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ABSTRACT. The Ginsburg—Sands theorem from topology states that every in-
finite topological space has an infinite subspace homeomorphic to exactly one
of the following five topologies on w: indiscrete, discrete, initial segment, fi-
nal segment, and cofinite. The original proof is nonconstructive, and features
an interesting application of Ramsey’s theorem for pairs (RT%). We analyze
this principle in computability theory and reverse mathematics, using Dorais’s
formalization of CSC spaces. Among our results are that the Ginsburg—Sands
theorem for CSC spaces is equivalent to ACAg, while for Hausdorff spaces it
is provable in RCAg. Furthermore, if we enrich a CSC space by adding the
closure operator on points, then the Ginsburg—Sands theorem turns out to be
equivalent to the chain/antichain principle (CAC). The most surprising case
is that of the Ginsburg—Sands theorem restricted to 7 spaces. Here, we show
that the principle lies strictly between ACAp and RT%, yielding arguably the
first natural theorem from outside logic to occupy this interval. As part of
our analysis of the T} case we introduce a new class of purely combinatorial
principles below ACAg and not implied by RT% which form a strict hierarchy
generalizing the stable Ramsey’s theorem for pairs (SRT3). We show that
one of these, the Zg subset principle (Eg-Subset), has the property that it,
together with the cohesive principle (COH), is equivalent over RCAq to the
Ginsburg—Sands theorem for 77 CSC spaces.

1. INTRODUCTION

In their 1979 paper “Minimal infinite topological spaces” [18], Ginsburg and
Sands proved the following classification theorem for topological spaces, described
by Marron and McMaster [31, pp. 26-27] as a “[significant] application of Ramsey’s
theorem?”.

Theorem 1.1 (Ginsburg and Sands [18]). Ewvery infinite topological space has a
subspace homeomorphic to one of the following topologies on w:

(1) indiscrete (only O and w are open);

(2) initial segment (the open sets are 0, w, and all intervals [0,n] forn € w);
(3) final segment (the open sets are §, w, and all intervals [n,00) forn € w);
(4) discrete (all subsets are open);

(5) cofinite (the open sets are ), w, and all cofinite subsets of w).
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Since the result is not especially well-known, we include the original proof from
[18] in Section 2 below. As Ginsburg and Sands explain [18, p. 574], any infinite
subspace of a topological space homeomorphic to one of the above five is itself
homeomorphic to the same, and no two distinct such spaces can be homeomorphic
to each other. Thus, the above topologies are “minimal” in the same sense that a
homogeneous set is for a given coloring of tuples of integers: if a homogeneous set
has color i for some coloring then so does every subset, and no homogeneous set
can simultaneously have colors ¢ and j # 4.

In this article, we will analyze the effective and proof-theoretic content of the
Ginsburg—Sands theorem using the frameworks of computability theory and reverse
mathematics.

Computability theory is concerned with the question of which subsets of the nat-
ural numbers can be specified by an algorithm, and by extension, seeks to determine
the algorithmic properties of mathematical theorems that can be phrased in terms
of, or represented by, countable objects. Reverse mathematics, on the other hand,
seeks to classify the logical strengths of mathematical theorems by identifying the
minimal axioms necessary for their proofs, commonly using subsystems of second-
order arithmetic as benchmarks. There is a well-understood relationship between
these two endeavors, with notions and results in one often leading to notions and
results in the other. This combined perspective often provides deeper insights into
the logical underpinnings of mathematical theorems, particularly with respect to
the combinatorial tools and methods needed to prove them (see, e.g., [20], p. 65).

We refer to Shore [47] for a thorough discussion of the interplay between com-
putability and reverse mathematics. For general background on computability, see
Soare [49] and Downey and Hirschfeldt [11]. The standard reference on reverse
mathematics is Simpson [48], with newer treatments by Hirschfeldt [20] and Dzha-
farov and Mummert [16].

Ramsey’s theorem, and many related principles from combinatorics, model the-
ory, and set theory have been studied extensively in this context. A partial survey
appears in [16, Chapters 8 and 9]. Topological theorems of various kinds have also
been considered, but because of the need for countable representations a lot here
depends on how exactly topological spaces are coded. Thus, different approaches
exist for studying metric spaces (see [16], Sections 10.1-10.5 for an overview), cer-
tain uncountable spaces (see Mummert [38] and Mummert and Lempp [28]), and
countable spaces with countably based topologies (see Dorais [10]). Topology has
also been studied using higher-order reverse mathematics (Hunter [24], Normann
and Sanders [39], and Sanders [43, 44]). A more detailed discussion of these various
viewpoints appears in [16, Section 10.8].

Our investigation of the Ginsburg—Sands theorem will use Dorais’s formaliza-
tion of countable second-countable (CSC) spaces in classical (second-order) reverse
mathematics. The original account [10] of this is unpublished, so we review some
of the main definitions and the features most relevant for our purposes in Sec-
tion 3. Additional background can be found in [16, Section 10.8.1]. Other recent
applications besides our own include the work of Shafer [46] and DeLapo [9].

Our goal is to better understand the Ginsburg-Sands theorem in isolation, but
also with respect to Ramsey’s theorem for pairs, which figures in its proof. For
the remainder of this section, then, we recall the statement of Ramsey’s theorem,
and of some of its consequences. Throughout, our notation will be standard unless
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otherwise noted. We assume familiarity with the usual benchmark subsystems
RCAg, WKLy, and ACAy of second-order arithmetic. For n > 1, we use IX0 to refer
to the X2 induction scheme, which consists of all formulas of the form

[p(0) A (Vo) [p(x) = @(x + D)]] = (Vz)o(z)
where ¢(z) is a X9 formula in the language of second-order arithmetic. All impli-
cations between principles and schemes in the sequel will be assumed to be over
RCAy, unless otherwise noted. We also follow the convention of formulating all
definitions in RCA( for generality, thereby using N in place of w so as to refer to
the set of natural numbers in a possibly nonstandard model.

Definition 1.2. For X C N and m,n > 1, [X]" = {{zg,...,Zpn-1) : g < -++ <
Zp—1}, and an m-coloring of [X]|™ is a map ¢ : [X]* — m = {0,...,m — 1}. We
write ¢(xo,...,Zn—1) in place of ¢((zg,...,zn—1)). A set H C X is homogeneous
for ¢ if ¢ [[H]™ is constant. RT,, is the statement that for every infinite set X and
every c: [X]™ — m there exists an infinite homogeneous set for c.

It is easy to see that for each m, the principle RT,ln is provable in RCAq. Hirst [22,
Theorem 6.4] showed that (Vm)[RT},] is equivalent (over RCAg) to BYY, the X9
bounding scheme. We recall that if " is any collection of formulas of Ls, the scheme
BI' consists of all formulas of the form

(V2)[(Vo < 2)(Fy)e(z,y) = (Bw) (Vo < 2)(3y < w)p(z,y)]

for p(x,y) in T. By well-known results of Kirby and Paris [40], BXY is strictly
stronger than 1%, and equivalent to BIIY.

For any fixed, standard m > 2, the usual collapsing argument shows that RT;,,
is equivalent over RCAy to RT4. By a result of Jockusch [25, Lemma 5.9], RTj
is equivalent over RCAg to ACAg. By contrast, Seetapun (see [45], Theorem 2.1)
showed that RTj is strictly weaker than ACAg, while Liu [30, Corollary 1.6] showed
that it does not imply WKLy. A modern proof of Seetapun’s theorem uses the
so-called strong cone avoidance of RTy of Dzhafarov and Jockusch [15, Lemma 3.2]
(see also [16], Section 8.5.1).

Alongside WKL, RT% holds a special position among principles lying below
ACA, which have collectively come to be called the reverse mathematics zoo ([14]).
Namely, virtually all of the known principles in the zoo are a provable consequence
of WKLy or RT% or both, with the vast majority of these being a consequence
of RT% alone. While principles strictly weaker than ACAy but strictly stronger
than RT% exist, only two natural examples are known to occupy this interval, the
Chubb-Hirst-McNicholl tree theorem (TT3), introduced in [7], and Milliken’s tree
theorem (MTT3), introduced in [33, 34]. Interestingly, both of these principles
have their roots at least partially in logic, with TT% being devised specifically in
the context of computability theory and reverse mathematics, and MTT% being
originally motivated in part by its applications to consistency results in set theory
(see also [35], Chapter 3, and [19], p. 360). (The reverse mathematical analysis
of MTT3 was only performed recently, by Angles d’Auriac et al. [8].) We will
prove that the Ginsburg—Sands theorem for 77 CSC spaces is another example of a
principle strictly in-between ACAy and RT%7 and as such is arguably the first such
theorem with no a priori connection to logic.

We mention, for completeness, that Angles d’Auriac et al. [8, Theorem 4.15]
established the fact that MTT% does not imply ACAq. Dzhafarov and Patey [17,
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Theorem 4.1] showed that TT% does not imply ACAg, which Chong et al. [4,
Theorem 1.1] improved to show that TT% does not imply even WKL,. Patey [41,
Theorem 1.3] proved that RT3 does not imply TT2. It remains open whether MTT3
implies WKLy, or whether TT3 implies MTT3.

We now discuss two important restrictions of RTS, which are the stable Ramsey’s
theorem for pairs and the A subset principle.

Definition 1.3. Given a set X, a coloring ¢ : [X]? — 2 is stable if (Vz)[lim, c(z,y)
exists]. A set L C X is limit homogeneous for cif (3i < 2)(Vx € L)[lim, c(z,y) = 1].
e SRT3 is the restriction of RT3 to stable colorings.

e D2 is the statement that for every infinite set X and every stable ¢ : [X]
2 there exists an infinite limit homogeneous set for c.

2

An infinite homogeneous set for a stable coloring is trivially limit homogeneous.
Conversely, an infinite limit homogeneous set can be easily thinned to an infinite
homogeneous set, but this thinning process in general requires BX9 (see Dzhafarov,
Hirschfeldt, and Reitzes [13, Definition 6.1 and Proposition 6.2]). However, Chong,
Lempp, and Yang [3, Theorem 1.4] showed that D3 implies BXY9, and hence that
RCA, proves SRT2 « D32. An alternative formulation of D3 is as the scheme
consisting of all formulas of the form

(Va)[p(z) & 9 (2)] = AY)[(Vo)lz € Y = p(2)] V (Vo)lz € YV = —p(2)]],

where ¢ and 9 range over ¥9 formulas of the language of second-order arithmetic.
In gist, this says that every AY-definable set (which may not exist) has an infinite
subset in it or its complement (that does exist). The equivalence is provable in
RCA(, and is a straightforward consequence of Shoenfield’s limit lemma. We will
return to this in Section 6.

Another important principle in the study of RT% is the cohesive principle.

—

Definition 1.4. For a family R = (R, : n € N) of subsets of N, a set Y is R-
cohesive if (Vn)[Y C* R, VY C* R,]. COH is the statement that for every family
R of sets there exists an infinite R-cohesive set.

Famously, Cholak, Jockusch, and Slaman [2, Lemma 7.11] (see also [32], Corol-
lary A.1.4) showed that over RCAg, RT2 <+ SRT2 + COH. This discovery allowed
the study of RT% to be divided separately into the study of the comparatively sim-
pler principles SRT2 and COH, and was a catalyst for much advancement in the
area. The decomposition of principles into “stable” and “cohesive” parts has be-
come standard practice, and we will give such a decomposition also for a version of
the Ginsburg—Sands theorem below. Ours will have the surprising feature of being
a decomposition into a ¥ subset principle, analogous to D3 above, and COH.

In [2, Theorem 9.1], it was shown that COH does not imply SRT32, but whether or
not SRT% implies COH (or equivalently, RT%) was a major open question in reverse
mathematics for many years. It was finally answered in 2014 by Chong, Slaman,
and Yang [5, Theorem 2.2], who constructed a nonstandard model of RCA + SRT?
in which COH does not hold. More recently, Monin and Patey [36, Theorem 1.4],
improved this to a separation via an w-model. See [16, Section 8.8] for more on the
history of this problem.

Hirschfeldt and Shore [21] initiated the study of the chain/antichain principle
and the ascending/descending sequence principle, which are both partition results
concerning orderings, and are closely related to Ramsey’s theorem for pairs.
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Definition 1.5. Given a partial order (X,<x), a subset Y of X is a chain if
(Vaz,y € V)[r <x yVy <x z|; an antichain if (Vz,y € Y)z # y — = %x
y ANy £x z]; an ascending sequence if it is a chain and for all z € Y, the set
{y €Y :y <x x} is finite; and a descending sequence if it is a chain and for all
x €Y, theset {y €Y :y >x x} is finite.

e CAC is the statement that for every infinite partial order (P,<p) there
exists an infinite chain or antichain under <p.

e ADS is the statement that for every infinite linear order (L, <) there exists
an infinite ascending or descending sequence under <j.

It is easy to see that RT% implies CAC, and that CAC implies ADS. Hirschfeldt
and Shore [21, Corollaries 2.16 and 3.12] exhibited an w-model satisfying RCAq +
CAC but not SRT%7 as well as an w-model satisfying WKLy but not ADS. They also
showed ([21], Proposition 2.10) that ADS implies COH. This left open whether or
not ADS implies CAC over RCA(, which was finally answered, in the negative and
via an w-model, by Lerman, Solomon, and Towsner [29, Theorem 1.7].

It is worth noting that CAC and ADS were also identified by Ginsburg and Sands
[18, p. 575], and it is these principles, rather than RT%7 that they employed in their
proof of Theorem 1.1, which we present in the next section.

We follow the usual convention of also thinking of IT principles such as those
above as problems, each having a class of instances, and for each instance, a class
of solutions (see [16, Chapter 3] for a general discussion). Thus, for example, the
instances of RT3 are all pairs (X, c) such that X is an infinite set and ¢ : [X]? — 2
is a coloring, with the solutions to ¢ being all infinite homogeneous sets H C X.

2. A PROOF OF THE GINSBURG—SANDS THEOREM

We present Ginsburg and Sands’s proof of Theorem 1.1, modified only to reflect
the terminology defined in the previous section. As mentioned, we do this partly to
showcase their argument, which is elementary and elegant. This makes it straight-
forward to formalize the proof in ACA for the types of topological spaces we will
be concerned with. But more significantly, the proof breaks very clearly into three
main parts which seem to involve different levels of non-constructivity. We give a
schematic of these parts at the end of the section, and then in Sections 4 and 6
show that the distinctions between these parts is reflected in their proof-theoretic
strengths when considered separately.

We proceed to the proof, recalling that the aim is to show that every infinite
topological space has a subspace homeomorphic to either the indiscrete; initial
segment; final segment; discrete; or cofinite topology on w.

Proof of Theorem 1.1 ([18], p. 576). Fix an infinite topological space X. By pass-
ing to a subspace if needed, we may assume X is countable. For each x € X, let
cl(z) denote the closure of x in X i.e., the set of all y € X such that every open
set containing y also contains z. Then, for z,y € X, define = ~ y if cl(z) = cl(y),
which is an equivalence relation on X. If there is an x such that the equivalence
class {y € w: & ~ y} is infinite, then the subspace topology on this class is an indis-
crete subspace of X. Moving forward, we can therefore assume that all equivalence
classes under ~ are finite. By choosing representatives, we may further assume that
cl(z) # cl(y) for all z # y in X, so that X itself is a Tj space.
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We now define a relation <x on X, as follows. For z,y € X, set ¢ <x y if
x € cl(y). Clearly, <y is reflexive and transitive, and our assumption that X is
Ty implies that <y is antisymmetric. So, <x is a partial ordering. By CAC, there
exists an infinite subset of X that either forms a chain under <x or an antichain
under <y. By regarding this as a subspace, we may assume this subset is in fact
of all of X for simplicity.

First, suppose X is a chain under <x. Applying ADS, we can fix an infinite
subset Y of X that is either an ascending or descending sequence under <x. Say
Y is an ascending sequence under <x, so that its elements may be listed as o <x
r1 <x ---. We claim that Y under the subspace topology is homeomorphic to the
final segment topology on w via the map x, +— n. To see this, note first that if
n < m then every open set in X containing x,, also contains x,, since z,, € cl(x,,).
On the other hand, for every n there is an open set containing x, but not any x,,
for m < n, since x,, ¢ cl(x,,) for any such m. It follows that the open sets in YV
are precisely the sets of the form {z,, : m > n} for n € w, which proves the claim.
The case where Y is a descending sequence under <x is symmetric, and produces
a subspace homeomorphic to the initial segment topology.

We are thus left with the case where X is an antichain. By definition of <y,
this means that X is a T} space. Assume X has no infinite subspace with the
cofinite topology; we show it has an infinite discrete subspace. Since X is T}, every
finite subset of X is closed, and so every cofinite subset is open. Our assumption
therefore implies that if W is any infinite subspace of X, there exists an open set
U such that UNW # () and W \ U is infinite. Let Uy be any such open set for
W = X, and let zy be any element of Uy. Next, suppose inductively that, for some
n € w, we have defined xg,...,x, € X, along with open sets Uy, ..., U, satisfying
the following: X \ |,<,, U; is infinite, and for all 4,j < n, we have that x; € U;
if and only if i = j. Letting W = X ~ U;<n Ui, there exists an open set U such
that U NW # () and W ~ U is infinite. Let 2, be any element of U N W, and
let Upy1 = U ~{zo,...,z,}. (Note that U, is open because X is T;.) Clearly,
the inductive conditions are maintained. In this way, we thus define an infinite
subspace Y = {z,, : n € w} of X, and this subspace is discrete since for each n we
have that U, NY = {z,} by construction. O

Examining the proof, we can identify the following three main parts:

(1) the construction of the ordering <y;
(2) the application of CAC, followed by ADS in the chain case;
(3) the construction that handles the T} case.

