The Fisher information matrix is related to the covari-

ance matrix roughly by

Σab ¼ ½Γ−1&ab þOðρ−4Þ; ð38Þ

where ρ is the signal-to-noise ratio (SNR). So, in the limit
of large SNR, the covariance between two parameters
ΔθiΔθj is approximately equal to the corresponding
element of the inverse of the Fisher information matrix.
As such, the parameter estimation uncertainty is given by
Δθi ¼ ðΣiiÞ0.5. If a network of GW detectors were to
observe the same system, the Fisher information matrix
would scale as the sum of the matrix elements for each
detector, or

ðΓabÞnetwork ¼
X

det

Γdet
ab : ð39Þ

This also applies to a triangular observatory, wherein three
arms compose two interferometric detectors.

B. Reduced Fisher matrix dimensions

We can reduce the dimensions of the Fisher matrix by
removing certain physical parameters from the analysis.
Doing so reduces the total computation time as well as the
condition number, leading to improved numerical accuracy
in the Fisher matrix inversion [49]. From the parameters
listed in Table I, our Fisher matrices include the following
12 parameters:

θa¼ðlogDL; θ̄S;ϕ̄S; θ̄J;ϕ̄J;λL;α0;logM3; logΩo;γo;eo;φ0Þ:
ð40Þ

We can remove parameters which we expect will have
strong priors obtained from other GW measurements, or

which contribute onlyweakly to the gravitationalwaveform.
For example, we assume that space-based detectors like
LISA or TianGO will act in conjunction with ground-based
observatories, which are far more sensitive to the chirp mass
M, themass ratioq, and the time andphase of coalescence tc
andϕc [36], and thus treat these four parameters as perfectly
known in our analysis. Removing the chirp mass from the
Fisher matrix also improves the numerical stability of our
analysis. Furthermore,weneglect the spins of the three black
holes because the precessional effects they induce accumu-
late much more slowly than the outer orbital motion and de
Sitter precession, as described in Sec. II D.

IV. RESULTS AND DISCUSSION

We examine a BBHþ SMBH triple system with fixed
parameters M1 ¼ M2 ¼ 50M⊙, tc ¼ 0, ϕc ¼ 0, DL ¼
1 Gpc, ðθ̄S; ϕ̄SÞ ¼ ð33°; 147°Þ, ðθ̄J; ϕ̄JÞ ¼ ð75°; 150°Þ,
and λL ¼ 45°. For B-DECIGO, TianGO, and LISA, we
compute the Fisher matrix where the integration is taken
over a frequency window corresponding to an observation
time of five years and the highest frequency is
fmax ¼ 12 Hz—this roughly corresponds to a lowest fre-
quency of fmin ∼ 12 mHz. In Fig. 2, we plot an example
frequency-domain waveform along with the B-DECIGO,
TianGO, and LISA sensitivity curves used in computing
Fisher matrix elements.
In Fig. 3, we plot the fractional uncertainty in the SMBH

massM3, measured by B-DECIGO, as we varyM3 and ao.
The Fisher matrix breaks down if eo is identically zero, so
in order to facilitate comparisons to the circular orbits used
in [24], we use eo ¼ 0.001. At each point, we sample the
covariance found with the Fisher matrix over combinations

FIG. 2. An example waveform h̃ðfÞ with M3 ¼ 108M⊙,
ao ¼ 100M3, and eo ¼ 0.3, along with approximate sensitivity
curves for B-DECIGO, TianGO, and LISA used in the Fisher
matrix calculations done in this work. The red dashed curve gives
the same waveform but with the effects of de Sitter precession
removed.

MEASURING SUPERMASSIVE BLACK HOLE PROPERTIES VIA … PHYS. REV. D 109, 064086 (2024)

064086-7



of the three geometrical phases—that is, 6 choices of γo, φo
and α0, or 216 sets of ðγo; α0;φoÞ—and find the median.
The purple regions denote where the outer binary merges

in less than the proposed observation length of five years.
We expect systems in this region to be exceedingly rare, as
there is only a short window for such systems to form in
order to be detected by B-DECIGO. We also shade out the

region where the outer orbital period Pouter exceeds twice
the observation duration. In this region, the most dominant
source of waveform modulation—namely, the Doppler
phase shift—is difficult to measure because the BBH only
passes through a small range of angles over the observation
period. Furthermore, when the Doppler phase shift varies
slowly, remaining roughly constant over the observation
run, it becomes degenerate with tc, which itself can be
changed by a simple redefinition of when t ¼ 0. So, in this
shaded region, our assumption that tc can be safely
removed from the list of parameters in the Fisher matrix
does not hold well. Indeed, we encounter problems with
numerical instability when computing the Fisher matrix in
this region of the contour plots.

