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Abstract

Milliken’s tree theorem is a deep result in combinatorics that general-
izes a vast number of other results in the subject, most notably Ramsey’s
theorem and its many variants and consequences. In this sense, Milliken’s
tree theorem is paradigmatic of structural Ramsey theory, which seeks to
identify the common combinatorial and logical features of partition results
in general. Its investigation in this area has consequently been extensive.

Motivated by a question of Dobrinen, we initiate the study of Milliken’s
tree theorem from the point of view of computability theory. The goal is
to understand how close it is to being algorithmically solvable, and how
computationally complex are the constructions needed to prove it. This
kind of examination enjoys a long and rich history, and continues to be a
highly active endeavor. Applied to combinatorial principles, particularly
Ramsey’s theorem, it constitutes one of the most fruitful research programs
in computability theory as a whole. The challenge to studying Milliken’s
tree theorem using this framework is its unusually intricate proof, and more
specifically, the proof of the Halpern-Laüchli theorem, which is a key ingre-
dient.

Our advance here stems from a careful analysis of the Halpern-Laüchli
theorem which shows that it can be carried out effectively (i.e., that it is
computably true). We use this as the basis of a new inductive proof of
Milliken’s tree theorem that permits us to gauge its effectivity in turn. The
key combinatorial tool we develop for the inductive step is a fast-growing
computable function that can be used to obtain a finitary, or localized, ver-
sion of Milliken’s tree theorem. This enables us to build solutions to the full
Milliken’s tree theorem using effective forcing. The principal result of this is
a full classification of the computable content of Milliken’s tree theorem in
terms of the jump hierarchy, stratified by the size of instance. As usual, this
also translates into the parlance of reverse mathematics, yielding a complete
understanding of the fragment of second-order arithmetic required to prove
Milliken’s tree theorem.
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x ABSTRACT

We apply our analysis also to several well-known applications of Mil-
liken’s tree theorem, namely Devlin’s theorem, a partition theorem for Rado
graphs, and a generalized version of the so-called tree theorem of Chubb,
Hirst, and McNicholl. These are all certain kinds of extensions of Ramsey’s
theorem for different structures, namely the rational numbers, the Rado
graph, and perfect binary trees, respectively. We obtain a number of new
results about how these principles relate to Milliken’s tree theorem and to
each other, in terms of both their computability-theoretic and combinatorial
aspects. In particular, we establish new structural Ramsey-theoretic proper-
ties of the Rado graph theorem and the generalized Chubb-Hirst-McNicholl
tree theorem using Zucker’s notion of big Ramsey structure.
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CHAPTER 1

Introduction

This monograph is part of the longstanding project of exploring connec-
tions between logic and combinatorics. Our focus is, more specifically, on
studying the computable (or effective) content of combinatorial theorems.
This has a long history, as we survey below. The interest stems from the re-
alization that combinatorial notions tend to be computability-theoretically
natural, and vice-versa. Traditionally, this has led to fine-grained analy-
ses of different combinatorial constructions, often resulting in new, more
computationally efficient proofs of various combinatorial results.

Over time, this work has made increasing use of powerful set-theoretic
and combinatorial techniques, whose adaptation to the realm of computabil-
ity theory has produced new insights into unsolved problems. Such will be
the case for our investigation here of Milliken’s tree theorem (named for its
author, and originally proved in [30]; cf. also [31]). This is a deep result
whose significance in Ramsey theory and related areas has made it the ob-
jective of much attention in combinatorics and set theory. This makes all the
more surprising its near complete absence from the computability-theoretic
literature. To our knowledge, the only published mentions are by Carlson
and Simpson [2, Section 3] and Chubb, Hirst, and McNicholl [8]. The au-
thors of the former paper introduce the so-called dual Ramsey’s theorem,
and give as a consequence a new proof of the Halpern-Laüchli theorem, an
important result for understanding Milliken’s tree theorem that we inves-
tigate at length also here. The latter paper focuses on what is ultimately
a kind of weak or degenerate form of Milliken’s tree theorem, which has
garnered a great deal of interest in its own right. See Chapter 7, where
we give a full account of the theorem of Chubb, Hirst, and McNicholl and
how it relates to Milliken’s in the context of our work here. (We add that
during the writing of this manuscript, we learned of a concurrent project
of Chong, Li, Liu, and Yang in progress, whose focus is the Chubb, Hirst,
and McNicholl theorem but which also obtains results about Milliken’s tree
theorem proper. Specifically, the authors obtain by independent means our
Corollary 4.7 below.)

The problem of determining the computable content of Milliken’s tree
theorem was proposed by Dobrinen [10]. A related question, about the
so-called Rado graph theorem, was asked also in Dorbinen, Laflamme, and
Sauer [11, Question 6.3]. We give a complete analysis here, using the tools of
computability theory and reverse mathematics. As we will show, Milliken’s
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4 1. INTRODUCTION

tree theorem turns out to be surprisingly rich and intricate in this respect,
reflecting its centrality among other partition theorems, including Ramsey’s
theorem and its many variants.

1.1. Milliken’s tree theorem and Ramsey theory

Ramsey theory is a vast area of combinatorics, broadly interested in
results about when some sort of regularity is unavoidable when a large
given structure is partitioned into a small number of pieces. (Here “large”
is typically taken to mean a particular finite or infinite cardinality, and
“small” is understood relative to this cardinality.) Canonical examples
include, of course, the finite and infinite Ramsey’s theorems, both due
to F. P. Ramsey [35], which we recall. Let N denote the set of natu-
ral numbers, {0, 1, 2, . . .}, and given a set X ⊆ N and integer n ≥ 1, let
[X]n = {(x0, . . . , xn−1) ∈ X

n : x0 < · · · < xn−1}. We identify each k ∈ N
with the set of its predecessors, {0, 1, . . . , k − 1}.

Theorem 1.1 (Finite Ramsey’s theorem). For all n, k,≥ 1 and m1,. . .,
mk−1 ∈ N there is a number M ∈ N such that for every f : [M ]n → k there
is an i < k and a set H ⊆ M of size mi such that f(!x) = i for all !x ∈ [H]n.

Theorem 1.2 (Infinite Ramsey’s theorem). For all n, k ≥ 1 and every
f : [N]n → k there is an i < k and an infinite set H ⊆ N such that f(!x) = i

for all !x ∈ [X]n.

The sets H above are called homogeneous sets for the coloring f . There are
also versions of Ramsey’s theorem for colorings of uncountable sets, but we
will restrict our attention here to the countable setting.

In broad strokes, Ramsey’s theorem(s) can be seen as saying that in any
configuration of integers, however complicated or random, some amount of
order is necessary. Understanding this order, and how it arises, is natu-
rally captivating, and its study has resulted in important advances across
mathematics, from combinatorics to logic to number theory. These include,
for example, the celebrated Szemerédi’s theorem (cf. [45, 46]), the various
proofs of which over the years, and the myriad mathematical ideas used in
them, led to it be called the “Rosetta stone” of mathematics by Tao [47].
We will explore a number of other examples in this monograph. For a
general introduction to Ramsey theory, we refer the reader to the book of
Graham, Rothschild, and Spencer [18]. For more background on the kind
of combinatorics most relevant to us here, we refer to Todorcevic [48].

The main subject of the present monograph, Milliken’s tree theorem, is a
strong generalization of the infinite Ramsey’s theorem. We state it here in a
restricted form in order to be able to begin discussing it. The full statement
requires more nuanced definitions that we delay until the next chapter. For
now, we recall that 2<ω denotes the set of all finite binary strings, i.e., finite
sequences of 0s and 1s. For σ ∈ 2<ω, we write |σ| for the length of σ, i.e.,
the number of bits occurring in σ, and we let 2n and 2<n denote the sets
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of σ ∈ 2<ω with |σ| = n and |σ| < n, respectively. For σ, τ ∈ 2<ω we write
σ ≼ τ to mean that σ is an initial segment (not necessarily proper) of τ ,
and σ ≺ τ to mean σ ≼ τ and σ ∕= τ . We also write σ ∧ τ for the longest
common initial segment of σ and τ . The crucial notion in the statement of
Milliken’s tree theorem is the following: S ⊆ 2<ω is a strong subtree of 2<ω

if S is closed under ∧, and (S,≼) is isomorphic, as a structure, to either
(2<ω

,≼) or (2<n
,≼) for some n, via a map that preserves whether or not

a pair of nodes has the same length. Thus, for instance, {01, 0101, 0110}
is a strong subtree of 2<ω, whereas {01, 0100, 0101} and {01, 0101, 011} are
not, even though all three sets, under ≼, are isomorphic to (2<n

,≼). (See
Figure 1.1.)

01

010 011

0100
0101 0110

0111

S0

01

010 011

0100
0101 0110

0111

S1

01

010 011

0100
0101 0110

0111

S2

Figure 1.1. Three subsets, S0, S1, and S2, of 2
<ω. Solid

circles indicate strings in the set, hollow circles strings not in
the set. Only S0 is a strong subtree of 2<ω.

Given T ⊆ 2<ω, let Sω(T ) denote the set of strong subtrees of 2<ω that
are contained in T and isomorphic to (2<ω

,≼). For n ≥ 1, let Sn(T ) denote
the set of strong subtrees of 2<ω that are contained in T and isomorphic to
(2<n

,≼).

Theorem 1.3 (Milliken’s tree theorem for 2<ω). For all n, k ≥ 1 and all
f : Sn(2

<ω) → k there exists i < k and a T ∈ Sω(2
<ω) such that f(S) = i

for all S ∈ Sn(T ).

To begin, note that the infinite Ramsey’s theorem is a straightforward
consequence of (even this version of) Milliken’s tree theorem. Indeed, given
a coloring f : [N]n → k, we define g : Sn(2

<ω) → k as follows. For each
S ∈ Sn(2

<ω), let !xS = {|σ| : σ ∈ S}, which is a set of size n and so can be
viewed as an element of [N]n. Let g(S) = f(!xS). Now if T ∈ Sω(2

<ω) is as
given by Milliken’s tree theorem for this g, then H = {|σ| : σ ∈ T} is easily
seen to be an infinite homogeneous set for f .

Indeed, it is well-known that Milliken’s tree theorem implies a great
many partition theorems, including a number that are significantly more
difficult to prove than Ramsey’s. We will look at several of these theorems
in this manuscript, and show that their implications from Milliken’s tree
theorem can be made constructive in the sense of computability theory and
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reverse mathematics, which we discuss below. Much of this will rely on care-
fully identifying and examining features common between strong subtrees of
2<ω and the combinatorial structures underlying these other principles, us-
ing a combination of ideas that have previously been successfully employed
in structural Ramsey theory, along with techniques newly developed here.

We refer the reader to Todorcevic [48, Chapter 6] for an in-depth dis-
cussion of Milliken’s tree theorem, and a careful development of a proof.
As with Ramsey’s theorem, the proof has an inductive form based on the
exponent, n, of the colorings being considered. Thus, we prove it first for
finite colorings of S1(2

<ω), and then assuming it holds for finite colorings
of Sn(2

<ω), we prove it for finite colorings of Sn+1(2
<ω). The base case,

n = 1, is actually not difficult to prove directly (though it is less trivial than
the n = 1 case of Ramsey’s theorem, i.e., the infinitary pigeonhole princi-
ple). However, unlike in standard proofs of Ramsey’s theorem, where the
inductive step uses just the n = 1 case to increase the exponent, in the case
of Milliken’s tree theorem a stronger result is needed. This is the so-called
Halpern-Laüchli theorem, due originally to Halpern and Laüchli [19], and
independently Laver (unpublished) and Pincus [33] (see [34] for more on
the history).

Given d ≥ 1 and T0, . . . , Td−1 ⊆ 2<ω, let Sα(T0, . . . , Td−1) for α ∈ N∪{ω}
be the collection of all tuples (S0, . . . , Sd−1) such that for each i < d we have
Si ∈ Sα(Ti), and for all i, j < d and all σ ∈ Si and τ ∈ Sj , we have that σ
has the same number of initial segments in Si as τ does in Sj if and only if
|σ| = |τ |.

Theorem 1.4 (Halpern-Laüchli theorem for 2<ω). For all d, k ≥ 1 and
all f :

!
n∈N(2

n)d → k there exists i < k and

(T0, . . . , Td−1) ∈ Sω(2
<ω

, . . . , 2<ω)

such that f(!σ) = i for all !σ = (σ0, . . . ,σd−1) ∈ T0 × · · · × Td−1 with |σ0| =
· · · = |σd−1|.

Prima facie, this theorem appears as a kind of parallelized version of Mil-
liken’s tree theorem for colorings of S1(2

<ω), and one may expect it to be
not much more complicated to prove. In fact, this is misleading, and the
Halpern-Laüchli theorem largely encompasses the entire combinatorial core
of (the full) Milliken’s tree theorem. We will analyze the Halpern-Laüchli
theorem in detail in this monograph, and use it in a careful way to give a
more effective proof of Milliken’s tree theorem.

1.2. Computable combinatorics

The principal theme of modern computability theory is relative com-
putability: a set X ⊆ N is computable from (or Turing reducible to) a set Y ,
written X ≤T Y , if there is an algorithm to decide which numbers belong
to X using information about which numbers belong to Y . If X ≤T Y and
Y ≤T X we write X ≡T Y . This notion, along with a precise formalization
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of the concept of an algorithm, was a seminal achievement of Turing in the
1930s. Sets can be classified in numerous ways, such as in terms of their
structural properties or by their syntactic descriptions.

As a rule, all such properties can be relativized, leading to increasingly
larger classes of sets. For example, the halting problem relative to X, denoted
X

′ and also called the (Turing) jump of X, refers to the set of e ∈ N such
that the eth algorithm in some fixed listing, with access to information about
X, halts on input e. For every X we have that X ≤T X

′ but X
′ ≰T X,

which yields in particular a canonical example of a non-computable set.
The complexity of a set of natural numbers in computability theory (or by
extension, of any object that can be naturally represented or encoded by
such a set) is a measure of “how far” it is from being computable, according
to various hierarchies of classes of sets obtained in this fashion. For general
background in computability theory, we refer the reader to Soare [42] and
to Downey and Hirschfeldt [12].

Computability theory lends itself to analyzing a vast collection of prob-
lems that are sometimes called instance-solution problems. This refers to
theorems having the form

(1.1) ∀A [P(A) =⇒ ∃B Q(A,B)],

where P and Q are some sort of properties of A, and of A and B, respectively.
One can regard such a theorem as the problem, “Given an A such that P(A)
holds, find a B such that Q(A,B) holds”. In this context, we call such A the
instances of the problem (or theorem), and all such B the solutions to A.
This is a natural way of thinking about theorems of this shape. For example,
the instances of Ramsey’s theorem are all finite colorings of [ω]n for some n,
and the solutions to any such coloring are its infinite homogeneous sets.

One way to gauge the complexity of an instance-solution problem is
by studying the relationship between the complexity of instances and solu-
tions, when these can be presented as subsets of N, as will be the case in
all the examples we consider in this manuscript. From this perspective, a
problem that is computably true, i.e., one each of whose instances has at
least one solution computable in that instance, is trivial from the algorith-
mic standpoint. By contrast, a problem that has an instance all of whose
solutions compute the jump of that instance, is strictly harder, being, in
a certain sense, at least as difficult as “solving the halting problem”. In
general, the further apart the instances and solutions are in this sense, the
more algorithmically complex it is. We can thus directly compare different
problems in terms of their complexity, yielding a notion of algorithmic or
computability-theoretic strength. For a thorough introduction to this kind
of analysis, which is generally called computable mathematics, see the book
of Hirschfeldt [20].

A complementary approach is provided by the foundational program of
reverse mathematics, developed by Friedman and Simpson in the late 1970s.
The setting here is second-order arithmetic, a formal system strong enough
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to express countable analogues of most results of classical mathematics. Its
axioms include the usual ordered semi-ring axioms for the natural numbers,
together with comprehension axioms asserting that the set of all numbers x
satisfying a given formula (property) exists. By restricting to only certain
kinds of formulas we get various subsystems of second-order arithmetic, the
most basic of which is called RCA0 and roughly corresponds to computable
mathematics. The traditional approach in the subject has been to compare
a given theorem with several benchmark subsystems (WKL0, ACA0, ATR0)
extending RCA0, corresponding to increasing levels of non-constructibility.
Isolating the weakest such system that the theorem can be proved in, and the
strongest that can in turn be proved from it over the base system RCA0,
yields a measure of its proof-theoretic strength. There is a fruitful and
well-understood interplay between reverse mathematics and computability
theory, with ideas and results from one often leading to results in the other
(see Shore [38]). This has been made even more pronounced in recent years
by the introduction of various Weihrauch-style reducibilities to the subject,
which have come to be viewed largely as an extension and refinement of
the traditional program of reverse mathematics. Computable reducibility,
in particular, which is a non-uniform analogue of Weihrauch reducibility
originally introduced in [13], will figure in a number of our results here.

The standard reference on reverse mathematics is Simpson [41]. Weih-
rauch reducibility was introduced by Weihrauch [50] in the 1990s, and has
since been widely deployed in computable analysis and other fields; for a
recent survey, see Brattka, Gherardi, and Pauly [1].

Of course, instance-solution problems are ubiquitous across mathemat-
ics, but problems from combinatorics have figured especially prominently in
the above frameworks for many decades. The classification and differenti-
ation of combinatorial theorems according to their computability-theoretic
and proof-theoretic strength is nowadays called computable combinatorics.
Perhaps the earliest result here is the following one from the late 1960s,
stating that Ramsey’s theorem for pairs is not computably true.

Theorem 1.5 (Specker [43]). There is a computable f : [ω]2 → 2 with
no computable infinite homogeneous set.

(In the parlance of reverse mathematics, this shows that Ramsey’s theorem
for colorings of pairs is not provable in the base theory, RCA0.) This result
was greatly extended in the seminal 1972 paper of Jockusch [23], which set
off an industry of research on Ramsey’s theorem in computability theory
that is still highly active today.

The computability-theoretic perspective offers insights that are not read-
ily discernible in combinatorics alone. In the case of Ramsey’s theorem, a
well-known example is provided by the following pair of results.

Theorem 1.6 (Jockusch [23], Theorem 5.7). For each n ≥ 3, there is a
computable f : [ω]n → 2 each of whose infinite homogeneous sets computes

∅(n−2) (and in particular ∅′).
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Theorem 1.7 (Seetapun; see [37]). Every computable f : [ω]2 → 2 has
an infinite homogeneous set that does not compute ∅′.

Thus, there is a direct computational distinction between Ramsey’s theorem
for colorings of pairs and Ramsey’s theorem for colorings triples and larger
tuples. (Formalizing these results in RCA0 yields that Ramsey’s theorem for
colorings of triples implies the system ACA0 over RCA0, whereas Ramsey’s
theorem for colorings of pairs does not.)

Such threshold phenomenon, where an increase in a parameter changes a
theorem from not being able to encode specific non-computable information
to being able to do so, are observed quite widely. For example, as was
shown by Dzhafarov and Patey [15], this is the case for the aforementioned
theorem introduced by Chubb, Hirst, and McNicholl [8]. And more recently,
Chong et al. [5] obtained similar results for a theorem of Erdős and Rado
about colorings of pairs of rationals. We will likewise establish threshold
phenomena for Milliken’s tree theorem and the various consequences of it
we consider.

Another computability-theoretic feature that will feature prominently
in our work is cone avoidance. In the subject, a cone refers to a set of
subsets of ω closed upward under ≤T. As a case in point, the set of all
sets X that compute ∅′ is a cone, and Seetapun’s theorem (Theorem 1.7
above) can be seen as saying that every computable instance of Ramsey’s
theorem for colorings of pairs has a solution that lies outside (or avoids)
this cone. The emphasis here is on the restriction to computable instances,
however; indeed, it is easy to see that there is a (necessarily non-computable)
f : [ω]2 → 2, each of whose infinite homogeneous sets does compute ∅′. By
contrast, some instance-solution problems enjoy a stronger property called
strong cone avoidance, whereby every instance (computable or not) has at
least one solution that avoids the cone of sets that compute ∅′. This is
the case, for example, for the infinitary pigeonhole principle, as shown by
Dzhafarov and Jockusch [14, Lemma 3.2]. We shall investigate both cone
avoidance and strong cone avoidance for versions of Milliken’s tree theorem,
and in particular, for the Halpern-Laüchli theorem. It is worth noting,
too, that while every computably true problem obviously possesses cone
avoidance, not every such problem satisfies strong cone avoidance. (For
example, consider the identity problem, whose instances are all X ⊆ ω, and
the only solution of X is X itself.)

1.3. Plan of the manuscript

The manuscript is organized as follows. In Chapter 2, we give further
background and definitions to allow us to state the full versions of Mil-
liken’s tree theorem and the Halpern-Laüchli theorem. In Chapter 3, we
proceed to the computability-theoretic analysis of the Halpern-Lauchli theo-
rem, as a bootstrap to understanding the computational content of Milliken’s
tree theorem. In particular, we prove that the Halpern-Lauchli theorem is
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computably true (Theorem 3.4) and admits strong cone avoidance (Theo-
rem 3.21). Then, in Chapter 4, we analyse a product version of Milliken’s
tree theorem. We prove that the statement is equivalent to ACA0 for strong
subtrees of height at least 3 (Corollary 4.7), and that its restriction to col-
orings of strong subtrees of height 2 admits cone avoidance (Theorem 4.15).
Lastly, we prove that a weakening to the product version of Milliken’s tree
theorem for height 3, for which the solutions have now at most 2 colors
instead of 1, admits cone avoidance (Theorem 4.28). We then study three
applications of Milliken’s tree theorem for pairs, namely: Devlin’s theorem
concerning colorings of tuples of rationals (Chapter 5); a theorem about
colorings of finite subgraphs of the Rado graph (Chapter 6); and a gen-
eralization of the combinatorial theorem of Chubb, Hirst, and McNicholl
discussed above (Chapter 7). Finally, in Chapter 8, we state some questions
that our investigation leaves open.



CHAPTER 2

Definitions

The aim of this chapter is to review key concepts to make the rest of this
monograph more easily accessible to computability theorists, set theorists,
and combinatorialists. Our terminology and notation will for the most part
be standard, following, e.g., [12] and [48]. Where there is less uniformity in
the literature, we highlight our particular usage in this chapter and, as the
need arises, in the sequel. In Section 2.1 we set out our notation for finite
strings, operations on them, and spaces of subsets of N, which are largely
common across these fields. Sections 2.2 and 2.3 provide an overview of
some technical notions from computability theory and reverse mathemat-
ics. In Sections 2.4 and 2.5, we review combinatorial definitions relevant to
stating Milliken’s tree theorem and some of its corollaries, which we then
present in Section 2.6. Finally, in Section 2.7, we review some terminology
from structural Ramsey theory that helps give a common framing for these
principles.

We begin with some basics. We use ⊔ to denote disjoint union. For
every set X, we denote by P(X) the power set of X. And given a function
f on X, we let f ↾ Y denote the restriction of f to Y ⊆ X.

Throughout, we use ( · · · ) to denote (ordered) tuples of objects, and
given a function f defined on a tuple (a0, . . . , an) we write f(a0, . . . , an) in
place of f((a0, . . . , an)). In the computability-theoretic setting, we do not
make a notational distinction for coded tuples (of numbers, subsets of N, or
combinations thereof). Thus, we also let ( · · · ) denote a fixed computable
bijection from finite ordered tuples of natural numbers to N, e.g., as in [42,
p. xxxii]. For X0, . . . , Xn−1 ⊆ N we will sometimes use (X0, . . . , Xn−1) as
an alternative notation for the join, X0 ⊕ · · ·⊕Xn−1 = {(x, i) : x ∈ Xi, i <

n} ⊆ N. In the case that some Xi is a singleton, say containing x, we will
write simply (X0, . . . , x, . . . , Xn−1) in place of (X0, . . . , {x}, . . . , Xn−1).

Given a countable collection of sets {X0, X1, . . .} indexed by the natural
numbers, we write

!
n
Xn for

!
n∈NXn.

2.1. Strings and subsets of N

The following definition is included for completeness.

Definition 2.1.

(1) ω<ω denotes the set of all finite strings of natural numbers, i.e.,
functions σ : n → ω for some n ∈ N.

11
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(2) 2<ω denotes the subset of ω<ω of binary ({0, 1}-valued) strings.
(3) The length of σ ∈ ω<ω is the cardinality of its domain, and is

denoted by |σ|.
(4) The unique string of length 0 is denoted by &.
(5) For n ∈ N, ωn and ω<n denote the sets of σ ∈ ω<ω with |σ| = n

and |σ| < n, respectively.
(6) For n ∈ N, 2n and 2<n denote the sets of σ ∈ 2<ω with |σ| = n and

|σ| < n, respectively.

As is customary, we will alternate between the function and sequence
point of view for elements of ω<ω. For σ ∈ ω<ω and i < |σ| we will thus
speak of σ(i) and the (i + 1)st element of σ (or (i + 1)st bit, if σ ∈ 2<ω)
interchangeably, or as convenient. We will sometimes specify σ explicitly as
(σ(0)σ(1) · · ·σ(|σ|− 1)).

Definition 2.2. Fix σ, τ ∈ ω<ω.

(1) σ is an initial segment of τ , and τ is an extension of σ, written
σ ≼ τ , if σ = τ ↾ n for some n ≤ |τ |.

(2) σ is a proper initial segment of σ, and τ is a proper extension of
σ, written σ ≺ τ , if σ = τ ↾ n for some n < |τ |, i.e., if σ ≼ τ and
σ ∕= τ .

(3) σ and τ are incompatible, written σ⊥τ , if σ ⋠ τ and τ ⋠ σ.
(4) The meet of σ and τ , denoted by σ ∧ τ , is the longest common

initial segment of σ and τ , i.e., σ ∧ τ = σ ↾ n for the longest n such
that σ ↾ n = τ ↾ n.

(5) The concatenation of σ by τ is the string στ : |σ| + |τ | → ω with
στ(i) = σ(i) for all i < |σ| and στ(i) = τ(i − |σ|) for all |σ| ≤ i <

|σ|+ |τ |.

So, for the sake of completeness, notice that if σ ∧ τ = σ then σ ≼ τ .
Observe too that & is an initial segment of every σ, and &σ = σ& = σ. Finally,
if σ, τ ∈ 2<ω then so is στ .

Definition 2.3.

(1) ωω denotes the set of all functions X : N → N, and 2ω the set of all
{0, 1}-valued such functions.

(2) σ ∈ ω<ω is an initial segment of X ∈ ωω, and X is an extension of
σ, written σ ≺ X, if σ(i) = X(i) for all i < |σ|.

When convenient, we identify sets with their characteristic functions, which
gives us the usual equivalence between elements of 2ω and elements of P(N).
For this reason, we use X ↾ ℓ for ℓ ∈ N, which denotes the restriction of the
characteristic function of X to ℓ, also as shorthand for {x ∈ X : x < ℓ}.

The sets ωω and 2ω each have natural topologies defined on them, re-
spectively generated by basic open sets of the form

[σ] = {X ∈ ωω : σ ≺ X}.
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for σ ∈ ω<ω, and

[σ] = {X ∈ 2ω : σ ≺ X}.
for σ ∈ 2<ω. This turns ωω into a Baire space and 2ω into a Cantor space.
For our purposes here, the main relevant topological consideration will be
that 2ω is compact.

2.2. Computability and reverse mathematics

Everywhere, we adopt the Church-Turing thesis, and therefore forego
any specifics of our model of computation. We take as fixed some listing
Φ0,Φ1, . . . of all partial computable functions such that from each e we
can computably determine the program of Φe, and conversely, from each
program we can computably find an e such that Φe executes this program.
Nominally, we think of e as being a code for the sequence of steps in the
program under a Gödel coding (see, e.g., [42], Definitions 1.5.1 and 1.7.2).

Recall that a set W ⊆ N is computably enumerable (c.e.) if it is the
domain of some partial computable function, i.e., the set of inputs on which
a given Turing program halts in finite time. We denote the domain of Φe

by We.

Definition 2.4. A Turing functional is a c.e. set Γ of pairs (σ, τ) ∈
2<ω × 2<ω (coded as numbers) such that if (σ, τ) and (σ′

, τ ′) belong to Φ
and σ ≼ σ′ then τ ≼ τ ′. In this case, for every set X ⊆ N, we also define
the following.

(1) ΓX =
!
{τ ∈ 2<ω : (∃σ ≺ X)[(σ, τ) ∈ Γ]}.

(2) We write ΓX(x) = y or ΓX(x) ↓= y if τ(x) = y for some (and
hence all) (σ, τ) ∈ X with σ ≺ X and |τ | > x; we write ΓX(x) ↓ if
ΓX(x) = y for some y, and otherwise we write ΓX(x) ↑.

(3) ΓX is total if ΓX(x) ↓ for all x ∈ N.

Note that if ΓX is total then it is, in fact, equal to an element of 2ω. In
particular, if ΓX is total for all X ∈ 2ω then Γ is a continuous map 2ω → 2ω.
If Γ = We, then for all X we also denote ΓX by ΦX

e when convenient.
For simplicity, we abuse notation and write Φe instead of Φ∅

e. (Formally,
this is only incorrect up to a fixed computable permutation of N. Indeed,
given any computable set X there is a computable bijection f : N → N such
that ΦX

e = Φf(e) for all e ∈ N.) This highlights the fact that the main role
of Turing functionals is to facilitate relativization of computability-theoretic
notions to arbitrary subsets of N. For example, a set Y ⊆ N is computable
relative to X (or from X, or is X-computable), if Y = ΓX for some Turing
functional Γ, in which case we write Y ≤T X; Y is computably enumerable
relative to X (or X-c.e.) if Y is the domain of ΓX for some Turing functional
Γ; etc. Recall, too, that for each set X, the jump of X is the X-c.e. set
X

′ = {e ∈ N : ΦX
e (e) ↓}.

An important object in investigations like ours is the following.
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Definition 2.5. A class C ⊆ 2ω is a a Π0
1 class if there is a c.e. set W ,

viewed as a subset of 2<ω, such that C = 2ω #
!

σ∈W [σ] = {Y ∈ 2ω : (∀σ ∈
W )[σ ⊀ Y ]}.
If we take W in the definition to be X-c.e. rather than c.e., we get the rela-

tivized concept of a Π0,X
1 class. Such classes are ubiquitous, often showing

up as the collection of sets satisfying some natural computability-theoretic
or combinatorial property. A prototypical example, given an infinite set X
and a Turing functional Γ, is the class CX,Γ of all pairs of sets (Y0, Y1) such
that Y0 ∪ Y1 = X and for each i < 2, each x ∈ N, and every finite subset F

of Yi, Γ
F (x) ↑. It is easy to verify that CX,Γ is a Π0,X

1 class.
Note that a Π0

1 class is, in particular, a closed subset of 2ω. (The ad-
ditional property, worth emphasizing, is that a Π0

1 class is one whose com-
plement is effectively generated.) Every closed subset of 2ω is also compact,
which yields the following simple but significant result.

Lemma 2.6 (Compactness for Π0
1 classes). If W is c.e. and C = 2ω #!

σ∈W [σ] = ∅, then there is an ℓ ∈ N such that σ ∈ 2<ω has an initial
segment in W of length at most ℓ.

For instance, if the class CX,Γ mentioned above is empty, then compactness
yields an ℓ such that for every partition of X into two sets, Y0 and Y1, there
is an i < 2 and a finite subset F of Yi ↾ ℓ with ΓF (x) ↓ for some x. Our use
of compactness will often take this form.

Equally important for us will be the case when a Π0
1 class we are dealing

with is non-empty. To study the members of such classes, we typically
employ basis theorems of various kinds, a basis in this context being a
collection of subsets of N that intersects every non-empty Π0

1 class. The
most celebrated example of this is the low basis theorem of Jockusch and
Soare [25, Theorem 2.1], which shows that the collection of low sets Y with
Y

′ ≤T ∅′ forms a basis. In this monograph, we will most often use the
following cone avoidance basis theorem.

Theorem 2.7 (Jockusch and Soare [24], Corollary 2.11). Let C ⊆ N be
non-computable. Every non-empty Π0

1 class contains a member Y such that
C ≰T Y .

Observe that to relativize the cone avoidance basis theorem to a set X,
we need C above to be not only non-computable, but non-X-computable.
Without this additional condition the result would be false, as can be easily

seen, for example, by noticing that the singleton {X} is a Π0,X
1 class. This

distinction—computing a given non-computable set on the one hand, and
computing it together with a given other set on the other—turns out to be
an important one, and we will return to it in the next chapter.

2.3. Second-order arithmetic and computable reducibility

As mentioned, our main focus in this manuscript is a computability-
theoretic one. As such, our contributions to reverse mathematics here are
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largely ancillary, and except where noted otherwise, will follow by straight-
forward formalization of our computability results. The framework of reverse
mathematics nonetheless provides a convenient way to succinctly state many
relationships between the various theorems we will be considering, and also
motivates many questions we look at. Indeed, many of these questions would
not arise otherwise. We thus begin with a brief overview of this framework.

Let L2 denote the (two-sorted, first-order) language of second-order arith-
metic. We use lowercase letters x, y, . . . to range over first-order variables,
and uppercase letters X,Y, . . . to range over second-order variables. All
formulas discussed may include both first- and second-order variables and
parameters.

Definition 2.8. The following axiomatic systems are defined in the
language of second-order arithmetic.

(1) PA− consists of the algebraic axioms of Peano arithmetic (i.e., all
axioms except for induction).

(2) RCA0 consists of the axioms of PA−, together with ∆0
1 comprehen-

sion (i.e., the scheme

(∀x)[φ(x) ⇐⇒ ψ(x)] → (∃X)(∀x)[x ∈ X ⇐⇒ φ(x)],

where φ is a Σ0
1 formula and ψ is Π0

1) and Σ0
1 induction (i.e., the

scheme

(φ(0) ∧ (∀x)[φ(x) → φ(x+ 1)]) → (∀x)[φ(x)]
where φ is a Σ0

1 formula).
(3) ACA0 consists of the axioms of RCA0, together with arithmetic

comprehension (i.e., the scheme

(∃X)(∀x)[x ∈ X ⇐⇒ φ(x)]

where φ is a Σ0
n formula for some n ∈ N).

RCA0 corresponds more or less to formalized computable mathematics,
since by Post’s theorem, being computable from a set is the same as being
∆0

1 definable from it. Thus, morally, all effectively true theorems ought to
be provable in RCA0. The one complicating factor in this is the restriction
in RCA0 to Σ0

1 induction, as even effective arguments sometimes require
induction beyond this level, and so may fail in a non-standard model of
RCA0. While this can lead to interesting questions concerning the first-
order content of mathematical principles, the majority of our results in this
monograph can be readily formalized in RCA0. Therefore, we will follow the
common practice of presenting all our arguments semantically (i.e., we will
not give formal proofs in second-order arithmetic), and obtain provability
results in RCA0 implicitly.

The preceding definition lists two of the so-called “big five” subsystems
of second-order arithmetic, as these will be the only ones of interest to
us. In the classical program of reverse mathematics, RCA0 serves as the
base theory, over which implications between (formal versions of) various
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mathematical theorems are considered, giving a measure of their relative
proof-theoretic and computability-theoretic strength. Implications to and
from ACA0 over RCA0, in particular, constitute an important benchmark
in this measurement, as we discuss further below.

We now discuss the models of RCA0 and ACA0.

Definition 2.9. A model of second-order arithmetic is a pair (N,S),
where N is (the domain of) a model of first-order arithmetic and S ⊆ P(N).
If N = N, then this is an ω-model.

Thus, an ω-model is specified entirely by the collection S of subsets of N
that it includes. The following is immediate.

Lemma 2.10. Let (N,S) be an ω-model.

(1) (N,S) |= RCA0 if and only if S is closed under ⊕ and under ≤T

(i.e., if S is a Turing ideal).
(2) (N,S) |= ACA0 if and only if S is closed under ⊕, ≤T, and the

map X 8→ X
′ (i.e., if S is a jump ideal).

All the theorems we consider, from Milliken’s tree theorem onward, can
be expressed by Π1

2 formulas in the language of second-order arithmetic, and
more specifically, in the form given by Equation (1.1) above. As discussed
in the introduction, we think of these as problems, in the following sense.

Definition 2.11. An instance-solution problem (or just problem) is a
relation P ⊆ 2ω × 2ω. For every (X,Y ) ∈ P, X is a instance of P (or
P-instance) and Y is a solution to X for the problem P (or P-solution to
X).

It should be noted that every Π1
2 problem can be written in the syntactic

form of Equation (1.1) in many different ways. In practice, however, there
is a canonical such form one works with, and whenever we refer to a Π1

2

statement in this monograph we will have this form in mind.
Not all instance-solution problems naturally come from Π1

2 principles
(see, e.g., [17, 26]), but this will be the case in all of the examples we
consider. We will move freely between the two perspectives, as convenient.
The main practical connection comes from the following definition and basic
observation.

Definition 2.12. Let P and Q be problems. Q is computably reducible

to P, written Q ≤c P, if every Q-instance X computes a P-instance "X such

that if "Y is any P-solution to "X then X⊕ "Y computes a Q-solution Y to X.

Lemma 2.13. Let P and Q be Π1
2 statements. If Q ≤c P as problems,

then every ω-model of RCA0 ∧ P is a model of Q.

Computable reducibility is a convenient tool for making certain natural con-
structions in reverse mathematics more explicit. For example, the most
common way of showing that a Π1

2 statement P implies ACA0 over RCA0 is
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to show that for every set A ⊆ N, there is an A-computable Q-instance X,
all of whose solutions Y satisfy A

′ ≤T A ⊕ Y . If we let Q be the problem
whose instances are all X ∈ 2ω, such that the only solution to each X is X ′,
then the preceding precisely says that Q ≤c P.

We conclude this section with a note on non-implications.

Definition 2.14. Let P be a problem.

(1) P admits cone avoidance if for all sets A,C ⊆ N with C ≰T A, every
A-computable P-instance X has a solution Y so that C ≰T A⊕ Y .

(2) P admits strong cone avoidance if for all sets A,C ⊆ N with C ≰T

A, every P-instance X has a solution Y so that C ≰T A⊕ Y .

The distinction to note well is that the instance X in item 2 can be ar-
bitrary, and in particular, need not be A-computable. As pointed out in
the introduction, all computably true principles satisfy cone avoidance, but
not necessarily strong cone avoidance. Indeed, strong cone avoidance is a
fairly special property which makes it possible to freely use a principle in
a construction without increasing its overall complexity, as we will do, e.g.,
with the Halpern-Laüchli theorem in the next chapters.

Ordinary cone avoidance suffices for the following important result, which
we will make repeated use of. We include a proof for completeness.

Lemma 2.15. If P is a Π1
2 statement that, as a problem, admits cone

avoidance, then there is a ω-model of RCA0 ∧ P in which ACA0 does not
hold. In particular, P does not imply ACA0 over RCA0.

Proof. Let C = ∅′. We inductively define A0, A1, . . . ⊆ N as follows.
Let A0 = ∅, and suppose we have defined As for some s ∈ N and that
C ≰T As. If s ∕= (e, t) for some e ∈ N and some t < s, or if ΦAt

e is not a
P-instance, then let As+1 = As. Otherwise, by cone avoidance of P choose
a solution Y to X = ΦAt

e so that C ≰T As ⊕ Y , and let As+1 = As ⊕ Y .
Let S = {Z : (∃s)[Z ≤T As]}, which is a Turing ideal since At ≤T As

for all t ≤ s. By construction, if X is any instance of P in S then S contains
a solution to X. (Indeed, if X = ΦAt

e , say, let s = (e, t); then a solution to
X is computable from As+1.) It follows that (N,S) is a model of RCA0 ∧P.
But ∅′ ≰T As for all s ∈ N, hence ∅′ /∈ S. This means S is not a jump ideal
and so (N,S) is not a model of ACA0. □

2.4. Trees and strong subtrees

Trees have different meanings in different areas of mathematics, and
what is noteworthy for us here, is that we will not be following the common
definition used in computability theory.

Definition 2.16. A tree is a non-empty subset T of ω<ω satisfying the
following properties:

(1) there exists ρ ∈ T , called a root of T , such that ρ ≼ σ for all σ ∈ T ;
(2) if σ, τ ∈ T then σ ∧ τ ∈ T ;
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(3) for every σ ∈ T there are at most finitely many τ ∈ T such that
σ ≺ τ and such that there is no τ ′ ∈ T with σ ≺ τ ′ ≺ τ .

Thus, in brief, our trees are rooted, meet-closed, finitely-branching subsets of
ω<ω. However, they need not be downward closed under the initial segment,
≼, relation, as is the case with the trees commonly used in computability
theory. Thus, every tree in the sense of the latter is also a tree in our sense
here, but not conversely. Our trees also differ from those used in the context
of the so-called Chubb-Hirsct-McNicholl tree theorem, which we will discuss
shortly. There, trees are also not necessarily downward closed, but nor are
they closed under meets.

Moving forward, we will use trees exclusively in the sense of Definition
2.16, except in Chapter 7 where we deliberately look at the relationship of
the two.

As usual, we will refer to the elements of a tree as its nodes.

Definition 2.17. Let T be a tree.

(1) The level of σ ∈ T is |{τ ∈ T : τ ≺ σ}|. We say σ is at this level in
T .

(2) For n ∈ N, T (n) denotes the set of all σ ∈ T at level n in T .
(3) The height of T is the least ordinal α larger than the level of every

σ ∈ T .
(4) If σ, τ ∈ T with σ ≺ τ and there is no τ ′ ∈ T with σ ≺ τ ′ ≺ τ , then

τ is a direct extension of σ in T .
(5) For k ∈ ω, a node σ ∈ T is k-branching in T if it has exactly k

many direct extensions in T .
(6) A node σ ∈ T is a leaf of T if it is 0-branching in T . The set of

leaves of T is denoted by leaves(T ).
(7) T is k-branching if every σ ∈ T is k-branching in T or a leaf.

Note that all direct extensions of a given node in a tree T must be pairwise
incomparable. The height of a tree is always at most ω, and as trees are
non-empty, the height is always defined and at least 1. Since all trees are
finitely-branching by definition, a tree is of height ω if and only if it is
infinite.

Remark 2.18. It is worth stressing that if two nodes of T are at the
same level, they need not have the same length. This is because length is
not a structural property of a tree as a graph, but rather of its presentation
(i.e., the labeling of its nodes). The same is true of being closed under
meets. Thus, in general, any result we state or prove for trees will apply
also, after appropriate relabeling, to any subset S of ω<ω such that (S,≼)
is isomorphic to (T,≼) for some tree T . For any such set S we can freely
employ the terms in the preceding definition, since these are independent of
presentation.



2.5. FORESTS AND PRODUCTS OF TREES 19

Definition 2.19. Given b : ω → ω, a tree T is b-bounded , or bounded
by b, if for every σ ∈ T we have σ(i) < b(i) for all i < |σ|. T is computably
bounded if T is b-bounded for some computable b.

A k-branching tree is thus one which is bounded by precisely the functions
whose ranges lie in the interval [k,∞). Clearly, every finitely branching tree
is computably bounded relative to its Turing jump.

Notice, however, that because our trees are not closed downwards under
≼, computably bounded trees here do not necessarily enjoy the usual effec-
tivity properties familiar from computability theory (see, e.g., [42], Chapter
3). For example, the set of infinite paths through a computable, computably
bounded tree need not be a Π0

1 class.
A subset S of a tree T may not itself be a tree, and even if it is, it may

not preserve all the structure of T . For example, two nodes at the same
level in S may be at different levels in T , or a node may have fewer direct
extensions in S than it did in T . This motivates the following definition.

Definition 2.20. A tree S of height α is a strong subtree of a tree T if
it satisfies the following two properties:

(1) there exists a function f : α → ω, called a level function, such that
for all n < α, if σ ∈ S(n) then σ ∈ T (f(n));

(2) for all k, a node in S which is not at level α− 1 in S is k-branching
in S if and only if it is k-branching in T .

See Figure 2.1 for a visual representation of a strong subtree. Given a tree
T and 1 ≤ α ≤ ω, we let Sα(T ) be the collection of all strong subtrees of T
of height α.

A strong subtree S of a tree T is itself a tree, and so is closed under meets.
The branching in S is thus completely determined by the direct extensions
in T of the (non-trivial) meets of nodes in S. The level function f ensures
that if σ ∈ S ∩ T (f(n)) is not a leaf of S, then for every τ ∈ T (f(n) + 1)
extending σ, there exists a unique ρ ∈ S ∩ T (f(n + 1)) extending τ . (See
Figure 2.1.)

If the height of T is α < ω then Sβ(T ) = ∅ for all β > α, and it is also
easy to see that the only element of Sα(T ) in this case is T itself. Being a
strong subtree of a tree is a transitive relation, so in particular, if S ∈ Sα(T )
and U ∈ Sβ(S) for some β ≤ α then U ∈ Sβ(T ).

2.5. Forests and products of trees

As mentioned above, in order to study the proof of Milliken’s tree theo-
rem we will need to examine the Halpern-Laüchli theorem, whose statements
requires us to consider multiple trees in parallel.

Definition 2.21. A forest is a non-empty subset X of ω<ω such that
if a pair of nodes σ, τ ∈ X has a common initial segment in X then also
σ ∧ τ ∈ X.
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...

f(0)

f(0) + 1

f(1)

f(1) + 1

f(2)

Figure 2.1. A strong subtree S of a tree T , with level func-
tion f . The circles represent nodes in T ; the solid circles in
S, the hollow circles are in T # S. The levels of S are in-
cluded in the levels of T ; solid gray horizontal lines represent
levels in S, dashed gray horizontal lines levels in T # S. A
node connected to another below it by a straight black line
denotes a direct extension in T . Wavy lines indicate omit-
ted (skipped over) portions of T . Note that all branchings
are preserved: a nodes in S has the same number of direct
extensions in S as in T .

Since every pair of nodes in a tree has at least one common initial seg-
ment (the root), it is clear that every tree is a forest. Indeed, the following
is easy to see: X ⊆ ω<ω is a forest if and only if it is a union of disjoint
trees. For this reason, we refer to the elements of a forest as nodes, and lift
all other terminology from trees to forests. For definiteness, we make this
explicit in the following definition.

Definition 2.22. Let X be a forest.

(1) A root of X is any ρ ∈ T having no proper initial segment in X.
The set of all roots of X is denoted by roots(X).

(2) The level of σ ∈ X is |{τ ∈ X : τ ≺ σ}|. We say σ is at this level
in X.

(3) For n ∈ N, X(n) denotes the set of all σ ∈ X at level n in X.
(4) The height of X is the least ordinal α larger than the level of every

σ ∈ X.
(5) If σ, τ ∈ X with σ ≺ τ and there is no τ ′ ∈ X with σ ≺ τ ′ ≺ τ ,

then τ is a direct extension of σ in X.
(6) For k ∈ ω, a node σ ∈ X is k-branching in X if it has exactly k

many direct extensions in X.
(7) A node σ ∈ X is a leaf of X if it is 0-branching. The set of leaves

of X is denoted leaves(X).