We will use this breakdown as a guide for how to organize our study of the Ginsburg—
Sands theorem. We will then show that, for the formalization of topological spaces
we employ, part (1) is equivalent over RCAg to ACAy; part (2) to CAC; and part
(3) has a unique strength with respect to the standard subsystems of second-order
arithmetic. The analysis of part (3) will consequently take the most work. As part
of this, we will actually give two alternative proofs of this part.

3. BACKGROUND ON CSC SPACES

3.1. Spaces and subspaces. Classically, a topological space is second-countable if
it has a countable basis. Restricting to spaces whose underlying set is countable, we
obtain the notion of a countable second-countable (CSC) space. We review the basic
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definitions of how such spaces are formalized in second-order arithmetic, following
Dorais [10].

Definition 3.1. A countable second-countable (CSC) space is a tuple (X,U, k) as
follows:
(1) X is a subset of N;
(2) U = (Uy, : n € N) is a family of subsets of X such that every z € X belongs
to U, for some n € N;
(3) k: X xNxN — Nis a function such that for every z € X and all m,n € N,
if x € Up NU, then @ € Ug(y,mn) € Un N Up,.

We refer to U above a basis for (X,U, k), and to each U, as a basic open set. We
write U € U if U = U, for some n, and say U is an element of U. We say (X, U, k)
is an infinite CSC space if X is an infinite set. When arguing computability-
theoretically, we say a CSC space (X,U, k) is computable if X is a computable
subset of w, U is a uniformly computable sequence of sets, and k is a computable
function. For ease of notation, when no confusion can arise, we will identify (X, U, k)
simply with X. Thus, we will refer, e.g., to the basic open sets in X, etc.

The following lemma shows that the k function can be extended to arbitrary
finite intersections.

Lemma 3.2. The following is provable in RCAq. Let (X,U,k) be a CSC space
with U = (U, : n € N). There exists a function k : X x N — N such that for
allz € X and m € N, if F is the finite set coded by m and x € ) U,, then
S UE(z,m) - mnEF U,.

Proof. We first define a function ¢ : X x N x N — N by primitive recursion, as
follows. Fix x € X and m € N coding a finite set F. From m we can determine
whether or not F is empty. If F' =0, let g(x,m,s) = 0 for all s. Otherwise, let the
elements of F' be ng < ... < njpj—1. Let g(x,m,0) = ng, and for s > 0 let

neF

k(x,g(x,m,s - 1)3”5) if s < |F|7

glx,m,s) = {

g(x,m,s —1) if s > |F|.
By induction on s < [F|, if z € ;< Un, then @ € Uy(z,m,s) € i<y Un,- Thus, if
we define k(x,m) = g(z, m, |F|) we obtain the desired function. O

We will write k(z, F') in place of k(z,m) when F is coded by m.
The next result allows us to build CSC spaces out of arbitrary collections of sets.

Proposition 3.3 (Dorais [10], Proposition 2.12). The following is provable in
RCAy. Given a set X C N and a collection (V,, : n € N) of subsets X, there
exists a CSC space (X,U, k) withUd = (U, : n € N) as follows:

(1) for everyn e N, V,, e U;

(2) for everym € N, Up, = (\,,cp Vi, where F is the finite set coded by m.

We call (X, U, k) above the CSC space on X generated by (V,, : n € N). Since every
finite set is coded by a number, the basis U here is closed under intersections.

As noted by Dorais [10, Section 2], RCAg cannot prove the existence of arbitrary
unions of elements of a basis. Thus, the open sets in a CSC space are defined
somewhat indirectly.

Definition 3.4. Let (X,U, k) be a CSC space with U = (U,, : n € N).
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(1) An open code of (X,U, k) is a function O : N — N.
(2) The open set coded by O refers to Oy = U, cran(0) Un-

The phrase “refers to” in (2) above is intentional. Since Oy may not exist as an
actual set, we formally understand all references to O, as abbreviations. So, for
example, by € Oy or Oy C Y we really mean (In € ran(O))[z € U,| and
(Vz)[(3n € ran(0))[z € U,] — z € Y], respectively. Of course, if Oy happens to
exist then we may also interpret these in the usual sense.

We move on to the definition of subspaces.

Definition 3.5. Let (X,U, k) be a CSC space with U = (U,, : n € N).
(1) For Y C X,letUY =(U,NY :neN).
(2) A subspace of (X,U, k) is a tuple (Y,U | Y, k) for some Y C X.

Note that any subspace of a CSC space is itself a CSC space. Given a subspace
(YUY, k) of a CSC space (X,U, k), we will typically simply say that Y is a
subspace of X, and omit the notation U [ Y. For clarity, we will sometimes say that
a basic open set of Y (i.e., an element of U [Y) is a basic open set of Y in the
subspace topology.

Classically, a subspace is defined in terms of a restriction of the full topology,
rather than just the basis. As a result, the definition of subspace may at first appear
too strong. However, given a CSC space (X,U, k) and a set Y C X, the existence
of the subspace (Y,U [Y, k) is easily provable in RCAg. Thus, we may restrict to
subspaces in the sense of Definition 3.5 without any loss of generality.

3.2. Separation axioms. We now define the first few degrees of Kolmogorov’s
classification of topological spaces, as they pertain to CSC spaces in our setting.

Definition 3.6. Let (X,U, k) be a CSC space.
(1) X is Ty if for all  # y in X, there exists U € U such that either x € U and
y¢U,oryeUand z ¢ U.
(2) X is Ty if for all z # y in X, there exist U,V € U such that x € U\ V and
yeV\U.
(3) X is Hausdorff (or T5) if for all x # y in X there exist U,V € U such that
zeU,yeV,andUNV = 0.

In RCAy, it is straightforward to prove the standard fact that every Hausdorff CSC
space is T1, and every T7 CSC space is Tj.

Proposition 3.7. The following is provable in RCAy. Let (X, U, k) be a Ty CSC
space. Then for all x € X, {x} € U if and only if v € U for some finite U € U.

Proof. The left-to-right implication is trivial. For the right-to-left, let & = (U, :
n € N). Fix x and suppose x € U for some finite U € U. Since X is Ty, for every
y € U different from x there is an n such that € U,, and y ¢ U, and RCA( can
form the set F' containing the least such n for each y. Thus, (), cp Un = {z}, and
0 € U, py) € Nyer Un = {a}, where k is the function from Lemma 3.2. Since
Uk(z,r) € U, we are done. O

3.3. Indiscrete and discrete spaces.

Definition 3.8. Let (X,U, k) be a CSC space.
(1) X is indiscrete if U € U if and only if U is ) or X.
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(2) X is discrete if {z} € U for every z € X.

Because there is in general no effective way, given x € X, to find the index of
a U € U equal to {z}, Dorais [10, Definition 5.1] introduces the following stronger
notion.

Definition 3.9. A CSC space (X,U, k) withU = (U,, : n € N) is effectively discrete
if it is discrete and there exists a function d : X — N such that Ug(,) = {x} for all
z e X.

The following proposition encapsulates the gap in complexity between discrete
and effectively discrete spaces. We include it here for general interest because it
would seem to be a basic result concerning CSC space. The equivalence of (1) and
(2) below is implicit in work of Darais [10, Example 7.3].

Proposition 3.10. The following are equivalent over RCAy.
(1) ACAy.
(2) The statement that every discrete CSC space is effectively discrete.
(3) The statement that every infinite discrete CSC space has an infinite effec-
tively discrete subspace.

Proof. The implication from (1) to (2) is straightforward, and (2) implies (3) triv-
ially. To prove (3) implies (1), we argue in RCA( and assume (3). To begin, we
derive BXY, which we take in the guise of (Vm)RT;, using Hirst’s theorem. So fix
c¢: N — m for some m € N, and suppose towards a contradiction that ¢ has no infi-
nite homogeneous set. For all z,s € N, define Vi, oy = {z} U {2z > 5:¢c(2) = c(x)},
and let (N,U, k) be the CSC space generated by (V,, : n € N). By assumption,
{z 1 ¢(2) = ¢(x)} is bounded by some s, meaning that Vi, o, = {z}. Thus, (N,U, k)
is an infinite discrete space. Now let Y C N be an infinite effectively discrete sub-
space of (N,U, k), with witness d : Y — N. That is, if we write Y = (U,, : n € N)
then Uyp) NY = {z} for all z € Y. We define a sequence xg < --- < @, in
Y as follows. Let zg € Y be arbitrary, and suppose we have defined z; for some
i < m. By Proposition 3.3 (2), we can decode d(z;) as a nonempty finite set F’
such that Uy(y,) = (,cp Vo Now, each n € F' is the form (z, s) for some z and s,
and since x; € V. it follows that every y > s with c(y) = c(x;) also belongs to
Vi.,sy- Choose the largest s such that (z,s) € F for some z and let ;1 be the least
element of Y larger than x; and s. This completes the definition. By induction on
Jj < m, c(z;) # c(y) for all ¢ < j and all y > z;, so in particular, c¢(x;) # c(x;).
Hence, the map x; — c¢(z;) is an injection of a finite set of size m + 1 into m, which
contradicts IX{. We conclude that ¢ has an infinite homogeneous set after all, and
hence that BX9 holds.

We now use (3) and BX to derive ACAg. To this end, it suffices to prove that the
range of every one-to-one function f : N — N exists. Fix such an f. For z,s € N|
let ran(f) [x [s] =ran(f [s+ 1) [z = {w <z : (Jy < s)[f(y) = w]}, and define

Vie,sy = {1z} U{z > s :ran(f) [ [s] # ran(f) [z [2]}.

For each w < x there is a y such that either w ¢ ran(f) or f(y) = w. Hence, by
BXY there is an s such that for each w < z there is such a y below s. It follows
that for this s we have ran(f) [z [s] = ran(f) [z, and therefore Vi, = {z}.
Consequently, the CSC space (N,U, k) generated by (V,, : n € N) is discrete. Apply
(2) to get an infinite discrete subspace Y C N with witnessing function d, so that
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if i = (Up : n € N) then Uy,y NY = {z} for all z € Y. To complete the proof,
we show for all w that ran(f) [w is uniformly AY definable in w. Indeed, let w be
given and fix the least © > w in Y. By Proposition 3.3 (2), d(z) codes a nonempty
finite set I such that Ug(y) = [),,cp Vo- We claim that (z,s) € F for some s, and
that for the largest such s we have ran(f) [w = ran(f) [w [s]. To see this, note
that every element of F' is of the form (z,s) for some z and s, and this has the
property that if some y # z belongs to V{; ;) then so does every number larger than
y. Since V;, C Uy(yy for all n € F, if all the (z,s) € F satisfied z # = we would
have [z,00) C Ugy(s), hence Uy, NY could not be {z} since Y is infinite. Thus,
(z,s) € F for some s. If, for the largest such s, we had y € V, ) for some y # z,
we would also have [y,00) C Vi, 4 for all t < s since Vi, 5 € Vigy. Hence, for
this y, [max{z,y},0c0) would be a subset of Ugy(,), and so Uy(,) would again not
be a singleton. We conclude that Vi, o, = {2}, which means that ran(f) [z [s] =
ran(f) [z [2] for all z > s and hence that ran(f) [z [s] = ran(f) | z. In particular,
(ran(f) [z [s]) | w = ran(f) | w. This proves the claim. O

3.4. The initial segment and final segment topologies.

Definition 3.11. Let (X,U, k) be an infinite CSC space.

(1) X has the initial segment topology if there is a bijection h : N — X such
that U € U if and only if U is 0, X, or {h(7) : i < j} for some j € N.

(2) X has the final segment topology if there is a bijection h : N — X such
that U € U if and only if U is 0, X, or {h(i) : i > j} for some j € N.

We call the map h in (1) and (2) a homeomorphism, as usual.

Classically, one can define the initial segment and final segment topologies purely
in terms of open sets, and without needing to explicitly reference a homeomorphism.
From the point of view of reverse mathematics we might prefer such a definition
because, while a homeomorphism is more convenient to work with, having an arith-
metical definition rather than a 31 one is less likely to inflate a principle’s strength.
To this end, we can define the following weaker forms of the above definitions.

Definition 3.12. Let (X,U, k) be an infinite CSC space.

(1) X has the weak initial segment topology if:
(a) every U € U is finite or equal to X;
if U,V € U then either U CV or V C U;
for each s € N, there is a finite U € U such that |U| = s;
each x € X belongs to some finite U € U.

(b)

(c)

(d)
X has the weak final segment topology if:
)
)
)

(2)
(a) every U € U is cofinite in X or equal to (;

(b) if U,V € U then either U CV or V C U;

(c) for each s € N, there is a nonempty U € U such that | X N U| = s;
(d) each x € X belongs to some U # X in U.

Proposition 3.13. The following are equivalent over RCAy.
(1) ACA,.
(2) Every CSC space with the weak initial segment topology has the initial seg-
ment topology.
(3) Every CSC space with the weak final segment topology has the final segment
topology.
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Proof. To see that (1) implies (2), let (X,U,k) be a CSC space with the weak
initial segment topology. We define h : N — X as follows. By properties (1b) and
(1c), ACAy can find a sequence of sets Uy C Uy C --- with |U;| = ¢ + 1 for all
i € N. By property (1b), each finite U € U is equal to U; for some i, so by property
(1d), X = U;enUi. Define b : N — X by letting h(i) be the unique element of
Ui N\ U;j<;U;. Thus, h is bijective, and by induction, U; = {h(i) : i < j} for each j.
Now fix any U € U other than () and X. By property (1a), U is finite, hence equal
to U, for some j, which means U = {h(i) : ¢ < j}. Thus, h is a homeomorphism
witnessing that X has the initial segment topology. A similar argument shows that
(1) implies (3).

We now show that (2) implies (1); the proof that (3) implies (1) is similar. So,
assume (2), and fix a one-to-one f : N — N with the aim of showing that ran(f)
exists. By bounded XY comprehension, ran(f) is unbounded. For each z, define

Vow = {w:w <a}pU{y: f(y) <z}
and
Vargr = {w:w <z}U{y: fy) <z}

A straightforward induction in RCAq shows that V,, C V41 and |[V41 NV, <1
for all n. Since |Vp| = 1, it follows that |V,,| < n + 1 for all n, and so in particular
that each V;, is finite. We claim that for each s > 0 there is an n such that |V,,| = s.
Indeed, since ran(f) is unbounded there exist g < --- < x5 € ran(f). Because f
is injective, this means |Vay 1| > |[{y : (3i < s)[f(y) = x;]}| > s. Thus, RCAg can
prove that there is a least n such that |V;,| > s. Obviously we must have s > 1
and so n > 1. By minimality of n, we have |V,,_1| < s, hence by our observation
above |V,_1| = |V,| — 1. It follows that |V;,_1| = s, which proves the claim. Now
let (N,U, k) be the CSC space generated by (V,, : n € N). The preceding argument
implies that this space has the weak initial segment topology. So apply (2) to get
a homeomorphism h : N — N, and fix any . Since Vs, and V5, are finite, we
can find the least jo and j; such that h(jo+ 1) ¢ Vo, and h(j1 + 1) ¢ Vagy1, which
means that Vo, = {h(i) : i < jo} and Vopy1 = {h(i) : i < j1}. By construction,
Jjo < j1 < jo+1, and we have that = € ran(f) if and only if j; = jo + 1. O

We will see in the next section that all our results concerning the initial segment
and final segment topologies lie at the level of ACAy. However, because our interest
is in finding subspaces with these topologies, the following result assures us that this
complexity does not owe to the strength of the preceding equivalences. Thus, we
may safely use the (stronger) notions of initial segment and final segment topologies
from Definition 3.11.

Proposition 3.14. The following is provable in RCAy.

(1) Every infinite CSC space (X,U, k) with the weak initial segment topology
has an infinite subspace with the initial segment topology.

(2) Every infinite CSC space (X, U, k) with the weak final segment topology has
an infinite subspace with the final segment topology.

Proof. We prove (1); the proof of (2) is analogous. Fix (X,U, k) satisfying (la)-
(1d) in Definition 3.12. (In fact, we will not need to use (1d).) We define sequences
%0, %1,... € X and Upy,Uy,,... € U such that z; € U,, if and only if + < j. We
claim that Y = {xg,1,...} is a subspace of X with the initial segment topology,
as witnessed by the map h : i +— ;. Note that U,,, NY = {x; : i < j} for each j, so
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we wish to show that the basic open sets in Y in addition to () and Y are precisely
the sets U,; NY for some j. Since U,, € U, it is certainly true that U,, NY is
basic open in Y. Conversely, consider any basic open set in Y different from @) and
Y. Then this equals U NY for some U € U different from () and X. For any j
such that x; ¢ U it follows by property (1b) that U C U, and hence also that
U C Upn; ~{z;}. In particular, UNY C (Uy, \ {z;}) NY. We must therefore
have o € U since U NY # () by assumption. Now since Y # X, it follows by
property (la) that U is finite, and we can consequently fix the largest j such that
x; € U for all i < j. We conclude that U,, NY CUNY. And since 2,1 ¢ U, the
preceding argument implies that U NY C (Up;,, ~ {zj41}) NY = Uy, NY. Thus
UnNy =U,, NY, desired.