FIG. 3. Fractional uncertainty inM3 asmeasured byB-DECIGO
for three different eccentricities eo ¼ f0.001; 0.3; 0.6g. At each
point in the contour plot, we take the median uncertainty over a set
of combinations of ðγo; α0;ϕoÞ. The purple region corresponds to
where the outer binary merges in less time than the observation
duration. We lightly shade out the region with an outer orbital
period greater than 10 years, where the cumulative effect of the
Doppler shift becomes small.

FIG. 4. Same as Fig. 3, but measured by LISA instead.
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Figure 4 gives the same results, but using the LISA
detector response and noise curve instead of that of
B-DECIGO. The contour plots using the TianGO observa-
tory have a similar structure to those using B-DECIGO, as
the two detectors have similar sensitivity curves. Across the
majority of the parameter space studied, the two sets of
contours differ only in magnitude and not in shape, so for
the sake of brevity, they are omitted here.
We note that the fractional uncertainty in the outer orbit

semimajor axis Δao=ao follows a similar contour structure
to that of ΔM3=M3. For the outer orbit,

3
a3o
M3

Δao
ao

≈
1

Ω2
o

ΔM3

M3

− 2
1

Ω2
o

ΔΩo

Ωo
: ð41Þ

Our calculations determined that across the ðM3; ao=M3Þ
parameters space, ΔΩo=Ωo is much smaller in magnitude
than ΔM3=M3, so

Δao
ao

≈
1

3

ΔM3

M3

: ð42Þ

This result is verified in the structures of Figs. 5 and 6,
and we observe that both B-DECIGO and LISA have the
potential to realize fractional uncertainties in M3 and ao

FIG. 5. Uncertainty in ao as measured by B-DECIGO for three
different eccentricities eo ¼ f0.001; 0.3; 0.6g. The same sam-
pling procedure as used in Fig. 3 is applied here.

FIG. 6. Same as Fig. 5, but measured by LISA instead.

MEASURING SUPERMASSIVE BLACK HOLE PROPERTIES VIA … PHYS. REV. D 109, 064086 (2024)

064086-9



significantly below the 0.1% level across a wide range of
parameters of the triple systems.
To understand the structure of the contour plots, we

examine the contour plot in Fig. 7. For smallM3 and ao=M3,
the shape of the contours are roughly separated by lines of
constant a5o=M3

3. We correlate these trends to evolving
components of the waveform. First, the de Sitter precession

frequency is proportional to ΩdS ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3

3=a
5
o

q
. As discussed

in Appendix B, the Thomas phase and polarization phase
scale as ΦT ∼ΩdSt. Thus, measurement accuracy scales
with the number of de Sitter cycles within the five-year
window. In this region of parameter space, the modulations
of de Sitter precession are the dominant effect for how well
we can measure M3; ao.
For larger M3 and a wide range of ao=M3, the shape of

the contours are roughly separated by lines of constant
ao=M3. In this region, the Doppler phase is the dominant
term in the frequency domain waveform phase. The
Doppler phase magnitude features a degeneracy between
ao and sin ιJ (with sin ιJ being a function of the angles θ̄S,
ϕ̄S, θ̄J, and ϕ̄J), as these quantities appear in the magnitude
only as the product ao sin ιJ ¼ M1=3

3 Ω−2=3
o sin ιJ. This

degeneracy is broken by the inclusion of relativistic peri-
center precession, as this produces different periods in the
radial and azimuthal motion of the BBH in the outer orbit
(cf. Sec. II B). The inclusion of this precession produces
lines of constant ΔM3=M3 that scale roughly with
ðao=M3Þ3=2. See Appendix B for more detailed discussion.
Studying Fig. 3, we see that for eo ≈ 0, these flat

contours do not appear, as for a circular orbit, pericenter
precession is essentially consistent with an increase in Ωo.
The resulting contour plot shape is similar to the results
seen in Fig. 5 of [24], where eo is assumed to be zero—over
a wide range of the parameter space, de Sitter precession is

the dominant effect in determining ΔM3=M3. However,
once eo > 0, pericenter precession, rather than de Sitter
precession, becomes the leading contribution to ΔM3=M3

over a significant portion of the parameter space. The
importance of pericenter precession is further emphasized
by comparing the magnitudes of ΔM3=M3 in our plots to
Fig. 5 of [24], which sets eo ¼ 0 and therefore does not
include pericenter precession (though it does include all
other effects used in this work). With pericenter precession
included, the parameter uncertainties across a wide region
of the overall parameter space can drop by multiple orders
of magnitude.