Thus, a forest X is a tree if and only if roots(X) is a singleton. The height
of X is the maximum of the heights of the disjoint trees that comprise it.
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Given a forest X and a node σ ∈ X, we let X ↾ σ = {τ ∈ X : τ ≽ σ}.
In particular, whenever σ ∈ X we have that X ↾ σ is a tree with root σ.

Definition 2.23. A forest Y of height α ≤ ω is a strong subforest of a
forest X if it satisfies the following two properties:

(1) there exists a function f : α → ω, called a level function, such that
for all n ≤ α, if σ ∈ X(n) then σ ∈ X(f(n));

(2) for all k, a node in Y which is not at level α in Y is k-branching in
Y if and only if it is k-branching in X.

Given a forest X and an α ≤ ω, we let Sα(X) be the collection of all strong
subforests of X of height α. We also add the following slightly more general
definition.

Definition 2.24. For each d ≥ 1, if T0, . . . , Td−1 are trees then

Sα(T0, . . . , Td−1)

for α ≤ ω is the collection of all tuples (S0, . . . , Sd−1) such that for each
i < d we have Si ∈ Sα(Ti), witnessed by one and the same level function.
In addition, S<α(T0, . . . , Td−1) denotes

!
n<α Sn(T0, . . . , Td−1).

Thus, if X =
!

i<d
Ti, where T0, . . . , Td−1 are disjoint trees, then Sα(X) =

Sα(T0, . . . , Td−1). However, the preceding definition applies to arbitrary
trees T0, . . . , Td−1, disjoint or not.

We include one final definition, which is standard in other investigations
of Milliken’s tree theorem and will be important to us going forward.

Definition 2.25. Fix m ≥ 1.

(1) For a forest X and node σ ∈ X, a subset P of X is m-σ-dense if
every τ ∈ X(m) that extends σ has an extension in P .

(2) For forestsX0, . . . , Xd−1 and tuple π = (σ0, . . . ,σd−1) ∈
!

n
X0(n)×

· · ·×Xd−1(n), a subset P of X0×· · ·×Xd−1 is an m-π-dense matrix
if P = P0 × · · ·× Pd−1 where Pi is an m-σi-dense subset of Xi, for
each i < d.

We will of course only be interested in the case where m is larger than the
level of σ in X, respectively, of the (common) level in Xi of each of the
entries σi of π. In the latter case, we will call this common level the level of
π in X.

The main point in item 2 above is that if P is an m-π-dense matrix
then for every τi ∈ Xi(m) that extends σi we can find a ρi such that
(ρ0, . . . , ρd−1) ∈ P , and the latter is true for every choice of possible ρi.
Note that the ρi do not have to be at the same level in their respective
forests. Also, notice that the Xi need not be disjoint, and so their union
need not be itself a forest.
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2.6. Statements of theorems

In this section, we can finally define Milliken’s tree theorem and its
combinatorial variants that we will investigate in Chapters 3 and 4, as well
as the various application of Milliken’s tree theorem that we will discuss in
Chapters 5 to 7.

Theorem 2.26 (Milliken’s tree theorem). Let T be an infinite tree with
no leaves. For all n, k ≥ 1 and all f : Sn(T ) → k there is an S ∈ Sω(T )
such that f is constant on Sn(S).

By analogy with Ramsey’s theorem, we will break this statement up into
sub-statements, in this case according to the height of the subtrees being
colored. Thus, we define the following:

Statement 2.27. For all n ≥ 1, MTTn is the restriction of Milliken’s
tree theorem to colorings to strong subtrees of height n.

We will sometimes also refer to MTTn as Milliken’s tree theorem for height n
in the sequel. From the computability-theoretic point of view, we will regard
an instance of MTTn as being a tuple (T, b, f, k), where T is an infinite b-
bounded tree with no leaves, and f is a map Sn(T ) → k. In effect, this
means all computable instances of MTTn are computably bounded.

As discussed in the introduction, the next theorem is the analogue of
the pigeonhole principle in the proof of Milliken’s tree theorem.

Theorem 2.28 (Halpern-Laüchli theorem). Let T0, . . . , Td−1 be infinite
trees with no leaves. For all k ≥ 1 and all f :

!
n
T0(n)× · · ·× Td−1(n) → k

there exists (S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1) such that f is constant on!
n
S0(n)× · · ·× Sd−1(n).

Again, one would naturally expect MTT1 to play this role, so the need for
the Halpern-Laüchli theorem is not a priori obvious. In fact, the original
paper [30] that introduced what we now call Milliken’s tree theorem actually
proved a version for products that looks much more like the “general case” of
the Halpern-Laüchli theorem. In many ways, this is really the more natural
result, and Milliken’s tree theorem is merely a restriction that suffices for
most applications.

Theorem 2.29 (Product version of Milliken’s tree theorem). Fix infinite
trees T0, . . . , Td−1 with no leaves. For all n, k ≥ 1 and all colorings f :
Sn(T0, . . . , Td−1) → k there exists (S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1) such
that f is constant on Sn(S0, . . . , Sd−1).

Statement 2.30. For all n ≥ 1, PMTTn is the restriction of the product
version of Milliken’s tree theorem for height n.

The Halpern-Laüchli theorem is exactly PMTT1, since for all T0, . . . , Td−1

we have
S1(T0, . . . , Td−1) =

#

n

T0(n)× · · ·× Td−1(n).
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In our analysis, we will regard an instance of PMTTn as a tuple

(d, T0, . . . , Td−1, b, f, k),

where the Ti are infinite b-bounded trees with no leaves, and f is a map
Sn(T0, . . . , Td−1) → k.

We now state some further applications of Milliken’s tree theorem, which
concern various structures besides trees. Each of these structures will be
countable and, unless otherwise stated, infinite, and will have a countable,
relational underlying language. For a finite substructure A of a structure
B, let

$B
A
%
denote the set of (isomorphic) copies of A contained in B. Recall

also that if X is a set and n is a positive integer then [X]n denotes the set
of n-element subsets of X. In particular, if B is the domain of B, then each
element of [B]n may be regarded as a substructure of B by restriction since
the language of B is relational. (In general, however, [B]n need not equal$B
A
%
for any one A.) When convenient, we may also write [B]n for [B]n.
The first application of Milliken’s tree theorem we consider is Devlin’s

theorem, also called Devlin’s second theorem, e.g., in [48], Chapter 6.

Theorem 2.31 (Devlin’s theorem). For every n ≥ 1 there exists ℓ ≥ 1
such that for every k ≥ 1 and every f : [Q]n → k there is a dense suborder
S of Q with no endpoints satisfying |f([S]n)| ≤ ℓ.

The key here is that the bound ℓ does not depend on k or the particular
coloring, but only on n. As an instance-solution problem, we will study
Devlin’s theorem in the following form:

Statement 2.32. For all n, k, ℓ ≥ 1, DTn

k,ℓ is the assertion that for every

f : [Q]n → k there is a dense suborder S of Q with no endpoints satisfying
|f([S]n)| ≤ ℓ.

Note that DTn

k,ℓ is merely a formal statement, not a necessarily a true the-

orem for all possible n, k, and ℓ. For example, it is easy to see that DT1
k,1

is true for all k. However, DT2
2,1 is false. To see this, let (qn)n∈N be an enu-

meration of the rationals, and define f : [Q]2 → 2 by letting f(qn, qm) = 0 if
qn < qm ⇐⇒ n < m, and f(qn, qm) = 1 otherwise. Then it is readily seen
that every subset S ⊆ Q of order-type Q (or even Z) must contain pairs of
both colors under f . For n = 2, this situation turns out to be as bad as it
can be, as DT2

k,2 is true for all k. This fact was originally observed by Galvin

(unpublished). For general n, the corresponding ℓ values were obtained by
Devlin [9, Chapter 4].

The second application we consider concerns graph colorings. We use G
as generic notation for a graph, and unless otherwise specified, assume the
set of vertices of G is G, and the set of edges, E. For x, y ∈ G, we write
xEy if (x, y) ∈ E and ¬xEy if (x, y) /∈ E. The graph G is a Rado graph
(or random graph) if for every two disjoint finite sets of vertices F0, F1 ⊆ G

there exists x ∈ G such that xEy for all y ∈ F0 and ¬xEy for all y ∈ F1.
Such a graph is, in particular, universal, containing every finite graph as an
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induced subgraph. All Rado graphs are isomorphic by the standard back
and forth construction, so we usually speak just of the Rado graph, and
assume we have fixed a canonical computable representative of it, denoted
by R. The principle of interest to us is following, which we will call the
Rado graph theorem here for definiteness.

Theorem 2.33 (Rado graph theorem). For every finite graph G there

exists ℓ ≥ 1 such that for every k ≥ 1 and every f :
$R
G
%
→ k there is an

isomorphic subgraph R′ of R satisfying |f ′′$R′

G
%
| ≤ ℓ.

Again, the bound ℓ does not depend on k, but only, in this case, on the
particular subgraph G. The precise bounds here were obtained by Sauer
[36] and Laflamme, Sauer, and Vuksanovic [27]. The result shares much in
common with Devlin’s theorem, as we will see further below. Both results
are well-known consequences of Milliken’s theorem. (See, e.g., Todorcevic
[48], Theorems 6.23 and 6.25 for direct proofs.) We give a more effective
proof of the Rado graph theorem from Milliken’s tree theorem in Section 6.3.

We will investigate the Rado graph theorem in the following two forms.

Statement 2.34. For all finite graphs G and all k, ℓ ≥ 1, RGG
k,ℓ is

the assertion that for every coloring f :
$R
G
%
→ k, there is an isomorphic

subgraph R′ of R satisfying |f ′′$R′

G
%
| ≤ ℓ.

Statement 2.35. For all n, k, ℓ ≥ 1, RGn

k,ℓ is the assertion that for every

coloring f : [R]n → k, there is an isomorphic subgraph R′ of R satisfying
|f ′′[R′]n| ≤ ℓ.

Since there are, up to isomorphism, only finitely many graphs G of a given
finite size, we immediately get the implication

(∀G)(∃ℓ)(∀k)[RGG
k,ℓ] → (∀n)(∃ℓ)(∀k)[RGn

k,ℓ].

The final application we look at, unlike the previous two, is not a familiar
one in set theory. However, it has been studied extensively in computable
combinatorics and reverse mathematics (see, e.g., [6, 7, 5, 15, 32] for some
very recent papers). This is the tree theorem of Chubb, Hirst, and McNi-
choll [8], which we will refer to as the Chubb-Hirst-McNicholl (CHM) tree
theorem in this monograph, to avoid confusion with Milliken’s tree theo-
rem. The CHM tree theorem concerns a weaker structure of tree than in
Definition 2.16, where we do not insist on being closed under meets. A tree
is thus any subset of 2<ω with a root. The theorem asserts the existence,
for every finite coloring of the n-tuples of comparable nodes of 2<ω, of an
infinite monochromatic perfect subtree in this weaker sense. The restriction
to comparable nodes comes from wanting to extend Ramsey’s theorem to
these “weak” trees. And indeed, as in Devlin’s theorem, it is easy to de-
vise a coloring of arbitrary tuples of nodes here where no monochromatic
solution exists (e.g., consider coloring all comparable pairs of strings 0, and
all incomparable pairs of strings 1). As it turns out, this restriction loses
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a great deal of combinatorial structure, which becomes apparent if we look
not for monochromatic solutions, but merely for bounds on the numbers of
colors used in a solution. It is this generalization of the CHM tree theorem
that we investigate.

Theorem 2.36 (Generalized CHM tree theorem). For every n ≥ 1 there
exists ℓ ≥ 1 such that for every k ≥ 1 and every f : [2<ω]n → k there is an
S ⊆ 2<ω such that (S,≼) is isomorphic to (2<ω

,≼) and |f([S]n)| ≤ ℓ.

Statement 2.37. For all n, k, ℓ ≥ 1, CHMTTn

k,ℓ is the assertion that

for every f : [2<ω]n → k there is an S ⊆ 2<ω such that (S,≼) is isomorphic
to (2<ω

,≼) and |f([S]n)| ≤ ℓ.

As with the previous two principles, the CHM tree theorem is a consequence
of Milliken’s tree theorem. We include a proof in Theorem 7.9 below.

2.7. Big Ramsey degrees and structures

Though we will study each of Devlin’s theorem, the Rado graph theorem,
and the CHM tree theorem separately and in its own right, we mention a
common framework within which all three can be presented, and which
better highlights some of the main similarities between the three. Some of
the terminology here will also be convenient in our discussions later on.

All three principles can be stated more succinctly using the concept of
big Ramsey degrees, which we now review. Recall that if B is an infinite
structure and A is a finite substructure of B, then for positive numbers ℓ ≤ k

the notation
B → (B)A

k,ℓ

means that for every coloring f :
$B
A
%
→ k there exists an isomorphic sub-

structure B′ of B such that |f ′′$B′

A
%
| ≤ ℓ. The following terminology is

standard in structural Ramsey theory.

Definition 2.38. Let B be a structure.

• For a finite substructure A of B, the big Ramsey degree of A in B
is the least number ℓ ∈ ω, if it exists, such that B → (B)A

k,ℓ for all
k ∈ ω, in which case we say that the big Ramsey degree of A is
finite.

• We say that a structure B has finite big Ramsey degrees if, for every
finite substructure A of B has finite big Ramsey degree.

In the parlance of this definition, then, the Rado graph theorem is simply
the assertion that the Rado graph has finite big Ramsey degrees. Similarly,
Devlin’s theorem is the assertion that (Q, <) has finite big Ramsey degrees,
since up to isomorphism (Q, <) has exactly one finite substructure A of each

size n ≥ 1, and so
$(Q,<)

A
%
= [Q]n. For the generalized CHM tree theorem the

situation is slightly different. While (2<ω
,≼) can have more than one non-

isomorphic substructure of a given finite size, it still has only finitely many.
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Thus, the generalized CHM tree theorem is equivalent to the statement that
(2<ω

,≼) has finite big Ramsey degrees.
The bounds ℓ in each of Devlin’s theorem, the Rado graph theorem, and

the generalized CHM tree theorem are not determined purely by properties
of the underlying structures. For example, even though Q has only one sub-
structure of size 2 up to isomorphism, we saw that we could differentiate two
types of substructure of size 2 by enriching the structure by an enumeration
of the domain. Enrichments of this kind play an important role in these
computations, since they can be taken into account in designing colorings
with a certain number of unavoidable colors.

A precise formalization of the concept of “enrichment” is given by Zucker
[51].

Definition 2.39 (Zucker [51], Definition 1.3). Let B be a structure in

a language L . A big Ramsey structure for B is a structure B̂ in a language
L̂ satisfying the following properties:

(1) L ⊆ L̂ ;

(2) the restriction of B̂ to L is B;
(3) for every finite substructure A of B there is a number tB̂(A) such

that, up to isomorphism, there are exactly tB̂(A) many different

substructures Â of B̂ whose restriction to L is a copy of A;
(4) every finite substructure A of B has big Ramsey degree equal to

tB̂(A);

(5) for every finite substructure A of B and choice Â0, . . . , ÂtB̂(A)−1 of

substructures of B̂ as in property 3, the coloring f :
$B
A
%
→ tB̂(A)

mapping each copy of A′ of A in B to the unique i < tB̂(A) such

that A′, viewed as a substructure of B̂ by restriction, is isomorphic
to Âi witnesses that the big Ramsey degree of A in B is at least
tB̂(A).

The idea here is that for every finite substructure A of B, the substruc-
tures Â0, . . . , ÂtB̂(A) of B̂ satisfying property 3 represent all recognizable or

describable types of the copies ofA in B, and the additional structure of B̂ fa-
cilitates these descriptions. In the literature, these instances are called more
specifically embedding types or Devlin types based on the specific structure
B.

Zucker [51, Theorem 7.1] provides some sufficient (and somewhat tech-
nical) conditions for a structure to admit a big Ramsey structure. For our
purposes here, it is enough to know that each of (Q,≤), the Rado graph,
and (2<ω

,≼) does. We will study the big Ramsey structure of the Rado
graph in detail (see also [51], Section 6.3), and we will carefully develop the
appropriate notion of type in the sense of the big Ramsey structure for the
generalized CHM tree theorem. For an account of a big Ramsey structure
for (Q,≤), see [51, Section 6.2].



CHAPTER 3

The Halpern-Laüchli theorem

We begin our analysis of Milliken’s tree theorem by studying the com-
putable content of the Halpern-Laüchli theorem (Theorem 2.28). The two
main theorems of this chapter are Theorem 3.4, that the Halpern-Laüchli
theorem is computably true, and Theorem 3.21, that it admits strong cone
avoidance. The first result will be used in the proof that the product ver-
sion of Milliken’s tree theorem admits arithmetical solutions. The second
result will be used to prove that the product version of Milliken’s tree the-
orem for colorings of strong subtrees of height 2 admits cone avoidance, in
the same way that strong cone avoidance of the pigeonhole principle can
be used to prove cone avoidance of Ramsey’s theorem for pairs (see, e.g.,
Hirschfeldt [20], Section 6.7).

3.1. An effective proof of the Halpern-Laüchli theorem

Our effectivization of the the Halpern-Laüchli theorem is based on the
proof of that theorem given in Todorcevic [48], where it appears as Theorem
3.2. We include that proof here largely in full, emphasizing the effective
analysis when it shows up, with the exception of one technical lemma that
we present first. For trees T0, . . . , Td−1 and a tuple π ∈ T0(n)× · · ·×Td−1(n)
for some n ∈ N, we call n the level of π.

Lemma 3.1 (Halpern and Laüchli [19], Theorem 1). Let T0, . . . , Td−1 be
infinite tree with no leaves. For all k ≥ 1 and all g : T0 × · · · × Td−1 → k

there is a π ∈
!

n
T0(n)× · · ·×Td−1(n), an m larger than the level of π, and

an m-π-dense matrix P for T0, . . . , Td−1 on which g is constant.

Nota bene that the coloring g above is defined on the full product T0× · · ·×
Td−1, rather than the level product

!
n
T0(n)× · · ·Td−1(n). However, we can

obtain a level version, as follows.

Lemma 3.2. Let T0, . . . , Td−1 be infinite trees with no leaves. For all
k ≥ 1 and all f :

!
n
T0(n) × · · · × Td−1(n) → k there is a π ∈

!
n
T0(n) ×

· · · × Td−1(n), an m larger than the level of π, and an m-π-dense matrix
P ⊆

!
n
T0(n)× · · ·× Td−1(n) on which f is constant.

Proof (from Theorem 3.2 in [48]). Fix T0, . . . , Td−1. By compact-
ness, for every k ≥ 1 there is an nk ≥ 1 such that for every coloring

27
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g : T0 × · · · × Td−1 → k we can find a π, an m, and an m-π-dense ma-
trix P = P0 × · · · × Pd−1 as in Lemma 3.1 with Pi ⊆

!
n<nk

Ti(n) for all
i < d.

Consider now f :
!

n
T0(n) × · · · × Td−1(n) → k. We define g : T0 ×

· · ·× Td−1 → k as follows. First, for each σ ∈
!

n<nk
Ti(n) fix an extension

σ̂ ∈ Ti(nk). Now for all (σ0, . . . ,σd−1) ∈ T0 × · · ·× Td−1, set

g(σ0, . . . ,σd−1) =

&
f(σ̂0, . . . , σ̂d−1) if σi ∈

!
n<nk

Ti(n) for all i < d,

0 otherwise.

By choice of nk there is a π ∈
!

n
T0(n) × · · · × Td−1(n), an m larger than

the level of π, and an m-π-dense matrix Q = Q0 × · · · × Qd−1 such that
Qi ⊆

!
n<nk

Ti(n) for all i < d and g is constant on Q. For each i < d, let

Pi = {ρ̂ : ρ ∈ Q}, so that now Pi ⊆ Ti(nk). By definition of g, we have that
f is constant on P = P0× · · ·×Pd−1. Thus, π, m, and P are as desired. □

One final critical lemma for us is the following, which is a consequence
of the previous one. We include the proof for completeness.

Lemma 3.3. Let T0, . . . , Td−1 be infinite trees with no leaves. For all
k ≥ 1 and all f :

!
n
T0(n) × · · · × Td−1(n) → k there is a tuple π ∈!

n
T0(n) × · · · × Td−1(n) such that for every m larger than the level of π

there is an m-π-dense matrix P ⊆
!

n
T0(n) × · · · × Td−1(n) on which f is

constant.

Proof (following Theorem 3.2 in [48]). Suppose otherwise. Then
for every (σ0, . . . ,σd−1) ∈

!
n
T0(n) × · · · × Td−1(n) there is an m ≥ 1 such

that f is not constant on anym-π-dense matrix P ⊆
!

n
T0(n)×· · ·×Td−1(n).

Let mπ be the least such m. Then choose m0 < m1 < · · · so that m0 = 0
and for all s ≥ 0, mπ < ms+1 for all tuples π ∈

!
n≤ms

T0(n)× · · ·×Td−1(n).

For each i < d, define Si =
!

s
Ti(ms), and note that the structure (Si,≼) is

isomorphic to a tree, so S0× · · ·×Sd−1 can be regarded as a product of trees.
Using Remark 2.18, apply Lemma 3.2 to the restriction of f to S0×· · ·×Sd−1

to get a tuple π ∈
!

n
S0(n) × · · · × Sd−1(n), an m larger than the level of

π in this product, and an m-π-dense matrix P ⊆
!

n
S0(n) × · · · × Sd−1(n)

on which f is constant. But by construction, the level of π must be equal
to ms for some s, and m must be equal to mt for some t > s. So f cannot,
in fact, be constant on P , which is a contradiction. □

We now come to proving our first main theorem of this chapter.

Theorem 3.4. The Halpern-Laüchli theorem is computably true (i.e.,
every instance computes a solution for itself).

Proof. Fix an instance of the Halpern-Laüchli theorem, which is to
say, infinite trees T0, . . . , Td−1 with no leaves (and which, recall, we take to
be presented with an explicit bound) and a coloring f :

!
n
T0(n) × · · · ×

Td−1(n) → k for some k ≥ 1. We exhibit an (f⊕T0⊕ · · ·⊕Td−1)-computable
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solution, i.e., (S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1) such that f is constant on!
n
S0(n)× · · ·× Sd−1(n).
Fix, non-effectively, a π = (σ0, . . . ,σd−1) ∈

!
n
T0(n)× · · ·× Td−1(n) as

in Lemma 3.3, and say m0 is the level of π. By the pigeonhole principle,
we can also fix a j < k such that for every m > m0 there is an m-π-dense
matrix P ⊆

!
n
T0(n) × · · · × Td−1(n) such that f(τ0, . . . , τd−1) = j for all

(τ0, . . . , τd−1) ∈ P . Call such a P good above m.
Notice that given m > m0 and a set P ⊆

!
n
T0(n) × · · · × Td−1(n), it

is computable in f and the Ti whether or not P is good above n. Hence,
we can (f ⊕ T0 ⊕ · · ·⊕ Td−1)-computably define sequences of numbers m1 <

m2 < · · · and sets P1, P2, . . . such that m0 < m1 and each Ps is good above
ms. Now, for each i < d, define Si ⊆ Ti inductively as follows: add σi
to Si, and having added τ ≽ σi choose the least s such that Ps contains
an extension of each direct extension of τ in Ti, and add these extensions
to Si. Then (S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1), and f(τ0, . . . , τd−1) = j

for all (τ0, . . . , τd−1) ∈
!

n
S0(n) × · · · × Sd−1(n). Clearly, (S0, . . . , Sd−1) is

computable from the Ti and the sequences of ms and Ps, hence from f and
the Ti, as desired. □

In the next section, we will design a good notion of forcing for building
infinite strong subtrees, and use this to give more effective proofs of Mil-
liken’s tree theorem and its product version. We will need a forest version
of the Halpern-Laüchli theorem.

Theorem 3.5 (Halpern-Laüchli theorem for forests). Let T0, . . . , Td−1

be infinite trees with no leaves, and X0, . . . , Xd−1 ⊆ ω<ω be forests such that
for each i < d, Xi is a strong subforest of Ti of height ω, with common level
function. For all k ≥ 1 and all f :

!
n
T0(n)× · · ·× Td−1(n) → k there exist

strong subforests Y0, . . . , Yd−1 of X0, . . . , Xd−1, respectively, with common
level function, such that:

(1) for each i < d, every root of Xi is extended by some root of Yi;
(2) for each (σ0, . . . ,σd−1) ∈ roots(X0) × · · · × roots(Xd−1), f is con-

stant on
!

n
(Y0 ↾ σ0)(n)× · · ·× (Yd−1 ↾ σd−1)(n).

In other words, the lemma asserts that no part of any of the forests Xi above
any given root is wholly omitted in passing to the subforest Yi, and the color
under f of a tuple in

!
n
Y0(n)× · · ·× Yd−1(n) depends only on which roots

of X0, . . . , Xd−1 the elements of the tuple extend.
As with the ordinary Halpern-Laüchli theorem, our interest will be more

in an effective version, which we now prove using Theorem 3.4 above.

Theorem 3.6. Theorem 3.5 is computably true.

Proof. Fix a collection of trees T0, . . . , Td−1 along with strong sub-
forests X0, . . . , Xd−1 with a common level function, and a finite coloring
f :

!
n
T0(n) × · · · × Td−1(n) → k. For every i < d and σ ∈ roots(Xi),

the set T
σ
i
= Xi ↾ σ is a tree. The result will come from an application of
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Theorem 3.4 to the collection of T σ
i

for i < d and σ ∈ roots(Xi). Define a
coloring

h :
#

n

'

i<d,

σ∈roots(Xi)

T
σ
i (n) → k

| roots(T0)|×···×| roots(Td−1)|

such that to a tuple π = (τσ
i
∈ T

σ
i
: i ≤ d,σ ∈ roots(Xi)), h associates the

tuple of all values that f can take on the elements of π. That is,

h(π) = (f(τσ0

0 , . . . , τ
σd−1

d−1 ) : (σ0, . . . ,σd−1) ∈ roots(X0)× · · ·× roots(Xd−1)).

Note that h is computable from f and the T
σ
i
, hence from f , the Ti, and

the Xi.
Apply Theorem 3.4 to define a sequence of strong subtrees Sσ

i
of T σ

i
, for

i < d and σ ∈ roots(Xi), with a common level function, and computable
from h and the T σ

i
. For i < d, define Yi =

!
σ∈roots(Xi)

S
σ
i
, so that Sσ

i
= Yi ↾

σ. It is clear that each Yi is a strong subforest of Xi, and that every root of
Xi has an extension in Yi. Moreover, if (τ0, . . . , τd−1) and (τ ′0, . . . , τ

′
d−1) both

belong to
!

n
S
σ0

0 (n)× · · ·× S
σd−1

d−1 (n) for some (σ0, . . . ,σd−1) ∈ roots(X0)×
· · ·× roots(Xd−1), then we must have f(τ0, . . . , τd−1) = f(τ ′0, . . . , τ

′
d−1) since

h is monochromatic on
!

n

(
i<d,σ∈roots(Xi)

S
σ
i
(n). □

3.2. Product tree forcing

We now design the main notion of forcing for building strong subtrees.
Variants of this notion of forcing will be used throughout the manuscript.
Fix a collection of finitely branching trees with no leaves T0, . . . , Td−1.

Definition 3.7. A product tree condition is a tuple

(F0, . . . , Fd−1, X0, . . . , Xd−1)

as follows:

(1) (F0, . . . , Fd−1) ∈ Sn(T0, . . . , Td−1), for some n ∈ N;
(2) X0, . . . , Xd−1 are infinite strong subforests of T0, . . . , Td−1, respec-

tively, with a common level function;
(3) for every j < d and every leaf σ of Fj , say at level k in Tj , roots(Xj)

is (k + 1)-σ-dense in Tj .

Thus, the last condition asserts that every node τ ∈ Tj(k + 1) extending σ
has an extension in roots(Xj).

For instance, let d = 1 and T0 = 2<ω, with F0 = {01, 01001, 01100} and
X0 any strong subforest of 2<ω with roots(X0) = {0100100110, 0100110101,
0110000010, 0110011100}. Then (F0, X0) is a product tree condition. The
leaves of F0 are 01001 and 01100 and are at level 5 in 2<ω. The roots
0100100110 and 0100110101 of X0 witness (5 + 1)-σ-density of roots(X0)
for σ = 01001, since the extensions of σ at level 6 in 2<ω are 010010 and
010011.
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Definition 3.8. A product tree condition

d = (F̂0, . . . F̂d−1, X̂0, . . . , X̂d−1)

extends c = (F0, . . . , Fd−1, X0, . . . , Xd−1), written d ≤ c, if for every j < d,

Fj ⊆ F̂j , X̂j ⊆ Xj and F̂j # Fj ⊆ Xj .

Remark 3.9. Given a product tree condition

c = (F0, . . . , Fd−1, X0, . . . , Xd−1),

it is not necessarily the case that F0∪X0, . . . , Fd−1∪Xd−1 are strong subtrees
of T0, . . . , Td−1, respectively, as witnessed by the same level function. Indeed,
the forests may have extra roots unrelated to the finite trees. However, by
removing some roots of the forests, one can always obtain an extension
d = (F0, . . . , Fd−1, Y0, . . . , Yd−1) for which it is the case. We can therefore
assume this when convenient. However, in the proof of strong cone avoidance
of the Halpern-Lauchli theorem (Theorem 3.21), we will use the degree of
freedom of being able to have extra roots for the construction of multiple
product tree conditions all sharing the same forests.

We now define a forcing relation for product tree conditions. We follow
a standard approach to forcing in arithmetic, using strong forcing; see, e.g.,
Shore [39, Chapter 3] for a complete introduction. We use ⊩ (“forces”)
for the forcing relation irrespective of the underlying forcing notion, as no
confusion will arise in our treatment. As is usual, we write · · · ∕⊩ · · · (“· · ·
does not force · · · ”) as an abbreviation ¬(· · ·⊩ · · · ). Throughout, we work
in the language of second-order arithmetic. We follow the usual convention

that for a ∆0,Z
0 formula ϕ(G) with a free set parameter G, if ϕ(F ) holds

for a finite set F , then so does ϕ(F ∪ E) for every finite set E such that
minE # F > maxF . We also assume our pairing function is such that if
σ, τ ∈ ω<ω and |τ | > |σ| then the code for τ is larger than the code for σ. So
for example, if F is viewed as a subset of Baire and the length of τ ∈ ω<ω is
larger than the length of every string in F , then the code of τ is larger than
maxF . In particular, if every string in E # F is longer than every string in
F and ϕ(F ) holds then so does ϕ(F ∪ E).

Definition 3.10. Let c = (F0, . . . , Fd−1, X0, . . . , Xd−1) be a product

tree condition, Z ⊆ N a set, and ϕ(G0, . . . , Gd−1, x) a ∆0,Z
0 formula with a

free set parameters G0, . . . , Gd−1 and a free integer parameter x.

(1) c ⊩ (∃x)ϕ(G0, . . . , Gd−1, x) if ϕ(F0, . . . , Fd−1, x) holds for some x ∈
N.

(2) c ⊩ (∀x)ϕ(G0, . . . , Gd−1, x) if ϕ(F0 ∪ E0, . . . , Fd−1 ∪ Ed−1, x) holds
for all x ∈ N and all finite subsets E0, . . . , Ed−1 of X0, . . . , Xd−1,
respectively, such that F0 ∪ E0, . . . , Fd−1 ∪ Ed−1 are finite strong
subtrees of T0, . . . , Td−1, respectively, with a common level function.

Of course, Item 2 should abstractly be defined as there being no d extending c
such that d ⊩ (∃x)ϕ(G0, . . . , Gd−1, x), but this is easily seen to be equivalent
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to the given formulation. We give it explicitly in the definition since we will
make frequent use of it.

Every filter U on the set of product tree conditions induces a d-tuple of
(finite or infinite) strong subtrees GU

0 , . . . , G
U
d−1 of T0, . . . , Td−1, respectively,

with common level function. Moreover, if c ⊩ (∃x)ϕ(G0, . . . , Gd−1, x) or c ⊩
(∀x)ϕ(G0, . . . , Gd−1, x) for some condition c ∈ U and ∆0,Z

0 formula ϕ, then
(∃x)ϕ(GU

0 , . . . , G
U
d−1, x) holds or (∀x)ϕ(GU

0 , . . . , G
U
d−1, x) holds, respectively.

Given a Turing functional Γ, sets C,Z ⊆ N, and a condition c, we
write c ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C if there is an x ∈ N such that either c ⊩
ΓG0⊕···⊕Gd−1⊕Z(x) ↑ or c ⊩ ΓG0⊕···⊕Gd−1⊕Z(x) ↓∕= C(x). (Note that C(x) is
a definite value, so C is not a parameter in the latter formula.) The following
lemma states that given a filter U on the set of product tree conditions, if
for every Turing functional Γ there is a condition c ∈ U such that c ⊩
ΓG0⊕···⊕Gd−1⊕Z ∕= C, then G

U
0 , . . . , G

U
d−1 are all infinite.

Lemma 3.11. For every n ∈ N, and all sets C,Z ⊆ N, there is a Turing
functional Γ such that if c = (F0, . . . , Fd−1, X0, . . . , Xd−1) is any product
tree condition satisfying

c ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C

then F0, . . . , Fd−1 all have height at least n.

Proof. Let Γ be the Turing functional such that for all sets F0, . . . , Fd−1

coding strong subtrees, if the height of each Fj is not at least n then
ΓF0⊕···⊕Fd−1⊕Z(x) ↑ for all x ∈ N and Z ⊆ N, and otherwise

c ⊩ ΓG0⊕···⊕Gd−1⊕Z(x) ↓= 0

for all x and Z.
Now suppose c ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C. If c ⊩ ΓG0⊕···⊕Gd−1⊕Z(x) ↓∕=

C(x) for some x ∈ N, then by Definition 3.10(1), ΓF0⊕···⊕Fd−1⊕Z(x) ↓∕= C(x),
so by choice of Γ, F0, . . . , Fd−1 must all have height at least n.

If c ⊩ ΓG0⊕···⊕Gd−1⊕Z(x) ↑ for some x ∈ N, then by Definition 3.10(2),

Γ(F0∪E0)⊕···⊕(Fd−1∪Ed−1)⊕Z(x) ↑

for all finite subsets E0, . . . , Ed−1 of X0, . . . , Xd−1, respectively, such that
F0 ∪ E0, . . . , Fd−1 ∪ Ed−1 are finite strong subtrees of T0, . . . , Td−1 with a
common level function. But since X0, . . . , Xd−1 are infinite, we can find
some such E0, . . . , Ed−1 with F0 ∪E0, . . . , Fd−1 ∪Ed−1 all of height at least
n, contradicting the definition of Γ. □

Remark 3.12. The definition of product tree condition is made with
respect to our particular choice of trees T0, . . . , Td−1. We will always work
with a single such choice at any given time, and so do not decorate our condi-
tions by these trees explicitly. In particular, when a product tree condition
is mentioned it should be understood as being with respect to whichever
trees T0, . . . , Td−1 are currently under discussion.
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3.3. Strong cone avoidance of MTT1

Before proving strong cone avoidance of the product version of Milliken’s
tree theorem, we prove a similar result for its non-product version. The
proof is simpler and is actually sufficient to prove cone avoidance of the
non-product version of Milliken’s tree theorem for height 2. The techniques
involved are a variation of the notion of k-hierarchy of Chong et al [7, Section
4]. The theorem proven in this section will not be used in the remainder of
the monograph, but can be seen as an instructive warm-up to the proof of
Theorem 3.21.

Theorem 3.13. MTT1 admits strong cone avoidance.

In what follows, fix two sets C,Z ⊆ N such that C ≰T Z. Also fix
an infinite Z-computable Z-computably bounded tree T with no leaves and
an arbitrary 2-partition A0 ⊔ A1 = T representing an instance of MTT1

2.
Our task is to exhibit an MTT1-solution to whose join with Z still does not
compute C.

Given a finite strong subtree F of T , a cover of F is a set E ⊆ T such
that for every leaf σ of F , every immediate extension of σ in T has an
extension in E.

Definition 3.14.

(1) A tree condition is a pair (F,X) such that F is a finite strong
subtree of T , X is an infinite strong subforest of T , and roots(X)
is a cover of F .

(2) A tree condition (F̂ , X̂) extends (F,X), written (F̂ , X̂) ≤ (F,X),

if F ⊆ F̂ , X̂ ⊆ X and F̂ # F ⊆ X.
(3) (F,X) is cone avoiding if C ≰T X ⊕ Z.

Note that a tree condition is nothing but a product tree condition (Defini-
tion 3.7) relative to the 1-tuple T .

A tree condition inherits the forcing relation from the one for product
tree conditions (Definition 3.10).

Definition 3.15. Let (F,X) be a tree condition and ϕ(G, x) a ∆0,Z
0

formula with a free set parameter G and a free integer parameter x.

1. (F,X) ⊩ (∃x)ϕ(G, x) if ϕ(F, x) holds for some x ∈ N.
2. (F,X) ⊩ (∀x)ϕ(G, x) if ϕ(F ∪E, x) holds for all x ∈ N and all finite

E ⊆ X such that F ∪ E is a finite strong subtree of T .

Every filter U on the set of tree conditions induces a (finite or infinite)
strong subtree GU of T . Moreover, if (F,X) ⊩ (∃x)ϕ(G, x) or (F,X) ⊩
(∀x)ϕ(G, x) for some tree condition (F,X) ∈ U and ∆0,Z

0 formula ϕ, then
(∃x)ϕ(GU , x) or (∀x)ϕ(GU , x) holds, respectively.

Given a Turing functional Γ, we write (F,X) ⊩ ΓG⊕Z ∕= C if there is an
x ∈ N such that either (F,X) ⊩ ΓG⊕Z(x) ↑ or (F,X) ⊩ ΓG⊕Z(x) ↓∕= C(x).
We have the following analogue of Lemma 3.11, which is proved in the same
way.



34 3. THE HALPERN-LAÜCHLI THEOREM

Lemma 3.16. For every n ∈ N, there is a Turing functional Γ such that
for every tree condition (F,X), if (F,X) ⊩ ΓG⊕Z ∕= C then F has height at
least n.

Definition 3.17. A compound tree condition is a tuple (F,F , X) such
that (F,X) is a tree condition with F ⊆ A0, and F is a finite collection of
finite sets as follows:

(1) for every E ∈ F , (E,X) is a tree condition with E ⊆ A1;
(2)

!
E∈F roots(E) is a cover of F .

A compound tree condition (F,F , X) is cone avoiding if C ≰T X ⊕ Z.

Equivalently, (F,F , X) is cone avoiding if (F,X) is cone avoiding as a tree
condition, and so is (E,X) for every E ∈ F . Note that we do not require
the finite strong subtrees in F to be witnessed by the same level function.

Lemma 3.18.

1. For every tree condition (F,X) with F ⊆ A0, and every level ℓ ∈
N such that X(ℓ) ∩ A1 is a cover of F , (F,F , Y ) is a compound
tree condition, where F = {{ρ} : ρ ∈ X(ℓ) ∩ A1} and Y = X #!

s≤ℓX(s).

2. For every compound tree condition (F,F , X), every E ∈ F , and

every extension (Ê, X̂) ≤ (E,X) with Ê # E ⊆ A1 and such that

every root of X is extended by a root of X̂, (F, F̂ , X̂) is a compound

tree condition, where F̂ = {Ê} ∪ (F # {E}).

Proof. Immediate from the definitions. □
Lemma 3.19. Suppose there is no infinite strong perfect subtree S ⊆ T

such that S ⊆ A0 and C ≰T S ⊕ Z. Then for every cone avoiding tree
condition (F,X), there is a level ℓ ∈ N such that X(ℓ)∩A1 is a cover of F .

Proof. Suppose first there is some level ℓ such that every root ρ of X
has an extension σ ∈ X(ℓ) ∩ A1. Since roots(X) is a cover of F , then so is
X(ℓ) ∩A1.

So now suppose that for every level ℓ, there is some root ρ of X all
of whose extensions σ ∈ X(ℓ) belong to A0. We claim there is an infinite
strong subtree S ⊆ T such that S ⊆ A0 and C ≰T S ⊕ Z, contrary to the
hypothesis of the lemma. Let f : N → roots(X) be the function which to
ℓ associates such a root ρ. By strong cone avoidance of RT1

2 ([14], Lemma
3.2), there is an infinite set of levels H which is f -homogeneous for some root
ρ of X and such that C ≰T H ⊕X ⊕Z. In particular, for every level ℓ ∈ H

and every node σ at level ℓ in X extending ρ we have σ ∈ A0. But now we
can H ⊕X-computably build an infinite strong subtree S ⊆ T among these
σ. Then S ⊆ A0, and since S ≤T H ⊕X we also have C ≰T S ⊕ Z. □

Lemma 3.20. For every cone avoiding compound tree condition (F,F , X)
and every tuple of Turing functionals (ΓF ,ΓE : E ∈ F〉, one of the following
holds:
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1. There is a cone avoiding extension (F̂ , X̂) ≤ (F,X) such that

(F̂ , X̂) ⊩ ΓG⊕Z

F
∕= C and F̂ # F ⊆ A0 ;

2. There is a cone avoiding extension (Ê, X̂) ≤ (E,X) for some E ∈
F such that (Ê, X̂) ⊩ ΓG⊕Z

E
∕= C and Ê # E ⊆ A1 and every root

of X is extended by a root of X̂.

Proof. Let W be the set of pairs (x, v) ∈ N×{0, 1} such that for every
2-partition B0 ⊔B1 = X one of the following holds:

(a) there is a finite set H ⊆ X ∩B0 such that F ∪H is a finite strong

subtree of T and Γ
(F∪H)⊕Z

F
(x) ↓= v;

(b) there is some E ∈ F and a finite set HE ⊆ X∩B1 such that E∪HE

is a finite strong subtree of T and Γ
(E∪HE)⊕Z

E
(x) ↓= v.

By compactness, the set W is X ⊕ Z-c.e. There are three cases:

Case 1: (x, 1 − C(x)) ∈ W for some x ∈ N. Let B0 = X ∩ A0 and
B1 = X ∩ A1. If (a) holds with witness H, then let ℓ be the level of the

leaves of F ∪ H in X, and X̂ = X #
!

s≤ℓX(s). Now (F ∪ H, X̂) is a

tree condition satisfying item 1 of the lemma. If (b) holds for some E ∈ F
with witness HE , then let ℓ be the level of the leaves of E ∪HE in X, and
X̂ = X #

!
s≤ℓX(s). Now (E ∪HE , X̂) is a tree condition satisfying item 2

of the lemma.

Case 2: (x,C(x)) ∕∈ W for some x ∈ N. Let C be the Π0,X⊕Z

1 class of
all sets B0 ⊕ B1 such that B0 ⊔ B1 = X and neither (a) nor (b) holds
for the pair (x,C(x)). By assumption, C ∕= ∅. By the cone avoidance
basis theorem ([24], Corollary 2.11), there is a B0 ⊕ B1 ∈ C such that
C ≰T B0 ⊕ B1 ⊕ X ⊕ Z. For σ ∈ X, write B(σ) for the unique i < 2
such that σ ∈ Bi. Let I = roots(X). By Theorem 3.4 applied to the
finite I-tuple of infinite trees (X ↾ ρ : ρ ∈ I〉 and the coloring g defined
on

!
n

(
ρ∈I(X ↾ ρ)(n) by g(σρ : ρ ∈ I) = (B(σρ) : ρ ∈ I), there is a

B0 ⊕B1 ⊕X-computable finite tuple of infinite strong subtrees (Yρ : ρ ∈ I)
of (X ↾ ρ : ρ ∈ I) with common level function, together with a tuple of colors
(iρ ∈ {0, 1} : ρ ∈ I) such that Yρ ⊆ Biρ for every ρ ∈ I. For every E ∈ F ,
let IE be the set of nodes in I extending the root of E. By assumption, IE
is a cover of E.

If IE ⊆ {ρ ∈ I : iρ = 1} for some E ∈ F , then (E,
!

ρ∈I Yρ) is a cone

avoiding extension of (E,X) such that every root of X is extended by a root

of
!

ρ∈I Yρ, and forcing ΓG⊕Z

E
(x) ↑ or ΓG⊕Z

E
(x) ↓∕= C(x).

If IE ∩ {ρ ∈ I : iρ = 0} ∕= ∅ for every E ∈ F , then in particular, every
root of every E ∈ F has an extension in {ρ ∈ I : iρ = 0}. Since the set of
roots of the trees in E form a cover of F , then {ρ ∈ I : iρ = 0} is a cover
of F . Thus, (F,

!
iρ=0 Yρ) is a cone avoiding extension of (F,X) forcing

ΓG⊕Z

F
(x) ↑ or ΓG⊕Z

F
(x) ↓∕= C(x).
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Case 3: otherwise. Then for x, y ∈ N we have (x, y) ∈ W if and only if
y = C(x). But as W is X ⊕ Z-c.e., this implies that C ≤T X ⊕ Z, which is
a contradiction. □

We are now ready to prove strong cone avoidance of Milliken’s tree
theorem for height 1.

Proof of Theorem 3.13. Suppose first there is a filter U of cone
avoiding tree conditions such that F ⊆ A0 for every (F,X) ∈ U , and such
that for every Turing functional Γ there is a tree condition (F,X) ∈ U with
(F,X) ⊩ ΓG⊕Z ∕= C. Then by definition of a tree condition, GU is a strong
subtree of T . Moreover, by assumption, GU ⊆ A0 and C ≰T GU ⊕ Z.
Last, by Lemma 3.16, GU is infinite, thus GU satisfies the statement of the
theorem.

Suppose now there is no such filter. Then there is a cone avoiding
tree condition (F,X) such that F ⊆ A0 and a Turing functional ΓF such

that for every cone avoiding extension (F̂ , X̂) with F̂ # F ⊆ A0 we have

(F̂ , X̂) % ΓG⊕Z

F
∕= C.

Assume there is no infinite strong subtree S ⊆ T such that S ⊆ A0 and
C ≰T S ⊕ Z, otherwise we are done. By Lemma 3.19, there is a level ℓ ∈ N
such that X(ℓ) ∩A1 is a cover of F . Let I = X(ℓ) ∩A1.

We claim there exists an infinite sequence of cone avoiding compound
tree conditions

(F,F0, X0), (F,F1, X1), . . .

such that for every s ∈ N, letting s = (Γρ : ρ ∈ I〉, the following holds:

(1) Fs = {Es,ρ : ρ ∈ I};
(2) Xs ⊆ X;
(3) Fs+1#{Es+1,ρ} = Fs#{Es,ρ} for some ρ ∈ I with (Es+1,ρ, Xs+1) ≤

(Es,ρ, Xs) and (Es+1,ρ, Xs+1) ⊩ ΓG⊕Z
ρ ∕= C.

