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Abstract. We study the insulated conductivity problem with inclusions embedded in a bounded

domain in R
n. The gradient of solutions may blow up as ", the distance between inclusions,

approaches to 0. It was known that the optimal blow-up rate in dimension n D 2 is of order "�1=2.

It has recently been proved that in dimensions n � 3, an upper bound of the gradient is of order

"�1=2Cˇ for some ˇ > 0. On the other hand, optimal values of ˇ have not been identified.

In this paper, we prove that when the inclusions are balls, the optimal value of ˇ is Œ�.n � 1/ Cp
.n � 1/2 C 4.n � 2/�=4 2 .0; 1=2/ in dimensions n � 3.

Keywords: optimal gradient estimates, high contrast coefficients, insulated conductivity problem,

degenerate elliptic equation, maximum principle.

1. Introduction and main results

First we describe the nature of the domain. Let � � R
n be a bounded domain with C 2

boundary containing two C 2;
 (0 < 
 < 1) relatively strictly convex open sets D1 and D2

with dist.D1 [ D2; @�/ > c > 0. Let

" WD dist.D1; D2/

and z� WD � n .D1 [ D2/. The conductivity problem can be modeled by the following

elliptic equation: ´
div.ak.x/ruk/ D 0 in �;

uk D '.x/ on @�;
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where ' 2 C 2.@�/ is given, and

ak.x/ D
´

k 2 .0; 1/ in D1 [ D2;

1 in z�:

In the context of electric conduction, the elliptic coefficients ak refer to conductivities,

and the solutions uk represent voltage potential. From an engineering point of view, it is

significant to estimate the magnitude of the electric fields in the narrow region between

the inclusions, which is given by jrukj. This problem is analogous to the Lamé system

studied by Babuška, Andersson, Smith, and Levin [5], where they analyzed numerically

that when the ellipticity constants are bounded away from 0 and infinity, the gradient of

solutions remains bounded independent of ", the distance between inclusions. Later, Bon-

netier and Vogelius [12] proved that when " D 0, jrukj is bounded for a fixed k and

circular inclusions D1 and D2 in dimension n D 2. This result was extended by Li and

Vogelius [28] to general second order elliptic equations of divergence form with piecewise

Hölder coefficients and general shape of inclusions D1 and D2 in any dimension. Further-

more, they established a stronger piecewise C 1;˛ control of uk , which is independent of ".

Li and Nirenberg [27] extended this global Lipschitz and piecewise C 1;˛ result to general

second order elliptic systems of divergence form, including the linear system of elasticity.

Some higher order derivative estimates in dimension n D 2 were obtained in [15, 16, 18].

When k is equal to 1 (inclusions are perfect conductors) or 0 (insulators), it was

shown in [13,22,31] that the gradient of solutions generally becomes unbounded as " ! 0.

Ammari et al. in [3, 4] considered the perfect and insulated conductivity problems with

circular inclusions in R
2, and established optimal blow-up rates "�1=2 in both cases. Yun

extended in [33, 34] the results above allowing D1 and D2 to be any bounded strictly

convex smooth domains.

The above gradient estimates in dimension n D 2 were localized and extended to

higher dimensions by Bao, Li, and Yin in [6, 7]. For the perfect conductor case, they

proved in [6] that
8
ˆ̂<
ˆ̂:

krukL1. z�/ � C "�1=2k'kC 2.@�/ when n D 2;

krukL1. z�/ � C j" ln "j�1k'kC 2.@�/ when n D 3;

krukL1. z�/ � C "�1k'kC 2.@�/ when n � 4:

These bounds were shown to be optimal in the paper and they are independent of the shape

of inclusions, as long as the inclusions are relatively strictly convex. Moreover, many

works have been done in characterizing the singular behaviors of ru, which are signifi-

cant in practical applications. For further works on the perfect conductivity problem and

closely related ones, see, e.g., [1, 2, 8–11, 14–17, 20, 21, 23–26, 30] and the references

therein.

For the insulated conductivity problem, it was proved in [7] that

krukL1. z�/ � C "�1=2k'kC 2.@�/ when n � 2: (1.1)

The upper bound is optimal for n D 2 as mentioned above.
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Yun [35] studied the following free space insulated conductivity problem in R
3: Let H

be a harmonic function in R
3, D1 D B1.0; 0; 1 C "=2/, and D2 D B1.0; 0; �1 � "=2/,

8
ˆ̂̂
<
ˆ̂̂
:

�u D 0 in R
3 n .D1 [ D2/;

@u

@�
D 0 on @Di ; i D 1; 2;

u.x/ � H.x/ D O.jxj�2/ as jxj ! 1:

He proved that for some positive constant C independent of ",

max
jx3j�"=2

jru.0; 0; x3/j � C ".
p

2�2/=2: (1.2)

He also showed that this upper bound of jruj on the "-segment connecting D1 and D2 is

optimal for H.x/ � x1. Although this result does not provide an upper bound of jruj in

the complement of the "-segment, it has added support to a long-time suspicion that the

upper bound "�1=2 obtained for dimension n D 3 in [7] is not optimal.