FIG. 7. Contour plot for the fractional uncertainty in M3 as
measured by B-DECIGO, taken from Fig. 3. Plotted on top of the
contours are lines of constant a5=2o =M3=2

3 and M1=2
3 =a1=2o to

indicate the structure of the contours.

FIG. 8. Uncertainty in eo as measured by B-DECIGO for three
different eccentricities eo ¼ f0.001; 0.3; 0.6g. The same sam-
pling procedure as used in Fig. 3 is applied here.
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We also estimate how well the eccentricity can be
measured with B-DECIGO and LISA as shown in Figs. 8
and 9. These results suggest that the eccentricity can be
constrained to high precision, with B-DECIGO able to
achieve a lower bound of Δeo ∼ 10−6–10−5 and LISA able
to achieve Δeo ∼ 10−5–10−4 across a substantial portion of
the parameter space where precession is detectable. Once
again, we see the importance of de Sitter precession in the
measurability of this parameter—in the portion of the
parameter space where de Sitter precession is rapid, equiv-
alent estimation uncertainties match contours of equal de
Sitter precession period. Unlike the contour plots for
ΔM3=M3, the shape of these contours is not heavily dictated
by power laws related to pericenter precession. Indeed, there

are no degeneracies between eo and other waveform
parameters which are broken by pericenter precession.
An important question is the impact of increasing outer

orbit eccentricity on the ability to measure parameters like
M3, ao, and eo itself. In Figs. 10 and 11, we consider
B-DECIGO, LISA, and the TianGO concept and three
different combinations of ðM3; ao=M3Þ across our chosen
parameter space. We study the effect of increasing eccen-
tricity on the estimation uncertainties in M3 and eo (still
averaging over initial orbital angles) and find that increas-
ing eccentricity can produce marginal improvements in the
measurement of M3 and eo—a factor of ∼ a few—though
such improvement is not universal across ðM3; ao=M3Þ
parameter space.
Considering the arguments given in Appendix B, we see

that the leading contributions to the Fisher matrix elements
come from the derivatives of ΦD, ΦP, and ΦT . Noting that
these phases evolve at secular rates of ΩdS (for ΦP and ΦT)
or Ωpericenter ¼ Ωo

3
p (for ΦD—specifically, this is the rate at

which the degeneracy between ao and sin ιJ is broken), and
recalling that these rates scale with ð1 − e2oÞ−1, it follows
that larger eccentricities produce more rapid evolution,
larger Fisher matrix entries, and ultimately smaller param-
eter uncertainties.
The relative sensitivities between the three detectors are

responsible for the clear hierarchy in the parameter

FIG. 9. Same as Fig. 8, but measured by LISA instead.

FIG. 10. The fractional uncertainties in M3 obtainable by
B-DECIGO (blue), TianGO (orange), and LISA (green) as the
eccentricity is varied. The solid, dashed, and dotted lines
correspond to different choices of ðM3; ao=M3Þ.
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uncertainties they produce. For example, the rates of
precession and orbital velocity are sensitive to both M3

and eo but with different dependencies, so there exist
degeneracies between these two parameters. These degen-
eracies can be lifted by observing the system over long
periods of time so that these effects can accumulate,
enabling tighter constraints on their respective individual
rates. Examining Fig. 2, we see that LISA effectively
measures the BBH signal over a smaller frequency band
than the other two detectors in the five years prior to
merger. Since the LISA sensitivity is poorer than the other
two detectors in the frequencies sampled in the five year
observation run, the SNR of the waveform is reduced and it
becomes more difficult to extract the waveform modula-
tions driven by orbital and precessional effects over that
period of time. Therefore, the degeneracies are not as
cleanly lifted in LISA measurements, especially when these
rates are slow (i.e., low M3, high ao=M3), producing less
precise parameter estimates.
The primary effect of eccentricity then is to increase the