It remains to show how to construct the sequences zo,x1,... and Uy, Uy, ...,
which we do by primitive recursion. Let xy be any element of X, and U,, any
element of U containing xo. Now fix j, and suppose we have defined z; and U,
for all # < j. By property (1b), and the fact that x; € U,, \ Uy, for all i < j by
inductive hypothesis, we must have U,, C Uy, for all i < j. Let s = |U;|. Using
property (1c) let U € U be a finite set with at least s + 1 many elements. Since 13}
proves that there is no injection from a larger finite set into a strictly smaller one,
we cannot have U C U,,,;. Hence, U,; C U by property (1b), and this containment
must be strict. Fixing any x € U \ Uy, thus means that z; € U and x ¢ U, for
all i < j. Now by property (1a), being a finite element of U/ is definable by a X9
formula (with parameters). Thus, the least U and = € U satisfying this conclusion
are definably by a X{ formula, and we let Un;., = U and w11 = z. This completes
the recursive definition and completes the proof. a

One additional remark about spaces with the initial segment and final segment
topologies is that RCAy understands the standard fact that, in such spaces, every
open set is a basic open set.

Proposition 3.15. The following is provable in RCAg. Let (X,U, k) be a CSC
space that has the initial segment or final segment topology. If O is any open code
in X, then Oy exists and belongs to U.

Proof. Write Y = (U, : n € N). Suppose X has the initial segment topology; the
case where it has the final segment topology is symmetric. Let h : N — X be the
witnessing homeomorphism, and consider any open code O. If Oy = X then it
clearly belongs to U, so suppose otherwise. Then every U, for n € ran(O) is either
(0 or has the form {h(7) : i < j,} for some j,, and the numbers j,, must be bounded
else Oy would again be X. In RCA(, we can thus fix the least m such that j, < j.,
for all n € ran(O) for which j,, is defined. Then Oy = U,, € U. O

3.5. The cofinite topology. Finally, we discuss formalizing the cofinal topology.

Definition 3.16. Let (X,U, k) be an infinite CSC space. X has the cofinite topol-
ogy if U € U if and only if U = () or U C* X.

We could reasonably also define X to have the cofinite topology if every U € U is
either (), X, or a cofinite subset of X, and if for every Y C* X there is an open code
O in X with Oy = Y. The following lemma shows that for studying topological
aspects in reverse mathematics, we do not lose anything by insisting on the stronger
definition above.
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Proposition 3.17. The following is provable in RCAg. Let (X,U,k) be a CSC
space such that every U € U is either O, X, or a cofinite subset of X. If O is any
open code in X, then Oy exists and is either empty or a cofinite subset of X.

Proof. Write U = (U, : n € N). Suppose ran(O) contains an n with U,, # 0, since
otherwise Oy = (). Then U, C* X, so we can fix a b such that every z > b in X
belongs to U,,. Using bounded X} comprehension, we can form F = {z < b: (3n €
ran(0))[z € U,]}, and now we see that € Oy if and only if x € Forx >b. O

It follows that, in RCAy we can modify (X, U, k) as above by adding to U all cofinite
subsets of X, and in this way obtain a new CSC space that has the same open sets
and has the cofinite topology in the sense of Definition 3.16.

We conclude this section with the following proposition, which states that RCA(
understands Ginsburg and Sands’s remark about why the five topologies mentioned
in their theorem are “minimal”.

Proposition 3.18. The following is provable in RCAq. Let (X,U, k) be an infinite
CSC space, and let Y be an infinite subspace of X.

(1) If X is To; Ty ; Hausdorff; indiscrete; discrete; has the initial segment topol-
ogy; has the final segment topology; or has the cofinite topology, then the
same is true of Y.

(2) If X is indiscrete; discrete; has the initial segment topology; has the final
segment topology; or has the cofinite topology, then it does not satisfy any
other property on this list.

Proof. Part (1) is immediate from the definitions. Part (2) is obvious if X is
indiscrete or discrete. It is also clear that if X has the final segment topology then
it cannot also have the cofinite topology. It thus suffices to show that if X has
the initial segment topology, say with witnessing homeomorphism h, then it cannot
have the final segment or cofinal topologies. We claim that every U € U other than
X is bounded, which yields the result. So fix some such U, and assume also that
U # (. Then U = {h(i) : i < j} for some j € N. If this set were unbounded, we
could construct zg < ... < x; in {h(i) : i < j}, whence the map i — h~'(z;) would
be an injection from j + 1 into j, and this contradicts 129 (see [16], Proposition
6.2.7). Thus, U must be bounded, which proves the claim. ([l

4. GENERAL SPACES
The main principle we want to understand is the following.

Definition 4.1. GS is the statement that every infinite CSC space has an infinite
subspace which is indiscrete; has the initial segment topology; has the final segment
topology; is discrete; or has the cofinite topology.

Recall the three-part breakdown of the Ginsburg—Sands theorem, discussed at the
end of Section 2. The first of these involved the construction, on a given topological
space, of a partial order induced by the closure relation on points. We begin by
formalizing the closure relation in RCA,.

Definition 4.2. Let (X,U, k) be an infinite CSC space. The closure relation on X
is a subset clx C X2 such that (y,x) € clx if and only if every U € U that contains
y also contains x.
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We will write y € clx(z) if (y,z) € clx, and usually omit the subscript for ease of
notation.
Unsurprisingly, RCA(y cannot in general prove that the closure relation exists.

Proposition 4.3. The following are equivalent over RCAg.
(1) ACA,.
(2) The statement that for every CSC space, the closure relation exists.

Proof. The implication from (1) to (2) is clear, because given a CSC space (X, U, k),
the definition of the closure relation is arithmetical using U as a set parameter. For
the reverse, we argue in RCA( and assume (2). We prove that the range of a given
one-to-one function f: N — N exists. For z,s € N, we define

v, - d 2z 2w+ 1} if (vy < 8)[f(y) # 2],
T {2a) if (Jy < 5)[f(y) = ).

Let (N,U, k) be the CSC space generated by (V;, : n € N). Applying (2), let cl be
the closure relation on this space.

Now fix € N; we claim that « € ran(f) if and only if 2z ¢ cl(2z + 1). If
x € ran(f), say with f(y) =, then V|, , is a basic open set containing 2z but not
2z + 1. So 2z ¢ cl(2n + 1). Conversely, suppose 2z ¢ cl(2z + 1). Then there exists
U € U that contains 2z but not 2z + 1. By Proposition 3.3 (2), we can fix z,s € N
such that V,; ;) contains 2z but not 2z + 1. Since V{; 4 C {2z,22 + 1}, it must be
that z =  and hence that (3y < s)[f(y) = z]. So = € ran(f). O

As a result of the proposition, we can consider adding the closure relation to the
signature of a CSC space, and looking instead at the strength of the Ginsburg—Sands
theorem for these enriched spaces.

Definition 4.4. GS is the restriction of GS to CSC spaces for which the closure
relation exists.

We can thus think of the proof-theoretic strength of GS as corresponding to the
proof of the Ginsburg-Sands theorem with the complexity of part (1) removed.
We next define the following further restrictions.

Definition 4.5.

e wGS is the statement that every infinite CSC space has an infinite subspace
which is indiscrete; has the initial segment topology; has the final segment
topology; or is T7.

e wGS is the restriction of wGS®' to CSC spaces for which the closure relation
exists.

e GST; is the restriction of GS to 17 CSC spaces.

By analogy to the above, the strength of wGS corresponds to the proof of Ginsburg—
Sands with the complexity of part (3) removed, and wGS® corresponds to the
proof with the complexities of both parts (1) and (3) removed. GST; carries the
complexity just of part (3).

The obvious implications over RCAq are that GS — GS®' — wGS<, that GS —
wGS — wGS®, and that GS — GST;. We now analyze the missing implications,
which confirm that our breakdown of Ginsburg and Sands’s proof was the correct
one. (It is noteworthy that, in spite of Proposition 4.3, the proof of the following
theorem does not make direct use of the closure relation.)
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Theorem 4.6. The following are equivalent over RCAy.
(1) ACA,.
(2) GS.
(3) wGS.

Proof. For the implication from (1) to (2), we note that the proof of the Ginsburg—
Sands theorem given in Section 2 readily formalizes in ACAy when applied to CSC
spaces. The implication from (2) to (3) is trivial. It thus remains to show that
(3) implies (1). To this end, we argue in RCAj and assume wGS. Note that wGS
trivially implies wGS®, which we in turn prove is equivalent to GST; in Theorem 4.8
below. Moreover, in Corollary 6.10 we show that GST; implies RT%, and hence BX9.
Therefore, we may avail ourselves of BX in our argument.

We prove that the range of a given one-to-one function f : N — N exists. Given
x,s € N, using the notation from the proof of Proposition 3.10, define

Via.sy = {2} U{w <z :ran(f) [w [z] = ran(f) [w [z + 5]},

and let (N,U, k) be the CSC space generated by (V,, : n € N).

We claim that if a number x is sufficiently large with respect to a number w then
w belongs to every basic open set containing x. To see this, fix w and choose z > w
so that ran(f) [w = ran(f) [w [z], which exists by BXJ. Fix U € U containing z.
Then U is a finite intersection of sets of the form V{, ,y for some z and s, and since
no element of Vi, 4 can be larger than z, we necessarily have z > z. Consider such
aVig. If x =2z, then w € V, oy = Vi, since ran(f) [w [t] = ran(f) [w for all
t > x by choice of x. If < z then we must have ran(f) [z [z] = ran(f) [z [z + 5],
and hence also ran(f) [w [z] = ran(f) [w [z + 5] since w < x, so w € V(5. This
proves the claim.

Apply wGS to X to obtain an infinite subspace Y. By the preceding claim, we
immediately know that Y cannot be T nor have the final segment topology. And
since, for w < x, we have that V{,, oy contains w but not x, we know that ¥ cannot
be indiscrete. This means that Y has the initial segment topology. There is thus
a bijection h : N — Y such that the basic open sets of Y in the subspace topology
are precisely {h(7) : 4 < j} for some j € N. Let Y = {yo < y1 < ---}; we claim that
h(n) = yy for all n. To see this, first suppose that h(n) > h(m) for some n < m,
and fix j such that Vijmy0 NY = {h(i) : i < j}. Then Vijymy,0y NY contains
h(n), contradicting the fact that this intersection only contains h(m) and otherwise
numbers smaller than y,,. It follows that h(n) < h(m) for all n < m, whence an
easy induction using the fact that h is bijective shows that h(n) = y,. This proves
the claim. In particular, every basic open set in X is closed downward in Y under
<.

We now use Y to prove the existence of ran(f). Fix w € N. Since Y is infinite,
we can find z > z > w with z,2 € Y. We must then have that ran(f) [z =
ran(f) [z [z], and hence also that ran(f) [w = ran(f) [w [z]. If not, then there
would be an s such that ran(f) [z [2] # ran(f) [z [z + s]. But then V{; , would
be a basic open set in X containing z but not x < z, even though both belong to
Y. This completes the proof. O

Theorem 4.7. The following are equivalent over RCAy.
(1) CAC.
(2) wGS®.
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Proof. That (1) implies (2) follows readily from the proof of the Ginsburg—Sands
theorem given in Section 2. More precisely, given a CSC space with its closure
relation, we can construct the equivalence relation ~ and the partial ordering <x
defined in the proof, and argue as before to obtain an infinite subspace which is
either indiscrete, has the initial segment or final segment topologies, or is T7.

For the reverse implication, assume wGS® and let (P, <p) be any infinite partial
order. Assume this partial ordering has no infinite antichain; we will construct an
infinite chain. (In fact, our chain will either be an infinite ascending sequence under
<p, or an infinite descending sequence.)

For each p € P, define V, = {¢ € P : p <p ¢} and let (P,U, k) be the CSC space
generated by (V,, : p € P). We claim that, for p,q € P, p is in the closure of ¢ in
this space if and only if p <p ¢q. Indeed, if p is in the closure of ¢ then in particular
¢ must belong to V,,. So p <p ¢. Suppose p is not in the closure of g. Then we can
fix a U € U containing p but not ¢q. By Proposition 3.3 (2), there is an r € P such
that V. contains p but not ¢, meaning r» <p p but r £p g. So p £p g. This proves
the claim, and implies that the closure relation exists. Call it cl.

Now apply wGS® to obtain an infinite subspace Y of (P,U, k). By assumption,
Y is not an infinite antichain under <p. Thus we can fix some p <p ¢ in Y. It
follows that p ¢ U,, so Y cannot be indiscrete as a subspace. It also cannot be
Ty, because if it were we would have p ¢ cl(q) and hence p £p ¢. Thus, Y either
has the initial segment or final segment topology. Consider first the case that it
is the former. Then there is a bijection h : N — Y such that the basic open sets
of Y in the subspace topology are precisely {h(i) : ¢ < j} for some j € N. We
claim that h(j) <p h(i) for all i < j, which proves that Y is a descending sequence
under <p. Suppose not. Then there exist p,q € Y such that h=(q) < h=!(p) and
p £p q. Then p ¢ cl(q), so there exists U € U containing p but not ¢. Fix j so
that UNY = {h(i) : i < j}. Then necessarily h~*(p) < j, but this means that also
h=1(q) < j and hence that ¢ € U, a contradiction. The case where Y has the final
segment topology is symmetric, and yields an ascending sequence under <p. [

Finally, we show that GST; and GS are equivalent. In a sense, the following
says that when the complexity of the closure operator is removed, the combinatorics
underlying the full Ginsburg—Sands are the same as those underlying just the 73
case.

Theorem 4.8. The following are equivalent over RCAg.

(1) GST;.

(2) GS°.
Proof. We argue in RCAg. To prove that (1) implies (2), assume GST; and let
a CSC space (X,U, k) with closure relation cl be given. By Corollary 6.10 below,
GST; implies RTg and therefore CAC. Hence, by Theorem 4.7, GST; implies wGSe,
So let Y C X be an infinite subspace obtained by applying wGS® to X. If Y is
indiscrete, or homeomorphic to the initial segment or final segment topologies, then
Y is a solution to X as an instance of GS®. If Y is T}, then we can apply GST; to
Y to obtain a subspace Z of Y (and so, of X) that is discrete or has the cofinite
topology.

To prove that (2) implies (1), assume GS® and let (X, U, k) be a Ty CSC space.

The closure relation on X is then trivial, since y € cl(z) if and only if x = y. We
can thus apply GS to X to obtain an infinite subspace Y C X, and since X is
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T, this subspace cannot be indiscrete, nor be homeomorphic to either the initial
segment or final segment topologies. It follows that Y is discrete or has the cofinite
topology, as needed. O

This theorem, unlike the two preceding it, does not directly establish any relation-
ships to principles previously studied in the literature. We will do so in Section 6,
however, which is dedicated to a detailed study of GSTj.

5. HAUSDORFF SPACES

In this section, we turn our attention momentarily to Hausdorff spaces. Since
all such spaces are T, they do not feature separately in our breakdown of the
Ginsburg—Sands theorem. Moreover, since no Hausdorff space can have the cofinite
topology, the subspace produced by applying GS to such a space must be discrete.
We show that this can always be done computably. We begin with a technical
lemma, and then give the result.

Lemma 5.1. The following is provable in RCAq. Let (X,U, k) be a Hausdorff CSC
space with U = (Uy, : n € N).
(1) There exists a function ¢ : X x X xN — N such that if v,y € X are distinct
and s € N, then c(z,y, s) is the least pair (m,n) such that x € Uy, \ Uy,
y € Up NUp, and (Up, [s) N (U, [s) = 0.
(2) For all sufficiently large s, c(x,y,s) equals the least pair (m,n) such that
2 €Up, y €Uy, and U, NU, = 0.

Proof. Since ¢ is A definable, to prove (1) it suffices to prove that it is total. Fix
x #yin X and s € N. Since X is Hausdorff, there exist U,,, U, such that x € U,,,
y € Uy, and U,, N U, = (. In particular, the set of all pairs (m,n) such that
2 € Upn~U,, y €U, ~Up, and (U, | s) N (U, |s) = 0 is nonempty. Now 1%}
suffices to find the least element (m,n) of this set, and we have c(z,y, s) = (m,n).

To prove (2), we note that the least (m,n) such that x € Uy, y € U,, and
Upm NU, = 0 exists by IIIY. Thus, for each (i,5) < (m,n) there exists a t such
that if z € U; N\ U; and y € U; \ U; then t € U; NU;. By BE) in RCAq we can
find an s such that for each (i,j) < (m,n) there exists such a ¢t below so. Then
c(z,y,s) = (m,n) for all s > sp. O

Theorem 5.2. The following is provable in RCAy. FEvery infinite Hausdorff CSC
space has an infinite discrete subspace.

Proof. We argue in RCAg. Let (X,U, k) be an infinite Hausdorff CSC space with
U= (U, :n eN). If X has no limit point, then X is already discrete. So, suppose
X has a limit point, p. We define a sequence o < 1 < --- € X by primitive
recursion such that z; # p for all i. Let xy be any element of X different from
p. Now fix s, and suppose we have defined z; for all i < s. For each i < s, let
(mis,nis) = c(p,xi,s) and let my = k(p,{m; s : i < s}), where k and c are as in
Lemmas 3.2 and 5.1. In particular, p € Uy, , foralli < s,sop € Up, €<y Unm, .-
Since p is a limit point, U,,, is infinite, and we can let 541 be any element of this
set larger than x, and different from p.

Let Y = {zg,21,...}. We claim that Y has the discrete topology. To see this,
fix 4, and let (m,n) be least such that p € Uy, z; € Uy, and U,, N U, = 0. By
Lemma 5.1 (2), there is an sg > 4 such that ¢(p,z;,s) = (m,n) for all s > sq.
For all s > s¢, the point x is chosen in U,, s C Uy, , = U, which means that

1,8
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U,NY C{z; :j < s} Thus, U, NY is a finite basic open set in Y containing
x;. Since Y is Hausdorff by Proposition 3.18, and so in particular 77, it follows by
Proposition 3.7 that {z;} is open in Y. O

In light of the discussion in Section 3 concerning Hausdorff spaces versus ef-
fectively Hausdorff spaces, and discrete spaces versus effectively discrete spaces, a
natural question is whether Theorem 5.2 also holds for these stronger presentations.
We show that the answer is yes for Hausdorff spaces that have a limit point.