The upper bound (1.1) was recently improved by Li and Yang [29] to

krukL1. z�/ � C "�1=2Cˇ k'kC 2.@�/ when n � 3

for some ˇ > 0. When insulators are unit balls, a more explicit constant ˇ.n/ was given

by Weinkove in [32] for n � 4 by a different method. The constant ˇ.n/ obtained in [32]

presumably improves that in [29]. In particular, it was proved in [32] that ˇ.n/ ap-

proaches 1=2 from below as n ! 1. However, the optimal blow-up rate in dimensions

n � 3 remained unknown. We draw reader’s attention to a recent survey paper [19] by

Kang, where in the conclusions section, the three-dimensional case is described as an

outstanding problem.

In this paper, we focus on the following insulated conductivity problem in dimensions

n � 3, and give an optimal gradient estimate for a certain class of inclusions including

two balls of any size: 8
ˆ̂̂
<
ˆ̂̂
:

��u D 0 in z�;

@u

@�
D 0 on @Di ; i D 1; 2;

u D ' on @�;

(1.3)

where ' 2 C 2.@�/ is given, and � D .�1; : : : ; �n/ denotes the inner normal vector on

@D1 [ @D2.

We use the notation x D .x0; xn/, where x0 2 R
n�1. After choosing a coordinate

system properly, we can assume that near the origin, the part of @D1 and @D2, denoted

by �C and ��, are respectively the graphs of two C 2;
 .0 < 
 < 1/ functions in terms

of x0. That is, for some R0 > 0,

�C D
°
xn D "

2
C f .x0/; jx0j < R0

±
;

�� D
°
xn D � "

2
C g.x0/; jx0j < R0

±
;
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where f and g are C 2;
 functions satisfying

f .x0/ > g.x0/ for 0 < jx0j < R0;

f .00/ D g.00/ D 0; rx0f .00/ D rx0g.00/ D 0; (1.4)

f .x0/ � g.x0/ D ajx0j2 C O.jx0j2C
 / for 0 < jx0j < R0 (1.5)

with a > 0. Here and throughout the paper, we use the notation O.A/ to denote a quantity

that can be bounded by CA, where C is some positive constant independent of ". For

0 < r � R0, we denote

�r WD
°
.x0; xn/ 2 z�

ˇ̌
� "

2
C g.x0/ < xn <

"

2
C f .x0/; jx0j < r

±
: (1.6)

By standard elliptic estimates, the solution u 2 H 1. z�/ of (1.3) satisfies

kukC 1. z�n�R0=2/ � C: (1.7)

We will focus on the following problem near the origin:
8
ˆ̂̂
<
ˆ̂̂
:

��u D 0 in �R0
;

@u

@�
D 0 on �C [ ��;

kukL1.�R0
/ � 1:

(1.8)

It was proved in [7] that for u 2 H 1.�R0
/ satisfying (1.8),

jru.x/j � C." C jx0j2/�1=2 8x 2 �R0
; (1.9)

where C is a positive constant depending only on n, R0, a, kf kC 2 , and kgkC 2 , and is in

particular independent of ". The above-mentioned improvement on (1.1) in [29, 32] also

applies to (1.9).

Our main results of this paper are as follows.

Theorem 1.1. For n � 3, " 2 .0; 1=4/, let u 2 H 1.�R0
/ be a solution of (1.8) with f , g

satisfying (1.4) and (1.5). Then there exists a positive constant C depending only on n,

R0, 
 , a positive lower bound of a, and an upper bound of kf kC 2;
 and kgkC 2;
 , such

that

jru.x/j � C kukL1.�R0
/." C jx0j2/.˛�1/=2 8x 2 �R0=2; (1.10)

where

˛ D ˛.n/ WD �.n � 1/ C
p

.n � 1/2 C 4.n � 2/

2
2 .0; 1/: (1.11)

Note that ˛.n/ is monotonically increasing in n, and

˛.n/ D 1 � 2

n
C O

� 1

n2

�
as n ! 1:

For n D 3, the exponent .˛ � 1/=2 D .
p

2 � 2/=2 is the same as the exponent in (1.2).

For n � 4, the exponent .˛ � 1/=2 is strictly greater than the one obtained in [32].

A consequence of Theorem 1.1 is, in view of (1.7), as follows.
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Corollary 1.2. For n � 3, " 2 .0; 1=4/, let D1, D2 be two balls of radii r1, r2, centered at

.00; "=2 C r1/ and .00; �"=2 � r2/, respectively. Let u 2 H 1. z�/ be the solution of (1.3).