strength of waveform modulations by increasing the
magnitude of the precessional effects (pericenter, de
Sitter); however, we see that for the LISA observatory,
the improvement in parameter estimation uncertainty with
rising eo is not as significant as in B-DECIGO and TianGO,
and in some cases, a larger eo produces larger uncertainties.
While increasing the eccentricity boosts the orbit averaged
rate of de Sitter and pericenter precession (Cf. Eqs. (7)

and (15), the majority of this evolution occurs when the
BBH is near the outer orbit pericenter and the instantaneous
precession rate is largest. So, for systems with slow outer
orbits (once again, lowM3 and high ao=M3), an increasing
eccentricity constrains the majority of the waveform
modulation effects to a shorter time window, as the
BBH passes through the region near the pericenter at a
faster rate. The GW radiation from the BBH then evolves
through a smaller range of frequencies while the waveform
is significantly modulated.
We also note that as long as the stellar-mass BBH is able

to complete a few orbits around the SMBH during the
observation window, the parameter estimation uncertainties
are not highly sensitive to the various geometric angles that
appear in the system (θ̄S, ϕ̄S, θ̄J, ϕ̄J, λL, α0, γo, and φ0), at
least for generic choices of these angles (i.e., not taking
λL ¼ 0 or π, where de Sitter precession does not occur).
These angles primarily appear in basic trigonometric
functions present in the detector antenna response function,
Doppler phase shift, and evolution of the inner orbit angular
momentum, and thus keep the magnitudes of these wave-
form modulations constant within a factor of a few for the
majority of possible angles. The condition on the number of
outer orbits completed during the observation window
holds in the vast majority of our studied parameter space.

V. CONCLUSION AND FUTURE DIRECTIONS

Using the Fisher information matrix, we have shown that
future space-based GW observatories may be able to
precisely constrain the properties of BBHþ SMBH triple
systems, like the SMBH mass and outer orbit semimajor
axis and eccentricity, through the GW signal observed from
the BBH. We have demonstrated that the rate of change
of the Doppler phase shift and the de Sitter precession rate
are the dominant factors determining of the measurability
of triple system parameters and that an increasing outer
orbit eccentricity leads to improved measurement uncer-
tainties through greater Doppler phase shift modulation
and faster de Sitter precession. We have also shown that
the planned LISA detector is capable of measuring these
systems, though decihertz detector concepts such as
TianGO or B-DECIGO would possess a competitive
advantage over LISA in measuring such quantities.
There are some important limitations of the Fisher

information method implemented in this work. As
described in [49], a high SNR is required for the inverse
Fisher matrix to give the covariance of the posterior
probability distribution for the true source parameters θ⃗0.
While the SNR we compute for our waveform is generally
∼40 for TianGO, it is only ∼4 for LISA, suggesting that the
true parameter estimation uncertainties may be signifi-
cantly different than those calculated here. However, the
inverse Fisher matrix is also a lower bound for the
uncertainty of an unbiased estimator of θ⃗0 [49], so our

FIG. 11. Same as Fig. 10, but estimating the outer eccentricity
variance Δeo.
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results essentially offer a best-case scenario for the param-
eter estimation precision obtainable by future space-based
observatories. A more thorough approach to this analysis
will implement a full Bayesian methodology.
We can further develop this work by inclusion of addi-

tional effects into thewaveform.One can implement the spin-
precession effects that we chose to neglect in II D due to their
significantly slower timescales. Furthermore, for triple sys-
tems with lower outer binary merger times (i.e., withM3 and
ao=M3 near the purple regions shown in the contour plots
such as Fig. 3), the semimajor axis and outer eccentricity can
evolve significantly in time due to radiation reaction [37].
Considering the frequency integral that composes the Fisher
matrix elements, we can include the effects of gravitational
redshift and Doppler frequency shift, which would require
the waveform and detector sensitivity to be evaluated at
different frequencies in the integrand. Also, the stationary
phase approximation used in the frequency domain wave-
form (outlined in Appendix A) may not hold well for highly
eccentric outer orbits, as the outer orbital angle varies quite
rapidly near the pericenter for such orbits.
In Ref. [44], it is discussed how gravitational lensing of

