
A�acks on Encrypted Response-Hiding Range Search Schemes in
Multiple Dimensions

Evangelia Anna
Markatou∗

Brown University
markatou@brown.edu

Francesca Falzon∗
Brown University

University of Chicago
francesca_falzon@brown.edu

Zachary Espiritu
Brown University
zesp@brown.edu

Roberto Tamassia
Brown University

roberto@tamassia.net

ABSTRACT
In this work, we present the �rst database reconstruction attacks
against response-hiding private range search schemes on encrypted
databases of arbitrary dimensions. Falzon et al. (VLDB 2022) present
a number of range-supporting schemes on arbitrary dimensions
exhibiting di�erent security and e�ciency trade-o�s. Additionally,
they characterize a form of leakage, structure pattern leakage, also
present in many one-dimensional schemes e.g., Demertzis et al.
(SIGMOD 2016) and Faber et al. (ESORICS 2015). We present the
�rst systematic study of this leakage and attack a broad collection
of schemes, including schemes that allow the responses to contain
false-positives (often considered the gold standard in security). We
characterize the information theoretic limitations of a passive per-
sistent adversary. Our work shows that for range queries, structure
pattern leakage can be as vulnerable to attacks as access pattern
leakage. We give a comprehensive evaluation of our attacks with a
complexity analysis, a prototype implementation, and an experi-
mental assessment on real-world datasets.

KEYWORDS
leakage-abuse attacks, encrypted databases

1 INTRODUCTION
An encrypted database (EDB) allows a client to outsource sensitive
data to an untrusted cloud server and then privately query this data.
In the last decade, we have seen an increased demand for EDBs that
support expressive queries. For example, MongoDB’s “Queryable
Encryption” enables clients to execute expressive queries over en-
crypted data [9].With the deployment of EDBs in thewild, it is more
important than ever to understand the security of such schemes. In
this work, we study classes of schemes that support private range
queries over multi-attribute (multi-dimensional) data. Concretely, a
range query over two attributes takes the form of:

SELECT * FROM T WHERE (years BETWEEN 2010 AND 2020)
AND (avg_temp BETWEEN 15 AND 18)

where) is a table and years and avg_temp are attributes. Range
queries are fundamental and support for such query expressive-
ness is a requisite for practical EDBs. It is thus important that we
understand the security provided by such EDBs e.g. [26].

∗Both authors contributed equally to this research.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(4), 204–223
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0106

Figure 1: Reconstruction by our at-
tack on the range tree scheme with
uniform range cover (Section 4) for
the C��� dataset over a domain with
1024 ⇥ 1024 points. The bar heights
represent the number of records at
each domain point. The attack suc-
ceeds in 68s.

One common way to construct EDBs that support range queries
is to use searchable symmetric encryption (SSE) (e.g. [11, 31, 46]) to
build an encrypted index that maps ranges to corresponding records.
A number of such schemes have been proposed for both one at-
tribute data (e.g. [19, 24, 41, 68]) and multi-attribute data [26]. These
schemes are e�cient in practice which make them a primary can-
didate for real-world applications. This e�ciency, however, comes
at the cost of “leaking” a small amount of well-de�ned information
about the underlying database or queries.

Leakage typically occurring in SSE schemes includes one or more
of the following: search pattern (whether two queries are the same);
volume pattern (the number of records in the query response); and
access pattern (which individually and deterministically encrypted
records are returned with each query). Though this leakage may
seem benign, a number of database reconstruction attacks leverag-
ing the leakage of range queries in one [36, 37, 39, 47, 50–52] and
two [25, 54] dimensions have been described. Existing attacks in
2D are more theoretical and do not attack existing constructions.
Our work goes beyond 2D and is the �rst to attack concrete range
schemes. Falzon et al. [26] note that “structure pattern leakage is in-
herent in schemes derived from standard multidimensional search
data structures," however the full extent to which this leakage can
be exploited is not explored. We initiate the �rst cryptanalysis of
structure pattern, present new techniques for exploiting the leakage
and answer the following open question in the a�rmative:

Can a passive persistent adversary attack existing mul-
tidimensional range schemes even in the absence of
access pattern leakage?

Our attacks work against non-interactive schemes presented in
multiple works i.e., [19, 20, 24, 26]. These works use SSE and take
a similar approach to scheme design which can be summarized as
follows: Each scheme is associated with an underlying range data
structure that can be represented as a graph; each node of the graph
is associated with a range over the domain. The client then de�nes
an index that maps each node’s range to the set of matching records,
and encrypts this map using the underlying SSE scheme. To issue
a query, the client computes the set of nodes that cover the range,

204

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0106

A�acks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

Attack Assumptions Leakage Attack Rec. Space

Dim Query Data Scheme AP VP EP SP # Queries
for FDR Runtime Space Size

Kellaris et al. [47] 1 Uniform Quadratic [19] X <4 log< 2
Lacharité et al. [52] 1 Dense Quadratic [19] X < log< < log<(< + =) 2
Grubbs et al. [36] 1 Uniform Quadratic [19] X <4 log< 2

Markatou et al. [55] 1 Quadratic [19] X <2 log< 2
Kornaropoulos et al. [50] 1 Quadratic [19] X X – 2

Kellaris et al. [47] 1 Uniform Quadratic [19] X <4 log< 2
Grubbs et al. [37] 1 Quadratic [19] X <2 log< 2
Gui et al. [39] 1 Unknown Dense Quadratic [19] X –

Kornaropoulos et al. [51] 1 Regular [19, 24, 51] X X X –
Falzon et al. [25] 2 Quadratic [25] X X <2 log< <(=<2 + = log=) 2=

Markatou et al. [54] 2 Quadratic [25] X X <2 log< 2=

Linear Attack 3 Naive [19], Linear [26] X X X <2� 1
3 log2< <5 <3 23 (3!)

Token Pair Attack 3 Range-Universal [24], Log-URC [19], Range-URC [26] X X X <2 log< <2 log3< <2 log3< 23 (3!)
3 Quad-BRC [26] X X X <2 log< <2+3�1

3 <2+3�1
3 23 (3!)

Range-BRC Attack 3 Range [19], Range-BRC [26] X X X <2 log< <4 <2 23 (3!)

SRC Attack 3 TDAG [19], QDAG-SRC [26] X X X <4 log< – ⌦(3<) � 22
3�1 (3!)

3 Quadratic [19, 25] X X X <4 log< – ⌦(3<2) � 2=

Table 1: Comparison of our work with selected prior attacks on schemes for encrypted range search. AP, VP, EP, and SP refer to access pattern,
volume pattern, equality pattern (also known as search pattern), and structure pattern, respectively. The time and space complexity of an
attack are shown when reported by the authors. We note that previous works have typically focused on query complexity (number of queries
sampled under a uniform query distribution needed to achieve full database reconstruction), often omitting the analysis of time and space
complexity. Reconstruction space sizes are asymptotic lower bounds achieved in the worst case.< refers to the domain size, = is the number of
records and 3 is the number of dimensions. We omit big-$ notation.

generates a search token for each node, and sends these tokens to
the server for look up.

Our attacks demonstrate insecurities of these schemes and high-
light the importance of implementing additional mitigation tech-
niques [35] when using SSE-based schemes. We show that volume
and search pattern—when combinedwith the structural information
of the underlying range search data structure—can be as detrimental
to security as access and search pattern.

Our �rst attack works against the linear scheme, which boasts
the smallest storage overhead. Our second attack works against a
class of schemes that includes the quad-tree and a variation of the
range-tree previously designed to reduce leakage. Our third attack
works against another variation of the range-tree data structure.
Our fourth attack works against a wide class of range schemes that
achieve e�ciency by allowing for false positives in responses and
are regarded as the most secure [19]. We evaluate our attacks using
real-world datasets.

1.1 Related Work
S������.We consider range search schemes that are built on search-
able encryption primitives, which relax the security (compared to
strong primitives like ORAM [33] and fully homomorphic encryp-
tion [29]) by leaking some well-de�ned information and achieve
practical runtimes (see, e.g., [7, 8, 11–14, 16–18, 21, 30, 31, 44–
46, 57, 59, 64]).

Demetrzis et al. [19, 20] present searchable encryption schemes
for 1D databases. They present multiple schemes that trade-o�
security and e�ciency. Faber et al. [24] also present range search

schemes that support 1D range queries. Wang and Chow [67] sup-
port forward and backward secure range search for 1D databases.
Falzon et al. [26] present the �rst range search schemes in multiple
dimensions, and o�er a variety of security and e�ciency trade-
o�s. Range search can also be achieved using other primitives. For
example, Shi et al.’s MRQED [63] scheme and Maple [66] support
range queries on databases of arbitrary dimensions using public key
cryptography and leak at least the access pattern. Order-revealing
encryption [1, 5] also supports range queries, however it leaks a
lot more information [3, 22, 38]. In addition to range-reporting
schemes, schemes have been presented on other types of queries,
like aggregate range queries (e.g., Espiritu et al. [23]) and shortest
path queries on graphs (e.g., Ghosh et al. [32]).
A������. Leakage analysis of SSE schemes has been studied in
a passive adversarial setting e.g. [4, 10, 42, 58, 61]. Kellaris et al.
[47] showed the �rst attack that leverages access and volume pat-
tern leakage from 1D range queries to achieve full database recon-
struction. Lacharité et al. [52] improved upon this work achieving
e�cient database reconstruction attacks for dense 1D databases.
Grubbs et al. [36] follow up with an optimal approximate database
reconstruction attack for any 1D database. The above works assume
knowledge of the query distribution. Kornaropoulos et al. [50] and
Markatou and Tamassia [55] show one-dimensional database recon-
struction attacks that utilize search pattern leakage while assuming
no knowledge of the query distribution.

Volume pattern leakage has also been shown to be exploitable
in 1D databases [37, 51]. Recent attention has been devoted to
exploiting volume and search pattern e.g. [4, 58]. Kamara et al.[43]
present a framework for evaluating leakage attacks. Kornaropoulos

205

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

et al. [48] quantify the privacy of searchable encryption schemes
using leakage inversion techniques. Two attacks most related to our
Linear attack are the generic 2D database reconstruction attacks
in [25, 54]. Unlike these works, our attacks are on concrete range
schemes and work on databases of two and higher dimensions.

The closest prior attack to our SRC attack is by Kornaropou-
los, Papamanthou, and Tamassia [51], who attack a class of 1D
response hiding schemes, called regular schemes, including [20, 24].
Demertzis et al. [20] note their schemes are susceptible to attacks
but do not give a full description or analysis. Demertzis et al. [18]
propose a potential attack on the Logarithmic-SRC scheme [20] but
also do not give a full description or analysis.

In addition to range-reporting schemes, prior attacks have tar-
geted other types of rich queries, like the attack by Kornaropoulos
et al. [49] against :-nearest neighbor queries and the attack by
Falzon and Paterson [27] against shortest path queries.

1.2 Contributions
Our contributions are summarized as follows:

• We present the �rst a�acks against the response-hiding non-
interactive 1D range search schemes in [19, 24] and the response-
hiding non-interactive multi-dimensional range search schemes
in [26]. Previous attacks were limited to schemes supporting 1D
or 2D queries.

• We leverage structure pa�ern to carry out database reconstruc-
tion in arbitrary dimensions. Our work shows that structure
pattern can be as exploitable as access pattern. (Sections 3–6)

• We introduce new techniques for reconstruction attacks. We
develop a number theoretic approach to reduce the number
of observed responses needed to attack the linear scheme. We
describe methods that exploit graphs built from search and
structure patterns. We further present a framework based on
integer linear programming to attack a broad class of SRC
schemes, considered the gold standard. (Sections 3–6)

• We describe the information theoretic limitations of a passive-
persistent adversary.

• We implement our attacks and experimentally evaluate them
on real-world datasets. (Section 7)

In Section 8, we describe the techniqueswe develop inmore detail
and explain how they can be extended to new schemes. Table 1
compares our attacks with related work. Our work demonstrates
pitfalls of basing private range search schemes on range-search
data structures and informs future research on expressive queries.

2 PRELIMINARIES
Given integers 0,1 with 0  1, let [0] = {1, 2, . . . ,0} and let [0,1] =
{0,0 + 1, . . . ,1}. Let <1, . . . ,<3 be positive integers and 3 � 1.
A 3-a�ribute database, or a 3-dimensional database, ⇡ is an
injective mapping from a domain D = [<1] ⇥ · · · ⇥ [<3] to a
set of = records of $ (1) size. We denote the set of records with
domain value G = (G1, . . . , G3) 2 D as ⇡ [G]. A 3-dimensional
range query is a hyper-rectangle [01,11] ⇥ · · · ⇥ [03 ,13] where
[08 ,18] ✓ [1,<8] denotes the range in the 8-th dimension.

We say that points ? and ? 0 are neighbors if they share every
coordinate but one, and in the remaining coordinate, their values

di�er by one. We call a set of contiguous points of ⇡ that only di�er
in the same single coordinate a one-dimensional section.

We say that 0 and 1 are the extreme values of range [0,1]. We
de�ne the core of the database domain D as the set of points of D
that do not have an extreme value in any dimension. We de�ne the
boundary of a database as the set of points of D with at least one
extreme value in some dimension.

LetS be a set of range queries and let� and ⌫ be queries inS. We
say that � minimally contains ⌫ if � contains ⌫ and there is no
other query⇠ inS distinct from� and ⌫ such that� contains⇠ and
⇠ contains ⌫. We use double-brace notation to denote a multiset,
e.g. {{1,1,4,5,7}}.

2.1 Range Trees and Quadtrees
The schemes we attack build upon the range tree and region quad
tree data structures.
R���� T��� [2] A range tree is a data structure that holds points.
It allows for e�cient range queries, especially in two and higher
dimensions. In one dimension, a range tree is a binary tree. Each
node corresponds to a range: the left child of the node corresponds
to the �rst half of the range and the right child corresponds to the
second half of the range. The root node covers the domain, and the
leaf nodes each cover a single domain point.