By Lemma 3.18(1), letting F0 = {{ρ} : ρ ∈ I} and X0 = X#
!

t≤ℓX(t),

the tuple (F,F0, X0) is a cone avoiding compound tree condition. Given
a compound tree condition (F,Fs, Xs) and letting s = (Γρ : ρ ∈ I〉, by

Lemma 3.20, either there is a cone avoiding extension (F̂ , X̂) ≤ (F,X) such

that (F̂ , X̂) ⊩ ΓG⊕Z

F
∕= C and F̂ # F ⊆ A0, or there some ρ ∈ I and a cone

avoiding extension (Es+1,ρ, Xs+1) ≤ (Es,ρ, Xs) such that (Es+1,ρ, Xs+1) ⊩
ΓG⊕Z
ρ ∕= C and Es+1,ρ # Es,ρ ⊆ A1 and every root of Xs extends in a root

of Xs+1. The former case cannot happen, so the latter case holds, and we
can define (F,Fs+1, Xs+1) accordingly by Lemma 3.18(2). This proves our
claim.

By a pairing argument, there is a ρ ∈ I such that for every Turing
functional Γ there is an s ∈ N such that (Es,ρ, Xs) ⊩ ΓG⊕Z ∕= C. By
construction, the conditions (Es,ρ, Xs) for this fixed ρ are compatible for all
s. Thus, we can fix a filter U containing all of them. Again, by definition of
a tree condition, GU is a strong subtree of T . By assumption, GU ⊆ A1 and
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C ≰T GU ⊕ Z. Last, by Lemma 3.16, GU is infinite, thus GU satisfies the
statement of the theorem. This completes the proof of Theorem 3.13. □

3.4. Strong cone avoidance of the Halpern-Laüchli theorem

We now prove that the Halpern-Laüchli theorem admits strong cone
avoidance. This will be used in multiple parts of the rest of the manuscript,
to prove that the product version of Milliken’s tree theorem for height 2
admits cone avoidance (Theorem 3.21) and hence does not imply ACA0

over RCA0, and also to prove the same for the product version of Milliken’s
tree theorem for height 3, but where at most 2 colors are allowed in the
solution (Theorem 4.28).

Theorem 3.21. The Halpern-Laüchli theorem admits strong cone avoid-
ance.

The meta-analysis of a theorem sometimes requires the use of the clas-
sical version of the theorem itself. In order to prove Theorem 3.21, we need
the following version of the Halpern-Laüchli theorem:

Theorem 3.22. Let T0, . . . , Td−1 be infinite trees with no leaves. For all
k ≥ 1, there is an N ∈ N such that for every f : T0(N)× · · ·×Td−1(N) → k

there is an ℓ < N , a π ∈ T0(ℓ)× · · ·Td−1(ℓ), and an (ℓ+ 1)-π-dense matrix
P ⊆ T0(N)× · · ·× Td−1(N) on which f is constant.

Proof. Fix k. The Halpern-Laüchli thoerem (Theorem 2.28) implies
that for every k-coloring of

!
n
T0(n)× · · ·× Td−1(n) there exists an N ∈ N

and a tuple of strong subtrees (S0, . . . , Sd−1) ∈ S2(T0, . . . , Td−1) with level
function bounded byN such that f is constant on

!
n<2 S0(n)×· · ·×Sd−1(n).

By compactness of the space of k-colorings of
!

n
T0(n) × · · · × Td−1(n),

we can choose a single such N that works for all k-colorings: that is, for
every k-coloring, the trees S0, . . . , Sd−1 can be taken as strong subtrees of!

n<N
T0(n), . . . ,

!
n<N

Td−1(n), respectively. The claim is that this N also
witnesses the theorem.

Let f : T0(N)× · · ·× Td−1(N) → k be a coloring. For any i < d, n ∈ N
and σ ∈ Ti(n), let e(σ) be any element of Ti(N) compatible with σ: either an
extension, or a prefix. Define the coloring g :

!
n
T0(n)× · · ·× Td−1(n) → k

by g(σ0, . . . ,σd−1) = f(e(σ0), . . . , e(σd−1)) for all (σ0, . . . ,σd−1). By choice
of N , we can find (S0, . . . , Sd−1) ∈ S2(T0, . . . , Td−1) with level function
bounded by N so that g is constant on S0(1) × · · · × Sd−1(1). Thus, f

is constant on P = e(S0(1)) × · · · × e(Sd−1(1)). Moreover, if we let ℓ be
the (common) first level of the Si in Ti, and let π be the unique element of
S0(0)× · · ·× Sd−1(0), then P is an (ℓ+ 1)-π-dense matrix. □

In what follows, fix two sets C and Z such that C ≰T Z. Also fix a
tuple of infinite Z-computable Z-computably bounded trees with no leaves
T0, . . . , Td−1 and an arbitrary k-partition A0 ⊔ · · · ⊔ Ak−1 =

!
n
T0(n) ×

· · ·× Td−1(n) representing an instance of the Halpern-Laüchli theorem (for
k-colorings).



38 3. THE HALPERN-LAÜCHLI THEOREM

For this section, we will need to strengthen the extension relation for
product tree conditions (relative to these Ti).

Definition 3.23. Let T0, . . . , Td−1 be infinite trees with no leaves. A

product tree condition d = (F̂0, . . . F̂d−1, X̂0, . . . , X̂d−1) (relative to these Ti)
extends c = (F0, . . . , Fd−1, X0, . . . , Xd−1), written d ≤ c, if for every j < d,

Fj ⊆ F̂j , X̂j ⊆ Xj and F̂j # Fj ⊆ Xj , and moreover, every root of Xj is

extended by a root of X̂j .

Definition 3.24. A product tree condition (F0, . . . , Fd−1, X0, . . . , Xd−1)
is cone avoiding if C ≰T X0 ⊕ · · ·⊕Xd−1 ⊕Z. It is level-homogeneous if for
every n, there is some color i < k such that F0(n)× · · ·× Fd−1(n) ⊆ Ai.

In particular, if d extends c in the sense of Definition 3.23, then d extends c
in the sense of Definition 3.8.

Any product tree condition of the form

({ρ0}, . . . , {ρd−1}, X0, . . . , Xd−1)

is level-homogeneous. Let P be the set of cone avoiding level-homogeneous
product tree conditions, ordered by the stronger relation of Definition 3.23.
The following lemma is the core of the argument. The proof of Lemma 3.25
shows that the witnessed condition c can actually be chosen so that its stems
are singletons.

Lemma 3.25. There is a condition c ∈ P such that for every Turing
functional Γ, the set of conditions c′ ∈ P satisfying c

′ ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C

is P-dense below c.

Proof. Assume for the sake of contradiction that for every condition
c ∈ P, there is a Turing functional Γ and a P-extension, every further P-
extension c

′ of which satisfies c′ ∕⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C.
We build non-effectively a d-tuple of subsets S0, . . . , Sd−1 of T0, . . . , Td−1,

respectively. Formally, these sets will not be trees, as specified in Defini-
tion 2.16, since they will not be closed under ∧. However, the prefix relation
induces a tree structure, and seen as such, the Sj will be finitely branching
trees with no leaves. (In fact, the Sj will have a common level function.)
We may thus use Remark 2.18 to think of the Sj as trees, and in particular,
we may apply Theorem 3.22 to them.

Along with S0, . . . , Sd−1, we define the following functions:

(1) sets : N → P(ω<ω)× · · ·×P(ω<ω) which to a level ℓ ∈ N associates
a d-tuple X0, . . . , Xd−1 of infinite strong subforests of T0, . . . , Td−1,
respectively, with a common level function, such that C ≰T X0 ⊕
· · ·⊕Xd−1 ⊕ Z and for every j < d, Sj(ℓ+ 1) = roots(Xj);

(2) stems :
!

n
S0(n)× · · ·× Sd−1(n) → S<ω(T0, . . . , Td−1), which to a

π ∈ S0(ℓ) × · · · × Sd−1(ℓ) associates a tuple (F0, . . . , Fd−1) whose
roots pointwise extend π, and such that (F0, . . . , Fd−1, sets(ℓ)) is a
P-condition;
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(3) req :
!

n
S0(n) × · · · × Sd−1(n) → N, which to a π ∈ S0(ℓ) × · · · ×

Sd−1(ℓ) associates the index e ∈ N of a Turing functional Φe such
that for every P-extension c

′ of the condition (stems(π), sets(ℓ)),

c
′ % Γ

G0⊕···⊕Gd−1⊕Z

e ∕= C.

Moreover, we ensure that for every level ℓ ∈ N, sets(ℓ+1) is a tuple of strong
subforests of sets(ℓ) with common level function.

· · ·
F0

σ0

X0

S0(1)

S0(0)

) *+ ,

· · ·
F1

σ1

X1

S1(1)

S1(0)

) *+ ,

Figure 3.1. A representation of the construction of S0, S1,
and the functions sets and stems. If π = (σ0,σ1), then
stems(π) = (F0, F1) and sets(1) = (X0, X1).

Construction.We define S0, . . . , Sd−1 and the functions sets, stems and req
level by level. For convenience of notation, let sets(−1) = (T0, . . . , Td−1).
At level ℓ ≥ 0, assume sets(ℓ − 1) is already defined. Say (Y0, . . . , Yd−1) =
sets(ℓ−1). For every j < d, let Sj(ℓ) = roots(Yj). Now let π0, . . . ,πr−1 be a
finite listing of all the elements in S0(ℓ)× · · ·×Sd−1(ℓ). We define stems(πs)
and req(πs) successively for each s < r, together with a decreasing sequence
of d-tuples of cone avoiding strong subforests

(X0
0 , . . . , X

0
d−1), . . . , (X

r

0 , . . . , X
r

d−1).

Then sets(ℓ) = (Xr

0 , . . . , X
r

d−1). Initially, let (X0
0 , . . . , X

0
d−1) be the tuple

(Y0 # Y0(0), . . . , Yd−1 # Yd−1(0)). At stage s < r, assume (Xs

0 , . . . , X
s

d−1) is
defined. Say πs = (ρ0, . . . , ρd−1). In particular,

({ρ0}, . . . , {ρd−1}, Xs

0 , . . . , X
s

d−1)

is a P-condition. By assumption, this has a P-extension (F0, . . . , Fd−1, X
s+1
0 ,

. . . , X
s+1
d−1) for which there is a Turing functional Φe such that every fur-

ther P-extension c
′ satisfies c

′ ∕⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C. So we have (Xs+1
0 ,
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. . . , X
s+1
d−1), and we set stems(πs) = (F0, . . . , Fd−1) and req(πs) = e. Now if

s < r− 1, proceed to s+1. This finishes the construction. (See Figure 3.1.)

Verification.

Claim 3.26. For every ℓ0 < ℓ1 and every π ∈ S0(ℓ0) × · · · × Sd−1(ℓ0),
the tuple (stems(π), sets(ℓ1)) is a P-extension of (stems(π), sets(ℓ0)).

Proof. Say sets(ℓ0) = (X0, . . . , Xd−1) and sets(ℓ1) = (Y0, . . . , Yd−1).
By an immediate induction, sets(ℓ1) is a tuple of strong subforests of sets(ℓ0)
with common level function. By construction, for all j < d we have Sj(ℓ0 +
1) = roots(Xj) and Sj(ℓ1 + 1) = roots(Yj), and since we are dealing with
extension in P here, this implies that every root of Xj is extended by a
root of Yj . It follows that d = (stems(π), sets(ℓ1)) is a P-extension of
(stems(π), sets(ℓ0)). □

From the preceding fact, it follows that the Sj are as claimed. The rest
of Properties 1–3 above are evident from the construction.

By Theorem 3.22, there is a level N ∈ N such that for every coloring
h : S0(N)× · · ·×Sd−1(N) → k, there is some ℓ < N , some π ∈ S0(ℓ)× · · ·×
Sd−1(ℓ) and some (ℓ + 1)-π-dense matrix M ⊆ S0(N) × · · · × Sd−1(N) on
which h is constant. Fix such an N . Let (X0, . . . , Xd−1) = sets(N − 1). In
particular, for every j < d, Sj(N) = roots(Xj).

Let W be the set of pairs (x, v) ∈ N × {0, 1} such that for every k-
partition B0 ⊔ · · ·⊔Bk−1 =

!
n
X0(n)× · · ·×Xk−1(n), there is some ℓ < N ,

some π ∈ S0(ℓ) × · · · × Sd−1(ℓ), and for every j < d, a finite set Hj ⊆ Xj

such that if (F0, . . . , Fd−1) = stems(π) then the following hold:

(a) (F0 ∪H0, . . . , Fd−1 ∪Hd−1) ∈ S<ω(T0, . . . , Td−1);
(b)

!
n
H0(n)× · · ·×Hd−1(n) ⊆ Bi for some i < k;

(c) Φ
(F0∪H0)⊕···⊕(Fd−1∪Hd−1)⊕Z

e (x) ↓= v, where e = req(π).

Note that although the trees S0, . . . , Sd−1 and the functions sets, stems and
req are built non-effectively, only their restrictions to the height N are used.
Therefore, since every finite object is computable, they do not add to the
complexity of the set W . By compactness, the set W is X0⊕ · · ·⊕Xd−1⊕Z-
c.e. We break into three cases.

Case 1: (x, 1 − C(x)) ∈ W for some x ∈ N. For i < k, let Bi = Ai ∩!
n
X0(n)× · · ·×Xd−1(n). Let ℓ < N , π = (F0, . . . , Fd−1) and H0, . . . , Hd−1

witness that (x, 1−C(x)) ∈ W for the partition B0, . . . , Bk−1. Let ℓ1 be the

common level of the leaves of Fj ∪Hj in Xj , and X̂j = Xj #
!

ℓ0≤ℓ1
Xj(ℓ0).

Then c
′ = (F0 ∪H0, . . . , Fd−1 ∪Hd−1, X̂0, . . . , X̂d−1) is a P-extension of the

condition (F0, . . . , Fd−1, X0, . . . , Xd−1) which, by Fact 3.26, is a P-extension
of (stems(π), sets(ℓ)) since ℓ1 ≥ ℓ. Moreover

c
′ ⊩ Φ

G0⊕···⊕Gd−1⊕Z

e ∕= C

where e = req(π). This contradicts Property 3 above, according to which
(stems(π), sets(ℓ)) has no such P-extension.
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Case 2: (x,C(x)) ∕∈ W for some x ∈ N. Let C be the Π
0,X0⊕···⊕Xd−1⊕Z

1 class
of all sets B0⊕· · ·⊕Bk−1 such that B0⊔· · ·⊔Bk−1 =

!
n
X0(n)×· · ·×Xd−1(n)

and such that for every ℓ < N , every π ∈ S0(ℓ) × · · · × Sd−1(ℓ) and every
H0 ⊆ X0, . . . , Hd−1 ⊆ Xd−1, one of (a), (b) or (c) in the definition of W
fails for the pair (x,C(x)). By assumption, C ∕= ∅.

By the cone avoidance basis theorem, there is some B0⊕ · · ·⊕Bk−1 ∈ C
such that C ≰T B0⊕ · · ·⊕Bk−1⊕X0⊕ · · ·⊕Xd−1⊕Z. For π ∈

!
n
X0(n)×

· · · × Xd−1(n), write B(π) for the unique i < k such that π ∈ Bi. Recall
that for every j < d, Sj(N) = roots(Xj). We define a finite coloring g on!

n
X0(n)× · · ·×Xd−1(n) by by

g(σ0, . . . ,σd−1) = B(σ0, . . . ,σd−1).

By Theorem 3.6 applied to g, there is a B0 ⊕ . . . Bk−1 ⊕ X0 ⊕ · · · ⊕ Xd−1-
computable tuple of infinite strong subtrees (Yj,ρ : j < d, ρ ∈ Sj(N)) of
(Xj ↾ ρ : j < d, ρ ∈ Sj(N)) with common level function, together with a
coloring h : S0(N)× · · ·× Sd−1(N) → k − 1, such that

#

n

Y0,ρ0(n)× · · ·× Yd−1,ρd−1
(n) ⊆ Bh(π),

for every π = (ρ0, . . . , ρd−1) ∈ S0(N)× · · ·× Sd−1(N).
By choice of N , there is some ℓ < N , some π = (ν0, . . . , νd−1) ∈ S0(ℓ)×

· · ·× Sd−1(ℓ) and some (ℓ+ 1)-π-dense matrix M ⊆ S0(N)× · · ·× Sd−1(N)
on which h is constant. Say M = M0× · · ·×Md−1 and let i < k be the color
of h on this matrix. For every j < d, let Pj be the set of nodes in Sj(N)

which are not extensions of νj . For every j < k, let Ŷj =
!

ρ∈Mj∪Pj
Yj,ρ.

Claim 3.27. (stems(π), Ŷ0, . . . , Ŷd−1) P-extends (stems(π), sets(ℓ)).

Proof. Let (X̂0, . . . , X̂d−1) = sets(ℓ). Since ℓ < N and since sets(N −
1) = (X0, . . . , Xd−1), it follows by Fact 3.26 that the Xj are strong subtrees

of the X̂j with common level function. Hence, so are the Yj . Furthermore,

by Property 1, for every j < k we have that roots(X̂j) = Sj(ℓ+1). So every

root of X̂j is extended by a root of Ŷj . □

It follows by Property 3 that (stems(π), Ŷ0, . . . , Ŷd−1) % Φ
G0⊕···⊕Gd−1⊕Z

e ∕=
C where e = req(π). Now, since the forcing relation depends only on part
of the reservoirs extending the roots of the stems, the following fact holds.
However, we have the following contradictory fact:

Claim 3.28. (stems(π), Ŷ0, . . . , Ŷd−1) ⊩ Φ
G0⊕···⊕Gd−1⊕Z

e ∕= C, where e =
req(π).

Proof. For every j < d, let Hj ⊆ Ŷj be such that F0 ∪H0, . . . , Fd−1 ∪
Hd−1 are finite strong subtrees of T0, . . . , Td−1, respectively, with common
level function. Since the rots of the Fj pointwise extend π, so do the nodes
of each of the Hj . In particular, for every j < d, Hj ⊆

!
ρ∈Mj

Yj,ρ. It

follows that
!

n
H0(n) × · · · × Hd−1(n) ⊆ Bi. But B0 ⊕ · · · ⊕ Bk−1 ∈ C,
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so Φ
(F0∪H0)⊕···⊕(Fd−1∪Hd−1)⊕Z

e (x) either diverges or is different from C(x).
Since the Hj were arbitrary, the claim is proved. □

The contradiction completes Case 2.

Case 3: otherwise. Then (x, y) ∈ W if and only if y = C(x), which, since
W is X0 ⊕ · · · ⊕ Xd−1 ⊕ Z-c.e., implies C ≤T X0 ⊕ · · · ⊕ Xd−1 ⊕ Z, a
contradiction. □

We are now ready to prove strong cone avoidance of the Halpern-Laüchli
theorem.

Proof of Theorem 3.21. Fix two sets C and Z such that C ≰T Z.
Also fix a tuple of infinite Z-computable Z-computably bounded trees with
no leaves T0, . . . , Td−1 ⊆ ω<ω and an arbitrary k-partition A0⊔ · · ·⊔Ak−1 =!

n
T0(n)×· · ·×Td−1(n). Let P be the set of cone avoiding level-homogeneous

product tree conditions (relative to these givens).
By Lemma 3.25, there is some c ∈ P below which, for every Turing

functional Γ, the set

DΓ = {c′ ∈ P : c′ ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C}
is P-dense. Let U be a P-filter which intersects every set DΓ. Then by
definition of a product tree condition, GU

0 , . . . , G
U
d−1 are strong subtrees of

T0, . . . , Td−1. Moreover, since all conditions in P are level-homogeneous, so
are G

U
0 , . . . , G

U
d−1. Since U intersects every set DΓ, then C ≰T G

U
0 ⊕ · · · ⊕

G
U
d−1 ⊕ Z. Last, by Lemma 3.11, GU

0 , . . . , G
U
d−1 are all infinite.

Let f : N → k be the function which on level ℓ associates the color
i < k such that G

U
0 (ℓ) × · · · × G

U
d−1(ℓ) ⊆ Ai. By strong cone avoidance

of RT1
k
, there is an infinite set of levels H ⊆ N on which f is constant

and C ≰T H ⊕ G
U
0 ⊕ · · · ⊕ G

U
d−1 ⊕ Z. Say f takes the color i < k on

H. In particular, for every ℓ ∈ H, GU
0 (ℓ) × · · · × G

U
d−1(ℓ) ⊆ Ai, so we can

H ⊕ G
U
0 ⊕ · · · ⊕ G

U
d−1 ⊕ Z-computably thin out to infinite strong subtrees

S0, . . . , Sd−1 of G
U
0 , . . . , G

U
d−1 with common level function, and such that!

n
S0(n) × · · · × Sd−1(n) ⊆ Ai. In particular, C ≰T S0 ⊕ · · · ⊕ Sd−1 ⊕ Z.

This completes the proof of Theorem 3.21. □



CHAPTER 4

Milliken’s tree theorem

We now turn to the computability-theoretic analysis of the product and
non-product versions Milliken’s tree theorem, the base cases of which we
already studied through the Halpern-Lauchli theorem in the previous chap-
ter. As the product version obviously implies the non-product, we formulate
our upper bounds in terms of the former and our lower bounds in terms of
the latter. More specifically, we obtain the following. In Section 4.1, we
provide an inductive proof of the product version of Milliken’s tree theorem
in ACA0, using the notion of prehomogeneous tree. Using standard meth-
ods, it is easy to obtain a reversal for (even the non-product version of)
Milliken’s tree theorem for height at least 3. For height 1, we already saw in
the previous chapter that the product version of Milliken’s tree theorem for
height 1 is computably true, and hence does not imply ACA0. This leaves
the situation for trees of height 2, which we address in Section 4.2. Since
Milliken’s tree theorem for height two implies Ramsey’s theorem for pairs, it
is not computably true, but we show that the product version admits cone
avoidance, and so is strictly weaker than ACA0. Finally, in Section 4.4,
we study a weakening of Milliken’s tree theorem that allows more than one
color in the solutions. We prove that the product version of Milliken’s tree
theorem for height 3, but where up to two colors are allowed in the solution,
admits cone avoidance, and hence does not imply ACA0. We will make use
of this result in our discussion of Devlin’s theorem in Chapter 5.

4.1. A proof of PMTTn in ACA0

Given a tree F of height α ≤ ω and an a number n < α, we write F ↾ n
for the subtree of F of height n.

Definition 4.1. Fix n ∈ N, a collection of trees T0, . . . , Td−1 with no
leaves and a coloring f : Sn+1(T0, . . . , Td−1) → k.

(1) A tuple (S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1) is prehomogeneous for f
if the color of every (E0, . . . , Ed−1) ∈ Sn+1(S0, . . . , Sd−1) depends
only on (E0 ↾ n, . . . , Ed−1 ↾ n).

(2) A product tree condition (F0, . . . , Fd−1, X0, . . . , Xd−1) is prehomo-
geneous for f if the color of every

(E0, . . . , Ed−1) ∈ Sn+1(F0 ∪X0, . . . , Fd−1 ∪Xd−1)

depends only on (E0 ↾ n, . . . , Ed−1 ↾ n) whenever Ej ↾ n ⊆ Fj for
every j < d.

43
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In particular, note that the product tree condition (∅, . . . , ∅, T0, . . . , Td−1) is
prehomogeneous for a given f as above.

We add several other useful definitions.

Definition 4.2. Fix a collection of infinite trees T0, . . . , Td−1 with no
leaves. A product tree condition c = (F0, . . . , Fd−1, X0, . . . , Xd−1) is com-
putable if X0, . . . , Xd−1 are all computable and computably bounded. An
index of c is a finite tuple (F0, . . . , Fd−1, e0, . . . , ed−1) such that Φej = Xj

for every j < d.

Definition 4.3. If n ≥ 1 and T is a finite tree, then

S l

n(T ) = {S ∈ Sn(T ) : leaves(S) ⊆ leaves(T )}.

More generally, if T0, . . . , Td−1 are finite trees, then S l
n(T0, . . . , Td−1) equals

{(S0, . . . , Sd−1) ∈ Sn(T0, . . . , Td−1) : (∀i < d)[Si ∈ S l

n(Ti)]}.

The main combinatorial result of this section is the following density
lemma.

Lemma 4.4. Fix n ∈ N, a collection of computable, computably bounded
trees with no leaves T0, . . . , Td−1, and a computable coloring

f : Sn+1(T0, . . . , Td−1) → k.

For every computable product tree condition c = (F0, . . . , Fd−1, X0, . . . , Xd−1)
which is prehomogeneous (for f), there is a computable prehomogeneous

product tree condition ĉ = (F̂0, . . . , F̂d−1, X̂0, . . . , X̂d−1) extending c such

that Fj ⊊ F̂j for every j < d. Moreover, an index of d can be found uni-
formly ∅′′-computably from an index of c.

Proof. By definition of a product tree condition (Definition 3.7), for
every j < d and every leaf σ of Fj , roots(Xj) is (t+1)-σ-dense with respect
to Tj , where t is the level of the leaves of Fj within Tj . For every j < k,

let F̂j be Fj augmented by the roots of Xj extending the leaves of Fj . By

Remark 3.9, we can assume that (F̂0, . . . , F̂d−1) ∈ S<ω(T0, . . . , Td−1). Let

(E0
0 , . . . , E

0
d−1), . . . , (E

p−1
0 , . . . , E

p−1
d−1)

be the (finite) enumeration of all the tuples in S l
n(F̂0, . . . , F̂d−1), meaning

tuples of strong subtrees (E0, . . . , Ed−1) such that the leaves of Ej are among

the leaves of F̂j , i.e., belong to Xj(0).
We inductively define a finite sequence of d-tuples of computable forests

(Y 0
0 , . . . , Y

0
d−1), . . . , (Y

p

0 , . . . , Y
p

d−1)

such that for every s < p:

(1) Y
s+1
0 , . . . , Y

s+1
d−1 are infinite strong subforests of Y

s

0 , . . . , Y
s

d−1, re-
spectively, with common level function;

(2) (F̂0 ∪ Y
s+1
0 , . . . , F̂d−1 ∪ Y

s+1
d−1 ) ∈ Sω(T0, . . . , Td−1);
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(3) there is some color i < k such that for every level ℓ ∈ N, every j < d,
and every Hj ⊆ Y

s+1
j

(ℓ) for which (Es

0 ∪ H0, . . . , E
s

d−1 ∪ Hd−1) ∈
Sn+1(T0, . . . , Td−1), f(E

s

0 ∪H0, . . . , E
s

d−1 ∪Hd−1) = i.

Let Y 0
0 , . . . , Y

0
d−1 be X0, . . . , Xd−1, respectively, trimmed by their first levels.

Assume Y
s

0 , . . . , Y
s

d−1 is defined for s < p. Let m be the common level of

the leaves of F̂0, . . . , F̂d−1 in T0, . . . , Td−1, respectively. For every j < d,
let Rj = roots(Y s

j
), and for every ρ ∈ Rj , let Yj,ρ = Y

s

j
↾ ρ. We can see

Y
s

0 , . . . , Y
s

d−1 as a tuple (Yj,ρ : j < d, ρ ∈ Rj) of trees.
Define a coloring g of

#

m

-

.
'

ρ∈R0

Y0,ρ(m)

/

0× · · ·×

-

.
'

ρ∈Rd−1

Yd−1,ρ(m)

/

0

as follows. For every j < d, let Uj = {ρ ∈ Rj : (∃µ ∈ leaves(Es

j
))[ρ ≽ µ]},

and note that (Es

0 ∪U0, . . . , E
s

d−1 ∪Ud−1) ∈ Sn+1(T0, . . . , Td−1). Now, given
π = {σj,ρ ∈ Yj,ρ : j < d, ρ ∈ Rj} in the domain of g, let

Gj = E
s

j ∪ {σj,ρ : ρ ∈ Uj}.
for each j. So (G0, . . . Gd−1) ∈ Sn+1(T0, . . . , Td−1). Set

g(π) = f(G0, . . . , Gd−1).

Since the Halpern-Laüchli theorem is computably true, there is a com-
putable tuple (Zj,ρ : j < d, ρ ∈ Rj) of strong subtrees of (Yj,ρ : j < d, ρ ∈
Rj), respectively, with common level function, together with a color i < k

such that for every ℓ ∈ N, every j < k, if Hj ⊆
(

ρ∈Rj
Zj,ρ(ℓ) is such that

E
s

j
∪ Hj ∈ Sn+1(T0, . . . , Td−1) then f(Es

0 ∪ H0, . . . , E
s

d−1 ∪ Hd−1) = i. For

every j < k, let Y
s+1
j

=
!

ρ∈Rj
Zj,ρ(ℓ). This completes the construction of

the sequence.
Let ĉ = (F̂0, . . . , F̂d−1, Y

p

0 , . . . , Y
p

d−1). By items 1 and 2, ĉ is a computable
product tree condition extending c. Moreover, by item 3 and the fact that
c is prehomogeneous for f , so is ĉ.

One can ∅′′-computably search for a finite tuple

(E0, . . . , Ed−1, e0, . . . , ed−1)

such that for every j < d, Φej is total, and

(E0, . . . , Ed−1,Φe0
, . . . ,Φed−1

)

is a product tree condition extending c and prehomogeneous for f . Indeed,
being a strong subforest of Tj is Π0

2 since Tj is computable and computably
bounded. Thus, being a product tree condition is ∅′′-decidable. Moreover,
being prehomogeneous is Π0

1 since f is computable, and being an extension
of a product tree condition is also Π0

2. Since we prove the existence of such
an extension, an exhaustive search will always terminate, and the procedure
is ∅′′-computable, uniformly in an index of c. This completes the proof of
Lemma 4.4. □
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Lemma 4.5. Fix n ∈ N, a collection of computable, computably bounded
trees with no leaves T0, . . . , Td−1, and a computable coloring

f : Sn+1(T0, . . . , Td−1) → k.

There is a ∆0
3 sequence S0, . . . , Sd−1 of strong subtrees of T0, . . . , Td−1, re-

spectively, with common level function, such that the tuple (S0, . . . , Sd−1) is
prehomogeneous for f .

Proof. By iterating Lemma 4.4, build a ∆0
3 descending sequence of

computable prehomogeneous product tree conditions c0 ≥ c1 ≥ . . . where

cs = (F s

0 , . . . , F
s

d−1, X
s

0 , . . . , X
s

d−1)

and such that F
s

j
⊊ F

s+1
j

for every j < d and s ∈ N. For every j < d, let

Sj =
!

s
F

s

j
. Since the F s

j
are strictly increasing in s, it follows by definition

of a product tree condition that S0, . . . , Sd−1 are strong subtrees of T0, . . . ,

Td−1, respectively, with common level function. Moreover, S0, . . . , Sd−1 are
∆0

3, and by definition of a prehomogeneous condition, (S0, . . . , Sd−1) is pre-
homogeneous for f . □

Theorem 4.6. For every n ≥ 1 and every set X, every X-computable
instance of the product version of Milliken’s tree theorem for height n admits

a ∆0,X
2n−1 solution.

Proof. By induction on n. For n = 1, the product version of Mil-
liken’s tree theorem for height 1 is the Halpern-Laüchli theorem, which is
computably true by Theorem 3.4.

Suppose the property holds for n, and fix a set X, and an X-computable
sequence of X-computably bounded trees with no leaves T0, . . . , Td−1 ⊆
ω<ω. Let f : Sn+1(T0, . . . , Td−1) → k be an X-computable coloring. By

Lemma 4.5, relativized to X, there is a ∆0,X
3 tuple

(S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1)

prehomogeneous for f . Let g : Sn(S0, . . . , Sd−1) → k be defined by

g(E0, . . . , Ed−1) = f(E0 ∪H0, . . . , Ed−1 ∪Hd−1)

for any H0 ⊆ S0(n), . . . , Hd−1 ⊆ Sd−1(n) such that (E0 ∪ H0, . . . , Ed−1 ∪
Hd−1) ∈ Sn+1(S0, . . . , Sd−1). Such a coloring is well defined by prehomoge-

nenity. The coloring g can be seen as a∆0,X′′

1 instance of the product version
of Milliken’s tree theorem for height n. By induction hypothesis, there is a

∆0,X′′

2n−1 (hence ∆0,X
2(n+1)−1) solution to g, which is by prehomogeneity also a

solution to f . This completes the proof of Theorem 4.6. □
Corollary 4.7. For every n ≥ 1, the product version of Milliken’s

tree theorem for height n is provable in ACA0, and the product version of
Milliken’s tree theorem itself is provable in ACA′

0.

Proof. The proof of Theorem 4.6 is formalizable in ACA0. The induc-
tion on n can then be carried out in ACA′

0. □
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Theorem 4.8. Milliken’s tree theorem for height n implies RTn.

Proof. Let f : [N]n → k be an instance of RTn. Let T = 1<ω =
{&, 0, 00, . . . } be the unary finitely branching tree with no leaves. Define
g : Sn(T ) → k by g(σ0, . . . ,σn−1) = f(|σ0|, . . . , |σd−1|). Now if S is a strong
subtree of T such that Sn(S) is monochromatic for g then H = {|σ| : σ ∈ S}
is homogeneous for f . □

Corollary 4.9. For every n ≥ 3, PMTTn and MTTn are equivalent to
ACA0 over RCA0. Moreover the product version of Milliken’s tree theorem
and Milliken’s tree theorem are equivalent to ACA′

0.

Proof. For every n ≥ 3, by Corollary 4.7, ACA0 implies PMTTn,
which generalizes MTTn. By Theorem 4.8, MTTn imples RTn, and by
formalization of a result of Jockusch [23, Theorem 5.7] (as formalized e.g.
in [41], Lemma III.7.5), RTn implies ACA0. Moreover, by Corollary 4.7,
ACA′

0 implies (∀n)PMTTn which generalizes (∀n)MTTn. By Theorem 4.8,
(∀n)MTTn implies (∀n)RTn, which is itself known to imply ACA′

0 (for a
proof, see Hirschfeldt [20], Theorem 6.27). □

4.2. Cone avoidance of PMTT2

This section is devoted to the proof of cone avoidance of the product
version of Milliken’s tree theorem for height 2. As in the proof of cone
avoidance for Ramsey’s theorem for pairs (see Cholak, Jockusch and Sla-
man [3], Sections 3 and 4) the proof of Theorem 4.15 will be decomposed
into two steps, using the notion of stability.

Definition 4.10. Fix n ≥ 1 and a collection of trees T0, . . . , Td−1 with
no leaves. A coloring f : Sn+1(T0, . . . , Td−1) → k is stable if for every
(F0, . . . , Fd−1) ∈ Sn(T0, . . . , Td−1), there is a threshold t ∈ N and a color i <
k such that for every level ℓ ≥ t and all E0 ⊆ T0(ℓ), . . . , Ed−1 ⊆ Td−1(ℓ) for
which (F0∪E0, . . . , Fd−1∪Ed−1) ∈ Sn+1(T0, . . . , Td−1), f(F0∪E0, . . . , Fd−1∪
Ed−1) = i.

We refer to the i < k above as the limit color of the tuple (F0, . . . , Fd−1).
Any stable coloring f : Sn+1(T0, . . . , Td−1) → k induces a coloring

g : Sn(T0, . . . , Td−1) → k

which to (F0, . . . , Fd−1) ∈ Sn(T0, . . . , Td−1) associates its limit color i < k.
We shall call g the limit coloring of f . Note that g is ∆0

2 in f and the
sequence T0, . . . , Td−1. The notion of stability is therefore as bridge between
computable instances of PMTTn+1 and arbitrary instances of PMTTn. This
gives rise to a two step proof of cone avoidance of PMTT2.

The first step consists of proving that for every instance of the product
version of Milliken’s tree theorem for height 2 there exist cone avoiding
strong subtrees on which the coloring is stable. We will actually prove a
more general theorem for products of trees, and subtrees of arbitrary height.
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The second step consists of applying strong cone avoidance of the prod-
uct version of Milliken’s tree theorem for height 1, which is just a particular
case of the Halpern-Laüchli theorem, and then computably thinning out the
result to obtain a solution to the original instance of the product version of
Milliken’s tree theorem of height 2.

We begin with the first step.

Theorem 4.11. Fix sets C,Z ⊆ N with C ≰T Z, an n ≥ 1, a Z-
computable collection of Z-computably bounded trees T0, . . . , Td−1 with no
leaves, and a coloring f : Sn+1(T0, . . . , Td−1) → k. There exists (S0, . . . ,

Sd−1) ∈ Sω(T0, . . . , Td−1) such that f is stable on Sn+1(S0, . . . , Sd−1) and
such that C ≰T S0 ⊕ · · ·⊕ Sd−1 ⊕ Z.

The proof of Theorem 4.11 will employ a refinement of the forcing with
product tree conditions. We will require some definitions and preliminary
lemmas.

Definition 4.12. Fix sets C,Z ⊆ N with C ≰T Z, an n ≥ 1, a Z-
computable collection of Z-computably bounded trees T0, . . . , Td−1 with no
leaves, and a coloring f : Sn+1(T0, . . . , Td−1) → k. Let

c = (F0, . . . , Fd−1, X0, . . . , Xd−1)

be a product tree condition (with respect to the Ti).

(1) c is cone avoiding if C ≰T X0 ⊕ · · ·⊕Xd−1 ⊕ Z.
(2) c is stable for f if for every tuple (E0, . . . , Ed−1) ∈ Sn(F0, . . . , Fd−1),

there is a color i < k such that for every level ℓ ∈ N and every
H0 ⊆ X0(ℓ), . . . , Hd−1 ⊆ Xd−1(ℓ) for which (E0 ∪ H0, . . . , Ed−1 ∪
Hd−1) ∈ Sn+1(T0, . . . , Td−1), f(E0 ∪H0, . . . , Ed−1 ∪Hd−1) = i.

Making progress in satisfying the cone avoidance requirements will de-
mand the use of a computable function dominating the levels of a tuple of
strong subtrees with certain nice combinatorial properties.

For now, we will take for granted the following technical result, which
is a finite version of Milliken’s tree theorem where all subtrees are assumed
to keep the leaves and the level function is bounded. For a given tree T ,
recall the notation S l

n(T ) from Definition 4.3 which denotes the collection
of strong subtrees of T of height n whose leaves are among those of T .

Theorem 4.13. Fix a level ℓ ∈ N, a height n ≥ 1, a number of colors
k ∈ N, an arity d ≥ 1, and a function b : ω → ω. There exists a function
N 8→ H(N, ℓ, n + 1, k, d, b), uniformly b-computable in ℓ, n, k, and d, as
follows. If U0, . . . , Ud−1 is a sequence of finite b-bounded trees of height
h = H(N, ℓ, n+ 1, k, d, b) for some fixed N ∈ N, and

χ : S l

n+1(U0, . . . , Ud−1) → k

is any coloring where χ(F0, . . . , Fd−1) depends only on (F0 ↾ n, . . . , Fd−1 ↾ n)
whenever Fi ↾ n ⊆ Ui ↾ ℓ for every i, then there exists (V0, . . . , Vd−1) ∈
S l

ℓ+N+1(U0, . . . , Ud−1) such that:
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(1) Vi ↾ ℓ = Ui ↾ ℓ for each i < d;
(2) for any i < d, the level function of Vi as a subset of Ui is bounded

by the function defined by x 8→ H(x, ℓ, n + 1, k, d, b) if x > ℓ, and
x 8→ x if x ≤ ℓ;

(3) the color of (F0, . . . , Fd−1) ∈ S l

n+1(V0, . . . , Vd−1) depends only on
(F0 ↾ n, . . . , Fd−1 ↾ n) ∈ Sn(V0, . . . , Vd−1).

To help understand the statement of Theorem 4.13, suppose S0, . . . , Sd−1

are infinite, computable and computably bounded trees with no leaves. Also
fix a coloring g : Sn+1(S0, . . . , Sd−1) → k. Consider a product tree condition
(E0, . . . , Ed−1, X0, . . . , Xd−1) for these Si which is stable for g. Say the Ei are
of height ℓ. One would like to extend the stems withN new levels in one step,
so that the resulting stems are of height ℓ+N , while keeping the resulting
product tree condition stable for g. Theorem 4.13 provides a sufficient bound
h = H(N, ℓ, n+1, k, d, b) depending on the number N of new levels we would
like to add, on the height ℓ of the stems, the parameters n+ 1 and k of the
coloring g, on the number d of trees in the product tree condition, and on
the computable bound b over the trees E0 ∪ X0, . . . , Ed−1 ∪ Xd−1, so that
one can always find such an extension of the stems where the new elements
are taken among the first h first levels of E0 ∪X0, . . . , Ed−1 ∪Xd−1.

In the statement of Theorem 4.13, the finite trees U0, . . . , Ud−1 corre-
spond to the trees E0 ∪X0, . . . , Ed−1 ∪Xd−1 up to level h, respectively. Let
Y0, . . . , Yd−1 be the forests obtained from the trees E0∪X0, . . . , Ed−1∪Xd−1

by removing their first h− 1 many levels. For each j < d, the tree Uj there-
fore has three parts. First, we have the first ℓ levels, which correspond to
to the stem Ej . Second, we have the levels up to the one before the leaves,
which will serve to extend the stem Ej . Very few of these levels will be
kept, but h is chosen large enough so that we can always extend with N

new levels. Last, the leaves of Uj correspond to the roots of the forest Yj .

Fixing strong subtrees (F0, . . . , Fd−1) ∈ S l

n+1(U0, . . . , Ud−1) of height n+
1 should actually be understood as fixing strong subtrees (F0 ↾ n, . . . , Fd−1 ↾
n) of height n from the trees U0, . . . , Ud−1 trimmed from their leaves, and
then picking a set of roots from Y0, . . . , Yd−1 (or equivalently picking a set of
leaves from U0, . . . , Ud−1). This induces a product coloring of the nodes
in Y0, . . . , Yd−1 pointwise extending the product of the roots chosen, by
considering which color the function g assigns to the strong subtrees (F0 ↾
n, . . . , Fd−1 ↾ n) augmented by these nodes. Multiple applications of the
Halpern-Lauchli theorem yield subforests Z0, . . . , Zd−1 of Y0, . . . , Yd−1 with
the same set of roots such that the induced coloring has a limit color on
products of nodes from the Zi. This limit color therefore depends only on
the choice of element from S l

n+1(U0, . . . , Ud−1). This is how we define the

limit function χ : S l

n+1(U0, . . . , Ud−1).
The proof of Theorem 4.13 requires some rather heavy combinatorial

development, and so we postpone it to the next section. Instead, we first
show how to use the theorem to obtain Theorem 4.11.
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Lemma 4.14. Fix sets C,Z ⊆ N with C ≰T Z, an n ≥ 1, a Z-computable
collection of Z-computably bounded trees with no leaves T0, . . . , Td−1, and
a coloring f : Sn+1(T0, . . . , Td−1) → k. Let P be the partial order of all
stable cone avoiding product tree conditions (with respect to the givens). For
every P-condition c and every Turing functional Γ, there is a P-condition c

′

extending c such that c′ ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C.

Proof. Fix c = (F0, . . . , Fd−1, X0, . . . , Xd−1). By Remark 3.9, we can
assume that (F0 ∪X0, . . . , Fd−1 ∪Xd−1) ∈ Sω(T0, . . . , Td−1). Let b : N → N
be a Z-computable function bounding the trees F0 ∪X0, . . . , Fd−1 ∪Xd−1,
and let ℓ be the height of F0, . . . , Fd−1.

Let W be the set of all pairs (x, v) ∈ N × {0, 1} such that for every
d-tuple of strong subforests Y0, . . . , Yd−1 of X0, . . . , Xd−1, respectively, with
common level function dominated by N 8→ H(N, ℓ, n + 1, k, d, b), and such
that for every j < d, every root of Xj is extended by a root of Yj , there is
some d-tuple H0 ⊆ Y0, . . . , Hd−1 ⊆ Yd−1 with (F0 ∪H0, . . . , Fd−1 ∪Hd−1) ∈
S<ω(T0, . . . , Td−1) and

Γ(F0∪H0)⊕···⊕(Fd−1∪Hd−1)⊕Z(x) ↓= v.

By compactness, the set W is X0⊕ · · ·⊕Xd−1⊕Z-c.e. We have three cases.

Case 1: (x, 1 − C(x)) ∈ W for some x ∈ N. By compactness, there is
some height N0 ∈ N such that the property holds for every d-tuple of strong
subforests of X0, . . . , Xd−1, respectively, of height N0 with common level
function dominated by N 8→ H(N, ℓ, n+ 1, k, d, b). Let U0, . . . , Ud−1 be the
finite trees obtained by restricting F0 ∪ X0, . . . , Fd−1 ∪ Xd−1, respectively,
to their first H(N0, ℓ, n+ 1, k, d, b) many levels. In particular, U0, . . . , Ud−1

are b-bounded trees of height H(N0, ℓ, n+ 1, k, d, b).
Fixing a tuple (E0, . . . , Ed−1) ∈ S l

n+1(U0, . . . , Ud−1), the coloring f in-
duces a function

g :
#

m

'

j<d

'

ρ∈leaves(Ej)

(Xj ↾ ρ)(m) → k

define for all tuples π = (σρ
j
∈ (Xj ↾ ρ)(m) : j < d, ρ ∈ leaves(Ej)) by

g(π) = f({(Ej ↾ n) ∪ {σρ
j

ρ ∈ leaves(Ej)} : j < d}).

Thus, by iteratively applying strong cone avoidance of the Halpern-Laüchli
theorem (Theorem 3.21), there is a d-tuple of strong subforests Y0, . . . , Yd−1

of X0, . . . , Xd−1, respectively, with common level function, such that:

(a) for every j < d, every leaf of Uj is extended by exactly one root of
Yj ;

(b) for every (E0, . . . , Ed−1) ∈ S l

n+1(U0, . . . , Ud−1), there is a color i <
k such that for every

(σρ
j
: j < d, ρ ∈ leaves(Ej)) ∈

#

m

'

ρ∈leaves(Ej)

(Yj ↾ ρ)(m),
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we have f({(Ej ↾ n) ∪ {σρ
j

ρ ∈ leaves(Ej)} : j < d}) = i;

(c) C ≰T Y0 ⊕ · · ·⊕ Yd−1 ⊕ Z.