GWs by the SMBH combined with the de Sitter precession
of L̂i can further constrain the parameters of a triple system
as estimated by a space-based GWobservatory, even in the
case of a circular outer orbit. It would be interesting to
examine the combined effects of an eccentric outer orbit and
repeated GW lensing in parameter estimation problems.
Finally, measurements of the motion of a BBH through

space through its modulated waveform may prove useful for
understanding phenomena besides BBHþ SMBH hierar-
chical triples. For example, measuring the evolving Doppler
shift and aberrations induced by the evolving position and
velocity of an isolated BBH might enable estimates of BBH
kicks that occur shortly before merger or improve the
precision of estimates of the Hubble constant by further
constraining the redshifts of GW standard sirens [67,68].
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APPENDIX A: VALIDITY
OF WAVEFORM APPROXIMATIONS

We consider some approximations that are made in the
formulation of the frequency domain waveform. For the
source frame waveform hsðtsÞ ¼ AsðtsÞe−iΦsðtsÞ, we define

the connection between time and gravitational wave fre-
quency in the source frame by

Φ̇sðtsÞ ¼ 2πfs: ðA1Þ

The outer orbit of the BBH induces a change in the time at
which a GW of a particular frequency reaches a fixed
observer, which we denote to. Clearly marking the depend-
encies of various times on one another,

toðtsÞ ¼ ts þ tkðtsÞ þDL=c; ðA2Þ

where tk ¼ ao sin ιJ sinφ is the time is takes for a radiated
GW to propagate from the BBH to the SMBH along the
direction of N̂, assuming a circular outer orbit.
With hs and ho being the strain in the source and

observer frames, we then have

hoðtoÞ ¼ hsðtsÞ ¼ hsðto − tk −DL=cÞ; ðA3Þ

which in the Fourier transform (as a function of the
observed frequency fo) becomes

h̃oðfoÞ ¼
Z

hsðto − tk −DL=cÞe2πifotodto: ðA4Þ

Inputting the form of hsðtsÞ gives

h̃oðfoÞ ¼
Z

Asðto − tk−DL=cÞe−iΦsðto−tk−DL=cÞe2πifotodto;

ðA5Þ

and assigning to −DL=c ¼ t so that ts ¼ t − tk produces

h̃oðfoÞ¼ e2πifoDL=c
Z

Asðt− tkÞe−iΦsðt−tkÞe2πifotdt: ðA6Þ

For a typical system we study (e.g., M3 ¼ 108M⊙,
ao ¼ 100M3), tk ∼ 104–105 seconds (depending on the
orbital angle) and ṫk ∼ tkΩo ∼ 0.01–0.1.
We can make a number of simplifications to this

expression. First, Φsðt − tkÞ ≈ΦsðtÞ − 2πfstk as long as
ḟstk ≪ fs. For an inspiral regime BBH with two 50M⊙

BH, fs=ḟs ∼ 3 × 103f−8=3s s [37], and with the majority of
the time-integration taking place with fs ≲ 0.1 Hz, the
approximation using ḟstk ≪ fs holds well.
We apply a similar approximation to Asðt − tkÞ.

The timescale for the evolution of the GW amplitude is
roughly [37,58] As=Ȧs ∼ 3

2
fs
ḟs
≫ tk, so we can reasonably

approximate Asðt − tkÞ ≈ AsðtÞ. This simplifies Eq. (A6) to

h̃oðfoÞ≈e2πifoDL=c
Z

AsðtÞe−i½ΦsðtÞ−2πfstkðtÞ&e2πifotdt: ðA7Þ
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Consider an expansion of FðtÞ ¼ ΦsðtÞ − 2πfstkðtÞ around
some time t0. Noting that tk is a function of t, we find