For example, in Figure 3(a), we can see how the root node covers
range [1,16], and its children cover ranges [1,8] and [9,16]. In two
dimensions, the range tree is no longer a binary tree. Instead, there is
a main tree that orders the points according to their �rst dimension,
and each node of this main tree has a third child. This third child
leads to its own copy of a binary tree that orders the points in the
range of this node along the second dimension. The range tree is
de�ned recursively for higher dimensions, having a separate tree
that orders the points across each dimension. See Figure 2 for a 2D
example.
R�������� T��� [28]. A region quadtree on a 3-dimensional
square domain D comprises of a 23 -ary tree whose nodes are asso-
ciated with a subdomain. The root node is identi�ed with the whole
domainD; The tree recursively sub-divides the square domain into
quadrants (or orthants in dimensions greater than 2). Each internal
node has 23 children – each child corresponding to one of the 23
quadrants associated with its parent.
R���� C�����. There are numerous ways to query a range sup-
porting data structure like a range tree or a quad-tree. In this paper,
we consider three range covering techniques: Best Range Cover
(BRC), Uniform Range Cover (URC), and Single Range Cover
(SRC). BRC selects the smallest number of nodes that perfectly cov-
ers the range. With BRC, ranges of the same size may correspond
to a di�erent number of nodes. For example, in Figure 3, using BRC
to query range [1, 2] (nodes 0 and 1) returns a single node (01). In
contrast, querying [2, 3] (nodes 1 and 2) returns two nodes (1 and
2). This discrepancy led to the development of URC [19], which
ensures that ranges of the same size correspond to range covers of
the same size. The �nal range cover we consider is SRC. This range
cover returns a single node corresponding to the smallest range
containing the query; its response may result in false positives.

206

A�acks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

2.2 Formalizing Leakage
Structured encryption is parameterized by di�erent leakage func-
tions, which output information about the underlying data struc-
ture and its contents. We de�ne two common leakage functions of
Encrypted MultiMap (EMM) schemes relevant to this work [12].

• The search pa�ern (also known as equality pa�ern) reveals
when two queries are equal. Without loss of generality, we can
assume a 1-to-1 correspondence between range queries and
query identi�ers. Search pattern is a function EP that takes as
input a multimap MM and a label ✓ 2 L, and outputs an ID:
EP(MM, ✓) 7! 8 2 [|L|].

• The volume pa�ern of a label ✓ in amultimap reveals the number
of records associated with ✓ . Formally, the volume pattern is a
function Vol that takes as input a label in the label space ✓ and
outputs the number of records associated with the given label:
Vol(MM, ✓) 7! |MM[✓] |.
Throughout this paper, we assume that the underlying EMM

scheme is response-hiding, and leaks the multimap size at setup,
and search and volume pattern at query time. The constructions
considered use EMMs to support range queries over range search
data structures. The EMM is used to encrypt a multimap that maps
subqueries, also referred to as canonical ranges, to records associ-
ated with each subquery. The result is an additional form of leakage
called structure pattern that is a function of the data structure, the
range cover, and the leakage of the EMM scheme [19, 26].

• The structure pa�ern leakage reveals if two queries have a
common subquery. Let query @ be associated with : labels ✓8 2 L,
8 2 [1,:]. Then the structure pattern leakage is

SP(MM,@) = {(EP(MM, ✓8),Vol(MM, ✓8))}82 [:] .

2.3 Attack Input
The tokenset t of a query @ is the set of tokens associated with @.
For each token C sent by the client, the server returns the encrypted
set ⇠ (C) retrieved from an encrypted multimap, from which the
adversary determines the volume, E>;C , associated with token C . For
each scheme, we present a reconstruction attack that takes as input
a volume map, denoted with VM, that for each tokenset t, maps
VM[t] = Õ

C 2t E>;C , and for each token C 2 t, maps VM[C] = E>;C .
Our attack on the SRC schemes also takes as input a frequency

map FM, which associates each tokenset with the number of times
it has been observed. Maps VM and FM take linear time to build
on the size of the input and require less storage than the input,
since their sizes are independent of =. We assume the adversary has
knowledge of<, 3 , =, as well as of the range encrypted multimap
scheme employed. Our attacks take as input VM and (in the SRC
case) FM and return a grid comprising one node for each point
of in domain D, where each node is labeled with the number of
database records at the corresponding point.

We show that VM and FM are an equivalent representation of
the multiset of structure pattern. We assume that the queries are
issued independently; we do not exploit the order of the queries, for
example, by assuming that their order is correlated to their position.
It is thus su�cient to consider a multiset of the structure pattern.

Algorithm 1: LinearReconstruction(VM)
1: // Find tokensets that correspond to one-dimensional queries.
2: Let primeTokensets store the tokensets of unit and prime size in VM.
3: Let 1dSlices be an empty map, mapping tokens (which share the same

coordinates in all but one dimension) to a list of tokensets
4: // Group tokensets by one-dimensional section.
5: for t 2 primeTokensets do
6: Find all keys, , in 1dSlices that intersect in � 2 elements with t
7: Add t to and let+ be a list of the values of in 1dSlices + t
8: Delete all keys in from 1dSlices and add ! + to 1dSlices
9: // Order the elements of each one-dimensional section.
10: Create a PQ-tree for each key of 1dSlices with its values.
11: // Make a grid representing the domain value of each token.
12: Let⌧ be a graph with nodes all the observed search tokens.
13: for each PQ-Tree) do
14: Pick a frontier (a possible ordering of the search tokens) of) .
15: Add an edge to⌧ for every pair of neighbors in this frontier.
16: // Reconstruct the database.
17: Label the nodes of⌧ with their volume in VM.
18: return⌧

T������ 1. Let ⌃ be an EMM scheme leaking search and volume
pattern. Let ⇡ be a 3-dimensional database over domain D, MM the
resulting multimap when encrypting with ⌃, and @ (1) , . . . ,@ (:) be
range queries over D. Then, there exists an invertible transforma-
tion between the multiset of leakage {{SP(MM,@ (8))}}82 [:] and the
corresponding volume map VM and frequency map FM.

The proof of Theorem 1 (along with all our other proofs) can be
found in the Appendix. Building FM requires observing each query
once, which is a strong assumption. In Appendix B, we prove that
these maps can be built after observing <4 log< queries issued
uniformly at random.

2.4 Equivalent Databases.
We generalize the notion of equivalent databases from [25, 54]
below. Intuitively, two databases are L-equivalent if they are indis-
tinguishable from their leakage.

D��������� 1. Let ⇡ and ⇡ 0 be databases with domainD and the
same record IDs. Let L = (LS,LQ) be a leakage function and Q be
the set of range queries onD. Databases ⇡ and ⇡ 0 are L-equivalent
if {L(⇡,@)}@2Q = {L(⇡ 0,@)}@2Q . The set of equivalent databases
is called the reconstruction space.

2.5 Threat Model and Assumptions
Throughout this paper, we consider a passive, persistent, honest-
but-curious adversary that has compromised either the commu-
nication channel or server. This adversary is able to observe the
tokensets issued by the client and the number of records associ-
ated with each token the tokensets. The linear attack (Section 3)
assumes that any non-empty subset of prime-sized range queries
are issued. Our other attacks assume that all possible range queries
are issued. For all attacks, we assume that the adversary is able to
build the volume map VM from the observed queries. In Section 6,
we make the additional assumption that the adversary can build
the frequency map FM.

207

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

3 THE LINEAR ATTACK
The linear scheme comprises of = = |D| canonical ranges, which
are one-to-one with the points in the domain. To query for a range
@ ✓ D, the client computes a token for each point in the range and
sends the resulting tokenset to the server. The server can then use
this tokenset to retrieve the matching records. To query for range
[1, 4], the client sends four tokens corresponding to four canonical
ranges: [1, 1], [2, 2], [3, 3] and [4.4]. Variants of this scheme have
been proposed in both one [19] and multiple [26] dimensions.

3.1 Reconstruction Attack
Each domain point is associated with a single unique token. The
linear scheme thus leaks both the size of the query range and infor-
mation about the points in the range. For example, when querying
a range of size 4, the adversary observes 4 tokens. The adversary
can also infer information about the shape of the range e.g., if the
database is two-dimensional, then a query of size 4 must corre-
spond to a square range (2 ⇥ 2) or a one-dimensional slice (1 ⇥ 4).
In particular, if the adversary observes a tokenset of prime size, ? ,
then they can infer that the range has size ? in one dimension and
size 1 in the other dimensions. This leakage allows the adversary
to extract useful 1D information. Our attack can thus leverage 1D
techniques to reconstruct a multidimensional database. Our attack
builds from the leakage a labeled graph whose vertices correspond
to domain points and whose edges denote adjacent points. This
resulting graph provides a reconstruction of the database up to
symmetries and forms the basis of our attack.
R������������� A�����. Our attack �nds queries of prime size,
groups the search tokens into one-dimensional segments, and then
orders them. Our attack (Algorithm 1) follows in �ve steps:
(1) Find all tokensets (queries) of prime size.
(2) Group one-dimensional sections. If the intersection of two

tokensets of prime size has at least two search tokens, then
these queries must be from the same 1D section (e.g., same row
or column). We create map 1dSlices mapping search tokens to
sets of tokensets, where all search tokens in a key of 1dSlices
correspond to the same one-dimensional section.

(3) Order one-dimensional sections. Use PQ-trees [6] to get the
partial order of the search tokens in each key of 1dSlices.

(4) Order Reconstruction. Construct a graph ⌧ whose nodes are
the observed tokens. For each PQ-tree, �nd a frontier and add
edges in ⌧ between neighboring tokens in each frontier.

T������ 2. Let ⇡ be a database over a 3-dimensional domain
D = [<1] ⇥ · · · ⇥ [<3] of size< and let ⇡ be encrypted with the
linear scheme. Given the volume map for a set of range queries on ⇡
comprising all queries of unit and prime size, Algorithm 1 achieves full
database reconstruction of ⇡ by building in $ (<5) time and $ (<3)
space an $ (<)-size representation of the reconstruction space of ⇡ .
The input to the algorithm is available with probability greater than
1 � 1

<2 after observing

$

3’
8=1

<2

<8
log<8 · log

✓
<2

<8
log<8

◆!
(1)

uniformly distributed queries, which is$ (<2� 1
3 log2<) queries when

<8 =<1/3 for 8 = 1, · · · ,3 .

3.2 Reconstruction Space
The reconstruction space of the linear scheme comprises of the
symmetries of a 3-dimensional cube. In 2D, this means that we can
reconstruct up to rotation and re�ection of the rectangular domain.
This is because each query contains one (deterministic) token for
each point in the queried range. As a result, the server learns a
map between search tokens and their corresponding records, a
partition on the records with respect to their domain values, and
which records belong to contiguous regions of the domain. If the
server sees a su�cient number of queries it can piece the search
tokens together into a 3-dimensional grid.

T������ 3. Let ⇡ be a database on a 3-dimensional domain
and let L be the leakage of the linear scheme. The set of databases
L-equivalent to ⇡ , or reconstruction space of ⇡ , corresponds to the
symmetries of a 3-cube. (i.e. rotation/re�ection across each axis).

4 TOKEN PAIR ATTACK
Our next attack applies to a number of schemes, including the
1D Rangetree scheme with universal range cover [24] and the
Logarithmic-URC scheme [19], as well as the Range-URC [26] and
Quad-BRC [26] schemes in arbitrary dimensions. Range-URC can be
viewed as a generalization of the Rangetree scheme with universal
range cover and the Logarithmic-URC scheme.
R�����URC. This scheme uses a range-tree for the underlying
range-supporting data structure and URC for computing the to-
kensets. Demertzis et al. [19, 20] and Falzon et al. [26] both construct
schemes using a range tree with URC. This attack applies to both
these constructions, and any constructions that use range trees
with URC and leak volume and search pattern.
����BRC. This scheme was �rst introduced by Falzon et al. [26]
and uses a region quad-tree for the underlying range-supporting
data structure and BRC for computing the tokensets. Recall that the

abcdefgh
ijklmnop

abcd efgh

ijkl
mnop

ab
cd

cdab

dcba

ef
gh

ghef

hgfe

ij
kl

klij

lkji

mn
op

opmn

ponm

ijkl mnop

abcd
efgh

4 d h l p
c g3

2

1

4321

k o
b f
a e

j n
i m

(a)
dcba

hgfe

lkji

ponm

(b)

Figure 2: (a) A range tree scheme in 2D and (d) the graph constructed
by Algorithm 2. The nodes in the green rectangles correspond to
queries with one token under URC.

Algorithm 2: TokenPairA�ack(VM)
1: Let&1 be the keys of VM of size 1.
2: Let&2 be the keys of VM of size 2 with only members of&1.
3: Construct graph⌧ with nodes the elements of&1
4: for t = {C0, C1 } 2 &2 do
5: Add an edge between C0 and C1 in⌧ .
6: Label the nodes of⌧ with their volume in VM.
7: return the connected component of⌧ of size< with the smallest total

volume.

208

A�acks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

op

cd

d

4 d

h

c

g

3
2
1

b

f

a

e

8
7
6
5

12 l

p

k

o

11
10
9

j

n

i

m

16
15
14
13

abcdefghijklmnop
(a) (b) a

p

abcb

abcd

a b

ab

abcdefgh

c d e f

gh

g h

ef

efgh

m n

op

o p

mn

ijklmnop

mnop

i j

kl

k l

ij

ijkl

cd

abcdefgh

e

f
gh

g

h

ef

efgh

abcd

d

i

j
kl

k

l

ij

ijkl

ijklmnop

m

n
mn

mnop

o

1 11 1 1 111 13 2 2 5 9 2 2 9 5 2 2 13 1
(c) bab c e fg hicd ef gh n opojk lij kl mnm

(d) db c e f g h i n oj k l m

3

8

6

11

4

2

3

5

3

10

2

4

9

6

4

8

(e) 34 6 5 2 11 8 4 6 49 2 3 8

ab op

103

op

o

opab

b

Figure 3: Attack on the range tree BRC scheme for a 1D domain (Algorithms 3 and 4). (a) Domain with volume of each point and range tree. We
�nd the inner nodes of the range tree (rectangular) by relying on the property that tokensets form a continuous range (Algorithm 3, Line 15).
E.g, tokensets (3, {4 5 }) , ({4 5 },6) and (3, {4 5 },6) , and the absence of tokenset (3,6) imply that {4 5 } is an inner node. Thick dotted lines show
the triangular structures identifying leaf nodes. (b) Co-occurrence graph⌧ , whose edges (in green) join nodes of the range tree that form a
tokenset, e.g., (1, 2) , (Algorithm 3, Line 4). (c) Construction of graph⌧trim. We remove from⌧ edges between inner nodes (Algorithm 3, Line 16).
We use the times two tokens appear in a tokenset together (edgecounts) (Algorithm 3, Line 19) to remove edges with edgecount > 2. We identify
most leaf nodes using ⌧ , but some nodes like {0123 } and 3 appear identical in ⌧ after we trim. We distinguish them using graph ⌧ , e.g.,
{0123 } has fewer edges than 3 (Algorithm 3, Line 27). Graph⌧trim now contains all inner nodes from⌧ with edgecount 2, and some non-inner
neighbors. (d) We extract the inner nodes from the new graph, and swap every other pair of nodes (Algorithm 3, Line 43). (e) We assign volumes
to all core domain points (Algorithm 3, line 45). Then, we �nd the volumes on the boundary domain points (0,?) by replacing the two nodes
with only one edge ({01 },{>? }) with their volume minus the volume of their neighbor (Algorithm 4, line 2).

canonical ranges of a quadtree correspond to hypercubes whose
side lengths are powers of two.

