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Abstract. We are concerned with interior and global gradient estimates for solutions to a class
of singular quasilinear elliptic equations with measure data, whose prototype is given by the p-
Laplace equation —Apu = p with p € (1,2). The cases when p € (2 — %,2) and p € (gﬁ:%@ - %]
were studied in Duzaar and Mingione [J. Funct. Anal. 259 (2010), 379-418] and Nguyen and Phuc
[J. Funct. Anal. 278 (2020), art. 108391] respectively. In this paper, we improve the results of
Nguyen and Phuc and address the open case when p € (1, SZZ%] Interior and global modulus of

continuity estimates of the gradients of solutions are also established.
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1. Introduction

In this paper, we consider the quasilinear elliptic equation with measure data
—div(A(x,Vu)) =pu (1.1)

in a domain 2 C R”, where n > 2. Here u is a locally finite signed Radon measure in €2,
namely, |p|(Br(x) N ) < oo for any open ball Bg(x) C R”. By setting | |(R"” \ ) =0,
we will always assume that p is defined in the whole space R”. The vector field A =
(A1,...,4,) : Q x R" - R” is assumed to satisfy the following growth, ellipticity, and
continuity conditions: there exist constants A > 1, s > 0, and p > 1 such that

|AGx. &) < A%+ [E)PV2 | DeA(x &) < A2+ 1EPHPP2 (1.2

(DeA(x,E)n,m) = 271 (% + € @22 )2, (1.3)

Hongjie Dong: Division of Applied Mathematics, Brown University, Providence, RI 02912-9056,
USA; hongjie_dong@brown.edu

Hanye Zhu: Division of Applied Mathematics, Brown University, Providence, RI 02912-9056,
USA; hanye_zhu@brown.edu

Mathematics Subject Classification (2020): Primary 35J62; Secondary 35J75, 31C45, 35B65,
35R06


mailto:hongjie_dong@brown.edu
mailto:hanye_zhu@brown.edu

H. Dong, H. Zhu 2

and
|A(x,§) — A(x0, )| < Ao(|x — xo|)(s? + |E[>)P~D/2 (1.4)

forall x, xg € Q2 and every (§,7) € R” x R" \ {(0,0)}, and w : [0, 00) — [0, 1] is a concave
nondecreasing function satisfying

lim w(r) =w(0) =0
r—0+

and the Dini condition
1 dr
/ w(r) — < oo. (1.5)
0 r

A typical model equation is given by the (possibly nondegenerate) p-Laplace equation
with measure data and s > O:

—div(a(x)(|Vul]® + s)P22Vu) = 1 inQ, (1.6)
where a(-) is a Dini continuous function in €2, satisfying
0<Ail<akx)<a (1.7)

and
la(x) —a(xo)| < Aw(]x — xol) (1.8)

for all x, xg € Q2.
By a (weak) solution to (1.1), we mean a function u € Wlic’p (£2) such that the distri-
butional relation

/Q(A(x,Vu),an)dxz/qudu

holds whenever ¢ € C$°(2) has compact support in 2. We denote
Br = Br(0), Qg(x) =N Br(x).

The gradient estimates for the superquadratic case when p > 2 have been well studied
in the literature; see [8, 10, 13, 19,20]. However, the corresponding results for the singular
case when p € (1, 2) are far from complete.

In this paper, we are only concerned with the singular case when p € (1,2).

For singular quasilinear equations, the case when p € (2 — %, 2) was considered in
the pioneering work [9], in which the authors proved that under conditions (1.2)—(1.5), if

u € C'(Q) solves (1.1), then
IVu(o)| < COR(uh )] 7T + C]i ( )(IVU(y)I + ) dy
R(x

for every ball Bgr(x) C Q with R € (0, 1], where C = C(n, p, A, w). Here fE stands for
the integral average over a measurable set £, and

R
IF (D () :=/0 W? (1.9)
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is the truncated first-order Riesz potential. Later, the case when p € (g:’lj ,2— %] was

treated in [22], where the authors obtained a pointwise gradient bound involving the Wolff

potential under stronger assumptions on A and w. Namely, under the conditions (1.2)—
(1.4) and further assuming that

|DgA(x,§) — DeA(x, 1)
< A%+ [EP) P2 (52 4 |2 P22 (52 4 £ + || @0/ 2] — %o (1.10)
and

1
/ a)(r)yﬂ < 00
0 r

(p—1) . . .
for some ag € (0,2 — p) and y € (5. “252) € (0, 1), if u € C'(R) is a solution to
(1.1), then

. 1y
|Vu<x>|sC[Pf(mD(x)w—n+C(][ (|Vu(y)|+s)ydy) ,

where C = C(n, p, A, ¢, w, y) and

R ; Y d
PG = [ (PR

-1 t

is a truncated nonlinear Wolff potential. We recall that in general, the truncated Wolff
potential is defined as

R (|ul(Bi(x)\ 7T d
W (o = [ (M) X e am

th—Bp

Our first main result is stated as follows.

3n—2
2n—1°
u e Wl’p(Q) is a solution to (1.1). Then under the assumptions (1.2)—(1.5), there exists

loc
a constant C = C(n, p, A, w) such that the estimate

Theorem 1.1 (Interior pointwise gradient estimate). Let p € (

2) and suppose that

V()] < CHR (DI + C(][ AT+ 227 dy) RS

Br(x
holds for any Lebesgue point x of the vector-valued function Vu and any R € (0, 1] with
Br(x) C Q.

Remark 1.2. Our pointwise bound in Theorem 1.1 using the Riesz potential 1% (|u) is
an improvement of the bound in [22, Theorem 1.1] which contains the Wolff potential
Pf(|u|), since

IR(u) < CPZR(uhr vy <.

The conditions on w and A in Theorem 1.1 are also weaker. In particular, (1.10) is not
assumed.
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3n—2

For the more singular case when p € (1, 57=F

following Lipschitz estimate.

], which has been open, we obtain the

Theorem 1.3 (Interior Lipschitz estimate). Let p € (1,2) and suppose that u € Wléc’p ()
is a solution to (1.1). Then under the assumptions (1.2)—(1.5), there exists a constant
C = C(n, p, A, w) such that the estimate

1 u
”Vu”L‘X’(BR/z(x)) SC||I§(|M|)||Z;I(BR(X)) +CR ﬁ“|V74| +SHL2_P(BR(x)) (1.13)
holds for any R € (0, 1] with Br(x) C Q.

We also obtain a modulus of continuity estimate of Vu in Theorem 4.3, which directly
implies the following sufficient condition for the continuity of Vu.

Theorem 1.4 (Gradient continuity via Riesz potential). Let p € (1,2) andu € Wléc’p (2)
be a solution to (1.1). Assume that (1.2)—(1.5) are satisfied and the functions

X If(|;1,|)(x) converge locally uniformly to zero in Q as R — 0. (1.14)
Then Vu is continuous in 2.

Recall the Lorentz space L™! is the collection of measurable functions f such that

/ooo x| (0] = )Y di < o

Theorem 1.4 has the following corollary.

Corollary 1.5 (Gradient continuity via Lorentz spaces). Let p € (1,2) andu € Wléc’p (2)
be a solution to (1.1). Assume that (1.2)—(1.5) are satisfied and

we L™ locallyin Q. (1.15)
Then Vu is continuous in 2.

We remark that the Lorentz-space result above was proved in [14] for a p-Laplacian
system similar to (1.6) when p € (1, 00).

A further, actually immediate, corollary of Theorem 1.4 concerns measures with cer-
tain density properties.

Corollary 1.6 (Gradient continuity via density). Let p € (1,2) and u € Wlsc’p (RQ) be a
solution to (1.1). Assume that (1.2)—(1.5) are satisfied and | satisfies

|1l(By(x)) < Cp" ' h(p) (1.16)

for every ball B,(x) CC 2, where C is a positive constant and h : [0, o0) — [0, 00) is a
function satisfying the Dini condition

R dr
/ h(r) — < oo forsome R > 0. (1.17)
0 r

Then Vu is continuous in 2.
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We remark that Theorem 1.4 and Corollaries 1.5 and 1.6 above are indeed the sub-
quadratic (p € (1,2)) counterparts of [13, Theorem 1.5 and Corollaries 1.6, 1.7]. See also
[8, Theorems 1, 3, and 4] and [20, Theorems 5.5 and 5.6]. We refer the reader to [8,13,20]
for a discussion of the borderline nature of the assumptions in these results.

Another interesting consequence of Theorem 4.3 is the following gradient Holder
continuity result.

Corollary 1.7 (Gradient Holder continuity via density). Let p € (1,2) andu € Wlic’p (2)
be a solution to (1.1). Then under the assumptions (1.2)—(1.5), there exists a constant
o € (0, 1), depending only on n, p, and A, such that if w(r) < CrP whenever r > 0 and
|| (Bp(x)) < Cp" '8 whenever B,(x) CC Q, for some constants C > 0and B € (0,),
thenu € CLF (Q).

Remark 1.8. We should stress that the constant ¢« in Corollary 1.7 is the natural Holder
exponent of the gradients of solutions to corresponding homogeneous equations with
x-independent nonlinearities (cf. Lemma 2.2). Therefore, our result in Corollary 1.7 pro-
vides the best possible Holder exponent for the gradient of the solution. The previous
corollary is an improvement of the gradient Holder regularity result by Lieberman [18,
Theorem 5.3], who proved u € Cl(l);ﬂl for some B; = B1(n, p, A, B) € (0, 1) under the
same assumptions.

We also obtain up-to-boundary gradient estimates for the p-Laplace equations with
measure data in domains with C 1"P™ boundaries.

Definition 1.9. Let © be a domain in R”. We say that  has C “P" houndary if there
exists a constant Ry € (0, 1] and a nondecreasing function wyg : [0, 1] — [0, 1] satisfying

1
d
/ wo(r) T < .
0 r

such that the following holds: for any xo = (xo1,x() € €2, there exists a C P function
(i.e., C! function whose first derivatives are uniformly Dini continuous) y : R*~! — R
and a coordinate system depending on x¢ such that

the Dini condition

sup |V x(x)) = Ve x(x3)] < wo(r),  Vr € (0, Ro).

|x]—x5|<r
and in the new coordinate system, we have
Ve x(xg)] =0, Qg,(x0) = {x € Bry(x0) : x1 > y(x')}.

Our global pointwise gradient estimate and Lipschitz estimate are stated as follows.

SZ:% ,2) and suppose

thatu € Wol’p (R2) is a solution to (1.6) with Dirichlet boundary data u = 0 on 02. Assum-
ing that (1.5), (1.7), and (1.8) are satisfied and Q has a C“°™ boundary characterized

Theorem 1.10 (Boundary pointwise gradient estimate). Let p € (
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by Ry and wy as in Definition 1.9, there exists a constant C = C(n, p, A, ®, Ry, wg) such
that the estimate

Vu()] < COR(p) @) 7T + C(][ (IVu@)| +5)*7? dy) ’ (1.18)

QRr(x)
holds for any Lebesgue point x € Q2 of the vector-valued function Vu and for all R € (0, 1].
Moreover, ifu € CY(Q), then (1.18) holds for any x € Q.

Theorem 1.11 (Boundary Lipschitz estimate). Let p € (1,2) and suppose that u €
Wol’p (R2) is a solution to (1.6) with Dirichlet boundary data u = 0 on 0Q2. Assuming
that (1.5), (1.7), and (1.8) are satisfied and Q has a CP™ boundary characterized by
Ry and wq as in Definition 1.9, there exists a constant C = C(n, p, A, ®, Rg, wg) such
that the estimate

1 .
”VMHLOO(QR/z(x)) = C||I{e(|ﬂ|)||fgol(QR(x)) +CR z7 ” [Vul + s“L2*P(QR(x)) (1.19)

holds for any x € Q and R € (0, 1].
As a corollary, we also obtain the global Lipschitz estimate when €2 is bounded.