Item (b) induces a coloring χ : S l

n+1(U0, . . . , Ud−1) → k which associates to
(E0, . . . , Ed−1) the unique color i < k as specified there. By Theorem 4.13,
there are finite strong subtrees V0, . . . , Vd−1 of U0, . . . , Ud−1, respectively,
of height N0 + ℓ with common level function, such that for every j < d,
Vj ↾ ℓ = Fj , the level function of Vj is bounded by N 8→ H(N, ℓ, n+1, k, d, b)

if N > ℓ, and the color of (E0, . . . , Ed−1) ∈ S l

n+1(V0, . . . , Vd−1) with respect
to χ depends only on (E0 ↾ n, . . . , Ed−1 ↾ n). By choice of N0, there are some
H0 ⊆ V0, . . . , Hd−1 ⊆ Vd−1 such that F0 ∪ H0, . . . , Fd−1 ∪ Hd−1 are finite
strong subtrees of T0, . . . , Td−1, respectively, with common level function,
and such that

Γ(F0∪H0)⊕···⊕(Fd−1∪Hd−1)⊕Z(x) ↓= v.

The tuple c
′ = (F0 ∪H0, . . . , Fd−1 ∪Hd−1, Y0, . . . , Yd−1) is therefore a cone

avoiding stable product tree condition extending c that satisfies

c
′ ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C.

Case 2: (x,C(x)) ∕∈ W for some x ∈ N. Let C be the class of all strong sub-
forests Y0, . . . , Yd−1 of X0, . . . , Xd−1, respectively, with common level func-
tion dominated by N 8→ H(N, ℓ, n + 1, k, d, b) such that for every j < d,
every root of Xj is extended in a root of Yj , and for every d-tuple H0 ⊆
Y0, . . . , Hd−1 ⊆ Yd−1 for which F0 ∪ H0, . . . , Fd−1 ∪ Hd−1 are finite strong
subtrees of T0, . . . , Td−1, respectively, again with common level function, we
have

Γ(F0∪H0)⊕···⊕(Fd−1∪Hd−1)⊕Z(x) ↑ or Γ(F0∪H0)⊕···⊕(Fd−1∪Hd−1)⊕Z(x) ↓∕= v.

Since the trees T0, . . . , Td−1 are Z-computably bounded and the level func-
tion of Y0, . . . , Yd−1 is dominated by the Z-computable function H, it follows
that C is a Π0

1 class relative to X0⊕· · ·⊕Xd−1⊕Z. Moreover, by assumption,
C is non-empty.

By the cone avoidance basis theorem, there is some (Y0, . . . , Yd−1) ∈ C
such that C ≰T Y0 ⊕ · · ·⊕ Yd−1 ⊕ Z. The tuple

c
′ = (F0, . . . , Fd−1, Y0, . . . , Yd−1)

is then a P-condition extending c such that

c
′ ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C.

Case 3: otherwise. Then we have that (x, y) ∈ W if and only if C(x) = y,
so C ≤T X0 ⊕ · · ·⊕Xd−1 ⊕ Z. □

Proof of Theorem 4.11. Fix two sets C and Z such that C ≰T Z.
Also fix a Z-computable collection of Z-computably bounded trees with no
leaves T0, . . . , Td−1 ⊆ ω<ω. Let n ≥ 1 and f : Sn+1(T0, . . . , Td−1) → k

be a coloring. Let P be the partial order of all cone avoiding product tree
conditions which are stable for f , and let U be a sufficiently generic P-filter.
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Let GU
0 , . . . , G

U
d−1 be the strong subtrees of T0, . . . , Td−1 induced by U . By

Lemma 4.14, for every Turing functional Γ, there is some P-condition c ∈ U
such that c ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C. Hence, C ≰T G

U
0 ⊕ · · · ⊕ G

U
d−1 ⊕ Z.

Moreover, by Lemma 3.11, GU
0 , . . . , G

U
d−1 are all infinite. And finally, since

U contains only stable conditions, f is stable on Sn(G0, . . . , Gd−1). This
completes the proof of Theorem 4.11. □

We are ready to prove cone avoidance of PMTT2.

Theorem 4.15. The product version of Milliken’s tree theorem for height
2 admits cone avoidance.

Proof. Fix two sets C and Z such that C ≰T Z. Also fix a Z-
computable collection of Z-computably bounded trees with no leaves T0, . . . ,

Td−1 ⊆ ω<ω and a Z-computbale coloring f : S2(T0, . . . , Td−1) → k.
By Theorem 4.11, there are strong subtrees S0, . . . , Sd−1 of T0, . . . , Td−1,

respectively, with common level function, such that f is stable on

S2(S0, . . . , Sd−1),

and such that C ≰T S0⊕ · · ·⊕Sd−1⊕Z. By stability, the coloring f induces
a k-partition A0 ⊔ · · · ⊔ Ak−1 =

!
n
S0(n) × · · · × Sd−1(n) by letting Ai be

the set of tuples (σ0, . . . ,σd−1) ∈
!

n
S0(n)× · · ·× Sd−1(n) such that for all

but finitely many levels ℓ ∈ N, whenever ({σ0} ∪H0, . . . , {σd−1} ∪Hd−1) ∈
S2(S0, . . . , Sd−1) then f({σ0} ∪H0, . . . , {σd−1} ∪Hd−1) = i.

By Theorem 3.21, there is some color i < k and some strong subtrees
U0, . . . , Ud−1 of S0, . . . , Sd−1, respectively, with common level function, such
that

!
n
U0(n) × · · · × Ud−1(n) ⊆ Ai and C ≰T U0 ⊕ · · · ⊕ Ud−1 ⊕ Z. By

U0⊕ · · ·⊕Ud−1⊕Z-computably thinning out the set of levels, we can obtain
a tuple of strong subtrees V0, . . . , Vd−1 of U0, . . . , Ud−1, respectively, with
common level function, such that S2(V0, . . . , Vd−1) is monochromatic for
color j with respect to f . In particular, by transitivity of the strong subtree
relation, V0, . . . , Vd−1 are strong subtrees of T0, . . . , Td−1 with common level
function, and C ≰T V0 ⊕ · · ·⊕ Vd−1 ⊕ Z. This completes the proof. □

Corollary 4.16. RCA0 ∧ PMTT2 ∕⊢ ACA0.

Proof. Immediate by Theorem 4.15 and Lemma 2.15. □

4.3. Proof of Theorem 4.13

We now prove the main technical result used in the preceding section.
We shall restate it in full below for convenience. First, we have the following
lemma.

Lemma 4.17 (Finitary Halpern-Laüchli theorem for leaves). Fix a num-
ber of colors k ∈ N, an arity d ≥ 1, and a function b : ω → ω. There
exists a function N 8→ hHL(N, k, d, b), uniformly b-computable in k and d
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as follows. If U0, . . . , Ud−1 is a sequence of finite b-bounded trees of height
h = hHL(N, k, d, b) for some fixed N ≥ 1, and

g : U0(h− 1)× · · ·× Ud−1(h− 1) → k

is any coloring of the d-tuples of leaves from this sequence, then there exists
(V0, . . . , Vd−1) ∈ S l

N
(U0, . . . , Ud−1), such that g is constant on the product of

the leaves

V0(N − 1)× · · ·× Vd−1(N − 1).

Proof. Let C be the space of all functions

f :
#

n

T0(n)× · · ·× Td−1(n) → k

where T0, . . . , Td−1 are b-bounded trees. By compactness of C, the Halpern-
Laüchli theorem (Theorem 2.28) yields the existence of a function

hHL(·, k, d, b) : N → N

such that for any N , any collections of b-bounded trees T0, . . . , Td−1 of
height hHL(N, k, d, b), and any f :

!
n<hHL(N,k,d,b) T0(n)× · · ·×Td−1(n) → k,

there exists (S0, . . . , Sd−1) ∈ SN (T0, . . . , Td−1) such that f is constant on!
n<N

S0(n)× · · ·× Sd−1(n).
Now, consider the given trees U0, . . . , Ud−1 of height h = hHL(N, k, d, b),

and the given coloring g. Define

f :
#

n<h

U0(n)× · · ·× Ud−1(n) → k

by f(σ0, . . . ,σd−1) = g(lσ0
, . . . , lσd−1

), where lσ for each σ ∈ Ui denotes a
choice of leaf extending σ.

By the property of hHL, let S0, . . . Sd−1 be strong subtrees of T0, . . . , Td−1

of height N and with a common level function such that f is constant on!
n<N

S0(n)× · · ·× Sd−1(n). For i < d, set

Vi =
#

n<N−1

Si(n) ∪ {lσ : σ ∈ Si(N − 1).}

Thus, (V0, . . . , Vd−1) ∈ S l

N
(U0, . . . , Ud−1), and as f is constant on S0(N−1)×

· · ·×Sd−1(N−1) it follows that g is constant on V0(N−1)×· · ·×Vd−1(N−1).
(Note that by definition of the Vi and the lσ, V0(N − 1)× · · ·× Vd−1(N − 1)
is a subset of T0(h− 1)× · · ·× Td−1(h− 1), the domain of g.) □

We are now ready to prove Theorem 4.13 stated earlier. Recall that it
is a finitary version of Milliken’s tree theorem for S l

n+1(·), meaning that we
color strong subtrees of a certain height that also preserve the leaves. We
recall the full statement.

Theorem 4.13. Fix a level ℓ ∈ N, a height n ≥ 1, a number of colors
k ∈ N, an arity d ≥ 1, and a function b : ω → ω. There exists a function
N 8→ H(N, ℓ, n + 1, k, d, b), uniformly b-computable in ℓ, n, k, and d, as
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follows. If U0, . . . , Ud−1 is a sequence of finite b-bounded trees of height
h = H(N, ℓ, n+ 1, k, d, b) for some fixed N ∈ N, and

χ : S l

n+1(U0, . . . , Ud−1) → k

is any coloring where χ(F0, . . . , Fd−1) depends only on (F0 ↾ n, . . . , Fd−1 ↾ n)
whenever Fi ↾ n ⊆ Ui ↾ ℓ for every i, then there exists (V0, . . . , Vd−1) ∈
S l

ℓ+N+1(U0, . . . , Ud−1) such that:

(1) Vi ↾ ℓ = Ui ↾ ℓ for each i < d;
(2) for any i < d, the level function of Vi as a subset of Ui is bounded

by the function defined by x 8→ H(x, ℓ, n + 1, k, d, b) if x > ℓ, and
x 8→ x if x ≤ ℓ;

(3) the color of (F0, . . . , Fd−1) ∈ S l

n+1(V0, . . . , Vd−1) depends only on
(F0 ↾ n, . . . , Fd−1 ↾ n) ∈ Sn(V0, . . . , Vd−1).

We begin by giving the definition of the function H.

Definition 4.18. Fix a level ℓ ∈ N, a height n ≥ 1, a number of colors
k ∈ N, an arity d ≥ 1, and a function b : ω → ω. Define a function
N 8→ Ĥ(N, ℓ, n, k, d, b) inductively as follows:

(1) Ĥ(0, ℓ, n, k, d, b) = 0;

(2) if Ĥ(N − 1, ℓ, n, k, d, b) = HN−1 is defined, then

Ĥ(N, ℓ, n, k, b) = Ĥ(N − 1, ℓ, n, k, d, b) + hHL(2,K,D,B),

where
• K is the cardinality of the set of all k-valued functions defined
on

P(U0 ↾ HN )× · · ·× P(Ud−1 ↾ HN )× P(U0(HN ))× · · ·× P(Ud−1(HN ))

for some b-bounded trees T0, . . . , Td−1;
• D = d×

(
i<ℓ b(i)

(
i<HN−1

b(ℓ+ i);

• B is the function n 8→ b(n+HN−1).

Define H by

H(N, ℓ, n, k, d, b) = ℓ+ Ĥ(N, ℓ, n, k, d, b).

Note that D corresponds to a bound on the number of leaves of d many
b-bounded trees of height ℓ+HN−1, and that B is a bounding function for
subtrees of a b-bounded tree that contains all the levels starting from HN−1.
Figure 4.1 helps shed light on some of the parameters given to hHL in the
definition of H.

Proof of Theorem 4.13. We proceed by induction on N , starting
with N = 0. The base case holds by taking any

(V0, . . . , Vd−1) ∈ S l

ℓ+1(U0, . . . , Ud−1)

with Vi ↾ ℓ = Ui ↾ ℓ for all i < d. These trees satisfy Items 1 and 2 by
construction. Moreover, by assumption on χ, they also satisfy Item 3.
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Now, suppose the result is true for some N ≥ 0. To simplify notation,
define HN = H(N, ℓ, n + 1, k, d, b) and HN+1 = H(N + 1, ℓ, n + 1, k, d, b).
The construction of the solution V0, . . . , Vd−1 is divided into three steps,
summarized as follows.

(1) We apply Lemma 4.17 to the collection of trees U
σ
i

= Ui ↾ σ for
σ ∈ Ui(HN ) and a certain coloring with a large number of col-
ors. This will yields strong subtrees V

σ
i

of U
σ
i

of height 2 with
a common level function. In turn, these will induce a coloring of
S l

n+1(U0 ↾ HN , . . . , Ud−1 ↾ HN ).
(2) We apply the inductive hypothesis to U0 ↾ HN , . . . , Ud−1 ↾ HN and

the induced coloring, obtaining strong subtrees V̂0, . . . , V̂d−1.

(3) For each i < d, we replace the leaves of V̂i by V
σ
i

to get Vi.

We now give the details of each step of the construction.

Construction.

Step 1. We define a coloring

g :
'

i<d

'

σ∈Ui(HN )

leaves(Uσ
i ) → K,

where K is the finite set of all functions

ζ : P(U0 ↾ HN )×· · ·×P(Ud−1 ↾ HN )×P(U0(HN ))×· · ·×P(Ud−1(HN )) → k.

Let π be an element of the domain of g, meaning a tuple ((τσ
i
)σ∈Ui(HN ))i<d

consisting of one leaf τσ
i

from each tree U
σ
i
. Then g(π) is the function ζ

defined as follows. Given Fi ⊆ Ui ↾ HN and Gi ⊆ Ui(HN ) for each i < d,

ζ(F0, . . . , Fd−1, G0, . . . , Gd−1) = χ((Fi ∪ {τσi : σ ∈ Gi})i<d)

if (Fi ∪ {τσ
i
: σ ∈ Gi})i<d ∈ S l

n+1(U0, . . . , Ud−1), and

ζ(F0, . . . , Fd−1, G0, . . . , Gd−1) = 0

otherwise. So in particular, g(π) records the values of χ on all strong subtrees
of height n+ 1 that have leaves in π and all other nodes below level HN in
U0, . . . , Ud−1.

By Lemma 4.17 applied to the collection of U
σ
i

with the coloring g,
using the fact that the height, HN+1 −HN , of the trees is sufficiently large
by definition of H, we obtain strong subtrees V σ

i
of Uσ

i
of height 2 and with

common level function such that g is constant on the product of the leaves
of the V

σ
i
. Call the value assumed by g on this product ζ0 ∈ K.

Step 2. The function ζ0 naturally induces a coloring

χN : S l

n+1(U0 ↾ HN + 1, . . . , Ud−1 ↾ HN + 1) → k

as follows. Given (F0, . . . , Fd−1) in the domain of χN , let

χN (F0, . . . , Fd−1) = ζ0(F0 ↾ n, . . . , Fd−1 ↾ n, leaves(F0), . . . , leaves(Fd−1)).
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Note that by choice of the V
σ
i
, if ((τσ

i
)σ∈Ui(HN ))i<d is any tuple consisting

of one leaf τσ
i
from each tree V σ

i
, then (Fi ↾ n ∪ {τσ

i
: σ ∈ leaves(Fi)})i<d ∈

S l

n+1(U0, . . . , Ud−1), so by definition we also have

χN (F0, . . . , Fd−1) = χ((Fi ↾ n ∪ {τσi : σ ∈ leaves(Fi)})i<d).

By assumption on χ, it follows that if Fi ↾ ℓ ⊆ (Ui ↾ HN + 1) ↾ ℓ = Ui ↾ ℓ
for all i < d, then χN (F0, . . . , Fd−1) depends only on (F0 ↾ n, . . . , Fd−1 ↾ n).
We may thus apply the induction hypothesis to χN and the trees U0 ↾ HN +
1, . . . , Ud−1 ↾ HN + 1 to obtain a tuple of strong subtrees (V̂0, . . . , V̂d−1) ∈
S l

ℓ+N+1(U0 ↾ HN + 1, . . . , Ud−1 ↾ HN + 1).

Step 3. Finally, we glue the trees V̂i to the trees V σ
i

to finish the construc-
tion of the solution. More precisely, we let

Vi = V̂i # leaves(V̂i) ∪
#

σ∈leaves(V̂i)

V
σ
i .

Note that the height of Vi is ℓ + N + 2, as desired. This completes the
construction.

Verification. We now prove that the collection of Vi is a solution. Item 1 is
satisfied since it is satisfied by V̂i. This is because Vi extends V̂i# leaves(V̂i),

and the height of V̂i is at least ℓ+ 1, so we have Vi ↾ ℓ = (V̂i # leaves(V̂i)) ↾
ℓ = V̂i ↾ ℓ = Ui ↾ ℓ.

Item 2 is satisfied by construction.
It remains to verify Item 3. Suppose (F0, . . . , Fd−1) ∈ S l

n+1(V0, . . . , Vd−1).
We consider two cases.

Case 1: Fi(n − 1) ⊆ Vi(ℓ + N) for each i < d. Since Fi ∈ S l

n+1(Vi) for
each i < d and there is only one level in Vi above ℓ + N , the elements of
Fi(n) = leaves(Fi) are uniquely determined by those of Fi(n− 1). Namely,
Fi(n) = {σ ∈ Vi(ℓ + n + 1) : (∃τ ∈ Fi(n − 1))[τ ≺ σ]}. Thus, Fi is
completely determined by Fi ↾ n, and so also χ(F0, . . . , Fd−1) depends only
on (F0 ↾ n, . . . , Fd−1 ↾ n).
Case 2: Fi(n − 1) ⊆ Vi ↾ ℓ + N for each i < d. In this case, we have

Fi ↾ n ⊆ V̂i # leaves(V̂i) ⊆ Ui ↾ HN . So, if we define

F̂i = Fi ↾ n ∪ {σ ∈ Ui(HN ) : (∃τ ∈ leaves(Fi))[σ ≺ τ ]}

then (F̂0, . . . , F̂d−1) ∈ S l

n+1(V̂0, . . . , V̂d−1). By choice of the V̂i, we know

that χN (F̂0, . . . , F̂d−1) depends only on (F̂0 ↾ n, . . . , F̂d−1 ↾ n) = (F0 ↾
n, . . . , Fd−1 ↾ n).

Separately, by definition of χN and choice of the V
σ
i
, we have that if

((τσ
i
)σ∈Ui(HN ))i<d is any tuple consisting of one leaf τσ

i
from each tree V

σ
i
,

then

χN (F̂0, . . . , F̂d−1) = χ((F̂i ↾ n ∪ {τσ
i
: σ ∈ leaves(F̂i)})i<d)

= χ((Fi ↾ n ∪ {τσ
i
: σ ∈ leaves(F̂i)})i<d).
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Since the leaves of F0, . . . , Fd−1 form precisely such a tuple ((τσ
i
)σ∈Ui(HN ))i<d

and Fi ↾ n ∪ leaves(Fi) = Fi for each i < d, we conclude

χN (F̂0, . . . , F̂d−1) = χ(F0, . . . , Fd−1).

Combining the previous two paragraphs, we find that χ(F0, . . . , Fd−1)
depends only on (F0 ↾ n, . . . , Fd−1 ↾ n), as was to be shown. □

· · ·

HN+1

HN

Figure 4.1. The construction of a tree in Theorem 4.13
when d = 1. Given a tree T of height HN , cutting at level
HN yields a collection of finite perfect trees whose roots are
nodes at level HN . A finite coloring of S l

n+1(T ) yields a
coloring of product of leaves from the collection, by merging
the colors of all possible closure into a tree of height n + 1.
The level HN+1 is chosen large enough above HN so that on
can apply Lemma 4.17 to obtain strong subtrees of height 2,
represented in bold. As explained in the proof, this yields a
coloring of S l

n(T ↾ HN ), and one can apply the induction hy-
pothesis.

4.4. Milliken’s tree theorem with more colors

As we have seen in the preceding sections, there is a computably de-
tectable difference between Milliken’s tree theorem for heights 2 and 3 that
parallels that for Ramsey’s theorem for pairs and triples. More specifically,
Milliken’s tree theorem for height 2 admits cone avoidance while the ver-
sion for height 3 does not. In the case of Ramsey’s theorem, more can be
said. Wang [49, Theorem 3.2] proved the surprising result that if we weaken
Ramsey’s theorem for n-tuples to permit a larger number ℓ of colors in the
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solution (instead of just one, which is to say, requiring the solutions to be
homogeneous sets), and if ℓ is sufficiently large relative to n, then the re-
sulting statement admits strong cone avoidance. More recently, Cholak and
Patey [4, Corollary 4.17] gave explicit bounds on the relationship between
ℓ and n, proving that cone avoidance holds so long as ℓ is at least as large
as the nth Catalan number.

Statement 4.19 (Ramsey’s theorem for n-tuples and k colors). RTn

k,ℓ

is the statement: “For any coloring f : [N]n → k, there exists an infinite set
H ⊆ N such that f uses at most ℓ colors on [H]n”.

In this section, we prove a similar result for the product version of Mil-
liken’s tree theorem for height 2. More precisely, we show that whenever the
number of colors in the solutions is allowed to be at least 2, then the result-
ing statement for height 2 admits strong cone avoidance (Theorem 4.27),
while the statement for height 3 admits cone avoidance (Theorem 4.28).

The notion of level-homogeneous coloring sets a bridge between Ram-
sey’s theorem and Milliken’s tree theorem. Let T0, . . . , Td−1 ⊆ ω<ω be
finitely branching trees with no leaves. Recall that the level function wit-
nessing a strong subtree is the function mapping the levels of the strong
subtree to the levels in the original tree (see Definition 2.20).

Definition 4.20. A coloring

f : Sn(T0, . . . , Td−1) → k

is level-homogeneous if the color of (E0, . . . , Ed−1) ∈ Sn(T0, . . . , Td−1) de-
pends only on its level function. A product tree condition

(F0, . . . , Fd−1, X0, . . . , Xd−1)

is level-homogeneous for f if for every

(E0, . . . , Ed−1) ∈ Sn(F0 ∪X0, . . . , Fd−1 ∪Xd−1)

such that Ej ↾ 1 ⊆ Fj for every j < d, the color of (E0, . . . , Ed−1) depends
only on its level function.

Note that the notion of level-homogeneous here extends that in Defini-
tion 3.24, which is the particular case when n = 1 and f is the function
mapping a tuple in S1(T0, . . . , Td−1) to the unique i < k such that Ai con-
tains this tuple.

Any level-homogeneous coloring f : Sn(T0, . . . , Td−1) → k induces a
coloring g : [N]n → k which to some F ∈ [N]n associates the color of any
element of Sn(T0, . . . , Td−1) whose level function has range F . This coloring
g is well-defined by level-homogeneity of f , and for every homogeneous set
H ⊆ N for g, the principal function pH : N → N, which to x associates the
(x+1)st element of H in natural order, is the level function of a solution to
f .



4.4. MILLIKEN’S TREE THEOREM WITH MORE COLORS 59

Theorem 4.21. Fix two sets C and Z such that C ≰T Z. Also fix
a Z-computable collection of Z-computably bounded trees with no leaves
T0, . . . , Td−1. Let f : S2(T0, . . . , Td−1) → k be a coloring. Then, there
exist strong subtrees (S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1) over which f is level-
homogeneous, and such that C ≰T S0 ⊕ · · ·⊕ Sd−1 ⊕ Z.

Proof. Fix C, Z, T0, . . . , Td−1 and f . By Theorem 4.11, there are
strong subtrees (U0, . . . , Ud−1) ∈ Sω(T0, . . . , Td−1) on which f is stable, and
such that C ≰T U0 ⊕ · · ·⊕ Ud−1 ⊕ Z.

We build strong subtrees (G0, . . . , Gd−1) ∈ Sω(U0, . . . , Ud−1) on which
f is level-homogeneous, and such that C ≰T G0 ⊕ · · · ⊕ Gd−1 ⊕ Z. These
sets will be constructed by forcing with product tree conditions. Recall that
a product tree condition c = (F0, . . . , Fd−1, X0, . . . , Xd−1) is cone avoid-
ing (with respect to the given set C) if C ≰T X0 ⊕ · · · ⊕ Xd−1 ⊕ Z (see
Definition 3.24). Let P be the collection of all cone avoiding product tree
conditions which are level-homogeneous for f .

The proof of the following lemma is very similar to that of Lemma 3.25.
In particular, we need again that condition extensions cannot remove roots
of forests (see Definition 3.23).

Lemma 4.22. There is some condition c ∈ P such that for every Turing
functional Γ, the set of conditions c

′ ∈ P such that c′ ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C

is P-dense below c.

Proof. Assume for the sake of contradiction that for every condition
c ∈ P, there is a Turing functional Γ and some extension, every further
extension of which c

′ satisfies c′ ∕⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C.
As in Lemma 3.25, we build (non-effectively) a d-tuple S0, . . . , Sd−1 of

infinite subsets of T0, . . . , Td−1, respectively, together with three functions:

1. sets : N → P(ω<ω)× · · ·×P(ω<ω) which to a level ℓ ∈ N associates
a d-tuple X0, . . . , Xd−1 of infinite strong subforests of T0, . . . , Td−1,
respectively, with common level function, such that C ≰T X0⊕· · ·⊕
Xd−1 ⊕ Z and such that for every j < d, Sj(ℓ+ 1) = roots(Xj);

2. stems :
!

n
S0(n)× · · ·× Sd−1(n) → S<ω(T0, . . . , Td−1), which to a

π ∈ S0(ℓ) × · · · × Sd−1(ℓ) associates a tuple (F0, . . . , Fd−1) whose
roots pointwise extend π, and such that (F0, . . . , Fd−1, sets(ℓ)) is a
P-condition;

3. req :
!

n
S0(n) × · · · × Sd−1(n) → N, which to a π ∈ S0(ℓ) × · · · ×

Sd−1(ℓ) associates an index e of a Turing functional Φe such that for

every P-extension c
′ of (stems(π), sets(ℓ)), c′ % Φ

G0⊕···⊕Gd−1⊕Z

e ∕=
C.

Moreover, we require that for every level ℓ ∈ N, sets(ℓ + 1) are strong
subforests of sets(ℓ) with common level function.

The construction is now exactly the same as in the proof Lemma 3.25.
Moreover, the following fact still holds:
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Fact 4.23. For every ℓ0 < ℓ1 and every π ∈ S0(ℓ0)× · · ·× Sd−1(ℓ0), the
tuple (stems(π), sets(ℓ1)) is a P-extension of (stems(π), sets(ℓ0)).

By Theorem 3.22, there is a level N ∈ N such that for every coloring
h : S0(N) × · · · × Sd−1(N) → k, there is some ℓ < N , some π ∈ S0(ℓ) ×
· · ·× Sd−1(ℓ) and some (ℓ+ 1)-π-dense matrix M ⊆ S0(N)× · · ·× Sd−1(N)
monochromatic for h. Fix such an N . Let (X0, . . . , Xd−1) = sets(N −1). In
particular, for every j < d, Sj(N) = roots(Xj).

Let W be the set of pairs (x, v) ∈ N × {0, 1} such that for every k-
coloring g : S2(X0, . . . , Xd−1) → k, there is some ℓ < N , some π ∈ S0(ℓ) ×
· · · × Sd−1(ℓ), and for every j < d, there is a finite set Hj ⊆ Xj such that,
letting (F0, . . . , Fd−1) = stems(π), the following holds

(a) (F0 ∪H0, . . . , Fd−1 ∪Hd−1) ∈ S<ω(U0, . . . , Ud−1);
(b) g restricted to S2(H0, . . . , Hd−1) is monochromatic for some i < k;

(c) Φ
(F0∪H0)⊕···⊕(Fd−1∪Hd−1)⊕Z

e (x) ↓= v, where e = req(π).

By compactness, the set W is X0⊕ · · ·⊕Xd−1⊕Z-c.e. There are three cases:

Case 1: (x, 1 − C(x)) ∈ W for some x ∈ N. For i < k, let g be the re-
striction of f to S2(X0, . . . , Xd−1). Let ℓ < N , π = (F0, . . . , Fd−1) and
H0, . . . , Hd−1 witness that (x, 1 − C(x)) ∈ W for g. Let ℓ1 be a level

large enough to witness stability of f for every level of Hj , and let X̂j =

Xj #
!

ℓ0≤ℓ1
Xj(ℓ0). Then c

′ = (F0 ∪ H0, . . . , Fd−1 ∪ Hd−1, X̂0, . . . , X̂d−1)

is a P-extension of (F0, . . . , Fd−1, X0, . . . , Xd−1) which, by Fact 4.23, is a
P-extension of (stems(π), sets(ℓ)). Moreover

c
′ ⊩ Φ

G0⊕···⊕Gd−1⊕Z

e ∕= C

where e = req(π). This contradicts item 3, according to which c has no such
P-extension.

Case 2: (x,C(x)) ∕∈ W for some x ∈ N. Let C be the Π
0,X0⊕···⊕Xd−1⊕Z

1 class
of all colorings g : S2(X0, . . . , Xd−1) → k such that for every ℓ < N , every
π ∈ S0(ℓ)× · · ·× Sd−1(ℓ) and every H0 ⊆ X0, . . . , Hd−1 ⊆ Xd−1, one of (a),
(b) or (c) fails for the pair (x,C(x)). By assumption, C ∕= ∅.

By the cone avoidance basis theorem, there is some g ∈ C such that
C ≰T g⊕X0⊕· · ·⊕Xd−1⊕Z. For every j < d, recall that Sj(N) = roots(Xj).
We can see X0, . . . , Xd−1 as a tuple (Xj ↾ ρ : j < d, ρ ∈ Sj(N)) of trees. For
every θ = (ρ0, . . . , ρd−1) ∈ S0(N)×· · ·×Sd−1(N), we let gθ be the restriction
of g over

S2(X0 ↾ ρ0, . . . , Xd−1 ↾ ρd−1) → k

By successive applications of cone avoidance of PMTT2 (Theorem 4.15)
applied to gθ for each θ ∈ S0(N)× · · ·×Sd−1(N), there is a tuple of infinite
strong subtrees (Yj,ρ : j < d, ρ ∈ Sj(N)) of (Xj ↾ ρ : j < d, ρ ∈ Sj(N)) with
common level function, together with a coloring h : S0(N)×· · ·×Sd−1(N) →
k, such that for every θ = (ρ0, . . . , ρd−1) ∈ S0(N) × · · · × Sd−1(N), gθ

restricted to S2(X0 ↾ ρ0, . . . , Xd−1 ↾ ρd−1) is monochromatic for color h(θ).
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By choice of N , there is some ℓ < N , some π = (ν0, . . . , νd−1) ∈ S0(ℓ)×
· · ·× Sd−1(ℓ) and some (ℓ+ 1)-π-dense matrix M ⊆ S0(N)× · · ·× Sd−1(N)
monochromatic for h. Say M = M0 × · · · × Md−1 and i < k is the color
of monochromaticity. For every j < d, let Pj be the set of nodes in Sj(N)

which are not extensions of νj . For every j < k, let Ŷj =
!

ρ∈Mj∪Pj
Yj,ρ.

Fact 4.24. c
′ = (stems(π), Ŷ0, . . . , Ŷd−1) is a P-extension of

(stems(π), sets(ℓ)).

Proof. Let (X̂0, . . . , X̂d−1) = sets(ℓ). By item 1, for every j < k,

roots(X̂j) = Sj(ℓ+1). In particular, every root of X̂j is extended by a root

of Ŷj . □

In particular, by Fact 4.23 and item 3, c′ % Φ
G0⊕···⊕Gd−1⊕Z

e ∕= C where
e = req(π). Moreover, since the forcing relation depends only on part of the
reservoirs extending the roots of the stems, the following fact holds.

Fact 4.25. c
′ ⊩ Φ

G0⊕···⊕Gd−1⊕Z

e ∕= C, where e = req(π).

Proof. We claim that c′ ⊩ Φ
G0⊕···⊕Gd−1⊕Z

e (x) ∕= C(x), where as usual
the inequality includes the possibility that the left side diverges. For every
j < d, let Hj ⊆ Ŷj be such that F0 ∪H0, . . . , Fd−1 ∪Hd−1 are finite strong
subtrees of T0, . . . , Td−1, respectively, with common level function. In partic-
ular, for every j < d, Hj ⊆

!
ρ∈Mj

Yj,ρ, so g restricted to S2(H0, . . . , Hd−1) is

monochromatic for color i, hence since g ∈ C, Φ(F0∪H0)⊕···⊕(Fd−1∪Hd−1)⊕Z

e (x)
either diverges, or is different from C(x). This means

c
′ ⊩ Φ

G0⊕···⊕Gd−1⊕Z

e (x) ∕= C(x),

as needed. □
Fact 4.25 contradicts Fact 4.24 and item 3 of the construction, according

to which c has no such P-extension. This completes Case 2.

Case 3: otherwise. Then W is an X0 ⊕ · · · ⊕ Xd−1 ⊕ Z-c.e. graph of the
characteristic function of C, hence C ≤ X0 ⊕ · · · ⊕ Xd−1 ⊕ Z. This is a
contradiction. □

We are now ready to complete the proof Theorem 4.21. By Lemma 4.22,
there is some cone avoiding level-homogeneous product tree condition c be-
low which, for every Turing functional Γ, the set

DΓ = {c′ ∈ P : c′ ⊩ ΓG0⊕···⊕Gd−1⊕Z ∕= C}
is P-dense. Let U be a P-filter which intersects every set DΓ. Then by
definition of a product tree condition, GU

0 , . . . , G
U
d−1 are strong subtrees of

T0, . . . , Td−1. Moreover, since all conditions in P are level-homogeneous, so
are G

U
0 , . . . , G

U
d−1. Since U intersects every set DΓ, we have C ≰T G

U
0 ⊕

· · ·⊕G
U
d−1 ⊕ Z. Lastly, by Lemma 3.11, GU

0 , . . . , G
U
d−1 are all infinite. This

completes the proof of Theorem 4.21. □
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Statement 4.26. For all n, k, ℓ ≥ 1, PMTTn

k,ℓ is the following state-
ment. Let T0, . . . , Td−1 be infinite trees with no leaves. For all colorings

f : Sn(T0, . . . , Td−1) → k

there exists (S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1) such that f takes at most ℓ
values on Sn(S0, . . . , Sd−1).

Theorem 4.27. (∀k)PMTT2
k,2 admits strong cone avoidance.

Proof. Fix two sets C and Z such that C ≰T Z. Also fix a Z-
computable collection of Z-computably bounded trees with no leaves T0, . . . ,

Td−1 ⊆ ω<ω. Let f : S2(T0, . . . , Td−1) → k be a coloring. By Theorem 4.21,
there exist strong subtrees (S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1) on which f is
level-homogeneous, and such that C ≰T S0 ⊕ · · ·⊕ Sd−1 ⊕ Z.

Let g : [N]2 → k which to some {x0 < x1} ∈ [N]2 associates the color of
any element of S2(S0, . . . , Sd−1) whose level function has for range {x0, x1}.
By strong cone avoidance of RT2

k,2 (see Wang [49], Theorem 3.2, or Cholak

and Patey [4], Corollary 4.17), there exists an infinite set H ⊆ N such
that g restricted to [H]2 uses at most 2 colors. Using H, one can com-
pute strong subtrees (U0, . . . , Ud−1) ∈ Sω(S0, . . . , Sd−1) whose level func-
tion is the principal function of H. By definition of g, f uses at most
2 colors over S2(U0, . . . , Ud−1). And by transitivity of the strong subtree
relation, (U0, . . . , Ud−1) ∈ Sω(T0, . . . , Td−1). This completes the proof of
Theorem 4.27. □

Theorem 4.28. (∀k)PMTT3
k,2 admits cone avoidance.

Proof. Fix two sets C and Z such that C ≰T Z. Also fix a Z-
computable collection of Z-computably bounded trees with no leaves T0, . . . ,

Td−1 ⊆ ω<ω. Let f : S3(T0, . . . , Td−1) → k be a Z-computable coloring.
By Theorem 4.11, there are strong subtrees

(S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1)

on which f is stable, and such that C ≰T S0 ⊕ · · · ⊕ Sd−1 ⊕ Z. Let
g : S2(S0, . . . , Sd−1) be the limit coloring induced by stability of f . By
strong cone avoidance of PMTT2

k,2 (Theorem 4.27), there are strong sub-

trees (U0, . . . , Ud−1) ∈ Sω(S0, . . . , Sd−1) on which g uses at most 2 colors,
and C ≰T U0⊕ · · ·⊕Ud−1⊕Z. By U0⊕ · · ·⊕Ud−1⊕Z-computably thinning
out the set of levels, we can obtain a tuple of strong subtrees (V0, . . . , Vd−1) ∈
Sω(U0, . . . , Ud−1), on which f uses at most 2 colors. In particular, by transi-
tivity of the strong subtree relation, (V0, . . . , Vd−1) ∈ Sω(T0, . . . , Td−1). Last,
C ≰T V0 ⊕ · · ·⊕ Vd−1 ⊕ Z. This completes the proof of Theorem 4.28. □

Corollary 4.29. (∀k)PMTT3
k,2 does not imply ACA0 over RCA0.

Proof. Immediate by Theorem 4.28 and Lemma 2.15. □



CHAPTER 5

Devlin’s theorem

We now turn to some applications of Milliken’s tree theorem and of
our preceding work. We begin, in this chapter, with Devlin’s theorem. This
states that the dense linear orders admit big Ramsey numbers, meaning that
for every n there exists an ℓ such that for any finite coloring of the n-tuples of
rationals, there exists a dense linear subordering of Q on which the coloring
takes only ℓ colors. This corresponds to the statement (∀k)DTn

k,ℓ. Moreover,
the function which associates to each n the minimal such ℓ is known, being
the sequence of the so-called “odd tangent numbers” tDT(n), as defined
in [48, p. 147]. (To list the first few, we have tDT(1) = 1, tDT(2) = 2,
tDT(3) = 16, and tDT(4) = 272.)

Some variants of Devlin’s theorem, such as the Erdős-Rado theorem for
colorings of rationals (see Section 5.5 below), have previously been studied
in the reverse mathematics literature. So part of our motivation here is
to see what new insights can be obtained using the tools from our earlier
sections. Another, of course, is to understand more directly how Devlin’s
theorem compares to Milliken’s tree theorem in its computable content. As
remarked following Definition 2.38 above, one important idea here is to
distinguish features that are intrinsic to a structure yet somehow hidden, as
is the case when a structure has a big Ramsey degree bigger than 1. This is
what we alluded to as being describable by an “enrichment” of the language
and gives rise to the notion of big Ramsey structure (Definition 2.39). In the
case of Devlin’s theorem, this can be made explicit using a representation of
the rationals in terms of binary strings and so-called Joyce trees, which we
define below. This is a somewhat technical construction, but it eliminates
the need for more intricate combinatorial objects, such as embedding types,
and will simplify our discussion not only of Devlin’s theorem but also of the
Rado graph theorem which we consider in the next chapter.

5.1. A big Ramsey structure for dense linear orders

As noted below Statement 2.32 above, the big Ramsey degree of Devlin’s
theorem for pairs is 2, while there is only one sub-order of size 2. We now
describe an enrichment to the language of orders to obtain a big Ramsey
structure for the dense linear orders with no endpoints which reflects this
fact. We will see that we can represent any countable order as an anti-chain
A in 2<ω with respect to the prefix relation, equipped with the lexicographic
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order <lex. Then, given two elements σ, τ ∈ A, some extra structure in-
duced by the string representation can be exploited, such as the comparison
between the length of σ and the length of τ , but as well with respect to
length of their meet σ ∧ τ .

As we will see in Theorem 5.11 we can always ensure that the length of
any string in A

∧ = {σ ∧ τ : σ, τ ∈ A} is unique. There are then 2 possible
cases for a pair σ <lex τ in A: either |σ| >N |τ |, or |σ| <N |τ |. The case of
the equality has been ruled out since all lengths of the strings in A

∧ will be
unique. While there are examples where their lengths are not unique (see
the figure below), the example where they are unique will prove to be very
illustrative.

A finite subset of n elements in A can be represented as a particular kind
of binary tree, known as a Joyce tree. A Joyce tree of size n is a labeled tree
with 2n − 1 vertices, such that every non-leaf has exactly two immediate
children. The labels are among {1, . . . , 2n − 1} and every child has a label
greater than its parent (see Street [44]). See Figure 5.1 for some examples
of Joyce trees.

1

2

3

4 5

1

3

2

4 5

1

2

4

3 5

1

2

5

3 4

1

2

3

5 4

1

3

2

5 4

1

2

4

5 3

1

2

5

4 3

Figure 5.1. Eight Joyce trees among the sixteen Joyce trees
with three leaves. The eight remaining Joyce trees are mirror
reflections of these along a vertical axis though the root node.

Recall that a function is symmetric if its value is the same no matter
the order of its arguments. In what follows, we use the string representation
of a countable order (X,<) to enrich the order with a symmetric binary
function !·, ·" : X2 → N. We shall later refer to any value of the range of
!·, ·" as a label. The label of an element x ∈ X is !x, x" and !x, y" is the
label given to x ∧ y. Again the illustrative example is when all lengths are
unique, to consider the lengths of these nodes as the labels.

However there are other examples. Consider the first tree in Figure 5.1
and name its leaves x, y and z, from left to right. This tree induces a
symmetric function !·, ·" : {x, y, z}2 → {1, . . . , 5} as follows: !x, x" = 4,
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!y, y" = 5, !z, z" = 3, !x, y" = 2, !x, z" = 1, !y, z" = 1. The tree repre-
sentation also induces an ordering of the labels {1, . . . , 5} by reading them
from left to right. In this case, 4 < 2 < 5 < 1 < 3. As we will later see in
Lemma 5.4 ({x, y, z}, <, !·, ·") can be used to recover the original Joyce tree.

Definition 5.1. A Joyce order is an order (X,<) equipped with a
symmetric function !·, ·" : X2 → N such that for every x, y, z, t ∈ X, not all
equal, with x ≤ y and z ≤ t:

(J1) !x, y" <N !x, z" =⇒ (x < y ⇐⇒ z < y);
(J2) !x, y" <N !x, z" =⇒ !x, y" = !z, y";
(J3) !x, y" = !z, t" =⇒ !x, y" <N min(!x, z", !y, t").
Note that the axioms of a Joyce order are universal, hence every subset

of a Joyce order induces again a Joyce order.
Every Joyce tree gives rise to a Joyce order. Let X be the set of leaves,

!x, y" be the label of the node x∧y, and <lex be the lexicographical order on
X. Then, we claim that (X,<lex, !·, ·") is a Joyce order: If !x, y" <N !x, z",
then as x ∧ y and x ∧ z are comparable and every child has a label greater
than its parent, x ∧ y ≺ x ∧ z. But then, x <lex y ⇐⇒ (x ∧ z) <lex y ⇐⇒
z <lex y, and x∧ y = (x∧ z)∧ y = z∧ y, so both (J1) and (J2) hold. Finally
let x, y, z, t ∈ X not all equal be such that !x, y" = !z, t". By injectivity of
the labelling, x ∧ y = z ∧ t. If x = y then x ∧ y = x is a leaf, so z ∧ t is a
leaf, thus x = y = z = t, a contradiction. Therefore, x ∕= y and z ∕= t. Now,
suppose y = z. As a Joyce tree is binary branching, and x <lex y = z <lex t,
one cannot have x∧y = z∧ t, a contradiction. Finally suppose that x, y, z, t
are all different. The fact that x <lex y and z <lex t implies (x ∧ y)0 ≼ x

and (x ∧ y)0 ≼ z, so x ∧ y ≺ x ∧ z. By the fact that the label of a child is
greater than those of its parents, !x, y" <N !x, z". Similarly, !x, y" <N !y, t".

We can use the illustrative example when X ⊆ ω<ω, < is <lex, and all
lengths in X

∧ = {σ ∧ τ : σ, τ ∈ X} are unique to get an intuition about
these rules. Assume x ∧ z is longer than x ∧ y. (J1) says that either y is to
the left of both x and z (i.e. y < x and y < z) or y is to the right of both x

and z. (J2) says that x∧ y = z∧ y (after all x∧ y ≼ x∧ z). The third axiom
(J3) says that if both pairs x, y and z, t have a meet with the same label,
x < y, and z < t, then x ∧ z must properly above x ∧ y and similarly for
y ∧ t. This implies the meets are binary branching in X

∧. This also implies
that different meets must have different labels.

Lemma 5.2. The following is true in any Joyce order (X,<, !·, ·"):
(1) for all x, y ∈ X with x ∕= y, !x, y" <N min(!x, x", !y, y");
(2) for all x, y ∈ X with x ∕= z, !x, x" ∕= !z, z";
(3) for all x, z, t ∈ X with z ∕= t, !x, x" ∕= !z, t".
Proof. Item 1: by (J3) with x = z and y = t. Item 2: by (J3) with

x = y and z = t, !x, x" = !z, z" =⇒ !x, x" <N min(!x, z", !x, z"). By Item
1, !x, x" <N min(!x, z", !x, z") cannot hold, so !x, x" ∕= !z, z". Item 3: by
(J3) with x = y, !x, x" = !z, t" =⇒ !x, x" <N min(!x, z", !x, t"). Since
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z ∕= t, then either x ∕= z or x ∕= t. In either case, by Item 1, !x, z" <N
!x, x" or !x, t" <N !x, x", so !x, x" <N min(!x, z", !x, t") cannot hold, hence
!x, x" ∕= !z, t". □

The first item says that the label of x∧ y is less than the labels of x and
y. The second says that each leaf has a unique label. The third says that
no meet can have the same label as a leaf. Items 4 and 5 of the following
lemma show that the labels of the leafs and meets are always different.

Lemma 5.3. Let (X,<, !·, ·") be a (finite or infinite) Joyce order with
minimal label ℓ ∈ ω. Let x ≤ y ∈ X be such that !x, y" = ℓ and let
Xx = {z ∈ X : !x, z" >N ℓ} and Xy = {z ∈ X : !y, z" >N ℓ}. The following
holds:

(1) if x = y then |X| = 1 and Xx = Xy = ∅;
(2) if x < y then X = Xx ⊔Xy with x ∈ Xx and y ∈ Xy;
(3) for all z ∈ Xx and all t ∈ Xy, z < t and !z, t" = ℓ;
(4) the labels over X

2
x and Y

2
y are disjoint;

(5) if |X| = n then there are 2n+ 1 distinct labels over X
2.

Proof. Item 1: Let z ∈ X. If z ∕= x we would have by Item 1 of
Lemma 5.2 !x, z" <N !x, x", a contradiction with the minimality of ℓ. There-
fore, z = x and |X| = 1. As x ∕∈ Xx ⊆ X, Xx = Xy = ∅.