Then there exists a positive constant C depending only on n, r1, r2, and k@�kC 2 such

that

krukL1. z�/ � C k'kC 2.@�/"
.˛�1/=2; (1.12)

where ˛ is given by (1.11).

Estimate (1.12) is optimal as shown in the following theorem.

Theorem 1.3. For n � 3, " 2 .0; 1=4/, let � D B5, and D1, D2 be the unit balls center at

.00; 1 C "=2/ and .00; �1 � "=2/, respectively. Let ' D x1 and u 2 H 1. z�/ be the solution

of (1.3). Then there exists a positive constant C depending only on n, such that

krukL1. z�\B2
p

"/ � 1

C
".˛�1/=2; (1.13)

where ˛ is given by (1.11).

Remark 1.4. Estimate (1.13) holds for all C 2 domains � and C 4 relatively strictly con-

vex open sets D1, D2 that are axially symmetric with respect to xn-axis. A modification

of the proof of the theorem yields the result.

Let us give a brief description of the proof of Theorem 1.3. Consider

xu.x0/ D
−

�"=2Cg.x0/<xn<"=2Cf .x0/

u.x0; xn/ dxn; jx0j < 1;

where f .x0/ D �
p

1 � jx0j2 C 1 and g.x0/ D
p

1 � jx0j2 � 1. In the polar coordinates,

xu.x0/ D xu.r; �/, where x0 D .r; �/, 0 < r < 1, and � 2 S
n�2. Since the boundary value '

depends only on x1 and is odd in x1, the projection of xu.r; �/ to the span of the spherical

harmonics is U1;1.r/Y1;1.�/, where Y1;1 is x1jSn�2 modulo a harmless positive normal-

ization constant,

U1;1.r/ D
−

�"=2Cg.x0/<xn<"=2Cf .x0/

yu.r; xn/ dxn;

and

yu.r; xn/ D
Z

Sn�2

u.r; �; xn/Y1;1.�/ d�:

We analyze the equations satisfied by U1;1.r/ and yu.r; xn/ and establish a lower bound

U1;1.r/ � 1

C
rˇ ." C r2/.˛�ˇ/=2; 0 < r < 1;

where ˇ D .2˛2 C ˛.n � 1//=.n � 3 C ˛/ and C is a positive constant independent of ".

It follows that

kxu.
p

"; �/kL2.Sn�2/ � jU1;1.
p

"/j � 1

C
"˛=2;
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and, consequently, there exist �0 2 S
n�2, xn 2 .�"=2 C g.x0/; "=2 C f .x0// such that

ju.
p

"; �0; xn/j � 1

C
"˛=2:

Estimate (1.13) follows since u.0/ D 0 by the oddness of u in x1.

Theorems 1.1 and 1.3 will be proved in Sections 2 and 3, respectively.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Without loss of generality, we may assume a D 1.

Namely, we consider

f .x0/ � g.x0/ D jx0j2 C O.jx0j2C
 / for 0 < jx0j < R0:

We perform a change of variables by setting
8
<̂

:̂

y0 D x0;

yn D 2"
� xn � g.x0/ C "=2

" C f .x0/ � g.x0/
� 1

2

�
;

8.x0; xn/ 2 �R0
: (2.1)

This change of variables maps the domain �R0
to a cylinder of height 2", denoted

by QR0;", where

Qs;t WD ¹y D .y0; yn/ 2 R
n j jy0j < s; jynj < tº

for s; t > 0. Moreover, det.@xy/ D 2"." C f .x0/ � g.x0//�1. Let u.x/ 2 H 1.�R0
/ be

a solution of (1.8) and let v.y/ D u.x/. Then v satisfies

´
�@i .a

ij .y/@j v.y// D 0 in QR0;";

anj .y/@j v.y/ D 0 on ¹yn D �"º [ ¹yn D "º
(2.2)

with kvkL1.QR0;"/ � 1, where the coefficient matrix .aij .y// is given by

.aij .y// D 2".@xy/.@xy/t

det.@xy/

D

0
BBBBBB@

" C jy0j2 0 � � � 0 a1n

0 " C jy0j2 � � � 0 a2n

:::
:::

: : :
:::

:::

0 0 � � � " C jy0j2 an�1;n

an1 an2 � � � an;n�1 4"2C
Pn�1

iD1 jainj2
"Cf .y0/�g.y0/

1
CCCCCCA

C

0
BBBBB@

e1 0 � � � 0 0

0 e2 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � en�1 0

0 0 � � � 0 0

1
CCCCCA

and

ani D ain D �2"@i g.y0/ � .yn C "/@i .f .y0/ � g.y0//;

ei D f .y0/ � g.y0/ � jy0j2
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for i D 1; : : : ; n � 1. By (1.4), we know that for i D 1; : : : ; n � 1,

jani .y/j D jain.y/j � C "jy0j and jei .y0/j � C jy0j2C
 : (2.3)