Theorem 5.3. The following is provable in RCAg. Every infinite effectively Haus-
dorff CSC space which is not discrete has an infinite effectively discrete subspace.

Proof. Let (X,U,k) be an infinite effectively Hausdorff CSC space which is not
discrete. Then X has a limit point, p. This means that for every U € U containig
p, there exist infinitely many = € U different from p. Let U = (U, : n € N), and
let e : X x X — N be such that e(z,y) = (m,n) for all distinct z,y € X, where
z € Uy, y €U, and U,, NU, = 0. We construct sequences o < 1 < --- € X,
ng,n1,... € N, and mg, my,... € Nsuch that U,,, 2 Uy, 2 ---, and for all ¢ and j:
zj € Uy, if and only if i = j; p € Uy,,; and Uy, NU,, = 0. Then Y = {x; : i € N}
is an effectively discrete subspace of X since U,, NY = {z;} for all i.

Let g be any element of X different from p, and let ny and mg be such that
e(p,zp) = (mo,no). Now fix s, and suppose we have defined z;, n;, and m; for all
i <s. Since p € ();<, Um, we have that p € U, 1,,..i<s3) € [Ni<s Um,- And since p
is a limit point, we can let zsy1 be the least element of UE(p,{mi:igs}) larger than x4
and different from p. Say e(p, zs41) = (m,n). Then p € (", Um, NUp, and z441 €
Un,NU,,sop€ UE(p,{mi:igs}U{m}) C ﬂigs Un, NUp, and xs4; € UE(xi,{ms,n}) -
Up., NU,. Let mgy1 = k(p, {m; : i < sy U{m}) and ney1 = k(zsy1, {ms,n}).

So, Te41 € Un,yys P € Unyiys Unyyy © U, and Uy, NU,,,, = 0. Fix any
i < s. We have 2541 € Up,,, C Up,, while x; € Uy, which is disjoint from Uy,
and hence from U,,, C Uy,,. Thus, z; ¢ U, ,, and x541 ¢ Uy, as needed. O

By contrast, and perhaps surprisingly, the previous result cannot be extended
to effectively Hausdorff spaces in general.

Theorem 5.4. There exists an infinite computable effectively Hausdorff CSC which
is discrete but has no infinite computable effectively discrete subspace.

Proof. We construct a computable sequence (V,, : n € w) of subsets of w and then
generate a computable CSC space (w,U, k) using Proposition 3.3. Initially, we
enumerate z into Vo, 4y and Vy(, 4y for all y. We then enumerate more elements
into the V;, in stages, maintaining throughout that V5, ,y NVa(, ») = 0 for all z # y.
By Proposition 3.3 (2), we can compute the indices m and n of Vy(, ) and Vo, o)
in U uniformly computably from x and y. Hence, the function e : X x X — N
mapping (z,y) to (m,n) is computable. Since x € Vy(, ) and y € Vo, 4y, this e
will witness that (w,U, k) is effectively Hausdorff.
We aim to additionally satisfy the following requirements for all z, e, u € w:

D, : there exists an n € w such that V,, = {z};
Reu @ if @, is the characteristic function of an infinite set Y and ®,, is total
on Y, then there exists x € Y and ny, ..., n, € w such that ®,(x)] =

(no,...,ny) but N, Voo, # {2}
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We call these the D-requirements and R-requirements for short. The D-requirements
thus ensure that our CSC space is discrete, while the R-requirements ensure that it
has no infinite computable effectively discrete subspace. At each stage, at most one
requirement will act. If a D-requirement acts it claims an index n € w, and if an
R-requirement acts it claims finitely many indices ng,...,n, € w. A requirement
may have its claims cancelled at a later stage, and then make new claims later still,
as we describe below.

We proceed to the construction. We assign a priority ordering to the require-
ments in order type w, as usual. For notational convenience, for n = 2(x,y) we let
7 denote 2(y, x). Suppose we are at stage s € w. Say D, requires altention at stage
s if it does not currently have a claim. Say R.. requires attention at stage s if it
does not currently have any claims, and if there exist © < s and (ng,...,n,) < s as
follows:

Pe(2)[s] 4 =1

Py (2)[s] 4 = (no, ..., np);

no n; is claimed by any stronger D requirement;

no even 7; with n; # m; is claimed by any stronger R-requirement;
no even n; # n; satisfy n; = nj;.

If it exists, fix the strongest requirement with index smaller than s that requires
attention at stage s.

If this is D, for some x, choose the least y so that 2(x,y) + 1 is larger than
all indices claimed by any requirement at any point in the construction, including
claims that may since have been cancelled. Since at most one requirement claims
at most finitely many numbers at any stage, y exists. Now say that D, claims
2(z,y) + 1. If the requirement is instead R, for some e and wu, fix the least
witnessing z, (ng, . ..,n,) < s. Cancel the claims of any lower priority requirements,
and say that R, claims ng,...,n,. In either case, say that the requirement in
question acts. Finally, for each n that is claimed by some R-requirement at this
point, enumerate s into V,,. This completes the construction.

Since the only time a number s is enumerated into some V,, during the construc-
tion is at stage s, the sequence (V,, : n € w) is computable. It follows that the CSC
space (w,U, k) generated from (V,, : n € w) is computable as well.

Next, note that if n is even and n # 7, then n and @ can never be claimed at
the same time (whether by the same requirement, or by different ones). Indeed,
even indices n can only be claimed by R-requirements. When an even n is claimed
by a new R-requirement at some stage s, then m must not already be claimed by
any higher priority requirement (necessarily another R-requirement). And if 7 was
already claimed by a lower priority requirement, then this claim is first cancelled.
It follows that, at the end of each stage s, the number s is enumerated into at most
one of V,, or Vi for every even n with n # n. In particular, if z # y then Vy(, 4
and Vy(, .y are disjoint. By our remarks above, (w,U, k) is effectively Hausdorff.

An induction on the priority ordering shows that each requirement acts only
finitely often. This is because once a requirement acts at a stage after all stronger
R-requirements have stopped acting, it claims some indices, and these claims cannot
later be cancelled. Hence, the requirement can never require attention and act
again.

It thus remains only to show that all requirements are satisfied. Fix a require-
ment, and let sy be least such that every stronger requirement has stopped acting
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prior to stage so. Thus, either sp = 0 or some stronger R-requirement acted at
stage sg — 1 and thereby cancelled any claim the requirement in question may have
had. Either way, then, this requirement has no claims at the start of stage sq.
Hence, if the requirement in question is D, for some x, then it requires attention
at the least stage s > sg with s > x, at which point it claims some 2(x,y) + 1 that
has never been claimed by any requirement before. By choice of sq, this claim is
never cancelled at any stage after s, and so in particular, 2{x, y)+1 is never claimed
by any R-requirement. It follows that no numbers are enumerated into Va(y )41
during the construction, so Vy(; ,y41 is just the singleton {z} and D, is satisfied.
Now suppose the requirement in question is R, ,, for some e, u. Seeking a contra-
diction, suppose @, is the characteristic function of an infinite set Y, ®, is total on
Y, and for all z € Y we have z € (), Vs, where ®,(x)] = (ng,...,n,). Let Fy be
the set of all indices n claimed by stronger D-requirement prior to stage sq, and Fy
the set of all indices n claimed by stronger R-requirements. By choice of sy, none
of these requirements acts at any stage s > sq, so their claims in Fy U F; are per-
manent and none of them claims any other numbers. By our earlier observations, if
n € Fy then V, is a singleton, and if n € F} is even and n # © then V,, and V5 are
disjoint. Moreover, by construction, if n € Fj then V, is cofinite, so if n is even and
n # m then V5 is finite. Let m be the maximum of all V,, for n € Fy and all V5 for
even n € Fy with n # 7. Since Y is infinite, we can choose x > max{m,so} in Y.
Then if ®,(x) = (no,...,n,) we have x € V,,, for all i < r, and hence it cannot
be that n; € Fy or m; € Fy if n; is even and n; # m;. We conclude that, if we take
the least s > s for which there exists x, (ng,...,n,) < s with these properties,
and such that ®.(x)[s]| =1 and ®,(z)[s] ] = (no,...,n,), then R., will require
attention at stage s. It will then claim ng,...,n,, and by choice of sy, these claims
will be permanent. Hence, V,,, will be cofinite for all i < r, proving that (,,. Vj,,
cannot be {z} after all. The proof is complete. o

Corollary 5.5. There exists an w-model of RCAg which does not satisfy the state-
ment that every infinite effectively Hausdorff CSC space has an infinite effectively
discrete subspace.

6. 17 SPACES

6.1. An alternative proof of GS for 77 CSC spaces. We now return to studying
the Ginsburg-Sands theorem for 77 CSC spaces. We begin with an alternative
proof of the T case. Although not directly relevant to the rest of our discussion,
the proof is interesting in its own right because it is more direct than the original.
The following definition and lemma will be useful.

Definition 6.1. Let (X,U, k) be a T; CSC space.
(1) A pair of elements x,y € X is a Ty pair if there exist U,V € U such that
rzeU,yeV,andUNV = 0.
(2) X is pure Ty if it contains no T pairs.

Lemma 6.2. The following is provable in RCAq. Let (X, U, k) be an infinite com-
putable pure Ty CSC space.
(1) For each U € U, if U is nonempty then U is infinite.
(2) If F is a nonempty finite set such that U, # 0 for alln € F, then (), cp Un
18 infinite.
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(3) X has an infinite subspace with the cofinite topology.

Proof. To prove (1), fix any x € U € U. Since X is T, for each y # x there is a
V € U containing y but not x. Now by Proposition 3.7, if U were finite we would
have {z} € U, whence z and y would be a T pair as witnessed by {z} and V,
which cannot be.

To prove (2), fix a finite set F = {ng < --+ < n,} and suppose U,, # 0 for
all 7 < r. We use E? induction on j < r to show that ﬂ¢<j Un, # 0. This is
clear for j = 0. Suppose it is true for some j < r, fix z € ﬂi<j U,,, and let
n = k(z,{n; : i <j}), where k is as given by Lemma 3.2. Then z € U,, C Ni<j Un,-
Now if U,, NUp,,, were empty, then every element of U,, would form a T3 pair with
every element of Un,.,, which is impossible. Hence, U, N U,,,, C ﬂi<j+1 U,, is
nonempty, as desired. We conclude that (", U, # 0. Fix z in this intersection.
Then z € Uz, py € Nyer Un # 0. By (1), Ug(, p) is infinite, so (), cp Un is too.

To prove (3), we proceed as follows. Write U = (U,, : n € N). RCA( proves
that there exists a function f : N — N such that ran(f) = {n : U, # 0}. By (2),
Ni< ; Ut (i) is infinite for every j. Let o be any element of Uy (q), and having defined
x; for all i < j, let x; be the least element of ﬂKj Uy larger than all the x;. Let
Y = {x; : i € w}. Then for each nonempty U, say with f(i) = n, we have that
xj € Uy = Uy, for all j > i. Thus, Y is an infinite computable subspace of X
with the cofinite topology, as was to be shown. [

Alternative proof of GST1. We argue in ACAg. Let (X,U, k) be an infinite 73 CSC
space. Using arithmetical comprehension, define the following 2-coloring of [X]%:
for z <y,
0 if xz,yis a Ty pair,
c(z,y) = )
1 otherwise.

Applying RT%, let H C X be an infinite homogeneous set for c. If H is homogeneous
for color 0, then H forms a an infinite Hausdorff subspace of X. By Theorem 5.2,
H (and hence X) has an infinite discrete subspace. If, instead, H is homogeneous
for color 1, then H is an infinite pure T} subspace of X. By Lemma 6.2 (3), H has
an infinite subspace with the cofinite topology. O

Note that the proof above featured a non-effective use of RT%; the coloring ¢
being only computable in the double jump of the space (X,U, k). Our next goal,
therefore, is to understand the relationship between GST; and RT% more precisely.

6.2. GST; and RT%. We introduce the following notion of “stability” for CSC
spaces, and shortly show that it behaves much like stability for colorings of pairs.

Definition 6.3. A CSC space (X,U, k) is stable if for every z € X, either {z} € U,
or every U € U containing = € U is cofinite. SGST; is the restriction of GST; to
stable CSC spaces.

Trivially, GST; implies SGST; over RCA,.
Proposition 6.4. Over RCAg, SGST; + COH — GST;.

Proof. We argue in RCAg + SGST; + COH. Let (X,U, k) be any T} CSC space.
Apply COH to U = (U,, : n € N), obtaining an infinite {/-cohesive set Y. Thus, for

each n, either Y C* U, or Y C* U,,. We claim that Y is a stable subspace of X.
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Indeed, fix any x € Y. If there is an n such that z € U, and Y C* U,, then Y N U,
is finite. Because Y is T} (being a subspace of X), it follows by Proposition 3.7
that {z} € U Y. Otherwise, for every n with x € U,, we have that Y C* U,, so
Y NU, =*Y. This proves the claim. Now apply SGST; to Y to obtain a subspace
Z which is either discrete or has the cofinite topology. O

We now prove the converse, thereby obtaining a decomposition of GST; into
SGST; + COH, analogous to the Cholak-Jockusch-Slaman decomposition of RT3
into SRT% + COH. It is enough to show that GST; implies COH, which we obtain
as follows.

Theorem 6.5. Over RCAy, GST; — ADS.

Proof. We argue in RCAq. Fix an infinite linear order (L, <p). We define a T} CSC
space with the property that any infinite discrete subspace is an ascending sequence
under <y, and any infinite subspace with the cofinite topology is a descending
sequence. This yields ADS.
For each x € L, let
Vieay ={w e L:w <p x},
and for each y # x in L, let
Viewy ={w € L:w <g z} ~ {y}.

Let (L,U, k) be the CSC space on L generated by (V,, : n € N). Note that X is 77:
if z # y, then V{, ., contains x but not y, and V,, ., contains y but not .

Now, consider any infinite subspace Y of X with either the discrete or cofinite
topology. We consider the two cases separately.

If Y has the discrete topology, then for every x € Y there is a U € U such that
UNY = {z}. Then there is a finite set F' such that U = (,cp Vizy). (For if
xr € Vi, for some z then necessarily x <p z and so Vi, ,y C V(. ,.) It follows
that [{w € Y : w <y, z}| < |F|, so z has only finitely many <j-predecessors in Y.
Hence, Y is an ascending sequence under <j,.

If Y has the cofinite topology, we have instead that for every x € Y and every
Uel,ifx €U then UNY =Y. In particular, Vi, ;) NY =" Y, meaning that
almost every z € Y satisfies z <p z. In other words, z has only finitely many
<p-successors in Y. We conclude that Y is a descending sequence under <y, as
was to be shown. (]

Corollary 6.6. Over RCAg, GST; <» SGST; + COH.

Proof. As discussed in Section 1, ADS implies COH by [21, Proposition 2.10], so by
the preceding theorem GST; implies COH. Since GST; implies SGSTy, the result
now follows by Proposition 6.4. ]

To gain further insights, we now introduce a definition that will allow us to
formulate a principle that behaves with respect to SGST; as D3 does with respect
to SRTZ.

Definition 6.7. Fix n > 1.
e 2Y_Subset is the scheme consisting of all formulas of the form
(FY)[Y is infinite A ((Vz)[z €Y — ¢(2)]V (Vz)[z € Y — —p(x)])],

where () is a 39 formula in the language of second-order arithmetic.
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e A-Subset is the scheme consisting of all formulas of the form

(Vz)[p(z) > (x)] =
(FY)[Y is infinite A ((Vz)[z €Y — ¢(2)]V (Vz)[z € Y — —p(x)])],

where p(z) and ¢ (x) are 30 formulas in the language of second-order arith-
metic.

As discussed in the introduction, D3 is equivalent over RCAy to the principle
AY-Subset. We get the following similar and surprising characterization of SGST.

Proposition 6.8. Over RCA(, SGST; +» £9-Subset.

Proof. We argue in RCAq. First, assume SGST;. Let a X9 formula () be given.
Fix a A formula 6(z,y,2) such that (Vz)[p(z) < (3y)(V2)0(z,y,2)]. For all
x,y,s € N, define

View,s) = 12} U{w > max{xz, s} : (3z < w)[-0(x,y, 2)]},

and observe the following fact about all  and y. If (Vz)0(z,y,z) holds, then
Viey,s)y = {x} for all s. Otherwise, there is a least z such that —f(x,y, z) holds
since 6 is Af, and Vi, , oy = {2} U{w > max{z, s} : w > z} for all s. In particular,
for all z and y either Vi, ,, o = {z} for all s, or V(. ,  is a cofinite subset of N for
all s. Moreover, there is a y such that Vi, , o = {z} for some (equivalently, all) s
if and only if ¢(z) holds.

Let (N,U, k) be the CSC space generated by (V,, : n € N). Fix any « € N such
that —p(z) holds, and any U € U such that x € U. We claim that U is cofinite.
Write U = (1, cp Va for some nonempty finite set F', and for each n € F write
n = (Tp,Yn,sn). If x, = x, then Vi, .y is cofinite by the argument above
because —p(x) holds. If x,, # x then Vi, . .y # {x,} since it contains x, hence
it is also cofinite. Thus, each V,, for n € F is cofinite. For each n € F, fix the
least z, > z, in V,; the set D = {2, : n € F} exists by A} comprehension and
is nonempty. Furthermore, as observed above, V,, = {z,} U{w : w > z,}. Hence,
every w > max D belongs to (,,cp Vi = U, which proves the claim.