Corollary 1.12. Let Q C R” be a bounded domain. Under the assumptions of Theorem
1.11, there exists a constant C = C(n, p, A, w, Ry, wg, diam(L2)) such that

1
[Vullpe (@) < C||Ii(|M|)||L”§ol(Q) + Cs.

A global modulus of continuity estimate is established in Theorem 5.10 under the
assumptions of Theorem 1.11. One may also deduce corresponding up-to-boundary gra-
dient continuity results from Theorem 5.10 similar to Theorem 1.4 and Corollaries 1.5—1.7
from Theorem 4.3.

Let us give a brief description of the proofs. We first apply an iteration argument to
get an LY0-mean oscillation estimate of the gradients of solutions to the homogeneous
equation with x-independent nonlinearities

—div(4¢(Vv)) = 0

in Section 2, where yg € (0, 1). Our proofs of the interior gradient estimates are then based
on a comparison estimate between the original solution u of (1.1) and the solution to the
homogeneous equation —div(A(x, Vw)) = 0 in a ball Br with the boundary condition
u = w on dBR. The outcome is the inequality

1/vo
(][ |Vu — Vw|° dx)
BRr

o[ lBn) ™ clue

2—
Rn=1 Ri—1 ]iR(IWIJrs) Pdx, (1.20)
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which holds for some constant y¢ € (0, 1). The details can be found in Lemma 3.2. For
the case when p € ( ;Zj, 2), we can choose y9 = 2 — p, the same integral exponent
as on the right-hand side. We then borrow an idea in [6] by estimating the L?°-mean
oscillation to adapt the iteration scheme used, for instance, in [9]. However, for the case
when p € (1, ;Zj] we are only able to prove the comparison estimate (1.20) for some
Yo < 2 — p and that is the reason why we only obtain Lipschitz estimates instead of
pointwise gradient estimates in this case.

For the gradient estimates up to the boundary, we use the technique of flattening the
boundary and generalize the interior oscillation estimates to half-balls. We adapt an idea
in [2] to establish the global LY°-mean oscillation estimates by a delicate combination of
the interior estimates and the estimates near a flat boundary. To this end, we also apply
an odd extension argument to derive an L”°-mean oscillation estimate on half-balls for
homogeneous equations with x-independent nonlinearities. This argument only works for
equations in diagonalized form, such as the p-Laplace equation, so the global estimates
for general equations remain open. As a partial result in this direction, we refer the reader
to [22] for a weighted pointwise boundary estimate under the condition that d<2 is suf-
ficiently flat in the sense of Reifenberg. We also refer the reader to [1, 16] for boundary
regularity results for quasilinear equations with sufficiently regular right-hand side.

The rest of the paper is organized as follows. In the next section, we derive an L0-
mean oscillation estimate of solutions to the homogeneous equation with x-independent
nonlinearities. In Section 3, we give the proof of Theorem 1.1. Section 4 is devoted to
the Lipschitz estimate and the interior modulus of continuity estimate of the gradient of
solutions as well as some corollaries. Finally, in Section 5 we consider the corresponding
boundary estimates.

2. An oscillation estimate

This section is devoted to the proof of the following interior oscillation estimate for solu-
tions to the homogeneous equation

—div(4¢(Vv)) =0 in Q, 2.1)

where Ay = Ao (§) is a vector field independent of x satisfying conditions (1.2) and (1.3)
for some s > 0, A > 1, and p > 1. In this section, we denote the integral average over

BRr(x) by ()Bg(x)-
Theorem 2.1. Let v € W 7P () be a solution to (2.1) and yy € (0, 1). Then there exist

loc

constants « € (0, 1) depending on n, p, and A, and C > 1 depending on n, p, A, and yy,
such that for every Bgr(xo) C Q2 and p € (0, R), we have

1/yvo 0 \* 1/vo
inf (][ Vv — q|”0) <C (—) inf (][ Vv — q|y0) .2
q<R” \ J B, (x0) R) aeR"\ /By (xp)
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To prove the above theorem, we first recall a classical oscillation estimate. Estimates
of this type, with different exponents involved, were developed in [4,9, 17].

Lemma 2.2. Let v € WI;CP(Q) be a solution to (2.1). There exist constants C > 1
and a € (0, 1), depending only on n, p, and A, such that v € Cl(l);a () and for every
Br(x0) C Qandr € (0, R), we have

r\*
][ |Vl) — (Vv)Br(x0)|p dx < C(E) ][ |Vl) — (VU)BR(x0)|p dx.
B (x0) BRr(xo0)

The lemma above directly implies the following corollary.

Corollary 2.3. Under the conditions of Lemma 2.2, there exist constants C > 1 and
a € (0, 1), depending only on n, p, and A, such that for every Bgr(xg) C 2, we have

1/p
R Vlesnony (£ V0= Gomeel?) @3
BRr(xo0)
and for anyr € [R/2, R),
Rn/p+1—oc 1/p
[Vv]ces, < C—(][ Vv — (Vv)p |p) . 2.4)
(B (x0)) (R — ryr/p+1 Br(ro) R (x0)

Proof. Without loss of generality, we assume xo = 0. For any x € Bg/, and r < R/2,
by Lemma 2.2 we have

r\*
fove-@onr (%) L 190 G0l
B, (x) Br/>(x)

r\*
SC(—) F Vo= Vo,
R Br

By Campanato’s characterization of Holder continuous functions, we obtain (2.3).
Now for any r > R/2 and z € B,, using (2.3) and the triangle inequality, we have

1/p
[Volcas ey < CR— 1) (]i Vo - (Vv>BR_,<z>|P)

R—r(2)
R/ p 1/p
- _ p
SC(R—r)"/PJF“ (]ﬁR Vv — (Vv)p,| ) . (2.5)
Thus for any x, y € B,, let
2lx —
N:min{meZ:m>u}.
R—r

We can divide the line segment connecting x and y into N equal segments using
X1,...,XN—1, X0 = X, and xy = y, so that
x—yl _R-r

<
N 2

Xk — Xk41] =
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Then by the triangle inequality and (2.5), we have
N-1
IVu(x) = Vo)l < Y [Vola) — Vo(xgg)|

k=0
xX—-Yy

N- Rn/p 1/p
E — D
— (R — ryr/pte (/BR Vo = (Vo) ] ) N

. Rn/P 1/p
<CN ‘“m(/B Vv — (VU)Bklp) x = y|*
R

R 1-a Rn/p , 1/p N
<C Vv —(V —y|%,
- (R—r) (R —ryn/pte (/BR| v (Vs ) e

which directly implies (2.4). ]

o

| /\

Now we are ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. As before, without loss of generality, we assume xo = 0. Clearly
for any B, = B,(0) C 2, there exists q, = (qf,l), e ,qp ) € R” such that

1/v0 1/vo
Vv —q |V°) = inf (][ |Vv—q|y°) .
(]ip ? q€R" \ /B,

Also, it is easily seen that
qf,’) € Range(D;v|p,). (2.6)
We claim that there exists a constant C, depending only on 1, p, A, and yy, such that
1/yo
Vv —qp2llLeeB,,,) <C (]i Vv — (1p|y°) (2.7)
0
for any B,(xo) C Q.
We prove the claim by using Corollary 2.3 and iteration.

Forany R/2 <r < R < dist(xg, d2), using (2.4) and the triangle inequality, we get

Vv —q,llLoos,) < r*[Vvlces,)

Rn/p+1 1/p
N — D
=¢ (R —r)n/ptl (]iR Vv — (Vv)p| )
Rn/p+1 1/p
D T — D
=€ (R — r)n/p+1 (]iR Vv —qrl )
Rn/p+1 =0 ) \p
n_ n/p+1l - — 0
SC(R_r)n/pJ,-l”VU qR”Loo(BR)(][BR |VU QR| )

R/ p+1 p/vo 1/vo
<elVo—alimmo + G o) (Vo)
R



H. Dong, H. Zhu 10

where we have used Young’s inequality with exponents p/yo and p/(p — yo) in the last
line.

Now taking rp = (1 — 2_k)p, r =rg,and R = rg4+1, we have

IV = @r [l (B, )

1/yo
< eV~ lieoa, ) + Ce2 (]i Vo =y, |70)

Tk+1

1/yvo
= 8||VU ~Urg 4 ”LOO(B’k-H) + C€2kﬂ+"/y0 (][ |VU _ qp|1’0) ,
B,

where B = (n + p)/yo. Taking ¢ = 378, multiplying both sides by £* and summing in k,
we get

o0 o0
k k+1
Y FIVe—ar o) <Y & IVY =y lzescs,, )
k=1

k=1
1/yo
ve(f o)
By

where the summations are finite and C = C(n, p, A, o). By subtracting

o0

k
> VY — @ llLoo(s,,)
k=2

from both sides of the above inequality, we obtain (2.7). The claim is proved.
Now we are ready to prove (2.2). If r < R/4, by (2.3), (2.6), and (2.7) we get

1/vo
(][ IVv—quVO) < Cro[Vvlca(sg,s)
By

o l/p o 1/17
r r
sc(—) (][ |Vv—(VU)BR/2|p) 50(—) (][ IVv—qR/zlp)
R Br/a R Br>
P\ ¢ 1/yo
=c(&) 1w —awstiniman =€) (£, 170-au)

If r > R/4, we have

1/yo 1/yo
(f |Vv—qr|V°) 5(][ |Vv—qR|V°)
B, Br
F\ % y 1/yo
o~ ][IVv—qRI") .
(%) (£,

The theorem is proved. ]

IA
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3. Interior pointwise gradient estimates

In order to prove the interior pointwise gradient estimates, we follow the outline of argu-
ments given in [22] while replacing their oscillation estimates with our new oscillation
estimate in Section 2. We also borrow an idea from [6] by estimating the LY°-mean oscil-
lations of solutions, where y¢ € (0, 1).

Letu € Wlic’p(Q) be a solution to (1.1) and B, (xo) CC 2. We consider the unique
solution w € u + Wol’p (B2r(xp)) to the equation

{ —div(A(x, Vw)) =0 in Bay(xo), a1

w=u on B, (xp).

We first recall an interior reverse Holder inequality [11, Theorem 6.7]. See also [22,
Lemma 3.1].

Lemma 3.1. Let w be a solution to (3.1). There exists a constant 6, > p depending only
onn, p, and A such that for any t > 0, the estimate

1/6, 1/t
(][ ([Vw| + )% dx) <C (][ (IVw| + s)* dx) (3.2)
By/2(») B, (y)

holds for all B,(y) C B, (xo), where C = C(n, p,A,t) > 0.

We also have the following comparison result, which generalizes and refines similar
results in [9,21,23].

Lemma 3.2. Let w be a solution to (3.1) and assume that p € (1,2). Then for any
Yo € (0,2 — p] when p € (22=2,2), or yo € (0, (pill)") when p € (1, 32=2], one has

2n—1" n
1/yo
(][ |[Vu — Vw|"° dx)
B>y (x0)
1
B T B
<cC || (B2 (x0)) LC |1l (B2r(x0)) (V| + )7 dx,
rn=t rn—t B>y (x0)

where C is a constant depending only on n, p, A, and yy.