Note that e1; : : : ; en�1 depend only on y0 and are independent of yn. We define

xv.y0/ WD
− "

�"

v.y0; yn/ dyn: (2.4)

Then xv satisfies

div.." C jy0j2/rxv/ D �
n�1X

iD1

@i .ain@nv/ �
n�1X

iD1

@i .e
i @i xv/ in BR0

� R
n�1 (2.5)

with kxvkL1.BR0
/ � 1, where ain@nv is the average of ain@nv with respect to yn in

.�"; "/. Since @u=@� D 0 on �C and ��, we have by (1.4) and (1.9) that

j@nu.x/j � C

ˇ̌
ˇ̌

n�1X

iD1

xi @i u

ˇ̌
ˇ̌ � C 8x 2 �C [ ��:

By the harmonicity of @nu, estimate (1.7), and the maximum principle,

j@nuj � C in �R0
; (2.6)

and consequently,

j@nvj � C." C jy0j2/

"
in QR0;": (2.7)

Therefore, equation (2.5) can be rewritten as

div.." C jy0j2/rxv/ D
n�1X

iD1

@i Fi in BR0
� R

n�1; (2.8)

where Fi WD �ain@nv � ei @i xv satisfies, using (1.9) and (2.3),

jFi j � C.jy0j." C jy0j2/ C jy0j2C
 ." C jy0j2/�1=2/:

For 
; s 2 R, we introduce the following norm:

kF k";
;s;BR0
WD sup

y02BR0

jF.y0/j
jy0j
 ." C jy0j2/1�s

:

Proposition 2.1. For n � 3, s � 0, 1 C 
 � 2s > 0, 1 C 
 � 2s ¤ ˛, " > 0, and R0 > 0,

let xv 2 H 1.BR0
/ be a solution of

div.." C jy0j2/rxv/ D div F C G in BR0
� R

n�1;

where F; G 2 L1.BR0
/ satisfy

kF k";
;s;BR0
< 1; kGk";
�1;s;BR0

< 1: (2.9)
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Then for any R 2 .0; R0=2/, we have

� −

@BR

jxv � xv.0/j2 d�
�1=2

� C.kF k";
;s;BR0
C kGk";
�1;s;BR0

C kxv � xv.0/kL2.@BR0
//R

z̨; (2.10)

where z̨ WD min¹˛; 1 C 
 � 2sº, ˛ is given in (1.11), and C is some positive constant

depending only on n, 
 , s, and R0, and is independent of ".

For the proof, we use an iteration argument based on the following two lemmas.

Lemma 2.2. For n � 3, " > 0, and R0 > 0, let v1 2 H 1.BR0
/ satisfy

div.." C jy0j2/rv1/ D 0 in BR0
� R

n�1: (2.11)

Then for any 0 < � < R � R0, we have

� −

@B�

jv1.y0/ � v1.0/j2 d�
�1=2

�
� �

R

�˛� −

@BR

jv1.y0/ � v1.0/j2 d�
�1=2

;

where ˛ is given in (1.11).

Proof. By the elliptic theory, v1 2 C 1.BR0
/. Without loss of generality, we assume that

v1.0/ D 0. By scaling, it suffices to prove the lemma for R D 1. Denote

y0 D .r; �/ 2 .0; 1/ � S
n�2:

We can rewrite (2.11) as

@rrv1 C
�n � 2

r
C 2r

" C r2

�
@rv1 C 1

r2
�Sn�2v1 D 0 in B1 n ¹0º:

Take the decomposition

v1.y0/ D
1X

kD1

N.k/X

iD1

Vk;i .r/Yk;i .�/; y0 2 B1 n ¹0º; (2.12)

where Yk;i is a k-th degree spherical harmonics, that is,

��Sn�2Yk;i D k.k C n � 3/Yk;i

and ¹Yk;i ºk;i forms an orthonormal basis of L2.Sn�2/. Here we used the fact that V0;1 D 0

because v1.0/ D 0. Then Vk;i .r/ 2 C 2.0; 1/ is given by

Vk;i .r/ D
Z

Sn�2

v1.y0/Yk;i .�/ d�

and satisfies

LkVk;i WD V 00
k;i .r/ C

�n � 2

r
C 2r

" C r2

�
V 0

k;i .r/ � k.k C n � 3/

r2
Vk;i .r/ D 0 in .0; 1/
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for each k 2 N, i D 1; 2; : : : ; N.k/. For any k 2 N, let

˛k WD �.n � 1/ C
p

.n � 1/2 C 4k.k C n � 3/

2
:

For any c 2 R, we have, by a direct computation,

Lkrc D rc�2
�
c2 C

�
n � 3 C 2r2

" C r2

�
c � k.k C n � 3/

�
in .0; 1/:

Thus for c > 0 sufficiently small, we have

Lkr�c � 0 and Lkr˛k � 0 in .0; 1/:

Therefore, for any 
 > 0,

Lk.ÛVk;i .r/ � 
r�c � jVk;i .1/jr˛k / � 0 in .0; 1/:

Since v1 2 L1.B1/, we know that Vk;i .r/ is bounded in .0; 1/, so we have

ÛVk;i .r/ � 
r�c � jVk;i .1/jr˛k < 0 as r & 0:

Clearly,

ÛVk;i .r/ � 
r�c � jVk;i .1/jr˛k < 0 when r D 1:

By the maximum principle,

jVk;i .r/j � 
r�c C r˛k jVk;i .1/j for 0 < r < 1:

Sending 
 ! 0, we have

jVk;i .r/j � r˛k jVk;i .1/j for 0 < r < 1: (2.13)

It follows from (2.12) and (2.13) that

−

@B�

jv1.y0/j2 d� D
1X

kD1

N.k/X

iD1

jVk;i .�/j2

� �2˛

1X

kD1

N.k/X

iD1

jVk;i .1/j2 D �2˛

−

@B1

jv1.y0/j2 d�:

Lemma 2.3. For n � 3, s � 0, 1 C 
 � 2s > 0, and " > 0, suppose that F; G 2 L1.B1/

satisfy (2.9) with R0 D 1, and v2 2 H 1
0 .B1/ satisfies

div.." C jy0j2/rv2/ D div F C G in B1 � R
n�1: (2.14)

Then we have

kv2kL1.B1/ � C.kF k";
;s;B1
C kGk";
�1;s;B1

/;

where C > 0 depends only on n, 
 , and s, and is in particular independent of ".
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Proof. Without loss of generality, we assume kF k";
;s;B1
C kGk";
�1;s;B1

D 1. Denote

r D jy0j. We can rewrite (2.14) as

�v2 C 2r

" C r2
@rv2 D @i .Fi ." C r2/�1/ C 2Fi yi ." C r2/�2

C G." C r2/�1 in B1: (2.15)

We use Moser’s iteration argument. By the definitions,

jFi ." C r2/�1j � r
�2skF k";
;s;B1
;

jFi yi ." C r2/�2j � r
�2s�1kF k";
;s;B1
;

jG." C r2/�1j � r
�2s�1kGk";
�1;s;B1
:

For p � 2, we multiply equation (2.15) by �jv2jp�2v2 and integrate by parts to obtain

.p � 1/

Z

B1

jrv2j2jv2jp�2 dy0 �
Z

B1

2r

" C r2
@rv2.jv2jp�2v2/ dy0

� C.p � 1/

Z

B1

jrv2j jv2jp�2r
�2s dy0 C C

Z

B1

jv2jp�1r
�2s�1 dy0:

The second term on the left-hand side is equal to

� 1

p

Z

Sn�2

Z 1

0

2rn�1

" C r2
@r jv2jp drd� D 1

p

Z

Sn�2

Z 1

0

@r

� 2rn�1

" C r2

�
jv2jp drd� � 0:

Therefore, by Hölder’s inequality and using 1 C 
 � 2s > 0,

.p � 1/

Z

B1

jrv2j2jv2jp�2 dy0

� C.p � 1/kjrv2jjv2j.p�2/=2kL2.B1/kv
p�2
2 k1=2

Ln=.n�2/.B1/
kr2.
�2s/k1=2

Ln=2.B1/

C C kjv2jp�1kLn=.n�2/.B1/kr
�2s�1kLn=2.B1/

� C.p � 1/kjrv2jjv2j.p�2/=2kL2.B1/kv
p�2
2 k1=2

Ln=.n�2/.B1/

C C kjv2jp�1kLn=.n�2/.B1/:

By Young’s inequality,

p � 1

2

Z

B1

jrv2j2jv2jp�2 dy0 � C.p � 1/kjv2jp�2kLn=.n�2/.B1/

C C kjv2jp�1kLn=.n�2/.B1/: (2.16)

Taking p D 2 in the above, we have, by Hölder’s inequality,

Z

B1

jrv2j2dy0 � C C C kv2kLn=.n�2/.B1/

� C C C kv2kL2n=.n�2/.B1/:
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Applying the Sobolev–Poincaré inequality on the left-hand side, we have

kv2k2
L2n=.n�2/.B1/

� C

Z

B1

jrv2j2dy0 � C C C kv2kL2n=.n�2/.B1/;

which implies

kv2kL2n=.n�2/.B1/ � C: (2.17)

From (2.16), by Hölder’s inequality,

4.p � 1/

p2

Z

B1

jrjv2jp=2j2 dy0 D .p � 1/

Z

B1

jrv2j2jv2jp�2 dy0

� Cpkv2kp�2

Lnp=.n�2/.B1/
C C kv2kp�1

Lnp=.n�2/.B1/
;

which implies that

krjv2jp=2k2=p

L2.B1/
� max

i2¹1;2º
.Cpi /1=pkv2k.p�i/=p

Lnp=.n�2/.B1/
:

Then by the Sobolev inequality and Young’s inequality, we have

kv2k
L

.n�1=2/p
n�5=2 .B1/

� max
i2¹1;2º

.Cpi /1=p
�p � i

p
kv2kLnp=.n�2/.B1/ C i

p

�

� .Cp2/1=p
�
kv2kLnp=.n�2/.B1/ C 2

p

�
:

For k � 0, let

pk D 2
� .n � 1=2/.n � 2/

.n � 5=2/n

�k n

n � 2
:

Iterating the relations above, we have, by (2.17),

kv2kLpk �
k�1Y

iD0

.Cp2
i /2=pi kv2kLp0 .B1/ C

k�1X

iD0

k�1Y

j Di

.Cp2
j /2=pj

4

pi

� C kv2kL2n=.n�2/.B1/ C C � C; (2.18)

where C is a positive constant depending on n, 
 , and s, and is in particular independent

of k. The lemma is concluded by taking k ! 1 in (2.18).

Proof of Proposition 2.1. Without loss of generality, we assume that xv.0/ D 0 and

kF k";
;s;BR0
C kGk";
�1;s;BR0

C kxvkL2.@BR0
/ D 1:

Consider

!.�/ WD
� −

@B�

jxvj2 d�
�1=2

:

For 0 < � � R=2 � R0=2, we write xv D v1 C v2 in BR, where v2 satisfies

div.." C jy0j2/rv2/ D div F C G in BR
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and v2 D 0 on @BR. Thus v1 satisfies

div.." C jy0j2/rv1/ D 0 in BR

and v1 D xv on @BR. By Lemma 2.2,

� −

@B�

jv1.y0/ � v1.0/j2 d�
�1=2

�
� �

R

�˛� −

@BR

jv1.y0/ � v1.0/j2 d�
�1=2

: (2.19)

Since zv2.y0/ WD v2.Ry0/ satisfies

div..R�2" C jy0j2/rzv2/ D div zF C zG in B1;

where zF .y0/ WD R�1F.Ry0/ and zG.y0/ WD G.Ry0/ satisfy

k zF kR�2";
;s;B1
D R1C
�2skF k";
;s;BR

;

k zGkR�2";
�1;s;B1
D R1C
�2skGk";
�1;s;BR

;

we apply Lemma 2.3 to zv2 with " replaced by R�2" to obtain

kv2kL1.BR/ � CR1C
�2s : (2.20)

Since xv.0/ D v1.0/ C v2.0/ D 0, we have jv1.0/j D jv2.0/j. Combining (2.19) and (2.20)

yields, using xv D v1 C v2, and xv D v1 on @BR,

!.�/ �
� −

@B�

jv1.y0/ � v1.0/j2 d�
�1=2

C
� −

@B�

jv2.y0/ � v2.0/j2 d�
�1=2

�
� �

R

�˛� −

@BR

jv1.y0/j2 d�
�1=2

C
� �

R

�˛

jv1.0/j C 2kv2kL1.BR/

�
� �

R

�˛

!.R/ C CR1C
�2s : (2.21)

For a positive integer k, we take � D 2�i�1R0 and R D 2�i R0 in (2.21) and iterate from

i D 0 to k � 1. We have, using 1 C 
 � 2s ¤ ˛,

!.2�kR0/ � 2�k˛!.R0/ C C

kX

iD1

2�.k�i/˛.21�i R0/1C
�2s

� 2�k˛!.R0/ C C 2�k˛R
1C
�2s
0

1 � 2k.˛�1�
C2s/

1 � 2˛�1�
C2s
:

It follows that

!.2�kR0/ � 2�k z̨.!.R0/ C CR
1C
�2s
0 /:

For any � 2 .0; R0=2/, let k be the integer such that 2�k�1R0 < � � 2�kR0. Then

!.�/ � C� z̨ 8� 2
�
0;

R0

2

�
:

Therefore, (2.10) is proved.
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Proof of Theorem 1.1. Without loss of generality, we assume that a D 1, u.0/ D 0 and

kukL1.�R0
/ D 1. We make the change of variables (2.1), and let v.y/ D u.x/. Then v

satisfies (2.2). Let xv be defined as in (2.4). By (1.9),

krxv.y0/k";0;s0C1;BR0
< 1;

where s0 D 1=2. Then xv satisfies equation (2.8) with F satisfying

kF k";
�2s0;0;BR0
< 1:

By (2.7),

jv.y0; yn/ � xv.y0/j � 2" max
yn2.�";"/

j@nv.y0; yn/j � C." C jy0j2/ in QR0;": (2.22)

By decreasing 
 if necessary, we may assume that 1 C 
 � 2s0 D 
 < ˛. By Proposi-

tion 2.1 and (2.22), we have

−

Q
2"1=2;"

jv � xv.0/j2 dy � C

−

Q
2"1=2;"

jv � xvj2 dy C C

−

Q
2"1=2;"

jxv � xv.0/j2 dy

� C "z̨; (2.23)

where z̨ D min¹˛; 1 C 
 � 2s0º. Let zaij .y/ D aij ."1=2y/ and zv.y/ D v."1=2y/ � xv.0/.