4.1 Reconstruction Attack
We leverage the fact that these schemes leak neighboring point
search tokens. For example, in Figure 3, if a client queries for the
range [1, 2] using Range-URC, then she must compute search to-
kens corresponding to the canonical ranges [1, 1] (token 0) and
[2, 2] (token 1). Our goal is to thus infer which search tokens corre-
spond to neighboring domain points.

In order to build intuition, we make the following observations
regarding the Range-URC scheme. Recall that in each dimension,
the URC algorithm �rst computes the BRC and then recursively
breaks each node into its children until there is at least one node
at each level [19]. Thus, if a client queries a range @ using a single
token, then the range must be of size 1.

We now sketch the Token Pair attack (Algorithm 2).

(1) Let &1 be the set of tokensets of size 1. In Figure 2, these are
the nodes in a box or highlighted.

(2) Let&2 be the set of tokensets of size 2, {C, C 0} such that {C}, {C 0} 2
&1.

(3) Initialize a graph ⌧ whose vertex set comprises of the tokens
appearing in &1. For each {C, C 0} 2 &2, add the edge (C, C 0) to ⌧ .

(4) We complete the graph by mapping each search token of ⌧ to
its corresponding volume. The connected component of size<
in ⌧ corresponds to the ordered search tokens of the database.

Figure 2 depicts a 2D range tree and the resulting graph ⌧ from
our attack. We now state a theorem summarizing the database
reconstruction from the leakage of Range-URC and Quad-BRC.

T������ 4. Let ⇡ be a database over a 3-dimensional domain
of size < and let ⇡ be encrypted with the range tree scheme and
uniform range cover (URC) (respectively, the quadtree and best range
cover (BRC)). Given the volume map for all range queries on ⇡ , Al-
gorithm 2 achieves full database reconstruction of ⇡ by building in
$ (<2 log3<) (respectively, $ (<2+3�1

3)) time and space an $ (<)-
size representation of the reconstruction space of ⇡ . The input to the
algorithm is available with probability greater than 1 � 1

<2 after
observing $ (<2 log<) uniformly distributed queries.

4.2 Reconstruction Space
T������ 5. Let⇡ be a database with domainD = [<1] ...⇥ [<3]

and L be the leakage of the range tree scheme with URC (respectively,
the quadtree scheme with BRC). The set of databases L-equivalent to
⇡ corresponds to the symmetries of a 3-cube.

5 THE RANGE-BRC ATTACK
The canonical ranges of the Range-BRC scheme correspond to
ranges in a range tree i.e., dyadic ranges. The client uses BRC
to compute the tokensets. Demertzis et al [19, 20] and Falzon et
al. [26] both describe schemes utilizing range trees with BRC in
one and multiple dimensions, respectively. This attack applies to
both constructions, in addition to any EMM constructions that use
range trees with BRC and leak volume and search pattern leakage.

209

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

abcde
fghijkl
mnop

abcdefgh
ijklmnop

abcd efgh

ijkl
mnop

ab
cd

cdab

dcba

ef
gh

ghef

hgfe

ij
kl

klij

lkji

mn
op

opmn

ponm

ijkl mnop imjn
kolp

im
jn

lpkojnim

ko
lp

abcd
efgh ae

im

cgko
dhlp

aeim
bfjn

dh
lp

bf
jn

cg
ko

4 d h l p
c g3

2
1

4321

k o
b f
a e

j n
i m

abcd
efgh

ae
bf

dhcgbfae

cg
dh

d

cba

h

g

l

k

j

i

p

on

m

cd

f

ab

eim

jn

ef

ko cg

ij
dh

op mn

lp
ae

bf

cg
dhgh

im
jn

ko
lp

ae
bf

kl

ef
gh

ij
kl

imjn
kolp

abcd
efgh

bf
jn

cg
ko

aeim
bfjn

cgko
dhlp

abcde
fghijkl
mnop

g k

jfjn

ef

ko cg

ij

bf

gh kl

g k

jfbf

gh

cg ko

kl

jn

ef ij

4 1 4 2 9
2 33

2
1

4321

3 2
3 5
7 9

5 1
8 6

3 3

553

4

2 2

2

1

9 8

(a)

(b)

(c)

ae
im

dh
lp
ab
cd

mn
op

c g k
b f
a e

j
i

kcg ijae
bf

Find the smallest
response with

kij cg

7ae
bf

(d)

-
3

f
9

=
e

b
a

…

7a
6m
1d
9p

3 3

553

4

2 2

2

1

9 8

91

7 6

G

Gtrim

g k

jf3

4

2 2

2

1

9 8?

(e)

Figure 4: Attack on Range-BRC for a 2D domain (Algorithms 3 and 4). (a) Domain with volume of each point and range tree. (b) Similar to the
1D case, we create the co-occurrence graph⌧ (Algorithm 3, Line 4). (c) We also create⌧trim (Algorithm 3, Line 28). (d) Algorithm 4 extrapolates
the volume at the boundary domain points. We can �nd the volumes of domain points that are extreme only in one dimension by replacing
each such non-leaf node in⌧0 with its volume minus the volume of its neighbor (Algorithm 4, Line 2). For example, we �nd the volume at 4 by
subtracting the volume of 5 from 4 5 . For each missing volume (domain values extreme in more than one dimensions), say the volume at 0, we
�nd node : , diagonal to 0 and 2 away in each dimension that 0 is extreme in. We then identify two neighbors of : in⌧trim, {8 9 }, {26}, such that
the smallest tokenset (Algorithm 4, Line 13) containing : , {8 9 } and {26} contains {0415 } (which is the token corresponding to a 2x2 square that
contains 0). Since we know all the volumes but for 0’s, we can extrapolate the volume of 0 (Algorithm 4, Line 14). (e) We similarly identify
corner node volumes (0, 3 , ?,<), combine them with the augmented grid, and reconstruct the database.

5.1 Reconstruction Attack
We present an attack against Range-BRC that achieves polynomial
run-time. This attack is more complex than the ones presented so far,
as these previous attacks exploited co-occurrences of neighboring
domain point tokens. However, these co-occurrences do not exist in
Range-BRC, and instead, we exploit knowledge of the structure of
the tree. For example, leaf node tokens appear in di�erent patterns
than non-leaf nodes. Our algorithm extracts the leaf nodes of each
single-dimensional tree in the range tree, and then orders them to
reconstruct the database.

Our attack is presented in Algorithms 3 and 4. Recall the de�-
nitions of core and boundary of the domain from Section 2. Algo-
rithm 3 reconstructs the database records in the core of the domain.
Notably, the reconstruction is based primarily on structure and
search pattern leakage. For the core of the database, we are able
to identify exactly which tokens correspond to each domain point.
The volume pattern leakage is used only in the �nal step, to assign
the number of records on each point of the core.

Reconstructing the records on the boundary of the domain re-
quires di�erent techniques. Algorithm 4 utilizes both volume leak-
age and structure pattern to determine the number of records on
the boundary. This complication is due to information theoretic
limitations speci�c to nodes with extreme values. For example, the
tokens corresponding to the corners of the database never appear
in a tokenset with other tokens. If they are requested by the client,
they are always alone. Thus, there are no co-occurrences to exploit.
Instead we use the volumes of parent nodes (in the range tree) of
the corner nodes, along with their neighbors to infer the volumes
in the corner nodes. However, if two corners of the database have

the same volume, we cannot determine which token corresponds
to which node. This is an interesting case, where we can fully re-
construct the database, but we cannot fully reconstruct the client
queries i.e., determine which range corresponds to which token.

We de�ne the following. A leaf node is a node that has no
children. A boundary node corresponds to a query that covers at
least one extreme domain value (nodes 0 and ? are boundary nodes
in Figure 3(a)). A node that is not a leaf or boundary node is a core
node (rectangular in Figure 3(a)). The attack proceeds as follows:

(1) Create the co-occurrence graph. We �nd all distinct queries
that are mapped to a tokenset of size 2 and compute a co-
occurrence graph ⌧ = (+ , ⇢) whose nodes + correspond to
tree nodes and edges ⇢ to pairs of tokens that form a tokenset
(Figure 3(b)).

(2) Infer the core nodes. We identify the core nodes in the
range tree (rectangular) in Figure 3(a)). Given query tokensets
(B1, B2, B3), (B1, B2) and (B2, B3), and no query (B1, B3), B2 is a core
node. Identifying the core nodes helps us identify the leaf nodes,
which are the nodes of the database grid.

(3) Trim the co-occurrence graph. Now, we want to distinguish
between the boundary and leaf nodes. Observe that leaf nodes
form triangular structures in⌧ with their parent nodes (e.g. 2-01,
1-2 and 1-23 in Figure 3(a)). We remove any edges between core
nodes in⌧ . Additionally, we use the number of times two tokens
appear in a tokenset together i.e. the edgecounts, to remove any
edges with edgecount more than two. This is because parents of
leaf nodes have an edgecount of two with one of their children,
but ancestors further up the tree have a higher edgecount. To
distinguish between leaf and non-leaf nodes that look identical

210

A�acks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

in ⌧ , we use the original co-occurrence graph. After this step,
we have identi�ed all the leaf nodes, each of which correspond
to a token of a single domain point. Next, we will order these
leaf nodes in a grid structure corresponding to the core of the
domain of the database.

(4) Core Grid Reconstruction. There is a component in ⌧ that
contains a 3-dimensional grid (Figure 3(d)) with nodes forming
the dotted triangular structures. Since we know the relationship
of the nodes in these structures, we can remove the core nodes
(Figure 3(c)), re-order, and reconstruct the core of the database.

(5) Inferring the extreme nodes’ volumes.We now extrapolate
the volumes of the boundary domain points. In our grid struc-
ture above (Figure 3(d)), we see that there are some nodes that
are core nodes. Replacing the core nodes with the core node’s
volume minus the volume of its neighbor, we can reconstruct
the volume of these domain points. If the core nodes replace
neighbors in the original co-occurrence graph ⌧> , then we add
an edge between two such nodes. For each dimension 8 2 [2,3]
in increasing order, we identify all missing volumes on the grid
that are on extreme domain values in 8 dimensions. For each
such volume E (e.g. the corner represented by 0 in Fig. 4(c)), we
identify the tokens that surround the 8-cube of size 28 whose
corner is E . Then, we �nd the smallest tokenset that contains
these tokens. It contains one more token corresponding to the
8-cube. Since we know the volumes of all the points but E ’s, we
can extrapolate E ’s volume. Once we identify all volumes of
nodes on extreme domain values in 8 dimensions, we add the
relevant grid edges, based on the new nodes’ locations on the
grid (if necessary).

T������ 6. Let ⇡ be a database over a 3-dimensional domain
of size< and ⇡ be encrypted with the range tree scheme and best
range cover (BRC). Given the volume map for all range queries on ⇡ ,
Algorithm 3 achieves full database reconstruction of ⇡ by building in
$ (<4) time and $ (<2 log3<) space an $ (<)-size representation of
the reconstruction space of ⇡ . The input is available with probability
greater than 1� 1

<2 after observing$ (<2 log<) uniformly distributed
queries.

5.2 Reconstruction Space
T������ 7. Let ⇡ be a database with domain D = [<1] ⇥ · · · ⇥

[<3] and let L be the leakage of the range tree scheme with range
covering algorithm BRC. The set of databases L-equivalent to ⇡ cor-
responds to the symmetries of a 3-cube.

The proof for Theorem 7 is similar to the proofs of Theorems 3
and 5. The leakage can be used to determine all neighboring rela-
tionships between ranges corresponding to points of the domain,
constructing a dense grid that covers the entire domain. The only
possible transformations for the database correspond to the sym-
metries of a 3-cube.

6 SRC SCHEMES ATTACK
Our SRC attack applies to a broad range of schemes that can be in-
stantiated with the SRC algorithm – including the quadratic scheme,
the TDAG-SRC scheme, and the QDAG-SRC scheme. We describe
the QDAG-SRC and the quadratic scheme at the end.

Algorithm 3: RangeTreeReconstructionBRC (VM)
1: Let ⇢,& be the keys (tokensets) of VM of size 2 and � 2, respectively.
2:
3: (1) Create the co-occurrence graph.
4: Construct undirected graph⌧ , whose nodes are the tokens observed,

and there is an edge between any two tokens that appear as a pair in ⇢.
5: Let⌧> = ⌧
6:
7: (2) Infer the core nodes.
8: Initialize set core ;.
9: Initialize table edgecounts with edgecounts[4] = 0, 84 2 ⇢.
10: for each tokenset (2 & do
11: Construct subgraph⌧(of⌧ induced by the nodes of (.
12: // Graph⌧(is an 8-dimensional grid (1  8  3) (Lemma 3)
13: Let⇠ be the subset of nodes of⌧(with the smallest degree in⌧(.
14: Let � (�⇠ // � is a subset of core nodes of (
15: Add � to set core.
16: Remove any edges 2 ⌧(from⌧ not connected to a node in⇠ .
17: if |⇠ | = 2 // We may be in a one dimensional slice. then
18: for each edge 4 2 ⌧(do
19: edgecounts[4] edgecounts[4] + 1
20:
21: (3) Trim the co-occurrence graph.
22: // Disambiguate identical components of the graph
23: for all node E 2 core do
24: if there is no edge 4 incident on E where edgecounts[4] = 2 then
25: Remove node E from⌧
26: else
27: Find all neighbors of E in⌧ with edgecounts[(E,D)] = 2 and

remove them from⌧ , but for one with the most edges in⌧> .
28: Let⌧trim be the largest component of⌧ .
29:
30: (4) Core Grid Reconstruction.
31: // Contract edges between remaining core nodes
32: for each vertex D 2 ⌧ , where D 2 core do
33: Let E,F be the neighbors of D in⌧ .
34: Add edge (E,F) to⌧ , and remove node D from⌧ .
35: // Re-order the nodes in⌧
36: for each connected subgraph � of⌧ do
37: // Ignore boundary nodes and make � a grid.
38: Ignore any nodes with fewer than 23 neighbors in � .
39: Assign coordinates in [2,<1 � 1] ⇥ · · · ⇥ [2,<3 � 1] to each vertex

of � according to its position on the grid (e.g. one of the corners is
assigned value [2, . . . , 2] and each remaining node is assigned the
value [01,02, . . . ,03] such that the node is at distance 08 � 2 from 2
in the 8-th dimension.)