3n—2
* 2n—1
proof also works for p e (1, 21=2

> 2n—1
p € (;Zj ,2) and s > 0. By scaling invariance (see [9, Remark 4.1] for example), we

may assume that B, (x9) = B and |u|(B,) = 1. For k > 0, using

Proof. The case when p € (1

] and s = 0 was proved in [23, Lemma 2.1] and their

] and s > 0. Therefore, we focus on the case when

¢1 = T (u — w) := max {min {u — w, 2k}, ~2k}

as a test function in (1.1) and (3.1) and recalling (1.3), we have

V(@ —w)|?
(IVw| + [Vu| +5)>72°

/ g, w) <Ck with g°'(u,w) = (3.3)
BrN{lu—w|<2k}
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By the triangle inequality, we have
IV = w)| = g, w) 2(Voo| + [Vu| + )"

< &, w) 2V —w)| + AVl + 5"

< Cg*,w) 2V —w)| 2 + Cg* (u,w) (V| +5) 2"
Using Young’s inequality with exponents % and ﬁ, we obtain

IV(u —w)| < Cg*(u, w)"? + Cg*u, w)">(|Vu| + s)%Tp. (3.4)
Now we set
Er =B, Nk <|lu—w| <2k} and Fr = BN {u—w|>k}.

Using the Sobolev inequality, Holder’s inequality, and (3.4), we obtain

k|{x : Ju(x) — w(x)| > 2k} 0 By|"n

sC(/B |T2k<u—w>—Tk<u—w)|n”—l)
SC/Ek [V(u —w)]

< c/ (g G w)? + ¢ (. w) 2|Vl + 5)°7°)
Ey

- 1/p 1/2 1/2
sC|Ek|p(/E gS(u,w)) +C(/E g%aw)) (E(|Vu|+s)2—1’) .

n—1
n

(3.5)
From (3.3) and (3.5), we get
K2R < CRRP R 4 00,7
where Q1 := || |Vu| + S“LZ*P(Bz)' Therefore, by taking the sup over k € (0, 00), we
obtain 5
1/2 1/p—1/2 =
lu—wl2, < Clu—w] +C0,”
L20=D""(B) L2(=1"°(B,)
Since 3%=2 < p < 2, we have
n 2—p

2(n—1) 2( p—1)
which implies

B 24
2 <Clu—w712  +CO.” .

lu—wl "~y =
L20=1%(By) L7061 (By)
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Thus, by Young’s inequality, we obtain

2—p
<C+CQ,” . (3.6)

I =wll, sty 00,y =

Letk,/ >0and g = ﬁ By the Chebyshev inequality and (3.3), we have

{x:g*(u,w) > 1} N By]
<|x:lu—w|>k}NBy|+|{x:|u—w| <k, g’ w)>1}N B,
_ 1
<Ck™ju - w”Zq.oo(Bz) + 7 gf(u,w)dx
BrN{x: lu—w|<k}

< CK = ]y ooy, + C/1.

By choosing
1
S R N L
we get
_4q _4q
1T |{x g uow) > 1Y 0 Bl < Cllu — wl| [3% -
Therefore, by taking the sup over / € (0, co), we obtain
S
I8 Gl g,y < Cllt = 0o, (3.7)

Let yo € (0,2 — p]. By (3.4) and Holder’s inequality with exponents 2/p and 2/(2 — p),
we get

/ IV(u —w)[" < C/ (gs(u,w)y(’/p + gs(u,w)y"/2(|Vu| + s)yo(Z—p)/2)
B> B>

p/2 2
< s o/ N o/ 0
N C(/I;zg (u’U))y p) +C(~/Bzg (u’u))y p) (/Bz(|vu| +S)y )

2 2— 2
<Clg@ w2+ Clf@w|E PP 3y
L1+a (B L1+a 7" (B2)

In the last inequality, we have used the fact that

Yo q
_<—7 52_ .
p 1+g¢ vo P

Combining (3.6)—(3.8), we have
| = < ¢+ oo,
B>

which implies the desired result. ]

We now letv € w + Wol’p (By(x0)) be the unique solution to

{ —div(A(xg. Vv)) = 0 in B, (xo), (3.9)

v=w on 0B, (xg).
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By testing (3.1) and (3.9) with v — w, we obtain an estimate for the difference Vv — Vw:

][ Vv —Vw|? dx < Ca)(r)p][ (IVw| + s)? dx. (3.10)
By (x0) By (x0)

A detailed proof of this result can be found in [9, (4.35)]. Thus by (3.2) and Holder’s
inequality, we get

][ Vv —Vw|" dx < Cw(r)?° ][ (IVw| + s)" dx. (3.11)
By (x0) By (x0)

For aball B,(x) CC 2 and a function f € Wléc’p (€2), there exists qx,,( ) € R” such

that
1/yo 1/vo
(][ IVf—qx,p(f)I”O) =inf(][ IVf—qIVO) .
B, (x) 4€R" \JB, (x)

We denote qy,, = qx,,(u) and

1/vo
¢(x,p):mf(][ |Vu—q|V°) .
4€R" \ /B, (x)

4x.p = VU < lqx,p = Vu(2)" + [Vu(z) = Vu(x)|".

Since

by taking the average over z € B,(x) and then taking the yo-th root, we obtain

1/yo
|qx,p_w<x>|§c¢(x,p)+c(]£ |Vu(z>—w(x>|y°dz) .

p(x)

Therefore, from the definition of ¢ and the fact that 0 < yy < 1, we obtain

lin}) qx,p = Vu(x) (3.12)
p—>

for any Lebesgue point x € €2 of the vector-valued function Vu.

Proposition 3.3. Suppose that u € Wléc’p () is a solution to (1.1). Then for any ¢ € (0, 1)
and By (x¢) CC 2, we have

|M|(Bzr(xo)))”l_‘

yn—1

¢(X(), €r) =< Cgad)(xOv r) + C&‘(

|| (B2r (x0))

pn—1

(|Vu| + 5)>7?
Bar(x0)

_1
+Caa)(r)(]i ( )(|Vu|~|—s)2p)2 " (3.13)
2r (Xo

+ G

where a € (0, 1) is the constant in Theorem 2.1, y is the same constant as in Lemma 3.2,
C, is a constant depending on &, n, p, A, and yy, and C is a constant depending on
n, p, A, and yy.
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Proof. By Theorem 2.1 and the definition of qy,,(-), we have

1/vo0 1/yo
(][ |Vu — QXO,sr(”)|y0) = (f |Vu — QXO,sr(U)|V0)
Ber(xo) Ber(xo)
1/vo 1/vo
sc(f  womageor) Cae(f mu-vae)
Ber(x0) Ber(x0)
1/vo
<Ce” (][ Vv — qxo,,(v)v()) + Ce7Mvo (][ |Vu — vuvo)
By (x0) By (x0)
1/vo 1/yo0
< Ce“(][ |Vv—on,r(M)|y°) —i—Ca_"/"‘)(][ |Vu—Vv|V°)
By (xo0) By (xo0)
(

1/vo0
< Ce“(][ |Vu—qxo,r(u)|y0) +C8_"/y°(][ |Vu — Voo
By (x0) By (x0)

Moreover, by (3.11) and the fact that |w(r)| < 1, one has

][ |[Vu — Vo|7 < ][ |[Vu — Vw|"° —i—][ [Vw — V|70
By (x0) By (x0) Br(x0)

< C][ |Vu — Vw|"® + Ca)(r)”O][ (|Vw]| + s)?0
B>, (x0) B>y (x0)

< C][ |Vu — Vw|"® + Ca)(r)y"][ (|Vu| + s)?°.  (3.15)
By (x0) By (x0)

Thus from (3.14) and (3.15), we have

1/vo0
b (0. er) < Ce“d(x0. 1) + Cs (][ IV - VwVO)
B

21 (X0)
1/yo0
+ Ceo(r) (][ (|Vul| + s)"o) . (3.16)
B>y (x0)

Now we can apply Lemma 3.2 to bound the second term on the right-hand side of (3.16)
to conclude the proof. ]

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We prove the theorem at a Lebesgue point x = x¢ of the vector-
valued function Vu, assuming that Bgr(xg) C 2. Since p € (gflj, 2), we choose
yo = 2 — p in Lemma 3.2. Choose ¢ = ¢(n, p, A,a) € (0,1/4) so small that Ce® < 1/4,
where C is the constant in (3.13).

For an integer j > 0, setr; = e/R, B/ = Ba;; (x0), and

1

2—p
T, = (]LI;/_(WMI +5)*7P dx) o ¢ =9(X0.77), Wi = Axour;-
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Applying (3.13) yields

IuI(Bf))f’—‘+ BN s | o,

1
$j+1 < Z‘ﬁj + C( U e
J J

Let jo and m be positive integers to be specified later such that jo < m. Summing the

above inequality over j = jo, jo + 1, ..., m, we obtain

m+1

IMI(B’)
Z¢J =Coj, +C Z(
j=Jo i=Jo
B
e Z |“|( ) T> 7 4 C Z w(r)T;. 3.17)
j=Jo -l j=Jo

Since

4j+1 — ;1" = [gj+1 = Vu )" + [Vu(x) — q; ",
by taking the average over x € By, ., (xo) and then taking the yo-th root we obtain
9j+1 —qj| = Chj + Chj+1.

Then, by iterating, we get

m+1

|qm+1 — Q| < C Z ?j,

Jj=Jo

which together with (3.17) implies

m+1 Bl
lamia| + 3 ¢ < Coy + laiol +C Z("‘r'( ))

Jj=Jo Jj=Jo J

Z IMI(B ) 2 Pyc Z‘”(rf)T (3.18)

J=Jjo J=Jjo

By the definition of ¢j,, we have

1/vo
dj, < C(][ | Vul¥o dx) < CTj,.
BJo

Since
qjo "0 < [Vu(x) — g |7 + [Vu(x) [0,

by taking the average over x € B, o (xo) and taking the yo-th root we obtain

1/vo
ol < o+ C(f, umar) <,
BJo
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Therefore, (3.18) implies that

fan IMI(B’)
qmi1l+ D ¢ <CT; —i—CZ( )
J=Jjo Jj=Jjo
O |l(BY) 72~
+C Y a0 P 4cC Z w(r)T;. (3.19)
j=jo J Jj=Jo

By (1.5) and the comparison principle for Riemann integrals, there exists jo = jo(n, p,
g, C,w) > 1 so large that

oo
1
41702y vo )< —, 3.20
(2¢) Do) = 15 (3.20)
j=Jo
where C is the constant in (3.19).
Note that by the comparison principle for Riemann integrals,
B io=1 |u|(B d
Z |M|( ) / o=t |pl( p_(le)) dp. 321)
0 p" P

Jjof

and since p < 2 we also have

"l (BI)) 7T 2001 |u|(B,(x0)) dp\ 7T
Z( = ) SC(/O —_—) . (3.22)

n—1
j=io ™ i p p

To prove (1.12) at x = Xxo, it is sufficient to show that

2701 || (B, (x0)) @)"“ (3.23)

[Vu(xo)| < CTj, + C(/
70 0 Pt p

To this end, we consider the following possibilities.
Case 1: If [Vu(xo)| < Tj,, then (3.23) easily follows.