Item 2: Let z ∈ Xx. By (J2), we must have !y, z" = ℓ, and therefore
z ∕∈ Xy, so Xx ∩ Xy = ∅. Now, let t ∈ X such that !x, t" = ℓ. By (J3)
applied with x = z, we have !x, y" < !y, t", and so t ∈ Xy. By Item 1 of
Lemma 5.2, x ∈ Xx and y ∈ Xy.

Item 3: We have !x, z" > ℓ = !x, y", so by (J2), we must have !y, z" = ℓ.
But we also have !t, y" > ℓ = !y, z", so by another application of (J2), we
must have !z, t" = ℓ.

Item 4: Let z0, t0 ∈ Xx and z1, t1 ∈ Xy. Suppose !z0, t0" = !z1, t1". By
application of (J3), we would have !z0, t0" <N !z0, t1", however by Item 3
!z0, t1" = ℓ, and !z0, t0" <N ℓ is a contradiction.

Item 5: By induction over n ≥ 1. For n = 1, X = {x}, then the unique
label is !x, x". For n > 1, assume by induction hypothesis that any non-
empty Joyce order of size m < n has 2m−1 distinct labels. Let ℓ ∈ ω be the
minimal label of X and let x ≤ y ∈ X be such that !x, y" = ℓ. Define Xx

and Xy as above. By Item 1, since |X| > 1, then x < y. By Item 2, Xx ∕= ∅
and Xy ∕= ∅ and X = Xx⊔Xy. By induction hypothesis, there are 2|Xx|−1
distinct labels over X2

x and 2|Xy|−1 distinct labels over X2
y . By item 4, the

labels are disjoint, so there are 2(|Xx| + |Xy|) − 2 = 2n − 2 distinct labels
over X2

x ∪X
2
y . Last, by Item 3, for every z ∈ Xx and t ∈ Xy, !z, t" = ℓ, so

the only label over Xx ×Xy is ℓ. Therefore there are 2n− 1 distinct labels
over X2 = X

2
x ∪X

2
y ∪ (Xx ×Xy). □

Lemma 5.4 (Representing a finite Joyce order as a Joyce tree). There is
a computable function JX such that if (X,<, !·, ·") is a Joyce order of where
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|X| = n then JX is Joyce tree of size n. We shall refer to JX as the Joyce
tree coded by X.

Proof. Let L be the set of labels over X2 and l be the minimal label.
For every string σ ∈ 2<ω, we will define a binary tree JX,σ ⊆ 2<ω whose
root is σ, with 2n − 1 nodes, such that every non-leaf has two immediate
children, and every node has a unique label in L. The construction goes
inductively as follows:

If ℓ = !x, x" for some x ∈ X, then by Lemma 5.3, X = {x} and JX,σ =
{σ} where σ has label ℓ. If ℓ = !x, y" with x < y, then let Xx and Xy be
defined as in Lemma 5.3. By Item 2 of Lemma 5.3, X = Xx⊔Xy. By Items
3 and 4 of Lemma 5.3, L = Lx ⊔ Ly ⊔ {ℓ}, where Lx and Ly are the sets of
labels over X2

x and X
2
y , respectively. By induction hypothesis one can define

JXx,σ0 and JXy ,σ1, which are Lx-labelled and Ly-labelled, respectively. Then
JX,σ = {σ} ⊔ JXx,σ0 ⊔ JXy ,σ1 where σ is given label ℓ.

Let v : L → {1, . . . , 2n− 1} be the unique isomorphism between (L,<N)
and ({1, . . . , 2n− 1}, <N) seen as linear orders. Then renaming the labels of
JX,) according to v, one obtains a Joyce tree JX . □

Definition 5.5. The Joyce structure of a Joyce order is a structure
(X,<,R) such that for all x, y, z, t, R(x, y, z, t) ⇐⇒ !x, y" < !z, t". A DLO
Joyce structure is the Joyce structure of a dense linear Joyce order with no
endpoints.

By abuse of language, we may say that two Joyce orders are isomorphic
whenever their corresponding Joyce structures are isomorphic. The con-
struction of a Joyce tree from a Joyce order does not depend on the labels
but on the ordering of the labels. Moreover two different orders of the labels
yields two different Joyce trees. Hence the following lemma holds.

Lemma 5.6 (RCA0). Two finite Joyce structures are isomorphic if and
only if they yield the same Joyce tree.

Just after the definition of a Joyce order, Definition 5.1, we showed every
Joyce tree yielded a Joyce order which in turn yields a Joyce structure.
Hence the number of Joyce tree of size n, Joyce orders of size n, and Joyce
structure of size n are all the same. Street [44] shows that this is the odd
tangent number of n (also see [48, p. 147]).

We now prove that every dense linear order with no endpoints can be
enriched into a DLO Joyce structure. Actually, since these orders are com-
putably categorical, that is, any two dense linear orders with no endpoints
are isomorphic, and furthermore this isomorphism is computable in the or-
ders, it suffices to prove the existence of a DLO Joyce order. For this, we
need to consider the following ordering on 2<ω:

Definition 5.7 (the ordering <Q on 2<ω). Given two strings σ, τ ∈ 2<ω,
define σ <Q τ if and only if one of the following holds:

(1) σ ≺ τ and τ(|σ|) = 1;
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(2) τ ≺ σ and σ(|τ |) = 0;
(3) σ and τ are incomparable and σ <lex τ , where <lex is the lexico-

graphical order.

Intuitively, if σ <Q τ then σ lies to the left of τ if one draws the stan-
dard picture of the tree 2<ω, growing upwards from the root. (See, e.g.,
Figure 5.2.)

Theorem 5.8 (RCA0). There exists a DLO Joyce order.

Proof. Let X be the rational language (000 ∪ 100)∗01, that is, the set
of strings σ ∈ 2<ω of length 3n + 2 for some n ∈ ω, such that σ(3n) = 0,
σ(3n+1) = 1, and for every j < n, σ(3j+1) = σ(3j+2) = 0. For example,
10000010001 ∈ X. In particular, X is an infinite antichain with respect to
the prefix order. Let <lex be the lexicographic order restricted to X, that
is, σ <lex τ if σ(|σ ∧ τ |) <N τ(|σ ∧ τ |). Then (X,<lex) is a dense linear
order with no endpoints. Indeed, letting f be the natural one-to-one map
from X to 2<ω, f is an order isomorphism between (X,<lex) and (2<ω

, <Q)
where <Q is order defined in Definition 5.7. Last, fix an injective function
v : 2<ω → ω such that for every σ, τ ∈ 2<ω, if |σ| < |τ | then v(σ) < v(τ),
and for every σ, τ ∈ X, define !σ, τ" = v(σ ∧ τ). Then (X,<lex, !·, ·") is a
dense linear Joyce order with no endpoints.

We prove that (X,<lex, !·, ·") satisfies axioms (J1), (J2) and (J3). Let
x, y, z, t ∈ X, not all equal, with x ≤lex y and z ≤lex t.

Suppose !x, y" < !x, z". By definition, v(x ∧ y) < v(x ∧ z). By choice of
the map v, |x ∧ y| ≤ |x ∧ z|, so x <lex y iff z <lex y. This shows (J1).

Now suppose !x, y" < !x, z". By definition, v(x∧y) < v(x∧z). By choice
of the map v, |x ∧ y| ≤ |x ∧ z|, so x ∧ y = z ∧ y, hence v(x ∧ y) = v(z ∧ y).
This shows (J2).

Finally, suppose !x, y" = !z, t". By definition, v(x ∧ y) = v(z ∧ t). By
injectivity of the map v, x ∧ y = z ∧ t, so x ∧ y ≺ x ∧ z and x ∧ y ≺ y ∧ t,
hence v(x ∧ y) <N min(v(x ∧ z), v(y ∧ t)). This shows (J3). □

Depending on the choice of v in the above construction, the DLO Joyce
orders won’t be isomorphic. Consider the 3 leafs with the least labels. The
leaf 01 always has the least label. The other 2 leafs with minimal labels are
always x = 00001 and y = 10001. Note that x < y. Now the structures
yielded by v0 and v1 where v0(00001) < v0(10001) (hence the label of x is
less than the label of y) and v1(00001) > v1(10001) (hence the label of x is
greater than the label of y) are not isomorphic.

Corollary 5.9 (RCA0). Every dense linear order with no endpoints
(X,<) can be equipped with a function !·, ·" : X2 → N to form a DLO Joyce
order.

Proof. Let (Y,<Y , !·, ·"Y ) be the DLO Joyce order of Theorem 5.8.
By computable categoricity of the dense linear orders with no endpoints,
there exists an order isomorphism f between (X,<) and (Y,<Y ). Define
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!·, ·" : X2 → N by !x, y" = !f(x), f(y)"Y . Then (X,<, !·, ·") is a DLO Joyce
order. □

One can canonically represent any countable Joyce order as a set of
strings which are pairwise incomparable under the prefix relation, equipped
with the lexicographic order the natural !·, ·" operation, that is, !σ, τ" =
|σ ∧ τ |.

Definition 5.10. A coded Joyce order is a Joyce order of the form
(X,<lex, | · ∧ · |), with X ⊆ 2<ω, where |σ ∧ τ | is the length of the longest
common prefix of σ and τ , such that for all σ, τ, ρ ∈ X with |ρ| > |σ ∧ τ |
and σ ∧ τ ∕≼ ρ, then ρ(|σ ∧ τ |) = 0.

In particular, letting σ = τ , if |ρ| > |σ|, then ρ(|σ|) = 0. Since a coded
Joyce order is fully specified by its set X, we shall simply refer to X when
talking about the coded Joyce order (X,<lex, | · ∧ · |). Note that any subset
of a coded Joyce order is again a coded Joyce order, since the axioms are
universal.

Theorem 5.11 (RCA0). Every countable Joyce order is isomorphic to
a coded Joyce order.

Proof. Let (X,<, !·, ·") be a countable Joyce order. Let L be the set
of labels over X

2. For every x ∈ X, let Lx be the set of labels ℓ ∈ L such
that ℓ <N !x, x" and such that there is some y ∈ X such that y < x and
!y, x" = ℓ. Let σx ∈ 2<ω be the unique string of length !x, x", such that for
every j < !x, x", σx(j) = 1 if and only if j ∈ Lx. Let Y = {σx : x ∈ X}.

Claim 5.12. (Y,<lex, | · ∧ · |) is isomorphic to (X,<, !·, ·").
Proof. We first prove that for all x, y, z, t ∈ X, !x, y" < !z, t" =⇒

|σx ∧ σy| <N |σz ∧ σt|. We actually prove the stronger fact that for every
x, y ∈ X, !x, y" = |σx ∧ σy|. If x = y, it is clear as by construction, σx is of
length !x, x". If x ∕= y, we first prove that !x, y" ≤ |σx ∧ σy|: indeed, for all
ℓ < !x, y", by (J2) we have ℓ ∈ Lx if and only if ℓ ∈ Ly. It remains to show
!x, y" ≥ |σx ∧ σy|: if x < y we have that !x, y" ∈ Ly # Lx, and if y < x,
!x, y" ∈ Lx#Ly. So in any case, σx(!x, y") ∕= σy(!x, y"), so |σx∧σy| ≤ !x, y".

Let x < y ∈ X. Then, !x, y" ∕∈ Lx, as if z is such that !x, z" = !x, y",
then by (J3) !x, y" <N !y, z" and by (J1) and the fact that x < y, we have
x < z. So σx(|x ∧ y|) = σx(!x, y") = 0. However, !x, y" ∈ Ly as witnessed
by x, so σy(|x ∧ y|) = σy(!x, y") = 1. Therefore, σx <lex σy. □

Claim 5.13. (Y,<lex, | · ∧ · |) is a coded Joyce order.

Proof. By the previous claim, (Y,<lex, | ·∧ · |) is a Joyce order isomor-
phic to (X,<, !·, ·"). Fix σx,σy,σz ∈ Y with |σz| > |σx∧σy| and σx∧σy ∕≼ σz.
Assume x ≤ y without loss of generality. Let ℓ = !x, y" = |σx∧σy|. Suppose
for the contradiction that ℓ ∈ Lz. Then there is some u ∈ X with u < z such
that !u, z" = |σu ∧ σz| = ℓ = !x, y" = |σx ∧ σy|. Since u < z, then σu <lex σz
and since x ≤ y and u < z, by (J3), |σy ∧ σz| >N ℓ and |σu ∧ σx| >N ℓ.
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Let ℓ0 = |σy ∧ σz|. In particular, σx ∧ σy = σx ∧ σy ↾ ℓ0 = σx ∧ σz ↾ ℓ0, so
σx ∧ σy ≼ σz, contradiction. So ℓ ∕∈ Lz, hence σz(ℓ) = 0. □

This completes the proof of Theorem 5.11. □

Note that the proof in Theorem 5.11 yields a coded Joyce order whose
set of lengths correspond exactly to the labels of the original Joyce order.

Remark 5.14. Since Joyce structures only consider the ordering between
the labels and not their actual value, we can always pick a Joyce order
isomorphic to the original one, whose set of labels is an initial segment of N,
and using Theorem 5.11, we can represent it as a coded Joyce order whose
lengths coincide with the labels, and hence form an initial segment of N.

Todorcevic [48, Lemma 6.20] made an explicit construction of a com-
putable coded DLO Joyce order, under a different terminology.

Corollary 5.15. There exists a computable coded DLO Joyce order.

Proof. Immediate by Theorem 5.11 and Theorem 5.8. □

5.2. A proof of Devlin’s theorem

Note that the substructure of any Joyce structure is a Joyce structure,
with the same witness function | ·∧ · |. Not all DLO Joyce structures are iso-
morphic, as already remarked in the paragraph below Theorem 5.8. However
they all contain all Joyce structures. In particular, two DLO Joyce struc-
tures might not be isomorphic, but there exists an embedding from the first
to the second, as well as from the second to the first.

Theorem 5.16 (RCA0). Let X be a DLO Joyce structure, and F be a
(finite or infinite) Joyce structure. Then, there exists an embedding from F
to X.

Proof. Let (X,<lex, | · ∧ · |) be a computably coded DLO Joyce order
with Joyce structure X, which can always be found using Corollary 5.15.
Let (F,<lex, | ·∧ · |) be a Joyce order of F. By Remark 5.14, we can suppose
that the length of the elements of F∧ form an initial segment of N. The
cardinality of F∧, S ∈ ω ∪ {ω}, is that for all s < S, then there exists an
unique element of F∧ of length s, σs. We need to include the meets in our
construction, so instead of building a map from F to X, we build a map from
F

∧ to X. In the end, restricting the mapping to F will yield the embedding.
By induction on s < S, we build xs, as and bs such that:

(1) xs, as, bs ∈ X;
(2) as <lex xs <lex bs;
(3) |as ∧ bs| <N |xs| <N |as+1 ∧ bs+1|;
(4) If t < s and σt ≺ σs, then: If σs(t) = 0, then xs, as, bs are in the

interval (at, xt). Similarly, if σs(t) = 1, then xs, as, bs are in the
interval (xt, bt).
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Suppose that at, bt and xt are defined for t < s. Let t0 < s be biggest
such that there exists τ ∈ F such that |σs ∧ τ | = t0. Let A be the interval
(at0 , xt0) if σs(t0) = 0, and A be the interval (xt0 , bt0) if σs(t0) = 1. In either
case A is a dense linear Joyce order with no endpoints. Let as, bs ∈ A such
that |as ∧ bs| >N |xs−1|: They exists as A is infinite and |A| ≥ n implies
|{|σ ∧ τ | : σ ∕= τ ∈ A}| ≥ log2(n). Define xs to be any element of (as, bs),
which has to verify |as ∧ bs| < |xs|. Items 1, 2 and 3 are satisfied, as well as
item 4 for t0. By definition of t0, if σt ≺ σs, then either t = t0 or σt ≺ σt0 .
In the former case, item 4 for t is satisfied. In the latter case, as at0 , σt0
and bt0 satisfy item 4, xt0 , at0 , bt0 are in the interval specified by item 4. But
then, so are xs, as, bs, so they satisfy item 4 for all t.

We now define the embedding φ: if y ∈ F , then φ(y) is defined to be
x|y∧y|. It remains to show that φ is an embedding. An important fact is the
following: If x <lex y ∈ F , and t = |x∧ y|, then |at ∧ bt| ≤N |φ(x)∧φ(y)| <N
|xt|. Indeed, by Item 4 φ(x) ∈ (at, xt) and φ(y) ∈ (xt, bt). Combining the
fact with Item 3, we get that |x ∧ y| <N |z ∧ t| implies |φ(x) ∧ φ(y)| <N
|φ(z) ∧ φ(t)|.

Now suppose that for x, y, z, t ∈ F with x <lex y and z <lex t, |x ∧ y| =
|z ∧ t| = s. This implies that s0 = |x ∧ z| >N s and s1 = |y ∧ t| >N s. But
then by Item 3 and the fact of the previous paragraph, |φ(x) ∧ φ(z)| >N
|as0 ∧bs0 | >N |xs| >N |φ(x)∧φ(y)| and |φ(y)∧φ(t)| >N |as0 ∧bs0 | >N |xs| >N
|φ(z) ∧ φ(t)|. Therefore, by (J2), |φ(x) ∧ φ(y)| = |φ(z) ∧ φ(t)|.

Finally, suppose x <lex y ∈ F . Let s = |x ∧ y|, by Item 4 we have
φ(x) ∈ (as, xs) and φ(y) ∈ (xs, bs) so φ(x) <lex φ(y). □

The age of a structure Mc is the set of all its finitely generated sub-
structures.

Corollary 5.17. The age of any DLO Joyce structure is the set of
finite Joyce structures.

Theorem 5.18 (RCA0). There exists a DLO Joyce order

(2<ω
, <T , !·, ·"T )

such that for every coded Joyce order X, the Joyce structures of

(X,<T , !·, ·"T )
and

(X,<lex, | · ∧ · |)
are isomorphic.

Proof. Let (U,<lex, !·, ·"U ) be the DLO Joyce order defined in The-
orem 5.8, that is, U = (000 ∪ 100)∗01 and !σ, τ"U = v(σ ∧ τ) for some
injective function v : 2<ω → ω such that for every σ, τ ∈ 2<ω, if |σ| < |τ |
then v(σ) < v(τ).

Define the DLO Joyce order (2<ω
, <T , !·, ·"T ) as follows: Given σ ∈ 2<ω,

let σ̂ be the binary string of length 3|σ| + 2 defined for every j < |σ| by
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σ̂(3j) = σ(j), σ̂(3j+1) = σ̂(3j+2) = 0, and σ̂(3|σ|) = 0 and σ̂(3|σ|+1) = 1.
For instance, if σ = 0110 then σ̂ = 00010010000001. Let σ <T τ if and only
if σ̂ <lex τ̂ and !σ, τ"T = !σ̂, τ̂"U .

Let X be a coded Joyce order. We shall now show that (X,<T , !·, ·"T )
and (X,<lex, | · ∧ · |) are isomorphic via the identify function.

Fix σ, τ ∈ X. If σ <lex τ , then σ̂ <lex τ̂ , hence σ <T τ . Conversely, if
σ <T τ , then σ̂ <lex τ̂ , but since σ and τ are incomparable with respect to
the prefix relation, this implies that σ <lex τ . Thus σ <T τ if and only if
σ <lex τ .

Fix σ, τ, ρ, µ ∈ X. If |σ∧τ | <N |ρ∧µ|, then |σ̂∧ τ̂ | <N |ρ̂∧ µ̂|, then v(σ̂∧
τ̂) <N v(ρ̂ ∧ µ̂), hence !σ, τ"T <N !ρ, µ"T . Conversely, assume !σ, τ"T <N
!ρ, µ"T . Unfolding the definition, v(σ̂ ∧ τ̂) <N v(ρ̂ ∧ µ̂). If |σ̂ ∧ τ̂ | ∕= |ρ̂ ∧ µ̂|,
then by definition of v, |σ̂ ∧ τ̂ | <N |ρ̂ ∧ µ̂|, hence |σ ∧ τ | <N |ρ ∧ µ|. If
|σ̂ ∧ τ̂ | = |ρ̂ ∧ µ̂|, then, since X is a coded Joyce order, σ ∧ τ = ρ ∧ µ, so
σ̂ ∧ τ̂ = ρ̂ ∧ µ̂ and v(σ̂ ∧ τ̂) = v(ρ̂ ∧ µ̂), contradiction. □

Definition 5.19. A Joyce order diagonalization for some Joyce order

(U,<U , !·, ·"U )
is a function h : 2<ω → U , such that for every coded Joyce order X,

(h[X], <U , !·, ·"U )
is isomorphic to (X,<lex, | · ∧ · |).

Corollary 5.20 (RCA0). Every DLO Joyce order (U,<U , !·, ·"U ) has
a Joyce order diagonalization.

Proof. Let (2<ω
, <T , !·, ·"T ) be the Joyce order of Theorem 5.18. By

Theorem 5.16, there is an embedding h : 2<ω → U . By definition of an
embedding, for every coded Joyce order X ⊆ 2<ω, (h[X], <U , !·, ·"U ) is iso-
morphic to (X,<T , !·, ·"T ). By Theorem 5.18, (X,<T , !·, ·"T ) is isomorphic
to (X,<lex, | · ∧ · |). Thus h is a Joyce order diagonalization. □

The following lemma bridges finite coded Joyce orders of size n and
strong subtrees of 2<ω of height 2n − 1, by showing that any coded Joyce
order of size n is a subset of a strong subtree of size 2n− 1, and, conversely,
any strong subtree of height 2n− 1 is a superset of at most one coded Joyce
order of size n.

Lemma 5.21. Let F be a finite coded Joyce order of size n and T ∈
Sω(2

<ω). Then every E ∈ S2n−1(T ) contains at most one coded Joyce order
isomorphic to F . Moreover, every coded Joyce order H ⊆ T isomorphic to
F is included in some E ∈ S2n−1(T ).

Proof. Let E ∈ S2n−1(T ), h its level function and F0, F1 ⊆ E be two
coded Joyce orders isomorphic to F . By Item 5 of Lemma 5.3, the set
{|σ ∧ τ | : σ, τ ∈ F0} has cardinality 2n− 1, and similarly for F1.

Remark that F0 and F1 are uniquely identified as the set of leaves of
respectively F

∧
0 and F

∧
1 , and that the isomorphism between Fi and F can
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be extended to an isomorphism between F
∧
i

and F
∧, where the element of

length h(j) (or equivalently of level j) of F∧
i

is mapped to the element of
level j of F . Let ℓ be the first level, if it exists, where F∧

0 ↾ h(ℓ) ∕= F
∧
1 ↾ h(ℓ).

Let σi ∈ F
∧
i

be the unique element of F∧
i
(ℓ), and σ the unique element of

F (ℓ). For every j < ℓ, the values of σ0(h(j)) = σ1(h(j)) are determined:
0 iff there is a τ where σ <lex τ ∈ F

∧(j) and 1 iff there is a τ where
σ >lex τ ∈ F

∧(j). As E is a strong subtree, determining the values of σ
at levels h(j) for h(j) < |σi| entirely defines σi. Therefore, F∧

0 = F
∧
1 and

F0 = F1.
For the second part, let H ⊆ T be a coded Joyce order isomorphic to

F . We claim that H is included in some E ∈ S2n−1(T ). Let H
∧ = {σ ∧ τ :

σ, τ ∈ H} be the ∧-closure of H. In particular, H∧ is a finite tree of height
2n− 1 with exactly one string at each level. Since T ∈ Sω(2

<ω) and H ⊆ T

then H
∧ ⊆ T . Let L = {ℓ0 < · · · < ℓ2n−2} be the set of levels of the nodes

of H∧ in T . Let E be the largest (in the sense of inclusion) subtree of T of
height 2n − 1 containing H

∧ such that for every i < 2n − 1, E(i) ⊆ T (ℓi).
We claim that for every i < 2n − 2, every node σ ∈ E(i) is 2-branching in
E. Since E ⊆ 2<ω is a tree, it is ∧-closed, σ is at most 2-branching. Since
T ∈ Sω(2

<ω), every node in T is 2-branching. Then σ has two extensions
τ0, τ1 ∈ T (ℓi+1) such that τ0∧ τ1 = σ. By maximality of E, σ is 2-branching
in E. Thus E ∈ S2n−1(T ). □

Theorem 5.22 (ACA0). Let X be a countable DLO Joyce structure, and
F be a finite Joyce structure. Then, the big Ramsey number of F in X is 1.

Proof. Let X be a countable coded DLO Joyce order and F be a finite
coded Joyce order of size n. Fix a coloring f :

$
X

F

%
→ k. Here,

$
X

F

%
denotes

all the subcopies of F in X.
Let h : 2<ω → X be a Joyce order diagonalization, which exists by

Corollary 5.20. Let g : S2n−1(2
<ω) → k be defined for every E ∈ S2n−1(2

<ω)
by g(E) = f(h(H)) where H ⊆ E is the unique element coded Joyce order
isomorphic to F , if it exists. Otherwise let g(E) = 0. This coloring is
well-defined by Lemma 5.21.

By Milliken’s tree theorem for height 2n − 1, there is a strong subtree
S ∈ Sω(2

<ω) such that g restricted to S2n−1(S) is monochromatic for some
color i < k. In particular, by Lemma 5.21, for every coded Joyce order
H ⊆ S isomorphic to F , there is some E ∈ S2n−1(S) containing H, and
g(E) = f(h(H)) = i.

Since S ∈ Sω(2
<ω), there is an injective function φ : 2<ω → S such that

φ[X] is a coded Joyce order isomorphic to X. In particular, since h is a
Joyce diagonalization, Y = h[φ[X]] is a DLO coded Joyce order isomorphic
to X, hence a subcopy of X. Note that Y is a coded Joyce order since it is
a subset of X which is a coded Joyce order.

We claim that f restricted to
$
Y

F

%
is monochromatic for color i. Let Ĥ

be a copy of F in Y = h[φ[X]]. Let H ⊆ φ[X] be such that h[H] = Ĥ. In
particular since φ[X] is a coded Joyce order, so is H, so since h is a Joyce
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order diagonalization, Ĥ = h[H] is a coded Joyce order isomorphic to H.
In other words, H is a copy of F in φ[X] ⊆ S, so H is a copy of F in S. By
Lemma 5.21, there is some E ∈ S2n−1(S) containing H, and by definition of
g, g(E) = f(h(H)). By choice of S, g restricted to S2n−1(S) is homogeneous

for color i, so g(E) = f(h[H]) = i, so f(Ĥ) = i. □

Statement 5.23 (Joyce Devlin’s theorem for n-tuples and ℓ colors).
JDTn

k,ℓ is the statement: “For any Joyce structure X and coloring f : [X]n →
k, there exists a strong subcopy of X such that f uses at most ℓ colors”.

Corollary 5.24 (Tight bounds on Joyce Devlin’s theorem). For any
n, (∀k)JDTn

k,ℓ holds, ℓ being the number of Joyce orders with n elements,
and this bound is tight.

Proof. Let ℓ be the number of Joyce order structures with n elements.
Let F0, . . . , Fℓ−1 be a finite enumeration of all the finite coded Joyce orders
of size n.

We first prove that (∀k)JDTn

k,ℓ holds. Fix a coloring f : [X]n → k for

some countable DLO Joyce structure (X,<,R). By Theorem 5.22, build a
finite decreasing sequence of subsets X = X0 ⊇ X1 ⊇ · · · ⊇ Xℓ of X such
that for every s < ℓ:

(1) (Xs+1, <,R) is a subcopy of (Xs, <,R);
(2) every copy of Fs in (Xs+1, <,R) is monochromatic for f for some

color is < k.

The Joyce structure (Xℓ, <,R) is a subcopy of (X,<,R). Moreover, for every
E ∈ [Xℓ]

n, (E,<,R) is isomorphic to Fs for some s < k, so f(E) = is. It
follows that f [Xℓ]

n ⊆ {is : s < ℓ}, hence |f [Xℓ]
n| ≤ ℓ.

We now show that the bound is tight. Let f : [X]n → k be defined by
f(E) = s for the unique s < ℓ such that (E,<,R) is isomorphic to Fs. Let
(Y,<,R) be a subcopy of (X,<,R). In particular, (Y,<,R) is a DLO Joyce
structure, so by Theorem 5.16, for every s < ℓ, there is an embedding of Fs

into (Y,<,R). Therefore, |f [Y ]n| ≥ ℓ. □

It is clear that Joyce Devlin’s theorem for n-tuples and ℓ colors implies
Devlin’s theorem for n-tuples and ℓ colors: indeed, by the existence of a DLO
Joyce structure and computable categoricity of dense linear orders without
endpoints, any such order can be turned into a DLO Joyce structure (see
Corollary 5.9). The following theorem shows the converse:

Theorem 5.25 (RCA0). Let X = (X,<,R) be a DLO Joyce structure.
Let X′ = (X ′

, <) be an isomorphic subcopy of (X,<), that is, a dense linear
order with no endpoints. Then, there exists a subcopy (X ′′

, <) of (X ′
, <)

such that (X ′′
, <,R) is a subcopy of X.

Proof. The structure X̂′ = (X ′
, <,R) is a DLO Joyce structure, even

if it might not be isomorphic to X. By Theorem 5.16, there exists an em-
bedding of X into X̂′. The image of the embedding is X′′. □
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Corollary 5.26 (RCA0). Devlin’s theorem for n-tuples and ℓ colors
implies Joyce Devlin’s theorem for n-tuples and ℓ colors.

Corollary 5.27 (RCA0). The tight bound for Devlin’s theorem and
Joyce Devlin’s theorem for n elements are the same, that is, the number of
Joyce structures with n elements, or the number of Joyce trees with n leaves,
or the odd tangent number of n.

Proof. Let b0 and b1 be the tight bound for Devlin’s theorem and Joyce
Devlin’s theorem for n elements, respectively.

We first claim that b0 ≤ b1. Let (X,<) be a dense linear order with no
endpoints. By Corollary 5.9, one can enrich this order with a relation R so
that (X,<,R) is a DLO Joyce structure. Let f : [X]n → k be a coloring.
By choice of b1, there is a Joyce subcopy (Y,<,R) of (X,<,R) such that
|f [Y ]n| ≤ b1. In particular, (Y,<) is a subcopy of (X,<) so b0 ≤ b1.

We then claim that b1 ≤ b0. Let (X,<,R) be a DLO Joyce structure.
Let f : [X]n → k be a coloring. By choice of b0, there is a subcopy (Y,<) of
(X,<) such that |f [Y ]n| ≤ b0. By Theorem 5.25, there is a subcopy (Z,<)
of (Y,<) such that (Z,<,R) is a Joyce subcopy of (X,<,R). In particular,
|f [Z]n| ≤ b0. Thus b1 ≤ b0.

It follows that b0 = b1. Moreover, by Corollary 5.24, this tight bound
is the number of Joyce structures with n elements, that is, the odd tangent
number of n (see [48, p. 147]). □

5.3. Lower bounds on Devlin’s theorem

A coloring that witness the need for 2 colors for Devlin’s theorem for
pairs is the coloring f0 defined as follows. Let (qn)n∈N be an enumeration
of the rationals, and define f0 : [Q]2 → 2 by letting f0(qn, qm) = 0 if qn <

qm ⇐⇒ n < m, and f0(qn, qm) = 1 otherwise. Now every subset S ⊆ Q
of order-type Q (or even Z) must contain pairs of both colors under f0, as
every element of a dense linear order has infinitely many element both below
it and above it.

Recall the ordering <Q on 2<ω from Definition 5.7. An explicit embed-
ding of <Q into Q is given by the following function: σ 8→

1
i<|σ|(σ(i) −

1
2)2

−i. Thus, the ith bit of σ contributes to the sum either −2−i−1 or 2−i−1,
depending as it is 0 or 1.

Theorem 5.28. There is a computable instance of DT2
4,3 all of whose

solutions compute the halting set.

Proof. Recall the order <Q from Definition 5.7, and that (Q, <) ∼=
(2<ω

, <Q) via a computable bijection. Therefore, the rationals will now be
considered as finite strings.

Let f<Q : [2<ω]2 → 2 be the function such that f<Q(σ, τ) = 1 if and only
if |σ| < |τ | ⇐⇒ σ <Q τ . Any dense (in the sense of <Q) subset of 2

<ω must
contain a pair with both 0, and a pair with color 1. Let also fJ : [N]3 → 2 be
such that for any x < y < z, fJ(x, y, z) = 1 if and only if Ky ↾ x = Kz ↾ x,
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where K is a complete Σ0
1 set with fixed computable enumeration (Ks)s∈ω.

(The function fJ was devised by Jockusch [23, Theorem 5.7] to show the
analogue of the present theorem for Ramsey’s theorem for triples.)

The function of interest for us is the product function f = f<Q × fJ :

(σ, τ) 8→ (f<Q(σ, τ), fJ(|σ ∧ τ |, |σ|, |τ |)〉. This is a 4-coloring, so by DT2
4,3

let S ⊆ 2<ω be a dense linear ordering for <Q such that f uses at most
three colors on [S]2. Suppose for instance that for some c ∈ 2 and for every
σ, τ ∈ S, we have f(σ, τ) ∕= (1, 1− c). (The case where the color (0, 1− c) is
avoided is symmetric). This means that any σ0 <Q σ1 in S with |σ0| < |σ1|
must have color c under fJ .

The remainder of the proof consists of two parts. The first is the proof
that c must be 1, and the second is an argument to show how to compute K
from S. The main ingredient will be the fact that for every n ∈ N, we can
find arbitrarily long strings σ and τ in S with |σ ∧ τ | > n. This is depicted
in Figure 5.2.

Given two strings σ <Q τ , define ]σ, τ [ = {ρ ∈ 2<ω : σ <Q ρ <Q τ}.
Note that if I ⊆ 2<ω is a dense linear ordering without endpoints under <Q,
then so is I ∩ ]σ, τ [. Also, note that if ξ, ρ ∈ ]σ, τ [ then ξ ∧ ρ = σ ∧ τ .

Fact 5.29. If I ⊆ 2<ω is a dense linear ordering without endpoints under
<Q, then I contains a pair of incompatible strings, σ and τ . Moreover, for
every n ∈ N, we can find such σ and τ so that |σ ∧ τ | > n.

Proof. Fix n ∈ N. As I is infinite but 2n is finite, there exist ρ0, ρ1 ∈ I

such that ρ0 ↾ n = ρ1 ↾ n. If ρ0 and ρ1 are incompatible, then these can serve
as σ and τ . So suppose otherwise, say ρ0 <Q ρ1. Fix any ξ ∈ I ∩ ]ρ0, ρ1[.
Since I∩]ρ0, ρ1[ is a dense linear order without endpoints, there are infinitely
many σ, τ ∈ I ∩ ]ρ0, ρ1[ with σ <Q ξ <Q τ , so these can be chosen so that
|σ| > |ξ| and |τ | > |ξ|. But now, if σ and τ were compatible, then by
definition of <Q they would both be above or both below ξ, a contradiction.
Thus, σ and τ are incomparable elements of I. Furthermore, since ρ0 <Q
σ <Q τ <Q ρ1, we have σ ↾ n = τ ↾ n, so |σ ∧ τ | > n. □

Fact 5.30. If I ⊆ 2<ω is a dense linear ordering without endpoints
under <Q, then for every n ∈ N there exists four pairwise incompatible
strings αi

j
∈ I for i, j ∈ 2 such that α0

0 <Q α0
1 <Q α1

0 <Q α1
1, the strings

α0
0 ∧ α0

1 and α1
0 ∧ α1

1 are incompatible, and |α0
0 ∧ α0

1 ∧ α1
0 ∧ α1

1| > n. (See
Figure 5.2.)

Proof. Fix n ∈ N. First, suppose that whenever ρ0, ρ1 ∈ I satisfy
|ρ0 ∧ ρ1| > n then they are incompatible. Since I is infinite and 2n is finite,
we can then pick α0

0 <Q α0
1 <Q α1

0 <Q α1
1 in I with |α0

0 ∧ α0
1 ∧ α1

0 ∧ α1
1| > n.

Then by assumption, all the αi

j
must be pairwise incompatible, as must

α0
0 ∧ α0

1 and α1
0 ∧ α1

1.
So suppose otherwise, and fix ρ0 <Q ρ1 with |ρ0 ∧ ρ1| > n. Fix γ ∈ S ∩

]ρ0, ρ1[ (represented in grey in Figure 5.2). As S∩]ρ0, γ[ and S∩]γ, ρ1[ are two
dense linear orderings without endpoints, we can apply the preceding fact
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to find incompatible α0
0,α

0
1 ∈ S∩ ]ρ0, γ[ and incompatible α1

0,α
1
1 ∈ S∩ ]γ, ρ1[

with |α0
0 ∧ α0

1| > |γ| and |α1
0 ∧ α1

1| > |γ|.
Since |αi

0 ∧ αi

1| > |γ| for each i ∈ 2, we have |αi

j
| > |γ| for all i, j ∈ 2.

Hence, α0
j
and α1

j
are incompatible for each j ∈ 2, being on opposite sides

of γ under <Q.
Since α0

0,α
0
1 <Q γ <Q α1

0,α
1
1, we have necessarily α0

0 ∧ α0
1 ≤Q γ ≤Q

α1
0,α

1
1, but since |αi

0 ∧ αi

1| > |γ| for each i ∈ 2 these inequalities must be
strict. It follows that α0

0 ∧ α0
1 and α1

0 ∧ α1
1 are incompatible, as desired.

Finally, as ρ0 <Q αi

j
<Q ρ1 for all i, j ∈ 2, we have ρ0 ≤Q α0

0 ∧α0
1 ∧α1

0 ∧
α1
1 ≤Q ρ1, meaning that α0

0 ∧ α0
1 ∧ α1

0 ∧ α1
1 = ρ0 ∧ ρ1 and hence |α0

0 ∧ α0
1 ∧

α1
0 ∧ α1

1| > n. □

We now use Fact 5.30 to prove that the color 1 for fJ cannot be avoided.
Fix any n, and find αi

j
∈ S for i, j ∈ 2 as in Fact 5.30. Fix l such that

Kl ↾ N = K ↾ N , where N = |α0
0 ∧α0

1 ∧α1
0 ∧α1

1|. Pick σn ∈ S ∩ ]α0
0,α

0
1[ and

σm ∈ S ∩ ]α1
0,α

1
1[ such that n < m and |σn|, |σm| > l. Now, as σn ∧ σm =

α0
0∧α0

1∧α1
0∧α1

1, we have fJ(|σn∧σm|, |σn|, |σm|) = 1 as the approximation
for K ↾ N does not change after stage l. Therefore, the product coloring f

assigns (σn,σm) the color (1, 1). In particular, c = 1, as desired.
It remains to show that K is S-computable. Given n, we uniformly

compute K ↾ n from S. First, search for four strings (αi

j
)i,j∈2 in S satisfying

Fact 5.30, which will be found as they exist. Then, output K|α0

0
| ↾ n. Indeed,

if it were the case that K|α0

0
| ↾ n ∕= K ↾ n, then it would also be true that

K|α0

0
| ↾ n ∕= Kl ↾ n for all sufficiently large l. But then we would have

fJ(α
0
0,σ) = 0 for any σ ∈ S ∩ ]α1

0,α
1
1[ with |σ| sufficiently big, contradicting

that fact that c = 1. □

Corollary 5.31. Over RCA0, DT2
4,3 implies ACA.

Theorem 5.32. For every k, ℓ ≥ 1, RT2
k,ℓ ≤c DT2

2k,2ℓ+1.

Proof. Let f : [ω]2 → k be an instance of RT2
k,ℓ. Let Q = {x0, x1, . . . }

be a computable enumeration of all the rationals. Define g : [Q]2 → 2k
for every pair {xp, xq} ∈ [Q]2 by g(xp, xq) = (0, f(p, q)〉 if xp <Q xq and
g(xp, xq) = (1, f(p, q)〉 otherwise. Let U ⊆ Q be a solution to the instance
g of DT2

2k,2ℓ+1, that is, (U,<Q) is a DLO order and |g[U ]2| ≤ 2ℓ + 1. Let

d < 2 and I ⊆ {0, . . . , 2k−1} with |I| ≤ ℓ be such that {i : (d, i〉 ∈ g[U ]2} ⊆
I. Say d = 0, the other case is symmetrical. Build U -computably an
infinite sequence xp0 <Q xp1 <Q . . . such that pn < pn+1. Such a sequence
exists since (U,<Q) has no endpoints. For every s < t ∈ ω, f(xps , xpt) =
(0, f(ps, pt)〉. Since {i : (d, i〉 ∈ g[U ]2} ⊆ I, f(ps, pt) ∈ I. Thus, letting
H = {ps : s ∈ ω}, f [H]2 ⊆ I so |f [H]2| ≤ ℓ. □

We now give.a better lower bound to Devlin’s theorem for pairs by con-
structing a computable instance of it with no Σ0

3 solution.
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σ0 ∧ σ1

σ0

σ1

n

l0

l1

Figure 5.2. Finding σ0 and σ1 above l0 and l1, with a meet
above n. The nodes ρ0 and ρ1 from Fact 5.29 are represented
as hollow nodes, the node γ from the proof of Fact 5.30 is rep-
resented by a slashed node, and the nodes αi

j
from Fact 5.30

are in grey.

Definition 5.33. A set H ⊆ N is thin for a σ ∈ k
<N is there exists

some i < 2 such that for all n ∈ H, n < |σ| =⇒ σ(n) ∕= i. It is thin for a
tree T ⊆ 2<N if the tree {σ ∈ T : H is thin for σ} is infinite.

Whenever k = 2, a thin set is also called homogeneous.

Definition 5.34. A ∆0
2 approximation of a sequence σ ∈ k

≤ω is a se-
quence (σs)s∈N of finite sequence such that for every n, limσs(n) exists and
has value σ(n).

A ∆0
3 approximation of a sequence σ is a sequence (σs,t)s,t∈N such that

for every s ∈ N, (σs,t)t∈N is a ∆0
2 approximation of a sequence σs, and

(σs)s∈N is a ∆0
2 approximation of σ.

Theorem 5.35. Let F be a finite Joyce order with two elements, J be a
DLO Joyce structure and k be an integer. For every ∆0

3 approximation of

an infinite tree T ⊆ k
<∞, there exists a coloring f :

$ J
F

%
→ k such that for

every DLO Joyce suborder S ⊆ J, if f avoids 1 color in
$
S

F

%
then S computes

a thin set for T .

Proof. We can always suppose J is a coded Joyce order. Let m,M be
such that {m;M} = F , and |m| < |M |. Let (Ts,t)s,t∈N be a ∆0

3 approxi-
mation of an infinite tree, that is for every s ∈ N, Ts = limt Ts,t exists and
T = lims Ts exists. Let Ps,t be the leftmost path of Ts,t of length s. Note
that Ps = limt Ps,t is the leftmost path of Ts of length s, and P = lims Ps is

the leftmost path of T . If {σ, τ} ∈
$ J
F

%
with |σ| > |τ |, define

f(σ, τ) = P|σ|,|τ |(|σ ∧ τ |),

a computable coloring of
$ J
F

%
in k colors.
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Now, suppose that S ⊆ 2<ω is of order-type Q and such that
$
S

F

%
avoids

some color i < k for f . The claim is that the set

H = {|a∧ c| : (∃a, b, c, d ∈ S)[a <lex b <lex c <lex d∧ |a∧ c| < |a∧ b|, |c∧ d|]}
is thin for P , and thus for T .

Here, we suppose m <lex M , so that if x, y ∈ J satisfies |x| < |y|, then
{x, y} ∈

$ J
F

%
iff x <lex y. Let ℓ ∈ H, fix a, b, c, d witnessing it. Let s0 > ℓ be

such that Ps(ℓ) has settled for every s ≥ s0. Let σ ∈ S in the interval with
bounds a and b such that s1 = |σ| ≥ s0, which exists are there are infinitely
many elements of S in this interval. Let t0 be such that Ps1,t0

(ℓ) has settled
for every t ≥ t0, and let τ ∈ S be in the interval with bounds c and d with
t1 = |τ | ≥ max(t0, ℓ, s1). Then, {σ, τ} ∈

$
S

F

%
and fP (σ, τ) = Ps1,t1

(ℓ) ∕= i as$
S

F

%
avoids color i. By our choice of t1, Ps1,t1

(ℓ) = Ps1
(ℓ), and by our choice

of s1, Ps1
(ℓ) = P (ℓ) ∕= i, that is, H is thin for P , and thus for T .

If m >lex M , we do the same argument, but we take σ in the interval
with bounds c and d, and τ in the interval with bound a and b, to get the
same conclusion.

We proved that H is thin for T . As H is c.e. in S, it contains an infinite
computable subset, which is thin for T as well. □

Corollary 5.36. Let k be an integer. For every ∆0
3 approximation of

an infinite tree T ⊆ k
<∞, there exists a coloring f : [Q]2 → 2k such that for

every DLO Joyce suborder S ⊆ J, if f takes only 2k − 1 color on [S]2 then
S computes a thin set for T .

Proof. Let F0 and F1 be the two Joyce structure with two elements.
Let f0 and f1 be given by Theorem 5.35 for F0 and F1. Define f : Q → 2k
by enriching Q to a Joyce order, and if σ, τ ∈ Q, then f(σ, τ) = (i, fi(σ, τ))
if and only if {σ, τ} is isomorphic to Fi.

If S ⊆ Q is an isomorphic substructure such that f takes at most 2k− 1
color on [S], then let (i, j) with i < 2 and j < k be an avoided color. Then,

fi avoids color j on
$
S

Fi

%
, and by our choice of fi, S computes a thin set for

T . □
Definition 5.37. A function f : ω → ω is DNC relative to X if for

every e, f(e) ∕= ΦX
e (e). Here, f(e) can be any value if ΦX

e (e) ↑. A Turing
degree is DNC relative to X if it computes such a function.

Lemma 5.38. For every k ≥ 2 and set X, there exists an X-computable
tree T ⊆ k

<N such that every infinite set thin for T is of DNC degree relative
to X.

Proof. Let T ⊆ k
<N be an infinite X-computable tree such that every

infinite path is a Martin-Löf random relative to X in base k. Let H be an
infinite set thin for T . In particular, there is some path P ∈ [T ] and some
color i < k such that H ⊆ {x : P (x) ∕= i}. Let Z be the Martin-Löf random
P in base 2. The set H computes an infinite subset of Z or of Z, hence is
of DNC degree relative to X. □
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Corollary 5.39. For every ℓ ≥ 2, there exists a computable instance
of (∀k)DT2

k,ℓ such that every solution is of DNC degree relative to ∅′′.

Proof. Fix ℓ ≥ 2. By Lemma 5.38 relativized to ∅′′, there exists a
computable ∆0

3-approximation of a tree T ⊆ ℓ<N such that every infinite
set thin for T is of DNC degree relative to ∅′′. By Theorem 5.35, let f be
a computable instance of DT2

2ℓ,ℓ such that every solution compute a set H

thin for T . Then every solution is of DNC degree relative to ∅′′. □
Lemma 5.40. For every X-c.e. dense linear order with no endpoints

(D,<D), there is an X-computable subset S ⊆ D such that (S,<D) is a
sub-copy of (D,<D).