40: for each dimension 8 of grid � do
41: for one-dimensional section (of � along coordinate 8 do
42: Construct subgraph⌧(of � induced by the nodes of (
43: Swap every other pair of nodes of⌧(

44: Apply any changes to⌧(in⌧
45: Label the nodes of⌧ with their volume in VM.
46: // We have reconstructed the core of the database
47:
48: (5) Inferring the extreme nodes’ volumes.
49: ⌧ = FindExtremeVolumes (VM,⌧> ,⌧) (Algorithm 4)
50: return⌧

To generalize the attack, we leverage the notion of a range-
supporting data structure from [26]. A range-supporting data
structure for a domainD is a DAG⌧ with a single source together

211

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

with a range covering algorithm RC. Each node of ⌧ is associated
with a canonical range; we denote the canonical range of node E
in⌧ with E .A0=64 . The root node corresponds to the entire domain
and the edges of⌧ denote containment i.e. an edge from vertexD to
E implies that D .A0=64 contains E .A0=64 . For this attack, we require
two additional assumptions on the scheme: (1) that the canonical
ranges of the children partition the canonical range of the parent,
and (2) that the leaves are one-to-one with the domain points.

6.1 Reconstruction Attack
SRC schemes aremore di�cult to attack thanURC and BRC schemes,
since SRC queries contain only a single (encrypted) range. This
prevents us from making the same spatial connections between
queries that enabled the prior attacks. In fact, Demetrzis et al. [20]
conjecture that even novel attacks could not achieve full database
reconstruction against their one-dimensional SRC schemes. Never-
theless, we show that we can indeed attack SRC schemes.

Let (⌧, SRC) be a range-supporting data structure satisfying the
following two properties: (1) Every non-sink node E in ⌧ has a
subset of children ⇠ , such that {2 .A0=64 : 2 2 ⇠} partition E .A0=64 ,
and (2) sinks of ⌧ are 1-1 with the domain point values. Our SRC
attack works on all schemes built with such a (⌧, RC) pair.

We construct and solve an integer linear program (ILP) whose
constraints are based on the underlying DAG; The ILP is satis�ed by
any database in the reconstruction space, given that every possible
range query has been issued exactly once. For every node E in the
DAG (e.g. the QDAG) we associate a variable GE that corresponds to
the volume of E .A0=64 . We �rst write a constraint relating the vol-
ume of each non-leaf node to its children. For example, in a QDAG,
the volume of a parent node E must sum to the volumes associated
with the four children whose canonical ranges form quadrants of
E .A0=64 . For each non-sink E in⌧ wewrite the following constraint:

GE =
’
22⇠

G2 (2)

where⇠ is the set of E ’s children whose canonical ranges partition
E .A0=64 . Now suppose that every domain query has been issued
exactly once. We can determine exactly how many unique queries
correspond to each SRC node in⌧ . We refer to this as the frequency
of the node. Let � be the set of all frequencies. For a frequency 5 2 � ,
let-5 be the set of variables corresponding to nodes with frequency
5 ,=5 = |-5 |, and+5 be the set of volumes with frequency 5 . For 5 2
� , we restrict the variables in -5 to values in+5 , since there should
be a 1-1 correspondence between variables in-5 and volumes in+5 .
We implement the correspondence as follows. For each 5 2 � we
de�ne a =5 ⇥ =5 matrix of Boolean variables 11,1,11,2, . . . ,1=5 ,=5

such that each row corresponds to a variable in-5 and each column
corresponds to a volume in +5 . For each 5 2 � , we then write the
following constraints, where GB 2 -5 and EC 2 +5 .

GB �
=5’
C=1

EC1B,C = 0;
=5’
B=1

1B,C = 1;
=5’
C=1

1B,C = 1 (3)

Our attack either needs to observe every range query exactly
once or needs knowledge of the query distribution. Given the distri-
bution, after observing enough queries, the adversary can deduce

Algorithm 4: FindExtremeVolumes(VM,⌧> ,⌧ 0)
1: // Find volumes of extreme domain points
2: Replace any node with one neighbor in⌧0 with its volume minus its

neighbors’ volume.
3: Add an edge between two new volume nodes, if the nodes they

replaced were connected in⌧> .
4: Let⌧0 consist only of its largest component, a 3-dimensional grid

missing some nodes.
5: // We reconstruct the 8-dimensional boundary sections in order
6: for 8 2 [2,3] do
7: for nodes E in⌧0 missing a volume, extreme in any 8 dimensions do
8: Let #E be the potential neighbors of E in⌧0.
9: Let 2 be the common neighbor of #E in⌧0 (not E).
10: Create # 0E by �nding the other (leaf) neighbors of 2 in⌧0 in the

same dimension as each node in #E .
11: Find the other common neighbor of # 0E in⌧0 that is not 2 , 20
12: Create # 00E by �nding the other (non-leaf) neighbors of 20 in⌧trim

in the same dimension as each node in # 0E .
13: Find the smallest key, : , in VM that contains 20 and # 00E .
14: Let E’s volume be the sum of the volumes of all nodes in : minus

the volumes of #E,# 00E , 2 and 20.
15: Add relevant edges for the new volume nodes based on their location

on the grid in⌧0.
16: return⌧0.

how many unique queries correspond to each tokenset. In the Ap-
pendix, we explain how an adversary can estimate the frequencies
given a dictionary mapping each search token to the number of
times it was observed and assuming that queries are issued uni-
formly at random. The adversary can then create constraints using
Equations 2 and 3 and use a generic ILP solver to reconstruct the
database.

Algorithm 5 takes as input VM and FM and returns grid graph
⌧ whose nodes are labeled with volumes.

T������ 8. Let (⌧, SRC) be a range-supporting data structure for
a 3-dimensional domain D such that:
(1) each non-sink E in ⌧ has a subset of children ⇠ such that their

canonical ranges, {2 .A0=64 : 2 2 ⇠}, are a partition of E .A0=64 ;
(2) the sinks of ⌧ are one-to-one with the points in D.
Let ⇡ be a database over D encrypted using the GenericRS scheme
from [26] with (⌧, SRC) and ⇡ as input and instantiated with an
EMM scheme that leaks volume and search pattern. Given the volume
map and frequency map for all range queries on ⇡ , where each query
is issued exactly once, Algorithm 5 achieves full database reconstruc-
tion of ⇡ . The input to the algorithm is available with probability
greater than 1� 1

<2 after observing$ (<4 log<) uniformly distributed
queries.

The e�ectiveness of Algorithm 5 depends on the size of the
reconstruction space, which is determined by the underlying data
structure (⌧, SRC) and the database ⇡ .

Our attack on SRC schemes is related to the attack byKornaropou-
los, Papamanthou, and Tamassia (KPT) [51], which approximately
reconstructs a database from one-dimensional range queries. The
KPT attack utilizes counting functions to determine the number of
canonical ranges that return a given (encrypted) response. This
information is used to build a system of equations that captures

212

A�acks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

the distance between consecutive records. In contrast, we build
a system of equations representing how the volume of canonical
ranges is distributed to its subranges, as given by the DAG. Our
attack assumes a uniform query distribution to observe all possible
queries with the same frequency and aims at full database recon-
struction. The KPT attack does not assume knowledge of the query
distribution and uses nonparametric estimators over a subset of the
possible queries to achieve an approximate reconstruction.

6.2 QDAG-SRC
Unlike previous schemes, theQDAG-SRC and�adratic-SRC schemes
display symmetries other than those of the 3-cube. We present a
database that demonstrates these additional symmetries, which
yields the following lower bound. The data structure underlying
the QDAG-SRC scheme is a modi�ed region quadtree called a
quadtree-like DAG (QDAG). The QDAG was introduced by Falzon
et al. [26] to minimize false positives when using SRC.

To build a quadtree over a square 2D domain D, we start with a
standard quadtree over D. For any four canonical ranges R of the
same size that form a square, we add an additional �ve canonical
ranges of the same size: one between any two neighboring ranges
in R and one centered at the point where the four ranges in R meet.
In Figure 9 (a) we see an example of a set of canonical ranges R
and in (b) we see the additional �ve ranges overlapping them.

T������ 9. Let ⇡ be a dense database with domain D = [<1] ⇥
· · ·⇥ [<3] and let L be the leakage of QDAG-SRC. Let (L be the set
of databases L-equivalent to ⇡ . We have |(L | � 23+2

(3�1) (3) (3!).
Before demonstrating a lower bound for the size of the recon-

struction space of the QDAG-SRC scheme, we �rst build intuition
with an example of a�adtree-SRC scheme, i.e., a scheme whose
underlying data structure is a quadtree and whose range cover algo-
rithm is SRC. Recall that a region quadtree is a tree that recursively
partitions a square domain into 22 quadrants. Each non-leaf node E
has four children; each child of E is associated with a quadrant of
E .A0=64 . Using SRC for a quadtree results in a false positive rate of
$ (<). As we will see, the�adtree-SRC scheme – in contrast to the
QDAG-SRC scheme – is more secure at the expense of signi�cantly
more false positives. We now state a lemma about the complexity
of the ILP needed to attack the QDAG-SRC scheme.

L���� 1. Let ⇡ be a database over domain D and EDB be the
encrypted database resulting from encrypting⇡ with theQDAG-SRC
scheme. Let VM and FM be the volume map and frequency map
constructed from the query leakage of EDB. On input of VM and FM,
Algorithm 5 builds and solves an ILP of size $ (⌦(3<)).

6.3 Quadratic-SRC Scheme
One notable SRC scheme is the quadratic scheme [19, 25], or the
�adratic-SRC scheme. This scheme stores a key-value pair for ev-
ery possible range query. A quadratic scheme over a 3-dimensional
domain D can be represented as an range-supporting data struc-
ture, (⌧, SRC), where ⌧ is a DAG described as follows. Let Q be
the set of all possible 3-dimensional range queries over D and as-
sociated with each range a node of ⌧ ; the nodes are one-to-one
with the ranges in Q. For each pair of nodes D, E add an edge from
D to E if and only if D .A0=64 minimally contains E .A0=64 . Since Q

Algorithm 5: GenericReconstructionSRC (VM, FM)
1: Let max be the maximum volume in FM.
2: Let � be the set of frequencies in FM.
3: Let⌧ be the underlying DAG and for each node E 2 ⌧ , create integer

ILP variable GE with bounds [0,max].
4: for non-leaf node E 2 ⌧ do add Equation 2 to the ILP.
5: for 5 2 � do add Equations 3 to the ILP.
6: Run the ILP solver to retrieve assignment �.
7: Let � be a grid corresponding to the tokens forming leaves of the tree.
8: Label the nodes of � with their volume in VM.
9: return �

contains all the single point ranges and no other range is minimally
contained by the single point ranges it is straightforward to see
that the leaves are indeed one-to-one with the domain points.

We further claim that ⌧ is a unique DAG. To see that it is a
DAG, suppose for a contradiction that⌧ is not a DAG. Then it must
contain a cycle E1, E2, . . . , E: , E1. But this means that E .A0=64 mini-
mally contains E2 .A0=64 and E2 .A0=64 minimally contains E3 .A0=64 .
Extending this logic, we see that E1 .A0=64 must minimally contain
E1 .A0=64 , which is a contradiction. To prove uniqueness, suppose
that construction of the DAG for a domain D resulted in two dis-
tinct graphs ⌧ and ⌧ 0. These graphs must di�er in the existence of
at least one edge; WLOG suppose that the edge (D, E) exists in ⌧
and not in ⌧ 0. By construction, the fact that (D, E) is an edge in ⌧
implies that D .A0=64 minimally contains E .A0=64 . But since an edge
(D, E) exists if and only if D .A0=64 minimally contains E .A0=64 this
means that we would have also added this edge in the construction
of ⌧ 0, hence a contradiction.

Since ⌧ is a DAG satisfying all the conditions described in The-
orem 8, it follows that a database encrypted with the quadratic
scheme can be reconstructed with our SRC attack. This scheme
has been attacked using access and search pattern leakage in one-
dimensions [36, 47, 52] and in two-dimensions [25, 54]. Additionally,
the quadratic scheme has been attacked using volume pattern in
one-dimensions [37, 39, 47]. However, volume-based attacks in the
multi-dimensional setting remain an open problem.

Our SRC attack can utilize volume and search pattern leakage to
perform a database reconstruction attack on the quadratic scheme
on databases of arbitrary dimensions. However, we note that to
launch the attack, one would require computational resources that
we do not have. Since our attack is based on solving an ILP, it can
be fully parallelized; there are many tools available that solve ILPs
and exploit parallelization [40, 60]. Thus, we conjecture that even
the quadratic scheme in multiple dimensions is vulnerable to a
powerful adversary. We now state the following lower bound about
the reconstruction space of the quadratic-SRC scheme.

T������ 10 ([25, 54]). Let ⇡ be a database with domain D =
[<1] ⇥ · · · ⇥ [<3] containing = points and let L be the leakage of
the quadratic-SRC scheme with range covering algorithm SRC. Let (L
be the set of databases L-equivalent to ⇡ . We have |(L | � 2= , for
3 > 1 and |(L | = 2 for 3 = 1.

Theorem 10 follows from the reconstruction space presented in
[25, 54] on two-dimensional databases. We conclude this section

213

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

(a) (b) (c) (d)

Figure 5: (a) Accuracy, (b) memory, and (c) runtime of our linear attack for 2D databases of di�erent domain sizes, after observing di�erent
percentages of prime-size queries. (d) Runtime of the attack on G������, varying the number of records (in millions) and percent of prime-size
queries (25% (lightgray circle •), 50% (gray diamond ⌥) , 75% (darkgray star¢), plus sign 100% (black +)).

C��� S����

Figure 6:Median runtime in seconds (top) andmedianmemory usage
(GB) (bottom) of our attacks on the range-URC (blue circle •), range-
BRC (orange diamond ⌥), and QDAG-SRC (green star¢) schemes for
C��� and S���� on di�erent domain sizes.

by stating a lemma about the size of the ILP needed to attack the
�adratic-SRC scheme.

L���� 2. Let ⇡ be a database over domainD and EDB be the en-
crypted database resulting from encrypting⇡ with the�adratic-SRC
scheme. Let VM and FM be the volume map and frequency map con-
structed from the query leakage of EDB. On input of VM and FM,
Algorithm 5 builds and solves an ILP of size $ (⌦(3<2)).