Case 2: If Tj < |Vu(xo)| for all jo < j < j1, and |Vu(xo)| < T}, +1, then since yo =
2 — p < 1, we have

1/vo0
[Vu(xg)| < (][ (IVu| + s)° dx)
B/1+1

1/vo0
< 21/1/0(][ |Vu Yo dx) + 2o
B/1+1
1/vo
< 21/1/0(28)—n/1/0 (][ |V |70 dx) + 21/vo
(x0)

< 41/1/0(28)—"/1/0 (6j, + la;, ) + 2/vog, (3.24)
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where the last inequality follows from the definitions of ¢;, and q;, . Now applying (3.19)
with m = j; — 1 and using (3.21) and (3.22), from (3.24) we get

_1
2ot |l (Bp(x0)) @) Pt

|[Vu(xo)| < C'T;, + C”(/
Jo o pnfl Jo

2rj5—1 B d
+ C/// 0 |/’L|( np_(lxo)) _p . |Vu(x0)|27p
0 p p
m
+C' Y ()| Vu(x)| + 2705,
J=Jo

where C' = 41/70 (28)_"/V0C, C is the constant in (3.19), and C” is a constant depending
onn, p, and A. Hence using (3.20) and Young’s inequality, we find

2ot |p1|(By(x0) dp

T
i1 P ) + §|VM(X())| + Cs.

Vu(xo)l < CTy, +C(/
0

This implies (3.23) as desired.

Case 3: If T; < |Vu(xo)| for any j > jo, then from (3.19), (3.21), and (3.22) we have,
for any m > j,

201 B, (xo)) dp\ 7~T
|‘lm+1|§CTjO+C(/ M_p)
0 P o
2rjq—1 B d m
i C/ 0 M P V)7 + € Y o) Vulxo)|
0 pn o

J=Jo

2rjq—1 B d %1
con o[ L) )
0 p o

2rjp—1 B,(x d 1
v 1l Boxo)) 26 15 )P 4 L Vo).
0 o" P 10

Here we have used (3.20) in the last inequality. Letting m — oo and using (3.12), we get

io=1 | u|(B dp\ 7=T
0

2rj-1 B,(x d 1
v 1l Boxo)) b 15 )P 4 L Vo))
0 o" P 10

Then using Young’s inequality, we deduce (3.23). ]

4. Interior Lipschitz estimate and modulus of continuity estimate of the gradient

In this section, we give the proof of the Lipschitz estimate in Theorem 1.3 and derive an
interior modulus of continuity estimate of Vu under the same conditions. We first adapt
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the argument in [6] to obtain some decay estimates from Proposition 3.3. Let o € (0, 1)
be the same constant as in Theorem 2.1, a1 € (0, ), R € (0, 1] and Br(x¢) C 2. Choose
e =¢(n, p,A,yo,a,a1) > 0 sufficiently small such that

Ce* ™ <1 and &% < 1/4,

where C is the constant in (3.13).
Proposition 3.3 implies that for any B;,(x) CC Bgr(xo),

P(x,er) < e p(x,r) + C(|M|(€2rl(x)))
B>,
+ MO (9, )+ 977
+ Cao(r)([[VulLoo(Bsy (x)) T+ 5)- 4.1
Denote B
glx,r) = W'fm—:fx)) h(x,r) = g(x,r)ﬁ. 4.2)

By iteration, from (4.1) we get

J
¢(X,ejr) < Saljd)(x,r) +C ZSal(i_l)h(x,Zsj_ir)

i=1

J
+C ) e Ve (x, 2677 ) (Ve[ Loo 8y, ) + )77
i=1

J
+C > eV ) (| Vi oo 8y, () + 5)
i=1
for any B,,(x) CC BRr(xo) with r € (0, R/4). Thus,

d(x,e7r) < e p(x,r) + Ch(x,2¢7r) + Cg(x, 267 r)(| Vil Loo By, (x)) + $)> 77
+ Ca (e’ r)(| Vul|Loo (B, (x)) + 5)- (4.3)

where

hx, 1) =Y ™ (h(x.e7' )™t < R/2]+ h(x.R/2)[e "t > R/2]).

i=1

g(x,1) = Ze“li(g(x,s_il)[s_it <R/2] +g(x,R/2)[e7't > R/2]), (4.4)
i=1

B(1) =Y e (o D)t < R/21+ o(R/2)[e™ 1 > R/2)).
i=1

Here and throughout the paper, we use the Iverson bracket notation, i.e., [P] = 1 if P is
true and [P] = 0 if P is false. We obtain the following lemma from (4.3).



H. Dong, H. Zhu 20

Lemma 4.1. Let By, (x) CC Br(xg) C Q with r < R/4. There exists a constant C,
depending only on €, n, p, A, Yo, and a1, such that for any p € (0, r], we have

o
) ~ . _
3.0 = C(£) () + Chtr20) + CH5 2001 Vil o +9
+ Ca(p)(IVullLoo(B,, x)) + 9)- (4.5)

and

jzz(:)¢(x,gfp) < C(é) 1¢>(x,r) +C /OP h();’t) dt

P a(x,t
+ C(I V|l oo (Boy (xy) + 8777 / g(z—) di
0

P ot
+ C(IVulloo (s, x)) + s)/ % dt. (4.6)
0

To prove Lemma 4.1, we need the following technical lemma.
Lemma 4.2. Let BRr(xg) C 2. Then there exist constants c¢1 and c,, depending on &, n,

p, and oy, such that for any fixed x € Bgr(xg) and any f € {®, g(x, "), E(x, -)}, one has
c1 f(t) < f(s) <caf(t) whenever 0 < et <s <t.

Proof. We will only give the proof for g since the other cases are similar. For fixed x €
Bprya(xo), we set
X, r if0<r <R/2,
Glar) = | 557 =R/
g(x,R/2) ifr > R/2,

and observe that by (4.4),

o0
g(x,r) = Z G (x, 7).

i=1

Suppose that 0 < et < s <t¢.Itis easy to see from the definitions of g and G that G(x, s) <
e!™"G(x,t) and therefore g(x,s) < e'™g(x,t). Also the fact that 0 < s < et < s implies
that (x, et) < e!™"g(x, s). On the other hand,

(e )
(x,1) =& Zgal(i+l)G(x,£_(i+l)at) <& ¥ g(x,et).
i=1
The lemma is proved. ]
Now we are ready to prove Lemma 4.1.

Proof of Lemma 4.1. We first prove (i). For given p € (0, r], let j be the integer such that
e/*1 < p/r < &/. Then by (4.3) with £/ p in place of r, we get
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$(x.p) < e (x.67/ p) + Ch(x.2p) + CZ(x, 20)(IVullLoos,, ;o) +9)> 77

+ Co(p)(|VulLoos,,—; ) +5)

2£7jp

o .

<C (é) ¢(x,r) + Ch(x,2p) + C&(x,2p) (| Vutl| oo (B, (x)) + $)°77
+ Co(p)(IVullLoo(s,, x)) + 9)-

Therefore, (i) holds. Now applying (4.5) with &/ p in place of p and summing in j, we get
e . 1 © ~ .
el = () gt + € it 260 p)

r

Jj=0 Jj=1

o0
+ CUIVulzoo(aa, o + )77 Y &(x.267p)
ji=1

o0
+ C(|VullLoo By, (x)) +5) Z @ (e’ p).
j=1
Hence, by using Lemma 4.2 and the comparison principle for Riemann integrals, we can
easily get (4.6). The lemma is proved. ]

Recall the definition of qy,, from Section 3. Since
|9x,e0 — qx,p|y0 < |Vu(z) - qx,plyo + |Vu(z) - qx,sp|y0a
by taking the average over z € B, (x) and then taking the yo-th root we obtain

|qx,sp - qx,p| S C¢(X»EP) + C¢(x,p)

Then, by iterating, we get

J
|qx,s-/p —qxpl =C Z¢(X, g'p).

i=0
Therefore, by using (3.12), we obtain
o0
IVu(x) = qepl <C Y p(x.67p) (4.7)
j=0

for any Lebesgue point x € €2 of the vector-valued function Vu.
Now we are ready to prove the interior Lipschitz estimate.

Proof of Theorem 1.3. We prove the theorem around a given point x = X assuming that
BRr(xo) C Q with R € (0, 1] and

TR (D Loo (B R (xo)) < 0O (4.8)

We first derive an a priori estimate for the case when u € C'! and then use approximation
to prove the general case.
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Step 1: The case when u € C'(Bg(xp)). Using (4.6) with p = r and (4.7), we obtain
P h(x,t
.0

IViu(x) — Qx| < C(x.p) + c/0

[P g(x,t
+ C(||Vu||L°°(B2p(x)) + S)z p/ gT) di
0

P a0)
+ CUV o, +9) [ S d

for any Bj,(x) CC Br(xo) with p € (0, R/4].
Note that

[4x,0l = C(x. p) + Co™ 70|Vl Lo s, < Co™" 7|Vt 270 (8, -
Combining the above two inequalities, we have

P h(x,1) y

[Vu(x)| < C,O_"/y0||vu||LV0(Bp(x)) + C/
0

.
- g(x.1)
+ COIVuloeqany o +7°7 [ E0D

‘
+ C([[VullLoo By, (x)) + S)/ o) dt. (4.9)

Note that @ also satisfies the Dini condition (1.5); see [5, Lemma 1]. Thus we can take
po = po(n, p,A,w,a1, yo, R) € (0, R/4] sufficiently small such that

C/po a)ft) dt <3-1-n/v0,
0

where C is the constant in (4.9). Then for any B5,(x) CC Br(xo) with 0 < p < pg, by
(4.9) and Young’s inequality, we have

P h(x,t) p

T2 G T + € /
0

X, -
+c(/ &l )dz) + 3770(|Vul| oo (B, (x)) + 5)- (4.10)
0

For k > 1, we denote px = (1 —27%)R. Since pg4+1 — px = 27%"1 R, we have Bjp(x) C
By, ;. (xo) for any x € By, (xo) and p = 27%=2 R. We take kq sufficiently large such that
27%0=2 < py. Then by (4.10) with p = 27¥=2 R we have, for any k > ko,

VullLeo(B,, o) + 5

k+2\ /70
R) IVullro @,y o

R/2 R/2 = L
+C  sup / h();t)dtth sup (/ Md[)p + 5.

XEBp,; (x0) /0 XEBp; (x0) !

<37(|Vullzoo,, , o +9) + C(
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Multiplying the above inequality by 377%/Y0 and summing the terms with respect to
k = ko, ko +1,..., we obtain

oo

> 3TRIO(|| V| oo (8, (xo)) + )
k=ko

oo
< Y 3THIO(|Vul|Leo(s,, (xon + 5) + CRTTO(| Vi Lo (B (xo)) + )
k=ko+1

RI2 [y ¢ R/2 5(x ¢ L
+C sup / ();’)dt—i-C sup (/ g(x,)dt)l’ + Cs,

xe€BRr(xo) JO x€Bg(x0) t

where each summation is finite. By subtracting

o
S 3R Vall oo sy, oy + 5)
k=ko+1

from both sides of the above inequality, we get the following L *°-estimate for Vu:

IVl oo (B xon +5 < CRT7O VUl Lr0 (B (o))

R/2 il' t
+C sup / x, )dt
X€BR(xp) /0 t

R/2 = L
+C sup (/ g(x’t)dz)p +Cs. (41D

x€BR(x0) t

We can simplify the terms in (4.11) to get

IVullLoo B2 (x0))
< C||IR(|MI)||LOO(BR(XO» + CR™Z7 [ IVul + 5| o p (g airey @12)

Indeed, by the definition of g in (4.4), we have

R/2 R/2 —i ,
/0 g(x t) Zgall/ g(x’t—gt)[g_’t < R/2]dt

R/2
a1 s R/2) ~it > R/2)dt
+§ | e e vy

The first term above is equal to

00 iR/2 R/2
Zgoqi/s (X € lt) 280{11/ g(x’[)d
i=1 0 !

i=1
< CIR () ().
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The second term is equal to
oo
> e in(eT)g(x. R/2) < Cg(x.R/2) < CIR(ln))(x).
i=1

Therefore,

R/2 =
/0 D gy < e uiyo) “.13)

We can similarly get

t t

R/2 } ) ~ rR/2 ad . ;
/ h(X,t) d[ 2280{”/ h(X,t) dt+25a”1n(8_l)h(x’R/2)
0 i=1 0 i=1

R ﬁ L N
SC(/O g();’t) dt) +C(IF (D)7 = CIF(ub) 7. (“.14)

Recalling the fact that Y9 < 2 — p (cf. Lemma 3.2), using (4.13), (4.14), and Holder’s
inequality, from (4.11) we obtain (4.12).