We conclude that X is stable: if ¢(z) holds then Vi, , ¢y = {z} for any y such
that (3y)(Vz)0(x,y, z) holds; if —p(z) then every U € U containing x is cofinite.
Moreover, X is 17: given x # y, we have that V, ¢, contains x but not y, while
Vy,0,2 contains y but not x. Let Y be any infinite subspace of X with either the
discrete or cofinite topology. By construction, in the former case we have that ¢(x)
holds for all z € Y; in the latter case, we have that —¢(x) holds for all z € Y.
Hence, %9-Subset holds.

Conversely, assume %9-Subset and let (X,U, k) be any infinite stable 7} CSC
space. Write U = (U, : n € N), and let p(x) be the 9 formula (3n)[U, = {z}].
Notice that by stability of X, —¢(z) holds if and only if every U € U containing
x is cofinite. Let Y be any infinite set such that either ¢(z) holds for all z € Y,
or —p(z) holds for all x € Y. In the former case, we have that ¥ forms a discrete
subspace of X; in the latter, it is a subspace with the cofinite cofinite topology. So,
SGST; holds. O

Corollary 6.9. Over RCAg, SGST implies SRT%.
Proof. Immediate, since X9-Subset obviously implies AJ-Subset. (]

Corollary 6.10. Over RCAq, GST; implies RT3.
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Proof. By the preceding corollary, GST; implies SRTS. Since GST; implies COH,
the conclusion now follows from that fact that SRT5 + COH — RT3. g

We will prove in Section 7 that this implication is strict.
Corollary 6.6 has the following additional consequence.

Corollary 6.11. There exists an w-model satisfying RCAg + GST1 but not WKLg.

Proof. Liu [30, Theorem 1.5 and Corollary 1.6] established that COH admits PA
avoidance, and RT; admits strong PA avoidance. This means that for any set
X % 0 (i.e., for any set X not of PA degree), every X-computable instance of COH
has a solution Y such that X @ Y % 0, and every instance of RT% (computable
from X or not) has a solution H such that X @& H % (). We can combine these
facts to produce an w-model of ¥9-Subset + COH, and hence (by Propositions 6.4
and 6.8) of GSTy, that contains no set of PA degree, and therefore cannot satisfy
WKLg. For completeness, we give the details. We define a sequence Xy <t X; <t

- of subsets of w, and define (the second-order part of) an w-model M to be
{Y : (3s)(Y <1 X,)}. Let Xy = 0, and suppose inductively that we have defined
Xs » 0 for some s € w. First, suppose s = = 2(e,t), so that e,t < s by standard
conventions. If <I>Xt defines a family R of subsets of w, then also R <t X, and
we appeal to PA avoidance of COH to fix an infinite R-cohesive set Y such that
X, ®Y % 0. We then let X,41 = X, @Y. If X does not define a family, we
simply let X141 = X. Now, suppose s = 2(e,t) + 1. We consider WXtI the eth 39
set relative to Xy, and regard it as the instance ¢ : w — 2 of RT3 defined by ¢(z) = 1
if and only if x € W . We appeal to strong PA avoidance of RT2 to fix an infinite
homogeneous set H for ¢ such that X,® H % 0, noting that H is an infinite subset
of either W@X; or its complement. We then let X1 = X, @ H. This completes the
construction of M. Since X, % 0 for all s, M = WKLg. To verify that M satisfies
COH, consider any instance R of COH in M. Then B = ®X* for some e and ¢,
and a solution to R is thus computable from Xy ;) and so belongs to M. Next,

consider any instance of ¥9-Subset in M, meaning a set of the form WgX ¢ for some
e and ¢. Then a solution to this instance is computable from Xy ¢)41- (|

In particular, it follows that GST; also does not imply ACAg. In fact, by using
strong cone avoidance of RT% in place of strong PA avoidance in the proof above,
we can deduce that GST; admits cone avoidance. For another proof of this result,
which provides further insights into the computability-theoretic aspects of T3 CSC
spaces, see Benham [1].

6.3. Arithmetical bounds. In the previous section, we established that GST;
has at least the same proof-theoretic strength as RT% relative to RCAg. We now
show that, in terms of the arithmetical hierarchy, GST; is actually less complex
than RT2. Indeed, Jockusch [25, Theorem 5.1] constructed a computable instance
of RT3 with no AJ solutions. By contrast, GST; always admits AJ solutions.

Theorem 6.12. Let (X,U, k) be an infinite computable Ty CSC space. Then X
has an infinite AY discrete subspace, or an infinite computable subspace with the
cofinite topology.

Proof. Write U = (U, : n € w). The proof breaks into three scenarios for finding
the required subspace. First, consider the XY set S = {x € X : (3n)[x € U, A
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U, is finite]}. By Proposition 3.7, x € S if and only if {z} € U, so S is a discrete
subspace of X. If S is infinite, we can fix an infinite AY subset Y of S, and this
then forms an infinite AY discrete subspace of X.

So suppose S is finite. By replacing X with X \ S, and each U € U with U \\ S,
we may assume without loss of generality that every nonempty element of U is
infinite. (Since S is finite, this change actually results in a computable subspace of
X.) Now, suppose there exists a nonempty U € U such that U contains no T» pairs.
Then U forms an infinite computable pure 77 subspace of X, so by Lemma 6.2 (3)
it has an infinite computable subspace Y with the cofinite topology, and this is of
course also a subspace of X.

For the remaining case, then, we can assume every nonempty U € U contains a
T, pair. We use )/ to construct an infinite Ay discrete subspace of X. The key point
we will use is that, given m,n € w, asking whether U,, = (), whether U, N U,,, = (),
or whether U,, C U,, can all be answered by (', uniformly in n and m. This has
the following consequences. First, given n such that U, # (), #' can uniformly find
a Ty pair z,y € U,. And second, suppose we are given i and z,y € U; forming a
T pair. Then ()’ can uniformly find indices m and n such that x € U,,, y € U,,
Un,nNU, =0, and U,,, U, C U;. To see this note, (' first uniformly finds s and ¢
such that z € U, y € Uy, Us N Uy = 0. Then m = k(x,i,s) and n = k(x,i,t) have
the desired properties. Indeed, we have x € U,, C U; NUg and y € U,, C U; N Uy,
and U, NU,, C Us; NU; = 0, as needed.

We now construct AY sequences of points g < x1 < --- and yo < y; < --- in
X, and sequences of indices mg, m1, ... and ng,nq, ... such that, for all :
o z; € Up,;
oy € Upn;
o Uy, NU,, =10

o Umi+1 C Up,;-
In particular, z; € Up,; if and only if i = j. Hence, if we set Y = {x; : i € w}, then
Y forms the desired AY discrete subspace of X.

To define our sequences, we proceed by recursion. Let xg,yo be an arbitrary T5
pair in X, and let mg and ng be such that zg € Uy, yo € Up,, and U,,, NU,, = 0.
Now fix ¢, and suppose z;, y;, m;, and n; have been defined and satisfy the above
properties. Since U, is nonempty, (' can uniformly find a 75 pair z,y € U,,. It
can then uniformly find indices m;y; and n;yq such that 2 € Uy, ¥ € Up,,,
Uniy VU =0, and Upyyy 1, Unyyy € Uy,. Now Uy, and Uy, , are nonempty,
hence infinite, so we can fix the least z;11 > x; in Uy, ,, and the least y;11 > y;
in Up,,,. Clearly, T;11, ¥i+1, miy1, and n;11 maintain the above properties. This
completes the construction, and finishes the proof. O

In the parlance of computable reducibility (see [16], Chapter 4), it follows that
RT% f_c GST;. This is somewhat unusual. Most implications over RCAy between
II3 statements are in fact formalizations of computable reductions.

We note, too, that Theorem 6.12 is not symmetric.

Proposition 6.13. There exists an infinite computable Ty CSC space having no
computable discrete subspace, and no AY subspace with the cofinite topology.

Proof. Fix any ¥ set with no infinite computable subset, and no infinite A9 subset
in its complement. By the proof of Proposition 6.8, we can view this an infinite
computable instance of GST; (in fact, a stable one) with the desired properties. O
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In spite of the curious distinction between GST; and RT% highlighted by Theo-
rem 6.12, there are other aspects in which GST; and RT% behave quite similarly.
One of these is PA avoidance, which holds for RT3 by Liu’s theorem (discussed in
the introduction) and for GST; by Corollary 6.11 above. Another is the following.
Cholak, Jockusch, and Slaman [2, Theorem 3.1] showed that every computable in-
stance of RT3 has a solution H which is lows (i.e., satisfies H” <t §""). In fact, they
offered two proofs of this result, one by controlling the first jump of H during its
construction ([2], Section 4), the other by controlling its second jump ([2], Section
5). We can adapt the latter proof to obtain the analogous result for GSTj.

Theorem 6.14. Every 9 set has an infinite lows subsetY in it or its complement.

Proof. In [2, Section 5.2], it is shown that if A is any AJ set then there exists an
infinite subset of A or A which is lows. The authors comment in the proof (Section
5.2.1 on p. 19) that, except for one moment, their argument also works for A being
AY. This moment is when they consider a certain sentence of the form

(1) (32)[R*(2) A (32)P(2,2,D, L, S)],

which they need to be $9 uniformly in D, S, and L. Here, D and S are finite sets
specified by canonical indices, L is a low set specified by a A?’W index for its jump,
and P is a 19 predicate. Thus, (32)P(z,Z, D, L, S) is itself uniformly 17", The
predicate R“(z), on the other hand, asserts that a certain finite sequence of finite
sets coded by z is contained in A, and as such is AJ. But notice that if 4 is £9,

rather of AJ, then (1) is still X9, so the proof still works. The rest of the argument
from [2] then goes through as before. O

Corollary 6.15. Let (X,U, k) be an infinite computable Ty CSC space. Then X
has an infinite lows subspace which is discrete or has the cofinite topology.

Proof. Fix (X,U, k). Jockusch and Stephan [27, Theorem 2.1] showed that every
computable instance of COH has a lows solution. So let Y be an infinite lows U-
cohesive set. Then Y is stable as a subspace of X, and we let Y be the £9(Y) set
of all x € Y such that (3U € U)[U = {z}]. By the proof of Proposition 6.8, every
infinite subset of S is a discrete subspace of Y (and hence of X') and every infinite
subset of Y \ S is a subspace with the cofinite topology. Apply Theorem 6.14 to
find an infinite subset Z of S or Y \ S which is lows over Y. Then Z is itself lows,
which completes the proof. ]

Corollary 6.16. There exists an w-model of GSTy consisting entirely of lowy sets.

Proof. Tterate Corollary 6.15, as usual. (]

7. SEPARATING GST; FROM RT3
This section is dedicated to the proof of the following theorem.
Theorem 7.1. There exists an w-model satisfying RCAy + RT% but not ¥9-Subset.

We design a property preserved by each of D3 and COH, but not by X9-Subset.
Such a property in general needs to be designed very carefully, so as to strike the
right balance between the principle(s) meant to preserve it and the principle meant
not to. At the very least, this property should imply not computing a solution
to some fixed instance S of the “stronger” principle (in our case, %9-Subset), but
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usually it has to entail quite a bit more than that. This is because we must be
able to show that each instance of the “weaker” principles (in our case, D3 and
COH) that has this property also has a solution with this property, and for this,
knowing merely that the given instance does not compute a solution to S may not
be enough. Thus, the basic tension is between increasing the complexity of the
property to the point of being able to extract useful information from an instance
that enjoys it, but not to the point that we can no longer construct a solution that
does as well. For a general account of preservation arguments, and many examples
of how they are used to obtain separations over RCAg, see Patey [42].

Our argument divides into the following three lemmas. The first expresses a
so-called “fairness property”, while the second and third express that this property
is preserved under D3 and COH. We recall that if S,U C w are sets, then S is U-
immune if U computes no infinite sequence of S; S is U-hyperimmune if U computes
no infinite sequence zg < x; < --- of numbers such that [z,,z,+1) NS # O for all
n. Say ®U is a non-hyperimmunity witness for S if it is the characteristic function
of such a sequence. Thus, a set S is U-hyperimmune if and only if ®V is not a
non-hyperimmunity witness for S, for all e. Being U-hyperimmune implies being
U-immune. If S and S are both U-immune, or both U-hyperimmune, then S is U-
bi-immune, respectively, U-bi-hyperimmune. If S computes no U-hyperimmune set
then it is said to be of hyperimmune-free degree relative to U, and this is equivalent
to every S-computable function being dominated by a U-computable function. (See,
e.g., [11, Section 2.17] for details on these notions.)

Lemma 7.2. There exists a Zg_set S, a low set Ly > 0, and a set Py > (' such
that S is Lo-hyperimmune and S is Py-hyperimmune.

Lemma 7.3. Let X, S, L, and P be sets as follows:

e S is X9 (nota bene, not merely ¥ relative to X );
e L > X;

P>IL;

S is L-hyperimmune;

S is P-hyperimmune.

For every set A <1 X', there exists an infinite set G contained in A or A along
with sets Lg and Pg as follows:

Le>XdG;

P> LIG;

S is Lg-hyperimmune;

S is Pg-hyperimmune.

We have an analogous result for COH.

Lemma 7.4. Let X, S, L, and P be sets as follows:
o S is¥Y;

L>»X;

P > L/,'

S is L-hyperimmune;

S is P-hyperimmune.

For every family of sets R <r X, there exists an infinite R-cohesive set G along
with sets Lg and Pg as follows:

e Lo>XaG;
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o Po> L/G7
e S is Lg-hyperimmune;
e S is Pg-hyperimmune.

Observe that, since G <1 Lg <1 Pg in both of the above lemmas, the set S will
be (X @ G)-bi-immune (in fact, (X @ G)-bi-hyperimmune). If we were dealing with
a single set A, or a single family ﬁ, then we could in fact find a set G with this
property more simply, and without needing to also construct Ls and Pg. But this
would only help show that £3-Subset £, D3 and 3-Subset £, COH, respectively.
We need these auxiliary sets in order to be able to iterate the property and build an
w-model separation. We show how this is done, and then move on to the lemmas.

Proof of Theorem 7.1. We construct an w-model by applying Lemma 7.2 and then
iterating and dovetailing Lemmas 7.3 and 7.4. To this end, we define a chain of
sets Xog <1 X7 <7 --- and let our model be M = {Y : (3s)(Y <t X;)}, as usual.
We proceed by induction.

Let Xo =0, and let S, Ly, and P, be as given by Lemma 7.2. Notice that, if we
take X = Xy, L = Ly, and P = Py, then X, S, L, and P satisfy the hypotheses of
Lemmas 7.3 and 7.4.

Next, fix s € w, and suppose that for each t < s we have defined X;, L;, and
P, such that, if we take X = X;, L = L;, and P = P;, then X, S, L, and P
satisfy the hypotheses of Lemmas 7.3 and 7.4. Say s is 2(e,t) or 2<€ t) + 1, so

that e,t < s by standard conventions. In the first case, we check if <I> t defines a
set A, and in the second, we check if ®X¢ defines a family of sets R. If not, we
let Xoy1 = X, Lsy1 = Ls, and Psy 1 = Ps in either case. Otherwise, we have
A<t X! or R <t X, respectively. We can thus apply Lemma 7.3 in the first case,
or Lemma 7.4 in the second, to obtain sets G, L, and Pg. (So, in the first case, we
have that G is an infinite subset of A or A, and in the second, that G is an infinite
R-cohesive set.) In either case, as noted above, we have that X; @ G does not
compute any infinite subset of S or S. We now set X, = X;®G, Ly 1 = Lg and
P,+1 = Pg, and notice that, if we take X = Xsy1, L = Lsy1, and P = Psy1, then
we again satisfy the hypotheses of Lemmas 7.3 and 7.4. So the inductive conditions
are maintained.

Let M be the model specified above. By construction, if A is any instance of

in M then A = &, Xt for e and t, and then some solution G to A is computable
from X3(e,ty and so belongs to M. Similarly, if Ris any instance of COH in M then
R= ®Xt for some for e and ¢, and now a solution G to Ris computable Xoe 1y41-
Hence, M satisfies D3 + COH, and therefore RT%. On the other hand, by induction,

no X, computes any infinite subset of S or S, so S is a computable instance of
$9-Subset with no solution in M. Hence, M does not satisfy $3-Subset. O

Corollary 7.5. There exists an w-model satisfying RCAg + RT% but not GSTj.

7.1. Proving Lemma 7.2. For the remainder of this section, we follow the con-
vention that if ®'(z) | for some Turing functional ®, finite set F', and = € w, then
the use of this computation is bounded by max F. For a set U, let T3 C 2<“ be the
standard U-computable tree whose paths are precisely the DNCy functions relative
to U. By well-known results of Jockusch and Soare [26] and Solovay (unpublished),
X > U if and only if X = f for some f € [T?]; see [11, Theorem 2.22.2].
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Our original proof of Lemma 7.2 built S, Ly, and Py directly, via a slightly more
complicated construction than the one that follows. We thank the anonymous
referee for suggesting the more streamlined version below.

Proof of Lemma 7.2. We let Ly be any low set of PA degree, and Py > Lj, any set
of hyperimmune-free degree relative to L{,. These exist, respectively, by applying
the low basis theorem to T®2, and the hyperimmune-free basis theorem, relativized
to L, to T26 (Jockusch and Soare [26, Theorems 2.2 and 2.4]). We construct a

¥9 set S such that S is Lo-hyperimmune and S is Lj-hyperimmune. Since Py is of
hyperimmune-free degree relative to L}, this implies that S is also Py-hyperimmune,
as needed. (To see this, fix any Py-computable sequence g < x1 < ---. Since Py
is of hyperimmune-free degree relative to Lg, there is a function g <7 Lj such that
g(n) > x, for all n. Define a function h by h(0) = z¢ and h(n + 1) = g(h(n) + 1)
for all n. Then h <t g <7 Lj, and we have h(n + 1) > Tpn)41 > Tpen) > h(n) for
all n. Since S is Lj-hyperimmune, there exists an n such that [h(n), h(n+1)) C S,
and hence also [Tp(,), Th(n)+1) € S.)