7 EXPERIMENTS
We experimentally evaluate the performance of our attacks using
the following real-world datasets:

C��� [53]: 21,047 lat-long points of California road intersections.
It was used in a prior attack [54].

S���� [65] 28,837 latitude-longitude points of phone location
data of politician Malte Spitz between August 2009 and February
2010. It was used in several previous attacks [25, 50, 54].

G������[15]: 6,442,892 latitude-longitude points from users

Figure 7: Runtime (left) in seconds and memory requirement (right)
in GB of our attacks on the range-URC (blue circle •), range-BRC (or-
ange diamond ⌥), and QDAG-SRC (green star ¢) schemes for the
G������ [25] ⇥ [25] dataset varying the number of records (in mil-
lions).

of the Gowalla social networking website between 2009 and 2010, a
dataset used in the experiments by Demertzis et al. [19]. We further
replicate Demertzis et al.’s G������ experiments by randomly
partitioning the dataset into 10 sets, each consisting of 500,000
records. We measure the indexing time and cost of our schemes by
increasing the domain size by a new set of 500,000 tuples.

7.1 Results
Weperformed experiments on our attacks on the Linear,Range-URC,
Range-BRC, andQDAG-SRC schemes. Our attacks always returned
the original database up to the symmetries of a 3-cube, when given
the complete leakage as input including our reconstructions of
databases encrypted with the QDAG-SRC. For simplicity, we con-
sidered domains with all dimensions of the same size (i.e., 2D square
grids and 3D cube grids).

Figure 5 displays our results for the linear attack. In Figure 5(a)
we show the median accuracy of our attack against 2D databases
of di�erent domain sizes, after observing di�erent percentages
of prime queries. We measure the accuracy of our attack as the
percent of correctly reconstructed domain point volumes. This
attack achieves great accuracy with a relatively small percent of
prime queries. The attack requires little storage space (Figure 5(b)),
but as the domain size increases so does the runtime (Figure 5(c)).
We also ran our attack against a [25] ⇥ [25] G������ dataset,
varying the number of records from 1 million to 6 million. The
runtime is only a�ected by the domain size. For 2D ranges, we

214

A�acks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

could transform the leakage into access and search pattern leakage
and input it to the approximate database reconstruction attack on
2D databases from [54]. However, this results in loss of information,
making the reconstruction space potentially exponentially larger.

We also ran our attacks on the Range-URC, Range-BRC and
QDAG-SRC schemes. We used S���� and C��� normalized at dif-
ferent domain sizes to demonstrate our attacks in Figure 6. We
observe elbows in our plots as we increase the domain size. We
believe this is caused by variance in the speed of our computing
grid between machines with higher versus lower memory. The
QDAG-SRC attack took the longest time and generally required
more memory, since it involved solving an ILP. The Range-URC
attack was the most e�cient. We also ran these attacks against the
G������ dataset to observe how the number of records a�ects the
runtime and memory (Figure 7). We observed that the attacks are
generally not a�ected. TheQDAG-SRC attack against theG������
dataset (Figure 7) shows some random variance in the runtime and
memory needed. We believe this is due to randomness in the solver
that causes it to take di�erent search paths on each execution.

Our attacks, with the exception of the linear attack, require the
adversary to observe all queries at least once. In Figure 8, we exper-
imentally show how many queries the adversary needed to sample
under the Uniform, Gaussian(1/2,1/5), and Beta(1,1.2) distributions
over di�erent database domain sizes until they observed each query
at least once. We also plot the Baseline, which depicts the number
of possible queries per domain size. The number of queries needed
to perform each attack scales with the size of the domain. We note
that even as the domain size increases, the adversary needs a similar
number of queries across all distributions.
I������������� D������. We implemented our URC, BRC, and
SRC attacks in Python 3.9.2; we implemented the linear attack in
C++ using a library for PQ-trees [34]. We ran all of our experiments
on a compute cluster. For simplicity, we used the same compute
node for the client and the server; our results do not include any
network transmission latency.

For cryptographic primitives, we used the Python cryptography
library version 3.4.7 [62]. To match the evaluation of Demertzis
et al. [19], we used SHA-512 for PRFs and AES-CBC (with 128-bit
block size) for encryption. For our underlying EMM scheme, we
implemented ⇧bas from Cash et al. [11]. We used the CP-SAT solver
from Google’s ortools package [60] as our ILP solver.

8 TAKEAWAYS
8.1 General Techniques
We describe a number of new combinatorial and linear program-
ming techniques that apply to the non-interactive 1D range search
schemes in [19, 24] and the non-interactivemulti-dimensional range
search schemes in [26]. One key property that we leverage in the
Linear, URC, and BRC attacks is token co-occurrences. Our general
approach to capturing token co-occurrences is to encode the rela-
tionships using graphs; in these graphs, nodes correspond to tokens,
and edges correspond to pairs of tokens that appear together in
(certain) tokensets. These graphs capture important information
about the underlying data structure, from which we can reconstruct
the data. One important piece of information we are able to extract
from such graphs is linear substructures, the one-dimensional

Domain Size

Domain Size

Q

ue
rie

s

Q
ue

rie
s

Figure 8: (Left) 2D and (Right) 3D number of queries sampled under
the Uniform (blue diamond ⌥), Beta(1,1.2) (turquoise square ⌅), and
Gaussian(1/2,1/5) (skyblue circle •) distributions until all unique
queries are observed vs. domain size. Also shown is the Baseline
(navy star¢), i.e., the total number of possible queries.

substructures of the underlying data structure. Once the linear
substructures have been extracted, we can piece them together to
re-create the multi-dimensional database. In our Linear attack, this
corresponds to constructing the one-dimensional sections (lines
1-10 of Algorithm 1). In our Range-BRC attack, this corresponds to
identifying potential one-dimensional slices (lines 14-16 of Algo-
rithm 3). SRC schemes, on the other hand, do not leak co-occurrence
information and we thus describe a di�erent approach for attacking
SRC schemes. Our ILP attack is SRC scheme agnostic; it works
e�ectively against all SRC schemes satisfying two very standard
characteristics: (1) for each node E , the canonical ranges of (poten-
tially a subset of) the children of E partition E .A0=64; and (2) the
sinks are one-to-one with the domain points.

8.2 Comparing our Attacks to Prior Work
Prior attacks (e.g., [25, 47, 52, 54]) consider a “generic” leakage
that is implementation-independent. This leakage is a common-
denominator leakage found in most e�cient schemes and can con-
cretely be attributed to the quadratic scheme – a theoretical scheme
that stores one key-value pair for each range and which requires
too much storage for most practical scenarios. Our attacks lever-
age implementation-speci�c leakage of concrete response-hiding
schemes presented in the literature.

8.3 Extending our Attacks
The generality of our techniques enables us to apply our attacks
to multiple schemes. All the schemes described by Demertzis et
al. [19], Faber et al. [24] and Falzon et al. [26] leak either token
co-occurrences or use SRC as a range cover; in fact, we are able
to attack all six schemes in [26]. Our attack against Range-URC
is applicable to schemes that leak information about neighboring

215

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

points, e.g.,�ad-BRC. Similarly, our SRC attack is applicable to
schemes that return a single range cover and satisfy two standard
characteristics, such asQDAG-SRC and�adratic-SRC. One could
describe other schemes, such as the quadratic scheme with BRC.
Since every possible range in the domain is itself a canonical range,
then the best range cover always results in a single token. General-
izing the BRC attack to other data structures beyond range trees
remains an open question. We conjecture that the techniques we
developed, such as identi�cation of the inner nodes of the tree,
could be extended to other data structures.

8.4 Structure vs. Access Pattern
Access pattern is considered to leak more information than search
or volume pattern, as it reveals co-occurrences in the responses,
allowing an adversary to determine which (encrypted) records
appear in a range together. In this paper, we show that structure
pattern, alongwith volume pattern can be as (if notmore) dangerous
as access pattern. Consider a database that supports two-attribute
range queries. If the database leaks access and search pattern, then
the reconstruction space is exponential to the number of records
$ (2=) [25, 54]. We show that all concrete schemes from Falzon et al.
[26] that do not have false positives have a reconstruction space of
size at most 8 in two dimensions. Structure pattern can be thought
of as access pattern for the nodes of the underlying data structure.

8.5 Mitigations
There are many techniques that could mitigate these attacks at
the expense of some performance. The main technique used in
these attacks (besides the SRC attack) is the exploitation of token
co-occurrences. To reduce the e�ectiveness of this technique, the
client could batch their queries, sending two or more queries at a
time. This way, the adversary cannot be certain of which tokens
correspond to the same query (unless more queries are observed).

Note, if we know that records 0 and 1 are neighbors and that
records 1 and 2 are neighbors, we can infer that 0 and 2 are also
close. The client could disallow such neighboring queries, thus
restricting the adversary’s ability to reconstruct local information.

Our linear attack speci�cally uses prime queries to extract one-
dimensional information. To prevent this, the client could round up
prime-sized queries. Generally, our attacks, with the exception of
the SRC attack, depend on the existence of linear substructures (1D
ranges) in the multi-dimensional space. Our linear attack �nds all
prime-sized queries because they all correspond to 1D sections of
the database. The URC attack identi�es 1D sections of size 2. The
BRC attack also depends on utilizing 1D sections. A general mitiga-
tion technique would be to only return 3-dimensional range queries
i.e., ranges with at least two domain points in each dimension.

Toward mitigating the SRC attack, the client could take advan-
tage of the large amount of queries required by the attack and
periodically rebuild the EDB. This would hinder the adversary’s
progress, but not defend against the attack completely since the
adversary may be able to store and reuse previously inferred infor-
mation. This attack could also be mitigated by adding false records
to the responses. Other mitigation techniques include frequency
smoothing [35, 56] and oblivious data structures (e.g. [18]). We
leave studying the e�ectiveness of these mitigations to future work.

9 CONCLUSION
We are the �rst to systematically explore structure pattern leak-
age from range queries, which is inherent to any e�cient range
search scheme for an encrypted database. We show that along with
search and volume pattern leakage, structure pattern leakage can
be as dangerous as access pattern leakage, as demonstrated by the
relative sizes of the reconstruction spaces. We present the �rst
attacks on range search schemes for databases with arbitrary di-
mensions. Our attacks achieve full database reconstruction even on
SRC schemes, which were previously considered very secure. Our
attacks prompt the exploration of mitigation techniques such as
frequency smoothing [35], rounding the ranges to a speci�ed inte-
ger multiple [56], batching queries, periodic rebuilding, avoiding
one-dimensional queries, oblivious data-structures and alternate
range decomposition approaches.

ACKNOWLEDGMENTS
Work supported in part by the National Science Foundation, the
Kanellakis Fellowship at Brown University, and a gift from the
NetApp University Research Fund, a corporate advised fund of
Silicon Valley Community Foundation. The authors would also like
to thank William Schor for his preliminary contributions to the
implementation of the schemes. Part of this research was conducted
using computational resources of the Center for Computation and
Visualization at Brown University.

REFERENCES
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. 2004. Order Preserving Encryption

for Numeric Data. In Proc. ACM SIGMOD International Conference on Management
of Data (Paris, France) (SIGMOD). 12 pages.

[2] J. L. Bentley and J. H. Friedman. 1979. Data Structures for Range Searching. ACM
Comput. Surv. 11, 4 (Dec. 1979), 13 pages.

[3] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V. Shmatikov. 2018. The
Tao of Inference in Privacy-Protected Databases. Proc. VLDB Endow. 11, 11 (July
2018), 14 pages.

[4] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage
Abuse Attacks. In 27th Annual Network and Distributed System Security Sympo-
sium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet
Society.

[5] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. 2009. Order-Preserving Symmet-
ric Encryption. In Advances in Cryptology - EUROCRYPT 2009. Berlin, Heidelberg.

[6] K.S. Booth and G. S. Lueker. 1976. Testing for the consecutive ones property, in-
terval graphs, and graph planarity using PQ-tree algorithms. Journal of computer
and system sciences 13, 3 (1976).

[7] Raphael Bost. 2016. Sophos: Forward Secure Searchable Encryption. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 1143–1154. https://doi.org/10.1145/2976749.2978303

[8] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and Backward
Private Searchable Encryption from Constrained Cryptographic Primitives. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery,
New York, NY, USA, 1465–1482. https://doi.org/10.1145/3133956.3133980

[9] Cynthia Braund and Pramod Borkar. 2022. MongoDB Releases Queryable En-
cryption Preview. https://www.mongodb.com/blog/post/mongodb-releases-
queryable-encryption-preview.

[10] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
Abuse Attacks Against Searchable Encryption. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (Denver, Colorado,
USA) (CCS ’15). Association for Computing Machinery, New York, NY, USA,
668–679. https://doi.org/10.1145/2810103.2813700

[11] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable En-
cryption in Very-Large Databases: Data Structures and Implementation. In
21st Annual Network and Distributed System Security Symposium, NDSS 2014,
San Diego, California, USA, February 23-26, 2014. The Internet Society, Reston,

216

https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/3133956.3133980
https://www.mongodb.com/blog/post/mongodb-releases-queryable-encryption-preview
https://www.mongodb.com/blog/post/mongodb-releases-queryable-encryption-preview
https://doi.org/10.1145/2810103.2813700

A�acks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

VA, USA. https://www.ndss-symposium.org/ndss2014/dynamic-searchable-
encryption-very-large-databases-data-structures-and-implementation

[12] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.C. Roşu, and M. Steiner. 2013. Highly-
Scalable Searchable Symmetric Encryption with Support for Boolean Queries. In
Advances in Cryptology – CRYPTO 2013. Berlin, Heidelberg.

[13] Javad Ghareh Chamani, Dimitrios Papadopoulos, Mohammadamin Karbas-
forushan, and Ioannis Demertzis. 2022. Dynamic Searchable Encryption with
Optimal Search in the Presence of Deletions. In 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, Kevin R. B. Butler
and Kurt Thomas (Eds.). USENIX Association, 2425–2442.

[14] M. Chase and S. Kamara. 2010. Structured Encryption and Controlled Disclosure.
In Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6477).
Springer International Publishing, Cham.

[15] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and Mobility:
User Movement in Location-Based Social Networks. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(San Diego, California, USA) (KDD ’11). Association for Computing Machinery,
New York, NY, USA, 1082–1090. https://doi.org/10.1145/2020408.2020579

[16] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable
Symmetric Encryption: Improved De�nitions and E�cient Constructions. In
Proceedings of the 13th ACMConference on Computer and Communications Security
(Alexandria, Virginia, USA) (CCS ’06). Association for Computing Machinery,
New York, NY, USA, 79–88. https://doi.org/10.1145/1180405.1180417

[17] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. 2020. Dynamic Searchable Encryption with Small Client
Storage. In 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet Society.