Step 2: The general case. We take rqi € (0, R), r = (R + r1)/2, and a sequence {¢y } of
standard mollifiers such that for any positive integer k,

¢r € Cg°(B1/k(0)), ¢ =0, and ][ or = 1.
B1/k(0)

Then we mollify p and A by setting

P (x) = (u* @) (x),  Ar(x.§) = (A §) * gr) (), x € Br,(x0).

We note that Ay is well defined and satisfies the growth, ellipticity and continuity assump-
tions (1.2)-(1.4) in By, (xo) for k > 1/(R — r2). By the corollary after [12, Theorem 1],
(4.8) implies u € W_l’p/(Br2 (x9)), where p’ = p/(p — 1), and therefore

Il = llw=1.0' (8, (o)) = O- (4.15)

Next we let uy € u + Wol’p (Br,(x0)) be the unique solution to

{—div(Aku, Vur)) = i in By, (xo), 416

U = U on 0B, (xo).

Choosing u; — u as a test function in (4.16), we obtain
/ (A(x, Vug), Vug) dx
Br2 (x0)

= / (A(x,Vug), Vu)dx + / (up —u)dpg. (4.17)
Br2 (x0) Br2 (x0)



Gradient estimates for p-Laplace type equations 25

Using the fundamental theorem of calculus, (1.2), (1.3), and Young’s inequality with
exponents p and p/(p — 1), we have

/ (ACx. Vug), Vug) dx
Brz(x())

1
= / (/ (DeA(x,tVur)Vug, Vug) dt + (A(x,O),Vuk)) dx
Brz(x())

1
2/ (/ L%+ | Vug |t 2y |Vuk|2dt )Lsp_1|Vuk|) dx
Brz(x())

> A7t (s* + |Vuk|2)pT_2|Vuk|2dx—/ AsP~ Y Vuy | dx
By, (x0) By, (x0)
> c(4,p) |Vur|? dx — C'(A, p) sPdx.
Brz(xo) Brz(xo)

On the other hand, using (1.2) and Young’s inequality, we obtain

| vm s [ -
Br2 (x0) Br2 (x0)
2 2y 251
= A/‘ (5™ + [Vug|?) = [Vuldx + |lug — u”WOlvF(Brz(xO))”Mk“W—LP’(Brz(xo))
Brz(-xO)
< ek p) (Vug| +5)7 dx + C"(L., p) |Vu|? dx
Br2 (x0) Brz (x0)

+ %C(/\,P)HVMk VMHLP(B, (x0)) +C"(A, p)”ﬂk”W 1.2 (Bry (x0))°
Therefore, (4.17) implies that
4
”V”k”Lp(Br (x0)) = C”|Vu| + SHLP(Br (x0)) + C”Mk”W 1.0 (Byy (x0))’ (4.18)

where C is a constant not depending on k.
Now we recall a well-known inequality

|V(§2) —V(&)?
& — &1
<+ EP+ED T, (4.19)

NP+ 8+ |§2|2)

where ¢ = c(n, p) > 1 is a positive constant and the mapping V(-) is defined as
—2
VE) = (§F +5)T L EeR"
Combining (1.3) and (4.19) yields

co IV (E) = VEDP = (A(x. §2) — A(x.§1). 62 — &),
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for some positive constant cog = co(n, p, A). We note that the above inequality also holds
for Ay. Then choosing (uy — u)lBr2 (xo) as a test function in (1.1) and (4.16), we have

cgl / |V(Vug) — V(Vu)|? dx
Brz(xo)
< / (Ai (x. Vag) — Ag(x. Vu). Vg — Va) dx
Br2(x0)

= / (A(x,Vu)—Ak(x,Vu),Vuk—Vu)dx+/ (up —u)d(ur — 1)
Brz(xo) Brz(xo)

< [[AG, Vu) — Ak (., Vu)||LP/(P—1)(Br2(x0)) Nk — u||W01’p(Br2(x0))

+ lJuk — “||W01-P(Br2(x())) |l px — ﬂ”Wfl,p’(B,z(xo)y
From the definition of A, by using the Minkowski inequality and (1.4), we obtain

r—1

D
||A(,Vu) — Ak(',VM)”Lp/(p—l)(Brz(xO)) E )&a)(l/k) (/ (S2 + |Vu|2)P/2 dx) ,
B

o (x0)

which together with (4.15) and (4.18), yields
/ |V(Vug) — V(Vu)|? dx — 0.
BrZ (x0)

By (4.19), we have
Vg — Vul? < c|V(Vug) = V(Vu) [P (|Vug | + [Vul? + 5%)P@-p)/4

and therefore using Holder’s inequality with exponents 2/p and 2/(2 — p), we obtain
2—p

/ |Vuyp — Vul|? dx
Brz(xo)

p/2 >
fc(/ |V(Vuk)—V(Vu)|2dx) (/ (|Vuk|2+|Vu|2 +52)17/2dx) ’
By, (x0) By, (x0)

which implies that
Vuy — Vu  strongly in L? (B, (xo)).
Thus there exists a subsequence {k;} such that Vug, — Vu almost everywhere
in By, (xo).
Since Ay and pi are smooth in x, by the classical regularity theory (see, for instance,
[3,24]), we know that u; € Ckl)’ca (Br,(x0)). Therefore the Lipschitz estimate (4.12) from
Step 1 holds for ug in B, /2(xo). Namely,

1 n_
| Vg ||L°°(Br1/2(x0)) <C ”I;I (le|)||Lp<:ol(Brl (x0)) + Crlz_p H |Vug| + SHLz—l’(Brl (x0))"

Note that by direct computation, for any ¢ > 0, it follows that

pe(B0) = [ B = Do) .
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Therefore, for sufficiently large k, by the Fubini-Tonelli theorem we have

T (D lloo (B, o < I (DL (B, (o)) -
Thus by taking k = k; /" oo and then r; /" R, we obtain the Lipschitz estimate (1.13)

around x = Xxo. [

In the rest of the section, we derive an interior modulus of continuity estimate of Vu
under the conditions of Theorem 1.3. Recall that we fixed an ¢ € (0, 1/4) sufficiently
small such that

Ce® ™ <1 and &*! <1/4,

where C is the constant in (3.13), « € (0, 1) is the same constant as in Theorem 2.1 and
a1 € (0, ). We also took a ball Br(xg) C 2 with R € (0, 1]. Similar to (4.4), we define

B(1) =Y e (wE ")t < R/2 + o(R/2)[et > R/2)).
i=1

(D) =3 e (15 P(uh )l p < R/2) + ()l p > RI2D). o
i=1 .

WY, (D)

=Y e (WP (D ()le o < R/ + WR2 (luh(0)le™ p > R/2),

i=1
where Iy and Wy, , are the Riesz and Wolff potentials defined in (1.9) and (1.11),
respectively. We note that since 1/(p — 1) > 1, we have

1
W2, (iD@) < CE(uh )7, 4.21)
so that W”

\/p p(|/,L|)(X) and i’f(|,u|)(x) are bounded and converge to zero as p — 0 as long
as IR (|u|)(x) is finite.
Our interior modulus of continuity estimate is stated as follows.

Theorem 4.3. Assume the conditions of Theorem 1.3 and a1 € (0, ®), where o is the
constant in Theorem 2.1. Then there exist a constant C = C(n, p, A, a1, w) such that for
any R € (0, 1] with Br(xo) C , and x,y € Bry4(xo) that are Lebesgue points of the
vector-valued function Vu, we have

[Vu(x) = Vu(y)|

(3] Lo
/4 o(1) <
<M () [P ] N, bl
+ OV TT () | oo (B a (xo))- (4.22)

where p = |x — y|, @, V~V1/p,p, and 1y are defined in (4.20), and

1
o p—a R —1
M:= R 2> |||V”| + s”LZ—P(BR(xO)) + [T (|M’|)”l{7°°(BR(x0))'
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Note that due to (4.21), the term ||W1/p p(|u|) | oo (B g 4 (x0)) iN (4.22) can be replaced
with the sup norm of a summation of the truncated Riesz potentials similar to (4.20).

Proof of Theorem 4.3. For any x,y € Br/a(xo) that are Lebesgue points of Vu, by the
triangle inequality we have
[Vu(x) = Vu(y)°

< |Vu(x)— (Ix,p|y0 + |‘Ix,p - ‘Iy,p|y0 + |Vu(y) — (Iy,p|y0

<2 sup  [Vu(o) = yg.pl™ + [VU(z) = qx,p|" + [Vu(z) — qy 7.
Yo€BR/a(x0)

We set p = |x — y|, take the average over z € B(x, p) N B(y, p), and then take the yo-th
root to get

[Vu(x) = Vu(y)| <C  sup  |[Vu(yo) — qyy,pl + Co(x,p) + Ch(y.p)

Y0€BR/4(x0)

<C  sup Z¢(yo,8’p)+C sup  $(yo.p)
Y0€BR/a(x0) j = Yo€BR/4(x0)

<C sup qu(yo,efp) (4.23)
Y0€BR/a(x0) j—

Here we have used (4.7) in the second inequality.
If p < R/8, by using (4.23), (4.6) with R/8 in place of r, and the fact that

Brya(yo) C Brja(x0) Vyo € Brya(xo),

we obtain

[Vu(x) = Vu(y)|

ay oI
P h(yo,1)
S C(E) ”VMHL‘X’(BR/z(xo)) + C sup / _— d
Y0€BR/4(x0) /O t

P 000

+ OOVl ey + 9777 sup / ‘

yOEBR/4(XO) 0
(t)
+ C(”VMHLOO(BR/Q(X())) + S) (424)

Clearly, (4.24) still holds when p > R/8.
We can simplify the terms in (4.24) as follows. For any yo € Bgr,4(xo) and p €
(0, R/2), by the definition of g in (4.4), we have

g()’o,l) wyi g()’o, ~i <
/0 Z / [ t < R/2)dt

. [7 8o, R/2) _;
o1 2 [t R/2]dt.
+ E=1‘9 /0 ; [e7't > R/2]dt
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Recalling the definition of I, from (4.20), the first term above is equal to

oo

—i e R/2 —i
st’(/p —g(y‘)’ts D drep < R/ +/ —g(y"f Varieip> R/2])
i=1 0 0
o e R/2
zzgali(/ g(y()at) dt[ —lp<R/2]+/ g(y()»t) dt[ —lp>R/2])
: 0

—1 s R o
R Zs“” L2 (uhOole™ p < R/ + 12 (uh(o)le™ p > R/2)
Ip(lﬂl)(yo)

The second term is equal to
s . . .
> e p > R/2]In2e™ p/R)g(vo. R/2).
i=1

Let K be the positive integer such that s™%p > R/2 and =& ~Dp < R/2. Then

Z e*i[e7 p > R/2]In(2¢ " p/R)
i=1

= Z £ In(2e 7 p/R)

i=K

=gk Z e K (1n2e®Kp/R) + (i — K)In(e™"))
i=K

2p ap o (—K) ) p (3]
ap(i— : =
5(?) E g%l i— K+ Dln(e )§C(§) .