Proof. We build an X-computable <N-increasing sequence

x0 <N x1 <N . . .

of elements of D such that letting S = {xn : n ∈ N}, (S,<D) is a dense
linear order without endpoints. Start with x0 ∈ D being any element.
Having defined F = {x0 <N x1, · · · <N xn}, consider a minimal interval in
F ∪{−∞,+∞} with respect to <D, that is, an interval (a, b) with a <D b ∈
F ∪{−∞,+∞} such that (a, b)∩F = ∅. Then wait until some element xn+1

appears in W ∩ (a, b) with xn+1 >N xn. Such element must be found since,
as (D,<D) is a DLO with no endpoints, there are infinitely many elements
in W ∩ (a, b), so elements of arbitrary large value with respect to <N. By
choosing the minimal interval in an appropriate way, we can ensure that
(S,<D) is a DLO with no endpoints. Since D is X-c.e., searching for xn+1

is done X-computably, so S ≤T X. □
Corollary 5.41. For every ℓ ≥ 2, there exists a computable instance

of (∀k)DT2
k,ℓ with no Σ0

3 solution.

Proof. By Corollary 5.39, there is a computable instance f : [Q]2 →
k of (∀k)DT2

k,ℓ such that every solution is of DNC degree relative to ∅′′.
Suppose for the contradiction that there is a Σ0

3 sub-copy (U,<Q) of (Q, <Q)
such that |f [U ]2| ≤ ℓ. By Lemma 5.40, there is a ∆0

3 subset H ⊆ U such
that (H,<Q) is a sub-copy of (Q, <Q). Since H is of DNC degree relative

to ∅′′, is computes a function f : ω → ω such that for all e, f(e) ∕= Φ∅′′
e (e).

Since H is ∆0
3, so is f , hence there is some e such that Φ∅′′

e = f . But then

f(e) = Φ∅′′
e (e), contradiction. □

5.4. Above the big Ramsey number of Devlin’s theorem

In the case of Devlin’s theorem for pairs, the existence of the big Ram-
sey number implies ACA0. By Corollary 5.31, this is also the case when
weakening the statement by allowing 3 instead of 2 colors in the solution.
We shall now conclude the chapter about Devlin’s theorem by proving that
this bound is tight, in that the statement (∀k)DT2

k,4 does not imply ACA0

over RCA0. The proof consists essentially of replacing the use of Milliken’s
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tree theorem for height 3 by the statement (∀k)PMTT3
k,2 which admits cone

avoidance by Theorem 4.28. The cost of this substitution is an increase in
the number of colors allowed in the solution.

Theorem 5.42 (RCA0∧(∀k)PMTT3
k,2). Let X be a DLO Joyce structure

and F be a Joyce structure of size 2. Then for every k ∈ ω and every coloring
f :

$
X

F

%
→ k, there is a subcopy Y of X such that f uses at most 2 colors

over
$
Y

F

%
.

Proof. The proof is exactly the same as the one of Theorem 5.22,
but replacing an application of Milliken’s tree theorem for height 3 by
(∀k)PMTT3

k,2. □

Theorem 5.43. (∀k)PMTT3
k,2 implies (∀k)JDT2

k,4 over RCA0.

Proof. Let F0 and F1 be the two coded Joyce orders of size 2. Let
X be a coded DLO Joyce order and let f : [X]2 → k be a coloring. By
Theorem 5.42, there is a subcopy X0 of X such that f uses at most 2 colors
i0, i1 over

$
X0

F0

%
. Again by Theorem 5.42, there is a subcopy X1 of X0 such

that f uses at most 2 colors j0, j1 over
$
X1

F1

%
. We claim that f [X1]

2 ⊆
{i0, i1, j0, j1}. Let E ∈ [X1]

2. In particular, E is isomorphic to F0 or F1. In
the first case, f(E) ∈ {i0, i1} and in the second case, f(E) ∈ {j0, j1}. Thus
X1 is a subcopy of X such that |f [X]2| ≤ 4. □

Corollary 5.44. (∀k)JDT2
k,4 admits cone avoidance.

Proof. By Theorem 4.28, (∀k)PMTT3
k,2 admits cone avoidance hence

so does (∀k)JDT2
k,4 by Theorem 5.43. □

Corollary 5.45. (∀k)JDT2
k,4 does not imply ACA0 over RCA0.

Proof. By Theorem 4.28, (∀k)PMTT3
k,2 admits cone avoidance, hence

there is a model Mc of RCA0∧(∀k)PMTT3
k,2 which is not a model of ACA0.

In particular, Mc |= (∀k)JDT2
k,4 by Theorem 5.43. □

5.5. The Erdős Rado theorem

Erdős and Rado proved that it is always possible to obtain either a
copy of Q of one color, or else an infinite homogeneous set (in the sense of
Ramsey’s theorem) of the other color.

Theorem 5.46 (Erdős Rado theorem). For every f : [Q]2 → 2, there
exists a subset S ⊆ Q such that either S is infinite and f -homogeneous of
color 0, or S is of order-type Q and f -homogeneous of color 1.

Statement 5.47. ER2 is the statement denoting the Erdős Rado theo-
rem.



82 5. DEVLIN’S THEOREM

This statement was studied by [5, 16, 15] in the setting of reverse
mathematics. One would expect it to be a consequence of Devlin’s theorem
by the optimality of the bounds noted above. We give a direct combinatorial
proof of ER2 from Devlin’s theorem for pairs of rationals.

Theorem 5.48. DT2
4,2 implies ER2.

Proof. Let f : [Q]2 → 2 be a coloring of pairs of rationals, regarded as
a given instance of ER2. Let f0 be the 2-coloring of [Q]2 witnessing the fact
that big Ramsey degree of the pairs of rationals is 2, that is, f0 is such that
for every sub-copy S of the rationals, |f0[S]2| = 2. An explicit construction
of f0 is given at the start of Section 5.3.

Apply DT2
4,2 to the 4-coloring f × f0 : (q, r) 8→ (f(q, r), f0(q, r)〉 to get a

subcopy of the rationals S such that f × f0 uses at most tDT(2) = 2 colors

on [S]2. As [S]2 must have two colors for f0, the two colors of [S]2 for f ×f0

must be of the form (c0, 0) and (c1, 1). The rest of the proof is split into 3
cases.

Case 1: c0 = c1 = 1. In this case, [S]2 is monochromatic with color 1 for
f , and since S has order-type Q it is a solution to f as an instance ER2.

Case 2: c0 = 0 and c1 = 1. Then f0(q, r) = 0 implies f(q, r) = 0, for
all q, r ∈ S. We build an infinite set T = {qni : i ∈ N} such that [T ]2

is monochromatic for f0 with color 0, and therefore also for f with color
0. To this end, we build an increasing sequence of rationals (qni)i∈N in S,
such that (ni)i∈N is also increasing. Fix any qn0

∈ S, and suppose qni has
been defined. As there exists infinitely many rationals in S above qni , there
exists ni+1 > ni such that qni+1

> qni and qni+1
∈ S. This completes the

construction. Now, T is an infinite f -homogeneous set with color 0, and
hence a solution to f as an instance of ER2.

Case 3: c1 = 0 and c0 = 0. Symmetric to Case 2. □
However, ER2 admits cone avoidance. As a warm-up before the proof

of this result, we prove the following:

Lemma 5.49. Let fJ : [2<ω]2 → 2 be such that fJ(σ, τ) = 1 iff ∅′[|σ|] ↾
|σ ∧ τ | = ∅′[|τ |] ↾ |σ ∧ τ |. Then, there exists two computable infinite sets X0

and X1 such that [Xi]
2 is monochromatic of color i for fJ .

Proof. First, we do the construction for i = 0. The set X0 is defined
as {0ni1 : i ∈ ω} for an increasing sequence (ni)i∈ω verifying that ∅′[ni+1] ↾
ni ∕= ∅′[ni+1 + 1] ↾ ni. Suppose that ni is defined. Then ni+1 is the first
integer n > ni found such that ∅′[n + 1] ↾ n ∕= ∅′ ↾ n and ∅′[ni + 1] ↾ ni ∕=
∅′[n+1] ↾ ni, which must exists as otherwise ∅′ would be computable. Then,
[X0]

2 is monochromatic of color 0 by construction.
For the other case, define X1 = {∅′[n] ↾ n : n ∈ ω}, we claim that

[X1]
2 is monochromatic for fJ of color 1. Let σ0,σ1 ∈ X1 and for i < 2,

the length ni = |σi| is such that σi = ∅′[ni] ↾ ni. We have fJ(σ0,σ1) iff
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∅′[|σ0|] ↾ |σ0 ∧ σ1| = ∅′[|σ1|] ↾ |σ0 ∧ σ1|, which we claim is true. Indeed, as
|σ0| > |σ0 ∧ σ1|, we have

∅′[|σ0|] ↾ |σ0 ∧ σ1| = (∅′[n0] ↾ n0) ↾ |σ0 ∧ σ1|
= σ0 ↾ |σ0 ∧ σ1|

and as |σ1| > |σ0 ∧ σ1|:

∅′[|σ1|] ↾ |σ0 ∧ σ1| = (∅′[n1] ↾ n1) ↾ |σ0 ∧ σ1|
= σ1 ↾ |σ0 ∧ σ1|.

By definition of the meet operator, σ0 ↾ |σ0 ∧ σ1| = σ1 ↾ |σ0 ∧ σ1|, therefore
fJ(σ0,σ1) = 1 and [X1]

2 is monochromatic of color 1. □

Theorem 5.50. The statement ER2 admits cone avoidance.

Proof. Let Z, and C with C ∕≤T Z. Let f : [2<ω]2 → 2 be a Z-
computable coloring, seen as an instance of ER2 as (Q, <) and (2<ω

, <Q)
are computably isomorphic. Define i∞ = 0 and iQ = 1, so that the goal is
to find either an infinite set homogeneous for color i∞, or a set of order-type
Q homogeneous for color iQ.

The proof goes as follows: first, we build a set G such that C ∕≤T Z ⊕G

but C ≤T (Z ⊕ G)′. Then, we apply cone avoidance of DT2
<∞,4 to the

product of three colorings: the initial instance of ER2, the Jockush coloring
relativized to Z ⊕G, and the coloring witnessing the fact that at least two
colors must remain. Finally, we reason depending on which are the four
remaining colors, with the two main constructions being linked with the
two constructions of lemma 5.49. Let us start with the existence of G.

Claim 5.51. There exists G such that C ∕≤T Z ⊕G but C ≤T (Z ⊕G)′.

Proof. Define a forcing, whose conditions are the tuples (p, n) where
p : ω × ω → 2 has finite domain, and n is an integer. A condition (q,m)
extends a condition (p, n) if q ⊃ p, and for every (x, y) ∈ dom(q)# dom(p),
if x < n then q(x, y) = C(x). It is clear that if G is generic enough for this
forcing, then G

′ ≥T C: Indeed, for every i, the set of conditions {(p, n) :
n ≥ i} is dense. Therefore, lims→∞G(i, s) is always defined with value C(i).

It remains to show that C ∕≤T Z ⊕G. We prove that for every e, the set

of conditions (p, n) for which there is an i such that ΦZ⊕p
e (i) ↓∕= C(i) or there

is an i such that for all (q,m) extending (p, n), ΦZ⊕q
e (i) ↑, is dense. Indeed,

fix (p0, n0). If there exists (p, n) ≤ (p0, n0) and i such that ΦZ⊕p(i) ↓∕= C(i),
then (p, n0) extends (p0, n0) and forces ΦZ⊕G

e not to compute C. If there

is an i such that no (q, n) ≤ (p0, n0) are such that ΦZ⊕q
e (i) ↓, then already

(p0, n0) forces partiality of ΦZ⊕G
e . If none of the two previous cases happen,

then Z computes C: to know the value of C(i), guess the first n0 values

of C, using these find a (q, n) ≤ (p0, n0) such that ΦZ⊕g
e (i) ↓, we have

ΦZ⊕g
e (i) = C(i). This contradicts that C ∕≤T Z. □
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Let fG

J
be the coloring defined in the proof of Theorem 5.28 relativized

to Z⊕G, that is, fG

J
(σ, τ) = 1 iff (Z⊕G)′[|σ|] ↾ |σ∧τ | = (Z⊕G)′[|τ |] ↾ |σ∧τ |.

If |τ | > |σ|, we can see color 1 for fG

J
as saying: |τ | witness that the interval

from |σ ∧ τ | to |σ| is “large” (relatively to Z ⊕G). To reflect this, we define
is = 0 the “small” color, and iℓ = 1 the “large” color. As in Theorem 5.28,
let also f<Q(σ, τ) = 1 iff (σ <Q τ ⇐⇒ |σ| < |τ |), note that f<Q can be seen
as the coloring which outputs the finite Joyce structure of {σ, τ}. For the
colors of f<Q , we will use the variable i<Q .

Finally, define g : [2<ω]2 → (2× 2× 2) by

g(σ, τ) = (f(σ, τ), fG

J (σ, τ), f<Q(σ, τ)).

We apply cone avoidance of DT2
<∞,4, Corollary 5.45, to the coloring g to

get a set S ⊆ 2<ω such that S ⊕G⊕ Z ∕≥T C and (S,<Q) is a dense linear
order with no endpoints, and such that g takes at most 4 colors on [S]2.

Recall that none of the colors of f<Q can be avoided in a subset of 2<ω

of order-type Q, therefore the two sets Si<Q
= {(σ, τ) : f<Q(σ, τ) = i<Q} for

i<Q < 2 must be non empty; and the sum of the number of colors taken by
g on them is at most 4. Start by supposing that for each i<Q < 2, g takes
at most 2 colors on Si<Q

.

We reason depending on the following cases:

Case 1: There exists i<Q < 2, such that Si<Q
is monochromatic for f

G

J
.

Case 2: There exists i<Q < 2, such that on Si<Q
, f = f

G

J
.

Case 3: There exists i<Q < 2, such that on Si<Q
, either f is homogeneous

of color i∞, or f = 1− f
G

J
.

Case 4: For all i<Q < 2, Si<Q
is monochromatic of color iQ for f .

We now prove the four cases in three different construction, Case 4 being
trivial. The first construction is the one from Theorem 5.28, and shows that
Case 1 cannot happen. The second and third construction correspond to
the two constructions of Lemma 5.49. To separate them more clearly, the
proof is divided in claims.

Claim 5.52. In Case 1, S ⊕ Z ⊕G computes (Z ⊕G)′.

Proof. The first paragraph after the proof of Fact 5.30 asserts that the
function f

G

J
must be monochromatic for color iℓ. The second paragraph

asserts that in this case, S ⊕G⊕ Z computes (Z ⊕G)′. □

By our choice of G, (Z ⊕G)′ computes C, and thus S ⊕Z ⊕G ≥T C, a
contradiction with our choice of S, so Case 1 cannot happen.

Claim 5.53. In Case 2, there exists a set Ŝ ⊆ S computable in S⊕Z⊕G,
such that [Ŝ]2 ⊆ Si<Q

is an infinite subset monochromatic for color i∞.
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Proof. Note that by the fact that we are in Case 2, a set Ŝ with
[Ŝ]2 ⊆ S0 is such that [Ŝ]2 is monochromatic of color i∞ for f if and only if it
is monochromatic of color is for f

G

J
. The following construction corresponds

to the first case of Lemma 5.49. We computably in S ⊕ G ⊕ Z define a
sequence (Fn, An), where Fn is a finite approximation to Ŝ and An a reservoir
for future addition to Fn, such that for all n ∈ ω the following holds:

(1) Fn is a finite set such that [Fn]
2 ⊆ Si<Q

;

(2) An ⊆ S is of order-type Q;
(3) Fn ⊊ Fn+1 and An+1 ⊆ An;
(4) for all σ ∈ Fn and all τ ∈ Fn ∪An, (σ, τ) ∈ Si<Q

and f
G

J
(σ, τ) = is;

(5) for all σ ∈ Fn+1 # Fn, σ ∈ An.

Suppose Fn, An are defined. If there is no σ, τ0, τ1 ∈ An with (σ, τi) ∈ Si<Q
for i < 2 such that (G⊕Z)′[|σ|] ↾ ℓ ∕= (G⊕Z)′ ↾ ℓ where ℓ = min |σ∧τ0|, |σ∧
τ1|, then An⊕G⊕Z would compute (G⊕Z)′ ≥T C. Define Fn+1 = Fn∪{σ}
and

An+1 = {τ ∈ An : (G⊕ Z)′ ↾ ℓ = (G⊕ Z)′[|τ |] ↾ ℓ ∧ τ0 <Q τ <Q τ1}.

By construction, all items are satisfied. Define Ŝ =
!

n
Fn. By Item 3, Ŝ is

infinite, and by Item 4 and 5, [Ŝ]2 is monochromatic of color is for fG

J
, and

thus monochromatic of color i∞ for f . □

Claim 5.54. In Case 3, there exists Ŝ ⊆ S such that Ŝ ⊕ Z ∕≥T C and
[Ŝ]2 ⊆ Si is an infinite set monochromatic of color i∞ for f .

Proof. If f is homogeneous of color i∞ on Si<Q
then Si<Q

is already a

witness of the claim. Otherwise, f(σ, τ) = i∞ if and only if fX

J
(σ, τ) = iℓ,

so all we need is to find a subset Ŝ ⊆ S such that [Ŝ]2 ⊆ Si<Q
and [Ŝ]2 is

monochromatic of color iℓ for f
G

J
.

The following construction is roughly analogous to the second case in the
proof of Lemma 5.49, however the number of time we can take a lower meet
to avoid having color is is not anymore equal to the number of times we might
have to do it. This prevents us from doing the construction computably,
however we can still make it cone avoiding. We build Ŝ using the following
forcing:

Definition 5.55. A condition is a couple (F,D) such that F is a finite
set with [F ]2 ⊆ Si<Q

, and D ⊆ S is computable in S and of order-type

Q, and such that: for all σ ∈ F and all τ ∈ F ∪ D, (σ, τ) ∈ Si<Q
and

f
G

J
(σ, τ) = iℓ.
A condition (F1, D1) extends a condition (F0, D0) if D1 ⊆ D0 and for

all σ ∈ F1 # F0, σ ∈ D0. We write (F1, D1) ≤ (F0, D0).

If F is a filter for this forcing, then we let SF =
!
{F : (∃D)[(F,D) ∈

F ]}. We have that [SF ]
2 ⊆ Si<Q

is monochromatic of color iℓ for f
G

j
. So
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we need to find a filter ensuring that SF is infinite and SF ⊕ Z does not
compute C.

Definition 5.56. Let (F,D) be a condition and ϕ be a ∆0,Z
0 formula

with a free set parameter Ŝ. We say that:

(1) (F,D) ⊩ (∃x)ϕ(Ŝ, x) if ϕ(F, x) holds for some x ∈ ω;

(2) (F,D) ⊩ (∀x)ϕ(Ŝ, x) if ϕ(F ∪E, x) holds for every x, and for every
E ⊆ D with [F ∪ E]2 ⊆ Si<Q

monochromatic of color iℓ for f
G

J
.

We claim that for every Turing functional, for every condition (F,D),

there is a condition (F ′
, D

′) ≤ (F,D) such that (F ′
, D

′) ⊩ ΓŜ⊕Z ∕= C. Let
D0 <Q D1 be two subsets of D computable in S of order type Q: For
instance, pick x0 <Q x1 <Q x2 in D, and define D0 = {x ∈ D : x0 <Q x <Q
x1} and D1 = {x ∈ D : x1 <Q x <Q x2}. Fix e ∈ ω.

Define the following c.e. set, where by “E is compatible with F” we
mean that for all σ, τ ∈ F ∪ E, fG

J
(σ, τ) = iℓ and [F ∪ E]2 ⊆ Si<Q

:

W = {(x, i〉 : (∃E ⊆fin D1−i<Q
) compatible with F )[ΦF∪E⊕G⊕Z

e (x) ↓= i]}.

We consider the three following cases.

Case 1: There exists x ∈ ω such that (x, 1−C(x)〉 ∈ W . Let E be a witness

of this. The condition (F ∪E, D̂i<Q
) forces Φe to be different from C, where

D̂i<Q
is Di<Q

with a finite number of elements removed, so that for all σ ∈ E

and all τ ∈ D̂i<Q
, (G⊕ Z)′ ↾ |σ| = (G⊕ Z)′[|τ |] ↾ |σ|.

Case 2: There exists x ∈ ω such that for each i ∈ 2, (x, i〉 ∕∈ W . The
condition (F,D1−i<Q

) already forces divergence of Φe.

Case 3: Otherwise. Thus, for every x there is an i such that (x, i〉 ∈ W

and (x, i〉 ∈ W =⇒ i = C(x). But as W is c.e, this implies that C is
computable, a contradiction.

Finally, any sufficiently generic for this forcing is infinite: indeed, con-
sider the functional Γ which halts if and only if its oracle has at least n

elements. It is impossible to have a condition forcing Γ to halt, so any
sufficiently generic has at least n elements, and so for every n. □

By the previous claims, Case 1 cannot happen, and Cases 2 and 3 val-
idate the theorem with an infinite and cone avoiding set homogeneous for
color i∞. In Case 4, we are also done, as S is a homogeneous set for color
iQ, of order-type iQ.

In the making of the four cases, we supposed that each SiwQ
takes at

most two colors. It remains the case when for some i<Q , Si<Q
takes only one

color by g, and S1−i<Q
takes three colors by g. But then, Case 1 holds for

i<Q , a contradiction. □



CHAPTER 6

The Rado graph theorem

6.1. A big Ramsey structure for the Rado graph

Definition 6.1. A Joyce graph is a graph G = (G,E) together with an
order < on G and a symmetric function !·, ·" : G2 → N such that (G,<, !·, ·")
is a Joyce order and

(J4) for all x, y, z ∈ G, !x, x" < !y, z" =⇒ (xEy ⇐⇒ xEz).

As in the previous chapter, the function !·, ·" has to be taken as the
height of a meet. The axiom (J4) states that if two elements have a meet
above the height of a third element, they are both linked to it or none are
linked to it. In this sense, the axiom states some compatibility between the
!·, ·" operator and the edge relation. However, compared to the axiom (J2)
which states a compatibility between the order and the !·, ·" operator, the
crucial height is the one of the element and not of the meet. In other words,
the relevant height to decide whether x < y is at the level of the meet, while
the relevant height to decide the edge relation between x and y is at the
level of x or y.

Definition 6.2. A Joyce Rado graph is a Joyce graph (G,E,<, !·, ·")
such that (G,E) is a Rado graph.

In what follows, define the relation Epn on strings of different length by
σEpnτ if and only if σ(|τ |) = 1 and |τ | < |σ|, or τ(|σ|) = 1 and |σ| < |τ |.

Theorem 6.3 (RCA0). There exists a Joyce Rado graph.

Proof. Consider g : 2<ω → 2<ω to be the function such that g(σ) = τ ,
where |τ | = 3|σ|+ 2, for all n < |σ|, τ(3n) = τ(3n+ 1) = τ(3n+ 2) = σ(n),
and τ(3|σ|) = 0, τ(3|σ| + 1) = 1. The image of g is a antichain. Fix an
injective function v : 2<ω → ω such that for every σ, τ ∈ 2<ω, if |σ| < |τ |
then v(σ) < v(τ), and for every σ, τ ∈ 2<ω, define !σ, τ" = v(σ ∧ τ). Last,
fix a cofinal set S ⊆ 2<ω such that for all σ, τ ∈ S, |σ| ∕= |τ |. The claim is
that (g[S], Epn, <lex, !·, ·") is a Joyce Rado graph.

We prove that (g[S], Epn, <lex, !·, ·") satisfies axioms (J1), (J2), (J3) and
(J4). Let x, y, z, t ∈ g[S], not all equal, with x ≤lex y and z ≤lex t.

(J1): Suppose !x, y" < !x, z". By definition, v(x ∧ y) < v(x ∧ z). By
choice of the map v, |x ∧ y| ≤ |x ∧ z|, so x <lex y iff z <lex y.

(J2): Suppose !x, y" < !x, z". By definition, v(x ∧ y) < v(x ∧ z). By
choice of the map v, |x∧y| ≤ |x∧z|, so x∧y = z∧y, hence v(x∧y) = v(z∧y).

87



88 6. THE RADO GRAPH THEOREM

(J3): Suppose !x, y" = !z, t". By definition, v(x ∧ y) = v(z ∧ t). By
injectivity of the map v, x ∧ y = z ∧ t, so x ∧ y ≺ x ∧ z and x ∧ y ≺ y ∧ t,
hence v(x ∧ y) <N min(v(x ∧ z), v(y ∧ t)).

(J4): Let x, y, z ∈ g[S]. Suppose !x, x" < !y, z". By definition, v(x) =
v(x ∧ x) < v(y ∧ z). By choice of the map v, |x| ≤ |y ∧ z|, but as the length
of elements of g[S] and the length of proper meets of g[S] are different by
construction, |x| < |y ∧ z|. Therefore y(|x|) = z(|x|) so xEpny iff zEpny.

It remains to show that (g[S], Epn) is a Rado graph. Let F0, F1 ⊆ g[S]
be finite disjoint sets. As S contains at most one element of each length,
and is cofinal, let σ be a string in S such that σ(ℓ) = i whenever there exists
τ ∈ S of size ℓ with g(τ) ∈ Fi. By definition of g, σEpnτ iff g(σ)Epng(τ),
so g(σ) is linked with all of F1 and none of F0. Therefore, (g[S], Epn) is a
Rado graph.

□
Corollary 6.4 (RCA0). Every Rado graph G = (G,E) can be ordered

and equipped with a function !·, ·" : G2 → N to form a Joyce Rado graph.

Proof. Let (X,Epn, <lex, !·, ·"X) be the Joyce Rado graph of Theo-
rem 6.3. By computable categoricity of the Rado graph, there exists a
graph isomorphism f between G = (G,E) and (X,Epn). Define x < y for
x, y ∈ G if and only if f(x) <lex f(y). Also define !·, ·" : G

2 → N by
!x, y" = !f(x), f(y)"X . Then (G,E,<, !·, ·") is a Joyce Rado graph. □

The first-order structure that is of interest for us is the following.

Definition 6.5. The Joyce (Rado) graph structure of a Joyce (Rado)
graph (G,E,<, !·, ·") is the structure (G,E,<,R) such that (G,<,R) is the
Joyce structure of the Joyce order (G,<, !·, ·").

We shall prove later that Joyce Rado graphs structures have big Ramsey
degree 1 for every finite Joyce graph structure.

Statement 6.6. For all n, k, ℓ ≥ 1, JRGn

k,ℓ is the assertion that for every

Joyce Rado graph structure G and every coloring f : [G]n → k, there exists
an isomorphic substructure G′ of G satisfying |f [G′]n| ≤ ℓ.

As every Joyce graph is in particular a Joyce order, every finite Joyce
graph of size n can be fully specified by a finite Joyce order and a finite
graph, both of size n, or equivalently by a finite Joyce tree with n leaves
and a finite graph of size n. In particular, for a fixed graph G of size n, there
are at most as many Joyce graphs isomorphic to it as there are Joyce trees
with n leaves. On the other hand, as we shall see in Figure 6.1, if a finite
graph G of size n is neither the clique, nor the anti-clique with n vertices,
there are some Joyce orders of size n which cannot be enriched to form a
Joyce graph isomorphic to G.

Theorem 6.7 (Joyce Rado graph theorem). For all n, k ≥ 1, JRGn

k,Jn

holds, where Jn is the number of non isomorphic Joyce graphs with n ele-
ments. Moreover, this bound is tight: JRGn

k,ℓ does not hold for any ℓ < Jn.
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Just as we did for the Joyce order, we can canonically represent any
countable Joyce graph as a set of strings equipped with the lexicographic
order and |· ∧ ·|, but also the relation Epn.

Definition 6.8. A coded Joyce graph is a Joyce graph of the form

(X,Epn, <lex, | · ∧ · |)

such that for all σ, τ, ρ ∈ X with σ ∕= τ , |ρ| > |σ ∧ τ | and σ ∧ τ ∕≼ ρ, we have
ρ(|σ ∧ τ |) = 0.

Note that if (X,Epn, <lex, | · ∧ · |) is a coded Joyce graph, that does
not mean that (X,<lex, | · ∧ · |) is a coded Joyce order. Indeed, there is no
restriction on ρ(|σ ∧ σ|) in the case of a coded Joyce graph, while this value
must be 0 in the case of a coded Joyce order. The two notions thus coincides
if and only if ¬σEpnτ for every σ, τ ∈ X, by definition of Epn.

x0 x1 x2

(a)

0

0 0
x2

x0
1

x1

(b)

0

1
x1

0

x0
0

x2

(c)

1

2

3

5 4

(d)

1

2

3

4 5

(e)

1

2

5

4 3

(f)

Figure 6.1. In (a), a finite graph G =
({x0, x1, x1}, {{x0, x1}}). In (b) and (c), two coded
Joyce graphs isomorphic to G. The trees (e) and (f) are
Joyce trees corresponding the coded Joyce graphs (b) and
(c), respectively. In (d), a Joyce tree which cannot represent
the graph G. Indeed, since there is an edge between x0 and
x1 but not between x0 and x1, then for any coded Joyce
graph {σ0,σ1,σ2} representing G, |σ1 ∧ σ2| < |σ0|.

Theorem 6.9 (RCA0). Every countable Joyce graph is isomorphic to a
coded Joyce graph.
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Proof. Let (G,E,<, !·, ·") be a countable Joyce graph. Let σx ∈ 2<ω

be the unique string of length !x, x", such that for any j < !x, x":
(1) if j = !x, y" for some y ∈ G, then σx(j) = 1 if and only if y < x;
(2) if j = !y, y" for some y ∈ G, then σx(j) = 1 if and only if xEy;
(3) σx(j) = 0 otherwise.

One first need to show that σx is well-defined. First, there is no y, z ∈ G such
that !y, z" = !z, z" by (J3), so Item 1 and Item 2 are compatible. Item 1 do
not contradict itself as there is no y, z ∈ G such that !y, y" = !z, z", also by
(J3). It remains to show that Item 2 does not contradict itself: Let x, y, z ∈
G be such that !x, y" = !x, z" < !x, x". Then, by (J3) !x, y" <N !y, z" and
by (J1) we have x < z iff x < z. So σx is well-defined.

Let X = {σx : x ∈ G}. We claim that (X,Epn, <lex, | · ∧ · |) is a Joyce
graph whose structure is isomorphic to the Joyce structure of (G,E,<, !·, ·").

Let σx,σy ∈ X. We have |σx| = !x, x" ∕= !y, y" = |σy|, we suppose
|σx| < |σy|. But then, σxEpnσy iff σy(|σx|) = 1 iff xEy by Item 2.

The rest of the proof follows the same argument that the construction
in the proof of Theorem 5.11 works. We prove that for all x, y, z, t ∈ G,
!x, y" < !z, t" =⇒ |σx ∧ σy| <N |σz ∧ σt|. We actually prove the stronger
fact that for every x, y ∈ G, !x, y" = |σx ∧ σy|. If x = y, it is clear as by
construction, σx is of length !x, x". If x ∕= y, we first prove that !x, y" ≤
|σx ∧ σy|: indeed, for all n < !x, y", by (J1), (J4) and the construction, we
have σx(n) = 1 iff σy(n) = 1. It remains to show !x, y" ≥ |σx ∧ σy|: if x < y

we have that σx(!x, y") = 0 ∕= 1 = σy(!x, y") by Item 1, so !x, y" ≥ |σx∧σy|,
and similarly for x > y.

Let x < y ∈ G. Then, !x, y" = |σx ∧ σy|, thus σx(|σx ∧ σy|) = 0 ∕= 1 =
σy(|σx ∧ σy|) by Item 2. It follows that σx <lex σy.

□

Corollary 6.10. There exists a computably coded Joyce Rado graph.

Proof. Immediate by Theorem 6.9 and Theorem 6.3. □

6.2. Joyce blossom graphs and an embedding theorem

Definition 6.11. A blossom tree is a pair (f, g) where f : 2<ω → 2<ω

is a ≺-preserving, <lex-preserving and ∧-preserving function, such that for
every σ, τ ∈ 2<ω:

(1) g(σ) ≻ f(σ);
(2) if |τ | > |σ| then |f(τ)| > |g(σ)|;
(3) if |τ | = |σ| then f(τ0)(|g(σ)|) ∕= f(τ1)(|g(σ)|).

A Joyce blossom graph is a structure (g[S], Epn, <lex, |·∧·|) for some blossom
tree (f, g) and some set S cofinal in 2<ω such that for all σ, τ ∈ S

∧, |σ| ∕= |τ |.

Note that a Joyce blossom graph G is a Joyce Rado graph: indeed, let
F0 and F1 be two disjoint finite sets of vertices of G, and let f, g and S be
the witnesses of the fact that G is a Joyce blossom graph. By Item 3 of the
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definition, there exists σ ∈ f [2<ω] with |σ| > max{|τ | : τ ∈ F0 ∪ F1} and
such that for every τ ∈ F0 ∪ F1 σ(|τ |) = 0 iff τ ∈ F0. By the fact that S

is cofinal, let ρ ≻ f
−1(σ) in S. Then, g(ρ) ≻ σ, and therefore g(ρ)Epnτ if

τ ∈ F1 and ¬g(ρ)Epnτ if τ ∈ F0. The Joyce requirements are satisfied by
the fact that the relations are Epn, <lex and | ·∧ · |, and that for all σ, τ ∈ S

∧,
|σ| ∕= |τ |.

Note that if (f, g) is a blossom tree, then letting B = g[2<ω] it fol-
lows by Item 1 that (B,≼) is an antichain and (B,<lex) contains a dense
linear order with no endpoints. From a computability-theoretic viewpoint,
≺-preservation of f and Item 1 of Definition 6.11 ensures that if (f, g) is
computable, then so is g[2<ω]. Conversely, Item 2 of Definition 6.11 implies
that (f, g) is computable from g[2<ω]. One can therefore switch from one
notion to the other in the computability realm.

Lemma 6.12. There exists a computable Joyce blossom graph, with a
DLO induced order.

Proof. Let g and S be the objects defined in the proof of Theorem 6.3,
and G = (g[S], Epn, <lex, !·, ·") be the Joyce graph defined in the same proof.
By Theorem 6.9, let G′ = (G′

, Epn, <lex, | · ∧ · |) be the coded Joyce Rado
Graph computably isomorphic to G via e.

It remains to show that G′ is a Joyce blossom graph. Define g
′ = e ◦ g

and f : σ 8→ g
′(τ0) ∧ g

′(τ1). It is easy to check that f , g′ and the set S are
witnesses of the fact that G′ is a Joyce blossom graph. □

Lemma 6.13 (RCA0). For every Rado graph (G,E), there exists a graph
embedding e : (2<ω

, Epn) → (G,E).

Proof. Let (σn)n∈ω be an enumeration of 2<ω such that |σn| > |σm|
implies n > m. Suppose e(σi) is defined for every i < n. Let F0 = {e(τ) : τ ∈
2<ω

, |τ | < |σn|,σn(|τ |) = 0} and F1 = {e(τ) : τ ∈ 2<ω
, |τ | < |σn|,σn(|τ |) =

1}. By the fact that (G,E) is a Rado graph, there exists an g ∈ G such that
for all a ∈ F0, ¬aEg and for all a ∈ F1, aEg, and g is not already in the
image of e. Define e(σn) = g. □

Theorem 6.14 (ACA0). For every coded Joyce Rado graph G = (G,E,<

, !·, ·"), there is an embedding from a Joyce blossom graph to G.

Proof. We show the stronger result that there exists a blossom tree
(f, g) such that (g[2<ω], Epn, <lex, | · ∧ · |) embeds into G. Thus, for any
S ⊆ 2<ω such that for all σ, τ ∈ S

∧ we have |σ| ∕= |τ | whenever σ ∕= τ , we
have (g[S], Epn, <lex, | · ∧ · |) embeds into G.

Let e : (2<ω
, Epn) → (G,Epn) be the graph embedding constructed in

Lemma 6.13. We say that L ⊆ 2<ω is large above τ ∈ 2<ω if e−1[L] is cofinal
in 2<ω above τ . The set L is large if it is large above some τ ∈ 2<ω. Note
that the collection of large sets is partition regular, that is, if L0∪ · · ·∪Ld−1

is large, then there is some j < d such that Lj is large. Moreover, if L is
large above τ , then it is large above any ρ ≽ τ . Last, G is large above &.
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Given a σ ∈ 2<ω, we write G ↾ σ = {τ ∈ G : τ ≽ σ}. Note that if G ↾ σ is
large above τ , then so is G ↾ ρ for every ρ ≼ σ.

The following claim is the combinatorial core of the theorem.

Claim 6.15. If G ↾ σ is large, then for cofinitely many ρ ∈ 2<ω, there
are some σ0,σ1 ∈ G such that G ↾ σ0 and G ↾ σ1 are large, σ ≼ σ0 ∧ σ1 and
σ0(ℓ) ∕= σ1(ℓ), where ℓ = |e(ρ)|.

Proof. Say G ↾ σ is large above some τ . Pick any ρ ∈ 2<ω such that
|ρ| ≥ |τ |. Since if G ↾ σ is large above τ , G ↾ σ is large above any µ ≽ τ ,
then we can assume that |τ | = |ρ|. Unfolding the definition of largeness, the
set C = e

−1[G ↾ σ] is cofinal above τ . Since e : (2<ω
, Epn) → (G,Epn) is

a graph embedding and |τ | = |ρ|, then for every µ ≽ τ0, ¬(µEpnρ), hence
¬(e(µ)Epne(ρ)) and for every µ ≽ τ1, µEpnρ, hence e(µ)Epne(ρ). It follows
that, letting L0 = {ν ∈ G ↾ σ : ¬(νEpne(ρ))} and L1 = {ν ∈ G ↾ σ :
νEpne(ρ)}, then C0 = e

−1[L0] = {µ ≽ τ0 : µ ∈ C} and C1 = e
−1[L1] =

{µ ≽ τ1 : µ ∈ C}. Since C is cofinal above τ , then C0 and C1 are cofinal
above τ0 and τ1, respectively, so L0 and L1 are large above τ0 and τ1,
respectively.

Let ℓ = |e(ρ)|. Note that since L0 and L1 are both non-empty, then
ℓ ≥ |σ|. L0 =

!
ν≽σ:|ν|=ℓG ↾ ν0 and L1 =

!
ν≽σ:|ν|=ℓG ↾ ν1. By partition

regularity of largeness, there are some ν0, ν1 ≽ σ such that |ν0| = |ν1| = ℓ,
and G ↾ ν00 and G ↾ ν11 are large. Let σ0 = ν00 and σ1 = ν11. This proves
our claim. □

We are now ready to prove Theorem 6.14. Using Claim 6.15, we build a
≺-preserving and <lex-preserving function φ : 2<ω → 2<ω, together with a
function g : 2<ω → G such that for every σ ∈ 2<ω:

(1) G ↾ φ(σ) is large; g(σ) ≽ φ(σ0) ∧ φ(σ1);

(2) for every ρ ∈ 2|σ|, φ(ρ0)(|g(σ)|) ∕= φ(ρ1)(|g(σ)|).
Initially, φ(&) = & and g is nowhere defined. Assume φ is defined over

2≤k and g over 2<k for some k ∈ ω.
Defining φ. Consider successively each σ ∈ 2k. By partition regularity

of largeness, G ↾ ν is large for some ν ≽ φ(σ) such that |ν| is bigger than
any value considered so far. By Claim 6.15, there is a ρ two nodes µ0, µ1

extending ν such that, letting ℓ = |e(ρ)|, G ↾ µ0 and G ↾ µ1 are large
and µ0(ℓ) < µ1(ℓ). Temporarily define φ(σ0) = µ0 and φ(σ1) = µ1. The
actual value of φ(σ0) and φ(σ1) might change while defining g, but will be
extensions of these strings. Since φ(σ0)∧φ(σ1) = µ0∧µ1 ≽ ν, |φ(σ0)∧φ(σ1)|
is bigger than any value considered so far.

Defining g. Consider successively each τ ∈ 2k. We need to define g(τ)
so that it satisfies Item 2. Since G ↾ φ(τ) is large, it is infinite, so by Claim
6.15, there is a single ρ such that e(ρ) ≽ φ(τ) and ℓ = |e(ρ)| is bigger than
any value considered so far, and for every σ ∈ 2k and i < 2 there are two
extensions µ0, µ1 of φ(σi) such that µ0(ℓ) < µ1(ℓ). Then let φ(σi) = µi and
g(τ) = e(ρ) and consider the next τ ∈ 2k.
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Defining f . We now define f so that (f, g) is a blossom tree. For every
σ ∈ 2<ω, let f(σ) = φ(σ0) ∧ φ(τ0). Then f : 2<ω → 2<ω is a ≺-preserving,
<lex-preserving and ∧-preserving function such that for every σ ∈ 2<ω:

(1) g(σ) ≽ f(σ) ≽ φ(σ);

(2) for every ρ ∈ 2|σ|, f(ρ0)(|g(σ)|) ∕= f(ρ1)(|g(σ)|).
Thus (f, g) is a blossom tree, with g : 2<ω → G. Let S ⊆ 2<ω be a cofinal
set such that S

∧ has at most one string of each length. The structure
(g[S], Epn, <lex, | · ∧ · |) is a Joyce blossom graph. □

Theorem 6.16 (RCA0). For every Joyce blossom graph G and every
(finite or infinite) Joyce graph F , there is a Joyce structure embedding from
F to G.

Proof. Let (f, g) be the blossom tree and S ⊆ 2<ω such that G =
(g[S], Epn, <lex, | ·∧ · |). Let F ⊆ 2<ω be the domain of a coded Joyce graph
isomorphic to F . Let D = {di : i ∈ |F∧|} be an enumeration of F∧ such
that i < j implies |di| < |dj |. We first build a function φ : D → S. Define
φ(d0) to be any element of S. Suppose φ(di) is defined for i < n. Then dn

is mapped to any element of S extending σ, where σ is the string of length
|φ(n− 1)|+ 1, such that:

(1) if k < |σ| and k ∕= |φ(di)| for any i < n, then σ(k) = 0;
(2) if di ≺ dn, then σ(|φ(di)|) = 1 iff di1 ≺ dn;
(3) Otherwise σ(|φ(di)|) = j so that f(σ)(|g(φ(di))|) = dn(|di|).

The last item can be satisfy for a single j by Item 3 of Definition 6.11.
The string σ is uniquely defined, and φ(dn) ∈ S extending σ exists as S is
cofinal. Note that φ is ≺-preserving: if dn ≺ dm, then by Item 1, for any
k < |φ(dn)| if k ∕∈ {|φ(di) : i < n}, then φ(dn)(k) = φ(dm)(k). By Item 2
for any i such that di ≺ dn, φ(dn)(|φ(di)|) = φ(dm)(|φ(di)|). By Item 3
and the fact that f is ≺-preserving, for i such that di ∕≺ dn, we again have
φ(dn)(|φ(di)|) = φ(dm)(|φ(di)|). So φ is ≺-preserving.

Define ψ = g ◦φ. We claim that ψ : F → g[S] preserves the Joyce graph
structure. In order to show the claim, we have to prove that it preserves
<lex, and that for any dn0

, dn1
, dm0

, dm1
∈ F , |dn0

∧ dn1
| < |dm0

∧ dm1
|

implies |ψ(dn0
) ∧ ψ(dn1

)| < |ψ(dm0
) ∧ ψ(dm1

)|, and finally that for any
dn, dm ∈ F , dnEpndm implies ψ(dn)Epnψ(dm). The proof of these three
facts are respectively in the three following paragraphs.

The fact that φ is ≺-preserving implies that φ(dn∧dm) ≺ φ(dn)∧φ(dm).
By Item 2, φ(dn ∧ dm) ≻ φ(dn) ∧ φ(dm): indeed, φ(dn)(|φ(dn ∧ dm)|) ∕=
φ(dm)(φ(|dn ∧ dm|)). So φ is ∧-preserving, and by Item 2, it is also <lex-
preserving. The function g is also <lex-preserving: f is <lex-preserving, and
f(σ) ≺ g(σ) for every σ ∈ 2<ω. So ψ = g ◦ φ is <lex-preserving.

By the second item of Definition 6.11, for all σ, τ ∈ 2<ω with |σ| ∕= |τ |,
|σ| < |τ | ⇐⇒ |g(σ)| < |g(τ)| ⇐⇒ |f(σ)| < |f(τ)| ⇐⇒ |g(σ)| <

|f(τ)| ⇐⇒ |f(σ)| < |g(τ)|. So |dn| < |dm| ⇐⇒ |ψ(dn)| < |ψ(dm)|.
Now, suppose |dn0

∧ dn1
| < |dm0

∧ dm1
| for some dn0

, dn1
, dm0

dm1
∈ F . Let
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dn = dn0
∧ dn1

and dm = dm0
∧ dm1

. If dn0
∕= dn1

, then ψ(dn0
) ∧ ψ(dn1

) =
f(φ(dn)), otherwise ψ(dn0

)∧ψ(dn1
) = g(φ(dn)); and similarly for m0,m1,m

with dm = dm0
∧ dm1

. So, depending whether dn, dm ∈ F , we use one of the
previous equivalence to get that |ψ(dn0

) ∧ ψ(dn1
)| < |ψ(dm0

) ∧ ψ(dm1
)|.

Finally, for any n < m,

ψ(dm)(|ψ(dn)|) = g(φ(dm))(|g(φ(dn))|) = f(φ(dm))(|g(φ(dn))|)
as g(φ(dm)) ≻ f(φ(dm)). By Item 3 φ(dm) is chosen so that

f(φ(dm))(|ψ(dn)|) = dm(|dn|). □

Corollary 6.17 (ACA0). Let G be a Joyce Rado graph, and F be a
(finite or infinite) Joyce graph. Then, there exists an embedding from F to
G.

Proof. By Theorem 6.9, we can assume that G is a coded Joyce Rado
graph. By Theorem 6.14, there is an embedding of a Joyce blossom graph
B to G. By Theorem 6.16, there is an embedding of F to B. Thus there is
an embedding of F to G. □

Recall that the age of a graph G is the collection of all finite graphs that
are isomorphic to a subgraph of G.

Corollary 6.18. The age of a Joyce Rado graph is the set of finite
Joyce graphs.

Theorem 6.19. There is a computable Joyce Rado graph G such that
for every Joyce blossom graph B, every embedding of B to G computes ∅′.