[18] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Saurabh Shintre. 2020. SEAL: Attack Mitigation for Encrypted Databases via
Adjustable Leakage. In USENIX Security Symposium. 2433–2450.

[19] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, and Minos Garofalakis. 2016. Practical Private Range Search Revisited.
In Proceedings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,
New York, NY, USA, 185–198. https://doi.org/10.1145/2882903.2882911

[20] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, Minos Garofalakis, and Charalampos Papamanthou. 2018. Practical
Private Range Search in Depth. ACM Trans. Database Syst. 43, 1, Article 2 (2018),
52 pages. https://doi.org/10.1145/3167971

[21] Ioannis Demertzis, Charalampos Papamanthou, and Rajdeep Talapatra. 2018.
E�cient Searchable Encryption Through Compression. Proc. VLDB Endow. 11,
11 (2018), 1729–1741. https://doi.org/10.14778/3236187.3236218

[22] F. Betül Durak, Thomas M. DuBuisson, and David Cash. 2016. What Else is
Revealed by Order-Revealing Encryption?. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1155–1166.
https://doi.org/10.1145/2976749.2978379

[23] Zachary Espiritu, Evangelia Anna Markatou, and Roberto Tamassia. 2022. Time-
and Space-E�cient Aggregate Range Queries over Encrypted Databases. Proc.
Priv. Enhancing Technol. 2022, 4 (2022), 684–704. https://doi.org/10.56553/popets-
2022-0128

[24] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and
Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact Matches.
In Computer Security – ESORICS 2015, Günther Pernul, Peter Y A Ryan, and Edgar
Weippl (Eds.). Springer International Publishing, Cham, 123–145.

[25] Francesca Falzon, Evangelia AnnaMarkatou, Akshima, David Cash, Adam Rivkin,
Jesse Stern, and Roberto Tamassia. 2020. Full Database Reconstruction in Two
Dimensions. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (Virtual Event, USA) (CCS ’20). Association for
Computing Machinery, New York, NY, USA, 443–460. https://doi.org/10.1145/
3372297.3417275

[26] Francesca Falzon, Evangelia Anna Markatou, Zachary Espiritu, and Roberto
Tamassia. 2022. Range Search over Encrypted Multi-Attribute Data. Proc. VLDB
Endow. 16, 4, 587–600.

[27] Francesca Falzon and Kenneth G. Paterson. 2022. An E�cient Query Recovery
Attack Against a Graph Encryption Scheme. In Computer Security – ESORICS
2022, Vijayalakshmi Atluri, Roberto Di Pietro, Christian D. Jensen, and Weizhi
Meng (Eds.). Springer International Publishing, Cham, 325–345.

[28] R. A. Finkel and J. L. Bentley. 1974. Quad Trees a Data Structure for Retrieval on
Composite Keys. Acta Informatica 4, 1 (mar 1974), 1–9.

[29] C. Gentry. 2009. A Fully Homomorphic Encryption Scheme. Ph.D. Dissertation.
Stanford University, Stanford, CA, USA. Advisor(s) Boneh, D.

[30] Marilyn George, Seny Kamara, and Tarik Moataz. 2021. Structured Encryption
and Dynamic Leakage Suppression. In Advances in Cryptology – EUROCRYPT
2021, Anne Canteaut and François-Xavier Standaert (Eds.).

[31] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili. 2018. New
Constructions for Forward and Backward Private Symmetric Searchable Encryp-
tion. In Proc. ACM Conf. on Computer and Communications Security (Toronto,
Canada) (CCS ’18). New York, NY, USA, 18 pages.

[32] Esha Ghosh, Seny Kamara, and Roberto Tamassia. 2021. E�cient Graph En-
cryption Scheme for Shortest Path Queries. In Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security (Virtual Event, Hong
Kong) (ASIA CCS ’21). Association for Computing Machinery, New York, NY,
USA, 516–525. https://doi.org/10.1145/3433210.3453099

[33] O. Goldreich and R. Ostrovsky. 1996. Software Protection and Simulation on
Oblivious RAMs. J. ACM 43, 3 (May 1996), 43 pages.

[34] Greg Grothaus. 2011. PQTrees. https://github.com/Gregable/pq-trees. Accessed:
2022-01-12.

[35] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,
Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency Smoothing
for Encrypted Data Stores. In 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, Berkeley, CA, USA, 2451–2468. https://www.usenix.
org/conference/usenixsecurity20/presentation/grubbs

[36] P. Grubbs, M. Lacharité, B. Minaud, and K. G. Paterson. 2019. Learning to
Reconstruct: Statistical Learning Theory and Encrypted Database Attacks. In
Proc. IEEE Symp. on Security and Privacy (S&P). New York, NY, USA.

[37] Paul Grubbs, Marie-Sarah Lacharite, Brice Minaud, and Kenneth G. Paterson.
2018. Pump up the Volume: Practical Database Reconstruction from Volume
Leakage on Range Queries. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 315–331. https://doi.org/10.
1145/3243734.3243864

[38] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. 2017.
Leakage-Abuse Attacks against Order-Revealing Encryption. In Proc. IEEE Symp.
on Security and Privacy (SP). New York, NY, USA.

[39] Z. Gui, O. Johnson, and B.Warinschi. 2019. Encrypted Databases: New Volume At-
tacks against Range Queries. In Proc ACMConf. on Computer and Communications
Security (CCS).

[40] Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

[41] F. Hahn and F. Kerschbaum. 2016. Poly-Logarithmic Range Queries on Encrypted
Data with Small Leakage. In Proc. ACM Cloud Computing Security Workshop
(Vienna, Austria) (CCSW). 12 pages.

[42] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Rami�cation, Attack andMitigation.
In Proc. Annual Network and Distributed System Security Symposium (NDSS). The
Internet Society.

[43] Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos Treiber,
and Michael Yonli. 2022. SoK: Cryptanalysis of Encrypted Search with LEAKER
– A framework for LEakage AttacK Evaluation on Real-world data. In 2022 IEEE
7th European Symposium on Security and Privacy (EuroS&P). 90–108. https:
//doi.org/10.1109/EuroSP53844.2022.00014

[44] Seny Kamara and Tarik Moataz. 2019. Computationally Volume-Hiding Struc-
tured Encryption. In Advances in Cryptology - EUROCRYPT - Part II (Lecture Notes
in Computer Science, Vol. 11477). Springer, 183–213.

[45] S. Kamara and C. Papamanthou. 2013. Parallel and Dynamic Searchable Symmet-
ric Encryption. In Financial Cryptography and Data Security. Berlin, Heidelberg.

[46] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic
Searchable Symmetric Encryption. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security (Raleigh, North Carolina, USA) (CCS
’12). Association for Computing Machinery, New York, NY, USA, 965–976. https:
//doi.org/10.1145/2382196.2382298

[47] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic
Attacks on Secure Outsourced Databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1329–1340.
https://doi.org/10.1145/2976749.2978386

[48] Evgenios M. Kornaropoulos, Nathaniel Moyer, Charalampos Papamanthou, and
Alexandros Psomas. 2022. Leakage Inversion: Towards Quantifying Privacy
in Searchable Encryption. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22).
Association for Computing Machinery, New York, NY, USA, 1829–1842. https:
//doi.org/10.1145/3548606.3560593

[49] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia. 2019. Data Recovery
on Encrypted Databases with :-Nearest Neighbor Query Leakage. In Proc. IEEE
Symp. on Security and Privacy (S&P).

[50] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia. 2020. The State of the
Uniform: Attacks on Encrypted Databases Beyond the Uniform Query Distribu-
tion. In Proc. IEEE Symp.on Security and Privacy (S&P).

[51] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2021. Response-Hiding Encrypted Ranges: Revisiting Security via Parametrized
Leakage-Abuse Attacks. In Proc. IEEE Symp. on Security and Privacy (S&P).

217

https://www.ndss-symposium.org/ndss2014/dynamic-searchable-encryption-very-large-databases-data-structures-and-implementation
https://www.ndss-symposium.org/ndss2014/dynamic-searchable-encryption-very-large-databases-data-structures-and-implementation
https://doi.org/10.1145/2020408.2020579
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/2882903.2882911
https://doi.org/10.1145/3167971
https://doi.org/10.14778/3236187.3236218
https://doi.org/10.1145/2976749.2978379
https://doi.org/10.56553/popets-2022-0128
https://doi.org/10.56553/popets-2022-0128
https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1145/3372297.3417275
https://doi.org/10.1145/3433210.3453099
https://github.com/Gregable/pq-trees
https://www.usenix.org/conference/usenixsecurity20/presentation/grubbs
https://www.usenix.org/conference/usenixsecurity20/presentation/grubbs
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1109/EuroSP53844.2022.00014
https://doi.org/10.1109/EuroSP53844.2022.00014
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/3548606.3560593
https://doi.org/10.1145/3548606.3560593

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

[52] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. 2018. Improved
Reconstruction Attacks on Encrypted Data Using Range Query Leakage. In 2018
IEEE Symposium on Security and Privacy (SP). 297–314. https://doi.org/10.1109/
SP.2018.00002

[53] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua
Teng. 2005. On Trip Planning Queries in Spatial Databases. In Advances in Spatial
and Temporal Databases. Berlin, Heidelberg, 273–290.

[54] Evangelia Anna Markatou, Francesca Falzon, Roberto Tamassia, and William
Schor. 2021. Reconstructingwith Less: LeakageAbuseAttacks in TwoDimensions.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security (Virtual Event, Republic of Korea) (CCS ’21). Association for
Computing Machinery, New York, NY, USA, 2243–2261.

[55] Evangelia Anna Markatou and Roberto Tamassia. 2019. Full Database Reconstruc-
tion with Access and Search Pattern Leakage. In Proc. Int. Conf. on Information
Security (ISC) (Lecture Notes in Computer Science). Springer.

[56] Evangelia Anna Markatou and Roberto Tamassia. 2019. Mitigation Techniques
for Attacks on 1-Dimensional Databases that Support Range Queries. In Proc. Int.
Conf. on Information Security (ISC) (Lecture Notes in Computer Science, Vol. 11723).
Springer.

[57] M. Naveed, M. Prabhakaran, and C. A. Gunter. 2014. Dynamic Searchable En-
cryption via Blind Storage. In 2014 IEEE Symposium on Security and Privacy. New
York, NY, USA.

[58] Simon Oya and Florian Kerschbaum. 2021. Hiding the Access Pattern is Not
Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, 127–142.
https://www.usenix.org/conference/usenixsecurity21/presentation/oya

[59] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating
Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps
via Hashing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (London, United Kingdom) (CCS ’19). Association for
Computing Machinery, New York, NY, USA, 79–93.

[60] Laurent Perron and Vincent Furnon. 2019. OR-Tools version 7.2. Google. https:
//developers.google.com/optimization/.

[61] David Pouliot and Charles V. Wright. 2016. The Shadow Nemesis: Inference At-
tacks on E�ciently Deployable, E�ciently Searchable Encryption. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(Vienna, Austria) (CCS ’16). Association for Computing Machinery, New York,
NY, USA, 1341–1352.

[62] PythonCryptographic Authority. 2018. pyca/cryptography. https://cryptography.
io/ version 3.4.7.

[63] E. Shi, J. Bethencourt, T-H. H. Chan, D. Song, and A. Perrig. 2007. Multi-
Dimensional Range Query over Encrypted Data. In 2007 IEEE Symposium on
Security and Privacy (SP ’07). USA, 15 pages.

[64] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. 2000. Practical
Techniques for Searches on Encrypted Data. In 2000 IEEE Symposium on Security
and Privacy, Berkeley, California, USA, May 14-17, 2000. IEEE Computer Society,
New York, NY, USA, 44–55. https://doi.org/10.1109/SECPRI.2000.848445

[65] Malte Spitz. 2011. CRAWDAD dataset spitz/cellular (v. 2011-05-04). Downloaded
from https://crawdad.org/spitz/cellular/20110504.

[66] Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. 2014. Maple:
Scalable Multi-Dimensional Range Search over Encrypted Cloud Data with Tree-
Based Index. In Proceedings of the 9th ACM Symposium on Information, Computer
and Communications Security (Kyoto, Japan) (ASIA CCS ’14). Association for
Computing Machinery, New York, NY, USA, 111–122. https://doi.org/10.1145/
2590296.2590305

[67] Jiafan Wang and Sherman SM Chow. 2022. Forward and Backward-Secure Range-
Searchable Symmetric Encryption. Proceedings on Privacy Enhancing Technologies
1 (2022), 28–48.

[68] Cong Zuo, Shi-Feng Sun, Joseph K Liu, Jun Shao, and Josef Pieprzyk. 2018. Dy-
namic searchable symmetric encryption schemes supporting range queries with
forward (and backward) security. In European Symposium on Research in Computer
Security (ESORICS) (LNCS). Springer, 228–246.

A PROOFS
A.1 Proof of Theorem 1

P����. It is straightforward to see how one can build VM and
FM from the multiset {{SP(MM,@ (8)))}}82 [:] . To show the reverse,
we construct the structure pattern using VM and FM. Initialize an
empty multiset (. For each tokenset t(8) 2 VM:

(1) Initialize an empty dictionary" .
(2) For each C 2 t(8) set" [C] VM[C].
(3) 5 FM[t(8)]

(4) Add 5 copies of" to the multiset (.

Each issued query @ (8) corresponds to a tokenset t(8) i.e. the search
pattern of the canonical ranges that cover @. VM associates each
tokenset with the observed volume i.e. the volume pattern of the
response. Since each map" in (is added as many times as the cor-
responding tokenset has been observed, then the structure pattern
multiset is in one-to-one correspondence with the multiset (. ⇤

A.2 Proof of Theorem 2
P����. The �rst step of Algorithm 1 is to �nd any queries that

correspond to a set of search tokens of prime size, say set & . The
size of the range being queried is leaked, as it is the number of
search tokens the client sends the server. If a range has prime size
? , then the query covers ? points in one dimension and one point
in the remaining dimensions. Thus, all queries in & query are 1D
sections. The next step is to group queries that come from the same
one-dimensional section. Note that if two queries’ search token
intersection contains two or more elements, then the queries must
correspond to ranges along the same one-dimensional section. We
thus group queries in their corresponding one-dimensional section,
and create a PQ-tree for each one-dimensional section. The attack
then generates a graph ⌧ that contains an edge between neighbor-
ing search tokens, representing a partial order reconstruction of
the search tokens. Once we map the search tokens to their corre-
sponding volumes, we achieve partial database reconstruction. If
the adversary has observed enough queries for the order of the in-
dividual one-dimensional sections to be fully reconstructed, graph
⌧ is a 3-dimensional grid fully ordering all search tokens, and thus
achieving full database reconstruction.