i=K
Therefore,

/0 800D 4y < (1D (o) + C(o/R)* g(vo. R/2)

< (Do) + Clo/R“IR(|1e]) (vo). (4.25)

We can similarly get the following estimate:

? ii(yo, 1) i /6"*’ dt . _;
— 2 dt < o1l h tYy—I[etp<R/2
/0 Fears (e [ o T leo < R/

i=1

R/2 o]
T /0 no.n) Lo > R/z1) + c(ﬁ) h(yo. R/2)

W1 (Do) + Clo/R)* AR () (yo) V@7, (4.26)

Using (1.13), (4.25), and (4.26), from (4.24) we obtain (4.22). ]
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Proof of Theorem 1.4. Since the set of Lebesgue points of Vu is dense in 2, it suffices to
show the right-hand side of (4.22) converges to zero when p — 0. In fact, we have

0 .
(Do Bryacon < D e (1] PUuhlLos B axople "0 < R/2]

i1
R By
+ 115 /2(|M|)||L°°(BR/4(XO))[8 ‘o> R/2)),

which must converge to 0 by using (1.14) and the dominated convergence theorem. We
can similarly prove the convergence of other terms in (4.22). ]

Proof of Corollary 1.5. By [8, Lemma 3] with p = 2 and k = 1, the assumption (1.15)
implies (1.14). Therefore Corollary 1.5 follows from Theorem 1.4. |

Proof of Corollary 1.6. This is an immediate consequence of Theorem 1.4 since the
assumption (1.14) is verified by (1.16) and (1.17). [

Proof of Corollary 1.7. We choose a1 € (B, «) in Theorem 4.3. Then Corollary 1.7 fol-
lows by a direct computation using (4.22). [ ]

5. Global gradient estimates for the p-Laplacian equations

This section is devoted to the proof of the global pointwise gradient estimate in Theorem
1.10, the Lipschitz estimate in Theorem 1.11, Corollary 1.12, as well as the derivation of
a global modulus of continuity estimate of Vu stated in Theorem 5.10 for the following
(possibly nondegenerate) p-Laplace equation with Dirichlet boundary condition:

{—div(a(x)(IVM|2 +52)7Vu) = u inQ, 5.1)

u=20 on %2,

where a(-) satisfies (1.5), (1.7), and (1.8), and Q2 has a C 1,Dini boundary characterized by
Ro and wy as in Definition 1.9.

First, we derive a gradient estimate around any point xo € dS2. Without loss of gener-
ality, we assume that xo = 0 € d2. Then we can choose a local coordinate around x¢ = 0
and a function y as in Definition 1.9 such that y(0") = 0. Let

TF(y)= (1 +x0(").y) and A(x)=T"1x) = (x1 = x(x"), x).

Note that the determinants of the Jacobian of I'(-) and A(-) are equal to 1. Since 2 has
C 1.Dini boundary, from the proof of [2, Lemma 2.2], there exists Ry = Ri(wog, Rg) €
(0, Rp) such that

Ve x(HI = 172 if |x| < Ry, (5.2)
Q2 CT(B) C Q Vre(0,R1/2]. (5.3)
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Therefore, there exist constants ¢ (n) and c,(n), depending only on 7, such that for any
xES_Zand0<r§R1,

cr(m)r’" <12 (x)] < c2(m)r”. (5.4)

Now we use the technique of flattening the boundary. We denote u1(y) = u(I'(y)),
a1 (y) = a(T'(y)), and p1(A) = u(I'(A)) for any Borel set A C R”. Then u; satisfies
—~divy (a1 (»)(((DA)T Dyur 2 + %) 2" DA(DA)T Dyuy) = pa in B, .
1=0 on Bg, /> NOR".

(5.5
We set

A (7, 6) = a1 (»)((DA)TEPR + 522 DA(DA)T &,

By direct computations with (5.2) in hand, A; satisfies the following conditions with
w1 = w + wp and some constant A; = Aq(n, p,A):
|41, )] < Ma(s® + [EPPTV2 DA (0, 6)] < Mi(s® + [EPPP2 0 (5.6)
(DgA1(y. E)n.m) = A7 (5 + [E) P22y 2, (5.7)
417, = 4100, §)| = hiwr(ly = yo) (s> + 5P~/ (5.8)
forall y, yg € B;{l/z and (§,7n) € R” x R \ {(0,0)}.

Suppose that 4r < R;. We now consider the unique solution w € u; + Wol’p (B)) to
the equation

{ —divy(A;(y.V,w)) =0 in B, 59

W =u on 0B, .
We first derive a boundary version of the reverse Holder inequality.

Lemma 5.1. Let w be a solution to (5.9). There exists a constant 01 > p, depending only
onn, p, and A, such that for any t > 0, the estimate

1/6; 1/t
(][ (IVyw]| + )% dx) < c(][ (IVyw]| + ) dx) (5.10)
B, (0) B (v0)

holds for all B (yo) C Bj,, where C = C(n, p.A,t) > 0.

Proof. For simplicity, we still denote V = V,, through this proof. First we prove a Cac-
cioppoli type inequality in half-balls. Suppose that yo € Bz, N dR’, and B2,(yo) CC Ba;.
Let ¢ be a nonnegative smooth function satisfying ¢ = 1 in B,(yo), |V¢| < 2p~!, and
¢ = O outside B,,(yo). Using {Pw as a test function in (5.9), we get

0:/+ (Al(y,Vw),Epr)a’y+p/+ (A (y,Vw), P twveydy = 1+11. (5.11)
BZr BZr
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Using the fundamental theorem of calculus, (5.6), (5.7), and Young’s inequality with
exponents p and p/(p — 1), we have

/ P (/ (DeA1(y, tVw)Vw, Vw) dt + Al(y,O)Vw) dy
B

2r
> / {1’(/ AT G + |Vw|2t2)pT_2|Vw|2 dt — )Llsp_1|Vw|) d
B, 0
=ctp) [ eVl dy = COnp) [ 05 .
B B
On the other hand, using (5.6) and Young’s inequality, we have

|H|5pm/ (5 + [Vw?) 2" 7~V wVe| dy
0o

1

<50 [T £ Conp [ e
2 2p o)
1

<5 [T 4 Cp) [ e as

20 y()

Therefore, (5.11) implies the following Caccioppoli type inequality:
/ [Vw|? dx < Cp"s? + Cp_p/ |w|? dx. (5.12)
3 (o) B, (v0)

Since w = u = 0on By, N BR'jr, by the Sobolev—Poincaré inequality,

1/p 1/q
(/ lw|? dx) < Cp'tr/pnla (/ |Vw|? dx) (5.13)
B, (0) B, (0)

n'fp} < g < p. Thus by combining (5.12) and (5.13), we have

1/p 1/q
(][ (|Vw]| + s)? dx) < C(][ (IVw]| + 5)4 dx) .
B (yo) B3 (y0)

Similarly, the interior version

1/p 1/q
(][ (IVw| + 5)? dx) < C(][ (IVw]| + s)4 dx)
B,(»0) Bsp(y0)

holds for all B>,(y9) CC B2+r. Therefore, by a standard covering argument and Gehring’s
lemma, we get (5.10). [

for any ¢ such that max { ,

We also have a boundary comparison result analogous to Lemma 3.2 by following
almost the same proof.
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Lemma 5.2. Let w be a solution to (5.9) and assume that p € (1,2). Then for any yy €
(0,2 — p] when p € (22=2,2) and y, € (0, (p 1)") when p € (1, 32=2], we have

2n 1’ > 2n—1
1/vo
(][ |Vyu1—Vyw|y0dx)
B3,
B}, B
§C|:|ILL1|( 2r i| II’L1|( )][ (|V Uy |+S)2 pdx
-1 rn—1

where C is a constant depending only on n, p, A, and yy.

We now letv € w + Wol’p (B;}) be the unique solution to

{ —divy(41(0.Vyv)) =0 in B}, (5.14)

v=w on dB;t.

We also have an estimate for the difference Vv — Vw analogous to (3.10) by following
almost the same proof as that of [9, (4.35)]:

][ [Vyv = Vyw|? dx < Ca)o(r)p][ (IVyw| + s)? dx.
B B
Thus by (5.10) and Hélder’s inequality, we get

][ [Vyv — Vyw|"0 dx < Ca)o(r)y"][ (IVyw| + s)"0 dx.
B B3,

Next we prove an oscillation estimate for v.

Lemma 5.3. Let v be a solution to (5.14). There exists a constant C > 1, depending only
onn, p, A, and Yy, such that for any half-ball B/j' - B; C B, we have

1/vo0
inf Dy, v — 0] + | Dyv]70
;QR(]i;ﬂ y1V |70 + [Dyrv] ))

P 1/vo0
sc(R) &i(f (1Dyo =8P +1D,0) . (515)

where a € (0, 1) is the same constant as in Theorem 2.1.
Proof. Let v be an odd extension of v in B;, namely,
_ v(y) if y; =0,
v(y) = N
—v(—=y1,y") ify; <O.

Then since

A,(0,6) = a (O)([]? + 52 T &,
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v € WLP(B,) is a solution to the equation
—2
—divy (a1 (0)(|V, 3> + s%)*2 V,5) =0 inB,.

Thus we can apply Theorem 2.1 to v to get

1/yo P o 1/vo
inf V,0 — VO) < C(—) inf (][ V,0 — ”0) .
qeR” (fBﬂ | y q| R qeR” Br | y ql

Since v is an odd function in y, by the triangle inequality there exists 8, € R such that

1/vo0 1/vo0
(][+(|Dylv —0p]"° + |Dy/v|”0)) =C infn (][ |Vyv — Q|y0) .
B q<R" \ /B,

By the triangle inequality again, it is easily seen that

1/y0 1/vo
: = alvo : _ 9|0 [0
Rf(fBW ) scglgé(]i;(uw o410y )

Then (5.15) is a direct consequence of the three inequalities above. ]

Lemma 5.4. Suppose that u, € Wl’p(Bgl) is a solution to (5.5). Then for any ¢ € (0, 1)
andr € (0, Ry /4], we have

1/vo0
i f D _0 Yo D 4 Yo
912 (][Sr(| U1 [0+ | y Uil ))

1/yo
<Cs&” grelﬂg(][JrﬂDylul -0 + |Dy’M1|y°))

l

+cs('“1r',f—31)) +cew1(r)(][ (V] + 57 P)_”

+C3|M1|(B2r)][ (|V m |+S)2 p (516)

rnl

where o and yq are the same constants as in Proposition 3.3, C, is a constant depending
oneg, n, p, A, and yy, and C is a constant depending on n, p, A, and yy.