Then zv satisfies
´

�@i .zaij .y/@j zv.y// D 0 in Q2;"1=2 ;

zanj .y/@j zv.y/ D 0 on ¹yn D �"1=2º [ ¹yn D "1=2º:

It is straightforward to verify that

I

C
� za � CI and krzakL1.Q

2;"1=2 / � C:

Now we define

Sl WD ¹y 2 R
n j jy0j < 2; .2l � 1/"1=2 < yn < .2l C 1/"1=2º

for any integer l , and

S WD ¹y 2 R
n j jy0j < 2; jynj < 2º:

Note that Q2;"1=2 D S0. We take the even extension of zv with respect to yn D "1=2 and

then take the periodic extension (so that the period is equal to 4"1=2). More precisely,

we define, for any l 2 Z, a new function yv by setting

yv.y/ WD zv.y0; .�1/l .yn � 2l"1=2// 8y 2 Sl :

We also define the corresponding coefficients, for k D 1; 2; : : : ; n � 1,

yank.y/ D yakn.y/ WD .�1/l zakn.y0; .�1/l .yn � 2l"1=2// 8y 2 Sl ;
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and for other indices,

yaij .y/ WD zaij .y0; .�1/l .yn � 2l"1=2// 8y 2 Sl :

Then yv and yaij are defined in the infinite cylinder Q2;1. In particular, by using the conor-

mal boundary conditions, it is easily seen that yv satisfies the equation

@i .yaij @j yv/ D 0 in S:

By [27, Proposition 4.1], [29, Lemma 2.1] and (2.23),

kryvkL1. 1
2 S/ � C kyvkL2.S/ � C "z̨=2;

which implies, after reversing the changes of variables,

krukL1.�
"1=2 / � C ".z̨�1/=2:

For any R 2 ."1=2; R0=4/, by Proposition 2.1 and (2.22), we have

−

Q4R;"nQR=2;"

jv � xv.0/j2 dy � CR2z̨:

This implies −

�4Rn�R=2

ju � xv.0/j2 dx � CR2z̨:

We make a change of variables by setting

8
<̂

:̂

z0 D x0;

zn D 2R2
� xn � g.x0/ C "=2

" C f .x0/ � g.x0/
� 1

2

�
;

8.x0; xn/ 2 �4R n �R=2:

This change of variables maps the domain �4R n �R=2 to Q4R;R2 n QR=2;R2 . Let w.z/ D
u.x/ � xv.0/, so that w.z/ satisfies

´
�@i .b

ij .z/@j w.z// D 0 in Q4R;R2 n QR=2;R2 ;

bnj .z/@j w.z/ D 0 on ¹zn D �R2º [ ¹zn D R2º;

where

.bij .z// D .@xz/.@xz/t

det.@xz/
:

It is straightforward to verify that

I

C
� b.z/ � CI and krbkL1.Q

4R;R2 nQ
R=2;R2 / � CR�1:

We can apply the “flipping argument” as above to get

krwkL1.Q
2R;R2 nQ

R;R2 / � CR z̨�1;
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which implies

krukL1.�2Rn�R/ � CR z̨�1

for any R 2 ."1=2; R0=4/. Therefore, we have improved the upper bound jru.x/j �
C." C jx0j2/�s0 to jru.x/j � C." C jx0j2/.z̨�1/=2, where

z̨ � 1

2
D min

°˛ � 1

2
; �s0 C 


2

±
:

If �s0 C 
=2 < .˛ � 1/=2, we take s1 D s0 � 
=2 and repeat the argument above. We may

decrease 
 if necessary so that

˛ � 1

2
¤ �s0 C k




2
for any k D 1; 2; : : :

After repeating the argument finite number of times, we obtain estimate (1.10).

3. Optimality

In this section, we prove Theorem 1.3. We will make use of the following lemma.

Lemma 3.1. For " > 0, there exists a unique solution h 2 L1..0; 1// \ C 1..0; 1�/ of

Lh WD h00.r/ C
�n � 2

r
C 2r

" C r2

�
h0.r/ � n � 2

r2
h.r/ D 0; 0 < r < 1; (3.1)

satisfying h.1/ D 1. Moreover, h 2 C.Œ0; 1�/, h.0/ D 0, and for

ˇ � 2˛2 C ˛.n � 1/

n � 3 C 2˛
;

there exist positive constants C."/ and C.ˇ/ such that

r < h.r/ < min¹C."/r; r˛º and h.r/ � 1

C.ˇ/
rˇ ." C r2/.˛�ˇ/=2 for 0 < r < 1; (3.2)

where ˛ is given by (1.11) and h is strictly increasing in Œ0; 1�.