Proof. The idea of the proof is to build a Joyce Rado graph with
domain G such that if S ⊆ 2<ω is a cofinal set with at most one meet of each
length, f : 2<ω → G

∧ and g : 2<ω → G form a blossom tree, and σ, τ ∈ 2<ω

are such that |g(σ)∧g(τ)| > 3j, then ∅′(j) = 1 iff g(σ)(3j+2) = g(σ)(3j+2)
iff g(τ)(3j + 2) = g(τ)(3j + 2).

Let (G0, E) be a Rado graph, and let (gn)n∈ω be an enumeration of G0,
and (∅′s)s∈ω a computable approximation of ∅′. Define σn to be the unique
string of length 3n+ 2 such that:

(1) σn(3n) = 0 and σn(3n+ 1) = 1;
(2) for any j < n, σn(3j + 1) = 0 and

(a) if ∅′n(j) = 0 and gnEgj then σn(3j) = 0 and σn(3j + 2) = 1,
(b) if ∅′n(j) = 0 and ¬gnEgj then σn(3j) = 1 and σn(3j +2) = 0 ,
(c) if ∅′n(j) = 1 and gnEgj then σn(3j) = 1 and σn(3j + 2) = 1,
(d) if ∅′n(j) = 1 and ¬gnEgj then σn(3j) = 0 and σn(3j + 2) = 0.

Let G = {σn : n ∈ N}. It is clear that (G,Epn) is a Rado graph, as
it is in bijection with G0 via gn 8→ σn since gnEgm iff σnEpnσm. Define
!σn,σm" = v(σn∧σm) where v is a fixed injective function 2<ω → ω such that
if |σ| < |τ | then v(σ) < v(τ). Then by construction, G = (G,Epn, <lex, !·, ·")
is a Joyce Rado graph.
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Now, suppose that f : 2<ω → G
∧ and g : 2<ω → G form a Joyce blossom

graph. The claim is the following: if σ, τ ∈ 2<ω are such that |g(σ)∧g(τ)| >
3j, then ∅′(j) = 1 iff g(σ)(3j+2) = g(σ)(3j+2) iff g(τ)(3j+2) = g(τ)(3j+2).

Indeed, recall that g(σ) ∧ g(τ) = f(σ) ∧ f(τ). Let ρ ≻ σ be such that
|g(ρ)| ≥ 3n+2 where ∅′n(j) = ∅′(j). By construction, g(ρ)(3j) = g(ρ)(3j+2)
iff ∅′n(j) = 1 iff ∅′(j) = 1. As ρ ≻ σ, we have g(ρ) ≻ f(σ) ≺ g(σ) so finally
g(σ)(3j) = g(σ)(3j + 2) iff ∅′(j) = 1.

Therefore, given g, to know the value of ∅′(j), it suffices to find σ, τ ∈ S

such that |g(σ) ∧ g(τ)| > 3j, and answer according to whether g(σ)(3j) =
g(σ)(3j + 2). □

Corollary 6.20. Corollary 6.17 implies ACA0.

6.3. A proof of the Rado Graph theorem

Definition 6.21. A Joyce graph diagonalization for some Joyce graph
(U,EU , <U , !·, ·"U ) is a function h : 2<ω → U , such that for every coded
Joyce graph X, (h[X], EU , <U , !·, ·"U ) is isomorphic to X.

Theorem 6.22 (RCA0). There exists a Joyce Rado graph (2<ω
, ET , <T

, !·, ·"T ) such that for every coded Joyce order X, the Joyce structures of
(X,ET , <T , !·, ·"T ) and (X,Epn, <lex, | · ∧ · |) are isomorphic.

Proof. Let (U,Epn, <lex, !·, ·"U ) be the Joyce Rado graph defined in
Theorem 6.3, that is, U = (000 ∪ 101)∗01 and !σ, τ"U = v(σ ∧ τ) for some
injective function v : 2<ω → ω such that for every σ, τ ∈ 2<ω, if |σ| < |τ |
then v(σ) < v(τ).

Define the Joyce Rado graph (2<ω
, Epn, <T , !·, ·"T ) as follows: Given

σ ∈ 2<ω, let σ̂ be the binary string of length 3|σ| + 2 defined for every
j < |σ| by σ̂(3j) = σ(j), σ̂(3j + 1) = σ̂(3j + 2) = 0, and σ̂(3|σ|) = 0 and
σ̂(3|σ|+ 1) = 1. For instance, if σ = 0110 then σ̂ = 00010010000001. Then
let σ <T τ if and only if σ̂ <lex τ̂ and !σ, τ"T = !σ̂, τ̂"U .

Let X be a coded Joyce order. We claim that (X,Epn, <T , !·, ·"T ) and
(X,Epn, <lex, | · ∧ · |) are isomorphic.

Fix σ, τ ∈ X. If σ <lex τ , then σ̂ <lex τ̂ , hence σ <T τ . Conversely, if
σ <T τ , then σ̂ <lex τ̂ , but since σ and τ are incomparable with respect to
the prefix relation, this implies that σ <lex τ . Thus σ <T τ if and only if
σ <lex τ .

Fix σ, τ, ρ, µ ∈ X. If |σ∧τ | <N |ρ∧µ|, then |σ̂∧ τ̂ | <N |ρ̂∧ µ̂|, then v(σ̂∧
τ̂) <N v(ρ̂ ∧ µ̂), hence !σ, τ"T <N !ρ, µ"T . Conversely, assume !σ, τ"T <N
!ρ, µ"T . Unfolding the definition, v(σ̂ ∧ τ̂) <N v(ρ̂ ∧ µ̂). If |σ̂ ∧ τ̂ | ∕= |ρ̂ ∧ µ̂|,
then by definition of v, |σ̂ ∧ τ̂ | <N |ρ̂ ∧ µ̂|, hence |σ ∧ τ | <N |ρ ∧ µ|. If
|σ̂ ∧ τ̂ | = |ρ̂ ∧ µ̂|, then since X is a coded Joyce graph, σ ∧ τ = ρ ∧ µ, so
σ̂ ∧ τ̂ = ρ̂ ∧ µ̂ and v(σ̂ ∧ τ̂) = v(ρ̂ ∧ µ̂), contradiction. □

Corollary 6.23 (ACA0). Every Joyce Rado graph (U,EU , <U , !·, ·"U )
has a Joyce graph diagonalization.
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Proof. Let (2<ω
, ET , <T , !·, ·"T ) be the Joyce Rado graph of Theo-

rem 6.22. By Corollary 6.17, there is an embedding h : 2<ω → U . By defini-
tion of an embedding, for every coded Joyce graph X ⊆ 2<ω, (h[X], EU , <U

, !·, ·"U ) is isomorphic to (X,ET , <T , !·, ·"T ). By Theorem 6.22, (X,ET , <T

, !·, ·"T ) is isomorphic to (X,Epn, <lex, | · ∧ · |). Thus h is a Joyce graph
diagonalization. □

In the case of Joyce blossom graphs, the existence of a Joyce graph
diagonalization holds in RCA0;

Corollary 6.24 (RCA0). Every Joyce blossom graph has a Joyce graph
diagonalization.

Proof. Similar to the proof of Corollary 6.23, but apply Theorem 6.16
instead of Corollary 6.17. □

Lemma 6.25. Let F be a finite coded Joyce graph of size n and T ∈
Sω(2

<ω). Then every E ∈ S2n−1(T ) contains at most one coded Joyce graph
isomorphic to F . Moreover, every coded Joyce graph H ⊆ T isomorphic to
F is included in some E ∈ S2n−1(T ).

Proof. The proof is a straightforward adaptation of Lemma 5.21, mu-
tatis mutandis. □

Theorem 6.26 (ACA0). Let G be a Joyce Rado structure, and F be a
finite Joyce graph. Then, the big Ramsey number of F in G is 1.

Proof. Let X be a countable coded Joyce Rado graph and F be a finite
coded Joyce Rado graph of size n. Fix a coloring f :

$
X

F

%
→ k. Here,

$
X

F

%

denotes all the subcopies of F in X.
Let h : 2<ω → X be a Joyce graph diagonalization, which exists by

Corollary 6.23. Let g : Sn(2
<ω) → k be defined for every E ∈ S2n−1(2

<ω)
by g(E) = f(h(H)) where H ⊆ E is the unique element coded Joyce graph
isomorphic to F , if it exists. Otherwise let g(E) = 0. This coloring is
well-defined by Lemma 5.21.

By Milliken’s tree theorem for height 2n − 1, there is a strong subtree
S ∈ Sω(2

<ω) such that g restricted to S2n−1(S) is monochromatic for some
color i < k. In particular, by Lemma 6.25, for every coded Joyce graph
H ⊆ S isomorphic to F , there is some E ∈ S2n−1(S) containing H, and
g(E) = f(h(H)) = i.

Since S ∈ Sω(2
<ω), there is an injective function φ : 2<ω → S such

that φ[X] is a coded Joyce graph isomorphic to X. In particular, since h

is a Joyce graph diagonalization, Y = h[φ[X]] is a coded Joyce Rado graph
isomorphic to X, hence a subcopy of X.

We claim that f restricted to
$
Y

F

%
is monochromatic for color i. Let Ĥ

be a copy of F in Y = h[φ[X]]. Let H ⊆ φ[X] be such that h[H] = Ĥ. In
particular since φ[X] is a coded Joyce graph, so is H, so since h is a Joyce

graph diagonalization, Ĥ = h[H] is a coded Joyce graph isomorphic to H.
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In other words, H is a copy of F in φ[X] ⊆ S, so H is a copy of F in S.

By choice of S, f(h[H]) = i, so f(Ĥ) = i. This completes the proof of
Theorem 6.26. □

Corollary 6.27 (ACA0). The statement (∀k)JRGn

k,Jn
holds, where Jn

is the number of non isomorphic Joyce graph structure with n elements,
while (∀k)JRGn

k,Jn−1 does not hold.

Proof. Let ℓ be the number of Joyce graph with n elements. Let
F0, . . . , Fℓ−1 be a finite enumeration of all the finite coded Joyce graph struc-
tures of size n.

We first prove that JRGn

k,ℓ holds. Fix a coloring f : [X]n → k for some

countable Joyce Rado graph structure (X,E,<,R). By Theorem 5.22, build
a finite decreasing sequence of subsets X = X0 ⊇ X1 ⊇ · · · ⊆ Xℓ of X such
that for every s < ℓ:

(1) (Xs+1, E,<,R) is a subcopy of (Xs, E,<,R);
(2) every copy of F in (Xs+1, E,<,R) is monochromatic for f for some

color is < k

The Joyce graph structure (Xℓ, E,<,R) is a subcopy of (X,<,R). Moreover,
for every E ∈ [Xℓ]

n, (E,<,R) is isomorphic to Fs for some s < k, so
f(E) = is. It follows that f [Xℓ]

n ⊆ {is : s < ℓ}, hence |f [Xℓ]
n| ≤ ℓ.

We now show that the bound is tight. Let f : [X]n → k be defined by
f(H) = s for the unique s < ℓ such that (H,E,<,R) is isomorphic to Fs.
Let (Y,E,<,R) be a subcopy of (X,E,<,R). In particular, (Y,E,<,R) is a
Joyce Rado graph structure, so by Corollary 6.17, for every s < ℓ, there is
an embedding of Fs into (Y,E,<,R). Therefore, |f [Y ]n| ≥ ℓ. □

Theorem 6.28 (ACA0). Let G = (G,E,<,R) be a Joyce graph structure.
Let G′ = (g′, E) be an isomorphic subcopy of (G,E), that is, a Rado graph.
Then, there exists a subcopy (G′′

, E) of (G′
, E) such that (G′′

, E,<,R) is a
subcopy of G.

Proof. The structure X̂′ = (X ′
, E,<,R) is a Joyce Rado graph struc-

ture, even if it might not be isomorphic to X. By Corollary 6.17, there exists
an embedding of X into X̂′. The image of the embedding is X′′. □

Note that contrary to the case of Joyce orders, for which the proof
that Devlin’s theorem implies the Joyce Devlin theorem holds in RCA0,
the following corollary holds in ACA0. The difference comes from proof of
Corollary 6.17 which is more complex than Theorem 5.16.

Corollary 6.29 (ACA0). The Rado Graph theorem for n-tuples and ℓ
colors implies the Joyce Rado graph theorem for n-tuples and ℓ colors.

Corollary 6.30 (ACA0). The tight bound for the Rado graph theorem
and the Joyce Rado graph theorem for n elements are the same, that is, the
number of Joyce graph structures with n elements.
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Proof. Let b0 and b1 be the tight bound for the Rado graph theorem
and the Joyce Rado graph theorem for n elements, respectively.

We first claim that b0 ≤ b1. Let (X,E) be a Rado graph. By Corol-
lary 6.4, one can enrich this graph with an order < and a relation R so that
(X,E,<,R) is a Joyce Rado graph structure. Let f : [X]n → k be a coloring.
By choice of b1, there is a Joyce subcopy (Y,E,<,R) of (X,E,<,R) such
that |f [Y ]n| ≤ b1. In particular, (Y,E) is a subcopy of (X,E) so b0 ≤ b1.

We then claim that b1 ≤ b0. Let (X,E,<,R) be a Joyce Rado graph
structure. Let f : [X]n → k be a coloring. By choice of b0, there is a
subcopy (Y,E) of (X,E) such that |f [Y ]n| ≤ b0. By Theorem 6.28, there
is a subcopy (Z,E) of (Y,E) such that (Z,E,<,R) is a Joyce subcopy of
(X,E,<,R). In particular, |f [Z]n| ≤ b0. Thus b1 ≤ b0.

It follows that b0 = b1. Moreover, by Corollary 5.24, this tight bound is
the number of Joyce graph structures with n elements. □

6.4. Cone avoidance of the Rado Graph theorem for pairs

Theorem 6.31. Fix two sets C and Z such that C ∕≤T Z. Let

B = (B,Epn, <lex, | · ∧ · |)

be a Z-computable Joyce blossom graph. For every Z-computable function
f : [B]2 → k, there exists a subcopy (U,Epn, <lex, | · ∧ · |) of B and a finite
set of colors I ⊆ k such that C ∕≤T U ⊕ Z, |I| ≤ 4, and

(∀ℓ0)(∀∞ℓ1)(∀∞ℓ2)[f [U(ℓ0, ℓ1, ℓ2)]
2 ⊆ I],

where U(ℓ0, ℓ1, ℓ2) is the set of Joyce subgraphs of size 2 whose labels are
exactly ℓ0, ℓ1, ℓ2, that is, U(ℓ0, ℓ1, ℓ2) = {{σ, τ} ∈ [U ]2 : |σ ∧ τ | = ℓ0, |σ| =
ℓ1, |τ | = ℓ2}.

Proof. By Corollary 6.24, there is a Z-computable Joyce graph diago-
nalization h : 2<ω → B. Let F0,F1,F2,F3 be the 4 Joyce graph structures
of size 2.

For every j < k, let gj : S3(2
<ω) → k be defined for every E ∈ S3(2

<ω)
by g(E) = f(h(H)) where H ⊆ E is the unique element coded Joyce graph
isomorphic to Fj , if it exists. Otherwise let g(E) = 0. This coloring is
well-defined by Lemma 5.21.

By 4 successive applications of Theorem 4.11, there exists a strong sub-
tree R ∈ Sω(2

<ω) such that for each j < 4, gj restricted to S3(R) is stable.
For each j < 4, let ĝj : S2(R) → k be the (non-computable) limit coloring
of gj .

Again, by 4 successive applications of Theorem 4.11, there exists a strong
subtree S ∈ Sω(R) such that for each j < 4, ĝj restricted to S2(S) is stable.
For each j < 4, let µj : S → k be the (non-computable) limit coloring of ĝj .

Last, by 4 successive applications of Theorem 3.21, there exists a strong
subtree T ∈ Sω(T ) such that for each j < 4, µj restricted to T is monochro-
matic for some color ij < 4. Let I = {ij : j < 4}.
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In particular, by Lemma 6.25, for every coded Joyce graph H ⊆ T

isomorphic to Fj , there is some E ∈ S3(S) containing H, and gj(E) =
f(h(H)).

Let (X,Epn, <lex, | · ∧ · |) be a Z-computable coded Joyce graph iso-
morphic to B, which exists by Theorem 6.9. Since T ∈ Sω(2

<ω), there is
an injective function φ : 2<ω → T such that φ[X] is a coded Joyce graph
isomorphic to X, hence to B. In particular, since h is a Joyce graph di-
agonalization, U = h[φ[X]] is a coded Joyce Rado graph isomorphic to X,
hence a subcopy of B.

We claim that the statement of the theorem holds for U , f and I. Given
any ℓ ∈ ω, there is at most one level n ∈ ω such that for every σ, τ ∈ T with
|σ ∧ τ | = n, |h(φ(σ))∧ h(φ(τ))| = ℓ. We call n the preimage of ℓ. Moreover,
if ℓ is a label of U , that is, there is some ρ, ν ∈ U such that |ρ∧ ν| = ℓ, then
it has a preimage.

Fix ℓ0 ∈ ω. If ℓ0 has no preimage, then U(ℓ0, ℓ1, ℓ2) = ∅ for every ℓ1, ℓ2
and the property is vacuously satisfied. Let n0 be the preimage of ℓ0. Since
for every j < 4, ĝj is stable over Sω(T ) with limit color ij , there is some
threshold t0 ∈ ω such that for every strong subtree E of U of height 2 whose
first level is n0 and second is higher than t0, ĝj(E) = ij . For all but finitely
many ℓ1, the preimage of ℓ1, if it exists, is larger than t0. Fix any such ℓ1
with preimage n1. For every j < 4, since ĝj is the limit coloring of gj , there
is a threshold t1 ∈ ω such that for every strong subtree E of height 3 whose
first two levels are n0 and n1, respectively, and whose last level is higher
than t1, gj(E) = ij . For all but finitely many ℓ2, its preimage is larger than
t1.

Fix any such ℓ2, and let Ĥ ∈ U(ℓ0, ℓ1, ℓ2). Let j < 4 be such that Ĥ

is isomorphic to Fj . Let H ⊆ φ[X] be such that h[H] = Ĥ. In particular
since φ[X] is a coded Joyce graph, so is H, so since h is a Joyce graph

diagonalization, Ĥ = h[H] is a coded Joyce graph isomorphic to H. In

other words, H is a copy of Ĥ in φ[X] ⊆ T , so H is a copy of Fj in T . By

choice of T , f(h[H]) = ij , so f(Ĥ) = ij ∈ I. This completes the proof of
Theorem 6.31. □

Theorem 6.32. (∀k)RG2
k,4 admits cone avoidance.

Proof. Fix two sets Z,C such that C ∕≤T Z. Let (V,E) be a Z-
computable Rado graph and h : [V ]2 → k be a Z-computable coloring.

By computable categoricity of the Rado graph, (V,E) is Z-computably
isomorphic to the graph of a computable Joyce blossom graph

B = (B,Epn, <lex, | · ∧ · |).

This induces a Z-computable coloring ĥ : [B]2 → k by composing the
coloring h with the isomorphism. By Theorem 6.31, there is a subcopy
(U,Epn, <lex, |·∧·|) of B and a finite set of colors I ⊆ k such that C ∕≤T U⊕Z,
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|I| ≤ 4, and

(6.1) (∀ℓ0)(∀∞ℓ1)(∀∞ℓ2)[ĥ[U(ℓ0, ℓ1, ℓ2)]
2 ⊆ I],

where U(ℓ0, ℓ1, ℓ2) is the set of Joyce subgraphs of size 2 whose labels are
exactly ℓ0, ℓ1, ℓ2, that is, U(ℓ0, ℓ1, ℓ2) = {{σ, τ} ∈ [U ]2 : |σ ∧ τ | = ℓ0, |σ| =
ℓ1, |τ | = ℓ2}. Let (f, g) be a U ⊕ Z-computable blossom tree and D ⊆ 2<ω

be a Z-computable set cofinal in 2<ω such that g[D] = B. In particular, by
Equation (6.1), the following holds:
(6.2)

(∀ρ ∈ 2<ω)(∀∞σ0 ∈ D)(∀∞σ1 ∈ D)[σ0 ∧ σ1 = ρ ⇒ ĥ(g(σ0), g(σ1)) ∈ I].

We are going to build a by forcing infinite setG ⊆ D such that (g[G], Epn)

is a Rado graph and ĥ[g[G]]2 ⊆ I.

Definition 6.33. A string σ ∈ 2<ω witnesses a finite 2-partition F0 ⊔
F1 ⊆ 2<ω if for every i < 2 and every ρ ∈ Fi, σ(|ρ|) = i.

In other words, σ witnesses F0 ⊔ F1 ⊆ 2<ω if in the graph (2<ω
, Epn), σ

is connected to all the elements of F1 and disconnected from all the elements
of F0. Note that if σ witnesses F0 ⊔ F1 ⊆ D, then so does any τ ≽ σ.

Lemma 6.34. If (G,Epn) is a Rado graph for some G ⊆ D, then so is
(g[G], Epn).

Proof. Let F̂0⊔F̂1 ⊆ g[G] be a finite 2-partition. Let F0 = g
−1[F̂0] and

F1 = g
−1[F̂1]. In particular, F0 and F1 are disjoint. Since (G,Epn) is a Rado

graph, then there is some σ ∈ G witnessing the 2-partition F0⊔F1 ⊆ G. We
claim that g(σ) witnesses the 2-partition F̂0 ⊔ F̂1 ⊆ g[G]. By definition of
a blossom tree (f, g), the function f is ∧-preserving, so f(σ) witnesses the

2-partition F̂0 ⊔ F̂1 ⊆ g[G]. Since g(σ) ≽ f(σ), then so does g(σ). □

Given σ ∈ 2<ω, we write D ↾ 2<ω = {τ ∈ D : τ ≽ σ}. Given a finite set
R ⊆ 2<ω, we write D ↾ R = {τ ∈ D : (∃σ ∈ R)[τ ≽ σ]}.

Definition 6.35. A condition is a pair (F,R) where F ⊆ D and R ⊆
2<ω are both finite sets such that R is prefix-free and:

(1) every finite 2-partition F0 ⊔ F1 = F is witnessed by some σ ∈ R;

(2) for every σ ∈ F and τ ∈ F ∪ (D ↾ R), ĥ(g(σ), g(τ)) ∈ I;

A condition (E,S) extends (F,R) (written (E,S) ≤ (F,R)) if F ⊆ E,
E # F ⊆ D ↾ R and for every τ ∈ S, there is some σ ∈ R such that τ ≽ σ.

One can see a condition (F,R) as the Mathias condition (F,D ↾ R). In
particular, for every filter F for this notion of forcing, letting GF =

!
{F :

(F,R) ∈ F}, if (F,R) ∈ F then F ⊆ GF ⊆ F ∪ (D ↾ R). Structurally, we

ensured that ĥ[g[GF ]]
2 ⊆ I. Note that (∅, {&}) is a valid condition.

Lemma 6.36. For every condition (F,R), (F ∪ (D ↾ R), Epn) is a Rado
graph.
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Proof. Fix any finite 2-partition E0⊔E1 ⊆ F ∪D ↾ R. By definition of
a condition, there is some σ ∈ R witnessing the 2-partition E0 ∩ F,E1 ∩ F .
Since D is cofinal in 2<ω, there is some τ ∈ D such that τ ≽ σ, and for
every i < 2 and ρ ∈ Ei # F , τ(|ρ|) = i. Thus τ witnesses the 2-partition
E0 ⊔ E1 ⊆ F ∪D ↾ R. Moreover τ ∈ D ↾ σ, hence τ ∈ D ↾ R. □

The following lemma shows that if F is a sufficiently generic filter, then
(GF , Epn) is a Rado graph.

Lemma 6.37. For every condition (F,R) and every 2-partition F0⊔F1 ⊆
F , an extension (E,S) such that E contains an element witnessing the 2-
partition.

Proof. Let ℓ0 ∈ ω be larger than the length of any string in R. Let
ℓ1 ∈ ω be sufficiently large with respect to ℓ so that
(6.3)

(∀ρ ∈ 2≤ℓ0)(∀σ0 ∈ D
≥ℓ1)(∀∞σ1 ∈ D)[σ0 ∧ σ1 = ρ ⇒ ĥ(g(σ0), g(σ1)) ∈ I].

Such an ℓ1 exists by Equation (6.2). Let R̂ be obtained from R by extending
each string σ ∈ R into a string τ of length ℓ1 such that τ(ℓ0) = 0. Then

(F, R̂) is again a condition.

By Lemma 6.36, since (F ∪ (D ↾ R̂), Epn) is a Rado graph, there is some

τ ∈ F ∪ (D ↾ R̂) witnessing the 2-partition. If τ ∈ F then we are done since

(F, R̂) then satisfies the lemma, so assume τ ∈ D ↾ R̂. Let E = F ∪ {τ}.
Since |τ | ≥ ℓ1, by Equation (6.3), there is some ℓ2 ∈ ω so that

(6.4) (∀ρ ∈ 2≤ℓ0)(∀µ ∈ D
≥ℓ2)[τ ∧ µ = ρ ⇒ ĥ(g(τ), g(µ)) ∈ I].

For every σ ∈ R, let σ0,σ1 ∈ R be strings of length at least ℓ2 such that
σ0(|τ |) = 0, σ1(|τ |) = 1, σ0(ℓ0) = σ1(ℓ0) = 1, σ0 ∧ σ1 ≽ σ, and define
S = {σ0,σ1 : σ ∈ R}.

We claim that (E,S) is a condition. We first prove Item (1). Let F0 ⊔
F1 ⊆ E be a 2-partition. Since (F,R) is a condition, there is some σ ∈ R

witnessing the 2-partition (F0 # {τ})⊔ (F1 # {τ}). If τ ∈ Fi for some i < 2,
then σi ≽ σ witnesses the 2-partition F0 ⊔ F1 ⊆ E. If τ ∕∈ F0 ⊔ F1, then any
σi ≽ σ witnesses it.

We now prove Item (2). Fix ν ∈ E and µ ∈ E ∪ (D ↾ S) with |ν| ≤ |µ|.
If ν ∕= τ , then ν ∈ F and ĥ(g(ν), g(µ)) ∈ I by Item (2) for (F,R). If
ν = τ , then µ ∈ (D ↾ S). By choice of S, µ(ℓ0) = 1, and ν(ℓ1) = 0. Thus,
|µ∧ν| ≤ ℓ0. Moreover, since every string in S has length at least ℓ2, |µ| ≥ ℓ2,

so by Equation (6.4), ĥ(g(ν), g(µ)) ∈ I. □

Definition 6.38. Let c = (F,R) be a condition and let ϕ(G, x) be a

∆0,Z
0 formula with a free set parameter G and a free integer parameter x.

1. c ⊩ (∃x)ϕ(G, x) if ϕ(F, x) holds for some x ∈ ω;
2. c ⊩ (∀x)ϕ(G, x) if ϕ(F ∪E, x) holds for every x ∈ ω and every E ⊆ D ↾ R

such that ĥ[g[E]]2 ⊆ I.
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In particular, the forcing relation is closed under extension, and if F
is a filter and c ⊩ ϕ(G) for some Σ0,Z

1 or Π0,Z
1 formula and some c ∈ F ,

then ϕ(GF ) actually holds. As usual, we write c ⊩ ΓG⊕Z ∕= C if either
c ⊩ ΓG⊕Z(x) ↑ or c ⊩ ΓG⊕Z(x) ↓∕= C(x) for some x ∈ ω.

Lemma 6.39. For every condition c and every Turing functional Γ, there
is an extension d of c such that d ⊩ ΓG⊕Z ∕= C.

Proof. As in the proof of Lemma 6.37, let ℓ0 and ℓ1 be sufficiently large
to satisfy Equation (6.3). Again, let R̂ be obtained from R by extending
each string σ ∈ R into a string τ of length ℓ1 such that τ(ℓ0) = 0.

Let W be the set of all pairs (x, v) ∈ ω× 2 such that there is a finite set

E ⊆ D ↾ R̂ satisfying ĥ[g[E]]2 ⊆ I and such that Φ(F∪E)⊕Z(x) ↓= v. Note
that the set W is Z-c.e. We have three cases.

Case 1: (x, 1 − C(x)) ∈ W for some x ∈ ω. Let E ⊆ D ↾ R̂ witness that

(x, 1 − C(x)) ∈ W , that is, ĥ[g[E]]2 ⊆ I and Φ(F∪E)⊕Z(x) ↓= 1 − C(x).
Since for every τ ∈ E, |τ | ≥ ℓ1, then by Equation (6.3), there is some ℓ2 ∈ ω
so that

(6.5) (∀ρ ∈ 2≤ℓ0)(∀τ ∈ E)(∀µ ∈ D
≥ℓ2)[τ ∧ µ = ρ ⇒ ĥ(g(τ), g(µ)) ∈ I].

For every σ ∈ R, and every 2-partition E0⊔E1 = E, let σE0,E1
be a string

of length at least ℓ2 extending σ, such that σE0,E1
(|τ |) = 0 for every τ ∈ E0

and σE0,E1
(|τ |) = 1 for every τ ∈ E1. Let S = {σE0,E1

: σ ∈ R,E0⊔E1 = E}.
We claim that (F ∪ E,S) is a condition. We first prove Item (1). Let

(F0 ∪ E0) ⊔ (F1 ∪ E1) ⊆ F ∪ E be a 2-partition with F0 ⊔ F1 ⊆ F and
E0 ⊔ E1 ⊆ E. Since (F,R) is a condition, there is some σ ∈ R witnessing
the 2-partition F0 ⊔ F1 ⊆ F . By construction, σE0,E1

∈ S witnesses the
2-partition E0 ⊔ E1 ⊆ E and extends σ, so σE0,E1

witnesses the 2-partition
(F0 ∪ E0) ⊔ (F1 ∪ E1) ⊆ F ∪ E.

We now prove Item (2). Fix ν ∈ F ∪ E and µ ∈ F ∪ E ∪ (D ↾ S) with
|ν| ≤ |µ|. If ν ∈ F , then ĥ(g(ν), g(µ)) ∈ I by Item (2) for (F,R). If ν ∈ E

and µ ∈ F ∪ E, then µ ∈ E since |ν| ≤ |µ|, and ĥ(g(ν), g(µ)) ∈ I since

ĥ[g[E]]2 ⊆ I. If ν ∈ τ and µ ∈ (D ↾ S), then by choice of S, µ(ℓ0) = 1, and
ν(ℓ1) = 0. Thus, |µ ∧ ν| ≤ ℓ0. Moreover, since every string in S has length

at least ℓ2, |µ| ≥ ℓ2, so by Equation (6.5), ĥ(g(ν), g(µ)) ∈ I.
Moreover, the condition (F ∪ E,S) forces ΦG⊕Z(x) ↓= 1 − C(x), thus

satisfies the lemma.

Case 2: (x,C(x)) ∕∈ W for some x ∈ ω. Then the condition (F, R̂) is an
extension of (F,R) forcing ΦG⊕Z(x) ↑ ∨ΦG⊕Z(x) ↓∕= C(x), and we are done.

Case 3: otherwise. Then W is a Z-c.e. graph of the characteristic function
of C, hence C is Z-computable, contradicting the hypothesis. This case
therefore cannot happen. This completes the proof of Lemma 6.39. □
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We are now ready to prove Theorem 6.32. Let F be a sufficiently
generic filter for this notion of forcing. By definition of a forcing condi-
tion, ĥ[g[F ]]2 ⊆ I for every (F,R) ∈ F , so ĥ[g[GF ]]

2 ⊆ I. By Lemma 6.39,
C ∕≤T GF ⊕ Z. Since g ≤T Z then C ∕≤T g[GF ] ⊕ Z. By Lemma 6.37,
(GF , Epn) is a Rado graph, and by Lemma 6.34, so is (g[GF ], Epn). The
image of (g[GF ], Epn) be the Z-computable isomorphism between the Rado

graph (V,E) and the Joyce blossom graph B yields a Rado subgraph (V̂ , E)

of (V,E) such that h[V̂ ]2 ⊆ I and C ∕≤T V̂ ⊕ Z. This completes the proof
of Theorem 6.32. □

Corollary 6.40. (∀k)RG2
k,4 does not imply ACA0 over RCA0.

Proof. Immediate by Theorem 6.32 and Lemma 2.15. □

6.5. Lower bound on the Rado Graph theorem

In order to show lower bounds, we use the notion of Joyce blossom graph:
Indeed, one can computably embed any Joyce graph in a Joyce blossom
graph by Theorem 6.16, and there is a computable one by Lemma 6.12.
The embeddings of a Joyce complete graph with order type N or Q allow to
show that JRG2

8,7 implies respectively RT2
2 and the Devlin Theorem. Even

though it is weaker, We include the proof of RT2
2 from JRG2

8,7 as it yields a
computable reduction.

Theorem 6.41. For every k, n, the statement JRG2
4k,4n+3 implies RT2

k,n
.

In particular, JRG2
8,7 implies RT2

2.

Proof. We first give the insight about what 4n + 3 corresponds to: if
the union of 4 disjoints sets is of cardinality 4n + 3, then one of them is of
cardinality at most N .

Claim 6.42. There exists a Joyce graph (G,E,<, !·, ·") such that (G,E)
is the complete graph and for all a, b ∈ G, a < b ⇐⇒ !a, a" < !b, b".

Proof. Let G = {12n0 : n ≥ 1}, then (G,Epn, <lex, | · ∧ · |) is a witness
of the claim. □

Let f : N2 → k be a symmetric coloring. By Lemma 6.12, let G =
(G,E,<, !·, ·") be a computable Joyce blossom graph.

Let (Fi)i<4 be an enumeration of the finite Joyce graph structures with
two elements. If a, b ∈ G, define g(a, b) = (f(!a, a", !b, b"), i〉 where i is such
that {a, b} is isomorphic to Fi. By JRG2

<∞,2n+1, let G′ be a subcopy of G in
G, using at most 4n+3 colors. Either {(a, b) : aEb} or {(a, b) : ¬aEb} uses at
most 2n+1 colors, suppose for instance that it is the former. Similarly, either
{(a, b) : a < b∧ !a, a" < !b, b"∧aEb} or {(a, b) : a < b∧ !a, a" > !b, b"∧aEb}
uses at most n colors, suppose that it is the former. By Claim 6.42 there
exists a Joyce complete graph K such that for all a, b ∈ K, a < b ⇐⇒
!a, a" < !b, b". By Theorem 6.16, there exists a computable subcopy G′′ of
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K inside G′. In particular, G′′ uses at most n colors for g. As a consequence,
{!a, a" : a ∈ G′′} uses at most n colors for f . □

Theorem 6.43. For every n, k, the statement JRG2
2k,2n+1 implies DT2

k,n

and thus JRG2
8,7 implies ACA0.

Proof. We start with a claim.

Claim 6.44. There exists a Joyce graph (G,E,<, !·, ·") such that (G,E)
is the complete graph and (G,<) is a DLO.

Proof. Let (G,<, !·, ·") be a DLO Joyce order. Define E = {(a, b) :
a, b ∈ G}. Then (G,E,<, !·, ·") is a witness of the claim. □

Let X = (X,<X) be a computable dense linear order with no endpoints,
and f : X

2 → k be a symmetric coloring. By Lemma 6.12, let G be a
computable Joyce blossom graph. In particular, there exists an embedding
e from (G,<lex) to X.

If a, b ∈ G, define g(a, b) = (f(e[{a; b}]), 1〉 if aEb and

g(a, b) = (f(e[{a; b}]), 0〉
if ¬aEb. By JRG2

<∞,2n+1, let G′ be a subcopy of G in G, using at most
2n+ 1 colors. Either {(a, b) : aEb} or {(a, b) : ¬aEb} uses at most n colors,
suppose for instance that it is the former. By Claim 6.44 there exists a Joyce
complete graph K whose order is a DLO. By Theorem 6.16, there exists a
computable subcopy G′′ of K inside G′. In particular, G′′ is a DLO and uses
at most n colors for g. As a consequence, e[G′′] ⊆ X is a DLO and uses at
most n colors for f .

Thus, JRG2
8,7 implies DT2

4,3 which implies ACA0. □

Larson [28] computed the big Ramsey number for small subgraphs of
the Rado graph. The sum of the big Ramsey numbers for subgraphs of size 3
is equal to the number of Joyce graphs of size 3, that is, 112. In other words,
(∀k)RG3

k,112 holds, while (∀k)RG3
k,111 does not. In the particular case of the

complete graph K3 of size 3, (∀k)RGK3

k,16 holds, while (∀k)RGK3

k,15 does not.

The proof technique for the following theorem stems from Jockusch [23]
who constructed a computable instance of Ramsey’s theorem for triples
whose solutions compute the halting set. It was later refined by Hirschfeldt
and Jockusch [21, Theorem 2.1] who showed the existence of a computable
such instance such that every solution is of PA degrees over ∅′. Although it
is unknown whether the Rado graph statement for graphs of size n implies
Ramsey’s theorem for n-tuples, we can adapt the argument of Hirschfeldt
and Jockusch to graphs.

Theorem 6.45. Let (G,E) be a computable Rado graph and F be a
finite graph of size 3. Let b ∈ ω be the Ramsey degree of F in the Rado
graph theorem, that is, the number of Joyce graphs isomorphic to F . There
exists a computable coloring f :

$
G

F

%
→ 2b, such that for every Ĝ ⊆ G for
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which (Ĝ, E) is a Rado graph and f restricted to
$
Ĝ

F

%
has at most b colors,

Ĝ is of PA degree over ∅′.
Proof. By Corollary 6.4, there exists an order < over G and a func-

tion !·, ·" : G2 → ω such that (G,E,<, !·, ·") is a Joyce Rado graph. Let
J0, . . . , Jb−1 be an enumeration of all the Joyce graph structures of size 3 iso-

morphic to F . Let g :
$
G

F

%
→ 2b be the coloring which to {x, y, z} associates

the index i < b so that the Joyce graph structure of ({x, y, z}, E,<, !·, ·") is
isomorphic of Ji.

Let h : [ω]3 → 2 be defined for every x < y < z by h(x, y, z) = 1 iff for

every e < x, Φ
∅′[y]
e (e)[y] = Φ

∅′[z]
e (e)[z]. Last, let f :

$
G

F

%
→ 2 × b be defined

by
f(x, y, z) = (h(!x, x", !y, y", !z, z"), g(x, y, z)〉.

Let Ĝ ⊆ G be such that (Ĝ, E) is a Rado graph and f restricted to
$
Ĝ

F

%
has

at most b colors.

Claim 6.46. f
$
Ĝ

F

%
= {(1, i〉 : i < b}.

Proof. Let H ⊆ Ĝ be a (non-computable) set such that (H,E) is a
Rado graph, and H is sparse enough so that for every x, y ∈ H such that

!x, x" <N !y, y", then for every e < x such that Φ∅′
e (e) ↓, Φ

∅′[y]
e (e)[y] ↓. In

particular, {!x, x" : x ∈ H} is h-homogeneous for color 1. By Corollary 6.17,
for every i < b, Ji embeds into (H,E,<, !·, ·"), so for every i < b, there is

a unique j < 2 such that (j, i〉 ∈ f
$
Ĝ

F

%
. Moreover, by sparsity of H, j = 1.

Thus {(1, i〉 : i < b} ⊆ f
$
H

F

%
⊆ f

$
Ĝ

F

%
, and by cardinality, f

$
Ĝ

F

%
= {(1, i〉 : i <

b}. □
Let F0 be the finite graph induced by the two first elements of F .

Claim 6.47. For every {x, y} ∈
$
Ĝ

F0

%
with !x, x" <N !y, y" <N !z, z", and

every e < !x, x", if Φ∅′
e (e) ↓ then Φ

∅′[!y,y"]
e (e)[!y, y"] ↓

Proof. Since Ĝ is a Rado graph, we can find a z with !z, z" sufficiently

large such that {x, y, z} ∈
$
Ĝ

F

%
and for every e < !x, x", if Φ∅′

e (e) ↓ then

Φ
∅′[!z,z"]
e (e)[!z, z"] ↓. By Claim 6.46, h(!x, x", !y, y", !z, z") = 1, so by defi-

nition of h, for every e < !x, x", Φ∅′[!y,y"]
e (e)[!y, y"] = Φ

∅′[!z,z"]
e (e)[!z, z"]. In

particular, if Φ∅′
e (e) ↓ then Φ

∅′[!y,y"]
e (e)[!y, y"] ↓. □

We are now ready to prove that Ĝ is of PA degree relative to ∅′. For
this, we prove that Ĝ computes a completion of the universal partial ∅′-
computable function e 8→ Φ∅′

e (e). Given e, search Ĝ-computably for a pair

{x, y} ∈
$
Ĝ

F0

%
such that e < !x, x", and return Φ

∅′[!y,y"]
e (e)[!y, y"] if it halts,

otherwise return 0. Such a pair {x, y} is always found since Ĝ is a Rado

graph. By Claim 6.47, if Φ
∅′[!y,y"]
e (e)[!y, y"] does not halt, then Φ∅′

e (e) ↑, so
this is a valid completion. This completes the proof of Theorem 6.45. □
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Corollary 6.48. For every finite graph F of size 3, letting b be the
number of Joyce graphs isomorphic to F , (∀k)RGF

k,b
implies ACA0 over

RCA0.

Corollary 6.49. (∀k)RGK3

k,16 implies ACA0 over RCA0.

Theorem 6.50. For every n ≥ 1, every finite graph F of size n, let bn
be the tight bound of (∀k)RGn

k,bn
and cn be the tight bound of (∀k)RGF

k,cn
,

that is, bn is the number of Joyce graphs of size n and cn is the number of
Joyce graphs isomorphic to F . Then (∀k)RGn

k,bn
implies (∀k)RGF

k,cn
over

RCA0.

Proof. Let f :
$
G

F

%
→ k be an instance of (∀k)RGF

k,cn
. Let g : [G]n → bn

be the coloring witnessing the tightness of the bound bn. In particular, g

restricted to
$
Ĝ

F

%
uses exactly cn many colors. Given H ∈ [G]n, let h(H) =

(g(H), f(H)〉 if the graph H is isomorphic to F , and h(H) = (g(H),⊥〉
otherwise. By (∀k)RGn

k,bn
, there is a Rado subgraph Ĝ ⊆ G such that h[Ĝ]n

has at most bn colors. By choice of g, for every i < bn, there is some v

such that (i, v〉 ∈ h[Ĝ]n. Thus for every i < bn, there is exactly one v such

that (i, v〉 ∈ h[Ĝ]n. In particular, f restricted to
$
Ĝ

F

%
has at most bn many

colors. □
Corollary 6.51. (∀k)RG3

k,112 implies ACA0 over RCA0.

Proof. Immediate by Corollary 6.48 and Theorem 6.50. 112 is the
tight bound for the Rado graph theorem for triples, and 16 the tight bound
for the Rado graph theorem restricted to the complete graph of size 3. □

We do not know whether (∀k)RG2
k,4 implies RT2

2 over RCA0. Theo-
rem 6.55 however is a partial result towards that direction. Ramsey’s the-
orem for pairs RT2

k
was decomposed by Cholak, Jockusch and Slaman [3]

into a stability version (SRT2
k
) and a cohesiveness principle (COH) in order

to simplify the computability-theoretic analysis of the theorem.

Definition 6.52. An infinite set C is cohesive for a sequence of sets
R0, R1, · · · ⊆ N if for every n, C ⊆∗

Rn or C ⊆∗
Rn. A coloring f : [ω]2 → k

is stable if for every x, limy f(x, y) exists.

Statement 6.53 (Cohesiveness). COH is the statement “Every count-
able sequence of set has an infinite cohesive set”.s

Statement 6.54 (Stable Ramsey’s theorem for pairs). SRT2
k
is the re-

striction of RT2
k
to stable colorings.

Cholak, Jockusch and Slaman [3, Lemma 7.11] and Mileti [29, Corollary
A.1.4] proved the equivalence between RT2

k
and SRT2

k
∧ COH over RCA0.

The following theorem shows that (∀k)RG2
k,4 implies SRT2

2, hence any proof

of separation would be a proof of separation of (∀k)RG2
k,4 from COH.

Theorem 6.55. RG2
8,4 implies SRT2

2 over RCA0.
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Proof. Let f : [ω]2 → 2 be a stable coloring. Fix a computable coded
Joyce Rado graph (G,<lex, Epn, | · ∧ · |), let F0, F1, F2, F3 be the 4 Joyce
graphs of size 2, and define an instance g : [G]2 → 4 × 2 of RG2

8,4 by
g({σ, τ}) = (i, f({|σ|, |τ |})) where Fi is the unique Joyce graph isomorphic
to ({σ, τ}, <lex, Epn, | · ∧ · |).

Let H ⊆ G be a RG2
8,4-solution to g, that is, (H,Epn) is a Rado graph

and |g[H]2| ≤ 4. By Corollary 6.17, for every i < 4, there is an embedding
from Fi to (H,<lex, Epn, | · ∧ · |), so for every i < 4, there is a unique value
v(i) < 2 such that (i, v(i)) ∈ g[H]2. Thus g[H]2 = {(i, v(i)) : i < 4}.

Claim 6.56. g[H]2 = {(i, j) : i < 4} for some j < 2.

Proof. Fix i0 < i1 < 4. We need to show that v(i0) = v(i1). By
Corollary 6.17, there is an embedding h of a Joyce blossom graph B in
(H,<lex, Epn, | · ∧ · |). One can find some σ ∈ B, τ0, τ1 ∈ B such that
{σ, τ0}, <lex, Epn, |·∧·|) and {σ, τ1}, <lex, Epn, |·∧·|) are isomorphic to Fi0

and
Fi1

, respectively. Then g({h(σ), h(τ0)}) = (i0, v(i0)) and g({h(σ), h(τ1)}) =
(i1, v(i1)), so f({h(σ), h(τ0)}) = v(i0) and f({h(σ), h(τ1)}) = v(i1). More-
over, τ0 and τ1 can be chosen so that |h(τ0)| and |h(τ1)| is large enough
to witness stability of lims f(|h(σ)|, s). Then f({h(σ), h(τ0)}) = v(i0) =
f({h(σ), h(τ1)}) = v(i1). □

Let j < 2 be such that Claim 6.56 holds. It follows that Y = {|σ| : σ ∈
H} is f -homogeneous for color j. This completes the proof of Theorem 6.55.

□
We now prove that for every ℓ ≥ 1, RT2

2 does not imply (∀k)RG2
k,ℓ over

RCA0. For this, we need two essential notions in computability theory,
namely, lowness and hyperimmunity. Lowness is a weakness property over
Turing degrees, saying informally that a low Turing degree behaves like the
computable Turing degree from the viewpoint of the halting set. Hyperim-
munity is aa strength property about the ability to compute fast-growing
functions, not dominated by any computable function.

Definition 6.57. A set A is low if A′ ≡T ∅′. A set A is low relative to
X for a set X if (A⊕X)′ ≡T X

′.