ΦsðtÞ − 2πfstkðtÞ ≈Φsðt0Þ − 2πfstkðt0Þ

þ 2πðfs − fsṫk − ḟstkÞðt − t0Þ

þ 1

2
F̈ðt0Þðt − t0Þ2 þ ( ( ( ðA8Þ

Since ḟs=fs ≪ ṫk=tk, the linear term approximates to
2πfsð1 − ṫkÞ. Now, to complete the Fourier transform,
we turn to the stationary phase approximation (SPA).
Namely, the majority of the integral comes from the region
where the argument of the oscillating term is stationary,
which occurs at a time τ when fo − fsðτÞð1 − ṫkðτÞÞ ¼ 0.
Inserting the second order expansion found above into

the Fourier transform gives

h̃oðfoÞ ≈ e2πifoDL=c
Z

AsðτÞ

× exp
&
−i
$
−2πfotþΦsðτÞ − 2πfsðτÞtkðτÞ

þ 2πfsðτÞð1 − ṫkðτÞÞðt − τÞ

þ 1

2
F̈ðτÞðt − τÞ2 þ ( ( (

%'
dt; ðA9Þ

which simplifies to

h̃oðfoÞ ≈ e2πi½foDL=cþfsðτÞtkðτÞ&e2πifsðτÞð1−ṫkðτÞÞτ

×
Z

AsðτÞe−i½ΦsðτÞþ1
2F̈ðτÞðt−τÞ

2þ(((&dt; ðA10Þ

recalling that fsðτÞð1 − ṫkðτÞÞ ¼ fo.
The expression F̈ has terms proportional to ḟs, f̈stk, ḟsṫk,

and fs̈tk. For our typical system, the three latter terms are
generally much smaller than the first, allowing a reasonable
approximation of F̈ ∼ Φ̈s.
Carrying out this integral is a standard exercise as in [69],

and we see that Eq. (A10) evaluates to

h̃oðfoÞ ≈
ffiffiffi
π

p

2
e2πifoDL=cþiḞðτðfÞÞτ−iFðτðfÞÞþiπ=4

× As
)
τðfÞ

*" 2

F̈s
)
τðfÞ

*
#

1=2
; ðA11Þ

recalling F ¼ Φs − 2πfstk and noting that Eq. (18) can be
used to convert time-dependent quantities into frequency
dependent ones. It is clear that the Doppler shift is built
directly into this definition—the components of the source
radiation (e.g., As, F̈ ≈ Φ̈s) which appear in the observed
strain are evaluated at a time τ when the source radiation is
emitted at frequency fs ¼ f=ð1 − ṫkÞ. The ratio of the

observed frequency to source frequency matches the
expansion of the exact form of the Doppler shift given
in Eq. (A13) below (in the low ṫk limit).
This result poses a problem for carrying out Fisher

matrix calculations. The Fisher matrix formalism relies on
integration over the observed frequencies; while there
exists a monotonic relation between the source GW
frequency and time, the inclusion of the Doppler frequency
shift results in the same observed frequency originating
from multiple distinct source frequencies. Furthermore, the
PSD term must be evaluated at the observed frequency,
while standard results for the GW signal in the frequency
domain are parametrized by the source frequency. Without
a one-to-one relationship between the observed frequency
and source frequency, carrying out the Fisher matrix
calculations requires careful attention to these subtleties
when evaluating the frequency domain integrand. Future
iterations of this analysis will more carefully implement the
Doppler shift in comparing the GW signal in the source and
observer frames. For example, the analysis in [45] com-
putes the time domain waveform, splits it into segments
with ḟo > 0 and ḟo < 0, and transforms each segment
separately into the frequency domain using the SPA before
recombining. The analysis in [70] resolves the issues in the
SPA with a nonmonotonic fo using higher order time
derivatives of fo, and the analysis in [71] offers an
alternative method to computing frequency-domain wave-
forms that avoids the divergences that appear in the SPA
when ḟo crosses zero.
For the sake of computational simplicity, we choose to

carry out the Fisher matrix computations under the
approximation that ṫk ≪ 1. With this simplification (which
holds fairly well across the majority of our parameter space,
as we describe below), fobs ≈ fsrc and thus the following
simple relation emerges:

h̃oðfÞ ≈ e2πifðDL=cþtkÞh̃sðfÞ: ðA12Þ

Let us more completely explain why we can reasonably
neglect the change in GW frequency due to the Doppler
shift induced by the BBH orbital velocity around the
SMBH. The (exact) longitudinal Doppler shifted frequency
is given by

fobs ¼ fsrc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βk

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βk

p ; ðA13Þ

where fobs and fsrc are the observed and source frequen-
cies, and βk ¼ vk=c ¼ ṫk is the source velocity along the
line of sight. Using the methods of Sec. II B, the maximum
orbital velocity occurs at pericenter, with