To achieve FDR, every PQ-tree must have enough information to
reconstruct the order of each one-dimensional section. Consider a
one-dimensional section, e.g. a row '. The search tokens in ' share
all values but one, the one corresponding to the �rst dimension.
Thus, their values span from 1 to<1. Split the search tokens in two
groups: � includes all search tokens with values less than <1/2
in the �rst dimension and ⌫ contains the remaining points in '.
The PQ-tree can order these search tokens if in its input there
exists a range that starts before and a range that starts after every
search token. Thus, if the PQ-tree observes a range that starts
before every point in � or ends before every point in ⌫ or after
the last point of ⌫, it can fully order the search tokens in '. Let’s
count the number of range queries that start at a speci�c point
in �, end anywhere in ⌫ and have prime length. There are more
small prime numbers than larger. Thus, the worst case scenario is
our starting point being in the beginning of �. Thus, the possible
size of our range is between <1/2 and <1. We approximate the
number of prime numbers between <1/2 and #1 to be around
<1

log<1
� <1/2

log<1/2 > <1/6
log<1/6 , for<1 > 26. Thus, the probability that

a range query satis�es these constraints is 1
<1 log<1<2

2 ...<
2
3
. Let G =

<1 log<1<2
2 ...<

2
3 . After observing 10G logG queries, then we will

not have observed even one query satisfying the constraints with
probability (1 � 1/G)10G logG ⇡ 1

G10 . There are<1/2 such queries
from � and <1/2 similar such queries from ⌫. By union bound,
the probability that even one of them is missing is approximately

<1
(<1 log<1<2

2 ...<
2
3)10
 1
<5 . There are fewer than< rows, thus the

218

https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1109/SP.2018.00002
https://www.usenix.org/conference/usenixsecurity21/presentation/oya
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://cryptography.io/
https://cryptography.io/
https://doi.org/10.1109/SECPRI.2000.848445
https://crawdad.org/spitz/cellular/20110504
https://doi.org/10.1145/2590296.2590305
https://doi.org/10.1145/2590296.2590305

A�acks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

probability we missed one of them is  1
<4 . We can make a similar

argument for each PQ tree, concluding that if the adversary observesÕ3
8=1 ⌦

⇣
<2

<8
log<8 · log

⇣
<2

<8
log<8

⌘⌘
queries, Algorithm 1 achieves

FDR with probability greater than 1 � 1
<2 .

The volumemap contains$ (<2) entries and in theworst case the
entries comprise of $ (<) tokens and volumes. The algorithm thus
requires $ (<3) storage. Algorithm 1 �rst identi�es all tokensets of
prime size which takes $ (<3) time. The Algorithm then identi�es
which tokens correspond to the same one-dimensional slice. This
requires a loop over all $ (<2) tokensets and on each loop doing
a set intersection between sets of size $ (<), $ (<2) times. Thus,
it takes $ (<5) time. We then construct a PQ tree for each one-
dimensional slice and create the augmented graph ⌧ , which takes
$ (<2) time. Thus, Algorithm 1 takes $ (<5) time, $ (<3) space
and succeeds with probability greater than 1 � 1

<2 after observingÕ3
8=1 ⌦

⇣
<2

<8
log<8 · log

⇣
<2

<8
log<8

⌘⌘
queries uniformly at random.

⇤

A.3 Proof of Theorem 3
P����. Consider a token C and its neighboring tokens C0, C 00, C1, C

0
1,

..., C3 , C
0
3 . There exists a range query that issues C with each one of

its neighboring search tokens. There exists no query of size two
with C that does not contain one of its neighbors as that query
would not correspond to a valid range. Combining all these queries,
we can construct a grid that covers the entire domain. This grid
is dense and does not allow for re�ectable components as in [25].
Thus the reconstruction space only includes transformations of ⇡
corresponding to the symmetries of a 3-cube. ⇤

A.4 Proof of Theorem 4
P����. R�������� ���� URC. Recall that URC “starts with

the set of nodes output by BRC, and keeps on breaking certain
nodes into their two children, until there is at least one node for
each level 0, . . . ,<0G , where<0G is the highest level of nodes in
the result” [19]. The attack constructs a graph ⌧ that orders the
search tokens of ranges of size 1. We now show that (i) the nodes
of ⌧ are one-to-one with the domain points; (ii) between any two
neighboring points in the domain, there is an edge between their
respective search tokens in⌧ ; and (iii) no edge exists between search
tokens whose corresponding canonical ranges are not neighbors.

(i) By de�nition of URC, only range queries of size 1 result in
the client issuing a single token. On line 1 Algorithm 2, the attack
computes the set &1 of all tokensets of size 1. The algorithm then
de�nes graph ⌧ = (+ , ⇢) on the vertex set + = {C : {C} 2 &1},
therefore its nodes correspond to the domain points in D.

(ii) By de�nition of URC, it also follows that all range queries of
size 2 are covered with two canonical ranges. So to query a range
of size 2, a client must issue two search tokens: one for each of the
two points in the range. One line 2, the algorithm computes the
set &2 of tokensets of size 2 whose tokens appear in &1. For each
{C, C 0} 2 &2, the algorithm adds the edge (C, C 0) to ⌧ . Tokens C and
C 0 must correspond to neighboring points inD and there is an edge
(C, C 0) in ⌧ .

(iii) Let C and C 0 be tokens of non-neighboring points ?, ? 0 2 D,
respectively. However, ? [? 0 is not a valid range. Thus {C, C 0} is
not a valid tokenset and the algorithm never adds edge (C, C 0) to ⌧ .

From these three properties, it follows that ⌧ contains a compo-
nent of size< that fully orders the point-value search tokens and
their volumes, thus resulting in full database reconstruction.
�����������BRC.Recall that the Quad-BRC scheme is a scheme
with exact cover and no false positives. As before, the algorithm
constructs a graph⌧ that orders the search tokens of range queries
of size 1. We now prove that (i) the vertex set of ⌧ contains the
search tokens corresponding to the domain points of D (ii) be-
tween any two neighboring points in the domain, there is an edge
between their respective search tokens in⌧ ; and (iii) no edge exists
between search tokens whose corresponding canonical ranges are
not neighboring ranges of the same size.

(i) The leaves of the quadtree correspond to the individual do-
main points and thus, under BRC, a range of size 1 is covered by a
single canonical range of size 1. Correspondingly, the client issues
a single search token to query for a range of size 1. On line 1 Algo-
rithm 2 the algorithm computes the set &1 of all tokensets of size 1.
This set thus contains the tokensets of all range queries of size 1.

(ii) In the quadtree, all canonical ranges are hypercubes. Con-
sider a range of size 2; under BRC this range is covered using two
canonical ranges, one for each point . For all ranges of size two, the
client must issue two search tokens {C, C 0} such that {C}, {C 0} 2 &2.
Thus {C, C 0} 2 &2 and the algorithm adds edge (C, C 0) to ⌧ .

(iii) In a quadtree with BRC, a range query corresponds to two
search tokens if and only if the range can be covered by two neigh-
boring canonical ranges of the same dimension. For a contradiction,
suppose that A and A 0 are canonical ranges of unequal size such that
A 6 A 0 and A 0 6 A , and let C and C 0 be their corresponding search
tokens. Then A [A 0 is not a hyper-rectangle and thus is not a valid
range query. This implies that the tokenset {C, C 0} cannot exist and
so the edge (C, C 0) is not added to ⌧ .

Now suppose that A and A 0 are non-neighboring canonical ranges
of the same size, and let C and C 0 be their corresponding search
tokens. Once again, A [A 0 is not a valid range, {C, C 0} is not a valid
tokenset, and thus (C, C 0) is never added to ⌧ .

As before, full database reconstruction follows.
C��������� A�������. For both schemes, the graph ⌧ has size
$ (<). For the range scheme, the volumemap has size$ (<2 log3<),
and thus it takes $ (<2 log3<) time to go through VM and con-
struct ⌧ . For the quadtree, the volume map has size $ (<2+3�1/3)
– the total number of queries $ (<2) multiplied by the worst case
range cover $ (<3�1/3).

If the adversary has observed all possible queries, which hap-
pens with high probability after ⌦(<2 log<) uniformly distributed
queries by the coupon collector principle, graph ⌧ contains all
search tokens corresponding to domain points and all edges corre-
sponding to range queries of size 2. ⇤

A.5 Proof of Theorem 5
P����. R�������� ���� URC. Under URC, the client sends a

single search token only when it queries a canonical range of size 1,
219

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

i.e. a single point. Thus, all ranges of size 2 must be covered by two
ranges: one range for each of the two domain values in the range.

Let&1 be the set of all tokensets of size one. And let&2 be the set
of tokensets of size two consisting of only tokens appearing in &1.
Observe that there is a bijection fromD to search tokens appearing
in &1. This implies that there is a bijection from ranges of size two
to &2. Given &2, the client can thus construct a grid spanning the
domain of the database, thereby fully ordering the search tokens
and recovering their corresponding value. The reconstruction space
thus corresponds to the symmetries of a 3-cube.
������� ���� BRC. Under BRC, the only time that the client
sends a single search token is when it queries a canonical range,
i.e., a quadrant of size 283 where 8 2

⇥
0, 13 log2<

⇤
.

Let &1 and &2 be de�ned as before. In a quadtree with BRC, a
range query corresponds to two search tokens if and only if the
range can be covered by two neighboring canonical ranges of equal
size. Thus, for any range of size two, the client must issue a search
token for each point in the range.

Thus, there is an injective mapping from ranges of size two to
tokensets in&2. Thus, given&2, the adversary can construct a multi-
component graph whose components represent a partition of the
canonical ranges of the same size. There thus exists a component of
size<, whose nodes correspond to the< domain points. From this
component, the adversary can extract a full ordering of the search
tokens and recover their corresponding value. The reconstruction
space is thus the symmetries of a 3-cube. ⇤

A.6 Proof of Theorem 6
P����. First, we show that we can reconstruct the inner grid

database D and then we show that we can reconstruct the vol-
umes of the extreme points as well (up to the symmetries of the
square). Finally, we show that our algorithm succeeds with prob-
ability greater than 1 � 1

<2 after observing ⌦(<2 log<) queries
uniformly random queries in $ (<4) time.

The �rst step of the algorithm is to construct a co-occurrence
graph ⌧ with nodes search tokens (i.e. range tree nodes), and an
edge between two nodes if there is a tokenset consisting of the
two of them. Then, for each tokenset (of size greater than two,
we observe a grid (Lemma 3) graph ⌧(of ⌧ induced by the nodes
of (. In a one-dimensional query, this is a line graph. ⌧(is also
a line graph when the nodes of ⌧(cover the same ranges in all
dimensions but one. In case of a line graph, ⌧(only has two nodes
that have the smallest degree. In all other cases, there are four or
more nodes that have the smallest degree, as they are the corners
of the grid.

We are able to identify all one-dimensional queries (including
some higher dimensional ones) by noting which tokensets have
only two nodes with the smallest degree in ⌧(. The next step is to
identify the inner nodes that cover two domain points. We measure
the 43642>D=C of each edge 4 = (B1, B2): the number of times B1 and
B2 appear in our identi�ed queries together. Note that a token cor-
responding to a query of size 2, B1, (e.g. 6⌘ in Figure 3) is connected
in ⌧ with another token B2, such that their edgecount is exactly
2. There are only two possible tokensets that contain B1 and B2 to-
gether, (B1, B2) and (B1, B2, B3), for some token B3. Extending the range
in either direction will replace either B1 or B2 with their ancestors.

For example, there are only 2 tokensets containing6⌘ and 8 together,
(6⌘, 8) and (6⌘, 8, 5). Extending the range in one direction replaces
6⌘ with {4 5 6⌘} and in the other direction replaces 8 with {8 9}. Note
that any other one-dimensional tokens that cover a larger range,
have edges with higher edge counts as there are more possible
tokensets. For example, there are three tokensets containing 4 5 6⌘
and 8 together,(4 5 6⌘, 8), (4 5 6⌘, 8,3) and (4 5 6⌘, 8, 23). Extending the
range in one direction replaces 6⌘ with {4 5 6⌘} and in the other di-
rection replaces 8 with {8 9}. It is possible that inner nodes that cover
multi-dimensional ranges have 43642>D=C of 2 with a non-inner
node. However, these tokens cannot be connected to leaf tokens
as they would not form valid ranges, and thus such edges do not
exist in ⌧ . In the end, we only consider the largest component of
the graph, which contains the leaf tokens, ignoring other smaller
components that may contain these multi-dimensional tokens.

At this point, we have identi�ed the inner nodes that cover
pairs of points and most of the point-query tokens. We still have
to distinguish between certain leaf tokens and certain boundary
tokens. Speci�cally, some inner tokens have isomorphic edges with
edgecount of two. One edge connects to a boundary node, and the
other edge connects to an inner node. For example, in Figure 3,
nodes 3 and 0123 are isomorphic. We are able to extract the correct
token, by picking the one with the most edges in the original co-
occurrence matrix. The leaf node will always have one more edge
than the boundary node, as the leaf node can be in a tokenset with
the boundary node’s sibling.

Now, we have identi�ed all the pair token nodes and the tokens
(or volumes) of all non-extreme leaf nodes. However, due to the
nature of BRC and graph⌧ , they are not in order. By doing a series
of swaps and contractions, removing the pair-token nodes and
putting the leaf nodes in order, we can reconstruct the inner grid
of the database.

Once we have reconstructed the inner grid of the database, we
can now reconstruct the volumes at the extreme points. Note that
for the inner grid, we were able to identify which search token
corresponds to which domain point. However, we cannot do the
same for the extreme points, we can only extrapolate the volumes.
The reason is that due to BRC, the search tokens for extreme points
of the database often appear alone. For example, in Figures 3 and
4, the corner search tokens appear identical in the co-occurrence
graph (nodes 0, ? and 0, 3 , ? ,< respectively).

In our 3-dimensional grid, in place of each domain point ? ex-
treme in one dimension is a search token B covering ? and its
neighbor ?= , where B has exactly one neighbor in our graph⌧ 0, the
search token covering ?= . We can thus extrapolate the volume of
? from the volumes of B and ?= . We are unable to generalize this
technique to tokens extreme in multiple dimensions as there is no
such token.