Proof. By using Lemmas 5.1, 5.2, and 5.3, the proof is almost identical to that of Propo-
sition 3.3, so we omit it. [

‘We now define

1/vo0
Y (xo.r) = mf(][ (|D1u—0|V°+|Dxfu|V°>) .
R Q2 (x0)
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Lete € (0,1) and r € (0, Ry /4]. By using change of variables, (5.3), (5.4), and the triangle
inequality, we have

1/v0
inf (][ (IDyus — 0] + |Dy/u1|y°))
B

feR

1/yo
= inf(7[ (ID1u — 6|7 4+ |D1u Dxr)(+Dxru|y°))
B8

feR
1/v0 1/vo0
>C inf(][ (|Dqu — 6|7 + IDX/MIVO)) —C/(][ |Diu Dx/)(P’O)
feR Qer/a Qer/2
1/vo0
> Cg//(O,sr/Z)—C’wl(sr/Z)(][ |Vu|”°) , (5.17)
er/z

where C and C' are positive constants depending only on 1 and yg. Similarly,

1/yo
inf (][ (IDy,u1 — 0" + |Dy/u1|1’0))
B

feR

1/v0
= inf (][ (|Dyu — 0] + |Dyu Dy y + Dx,uvf)))
0<R\Jr(B;")

1/v0 1/vo
< fold inf( (|D1u_9|y0 + |Dx,u|1’0)) +C”(][ |D1u Dx/X|yO)
6eR Qo) Qo

1/vo
EC”w(O,Zr)+C”w1(2r)(][ |Vu|y0) . (5.18)

Qo

where C” is a positive constant depending only on n and yg. Therefore, by using (5.17),
(5.18), (5.2), and (5.4), (5.16) implies that

V(0,er/2) < Ce*y(0,2r) + Cs(mlfl—g_zfr))p_l
+Can@n(f, avul+922) "7 CEED L w4,

By replacing ¢/4 and 2r with ¢ and r respectively, we obtain

Corollary 5.5. Suppose that u € Wol’p(Q) is a solution to (5.1) and xo € 0R2. Then for
e€(0,1/4), r < Ry/2, and a, C, C; as above, we have

) (][ (IVul + S)Z"’) 7 Csw (IVu| + 5)>77.
Q2 (x0) r Q21 (x0)

(5.19)
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As in Section 3, for any x € 8_2, we define

1/vo
p(r.p) = inf (f |Vu—q|m)
a<R" \ JQ,(x)

and choose gy, € R” such that

1/v0 1/yo
(][ |[Vu — qx,r|y°) = inf (][ [Vu — q|yo) . (5.20)
Qr(x) a€R"\JQ, (x)

We remark that our definition of ¢ is invariant under any orthogonal change of coordinates
as in Definition 1.9 and that (3.12) still holds for any Lebesgue point x € €2 of the vector-
valued function Vu from the same argument as in Section 3. Moreover, if we assume
u € C'(Q), then (3.12) actually holds for any x € Q.

5.1. Global pointwise gradient estimates

e=¢e(n,p,A,a) < (0,1/4) sufficiently small such that C ¢* < 1/4 for both constants C in
(3.13) and (5.19). Fix xo € 0Q and R < Ry /2. For j > 0,setr; = ¢/ R, Qj = Qo (x0),

5= (f, (vt esrrax) g =gt ad v = v,

Applying (5.19) yields

) WD 2,

Wj+1_4WJ+C( r rjn 1

Let jo and m be positive integers such that jo < m. Summing the above inequality over
Jj € {jo.jo+1,....m} and noting that ¢; < y; < CT;, we obtain

m+1 m+1

Z¢] = ZV’J =CTj, +C Z(IM(Q ))
J=Jo Jj=Jo J=Jo
L c Z |M|(Q ) T2 4 C Z w1 (r))T; (5.21)
j=Jjo J J=Jjo

for any xo € 0Q and R < Ry/2.
On the other hand, according to (3.17),

m+1

Z ¢j = Coj, +C Z (|M|(Q ))

i=Jjo j=Jjo
Z |.U«|(Q ) _2 L Z o(r)T; (5.22)
i=Jo J=Jo

for any xo € Q and R > 0 such that r;, = £/0 R < dist(xp, dR)/2.
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We now define

Q) = Qs (x0). Z = (]é (Vu| + 5277 dx)
J

1
Then we can obtain the following lemma.

Lemma 5.6. Suppose that u € Wol’p(Q) is a solution to (5.1), xo € Q, and R < R; /6.
Then

m+1
I/LI(Q )
Z ¢ < CZJO +C Z ( )
Jj=Jo J=Jo J
Nl L,
cy i 2 L+ C > o)z, (5.23)
j=jo J Jj=Jo

where C is a constant depending only on n, p, A, and yy.

Proof. First when xo € 0L, since Q; C Q} we have T; < CZ;. Thus (5.21) directly
implies (5.23). It remains to prove the lemma for xo € 2. Since (5.22) holds when rj, <
dist(xo, 0€2)/2, we only need to show that (5.23) holds when r;, > dist(xo, 32)/2. Now
assume 7, > dist(xg, d2)/2 and rj, +1 < dist(xgp, 9€2)/2. By (5.22), we have

m+1
Z ¢j = Cdji+1+C Z ('MKQ ))
Tj

Jj=j1+1 j=j1+1
Q
e Z 1) T3P 4 C Z w(rj)T;. (5.24)
J=j1+1 J Jj=Jj1+1
By (5.4), we also have
1/yo
$j+1 = (][ IVt — Qxg,r), IVO) < C¢j,. (5.25)
Qr/ +1(x0)

Now for any j € {jo, jo + 1,..., j1}, rj = dist(xg, dS2)/2. Choose yo € 92 such that
d := dist(xo, 02) = |yo — Xol, so that Q,, (xo) C Q23,, (yo) and Q,; (yo) C Qs (xo0)-
Thus by using (5.21) at yo € 2, we have

J1 J1
Y 6 =C Y p(ro.3r))
Jj=Jo Jj=Jo

S Z(uu(szm, (yo)))

n—1
e
J=Jo J

J1+1
2 Pi+cC Z w1(3r))Y;

J=Jjo J J=Jo
Q Q/ J1+1
<CZj,+C Z(w( )) +C Z W'( Z7PHC Y oi(r)Z;. (5.26)

J=Jo J=Jjo / Jj=Jo

LC Z |M|(96r, (o))
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where

=5
Y; = (][ (IVul +5)*>7? dx) .
Q6r; (vo)

Recall that w1 = w + wo. Combining (5.24)—(5.26), we obtain (5.23). [

Proof of Theorem 1.10. With (5.23) in place of (3.17), we can easily get the global point-
wise gradient estimate (1.18) using the same ideas as in the proof of Theorem 1.1. ]

5.2. Global Lipschitz estimates and modulus of continuity estimates of the gradient

Letxg € Q and 0 < R < R;. For any fixed a1 € (0, @), let op = (o1 + @)/2, and choose
e=z¢(n,p,A,yo,a,a1) € (0,1/4) sufficiently small such that e*2 < 1/4and Ce*~*2 < 1
for both constants C in (3.13) and (5.19). Next we define

| rl(Br(x) N Br/2(x0))
gi(x,r) = e

of (r) = o1(N)[r < R/2]1+ o1(R/2)[r > R/2],

L ) = g )P,

and

o0 o0
g10c.0) =) gy (e, gi(xt) =) eigi(x.e70),

i=1 i=1

e 00
]’All(x,[) = stzihl(x’s—it)’ ]fll(x’[) — Zé‘alihl(x,&‘_it),

i=1 i=1
o0 o0

b1(1) =) e ol (e, B1(1) =) eVl (e,
i=1 i=1

Indeed, we have

o1(t) = Ze“‘i(wl(e_it)[e_it < R/2] + w1(R/2)[e't > R/2]) =: &1 (t),

i=1
o0
g106.0) <) e (g(x. e e < R/2] + g(xo0. R/2)[e71 > R/2), (5.27)
i=1
¥ e . . . .
hi(x,t) < Zsa”(h(x,s_’t)[e_’t < R/2] + h(xo,R/2)[¢"'t > R/2]),
i=1
where the functions g and % are defined in (4.2).
Using the same iteration technique as in Lemma 4.1, we can deduce from (5.19) that

W(X,P)Sc(g) l//(X,r)—i-Cl;l(x,Zp)

+ Cg1(x.2p) (| Vull oo (@s, (x)) + 5)* 77
+ Co1(p)(IVul Lo (@, (x) + ) (5.28)

forany x € 0Q2, By,(x) C Brja(xp),and0 < p <r.
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Similarly, from (4.1) and the fact that ® < w;, we have

d(x,p) < C(é) ¢ (x,r) + Chy(x,2p)

+ Cg1(x.20) (V|| Loo (5, (x)) + $)* 77
+ Cao1(p)(|VullLeo(@,, (x)) + ) (5.29)

for any B, (x) CC Q, Bar(x) C Brya(xo),and 0 < p <r.
By combining (5.28) and (5.29), we will show the following estimates.

Lemma 5.7. Let x € Q and Ba,(x) C Bg /2(x0). There exists a constant C, depending
onlyone, n, p, A, yo, and aq, such that, forany 0 < p <r < Ry, we have
(0%) .
b = € (2) IVl o + Clntr)

+ Cg1(x, p) (VU llLoo (@, (x)) + 8)° 77
+ Car(p)(IVullLo (@, (x)) + 9), (5.30)

and

a2

o0 . p I (x,1)
S p(x.eip) < c(;) 0

0
rY0 V| Lo e, ) + C/
j=0 0

P gi(x,t
+ C([[VullLoo(@a, (x) +s)2“’/ —gl(l ) d
0
pd)lt(f)d

IVl oo, o + 5) / (531)
0

To prove Lemma 5.7, we also need the following technical lemma.

Lemma 5.8. Let x,y € Q and p € (1,2). Then for g1, h1. 81, h1, 1. h1, @1, &1 defined
as above, we have the following:

(1) There exist constants C1,Cy > 0, dependmg on g, n, p, o and oy, such that for any
fixed x € Q, and any f € {g1(x,"), hl(x ), 01, g1(x, ), hl(x -), @1}, we have

Cif(t) < f(s) <Cyf(t) whenever 0<et <s<t.

(ii) There exists a constant C > 0, depending on &, n, p, a and «y, such that for any
0<er <p<rwithQ,(x) C Q(y), and any F € {1, h1, &1, h1}, we have

F(x,p) <CF(y,r).

(iii) For any 0 < p < r, there exists a constant C > 0, depending on ¢, n, p, o and o1,
such that

(‘;’) Bn(r) < Con (o),
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p\*
(;) g1(x,r) < Cg1(x.p).

AN ;
(—) hi(e.r) = Cin(x. p).
2

Proof. We will only give the proof for g since the other cases are similar. Noting that

1— 1—

gi(x,s) <e"gi(x,t), gi(x.et) <e "gi(x,s)

whenever et < s <t and g;(x,t) <& *2g1(x,st), assertion (i) follows. Assertion (ii) fol-
lows similarly by observing that €2, ,(x) C €2,-i,(y) wheni > 0 since 2,(x) C Q,(y).
It remains to prove assertion (iii). Since 0 < p < r, there exists an integer j > 0 such that
e/ p <r < & /71p. Therefore, by part (i),

o . .
(é) g10x,7) < Ce® gy (x, 67/ p)

o0 o0
<CY Y e gy (x,e7 )

j=0i=1
oo
=C Y ke gi(x.e7*p) < Cg1(x.p).
k=1
where we have used the fact that ke®2k < C21% in the last inequality, since &y < o3, W

Now we are ready to prove Lemma 5.7.