We enumerate S by stages, using L{, as an oracle. Thus S will be X{(L}), and
so 39 since Ly is low. We aim to satisfy the following requirements for all e € w:

R. : ®0 is not the characteristic function of an infinite set or

not a non-hyperimmunity witness for S;

Q. <I>eL° is not the characteristic function of an infinite set or

not a non-hyperimmunity witness for S.

We call requirements of the former kind the R requirements, and those of the latter
kind the Q requirements. It is clear that satisfying all R and Q requirements ensures
that S will be Lo-hyperimmune and S will be L{-hyperimmune.

We assign a priority ordering to the requirements of type w, with Q. stronger
than R., and R. stronger than Q.;1, for all e € w. Requirements will act at
certain stages, never more than one requirement per stage, in a way that we will
make precise below. When some R, acts, it will impose a restraint r, that may be
cancelled later and redefined later still; this will be used to control which elements
can be enumerated into S by lower priority Q requirements. At each stage s, we
also let ms be the maximum of all restraints (including cancelled or redefined ones)
imposed at any point in the construction prior to stage s, as well as all numbers
enumerated into S so far.

We say a requirement R, requires attention at stage s if there exist numbers
Ty > x9 > my such that ®Lo(zg) | = ®Lo(x1)] = 1. We say a requirement Q.
requires attention at stage s if there exist numbers z¢o < 1 < s, larger than all
active re;straints at stagp s imposed by any R requirements stronger than Q., such
that ®.° (zo)[s]d = dLo (z1)[s]4 = 1. Notice that, in either case, determining if a
given requirement requires attention at a given stage is computable in L, uniformly
in the index of the requirement and the stage number.

Initially, we let S be empty and let no restraints be imposed. (In particular,
mo = 0.) Now suppose we are at stage s. If it exists, fix the highest priority
requirement of index e < s that requires attention at stage s and that has not
acted since the last stage, if any, at which a higher priority Q requirement acted.
If this requirement is R., we fix the least witnessing ;1 > x¢ > ms and impose the
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restraint r. = x7. We then say that L. has acted. If, instead, the requirement is
Q., we fix the least witnessing x¢o < x; and enumerate every element of the interval
[0, 1) into S. We then say Q. has acted, and cancel the restraints of any lower
priority R requirements.

This completes the construction. We claim that each requirement acts at most
finitely often. Suppose not, and fix the highest priority requirement that acts at
infinitely many stages. Let s < t be stages at which this requirement acts, but
such that every stronger requirement has stopped acting before stage s. Then this
requirement must require attention at stage ¢, and moreover, it must not have acted
since the last stage at which some stronger Q requirement did. In particular, the
requirement must not have acted at stage s, a contradiction. So the claim is proved.

Now, a restraint r. is only ever cancelled if some Q requirement stronger than
R acts, and it is only defined if R, itself acts. The preceding claim thus implies
that each r. is either undefined from some stage on or reaches a final value.

It remains to verify that all requirements are satisfied. Consider any requirement,
and let s be least such that every higher priority Q requirement has stopped acting
prior to stage s. If we are dealing with R, and if ®L0 is the characteristic function
of an infinite set, then R, will require attention at stage s. This means that for some
Ty > w9 > mg with ®Lo(xg) | = ®Lo(x) ] = 1, R, will now impose the restraint
re = x1, and this restraint will be permanent. Only Q requirements enumerate
elements into S, and the only such requirements that can act after stage s must
respect r.. Hence, every number in the interval [zg,z1) will be permanently kept
out of S, and so belong to S, as needed.

Now suppose we are dealing with Q., and that <I>eL 0 is the characteristic function
of an infinite set. Any R requirement stronger than Q. that acts at or after stage
s will do so before Q. can act. This is because the action of Q. cannot change any
such R requirement from not requiring attention to requiring attention. Let ¢t > s
be least such that all such R requirements have acted prior to stage t. In particular,
any restraints they impose are now permanent, by choice of s. By hypothesis, there
is a w > t such that Q. acts at stage u, which means that for some x; > x(y such
that ®L0 (o) = pLo (x1)} = 1 every element of [zg,x1) is enumerated into S.
This completes the proof. O

7.2. Proving Lemma 7.3. Throughout this section, let X, S, L, and P be fixed
as in the statement of Lemma 7.3, along with a set A <1 X'. For ease of notation,
we write A° for A and A! for A.

Notice that if A or A' has an infinite subset U so that L > X @ U, then we can
simply take G = U, Lg = L, and Pg = P to satisfy the conclusion of Lemma 7.3.
Going forward, we thus assume that neither A° nor A! has any such subset.

We will use different forcing notions to build each of the sets G, Lg, and Pg.
The underlying sets of conditions will be called G-conditions, Lg-conditions, and
Pg-conditions, respectively, but when it is clear which kind of condition we are
referring to we will simply use conditions for short. All three sets will be constructed
simultaneously. The forcing for Lg will be defined in terms of that for G, and the
forcing notion for Pg will be defined in terms of that for Ls. We thus define the
G-conditions, then the Lg-conditions, and finally the Pg-conditions, in order. The
G-conditions will be be based on Mathias forcing, in the style originally developed
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by Hummel and Jockusch [23] and Cholak, Jockusch, and Slaman [2], which is
standard.

7.2.1. Forcing notion for G. We begin by defining the G-conditions and proving
some of their properties.

Definition 7.6 (G-conditions).

(1) A G-condition is a tuple (D°, D', Y) such that for each i < 2, D? is a finite
subset of A%, Y is an infinite set with max D! < minY, and L > X @Y.

(2) A condition (E°, E', Z) extends (D°, DY) if for each i < 2, D' C E* C
D'UY, and if Z C Y. If, in addition, Y \ Z is finite then (E°, E1,Z) is a
finite extension of (D°, D) Y).

(3) An indez for (D°, D',Y) is a number (dy, dy,y) such that for each i < 2, d;
is a canonical index for D, and @] is a DNC, function relative to X @Y.

Notice that (0,0, w) is a condition.

Our proof will have the feature that the conditions we will be interested in will
all be constructible, which we make precise in Definition 7.9 below. In short, this
means that each condition will be obtained from another in one of two ways. The
first way is finite extension, and the second way is implicit in the statement of
Lemma 7.8 below. The next two lemmas show that, if we extend conditions in
these two ways, we can keep track of indices along the way.

Lemma 7.7. Let (E°, E',Z) be a finite extension of (D°,D',Y). Then an index
for (E°, E*, Z) can be found uniformly computably from an index for (D°, D',Y)
and canonical indices for E°, E', and Y \ Z.

Proof. From an index for (D° D',Y), we first extract a y € w such that ®] is
DNCy, relative to X @Y. From a canonical index for Y N\ Z, we can uniformly find
a computable function h such that (I)hX(eea)Y (r) = ®X®Z(e) for all e and x. Now let

g be a computable function so that ®! () = ®[(h(z)) for all e and . Then for
all e we have that

g, (€) = 5 (h(e) # Py (h(e)) = 2T (e),

9(y) h(e)
SO <I>§(y) is DNCy relative to X @ Z. Thus, the canonical indices of E and E*,
together with g(y), form an index for (E°, E1, 7). O

Lemma 7.8. Let (D°, DY) be a condition and let C be a non-empty N(X @
Y) class of 2-partitions of Y. There exists (Yo,Y1) € C and an i < 2 such that
(DY, D'Y;) is an extension of (D°, D',Y), and such that this i and an index for
this extension can be found uniformly P-computably from an index for (D°, D',Y)
and an index for C as a (X @Y class.

Proof. First, from an index for (D%, D, Y), fix y € w such that <I>5 is DNCs, relative
to X@Y. Let D be the class of all {fo, f1, Yo, Y1) such that (Yp, Y1) € C and, for each
i <2, f; is DNCy over X @ Y;. This is a non-empty I1{(X @ Y) class, whose index
as such can be found uniformly computably from such an index for C. Thus, <I>5
can uniformly compute an element (fo, f1, Yo, Y1) € D. In particular, this produces
indices y; for each i < 2 such that <I>£‘i = fi;- Now, since Y is infinite, there is at
least one 7 < 2 such that Y; is infinite, and since P > L’ it follows that P can
uniformly compute such an ¢ (see [16], Theorem 2.8.25 (4)). Thus, the canonical
indices for D and D*, together with y;, form an index for (D°, D1, Y;). O
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We think of Lemma 7.8 as specifying a P-computable procedure that, given indices
for (D% D',Y) and C, produces an index for the extension (D°, D',Y;). In this
case, we say that (D°, DY) is obtained from (D°, DY) and C via Lemma 7.8.

Definition 7.9. A condition (E°, E', Z) is a constructible extension of (D°, DY)
if it is either a finite extension of (D° D'Y), or else if there is a non-empty
(X @Y) class C such that (E°, E', Z) is obtained from (D% D'Y) and C via
Lemma 7.8.

We now add the following definition and basic facts about it, which we will use
in our main construction.

Definition 7.10. Let (D° DY) be a condition, and fix i < 2 and e € w.
(DY, DYY) forces |G| > e on the i side if |D| > e.

It is easy to see that if (D%, D' Y’) forces |G| > e on the i side then so does every
extension. The following lemma is obvious, but we include it here for easy reference
later.

Lemma 7.11. Let (D°, DY) be any condition that, for some i < 2 and e € w,
forces |G| > e on the i side. If U is any set satisfying D' C U C D' UY then
U] > e.

The second lemma is a density fact that will allow us to build infinite subsets of
both A% and A', although only one of these sets will end up working as our set G.

Lemma 7.12. Let (D° DY) be a condition, and fizi < 2 and e € w. Then there
is a finite (hence constructible) extension of (D°, DY) that forces |G| > e on the
1 side.

Proof. By hypothesis, A'~% has no infinite subset U such that L > X @ U. Since
L> X @Y, it follows that Y N A? is infinite. Hence, there exists F* C Y N A? such
that |D'UF?| > e. Let E* = D'UF!, E'=* = D% andlet Z = Y \[0, max FOUF].
Then (E°, E', Z) is the desired finite extension. O

7.2.2. Forcing notion for Lg. To define the Lg-conditions, we first need to define
the following finite structures.

Definition 7.13. Let F, H,J C w be finite.

(1) Tp is the set of all o € 2<% of length at most max F' such that o(e) #
(I’flff(e) for every e < |o].
(2) Trm,s is the set of all 0 € Tr satisfying the following:
o for all (e,k) € H, ~(Fxp,z1 < |o])[zr > z0 > kA DPI(z)] =
7 (x1) L = 1];
o forallee J, ®I(e)t.
(3) o € T u s has mazimal length if it has length max F'.
(4) Tp p,s looks extendible if it contains at least one string of maximal length.

Note that Tr = T g ¢. The following lemma collects some structural facts about
this definition.

Lemma 7.14.
(1) For all finite F,H,J C w, Tp g, is a tree.
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(2) If Fy, FA,H,J C w are finite, with Fy C Fy and min F; \ Fy > max Fp,
then Try m,0 C Ty a0 and Tk, g5 and Tgy g5 contain the same strings
of length at most max Fy.

(38) If F,Hy,Hy,Jo,J1 C w are finite, with Hy C Hy and Jy C Jy, then
Tray,0 € TFHo,Jo-

(4) Suppose Fy C Fy C --- are finite, with min F,, 1 \ F,, > max F,, for alln
and lim,, max F,, = co. Let U = Un F,,. For all finite H,J C w such that
TF, m,7 looks extendible for all n, we have that \J,, Tr, m,7 is an infinite
subtree of Txgu -

Proof. Parts (1), (2), and (3) are clear from the definition. For (4), we begin by
observing that J, T, 00 = Txeu- Hence, U, Tr, 1,0 € T3gy by (3). Since
lim, max F,, = oo and each TF, p,; contains a string of length max F,,, it follows
that |J,, Tr,,m,s is infinite. O

We now define the conditions we will use to build the set Lg.

Definition 7.15 (Lg-conditions).

(1) An Lg-condition is a tuple (D°, D', Y, H®, J° H', J') such that (D°, D', Y)
is a G-condition, and for each i < 2, H* and J* are finite subsets of w such
that Tpiyp gi gi looks extendible for every finite set ' C Y.

(2) A condition (E°, E', Z, I°, K° I', K') extends (D°, D',Y,HY, J°, H' J*')
if (E° E', Z) extends (D°, D',Y) as G-conditions, and if for each i < 2,
H? C I' and J* C K'. It is a constructible extension if (E°, E',Z) is a
constructible extension of (D% D', Y) as G-conditions.

Notice that if (D°, D', Y) is any G-condition then (D% D', Y,0,0,0,0) is an Lg-
condition, so the above notion is non-trivial. We also have the following compati-
bility fact with respect to G-conditions.

Lemma 7.16. Let p= (D°, DY, H, J° H' J') be a condition. If (E°, E', Z) is
a (constructible) extension of (D°, DY) as G-conditions, then the tuple
(E°,EY, Z, H°, J° H', J') is a (constructible) extension of p.

Proof. We have only to verify that (E°, E', Z, H°, J° H' J') is a condition. To
this end, fix ¢ < 2 and a finite set F' C Z. We must show that Tgiyp gi s looks
extendible. By definition of G-extension, we have that E* = D! U F’ for some
finite set F C Y. Let F/ = F/UF. Since Z C Y, we have that F// C Y.
Hence, because p is a condition, we have that Tpi g~ g ji looks extendible. But
TDiUp//,Hi"]i :TEiUp’Hi,Ji. O
Definition 7.17. Let p = (D°, D', Y, H°, J°, H', J!) be a condition, and fix i < 2
and e € w.
(1) p forces e € L on the i side if Tpi g yiugey does not look extendible.
(2) p forces e ¢ L}, on the i side if e € J°.
(3) p forces ®Le is not a non-hyperimmunity witness for S on the i side if
for some k € w and every o € Tpi g yi of maximal length there exist
x1 > xo > k such that ®7(zo) | = ®7(21)) =1 and [xg,2;) C S.
(4) p forces ®Le is finite on the i side if (e, k) € H® for some k € w.

The key properties of this definition for the purposes of our main construction are
the following.
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Lemma 7.18. Letp = (D°, D', Y, H", J° H', J') be a condition forcing any of the
statements in Definition 7.17. If ¢ = (E°, EY, Z, 1°, K°, I', K') is any extension of
p then it forces the same statement.

Proof. For parts (2) and (4) of Definition 7.17, the result is immediate from the
definition of extension. For part (1), suppose p forces e € Lj on the i side. By
Lemma 7.14 (2), Tgi 1i giugey agrees with Tpi i giuge) on the strings of length at
most max D;, and by Lemma 7.14 (3), Tpi 1i giugey € Tpi mi,siuge}- Now since
Tri 1i Kkiufe) 18 a tree, if it looked extendible (meaning, if it contained a string of
length max B > max D?) then it would in particular contain a string of length
max D?. But then Tpi 1i,kiufey Would contain such a string, and hence so would
Tpi mi,givgey and therefore look extendible. It follows that Tg: 1i kiugey does not
look extendible, so ¢ forces e € Lg on the i side. For part (3) of Definition 7.17, the
proof is similar. O

Lemma 7.19. Let p = (D°, DY, H, J°, H' J') be a condition, and fir i < 2
and e € w. Suppose f € 2% satisfies f [ max D* € Tpi g ji.
(1) If p forces e € Lg on the i side then e € f'.
(2) If p forces e ¢ L on the i side then ®™axDi(e)1,
(3) If p forces ®Ls is not a non-hyperimmunity witness for S on the i side then
there exist T1 > xq such that ®(zo)] = ®{(v1)] =1 and [, 71) C S.
(4) If p forces ®Le is finite on the i side then for any k such that (e k) €
H' we have that ~(3xg,x1 < max Di)[zy > o > k A ®F ImaxD' () | =
Of 1max D (z,) | =1].

Proof. All parts follow directly from the definitions. O

We now collect several density facts about Lg-conditions that we will use in our
main construction.

Lemma 7.20. Let (D°, D',Y,H°, J° H',J) be a condition, and fix ey,e; € w.
There exists a constructible extension of (D°, DY, Y, H° J° H*', J') that forces one
of the following:

(1) eg € Lg on the 0 side;

(2) eo & Lg on the 0 side;

(3) e1 € Lg on the 1 side;

(4) e1 & Lg on the 1 side.

Proof. Let C be the class of all 2-partitions (Yp, Y1) of Y such that
(Vi < 2)(VF CY; finite)[Tpiup,ai,siuge,} looks extendible].

Then C is a II9(X @ Y) class, so if it is non-empty we can apply Lemma 7.8 to
find a (Yp,Y1) € C and an i < 2 such that (D°, D', Y;) is a constructible extension
of (D, D',Y). Then the Lg-condition obtained from (D° D', Y, H?,J° H' J')
by replacing Y with Y; and J® with J* U {e;} is a constructible extension of
(DY, DYY,H®, J° H' J') that forces e; ¢ L; on the i side.