Definition 6.58. A function f : N → N is hyperimmune relative to X

if it is not dominated by any X-computable function. An infinite set H ⊆ N
is hyperimmune relative to X if its principal function, that is, the function
which to n associates the nth element of H, is hyperimmune relative to X.

Theorem 6.59. Let P be low relative to ∅′. For every ℓ, there exists a
computable instance of RG2

ℓ+1,ℓ with no solution computable in P .

Proof. We first need the following definition and lemma to build the
instance.

Lemma 6.60. There exists a ∆0
3 coloring g : N → ℓ + 1 such that for

every k ≤ ℓ, the set Ak = {n ∈ N : g(n) ∕= k} is hyperimmune relative to P .
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Proof. We prove that there exists a ∆0
2 coloring g : N → ℓ + 1 such

that for all k, {n : g(n) ∕= k} is hyperimmune. The relativization to P of
this proof yields the result of the lemma, as a ∆0

2 relative to P is a ∆0
3 set

by lowness relative to ∅′ of P .
We build uniformly in ∅′ a sequence σs of compatible strings of increasing

length. Start with σ0 the empty string. Suppose σs is defined, with s =
(k, e〉. Let ns = |{i < |σs| : σs(i) ∕= k}| Using ∅′, we can decide if ϕe(ns) ↓.
If so we define σs+1 to be σs followed by the string consisting of ϕe(ns) + 1
times k. Otherwise, σs+1 is σs followed by 0.

Define g =
!

s
σs. By construction, for s = (k, e〉, σs+1 diagonalizes

against ϕe dominating {n ∈ N : g(n) ∕= k}. Thus, for any k < ℓ, {n ∈ N :
g(n) ∕= k} is hyperimmune. □

Fix g as in the lemma. Let (gs,t)s,t∈N be a ∆0
3 approximation of g. One

can always arrange the approximation so that for every s, t, gs,t is a coloring
of N in ℓ + 1 colors. Let G = (G,Epn) with G ⊆ 2<ω a coded Rado graph.
Define f to be the following: for every σ, τ ∈ 2<ω with |σ| < |τ |,

f(σ, τ) = g|σ|,|τ |(|σ ∧ τ |)
Let S ⊆ 2<ω be such that (S,Epn) is a Rado graph, and f takes at most
ℓ colors on [S]2. Let k be the avoided color. We prove that S computes
a function bounding the principal function of Ak, so by hyperimmunity
relative to P of Ak, P cannot compute S.

Let h ≤T S be the function so that h(n) is the smallest such that S ∩
2<h(n) has n elements. We prove that for every n, Ak contains at least n

elements smaller than h(n). Indeed, let e0, . . . , en−1 be the n elements of

S∩2<h(n). Let (τj)j<2n be an enumeration of the set 2n, we say that a string
ρ realize τj if for all i < n (ρEpnei ⇐⇒ τj(i) = 1), note that for any j there
are infinitely many elements of S realizing τj , so there are some of arbitrarily
big length. Let ρ0 be the first element of S such that gs(m) = g(m) for all
s ≥ |ρ0| and m < h(n), and ρ0 realizes τ0. If ρj is defined, then define
ρj+1 to be the first element of S realizing τj+1 such that for all t ≥ |ρj+1|,
g|ρj |,t(m) = g(m) for all m < h(n).

This defines 2n many different strings ρj and thus 2n − 1 many meets,
which must be of height below h(n) by construction: given ρj0 , ρj1 , they
must differ at |ei| for some i < n such that τj0(i) ∕= τj1(i). Moreover, as
ρj ∈ S for all j, if |ρj0 | < |ρj1 |, we have g|ρj0 |,|ρj1 |(|ρj0 ∧ ρj1 |) ∕= k, but also

g|ρj0 |,|ρj1 |(|ρj0 ∧ ρj1 |) = g(|ρj0 ∧ ρj1 |) as |ρj0 ∧ ρj1 | < h(n).

Thus, for every j0 ∕= j1 < 2n, |ρj0 ∧ ρj1 | ∈ Ak and is below h(n). There
are 2n − 1 > n many such meet. So h is a function computable in S that
dominates the principal function of Ak. As Ak is hyperimmune relative to
P , P cannot compute h, and so cannot compute S. □

Lemma 6.61 (Simpson [40, Theorem 6.5]). For every pair of sets A and
C such that A is of PA degree over C, there is a set B such that A is PA
over B and B is PA over C.
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Proof. Fix a universal Π0
1 class functional C ⊆ 2ω such that for every

X, CX ∕= ∅ and all the members of CX are of PA degree relative to X. For
example, take CX to be the class of all {0, 1}-valued DNC functions relative
to X. Then the class D = {B ⊕ Z : B ∈ CC and Z ∈ CB} is a non-empty

Π0,C
1 class. In particular, A computes some B ⊕ Z ∈ D, and since Z is

of PA degree relative to B and B is of PA degree relative to C, the result
follows. □

Lemma 6.62. For every set P of PA degree over ∅′, there exists an ω-
model Mc of RT2

2 such that for every X ∈ Mc, X ′ ≤T P .

Proof. Fix P . We inductively define A0, A1, · · · ⊆ N as follows. Let
A0 = ∅, and suppose we have defined As for some s ∈ N and that P is of
Pa degree above A

′
s. By Lemma 6.61, there is some Q be such that P is PA

relative toQ andQ is PA relative to A′
s. If s ∕= (e, t) for some e ∈ N and some

t < s, or if ΦAt
e is not a coloring f : [ω]2 → 2, then let As+1 = As. Otherwise,

by Cholak, Jockusch and Slaman [3] (see Hirschfeldt [20, Corollary 6.58] for
an explicit formulation), there is an infinite f -homogeneous set H such that
(H ⊕As)

′ ≤T Q. Let As+1 = As ⊕H. In particular, A′
s+1 ≤T Q, so P is of

PA degree over A′
s+1. s

Let S = {Z : (∃s)[Z ≤T As]}, which is a Turing ideal since At ≤T As for
all t ≤ s. By construction, if f : [ω]2 → 2 is any instance of RT2

2 in S then
S contains a solution to f . (Indeed, if f = ΦAt

e , say, leet s = (e, t); then a
solution to X is computable from As+1.) It follows that Mc = (N,S) is a
model of RCA0 ∧RT2

2, and by construction, for every X ∈ S, X ′ ≤T P . □
We are now ready to prove our separation theorem.

Theorem 6.63. For every ℓ ≥ 1, RT2
2 does not imply (∀k)RG2

k,ℓ over
RCA0.

Proof. By the low basis theorem relativized to ∅′ (see Jockusch and
Soare [25, Theorem 2.1]), there is a set P of PA degree over ∅′, such that
P

′ ≤T ∅′′. By Lemma 6.62, there is an ω-model Mc of RT2
2 such that for

every X ∈ Mc, X ′ ≤T P . By Theorem 6.59, there is a computable instance
f of (∀k)RG2

k,ℓ with no P -computable solution. In particular, f ∈ Mc, but

Mc does not contain a solution to f , so Mc is not a model of (∀k)RG2
k,ℓ. □





CHAPTER 7

A generalized tree theorem

In this chapter, we study the principle CHMTTn
k,l stating that given a k-

coloring of [2<ω]n, there is a subtree S ⊆ 2<ω such that (S,≼) is isomorphic
to (2<ω

,≼) and such that [S]n uses at most l colors. Note that we do not
require S to be a strong subtree of T or even S to be meet-closed — thus
enlarging a bit for this chapter the original definition of a tree given with
definition 2.16.

The existence for every n of a finite big Ramsey degree associated with
these structures — a smallest number ln such that CHMTTn

k,ln
holds for

every k — easily follows from the Milliken’s tree theorem. We will try to
identify more precisely the specific values of these big Ramsey degrees ln, a
new sequence of numbers, which does not seem to have appeared before in
combinatorics.

In order to pursue this study, we introduce first a simpler principle, for
which we now require the subtree to be a strong subtree.

Theorem 7.1 (Strong generalized CHM tree theorem). For every n ≥ 1
there exists ℓ ≥ 1 such that for every k ≥ 1 and every f : [2<ω]n → k there
is a strong subtree S ⊆ 2<ω such that |f([S]n)| ≤ ℓ.

Statement 7.2. We call SCHMTTn
k,l the statement of the Strong gen-

eralized CHM tree theorem.

Note that both SCHMTTn
k,l and CHMTTn

k,l would work exactly the same

way if we start from a coloring of any perfect tree T rather than 2<ω: via
an isomorphism between T and 2<ω, the theorem applied to 2<ω also gives
via the isomorphism a solution for T . We start by introducing the notion of
embedding types, useful in the conduct of our study.

7.1. Embedding types

We shall try to identify what can be used by a coloring of [2<ω]n to iden-
tify some structure one will never be able to remove in any strong subtree.
A first step for that is the identification of the concept of embedding type,
for which we introduce the following preliminary notions.

Definition 7.3. Let S be a set of strings.

(1) S is meet-closed if for every σ, τ ∈ S, σ ∧ τ ∈ S.
(2) S is level-closed if for every σ, τ ∈ S, τ ↾ |σ| ∈ S.

111
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We will be interested in finite trees which are both meet-closed and level
closed.

Definition 7.4 (closure). Let S be a set of strings.

(1) The meet closure of S is the set S∧ = {σ ∧ τ : σ, τ ∈ S}.
(2) The level closure of S is the set Slvl = {σ ↾ |τ | : σ, τ ∈ S}.
(3) The full closure of S is the set Scl = (S∧)lvl.

Note that S ⊆ S
∧ and S ⊆ S

lvl by taking σ = τ in the above definitions.
Any strong subtree of 2<ω is meet-closed and level-closed but not conversely,
as witnessed by the following example S = {&; 0; 00; 01; 1; 11}. In Figure 7.1,
we give an example of a subtree, and its full closure.

(a) (b) (b)

Figure 7.1. The set of nodes (a) is level-closed but not
meet-closed. The set of nodes (b) is the meet-closure of (a).
Note that it is now not level-closed. The set of nodes (c) is
the level-closure of (b) which corresponds to the full closure
of (a).

The idea is the following: given a set of strings S = {σ1, . . . ,σn} ∈
[2<ω]n, one can easily compute the tree S

cl. A coloring can then identify
which type of tree arise from S and give a different color to each of them.
The number of these type is defined below as the embedding types that we
now formally define.

Definition 7.5. Two finite fully closed trees F0, F1 ⊆ 2<ω are strongly
isomorphic if there is a bijection f : F0 → F1 such that σi ≼ τ ↔ f(σ)i ≼
f(τ) for any σ, τ ∈ F0. The embedding types are the equivalence classes of
the strong isomorphism relation on finite fully closed trees.

Any embedding type has a minimal element with respect its height. We
usually use this minimal element as a canonical representative of the class.

Figures 7.2 to 7.4 illustrate the notion of embedding types. Figure 7.2
consists of example of different embedding types. Figure 7.3 shows several
level-closed subtrees with the same embedding type. Figure 7.4 illustrates
the height of an embedding type.

7.2. Strong generalized CHM tree theorem

No embedding type can be avoided in a strong subtree of 2<ω. For this
reason the number of colors that cannot be avoided by n-tuples of elements
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(d) (e) (f) (g) (h)

Figure 7.2. A few embedding types of height 3, the un-
derlying grey tree being 2<ω. All of them are different.

(i) (j) (k) (l)

Figure 7.3. A few finite level-closed subtrees with the
same embedding type. The fact that they are level-closed
depends on the underlying grey tree.

height 1 height 2 height 3

Figure 7.4. Some subtrees with embedding type of dif-
ferent height. The two first have the same embedding type,
the unique embedding type of height 1. The two in the mid-
dle have the same embedding type, of height 2. The last pair
consists of level-closed subtrees with two different embedding
types of height 3.

of 2<ω is at least the number of embedding types that can be generated by
these tuples.

Definition 7.6. Let esTT : ω → ω be the function which to n associates
the number of embedding types that can be generated by n distinct strings.

Let us provide an example with Figure 7.5: all the possible embedding
types that are generated by two strings. We have esTT(2) = 7.

Given an element of [2<ω]n one can computably recognize which embed-
ding type it generates. It follows that given an enumeration e1, e2, . . . , eesTT(n)

of the embedding types that can be generated by n distinct strings, one can
define the color c on [2<ω]n which to each element generating the embedding
type ei associates i. No strong subtree of 2<ω can avoid any embedding type



114 7. A GENERALIZED TREE THEOREM

Figure 7.5. The seven possible embedding types generated
by two nodes (shown as circled). That is, these are the em-
bedding types of their full closure. The maximal height of
the embedding types here is 3.

and thus at least esTT(n) colors are used by c within any strong subtree of
2<ω.

We can in fact force even more colors: Given a finite strong subtree F ⊆
2<ω, there might be distinct tuples σ1,σ2 ∈ [F ]n such that σ1

cl = σ2
cl = F .

Note that such a phenomenon does not happen for n = 2 and below, but
start to happen from n = 3. For instance the tuples {σ0,σ1,σ00} and
{σ,σ1,σ00} generate the same embedding type. This leads to the following
definition:

Definition 7.7. A tuple type is an equivalence class on the following
relation defined on

!
n
[2<ω]n × [2<ω]n: We say that σ, τ ∈ [2<ω]n are equiv-

alent if there is a strong isomorphism f from σcl to τ cl which associates
elements of σ to elements of τ .

Note that the tuple types are a refinement of the embedding types.
Also for n > 2 this refinement is strict, by the example given above with
{σ0,σ1,σ00} and {σ,σ1,σ00}: no strong isomorphism from {σ0,σ1,σ00}cl
to {σ,σ1,σ00}cl can map elements of {σ0,σ1,σ00} to those of {σ,σ1,σ00}
as no string is a prefix of the other two in the former but one is in the latter.

Definition 7.8. Let tsTT : ω → ω be the function which to n associates
the number of tuple types that can be generated by n distinct strings.

Just like a coloring on [2<ω]n can recognize the generated embedding
types, it can recognize the corresponding tuple types: the embedding type
together with the role played by each string generating it. And just like no
embedding type can be avoided in a strong perfect tree, also no tuple type
can be avoided in a strong perfect tree. It follows that if c is a coloring of
[2<ω]n which associates to an element its corresponding tuple type, then any
strong perfect subtree of T needs at least tsTT(n) colors. In the next section
we show that this number is optimal.

We are now ready to formally state and prove the strong generalized
CHM tree theorem.

Theorem 7.9 (Strong generalized CHM tree theorem). For every n, the
principle (∀k)SCMHTTn

k,tsTT(n)
is provable in ACA0, and RCA0 proves that

the principle (∀k)SCMHTTn
k,tsTT(n)−1 is false.
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Proof. We already saw that this principle is false when the maximal
number of color is tsTT(n) − 1, with as an example the coloring on [2<ω]n

which on each element associates an integer representing its tuple type.
Let us now show that one can prove the statement within ACA0 for

tsTT(n) colors. Let t1, t2, . . . , ttsTT(n) be an enumeration of the tuple types

of size n. Let c be any coloring on the elements of [2<ω]n.
Let T0 = 2<ω and inductively for i < tsTT(n), let ei be the embedding

type that ti belongs to. Let mi be the height of the canonical representative
of ti. Let ci be the color on Ti which on any strong subtree F of height mi

associates the color c gives on the unique element of [F ]n with tuple type ti.
Using corollary 4.7 stating that Milliken theorem for height mi is provable
in ACA0, let then Ti+1 be a strong perfect subtree of Ti which belongs to
Mc and which is monochromatic for ci and let ki be the corresponding color.
For this step, note that even if Milliken theorem is stated for strong subtrees
of 2<ω, we can also apply it for strong subtrees of T where T is itself a strong
subtree of 2<ω.

Let S = TtsTT(n). By induction we have that S is a strong subtree of

2<ω. Any σ ∈ [S]n belongs to some tuple type ti and thus has color ki. Thus
at most tsTT(n) color are used in S. □

7.3. Avoiding types

We now turn to the study of CMHTTn
k,. In particular, we do not re-

quire our subtrees to be strings anymore. As expected we need fewer colors,
basically because we can avoid some embedding types, and within the em-
bedding types which cannot be avoided, we can avoid some tuple types.

Note that one can easily create a perfect tree which avoids almost all
embedding types. Suppose we force for instance every node to be of differ-
ent length. Formally such a tree has only embedding types which consists
of comparable nodes, because any embedding type with two incomparable
nodes contains two distinct nodes of the same length. However, this does not
help: what we want is to avoid the embedding types (resp. the tuple types)
which can be generated by the n-tuples of the tree, even though elements in
the strong closure of the n-tuple are not necessarily all in the tree.

We will show given any strong tree S how to compute a perfect subtree
T of S which avoids as many tuple types as possible. We in fact give right
away the syntactic property a tree must have to avoid as many tuple types
as possible.

Definition 7.10. We say that a perfect tree T syntactically minimizes
the number of tuple types if:

(1) any two nodes of T∧ is of different length;
(2) for any nodes σ, τ ∈ T with σ ≺ τ we have σ0 ≼ τ ;
(3) for any nodes σ, τ ∈ T

cl with σ /∈ T
∧ and σ ≺ τ we have σ0 ≼ τ .

Given (1), note that (3) in the previous definition is equivalent to have
for any incomparable nodes σ, τ ∈ T

∧ with |σ| < |τ | that τ(|σ|) = 0.
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Lemma 7.11. Given any strong perfect subtree S ⊆ 2<ω, there is an S-
computable perfect subtree T ⊆ S which syntactically minimizes the number
of tuple types.

Proof. Without loss of generality we consider that we work with S =
2<ω. The subtree that we build can then be pulled back in S using some
isomorphism between 2<ω and S.

We start by computing a meet-closed subtree T
′ ⊆ 2ω such that (1) and

(3) are satisfied. We put in T0 the root of 2
<ω. Then inductively suppose we

have a finite perfect tree Tn such that each of its leaf is of level n and such
that for τ1, τ2 ∈ Tn we have |τ1| + 1 < |τ2| or |τ2| + 1 < |τ1|. Let σ1, . . . ,σk
be the leaves of Tn such that |σi| + 1 < |σi+1|. We define Tn+1,0 to be Tn.
Inductively for i ≤ k suppose we have defined a perfect tree Tn+1,i ⊇ Tn+1,0

such that for τ1, τ2 ∈ Tn+1,i we have |τ1| + 1 < |τ2| or |τ2| + 1 < |τ1| and
such that |σi| is the smallest among the leaves of Tn+1,i. We let τ0 be the
lexicographically smallest such that:

• |σi+10τ0|− 1 is bigger than every string in Tn+1,i;
• for every σ ∈ Tn+1,i different from σi+1 we have σi+10τ0(|σ|) = 0.
Note that by the induction hypothesis we can find such a string.

Then let τ1 be the lexicographically smallest such that:

• |σi+11τ1|− 1 is bigger than every string in Tn+1,i ∪ {τ0};
• for every string σ ∈ Tn+1,i ∪ {τ0} different from σi+1 we have
σi+11τ1(|σ|) = 0. Note that by the induction hypothesis we can
find such a string.

Let us then define Tn+1,i+1 = Tn+1,i ∪ {τ0, τ1}. Note that σi+1 becomes
the smallest leaf of Tn+1,i+1. Once we have defined Tn+1,i for every i ≤ k

we define Tn+1 = Tn+1,k.
We finally define T

′ =
!

n
Tn. By construction T

′ has the desired prop-
erties. Note that for any perfect subtree T ⊆ T

′ then also every node is of
different length, so (1) is preserved. Furthermore as T ′ is meet closed then
also for any perfect tree T ⊆ T

′ and any two incomparable nodes σ, τ ∈ T
∧

with |σ| < |τ | we have τ(|σ|) = 0, so (3) is preserved.
We finally find a perfect subtree T ⊆ T

′ such that for any σ, τ ∈ T with
σ ≺ τ we have σ0 ≼ τ . Given an isomorphism f : 2<ω → T

′ we define T to
be the range of f on strings of the form σ00 or σ01 for σ ∈ 2<ω. One can
easily verify that T is a perfect subtree of T ′ on which (1) (2) and (3) are
verified. □

See Figure 7.6 for an illustration.
We shall see that the number above is optimal. Of course, it is not the

case that one of the above types can never be omitted in a perfect tree and
it is in fact one difficulty in showing that a tree T syntactically minimizing
the number of tuple types really does so: every tuple type can be omitted
in some perfect tree. Of course omitting a type may force some other type
to become unavoidable. In order to overcome this difficulty, we need to
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Figure 7.6. An example of three tuple types on [T ]2, for a
tree T that syntactically minimizes the number of types.

introduce a third equivalence relation, within which we erase the part of a
tuple type which can be omitted.

Definition 7.12. The weak tuple types are the equivalence classes of the
following relation: σ, τ have the same weak tuple type if there is a bijection
f from σcl to τ cl such that:

• for σ1,σ2 ∈ σcl we have σ1 ≼ σ2 iff f(σ1) ≼ f(σ2);
• for σ1,σ2,σ3 ∈ σcl we have σ10 ≼ σ2 and σ11 ≼ σ3 iff f(σ1)0 ≼
f(σ2) and f(σ1)1 ≼ f(σ3);

• elements of σ are sent to τ .

In other word, weak tuple types are tuple types, modulo the fact that
whenever a node is not branching, it does not matter for its extension to
go left or right. It is clear from the definition that the tuple types are
a refinement of the weak tuple types. But the weak tuple types are not a
refinement of the embedding types, nor are the embedding types a refinement
of the weak tuple types.

Lemma 7.13. Let T be a perfect tree which syntactically minimizes the
number of tuple types. Then its tuple types and weak tuple types coincide.

Proof. We already have that the tuple types are a refinement of the
weak tuple types. All we have to do is to show that restricted to T , the
weak tuple types are a refinement of the tuple types.

For any n consider any two n-tuples σ, τ of T . Suppose they are in the
same weak tuple type via some bijection f : σcl → τ cl. Let us show that f
in fact witnesses that σ and τ are in the same tuple types. For that it is
enough to show that σ1i ≼ σ2 implies f(σ1)i ≼ f(σ2) for σ1,σ2 ∈ σcl. Let
σ1,σ2 ∈ σcl with σ1i ≼ σ2.

Suppose first that we have a string σ3 ∈ σcl such that σ1(1 − i) ≼ σ3.
Then by definition of a weak tuple type we have f(σ1)i ≼ f(σ2). Otherwise
there are two possibilities: either σ1 ∈ σ or σ1 ∈ σcl but σ1 /∈ σ∧.

In the first case, note that we must have a string σ3 ∈ σ with σ1i ≼
σ2 ≼ σ3. Note that as σ1,σ3 ∈ σ then also σ1,σ3 ∈ T . Then by property (2)
in Definition 7.10 (the definition of syntactically minimizing the number of
tuple type), we have σ10 ≼ σ2 ≼ σ3. Note also that f(σ1) ≼ f(σ1) ≼ f(σ3)
and that by hypothesis on f we have f(σ1), f(σ3) ∈ τ ⊆ T . Therefore
also we have f(σ1)0 ≺ f(σ3) by (2) in Definition 7.10 and thus we have
f(σ1)0 ≺ f(σ2).
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Figure 7.7. An example of two length-injective and meet-
avoiding tuple types, generating the same embedding type.

In the second case we have σ1,σ2 ∈ T
cl and σ1 /∈ T

∧. Thus by property
(3) in Definition 7.10 we have σ10 ≼ σ2. We shall argue that also f(σ1) /∈ T

∧.
Suppose for contradiction that f(σ1) ∈ T

∧. Then also f(σ1) ∈ τ∧. Recall
that by hypothesis σ1 /∈ σ and thus f(σ1) /∈ τ (as f is a bijection between
the two). It follows that f(σ1) must be the meet of two nodes in τ and thus
is branching in τ cl. On the other hand as σ1 /∈ T

∧ it is not branching in σcl

which contradicts the properties of f . Thus f(σ1) /∈ T
∧ and it follows by

property (3) in the definition of syntactically minimizes the number of tuple
type that f(σ1)0 ≼ f(σ2).

We then have that σ and τ are in the same tuple types. □
We shall now identify the weak tuple types no perfect tree can omit. We

shall then see that weak tuple types of a tree which syntactically minimizes
the number of tuple types are all of this form. It will then follow that such
a tree really minimizes the number of tuple types.

Definition 7.14. A tuple type (resp. a weak tuple type) σ is length-
injective if σ1,σ2 ∈ σ∧ implies |σ1| ∕= |σ2|.

Definition 7.15. A tuple type (resp. a weak tuple type) σ is meet-
avoiding if for any incomparable σ1,σ2 ∈ σ we have σ1 ∧ σ2 /∈ σ.

See Figure 7.7 for an illustration.
Up to symmetry and restricted to a tree which syntactically minimizes

the number of types, these are the only tuple types generated by three
strings and which are in the same embedding type. We will now see that
the length-injective and meet-avoiding weak tuple types are exactly those
which cannot be avoided by a perfect tree.

Lemma 7.16. Let S be any perfect tree. Then S has a member inside
every length-injective and meet-avoiding weak tuple type.

Proof. Let σ be a length-injective and meet-avoiding tuple type. Let
us define first an injection f from σ∧ into S

∧ with the following properties:

(1) f(σ) ⊆ S;
(2) for σ1,σ2 ∈ σ∧ we have σ1 ≼ σ2 iff f(σ1) ≼ f(σ2);
(3) if σ1 is branching in σ∧ then f(σ1) is branching in S

∧. Furthermore
for σ1,σ2,σ3 ∈ σ∧ we have σ10 ≼ σ2 and σ11 ≼ σ3 iff f(σ1)0 ≼
f(σ2) and f(σ1)1 ≼ f(σ3);
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(4) for σ1,σ2 ∈ σ∧ we have |σ1| < |σ2| iff |f(σ1)| < |f(σ2)|.

Let σ1, . . . ,σn be a list of the elements of σ∧ with |σ1| < |σ2| < · · · < |σn|.
Note that we must have σi ≼ σj implies i ≤ j. Note also that as σ is meet-
avoiding we must have that ρ ∈ σ∧ is branching in σ∧ iff ρ /∈ σ.

If σ1 ∈ σ then find the lexicographically first τ ∈ S and let f(σ1) = τ .
Otherwise find the lexicographically first τ ∈ S

∧ which is branching in S
∧

and let f(σ1) = τ . Note that so far (1)(2)(3) and (4) are satisfied.
Suppose f(σ1), . . . , f(σk) have been defined with (1)(2)(3) and (4) sat-

isfied so far. Consider σk+1. Let j ≤ k be the largest such that σj ≺ σk+1.
Suppose first σj is branching in σ∧. Then by induction hypothesis (3) we
must have that f(σj) is branching in S

∧. In this case let i ∈ {0, 1} be such
that σji ≼ σk+1. If σk+1 ∈ σ then find the lexicographically first τ ∈ S such
that |τ | > |f(σk)| and such that f(σj)i ≼ τ . Then let f(σk+1) = τ . Other-
wise find the lexicographically first branching τ ∈ S

∧, such that |τ | > |f(σk)|
and such that f(σj)i ≼ τ . Then let f(σk+1) = τ . Note that in any case (1)
(2) (3) and (4) are satisfied so far.

Suppose now σj is not branching in σ∧. If σk+1 ∈ σ then find the
lexicographically first τ ∈ S such that |τ | > |f(σk)| and such that f(σj) ≼ τ .
Then let f(σk+1) = τ . Otherwise find the lexicographically first branching
τ ∈ S

∧, such that |τ | > |f(σk)| and such that f(σj) ≼ τ . Then let f(σk+1) =
τ . Note that in any case (1) (2) (3) and (4) are satisfied so far. This ends
the first part of the construction.

Note also that f is a bijection between σ and f(σ) ⊆ S. In order to
show that σ and f(σ) are in the same weak tuple type, we shall now extend
f to σcl such that f becomes a bijection from σcl to f(σ)cl.

Let us first argue that so far f is a bijection from σ∧ to f(σ)∧. We have
f(σ) ⊆ f(σ∧). By design we also have that f(σ∧) is meet closed and thus
we have f(σ)∧ = f(σ∧). As f is injective it is a bijection from σ∧ to f(σ∧)
and then it is a bijection from σ∧ to f(σ)∧.

Let us now extend f to σcl: for incomparable σ1,σ2 ∈ σ∧ with |σ1| < |σ2|
we assign f(σ2 ↾ |σ1|) to f(σ2) ↾ |f(σ1)|. Let us now show that f(σcl) =
f(σ)cl. It is clear by definition of f that f(σcl) ⊆ f(σ)cl. Let us now show
f(σ)cl ⊆ f(σcl).

Suppose τ ∈ f(σ)cl. Then as f(σ)cl = (f(σ)∧)cl = f(σ∧)cl we have
τ ∈ f(σ∧)cl. Then there exists σ1,σ2 ∈ σ∧ with |f(σ1)| < |f(σ2)| and with
τ = f(σ2) ↾ |f(σ1)|. By (4) we have |σ1| < |σ2| and then σ2 ↾ |σ1| ∈ σcl.
Thus τ ∈ f(σcl) and then f(σ)cl ⊆ f(σcl) and then f(σ)cl = f(σcl).

Let us now show that f is injective on σcl. Let σ1,σ2, ρ1, ρ2 ∈ σ∧

with σ1,σ2 and ρ1, ρ2 incomparable, with |σ1| < |σ2| and with |ρ1| < |ρ2|.
Suppose σ2 ↾ |σ1| ∕= ρ2 ↾ |ρ1|. If σ1 ∕= ρ1 then by (4) we must have
|f(σ1)| ∕= |f(ρ1)| and thus f(σ2) ↾ |f(σ1)| ∕= f(ρ2) ↾ |f(ρ1)|. Otherwise
it must be that σ2 ↾ s ∕= ρ2 ↾ s for s = |σ1| = |ρ1|. By definition of f it must
be that f((σ2 ↾ s) ∧ (ρ2 ↾ s)) = f(σ2 ↾ s) ∧ f(ρ2 ↾ s) and thus by (3) that
f(σ2 ↾ s) ∕= f(ρ2 ↾ s).
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It follows that f is a bijection from σcl to f(σcl) and thus that it is a
bijection from σcl to f(σ)cl.

It is clear that property (1) and (2) is still satisfied by f on σcl. Also
as every branching node of σcl is already branching in σ∧ property (3) is
till satisfied on σcl. It follows that σ and f(σ) are in the same weak tuple
type. □

Lemma 7.17. Let T be a tree which syntactically minimizes the number
of tuple types. Then every weak tuple type of T is length-injective and meet-
avoiding.

Proof. By definition we have that σ1,σ2 ∈ T
∧ implies |σ1| ∕= |σ2|. Thus

the weak tuple types of T are length-injective. Suppose now σ1,σ2 ∈ T with
σ1,σ2 incomparable. Suppose for contradiction that σ1 ∧ σ2 ∈ T . Then we
have (σ1 ∧σ2)1 ≼ σ1 or (σ1 ∧σ2)1 ≼ σ2. In any case we violate property (2)
of syntactically minimizing the number of types. Thus for any σ1,σ2 ∈ T

with σ1,σ2 incomparable we have σ1 ∧ σ2 /∈ T which implies that the weak
tuple types of T are meet-avoiding. □

7.4. Generalized CHM tree theorem

We are now ready to study the generalized CHM tree theorem, where
we do not necessarily required the subtree to be a strong subtree.

Definition 7.18. Given a perfect tree T , let t
T

TT(n) be the number of
tuple types generated by n distinct strings of T . Let

tTT(n) = min{tTTT(n) T is a perfect tree}.

Theorem 7.19. Suppose T syntactically minimizes the number of tuple
types, then tTT(n) = t

T

TT(n).

Proof. Suppose T syntactically minimizes the number of tuple types.
Then by Lemma 7.13 the tuple types of T coincide with its weak tuple
types. By Lemma 7.17 every weak tuple type of T is length-injective and
meet-avoiding. By Lemma 7.16 we then have that every weak-tuple type
of T is a weak-tuple type in any perfect tree S. Using the fact that the
tuple types are a refinement of the weak tuple types, we then have that
given any n, the number of tuple types of [S]n is bigger than the number
of weak tuple types of [S]n and then bigger than the number of weak tuple
types of [T ]n and then bigger than the number of tuple types of [T ]n. Thus
tTT(n) = t

T

TT(n). □
Theorem 7.20 (Generalized CHM tree theorem). For every n, the prin-

ciple CMHTTn
k,tTT(n)

is provable in ACA0 but RCA0 proves that the principle

CMHTTn
k,tTT(n)−1 is false.

Proof. Let Mc be a model of ACA0. Let T ∈ Mc be a perfect tree
and c ∈ Mc be a color of [T ]n. Using Theorem 7.9, there is a strong
subtree S ⊆ T such that every tuple type of [S]n is monochromatic for
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c. Using Lemma 7.11 let R be a S-computable perfect subtree of S which
synctactically minimizes the number of tuple types. Note that R ∈ Mc and
that by Theorem 7.19 [R]n has at most tTT(n) many tuple types. It follows
that c uses at most tTT(n) many colors on R.

To show optimality, and given an enumeration {ei}i≤tsTT(n) of the tuple

types generated by n strings, let us define a color on 2<ω which associates i to
σ of tuple type ei. By minimality of tTT(n) among t

T

TT(n) for a perfect tree
T we have that every perfect subtree of 2<ω uses at least tTT(n) colors. □

Theorem 7.21 (CHM tree theorem for n-tuple and k-colors). For every
coloring of n-tuples of pairwise comparable strings, there exists a perfect tree
on which the coloring is monochromatic.

Proof. This follows from the fact that given any n, there is only one
weak tuple type of size n which contains only comparable strings. □

It is easy to determine the number en of embedding types of height n,
which is given by the following induction:

e0 = 1,
e1 = 1,

en+1 = 2× en × (
1

i<n
ei) + e

2
n.

The definition above is justified by the following observation: there is one
tree of height 0 (the emptyset), there is one tree of height 1 (the empty
string) and for any n ≥ 1, the possibilities to build trees of height n+ 1 are
as follow: having a left subtree of the root (the empty string) of height n

and a right subtree of the root of height < n, or the inverse of that, or have
both a left and a right subtree of the root of height n.

The number of embedding types generated by n strings, namely esTT(n)
appears much harder to compute. It is the same for tsTT(n) and tTT(n). We
can also define the function n 8→ eTT(n) which to n associates the minimal
number of embedding type within any perfect tree (which is the number
of embedding types generated by n strings of a tree which syntactically
minimizes the number of tuple types).

We computed the first values of each with the help of a computer pro-
gram:

esTT tsTT eTT tTT

0 1 1 1 1
1 1 1 1 1
2 7 7 3 3
3 345 369 27 29
4 136949 145215 561 635

None of these sequence appears in OEIS, The On-Line Encyclopedia of
Integer Sequences [22]. It then seems that each of them is a new natural
combinatorial sequence. Even if it seems that these sequences cannot be
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computed with an easy mathematical induction like for the number of em-
bedding types of height n, we conjecture each of them to be polynomial time
computable.



CHAPTER 8

Open Questions

The computability-theoretic study of Milliken’s tree theorem and its ap-
plications being completely new, this work leaves many questions open. We
collect some here that seem most promising for follow-up research directions.

8.1. Milliken’s tree theorem in the arithmetical hierarchy

When analyzing a mathematical problem from a computability-theoretic
viewpoint, the first step usually consists in determining whether the com-
putable instances of the problem admit arithmetical solutions, and if so,
trying to identify the exact level in the arithmetical hierarchy where they
stand. For example, Jockusch [23] proved that every computable instance
of Ramsey’s theorem for n-tuples admits Π0

n solutions, and for each n ≥ 2,
constructed a computable instance of Ramsey’s theorem for n-tuples and
2 colors with no Σ0

n solutions. Thus, the status of Ramsey’s theorem with
respect to the arithmetical hierarchy is fully determined.

The case of Milliken’s tree theorem is less clear. By Theorem 4.6, com-
putable instances of Milliken’s tree theorem admit arithmetical solutions.
More precisely, every computable instance of Milliken’s tree theorem for
subtrees of height n admits a ∆0

2n−1 solution. On the other hand, since Mil-
liken’s tree theorem generalizes Ramsey’s theorem, for every n ≥ 2, there
exists a computable instance of Milliken’s tree theorem for trees of height n
with no Σ0

n solutions. This leaves a gap between the lower and upper bound.

Question 1. Does every computable instance of Milliken’s tree theorem
for height n admit a ∆0

n+1 solution?

The proof by Jockusch [23] of the existence of a Π0
2 solution for every

computable instance of Ramsey’s theorem for n-tuples is by an inductive ar-
gument based on the notion of prehomogeneous set. In particular, he proves
that every PA degree relative to ∅′ is sufficient to compute a prehomogeneous
set. Hirschfeldt and Jockusch [21, Theorem 2.1] actually proved a reversal,
by constructing a computable instance of Ramsey’s theorem for triples such
that every prehomogeneous set is of PA degree relative to ∅′. This bound on
prehomogeneous sets is sufficient to make increasing the level in the arith-
metical hierarchy only by one when increasing the size of the colored tuples
by one, by taking prehomogeneous sets of low degree over ∅′.

Similarly, the current upper bound of Milliken’s tree theorem is proved
using the corresponding notion of prehomogeneous tree, but Lemma 4.5

123
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yields only a ∆0
3 solution, which makes increase the level in the arithmeti-

cal hierarchy by 2 instead of 1 when coloring larger tuples. The following
questions are still open:

Question 2. Given a computable instance of the Milliken’s tree theorem
for height n, does any PA degree relative to ∅′ compute a prehomogeneous
infinite strong subtree? Is there always a prehomogeneous infinite strong
subtree of low degree relative to ∅′?

A positive answer to either question would be sufficient to answer posi-
tively Question 1.

8.2. Larger degrees and cone avoidance

Cone avoidance is a central notion in the computability-theoretic analy-
sis of theorems. It is the main tool for separating a theorem from ACA0 over
ω-structures. It is in particular a desirable property to have, and given a
statement which does not admit cone avoidance, one can ask whether there
exists a natural weakening of it which admits it. The analysis of Ramsey’s
theorem gives a good example: Jockusch [23] constructed for every n ≥ 3
a computable instance of Ramsey’s theorem for n-tuples whose solutions
compute the halting set. In particular, this shows that Ramsey’s theorem
for 3-tuples does not admit cone avoidance. On the other hand, Wang [49,
Theorem 3.2] proved that when weakening the notion of homogeneity in
Ramsey’s theorem by allowing a larger number of colors, then the resulting
statement admits cone avoidance. In particular, he proved that (∀k)RT3

k,2

admits cone avoidance, where (∀k)RTn

k,ℓ is the statement whose instances

are colorings f : [ω]n → k for some k, and whose solutions are infinite sets
H such that |f [H]| ≤ ℓ. In general, Wang proved that for every n, and
every ℓ sufficiently large with respect to n, the statement (∀k)RTn

k,ℓ admits

cone avoidance. Cholak and Patey [4] computed the exact bound where this
threshold phenomenon happens, which happens to be (∀k)RTn

k,Cn−1
, where

C0, C1, . . . is the Catalan sequence, starting with 1, 1, 2, 5, 14, 42, . . .
Milliken’s tree theorem behaves like Ramsey’s theorem with many re-

spects. Milliken’s tree theorem for pairs admits cone avoidance, while there
exists a computable instance of Milliken’s tree theorem for trees of height 3
whose solutions compute the halting set. By a similar investigation, we
proved in Section 4.4 that (∀k)PMTT3

k,2 admits cone avoidance (Theo-

rem 4.28), where (∀k)PMTTn

k,ℓ is the weakening of (∀k)PMTTn where ℓ
colors are allowed in the solutions.

The proof of Theorem 4.28 goes through the existence of a level-homo-
geneous strong subtree. Recall that a tree T is level-homogeneous with
respect to a coloring f : Sn(T ) if strong subtrees with the same level func-
tion get assigned the same color. This notion reduces the problem of finding
an infinite strong subtree monochromatic for f to the problem of finding
an infinite homogeneous set. Indeed, if T is level-homogeneous with re-
spect to f , the color depends only on the levels, hence becomes a coloring
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of [ω]n. The known counter-examples to cone avoidance of Milliken’s tree
theorem for trees of height at least 3 as all inherited from Ramsey’s the-
orem by defining a coloring which depends only on the levels. We proved
that the statement which to a finite coloring of S3(T ), associates an infinite
level-homogeneous strong subtree, admits cone avoidance. This result goes
towards the intuition that the strength of Milliken’s tree theorem is mainly
inherited from Ramsey’s theorem. It is therefore natural to wonder whether
the statement of the existence of a level-homogeneous infinite strong subtree
admits cone avoidance, when considering colorings of finite subtrees of larger
height. Since the proof from height n to height n + 1 is usually inductive,
by first proving cone avoidance for height n, then strong cone avoidance for
height n, and then only cone avoidance for height n+1, we wonder whether
the statement of the existence of a level-homogeneous infinite strong subtree
admits strong cone avoidance.

Question 3. Given two sets C and Z such that C ∕≤T Z, and a finite
sequence of Z-computable, Z-computably bounded, infinite trees with no
leaves T0, . . . , Td−1, does every coloring f : Sn(T0, . . . , Td−1) → k admit a
level-homogeneous tuple (S0, . . . , Sd−1) ∈ Sω(T0, . . . , Td−1) such that C ∕≤T

Z ⊕ S0 ⊕ · · ·⊕ Sd−1?

A positive answer to this question would enable to make it benefit from
the computability-theoretic analysis for Ramsey’s theorem, and in particular
would imply that (∀k)PMTTn

k,Cn−1
admits cone avoidance.

8.3. Comparing the statements for pairs in reverse mathematics

Ramsey’s theorem for pairs admits a special status with respect to full
Ramsey’s theorem in reverse mathematics, as it admits cone avoidance,
while Ramsey’s theorem for larger tuples is equivalent to ACA0 over RCA0.
This threshold phenomenon was also satisfied by the Chubb-Hirst-McNicholl
tree theorem (see Dzhafarov and Patey [15]) whose statement for pairs ad-
mits cone avoidance, while is equivalent to ACA0 for larger tuples, or the
Erdös-Rado theorem (see Chong, Liu, Liu and Yang [5]). We therefore nat-
urally had a particular focus on the restriction of Milliken’s tree theorem for
trees of height 2, and on the applications of Milliken’s tree theorem restricted
to pairs.

As we can see in the proof of Devlin’s theorem and the Rado graph
theorem using Milliken’s tree theorem, both Devlin’s theorem for n-tuples
and the Rado graph theorem for graphs of size n involve applications of
Milliken’s tree theorem for strong subtrees of height 2n−1. This is essentially
due to Lemma 5.21. Informally, when representing rational numbers as
strings, any coloring of a pairs of rationals induces a coloring of strong
subtrees of height 3, by considering the tree whose first level is the length of
their meet, the second level is the length of the shortest of the two strings
representing the rationals, and the third level is the longest length.
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This yields two main questions, namely, (1) whether there exists another
proof of these statements of size n involving only applications of Milliken’s
tree theorem for trees of height n, and (2) whether these statements should
be more considered as statement about pairs or about triples. The latter
question is more informal, and depends on the aspects considered.

One aspect separating Ramsey’s theorem for pairs from larger tuples is
the existence of cone avoiding solutions. With this respect, Devlin’s theorem
admits a computable instance whose solutions all compute the halting set,
while the Rado graph theorem for graphs of size 2, the Erdös-Rado theorem
and Milliken’s tree theorem for pairs are all cone avoiding. This proves in
particular that Milliken’s tree theorem for pairs does not imply Devlin’s
theorem for pairs in RCA0, and answers the first question negatively for
Devlin’s theorem. Another aspect which could better capture the difference
between statements about pairs and about larger tuples, is the position in the
arithmetical hierarchy. As explained, Jockusch [23] proved the existence of
a computable instance of Ramsey’s theorem for triples with no Σ0

3 solution,
while every computable instance of Ramsey’s theorem for pairs admits a
Π0

2 solution. Here again, using this criterium, Devlin’s theorem for pairs
does not seem to be a statement about pairs. Indeed, by Corollary 5.41 in
a computable instance of Devlin’s theorem for pairs with no Σ0

3 solution.
The question for the Rado graph theorem for graphs of height 2 and for the
Erdos-Rado theorem remains open:

Question 4. Is there a computable instance of the Rado graph theorem
for graphs of size 2 with no Σ0

3 solution? Same question for the Erdös-Rado
theorem for pairs.

If the answer is yes, then this would answer negatively the corresponding
part of the following question.

Question 5. Does MTT2 imply (∀k)RG2
k,4 over RCA0? Same question

for ER2.

Milliken’s tree theorem for trees of height 2 is a natural generalization
of Ramsey’s theorem for pairs, and so is the Erdös-Rado theorem. By The-
orem 5.32, this is also the case of Devlin’s theorem for pairs. It is however
unknown whether the Rado graph theorem for graphs of height 2 also im-
plies Ramsey’s theorem for pairs. On the positive side, the Rado graph
theorem for pairs implies a stable version of Ramsey’s theorem for pairs (see
Theorem 6.55). Thus, by the decomposition of Ramsey’s theorem for pairs
in its stable version and the cohesiveness principle (see Cholak, Jockusch
and Slaman [3], Section 7), the question can be rephrased as whether the
Rado graph theorem for pairs implies the COH over RCA0.

Question 6. Does (∀k)RG2
k,4 imply RT2

2 over RCA0? Equivalently,

does (∀k)RG2
k,4 imply COH over RCA0?

Devlin’s theorem for pairs and the Erdös-Rado theorem are both state-
ments about colorings of pairs of rationals. The former is symmetric, in
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that the nature of the solution does not depend on value of the color, and is
thus arguably more natural than the Erdös-Rado theorem. Since the state-
ment DT2

<∞,2 is somehow combinatorially optimal with respect to coloring
of pairs of dense linear orders with no endpoints, one could expect that it
implies the Erdös-Rado theorem. This is actually the case by Theorem 5.48:
DT2

4,2 implies ER2 over RCA0. On the other hand, ER2 admits cone avoid-

ance, while DT2
4,2 does not. This yields the following question: is there a

natural statement which implies ER2 and does admit cone avoidance? The
notion of naturality is kept informal. When increasing the number of colors
allowed in the solutions of Devlin’s theorem for pairs, the statement DT2

<∞,4

is the first one admitting cone avoidance (Corollary 5.44). This yields the
following question:

Question 7. Does DT2
<∞,4 imply ER2 over RCA0?

Part of the reason we might expect this to be true is because in Section 5.5,
we did actually prove cone avoidance of ER2 (first shown by Chong, Liu,
Liu and Yang [5]) using DT2

<∞,4. However, our proof involved the existence
of a generic set for a particular notion of forcing, and this may not belong to
a given model of RCA0. Thus, it does not settle the question, but it makes
an affirmative answer plausible.
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