Proof of Lemma 5.7. Without loss of generality, we may assume x = 0. Note that if
r/16 < p <r, then (5.30) follows from the definition of ¢. Hence we only need to consider
the case when 0 < p < r/16. We consider the following three cases:

r/4 < dist(0,09), dist(0,9Q) < 4p, 4p < dist(0,9dR) < r/4.
Case 1: r/4 < dist(0,9S2). Setr; = r/16. Since Ba,, C 2, from (5.29) we have

#(0,p) = C(%) ¢(0,71) + Ch1(0,2p)

+ C£1(0,20) (VU oo,y +5)° 77 + Cdn(p) (| Vil L (,,,) + 9)-
Thus we can easily get (5.30) from Lemma 5.8 and the fact that
$(0.r1) = Cr"7|| Va1,

Case 2: dist(0,9€2) < 4p. Choose y¢ € 92 such that dist(0,9) = |yo|. Then Bg,(yo) C
B14p C By, and from (5.28) we have

#(0,p) < Cy¥(yo,5p)
< C(f) ¥ (vo.7/2) + Chi(yo, 10p)

+ C1(y0. 100)(IVul oo (@, (o)) + $)> 77 + Cd1(50) (| Vull Lo (@, (o)) + 5)-
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Thus from the fact that Q,(yg) C Q2,, 2,/2(y0) C Q,, and Q19,(y0) C Q14p, We get
(5.30) by using Lemma 5.8.

Case 3: 4p < dist(0,09) < r/4. Setr; = dist(0, d2)/4 > p. Using (5.29), we obtain

(0%} n
¢®4»5C(§) $(0.1) + Chi(0.2p)
1
+ C£1(0,20) (| Vul oo,y +5)° 77 + Cdi(p) (| Vil Lo (,,,) + 9)-

On the other hand, choose yo € 0€2 such that dist(0, 9€2) = |yo|. Then B,, C Bs,, (¥o),
B, (y9) C By, and from (5.28) we have

#(0,r1) < Cy¥(yo,5r1)
= C(rr—l) ZW(J’O,T/z) + Chi(yo, 10r))

+ Cg1(y0, 10r) (| Vutl| oo (@, (o)) + $)* 2 + Ca1(5r) (| VUl oo, (o)) + 5)-

Noting that ,(yo) C Q2r, 2,/2(¥0) C 2r, and Q19 (Yo) C R214r,, We get (5.30) by
combining the last two estimates and applying Lemma 5.8.

Finally, replacing p with &/ p and summing in j, we get (5.31) by using Lemma 5.8
and the comparison principle of Riemann integrals. ]

Remark 5.9. We emphasize that Lemma 5.7 has a local nature. Indeed, it can be seen
from the proof that we only need the Dirichlet boundary condition ¥ = 0 on Q2 N
BRr/2(xo) and C 1P regularity of 9Q N BRr/2(xo) for these estimates to hold. There-
fore, our Lipschitz estimates and modulus of continuity estimates, which will be deduced
from Lemma 5.7, also have a local nature.

Recall the definition of qy , from (5.20) and keep (5.4) in mind. By following almost
the same proof of (4.7), we find that for any Lebesgue point x € Q of the vector-valued
function Vu and p € (0, Ry],

[Vu(x) —qx,p| < C Zqﬁ(x,sjp), (5.32)
j=0

where C is a constant depending only on n and yy.
Proof of Theorem 1.11. We will prove a boundary Lipschitz estimate
1
R —1 —__n_
IVatllLoe@pson = CIE DL @ pxon + CRZ7 |1Vul 45| 2 (@ xoy
(5.33)
for any xo € dQ2 and R < Rj, assuming that

IR (Dl Loo (B xo)) < OO (5.34)

Then (1.19) follows by a standard covering argument using (1.13) and (5.33). The proof
of (5.33) is similar to that of Theorem 1.3 so we will only focus on the differences.
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Step 1: The case when u € CI(QR/z(xo)). With (5.31) in place of (4.6), using the same
iteration technique as in the proof of Theorem 1.3, we get the following estimate:

IVl oot atxo + 5 < CRT7O V|| Lo @ (xo)
1

R/2 ¢ R/2 =T
+C  sup / l(f )dt+C sup (/ gl(x ) t) + Cs.

x€QR/2(x0) /0 x€Q /2 (x0) t

(5.35)

Using (5.27) and direct computations, we have

R/2
/ gl(x ) dt < CIR(u))(x) + C—|M|(l;1;/_21(xo))’
0

(I/LI(J-?Iz/z()Co)))”‘l

R2 )y 1(X ) < CR
/0 dt = CAR(|u))(x) 7T =

Therefore, from (5.35) and the fact that yy < 2 — p (cf. Lemma 5.2), we obtain

1
R —1 —__n
||Vu||L°°(QR/4(x0)) <C|n (|I’L|)”LPOO](QR(XO)) +CR Z7 H |Vul + SHL2—p(QR(x0))~
(5.36)

Step 2: The general case. We use an approximation argument with the aid of the regular-
ized distance introduced by Lieberman [15]. Here we refer to a modified version in [7].
Let d(-) be the regularized distance defined in [7, Lemma 5.1] (¢ (-) in that paper) and

k= {x eQ:d(x)>1/k}. Then from [7, Lemma 5.1], we know that Q¥ has a smooth
boundary and the C "P™_properties of 92 are the same as those of 2 up to some con-
stant independent of k. We take a sequence {¢y } of standard mollifiers and mollify p and
a by setting

() = (* o)), xeQ  d'(x)=(@xe)(x), xeQk

We know that p € WP (Qr(x0)) and therefore

ke = llw=1.0" @ e (xopy = O-

Recalling that we have a C1:P" coordinate in Qg(xo) since R < R;, we can take a
sequence of cut-off functions & € C*°(R") satisfying x = 11in Q¥/* N Bgr(xq), & =0
in (2 \ QK/2) N Br(xo), and | V& Lo < 16k

Next we let uy € uly + Wol’p (2% N Bgr(xo)) be the unique solution to

{—div(ak(X)(|VMk|2 + sz)pT_ZVuk) = ur in QF N Br(xo), (5.37)

U = uly on (2 N Br(xo)).

Since uyx = u&; = 0on Br(xo) NIQK, we can always assume uy € uly + Wol’p(QR(xo))
by taking the zero extension of uy in (Q \ %) N Br(xo). Since u = 0 on Br(xo) N 9L,
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by Hardy’s inequality we have
uVikllLr@rxoy < 16lkullLo(@\25/4)nBr(xo))
< Cllu/dllLrqo\0k/4ynBrixoy < CIVUllLr(@\2k/4)nBR (o) — O

as k — oo. Therefore, we know that

v — ulkllw.r(@gxo)) = O (5.38)

Thus by choosing u; — ul; as a test function in (5.37), following the proof of (4.18),
and using (5.38), we can show that || Vug | 17(Qp(xo)) is uniformly bounded in k. Also,
choosing (ux — ulx) 1, (xo) as a test function in (5.1) and (5.37), similarly we obtain

/ |V(Vug) — V(Vu)|?dx - 0 ask — oo,
QRr(x0)

which again implies
Vuyp — Vu strongly in L? (Qr(x0)).
By the classical boundary regularity theory (see, for instance, [16]), we have
ur € C1(QF N Brya(xo)).

Note that for sufficiently large k, there exists x¢ € Bgr(xo) N 2% such that |x — xo| <

R/16. Thus Bg/16(x0) C Br/s(xk), Br/4(xk) C Bry2(xo) and Br/2(xx) C B3r/4(xo).
Therefore, using (5.36) in Step 1 and Remark 5.9, we get

VUl Lo @k nBr 16eon = IVUkllLoo@knBR sex))

R/2 __n_
</ <|uk|>||LoomkmBR/2(x, y + CR™Z7 [1Vikl + 5] 1o par g pieen

R/2 -3
= C|I; (|Mk|)||Loo(QmB3R/4(xo)) + CR™7 | IVukl + 5] 12 n (@t ja o))

By extracting a subsequence and taking the limit as k — oo, we obtain (5.33). ]

Proof of Corollary 1.12. By testing (5.1) with u, following the proof of (4.18) we obtain

IVullzr@ < CHLI o gy +

where p’ = p/(p — 1). From [12, Theorem 1], we also have

p—l

T <C(/ wl,,<|u|>d|u|) < CIT (1 oo

Therefore, Corollary 1.12 follows by combining (1.19), Holder’s inequality, and the last
two inequalities. ]
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Now we turn to global modulus of continuity estimates of the gradient. Recall that we
fixed an ¢ € (0, 1/4) sufficiently small such that

Ce*™ ™ <1 and &*2<1/4

for both constants C in (3.13) and (5.19), where o € (0, 1) is the same constant as in
Theorem 2.1, a1 € (0, ), and ay = (a7 + «)/2. We also took R € (0, R;] and defined

B1(1) =Y e (o1 D[t < R/2) + o1 (R/2)[e™ 1 > R/2)),
i=1

(luh(x) = Zs“”’(li”"’<|u|>(x>[e-"p < R/2+ ()l p > R/Z])»(S -
1/,,,,<|u|>(x)
= (W (Dl < R/ WRR (o > R2),
/pp /pp
i=1

where I; and Wy, , are the Riesz and Wolff potentials defined in (1.9) and (1.11),
respectively.
Our global modulus of continuity estimate of the gradient is as follows.

Theorem 5.10. Assume the conditions of Theorem 1.11 and oy € (0, ), where « is the
constant in Theorem 2.1. Then there exist constants R1 = R{(Ry, wg) € (0, Ry) and
C =C(n,p,A,a1,w, Ry, wg) such that for any xo € Q, any R € (0, Ry], and any x,y €
Q prya(xo) that are Lebesgue points of the vector-valued function Vu, we have

[Vu(x) = Vu(y)|

ai
p w1 ()
=CM, [(E) +/0 df} +CIWY, (Do (@ atxo)

+ CM%"’||if(|u|>||LoomR,4(xo>), (5.40)

where p = |x — y|, w1 = w + wy, @1, Wl/p,pr and 1y are defined in (5.39), and

M, :=R" 7 |||Vu| + S”Lz P(Q g (x0)) + ”IR(lMD”Loo(QR(xO))
Proof. For any x, y € QR/4(xo) that are Lebesgue points of Vu and p > 0,
[Vu(x) = Vu(y)|”
< [Vu(x) = qu,p|” + [Vu(y) — gy 20" + 1qx.p — ay,2o"°

= Vu(x) = Qo[ + [Vu(y) — gy,20/™
+ [Vu(z) - qx,p|y0 + [Vu(z) - qy,2p|y0-
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We set p = |x — y|, take the average over z € €,(x), and then take the yo-th root to get
[Vu(x) — Vu(y)|
< CIVux) = Qu,p[" + CIVu(y) = a2 + Ch(x, p) + CH(y,2p)

<CY ¢(x.e/p)+C Y $(y.2¢p) + Ch(x, p) + C(y.2p)

j=0 j=0

<C sw qu(yo,zs p):

YOGQR/zt(xO)j =0

where we have used the fact that ,(x) C 22,(y) in the first inequality and (5.32) in the
second inequality.
If p < R/16, by using (5.31) with R/8 in place of r and the fact that

Qr/a(yo) C Qprya(xo) Vyo € Qpryalxo),

we obtain
[Vu(x) — Vu(y)|

o ? i
) h](y()s t)
=¢ (E) IVl @p/azon + € sup / e
Y0€RR/4(x0) /0 g

.
_ g1(yo, 1)
+ C(IVullLoo@g a(xo) +5)°>77  sup / ——dt
Y0EQRR/4(x0) /O 4

1 (f)

+ C(IVulLo @ atro) +5) / (5.41)

Clearly, (5.41) still holds when p > R/16. Using (5.27) and similar calculations to those
in the proof of Theorem 4.3, for any yo € Qg/4(xo) and p € (0, R/2) we have

P &1(yo, 1) o ! | (Bry2(x0))
| < B + € ( R) ePrizix0)) (5.42)
o 1
P h .t ! B p=T
[ g <, oo+ o(2) " (HEREE) T ay
Using (1.19), (5.42), and (5.43), the estimate (5.41) implies (5.40). [
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