Suppose, then, that C is empty. By compactness of Cantor space, there is an
¢ € w such that for every 2-partition (Yp,Y7) of Y there exists an i < 2 and an
F C Y; ¢ for which Tpiyp g, jiuge,; does not look extendible. Fix such an i
and F for the 2-partition (Y N A%, Y N A!). Then the condition obtained from
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(DY, DY Y,H®, J° H' J') by replacing D* with D'UF and Y by Y \ [0, max F] is
a finite extension of (D°, D1, Y, H°, J° H' J') that forces e; € L} on the i side. [

Lemma 7.21. Let (D°, DYY, H°, J° H', J1) be a condition, and fix eg,e1 € w.
There exists a constructible extension of (D°, D', Y, H?, J° H' J') that forces one
of the following:

(1) CIJCL(;; is not a non-hyperimmunity witness for S on the 0 side;

(2) ®Ls is finite on the 0 side;

(3) <I>£1G is not a non-hyperimmunity witness for S on the 1 side;

(4) ®Ls is finite on the 1 side.

Proof. For each k, let Cj, be the class of all 2-partitions (Yp, Y1) of ¥ such that
(Vi< 2)(VF CY; ﬁnite)[TDiUp,HiU{(ei’]Q}”]i looks extendible]

which is a IIY(X @ Y) class. If there is a k for which Cj is non-empty we ap-
ply Lemma 7.8 to find a (Yp,Y1) € Cr and an i < 2 such that (D° DY) is
a constructible extension of (D° D!,Y). The Lg-condition obtained by replac-
ing Y with ¥; and H® with H® U {(e;,k)} is then a constructible extension of
(D°, D' Y,H°, J° H',J') that forces ®L¢ is finite on the i side.

Suppose next that Cy is empty for every k. This means that for every k, there
is an ¢ such that for every 2-partition (Yp, Y1) of Y there is an ¢ < 2 and a finite
set F' CY; [ € such that Tpiyr miuf(e;,k)},s¢ does not look extendible. Let £) be the
least such ¢. Since (D°, DY, H° J° H' J') is a condition and F C Y; C Y, the
tree Tpiyp m1, 1 looks extendible, and so contains a string ¢ of maximal length.
Since no such o belongs to Tpiup,giu{(e; k)},si» it follows from the definition that
there exist xo, 21 < |o| such that 1 > xo > k and ®7 (zg) | = 7 (z1)| = 1. Let
ok be the minimum of all such x¢, and #} the maximum of all the such z;, across
both i < 2, all finite sets F' C Y; [ ; as above, and all o € Tpip i i of maximal
length.

Now, ¢, can be found uniformly (X @ Y')-computably from k, and hence so
can the finite collection of all the finite sets F' above. It follows that X & Y can
uniformly compute the numbers z& and x% for each k. Since S is L-hyperimmune,
and since L >r X @Y and k < af < af for all k, there must be a k such
that [zk,2%) C S. Fix this k, and fix i < 2 and F C (Y N A?) [ 4, such that
Tpiur,HiU{(e;,k)},s¢ does not look extendible. Then the condition obtained from
(DY, DY Y,H®, J° H' J') by replacing D' by D' U F and Y by Y \ [0, max F
is a finite extension of (D°, DY, H° J° H' J') that forces ‘béc is not a non-
hyperimmunity witness for S on the 7 side. ]

Lemma 7.22. Let (D°, DY, H°, J° H', J) be a condition, and fix ey,e; € w.
There exists a constructible extension of (D°, DY, Y, H° J° H', J') that forces one
of the following:

(1) eg € Lg on the 0 side;

(2) eo & Lg on the 0 side;

(3) <I>£f is not a non-hyperimmunity witness for S on the 1 side;

(4) ®Ls is finite on the 1 side.

Proof. For each k, let Cj, be the class of all 2-partitions (Yp, Y1) of Y such that
(VF C Y} finite)[Tpour, go, joufe,} 100ks extendible]
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and
(VF g Yl ﬁnite)[TDIUF,HlLJ{(el,k)},Jl looks extendible],

which is a IIY(X @ Y) class. If there is a k for which Cj is non-empty we apply
Lemma 7.8 to find a (Yp,Y;) € Cx and an i < 2 such that (D% D'Y;) is a con-
structible extension of (D°, D', Y'). The Lg-condition obtained by replacing Y with
Y; and either J° with J°U{eg} if i = 0, or H! with H'U{(eq,k)} if i = 1, is then a
constructible extension of (D°, D', Y, H®, J°, H', J'). If i = 0 this extension forces
eo & Lg on the 0 side, and if i = 1 it forces ®%¢ is finite on the 1 side.

Now suppose Ci is empty for every k. This means there is an ¢ such that for
every 2-partition (Yp, Y1) of Y, one of the following holds:

(a) there is a finite set F' C Yp [ £} such that Tpoyp, o jouge,} does not look
extendible;

(b) there is a finite set ' C Y} [ £y such that Tpiyp, giug(e, k)},01 does not look
extendible.

In particular, for each k, (a) or (b) holds for the 2-partition (Y N A%, Y N A). If

there is a k such that (a) holds for (Y N A% Y N Al), we can fix the corresponding

F CYj | ¢ and proceed as in the proof of Lemma 7.20 to obtain a finite extension of

(DY, DY Y, H®, J° H' J') that forces ey € L on the 0 side. If (b) holds for every

k, then we can instead proceed as in the proof of Lemma 7.21 and obtain a finite

extension of (D%, D', Y, H?, J° H' J') that forces L¢  is not a non-hyperimmunity

witness for S on the 1 side. |

Lemma 7.23. Let (D°, DY, H°, J° H', J') be a condition, and fix ey, e; € w.
There exists a constructible extension of (D°, DY, Y, H° J° H', J') that forces one
of the following:
L . . . . . .

(1) (I)EOG z.s not. a non—hyperz.mmumty witness for S on the 0 side;

(2) @6 is finite on the O side;

(8) e1 € L, on the 1 side;

(4) e1 ¢ Ly, on the 1 side.

Proof. The proof is symmetric to that of Lemma 7.22. ]

7.2.3. Forcing notion for Pg. We now come to our final forcing notion, which will
be used to construct the set Pg. Here, we first define a notion of precondition, in
terms of which we then define the actual conditions.

Definition 7.24 (Pg-preconditions).
(1) A Pg-precondition is a tuple (p,b°,b') such that p is an Lg-condition,
b, b! € w, and for each i < 2 and each e < ', p either forces e € L{, or
e ¢ Lg on the i side.
(2) A precondition (q,c?,ct) extends (p,b°,b') if ¢ extends p as Lg-conditions,
and if for each i < 2, ¢ > b'. It is a constructible extension if ¢ is a
constructible extension of p as Lg-conditions.

Notice that if p is any Lg-condition then (p,0,0) is a Pg-precondition. For precon-

dition (p,b°,b') and each i < 2, let F} i ={e <" :pforces e € Lg on the i side}.

Given a finite set V, recall that T v is the tree of all 0 € T such that for
p,bt’ "7 p,bt

all (e,k) € V, ~(3xg,x1 < |o|)[x1 > 0 > kA DI (20) | = ®I (1) | = 1].
Definition 7.25 (Pg-conditions).



THE GINSBURG-SANDS THEOREM AND COMPUTABILITY THEORY 37

(1) A Pg-condition is a tuple (p, bo,bl,VO,Vl) such that (p,b°,b') is a Pg-
precondition and for each i < 2, V* is a finite set for which there is no
sequence of preconditions

(p7 b07 bl) = (p07 b87 bg)v ceey (pn7 b?m bylz)
such that (pp41,b%,,1,bh,41) is a constructible extension of (py,, by, ,bL,) as

m’m

preconditions for all m < n and TFl .vi g does not look extendible.

(2) A condition (q,c", ct, WO W) e:ctends (p, O b, VO Vl) if ¢ extends p as
Lg-conditions, and 1f for each i < 2, ¢ > bl and Vi C Wt It is a con-
structible extension if ¢ is a constructible extension of p as Lg-conditions.

We have the follow compatibility lemma with respect to Lg-conditions.

Lemma 7.26. Let (p,b°,b', VO V) be a condition. If q is a constructible exten-
sion of p as Lg-conditions, and if ¢® > b° and ¢t > bl are such that (q,c°,ct)
is a precondition, then the tuple (q,c°,c*, VO V1) is a constructible extension of
(p,b°, b1, VO, V1),

Proof. We have only to verify that (g,c°, ¢, V° V1) is a condition. Suppose not.
Since (g, %, c!) is a precondition, this means that there is an i < 2 and a sequence
of preconditions

(g, COaCO) (pO»bOabO) (pnabgabi)

such that (pp1,b9,,1,bh41) is a constructlble extension of (p,b2,,bL) for all
m < nand Tp: X does not look extendible. Since ¢ is a constructible extension

Un

of p, it follows that (g,c,c)) is a constructible extension of (p,b° b'). But this
means we can prepend (p,b’,b!) to the above sequence to get one witnessing that
(p,b°, b, VO, V1) is not a condition, a contradiction. O

Definition 7.27. Let (p,b°,b',V° V1) be a condition, and fix i < 2 and e € w.

(1) (p,b°, 01, VO V1Y) forces ®L% is not a non-hyperimmunity witness for S on
the i szde if for some k € w and every o € TFI Vi of maximal length there

exist ¢ > xog > k such that ®7(xg) | = <I"’(:1:1)¢ =1 and [zo,71) C S.
(2) (p,b°, b1, VO V) forces ®F% is finite on the i side if (e, k) € V' for some
k€ w.

The following lemmas are analogues for Pg-conditions of Lemmas 7.18 and 7.19,
and are proved similarly.

Lemma 7.28. Let (p,b°,b*, VO, V1) be a condition forcing any of the statements
in Definition 7.27. If (q,c°, ct, WO, W1) is any extension of (p,b°,b', VO, V1) then
it forces the same statement.

Lemma 7.29. Let (p, bo,bl,VO,Vl) be a condition, and fir i < 2 and e € w.
Suppose f € 2¢ satisfies f | max F i €Tri  vig-
b z)ybl7 ’

(1) If (p,b°, b1, VO, V1) forces ®% is not a non-hyperimmunity witness for S
on the i side then there exist T1 > mo such that ®f(z¢)] = ®L(z1)| =1
and [zg, 1) C S.

(2) If (p,b°, b1, VO, V1) forces ®I% is finite on the i side then for any k such that

[ max Fi

(e, k) € V' we have that =(3x, z1 < max D%)[x1 > x¢ > k/\<I> " (20) |

max F?
ol ety = 1.
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We now have our final density fact.

Lemma 7.30. Let (p,b°, b1, VO V1) be a condition, and firi < 2 and e € w. Then
one of the following holds:
(1) there is a constructible extension of (p,b° b, VO, V1) that forces ®L is
finite on the i side;
(2) there is a sequence of conditions

(pa boa b17 VO) Vl) = (pOa bga b(1)7 ‘/007 Vol)a sy (pnv b(y)mb'}m Vr?a V;)

in which each condition is a constructible extension of the previous and such
that (pn,b2,bL, VO V1) forces ®L% is not a non-hyperimmunity witness for
S on the i side.

Proof. Suppose (1) does not hold. Then in particular, for every k, replacing Vi by
ViU {{e,k)} in (p,b°,b',V° V1) does not produce a condition. This means there
is a sequence of preconditions

(p7 b07 bl) = (p07 b87 b[1))7 MR (pTH b’(r]l,7 b’}z)
in which each condition is a constructible extension of the previous and for every
0 € Tpi v of maximal length there exist 1 > x9 > k such that ®J(z¢) | =
bV

‘I)g (.’L‘l) \L =1.

Note that since P > L’ and L > X @Y, it is possible for P to search through all
indices of infinite II{(X @ Y") classes. (For this, it suffices just that P >1 (X®Y)".)
Hence, given k, it follows by Lemmas 7.7 and 7.8 that P can uniformly search
for a sequence of preconditions as above. By assumption, this search must always
succeed. Let (p,,b2,bL) be the last condition in this sequence. Then P can find

all the 1 > x¢ > k as above, across all ¢ € T yi g, and in particular can

Pn,bl,

find the minimum zf of all such x(, and the maximum z¥ of all such ;. Thus,
o > af > k.

Since S is P-hyperimmune, there must be a k such that [z§,2}) C S. Fix
this k, and fix the corresponding sequence (p,b% b') = (po,b3,b8), - -, (pn, b2, bL)
found by P in the above search. Then (p,,b2,bk, VO, V1) forces ®%% is not a non-
hyperimmunity witness for S on the i side, so we can take our sequence witnessing
(2) to be (po, b3, b8, VO, V), ... (pn, b2, 0L, VO V). O

7.2.4. Putting it all together. This brings us to the main construction.

Proof of Lemma 7.3. We begin by building a sequence of Pg-conditions
(pOa b81 b(l)v VOOa V01>a (pla b(l)a biv Vloa V11>a ..

in which each condition is a constructible extension of the previous. This se-
quence will be suitably generic, as we describe below. For each m, write p,, =
(D?n) Drln,v YTTH H'ron’ J'?n’ Hvln’ Jvln)

Construction of generic sequence. We proceed in stages. At stage s, we define
(Pm, 02,, 0L, VO V1) for all m < ng.

At stage 0, let ng = 0, let pg = (0,0,w,0,0,0,0), and let b} = b} = 0 and
VY =V =0.

Now suppose we are at stage s+ 1, so that (p,,, 0% ,b}, ,V,? V! ) is defined. We
define ngy1, and (pm,02,,bL, VO V1) for all ng+1 < m < ngy1. To do this, we
break into cases based on the congruence class of s modulo 8.
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o If s = 8¢+ i for some e € w and i < 2, let ngy1 = ns + 1, and let
(DY ,D}  ,Y,._,) be the condition obtained by applying Lemma 7.12

Ms41? 7 Mg41?
with (D%, DL, Y) = (DY, D} ,Y,..), i, and e. Let HO_ = HO , JO & =
Jo Hy . =H,  and J, = J, . This defines p,_,.

o If s = 8(ep,e1) + 2, let ngy 1 = ng + 1, and let p, ., be the condition
obtained by applying Lemma 7.20 with (D°, D', Y, H°, J° H', J') = p,,
and eg, e1.

o If s = 8(eg,e1) + 3, let ng41 = ns + 1, and let Pn,y, be the condition
obtained by applying Lemma 7.21 with (D° DY, HY J°, H', J') = p,.
and eq, €.

o If s = 8(ep,e1) + 4, let ngy1 = ng + 1, and let p, ., be the condition
obtained by applying Lemma 7.22 with (D° DY, H° J°, H', J') = p,.
and eg, e1.

o If s = 8(ep,e1) + 5, let ngy 1 = ng + 1, and let p, ., be the condition
obtained by applying Lemma 7.23 with (D° DY, HY J° H', J') = p,.,
and eg, e1.

In each of the above cases, for each i < 2, if p,,_,, forces b}, € L or bi, ¢ Lg on
the i side, let b}, =0b} +1, and otherwise let b}, = =1b! . Let V,fsﬂ =Vi.

Ns41 Ns41

o If s = 8¢+ 6+ i for some e € w and i < 2, apply Lemma 7.30 with
(p, 0%, 01, VO, V) = (pp,, b9 by, , V) VL), i, and e. If we are in case (1) of
the lemma, then we obtain a single constructible extension. We set Ng41 =
ns+1, and let (pn.,,, 05, b5 .., Vi, > Vi, ) be this extension. If we are
in case (2), we obtain instead a sequence of conditions, each a constructible
extension of the previous, beginning with (p,,. b} ,b} ,V,? V! ). Say this
sequence has length n + 1. We set ns41 = ns + n, and for each m < n,
let (Pry4ms b9t Oh s Viv 4ms Vr 4m) be the (m+1)-st condition in the
sequence.

For the stages s =i mod 8, ¢ < 2, the fact that we obtain a constructible extension
follows by Lemmas 7.16 and 7.26. For the stages s =4 mod 8, 2 < ¢ < 5, it follows
by Lemma 7.26. For the other stages it is clear.

This completes the construction.

Lemma 7.31. There is an i < 2 such that for every e € w the following hold:

(1) there is an m € w such that p,, forces e € Ly or e ¢ Lg on the i side;
(2) there is an m € w such that p,, forces ®Lc is not a non-hyperimmunity
witness for S, or ®Ls is finite, on the i side.

Proof. Suppose the result is false for ¢ = 0. First, suppose that there is an eg such
that no p,, forces ey € Lg or ey ¢ Lg on the 0 side. Fix e € w. Then the condition
pn, defined at stage s = 8(eg,e) + 2 (which appeals to Lemma 7.20 with eg, e)
must force e € L; or e ¢ Li on the 1 side, while the condition p,, defined at stage
s = 8(eg, e) + 4 (which appeals to Lemma 7.22 with e, ) must force ®L¢ is not a
non-hyperimmunity witness for S, or ®Z¢ is finite, on the 1 side.

Suppose instead that there is an eg such that no p,, forces ®Z¢ is not a non-
hyperimmunity witness for S, or ®Z¢ is finite, on the 0 side. Then the condition
pn, defined at stage s = 8(ep,e) + 3 (which appeals to Lemma 7.21 with eg,e)
must force ®L¢ is not a non-hyperimmunity witness for S, or ®L¢ is finite, on the
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1 side, while the condition p,, defined at stage s = 8(eg,e) + 5 (which appeals to
Lemma 7.23 with e, ) must force e € Lg or e ¢ L; on the 1 side. O

For the remainder of this section, we let ¢ < 2 as above be fixed.

Construction of G. Let G = J,, D?,. For each e € w, the G-condition (DY, D}, Y,,)
defined as part of p,, at stage s = 8¢ + 4 (which appeals to Lemma 7.12 with e and
i) forces |G| > e on the i side. By Lemma 7.11, it follows that |G| > e for all e and
hence that G is infinite. By definition of G-conditions, G C A°.