β ¼ p − 2 − 2eo
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 2Þ2 − 4e2o

p ð1þ eoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p − 6þ 2eo

p
: ðA14Þ
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Depending on the argument of pericenter, the magnitude of
the source’s line of sight velocity can reach up to this value.
In the parameter space we study, this velocity is maximized
over eccentricity when eo ¼ 0.9. At this eccentricity, the
maximum velocity over semimajor axes in our parameter
space occurs when p ≈ 12 with βmax ≈ 0.37. Then, the
largest increase in GW frequency due to the Doppler shift is
roughly 50%.
Making the approximation that fobs ≈ fsrc can produce

some inaccuracies in the distance-accumulated phase terms
in Eq. (A11); however, because the Fisher matrix formal-
ism includes integration of the product of the waveform and
its complex conjugate, the value of the accumulated phase
does not have any effect on the results. Furthermore, the
sensitivity curves in Fig. 2 vary slowly in frequency, so
therefore, our approximation that the source frame and
observer frame GW frequencies are roughly equal does not
significantly affect our Fisher matrix calculations and
resulting parameter uncertainties.
Future work may implement more rigorous treatment of

the waveform in the frequency domain, including correc-
tions suggested in [72], for example. However, we expect
that the information provided by examining the shifts in
observed GW frequencies, which track the BBH orbital
velocity, is essentially already provided by the Doppler
phase, which tracks the BBH orbital position. As such, we
anticipate little improvement in parameter measurability by
including this additional effect.

APPENDIX B: DESCRIPTION
OF MEASUREMENT ACCURACY

In Fig. 7, we note two power laws for the measurement
accuracy of M3. We say that the pericenter precession
gives ðao=M3Þ3=2, while de Sitter precession scales like
a5=2o =M3=2

3 . Below, we give scaling arguments to under-
stand this plot. As described in Sec. IV, we measure ao ×
sin ιJ and Ωo very well via the Doppler shift

ΦD ¼ 2πfN̂ · r⃗ ¼ 2πfr sin ιJ sinϕ; ðB1Þ

however we need an additional effect to break the degen-
eracy between ao and sin ιJ. In this appendix, we will show
how the effect of precession can be understood as sepa-
rating the radial and azimuthal periods Pr ≈ Pϕ − #M

a , and
breaks the degeneracy. We will also explain how the
Thomas phase and polarization phase terms allow us to
also break the degeneracy.
Let us study a simple analytic toy model for precession

where the radial period is shortened by a 1PN term. We will
consider only a waveform with Doppler phase here to
extract the physical reason that pericenter precession helps
us measure the SMBH’s orbit. We set

h̃ðfÞ ¼ exp½iðΦD þ 2πftcÞ&; ðB2Þ

and provide the following simple dynamics to the outer
orbit:

ΦDðtÞ ¼ 2πf sin ιJ
aoð1 − eoÞ2

1þ eo cos ξr
sinðξφÞ; ðB3Þ

ξr ¼ ξr;0 þ Ωo

"
1 − ϵ

3M3

aoð1 − e2oÞ

#
t; ðB4Þ

ξφ ¼ ξr;0 þ ξφ;0 þΩot; ðB5Þ

where the variable ϵ is a counting parameter for precession,
and set to 0 or 1 at the end of the calculation. This system
gives a rough approximation for a low eccentricity orbit
that includes relativistic pericenter precession, assuming
1=Ωo ≪ tobs so that many orbits are completed during tobs
and thus the angular velocities for the orbital and preces-
sional motion average out to their secular values. The
quantities ξr;0 and ξφ;0 are analogous to ϕ0 and γo,
respectively.
Since this is such a simple model, we can compute

the Fisher matrix analytically under certain assumptions.
We first compute the Fisher matrix with elements
fM3;Ωo; sin ιJg. After computing the derivatives of h̃, we
expand in eo ≪ 1 and consider only the secular effect of the
trigonometric functions in ξr and ξφ, as the contributions
from oscillating terms will be minimal after integration over
f. We substitute t ∝ M−5=3f−8=3 [cf. Eq. (18)] and after
integrating over f with a flat PSD, we find that the resulting
matrix is invertible only if we have some pericenter pre-
cession ϵ ≠ 0. The fractional error in mass then scales like

ΔM3

M3

∝
1

ϵ

"
ao
M3

#
3=2

: ðB6Þ

This result shows that pericenter precession will produce
contours of constant ΔM3=M3 which scale with
ðao=M3Þ3=2, which is in good agreement with the lines
in Fig. 3, for example. These lines do not appear when
eo ¼ 0, however, because the difference in the radial and
azimuthal frequencies does not produce any change in the
BBH’s actual orbit when that orbit is circular.
We also expanded the Fisher matrix dimensions to

include fM3;Ωo; sin ιJ; ξr;0; ξφ;0; tcg and found identical
scaling in ΔM3=M3.
In contrast, let us examine the behavior of dS precession.