Let’s assume we have extrapolated all volumes of domain points
extreme in up to 8�1 dimensions. For each domain value E (extreme
in 8 dimensions) we have yet to extrapolate, we have to �nd a basic
8-dimensional cube 2 with sides of size 2, that contains E . In order
to identify this cube, we leverage the structure of BRC tokensets.
The range query that covers an 8-dimensional cube of side length
3, 23, which includes E , consists of a tokenset of size 8+2. These
tokens correspond to an 8-dimensional cube of side length 2, 22,
(containing E), one token corresponding to a point value C diagonal

220

A�acks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

to E right outside 22, and 8 2 ⇥ 1 rectangles, set '. Essentially, the
rectangles extend 22 by one value in each dimension. We need one
more point to cover all of 23, which is C . Using the co-occurrence
graph and the inner grid, we are able to identify tokens from '
and C . Then, the smallest response that contains all of them, must
contain 22, in order to form a valid range. Then, using the volume of
22, we can extrapolate the volume of E . For example in Figure 4, to
extrapolate the volume of 0, the 2-dimensional cube of side length
2 is {014 5 }, the 2 2 ⇥ 1 rectangles are {8 9} and {26} and C = : . This
way, we can extrapolate the volume of domain points extreme in 8
dimensions. Thus, by induction, our algorithm can �nd the volumes
of all extreme domain points.

The �rst step of the algorithm is to create dictionaries ⇢,& , which
takes $ (<2 log3<), as we have to go through all possible queries
and their responses. Then, we go through $ (<2) tokensets and for
each construct a graph with their tokens and remove relevant edges
from ⌧ . This takes $ (<4) time. Then, we disambiguate identical
components of the graph and contract edges of the graph, which
takes at most $ (<2) time. Then, we swap one-dimensional section
of the graph, which takes $ (<2) time.

We then have to identify volumes of the extreme points. There
are$ (<) such points, and for each point we �nd a constant number
of neighbors in two graphs, which takes$ (<2) time. Then, we look
through the tokensets to identify the required tokenset and extract
the extreme point’s volume. Finding the extreme point values takes
$ (<3) time. Thus, in total, our attack takes $ (<4) time.

Our attack needs to observe all possible queries and their re-
sponses to work. Using a coupon collector argument, we observe
all possible queries after the ⌦(<2 log<) queries have been issued
under a uniform distribution with probability greater than 1 � 1

<2 .
The adversary needs $ (<2 log3<) space to store the search to-

kens and their responses. Graph⌧ requires$ (<2) space, with$ (<)
nodes and $ (<2) edges, similar to the temporary storage required
by the ⌧(’s. Most work on the algorithm is done on these graphs
and there is a constant number of additional data-structures used,
all requiring less than $ (<2) space. Thus, the algorithm requires
$ (<2 log3<) space.

⇤

L���� 3. Let ⇡ be a 3-dimensional database, over domain D =
[<1] ⇥ . . . ⇥ [<3], with< =<1 · . . . ·<3 , which is encrypted under
the range tree scheme and leaks volume, search and structure pattern
under BRC. Let ⌧ be the co-occurrence graph with nodes the tokens
of the range tree, and an edge between two nodes if they compose a
tokenset. Graph ⌧(induced by the nodes of a tokenset (on ⌧ forms
an :-dimensional grid, where 1  :  3 .

P����. We prove this lemma by induction on the number of
dimensions of the range that corresponds to tokenset (. In case of
a 1D range query (on range A), we show that the corresponding
tokenset (forms a line graph⌧(of⌧ induced on the nodes of (. A
token B 2 (has one or two edges in ⌧((unless |(| = 1).

Let us say that B1 covers one of the endpoints of A , range A1. As
(forms a valid range, some token must cover the domain point
? 2 A , right next to A1. Let us say token B2 covers A2, with ? 2 A2.
As A1 + A2 form a valid range, there is an edge between B1 and B2
in ⌧(. Notably, B1 cannot be connected to any other token in (,

0

0

1 0 1 0
0 0 0 0
1 0
0 0

1 0
0 0

1 0 1 0
0 1
1
0 1

0
0 1

1
0
1
0 1 0 1

(a) (b) (c)

 …
…

Figure 9: Here we demonstrate an assignment of volumes that gives
a lower bound on the reconstruction space of (a)�ad-SRC scheme
and (b)-(c) the QDAG-SRC scheme.

as it would not form a valid range. On the other hand, 9? 0 2 A
right outside A2 (if |(| > 2). Thus, some token B3 2 (must cover
it (with range A3). Since A2 + A3 forms a valid range there exists an
edge between B2 and B3. Since this is a 1D query, B2 cannot have
any other connections. Similarly we can show that any token of (
that does not correspond to range covering an endpoint of A has
two edges and the remaining two have one edge. Thus,⌧(is a line
graph, which is a one-dimensional grid.

Suppose that any tokenset covering an (8�1)-dimensional range
query forms a grid. Let (cover an 8-dimensional range A . Let the
last dimension of A be of size : . There are : (8 � 1)-dimensional
ranges A 9 , 9 2 [1,:] that can be combined to cover A . Let A 9 and A 9+1
di�er by one in the last dimension. Let tokens B 9 (covering some
part of A 9) and B 9+1 (covering some part of A 9+1) cover the same
ranges in the �rst 8 � 1 dimensions. The combination of the ranges
they cover is valid. Thus, there either exists an edge between them
in ⌧ or there exists a token that covers their ranges combined.

Let)8 be the set of tokensets (9 covering each of the : (8 � 1)-
dimensional ranges A 9 . For each neighboring pair of tokensets in
)8 , there either exists a new tokenset (0 that covers their combined
ranges (larger tokens apply) or the tokens are included in the BRC
response (if no possible combination with neighbors exists). Note
that it cannot be the case that only a subset of the neighboring
tokensets can be combined, as the tokens are created in the same
way for the di�erent neighboring ranges. In case they are included
in the BRC response, this pair of tokensets forms a grid (with their
edges from⌧). Additionally, any new tokenset (replacing a previous
pair) must also form a grid with its neighbors. Since all neighboring
tokensets form grids, all of them together in ⌧(form a grid of
dimension up to 8 , (potentially the (8 � 1)-dimensional ranges form
a grid of dimension smaller than 8 � 1).

⇤

A.7 Proof of Theorem 8
P����. We show that each solution in A corresponds to a valid

database. Let ⌧ be the underlying DAG over domain D. For cor-
rectness we require that for all nodes E in ⌧ .

GE =
’

F sink of⌧,
F.A0=64✓E.A0=64

GF . (4)

That is, for every node E in ⌧ , E ’s volume must be the sum of
the volumes assigned to the leaf-nodes that correspond to points
in E .A0=64 . By Property (1), any non-sink node E of has a subset
of children ⇠ such that {2 .A0=64 : 2 2 ⇠} partition E .A0=64 . By

221

Proceedings on Privacy Enhancing Technologies 2023(4) Markatou and Falzon, et al.

Equation 2 there exists a constraint of the form GE =
Õ
22⇠ G2 . Each

2 2 ⇠ , must itself also have a subset of children⇠ 0 whose canonical
rages partition 2 .A0=64 . By recursively substituting the variables
corresponding to the children that partition the canonical range of
each variable, until we reach the sinks (which are 1-1 with the points
in the domain by Property (2)), we end up with the Equation 4.
Each of the substituted equations are constraints in the ILP that
are satis�ed, so Equation 4 must also be satis�ed. We conclude that
any solution in A must correspond to a real database.

Let (L denote the reconstruction space and let (A be the set
of databases that correspond to solutions in A. We will show that
(A = (L . It is straightforward to see that (L ✓ (A . In particular,
since Equations 2 and 3 characterize the DAG⌧ , then any database
⇡ 2 (L must satisfy the ILP.

Next we show that (A ✓ (L . Since the databases in (L are
leakage-equivalent, then by Theorem 1 they result in the same
volume map VM and frequency map FM, assuming each range
query is issued exactly once. By Theorem 1 it is su�cient to show
that the databases in (A also result in VM and FM.

Let b⇡ 2 (A and let b⌧ be its DAG of b⇡ with volumes assigned
to each node. Let dVM and cFM be the volume map and frequency
map of b⌧ , respectively. From the leakage, we can build a map "
mapping each observed tokenset t to its volume-frequency pair
(E>;, 5). Equation 3 restricts each observed volume to be assigned to
one node. The constraints impose a 1-to-1 correspondence between
each volume with a given frequency 5 and each node in the DAG
with frequency 5 . Since each observed tokenset has an associated
volume-frequency pair, then the tokensets are 1-to-1 with the nodes
in b⌧ ; in particular each tokenset t such that" [t] = (E>;, 5) can be
mapped to a node of b⌧ with volume-frequency pair (E>;, 5).

Since each volume-frequency pair is 1-to-1 with the nodes in theb⌧ of the same frequency then E must also have the same frequency
and volume. Thus cFM[t] = FM[t]. Also, we have that dVM[t] =
(C, E>;t) = VM[t]. Since this holds true for all tokensets, then dVM =
VM and cFM = FM. This proves that Algorithm 5 achieves full
database reconstruction.

The proof demonstrating that the input is available with proba-
bility 1 � 1

<2 after the adversary observes $ (<4 log<) uniformly
distributed queries follows from Lemma 4. ⇤

A.8 Proof of Theorem 9
P����. We demonstrate an assignment of volumes to the data-

base resulting in a reconstruction space exponential in<. Each leaf
node has 3 siblings. For each set of 4 sibling leaf nodes assign a
volume of 1 to one leaf and 0 to the other siblings. Each leaf has a
frequency of one and thus any set of volumes corresponding to the
four siblings can be permuted; there are 22 unique permutations
per set of 4 siblings, and</(22) such sets of siblings. More gener-
ally, we see that the reconstruction space of the quadtree is lower
bounded by (23)</23 � 23 (3!).

In contrast, the QDAG with the SRC range covering algorithm,
o�ers a smaller false positive rate at the expense of a signi�cantly
smaller reconstruction space; we note however that the reconstruc-
tion is still $ (23�1) greater than the symmetries of the hypercube.
This is because the additional nodes and edges in the QDAG create
a number of additional restrictions that the volume assignments

must satisfy, hence reducing the total number of possible symme-
tries. In order to maintain the same volume assignments to the leaf
nodes’ parents, we cannot independently permute the volumes of
the leaves.

Each QDAG node corresponding to each domain point not at
the edge of the database is covered by an additional three nodes
(compared to the quadtree). Assign each such domain point a unique
value greater than 1. Each QDAG node corresponding to the domain
points at the edge of the database is covered by 0 additional nodes (in
the case of a corner) or 1 additional node otherwise. Assign each of
these external domain points alternating bit volumes (See Figure 9).
Since there is an even number of domain values along each edge
this alternating bit assignment is always possible. Now observe,
for a given edge, we can re-assign the bit-complement volumes to
the domain points along the edge. The volumes associated with
the nodes covering the edge nodes remain the same. In general,
we can re-assign the bit-complement volumes to parallel edges
independently of each other. In two dimensions this results in 22+22
additional symmetries. In 3 dimensions this results in 3 · 22(3�1)

additional symmetries. Composing them with the symmetries of
the hypercube yields a lower bound of 23+2

(3�1) (3) (3!). ⇤

B ESTIMATING FREQUENCIES

In the SRC attack (Algorithm 5) we assume that each query
is issued exactly once. This is a strong assumption, so we now
show how an adversary can correctly estimate the frequencies with
inverse polynomial probability in $ (<).

Algorithm 6: G��F���������(b� ,⌧,D)
1: // b� is a dictionary mapping search tokens to the number of times each

search token was observed,⌧ is a DAG over domain D.
2: Let # be the number of queries observed.
3: Let& be the number of unique range queries over D.
4: for st in �̂ do
5: b� [st] b� [st]/(# /&)
6: return b�

L���� 4. Let ⇡ be a 3-dimensional database, over domain D =
[<1] ⇥ · · · ⇥ [<3], which is encrypted under the QDAG SRC scheme.
Let b� be a dictionary mapping the observed search tokens to the
number of times that search token was observed, ⌧ be the QDAG
over D. If the adversary observes # uniformly distributed queries,
then the frequency of each search token st computed by Algorithm 6
(G��F����������) corresponds to the number of unique range queries
that are associated with st happens with probability at least 1 �
2|b� | exp(�2# /<4), where< =<1 ⇥ · · · ⇥<3 .

P����. Suppose that the adversary has observed# queries being
issued, and has constructed a dictionary b� . For each search token
st observed de�ne the i.i.d. random variable

-8 =

(
1, if the iC⌘ search token is st
0, otherwise.

222

A�acks on Encrypted Response-Hiding Range Search Schemes in Multiple Dimensions Proceedings on Privacy Enhancing Technologies 2023(4)

Let /st be the number of unique range queries that correspond to
search token st and let & is the number of unique range queries
over D. Observe that we have

E[-8] =
/st
&

.

De�ne variable �st =
Õ#
8 -8 . We thus have that G��F���������

succeeds when for all st we have
�st
#
2


/st
&

± Y

�

for Y = $ (1/&) = $ (<�2). Applying a Cherno� bound argument
we see that

Pr

�st
#
� #

✓
/st
&
� Y

◆�
 exp(�2#Y2) .

A similar argument holds for the upper bound. Taking a union
bound over the |b� | times we must approximate frequencies gives
us a total success probability of 1 � 2|b� | exp(�2# /<4). ⇤

223

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries
	2.1 Range Trees and Quadtrees
	2.2 Formalizing Leakage
	2.3 Attack Input
	2.4 Equivalent Databases.
	2.5 Threat Model and Assumptions

	3 The Linear Attack
	3.1 Reconstruction Attack
	3.2 Reconstruction Space

	4 Token Pair Attack
	4.1 Reconstruction Attack
	4.2 Reconstruction Space

	5 The Range-BRC Attack
	5.1 Reconstruction Attack
	5.2 Reconstruction Space

	6 SRC Schemes Attack
	6.1 Reconstruction Attack
	6.2 QDAG-SRC
	6.3 Quadratic-SRC Scheme

	7 Experiments
	7.1 Results

	8 Takeaways
	8.1 General Techniques
	8.2 Comparing our Attacks to Prior Work
	8.3 Extending our Attacks
	8.4 Structure vs. Access Pattern
	8.5 Mitigations

	9 Conclusion
	Acknowledgments
	References
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Theorem 3
	A.4 Proof of Theorem 4
	A.5 Proof of Theorem 5
	A.6 Proof of Theorem 6
	A.7 Proof of Theorem 8
	A.8 Proof of Theorem 9

	B Estimating Frequencies