Construction of Lg. For each m, let T,,, = |, Tpi mi gi . Observe that for all
m and n, Tpi gi ji looks extendible. If m < n, this is because Tpi mi,gi <
Tpi g gi by Lemma 7.14 (3), and Tpi g j: looks extendible on account of
(D%, DLY,,,HY, JO, H!, J}) being an Lg-condition. On the other hand, if m > n,
it follows by Lemma 7.14 (2) that Tp: gi ji € Tpi mi g, and that these trees
agree on all strings of length at most max D?. Since Tpi g i looks extendible,
it in particular contains a string of length max D!, and so Tpi gi gi does too.

We conclude, using Lemma 7.14 (4), that T,, is an infinite subtree of T% 4.
Now, by Lemma 7.14 (3), To 2 T} 2 ---, and by compactness of Cantor space
we know that (,,[Tm] # 0. Let Lg be any element of this intersection. Now
Lg € Tf(@c, soLg>X®G.

Since L [ max D!, € T, for all m, Lemma 7.14 (2) implies that L | max D! €
Tpi mi i - Fix e, and fix m such that p,, forces ®Ls is not a non-hyperimmunity
witness for S, or ®L¢ is finite, on the i side. In the former case, it follows by
Lemma 7.19 (3) that there exist 1 > zo such that ®L¢(zg) | = ®L¢(2y)] =1
and [zg,z1) C S. In the latter case, it follows by Lemma 7.19 (4) that for any k

such that (e, k) € H!,, there are no x; > x¢ > k such that plLo Tmax D () =

CDeLG Fmasx D, (z1)J = 1. Since, by Lemma 7.18, forcing is preserved under extension,

we can take m arbitrarily large with this property, which means there are no x; >
xo > k such that ®L¢(z0)| = ®L¢(2;)] = 1. Thus, either ®L¢ is not a non-
hyperimmunity witness for S or ®¢ is not the characteristic function of an infinite
set. Since e was arbitrary, this implies that S is Lg-hyperimmune.

H?

m)

Construction of Pg. By an analogous argument to that in the preceding paragraph,
but using Lemma 7.19 (1) and (2), we conclude that e € Ly, if and only if there
is an m such that p,, forces e € L{ on the i side. By construction, lim,, b%, = oco.
Thus, using the notation of Section 7.2.3, we see that J,, F;m,b? =L

Recall that, for all m, the tree Tpi 1 ¢ looks extendible (i.e., contains
o b, 7V
a string of length maxFIfmb%) on account of (py,,b%,,bL VO V19) being a Pg-

condition. We can then argue as in the construction of 7}, above that Tz Vi g

pn,b%7 m?

looks extendible for all m and n. Thus, again just like before, S,,, =, Tri  vi g

pn, bl ™

is an infinite subtree of | J,, Tri = T)Q(EBL’G' We have Sp O S D -+, and we let

Pn,bl,

Pg be any element of (,,[Si]. Then Pg > X @& L, and so Pg > L, (in fact,
these are equivalent facts since Lg >1 X).

For every m, we have Pg | max F;m i € Sm and hence, by Lemma 7.14 (2),

P [maxF; yi €Tpi yig. Fix e The condition (p,,,b5 ,b} V.2 V) de-

m Uy meb;’—n,7 m) L s s s s

fined at stage s = 8e+6+1 either forces ®1% is not a non-hyperimmunity witness for
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S, or ®% is finite, on the i side. In the former case, it follows by Lemma 7.29 (1) that
there exist 1 > z¢ such that ®¢(z¢) ] = ®F¢ (1) ] = 1 and [z¢,z1) C S. In the
latter case, it follows by Lemma 7.29 (2) that for any k such that (e, k) € H}, , there

Pg | max F;n b Pg | max F;n i
are no x; > xo > k such that ®. e (xg) 4 = De e (xg) =1

By Lemma 7.28, this fact remains forced by all conditions with indices m > ng, and
(e,k) € H!, for this same k. So there are no z; > x¢ > k such that &< (zg) | =
®Fe(z1)| = 1. We conclude that either ®¢ is not a non-hyperimmunity wit-
ness for S or ®¥¢ is not the characteristic function of an infinite set. Since e was
arbitrary, this means S is Pg-hyperimmune. The proof is complete. O

7.3. Proving Lemma 7.4. The proof of Lemma 7.4 is very similar to that of
Lemma 7.3, with only some modifications to the forcing notions. Essentially, instead
of needing to work with two “sides” as we did before, we can now work just with one.
This makes the overall argument simpler, although the underlying combinatorics
remain the same. We therefore outline only the changes below, and omit most of
the details.

Throughout, fix X, S, L, P, and R <t X as in the statement of Lemma 7.4.
(We could assume, if we wished, that there is no infinite R-cohesive set U such that
L > X ®U, since then we could simply take G = U, Lg = L, and P = P. But we
do not need to make this assumption.) We begin with the modified G-conditions.

Definition 7.32 (Modified G-conditions). A G-condition is a tuple (D,Y") such
that D is a finite set, Y is an infinite set with maxD < minY,and L > X @Y.

Extensions and finite extensions can be defined for the above modification in the
obvious way. It is then straightforward to adapt the statements of Lemmas 7.7
and 7.8 to this setting. (For Lemma 7.8, we still look at classes of 2-partitions of
Y, so the only change is still only in terms of what conditions we are looking at.)
With these in hand, we obtain analogues of constructible extensions and indices.

We modify Definition 7.10 by no longer specifying the 0 side or 1 side, and add
to it, as follows.

Definition 7.33. Let (D,Y) be a condition, and fix e € w.
(1) (D,Y) forces |G| > e if |D| > e.
(2) (D,Y) forces G C* R, if Y C R..
(3) (D,Y) forces G C* R. if Y C R,.

Analogues of Lemmas 7.11 and 7.12 go through as before. (For the latter, we do
not need any additional hypotheses on R—cohesive, as we did before.) We also have
the following lemmas. The first of these is clear.

Lemma 7.34. Let (D,Y) be a condition that, for some e € w, forces G C* R, or
G C* Re. If U is any set satisfying D CU C DUY then U C* R, or U C* R,,
respectively.

Lemma 7.35. Let (D,Y") be a condition and fixe € w. Then there is a constructible
extension (E,Z) of (D,Y) that forces G C* R, or G C* R..

Proof. Let C be the class of all 2-partitions (Yp,Y7) of Y such that Yy C R, and
Y7 € R.. Then C is a IIY(X @ Y) class, and it is nonempty since, in fact, C =
{{Y " R.,Y N R.)}. We can thus apply the modified version of Lemma 7.8 to
obtain the desired extension. ]
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We move on to the modified Lg-conditions.

Definition 7.36 (Modified Lg-conditions). An L¢g-condition is a tuple (D, Y, H, J)
such that (D,Y’) is a G-condition, and H and J are finite subsets of w such that
Tpur,H,s looks extendible for every finite set F* C Y.

The definition of extensions and constructible extensions of Lg-conditions are again
clear. The analogue of Lemma 7.16 in this setting is straightforward.

Definition 7.37. Let p = (D, Y, H,J) be a condition, and fix e € w.

(1) p forces e € Lg if Tp g, 50y does not look extendible.

(2) p forcese ¢ Lg if e € J'.

(3) p forces ®Le is not a non-hyperimmunity witness for S if for some k € w
and every o € Tp p,; of maximal length there exist 1 > ¢ > k such that
®9(x9) L = ®9(x1) | =1 and [z, z1) C S.

(4) p forces ®Le is finite if (e, k) € H for some k € w.

We can now formulate and prove analogues of Lemmas 7.18 and 7.19 as before. In
place of Lemmas 7.20 to 7.23, we have only the following two.

Lemma 7.38. Let (D,Y,H,J) be a condition, and fir e € w. There exists a
constructible extension of (D,Y, H,J) forcing e € Ly or e ¢ Lg.

Lemma 7.39. Let (D,Y,H,J) be a condition, and fix e € w. There exists a con-
structible extension of (D,Y, H,J) forcing ®L¢ is not a non-hyperimmunity witness
for S or ®Ls is finite.

To prove the former, we replace the class C by the class of all 2-partitions (Yp, Y1)
of Y such that

(Vi < 2)(VF CY; finite)[Tpur, a,7ufe} looks extendible],

and to prove the latter we replace, for each k, the class C; by the class of all
2-partitions (Yp, Y1) of Y such that

(Vi < 2)(VF CY; finite) [Tpur, HU{(e,k)},s l00ks extendible].

The rest of the proofs are then exactly as before, mutatis mutandis.
Finally, we define the modified Pg-preconditions and Pg-conditions.

Definition 7.40 (Modified Pg-preconditions). A Pg-precondition is a pair (p,b)
such that p is an Lg condition, b € w, and each e < b, p either forces e € L; or

e ¢ L.

Extensions and and constructible extensions are then defined, and for each precon-
dition (p,b) we let Fj,, = {e < b:p forces e € Lg}.

Definition 7.41 (Modified Pg-conditions). A Pg-condition is a tuple (p, b, V') such
that (p,b) is a Pg-precondition and V' is a finite set for which there is no sequence
of preconditions

(p3 b) = (pOabO)a CERE) (pnvbn)

such that (p,+1,bm+t1) is a constructible extension of (py,, b,,) as preconditions for
allm <nand Tf, , vy does not look extendible.

The analogue of Lemma 7.26 is straightforward.
We modify Definition 7.27 as follows.
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Definition 7.42. Let (p,b, V) be a condition, and e € w.

(1) (p,b,V) forces ®L% is not a non-hyperimmunity witness for S if for some
k € w and every o € TF, , v of maximal length there exist x1 > x¢g > k
such that ®7(zg) | = ®(z1)) =1 and [zg,z1) C S.

(2) (p,b,V) forces ®% is finite if (e, k) € V for some k € w.

Lemmas 7.28 to 7.30 can now be appropriately modified for the modified definitions
above, and can be proved entirely similarly.

We can now combine all of the modified definitions and lemmas to build a se-
quence

(po, bo, Vo), (p1,b1, V1), ...

of Pg-conditions, each a constructible extension of the previous one. Write p,, =
(D Yo, Hiny ). At stage s + 1, we break into cases based on the congruence
class of s modulo 5, instead of 8. (We have half as many cases, since we are only
working on one “side”, but one additional case from needing to force cohesiveness.)

o If s = 5e, welet ng11 = ns+1, and ensure that (D, 41, Yy,4+1) forces |G| > e.

o If s = 5e+ 1, we let ns41 = ns + 1, and ensure that (D, 41, Yn+1) forces
GC* R.orGC* R,..

o If s = 5e+2, we let ngy1 = ns + 1, and ensure that p,_ ., forces e € Lg or
e¢ Lg.

o If s =5e+ 3, we let ng41 = ng + 1, and ensure that p,
a non-hyperimmunity witness for S or ®Z¢ is finite.

o If s = be + 4, we apply the modified version of Lemma 7.30 to obtain
ns41 and the finite sequence (pn,41,bn,4+1, Vai+1)s -5 (Prosrs bnasrs Viess)
whose last member forces forces ®% is not a non-hyperimmunity witness
for S or ®% is finite.

Note that we have no need for any analogue of Lemma 7.31. The construction of
G, Lg, and Pg can proceed much as it did before.

.. forces @L< is not

8. SUMMARY AND QUESTIONS

We summarize our main reverse mathematical results, and how they fit into the
literature, in Figure 1. Our investigation leaves several questions unanswered, and
raises some new ones. The first of these concerns the one case of the Ginsburg—
Sands theorem for Hausdorff spaces we were not able to fully characterize.

Question 8.1. What is the strength of the statement that every infinite effectively
Hausdorff CSC space has an infinite effectively discrete subspace?

By Corollary 5.5, the statement is not provable in RCAy. But it seems difficult
to push this up. The methods we employed in Proposition 3.10, for example, to
code the jump into the effectively discrete subspaces of a discrete space X seem
incompatible with also making X effectively Hausdorff.

Questions remain about the precise location of GST; within the interval of prin-
ciples strictly in-between ACA( and RT%. In particular, we have the following.

Question 8.2. Does GST; imply MTT%‘.7 Does it imply TT%? Do either of MTT%
or TT3 imply GST,?

With regard to Corollary 6.15, which employed a modification of the second
jump control proof from [2] to show that GST; admits lows solutions, we can ask



44 BENHAM, DELAPO, DZHAFAROV, SOLOMON, AND VILLANO

ACAq GS wGS

ﬂ

MTT3

|

TT2 SGST; + COH <> GST; <— GS°!

WKLy SRT3 + COH <= RT3 SGST; <> %9-Subset

wGS? <= CAC

ADS SRT2 <> AY-Subset

RCAy.

FIGURE 1. The state of affairs in the reverse mathematics zoo
surrounding Ramsey’s theorem for pairs. Arrows indicate implica-
tions over RCAq; double arrows are strict; interrupted arrows are
non-implications.

whether the same result can also be obtained by first jump control. More precisely,
in [2, Section 4] this method was employed to show that, given any P > ()’ and any
computable ¢ : [w]? — 2, there exists an infinite homogeneous set H for ¢ satisfying
H' <t P.

Question 8.3. Given P > )/ and an infinite computable 77 CSC space (X,U, k),
does X have an infinite subspace Y which is either discrete or has the cofinite
topology, and which satisfies Y’ <t P?

We conjecture the answer is no, a proof of which would yield another separation of
GST; from RT%. The problem is in how P could be used to produce a solution to
an arbitrary computable instance of ¥9-Subset. In the case of the proof for RT%, it
is crucial that P be able to find, for a given AY set A, arbitrarily large elements of
both A and A. This is impossible if A is merely 9.

The second jump control proof in [2] was also used to establish a number of con-
servativity results, perhaps most notably that RCAg + 139 + RT% is ITi-conservative
over RCAg +1%9 (2], Theorem 10.2). This had broadly the same outline as the lows
proof, but differed in one important respect. Recall that this proof only required A
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|

AY  -Subset

|

$9-Subset

l

AY-Subset

|
|

¥9-Subset

l

AY-Subset

l

SGST; =<—— %9-Subset

l

D3 < AJ-Subset

l

AY-Subset <—— 39-Subset <— RCA,

FIGURE 2. The hierarchy of subset principles, with n > 4 arbi-
trary. Arrows indicate implications over RCAg; double arrows are
strict; interrupted arrows are non-implications.

to be AJ (actually, %9) when building a subset of A; it worked equally well for A}
(and hence in particular, I19) sets when building a subset of A. This is what made
it possible for us to adapt the proof and obtain Theorem 6.14. The conservativity
proof, by contrast, requires A to be AJ for both parts, and thus does not similarly
lift to X9 sets.

Question 8.4. Is RCA( + 139 + 3-Subset I1{-conservative over RCAg + %97

The standard way to produce an affirmative answer would be to show that every
model of RCAq + 139 is an w-submodel of RCAg + 129 + £9-Subset. If this could be
proved, then it could be combined with the corresponding result for COH to show
that RCAg + 159 + GST; is [I}-conservative over RCAg + IX9 as well.

Along the same lines, we can ask the following.

Question 8.5. Does %9-Subset or GST; imply I%9 over RCAy?
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It was shown by Chong, Slaman, and Yang [6, Corollary 4.2] that RT% does not
imply I129.

We can also ask whether the decomposition of GST; into SGST; + COH is strict,
which harkens back to the famous SRT3 vs. COH problem.

Question 8.6. Does X9-Subset (or equivalently, SGST;) imply GST;? Equiva-
lently, does %9-Subset imply COH?

In their aformentioned paper [36], Monin and Patey construct an w-model satisfying
D3 but not COH by establishing that D% admits jump PA avoidance. This means
that for every set X such that X’ % (', every Ag’X set A has an infinite subset Y in
it or its complement such that (X @Y)" % ()'. They leave open whether a “strong”
version of this property holds, i.e., whether the same is true of every A (not just
those that are AY in X). An affirmative answer would, in particular, imply that
the answer to Question 8.6 is no.

Finally, we can ask some more general questions about the I'-Subset principles.
By Theorem 7.1, A9-Subset does not imply X3-Subset, but our proof does not
relativize to show that A2-Subset does not imply %9-Subset for any higher n.

Question 8.7. Is there an n > 3 such that A%-Subset implies %0-Subset?

It is also true that 23-Subset does not imply AJ-Subset. Indeed, by relativizing the
main result of Downey, Hirschfeldt, Lempp, and Solomon [12] it follows that for
all n > 2 there is a A2 set with no infinite subset in it or its complement that is
low over ()("=2) (see also the discussion in [12, p. 1372]). Taking n = 3 implies, in
particular, that there is a A set with no infinite lows subset in it or its complement.
Hence, A3-Subset fails in the model of GST; (and also ¥9-Subset) constructed in
Corollary 6.16 above. Again, we do not know if this holds more generally.

Question 8.8. Is there an n > 3 such that X)-Subset implies AY ,;-Subset?

Monin and Patey [37, Theorem 1.4] have shown that for every n > 2, every A? set
has an infinite low,, subset in it or its complement. Combined with the aforemen-
tioned result from [12], this implies that A-Subset does not imply A ,-Subset for
all n > 2. Thus, we at least know that Question 8.7 and Question 8.8 cannot both
be answered affirmatively for the same n. The hierarchy of I'-Subset principles is
summarized in Figure 2.

We end with a somewhat open ended question.

Question 8.9. Are there other natural principles from topology or combinatorics
or other areas that can be characterized in terms of the I'-Subset principles? Is
there such a principle equivalent to $2-Subset + COH for some n > 37?
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