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SUMMARY
Dynamical systems are ubiquitous in scientific applications and these are often governed by param-
etrized equations that are deterministic differential equations and/or stochastic processes. We de-
veloped parameter estimation techniques based on deep learning, where we train (artificial) neural
networks to estimate parameters of such systems. Advantages of our approach are fast parameter
predictions, which, as a consequence, accelerate applications with real-time and frequent estimation
demands. Furthermore, the method does not require a data misfit or likelihood term to be prescribed
in the definition of the inverse problem. In this presentation, we summarize how neural networks
are learning inverse maps, and we investigate the effects of different representations of data from a
dynamical system’s output on the estimation accuracy of the system’s parameters, where the data is
used to train a neural network.
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1 INTRODUCTION

Generally, we address the scientific problem of computationally learning neural network-based in-
verse maps for parameter estimation in scientific models. We consider inverse problems that aim to
estimate parameters from given observational data. The parameters give rise to the data through the
solution of a parametrized physical or statistical model. Such inverse problems have in the past been
solved deterministically with techniques from optimization as well as in a statistical/Bayesian frame-
work using sampling-based methods. These approaches exhibit computational challenges prohibiting
their effective use for certain scientific applications. We propose to computationally learn solution op-
erators for inverse problems based on (artificial) neural networks (NNs), which we introduced in [1].

Our goal is to construct artificial NNs to solve inverse problems, where we seek to estimate parameters
of a deterministic dynamical system, which is introduced below. We train NNs to approximate an
inverse map (IM) that estimates parameters of a dynamical system from observational data, where the
observational data are governed by the solutions of the dynamical system. While dynamical systems
arise frequently in many applications, we focus on dynamics of biological neurons.

We consider the FitzHugh–Nagumo [2, 3] system of ordinary differential equation (ODE). This ODE
system describes spiking neurons via a two equations,
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where the unknowns of the ODE are the membrane potential u = u(t) and the recovery variable
v = v(t). ⇣ = �0.4 denotes the total membrane current and is a stimulus applied to the neuron,
which we assume to be constant in time. � = 3.0 determines the strength of damping and is assumed
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Figure 1: Left: Spike rate of the membrane potential u(t) stemming from solutions of (1) for varying parameters
✓0 and ✓1 (on horizontal and vertical axes, resp.). Right: Average duration of spikes of the membrane potential
(i.e., duration of the potential above a threshold). The triangular region on the top right in both plots (white
color in left, magenta color in right plot) has only a single spike and u(t) stays flat above the spike threshold of
1.5. The triangular region on the top left (white color in both plots), on the other hand, has zero spikes.
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Figure 2: Demonstrating the challenges of parameter estimation: We show samples of the posterior of one
inverse problem, associated with one true ✓⇤. The posterior was obtained by 100,000 samples of a Markov-
chain Monte Carlo method, which is relatively computationally costly for a single inference. The prior mean is
indicated with a red cross. Left: Posterior distribution with time series data. Right: Posterior distribution with
spike feature data (rate and duration).

to be known and constant. ✓0 and ✓1 are the model parameters that we consider for inference, because
they govern two important characteristics of the oscillating solution of the ODE (1), namely spike
rate and spike duration (see Fig. 1). ODE (1) is augmented with initial conditions, in our case u(0) =
v(0) = 0.

In [1], we addressed significant computational challenges, which certain time-evolving models pose
in an inference setting. For the inverse problem, where we are given observational data d(t) :=
u✓⇤(t) + ⌘(t), composed of u✓⇤(t), which is the first component (1a) of the solution of ODE (1)
with unknown true parameters ✓⇤ := (✓⇤0, ✓

⇤
1), and added correlated noise ⌘(t). Our goal is to find

parameters ✓ := (✓0, ✓1) that are consistent with data d(t) and model output u✓(t) for all t. In
a Bayesian framework, the inverse problem translates to finding the posterior probability density
⇡(✓ |d) of the parameters ✓ given data d, where d is a discretization of d(t). The posterior is, via
Bayes’ rule, composed of a likelihood term ⇡(d |✓) and a prior term ⇡(✓). We write the negative log
of the posterior as

� log
⇣
⇡(d |✓)⇡(✓)

⌘
=

����
d(t)� u✓(t)