We will now show how mass and orbital frequency can be
independently measured by the Thomas phase ΦT and the
polarization phase ΦP. As discussed in [21], the Thomas
phase for a circular orbit is approximately4

4This comes from Eq. (65) of [21]. There are multiple
expressions for the average rate depending on the sign and dot
products of ðL̂; N̂Þ, which only differ by factors of order unity.
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ΦT ∼ 2πð1þ cos λLÞΩdSt; ðB7Þ

where ΩdS ¼ 3
2
M3Ωo
ao

≈ 3
2M

2=3
3 Ω5=3

o .
The Thomas phase breaks the degeneracy between M3,

Ωo, and sin ιJ. If we consider a waveform with perfectly
measured Ωo, with a simple waveform h ∝ eiΦT one can
show the measurement scales as

ΔM3

M3

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ΓlogM3 logM3

s
∝

1

∂logM3
ΩdS

¼ 1

M2=3
3 Ω2

o

∝
a5=2o

M3=2
3

ðB8Þ

For contour plots such as Fig. 3, this result matches the
power law for lines of constant ΔM3=M3 found in the
region where de Sitter precession is most rapid.
The polarization phase breaks the degeneracy between

M3 and Ωo in the same manner as the Thomas phase. The
power law can be seen by considering a waveform
h ∝ eiΦP . The polarization phase is defined as

ΦPðtÞ ¼ − arctan
$
A×ðtÞF×ðtÞ
AþðtÞFþðtÞ

%
: ðB9Þ

In the context of the Fisher matrix, it is useful to compute
the derivative of this phase,

∂θΦP ¼ −
1

ð1þ tan2ΦPÞ
∂θ

"
A×ðtÞF×ðtÞ
AþðtÞFþðtÞ

#
: ðB10Þ

The fraction of amplitude factors and antenna patterns
depends on the angles θS;ϕS; θJ;ϕJ; λL, and α0, as
well as the integrated de Sitter precession rate, all of
which appear exclusively in trigonometric functions

[cf. Eqs. (8), (19), (20), (21), (22), and (23)]. We assume
the instantaneous de Sitter precession rate does not
vary significantly, assigning the rate to its secular
value ΩdS ≈ 3

2
M3Ωo
ao

.
Taking θ ¼ logM3, then, the only dependence on M3 in

this fraction is through ΩdS. Since ΩdS appears only in the
argument of sines and cosines, we expect that after
applying the chain rule ∂logM3

→ ð∂ΩdS=∂ logM3Þ∂ΩdS
,

the magnitude of ∂logM3
ΦP is primarily influenced by

∂ΩdS=∂ logM3. This expression evaluates to [cf. Eq. (B8)]

∂ΩdS

∂ logM3

¼ M3=2
3

a5=2o
; ðB11Þ

Thus, assuming Ωo is known, the Fisher matrix will
scale like

ΓlogM3 logM3
¼
Z

dfð∂logM3
ΦPðfÞÞ2∝ ð∂logM3

ΩdSÞ2: ðB12Þ

Therefore, considering both ΦT and ΦP, de Sitter preces-
sion produces an uncertainty in logM3 that scales roughly
as a5=2o =M3=2

3 , following lines of constant ΩdS.
It may seem counterintuitive that two processes with

identically scaling rates (i.e., pericenter precession and de
Sitter precession) produce different power laws in the shape
of the contour lines. However, even though the rate of
pericenter precession Ωperi prec ∝ M2=3

3 Ω5=3
o occurs at the

same PN order as de Sitter precession ΩdS ∼M2=3
3 Ω5=3

o ,
there is an additional factor of ao in the pericenter
precession contribution due to the Doppler shift term being
proportional to r. This causes the power law dependence
for the measurement accuracy of M3 to scale differently by
a factor of ao.
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