�noise

����
2

L2

+ 1
2

��✓ � ✓̄prior
��2
⌃�1

prior
, (2)

where �noise denotes the standard deviation of the data noise, which is related to ⌘ in d(t); ✓̄prior :=
(✓̄0,prior, ✓̄1,prior) is the prior mean, and ⌃prior := diag(�0,prior,�1,prior) is the prior standard deviation.
We overcome the highly nonlinear and nonconvex (negative log of the) posterior (2), shown in Fig. 2,
left, of an inverse problem with a ODE (1) as the model, and successfully address the challenge that
prior information about parameters is very limited. Additionally, we recover parameters from an au-
tocorrelated statistical noise model that is polluting the ODE’s outputs (which is not further discussed
in this presentation). These challenges can cause traditional optimization to fail and alternative algo-
rithms to exhibit large computational costs. Our results demonstrate that NNs have the potential to
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estimate parameters in dynamical models and stochastic processes, and they are capable of predicting
parameters accurately. Furthermore, trained NNs can compute estimations instantly, thus enabling
real-time inference applications.

2 METHODOLOGY

Neural network model architecture The NN architecture resembles models used for image classi-
fication [4]. The architecture is shown in Fig. 3, where the first sequence of nconv hidden layer groups
contain a convolutional, an activation and a pooling layer; it is followed by a sequence of nlin hidden
layer groups with a linear (fully connected) and an activation layer. Reshaping takes place in between
the two groups to transform outputs of convolutional layers to the inputs required for linear layers.
The input data (i.e., features) is time series data or spike feature data, and the outputs (i.e., targets)
are parameters ✓ of the ODE (1). More details about the NN model architecture can be found in [1].

Data representation We consider the following input data to the NN: either (i) time series data
(1000 time steps) or (ii) spike feature data (spike rate and duration). As a result one training sample
for the NN has input sizes: either (i) x 2 R1000 for time series data or (ii) x 2 R2 for spike feature
data. While the data size for spike features is significantly less than the time series, it still captures
sensitivities with respect to the parameters ✓ that we aim to infer, which is demonstrated in Fig. 1.
The output of the NN for both input cases is of size: y = ✓ 2 R2. The number of training samples is
2,000 and the number of testing samples is also 2,000.

3 RESULTS AND CONCLUSIONS

We study the capabilities of NNs to predict parameters ✓ of the ODE (1), where we contrast different
data representations (time series vs. spike features) detailed in Sec. 2. The error in the predicted
parameters from a trained NN is shown in Figs. 4 and 5, where the diagonal line represents the
ideal (error-free) prediction. In both figures, the respective NN’s architectures have been optimized
to best handle the inverse map for the given input data type. We see an overall higher accuracy in
predictions when the entire time series is used (Fig. 4) compared with spike features (Fig. 5), which
were extracted from the time series. The trend of better predictions is not surprising and tells that with
sufficient network optimization, a NN is able to reveal additional features that our spike features were
not able to capture. However, the NN required to handle time series is significantly more complex
and the data sets are larger (here by a factor of 500 larger). This demonstrates the tradeoffs one has
to make regarding storage requirements, network complexity, and accuracy of predictions.

While in this abstract only two representations of data were presented, we will investigate other
representations, such as, Fourier transformations of time series data and summary representations
that are obtained through nonsupervised machine learning methods applied to the time series.
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Figure 3: NNmodel architecture with a sequence of nconv layer groups containing a convolutional, an activation
and a pooling layer followed by a sequence of nlin layer groups with a linear (fully connected) and an activation
layer. Layers with trainable parameters are shown in dark red. The input is time series data or spike features
data and the outputs are parameters of an ODE and a statistical process for noise.
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Figure 4: True vs. NN-predicted values of parameters ✓0 (left) and ✓1 (right). The time series data was used
as the NN’s input for training and evaluation. Shown are predictions of testing samples, not presented to NN
during the training. The NN’s architecture is based on Fig. 3 using nconv = 3 with 8, 16, 32 number of
convolution channels, nlin = 2 with 32 linear units. It was selected as optimal for this data after an architecture
search.
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Figure 5: True vs. NN-predicted values of parameters ✓0 (left) and ✓1 (right). The spike feature data was used
as the NN’s input for training and evaluation. Shown are predictions of testing samples, not presented to NN
during the training. The NN’s architecture is based on Fig. 3 using nconv = 0, nlin = 8 with 16 linear units. It
was selected as optimal for this data after an architecture search.
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