Proof. For 0 < a < 1, let ha 2 C 2.Œa; 1�/ be the solution of Lha D 0 in .a; 1/ satisfying

ha.a/ D a and ha.1/ D 1. Since Lr > 0 and Lr˛ < 0 in .0; 1/, by the maximum principle

and the strong maximum principle,

r < ha.r/ < r˛; a < r < 1:

Sending a ! 0 along a subsequence, ha ! h in C 2
loc..0; 1�/ for some h 2 C.Œ0; 1�/ \

C 1..0; 1�/ satisfying r � h.r/ � r˛ , Lh D 0 in .0; 1/, and h.0/ D 0. By the strong

maximum principle,

r < h.r/ < r˛; 0 < r < 1:
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Let v D r.1 � r1=2=2/. By a direct computation,

Lv D �1

4

�
n � 1

2

�
r�1=2 C 1

"
O.r/ as r ! 0:

Hence Lv < 0 in .0; r0."//, for some small r0."/. Recall that Lh D 0 and h < r˛ in

.0; r0."//, h.0/ D v.0/ D 0. By the maximum principle, we have

h � h.r0."//

v.r0."//
v � C."/r in .0; r0."//;

where C."/ D r˛
0 ."/=v.r0."//.

For ˇ 2 R, let U.r/ D rˇ ." C r2/.˛�ˇ/=2. By a direct computation,

LU D rˇ�2." C r2/.˛�ˇ/=2
°
.ˇ � ˛/2

� r2

" C r2

�2

C Œ.2ˇ C n � 1/.˛ � ˇ/ C 2ˇ�

�
� r2

" C r2

�
C .n � 2 C ˇ/.ˇ � 1/

±
; 0 < r < 1:

Consider the second order polynomial

p.x/ WD .ˇ � ˛/2x2 C Œ.2ˇ C n � 1/.˛ � ˇ/ C 2ˇ�x C .n � 2 C ˇ/.ˇ � 1/; x 2 Œ0; 1�:

Since p.1/ D 0, a sufficient condition for LU � 0 in .0; 1/ is

p0.x/ D 2.ˇ � ˛/2x C .2ˇ C n � 1/.˛ � ˇ/ C 2ˇ

� 2.ˇ � ˛/2 C .2ˇ C n � 1/.˛ � ˇ/ C 2ˇ � 0:

This is equivalent to ˇ � .2˛2 C ˛.n � 1//=.n � 3 C 2˛/. Therefore, U is a subsolution

of (3.1) when ˇ � .2˛2 C ˛.n � 1//=.n � 3 C 2˛/. Estimate (3.2) follows.

Next we show that h is strictly increasing in .0; 1/. If not, there exists an r0 2 .0; 1/

such that h0.r0/ D 0 and h00.r0/ � 0. Since h.r0/ > 0, we have Lh.r0/ < 0, a contradiction.

Finally, we show the uniqueness of h. Let h2 2 L1..0; 1// \ C 1..0; 1�/ be a solution

of (3.1) in .0; 1/ satisfying h2.1/ D 1. Then w.r/ WD h2.r/=h.r/ satisfies

.Gw0/0 D 0; 0 < r < 1;

where G D h2rn�2." C r2/. Therefore, for some constants C0 and C1, we have

h2.r/ D h.r/w.r/ D h.r/

Z 1

r

C0

h2.s/sn�2." C s2/
ds C C1h.r/; 0 < r < 1:

By the first inequality in (3.2),

h.r/

Z 1

r

1

h2.s/sn�2." C s2/
ds ! C1

as r ! 0. Therefore, since h2 and h are bounded, C0 D 0, C1 D 1, and h2 D h.
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Proof of Theorem 1.3. Step 1. By the elliptic theory, the fact that z� is symmetric in x1,

and the fact that ' is odd in x1, we know that u is smooth and u is odd in x1. In ¹.x0; xn/ 2
R

n j jx0j < 1º, f and g can be written as

f .x0/ D jx0j2
2

C O.jx0j4/ and g.x0/ D �f .x0/ D �jx0j2
2

C O.jx0j4/;

respectively. In �1, where �r is defined as in (1.6), we define

xu.x0/ D
− "=2Cf .x0/

�"=2Cg.x0/

u dxn:

We perform the change of variables (2.1) with R0 D 1, and let v.y/ D u.x/. Note that

xv.y0/ D xu.x0/, where we define xv as (2.4). By the same argument as in Section 2, we know

that xv satisfies equation (2.5) with R0 D 1, ain.y/ D 2yn@i g.y0/, and ei .y0/ D f .y0/ �
g.y0/ � jy0j2. Therefore, by reversing the change of variables (2.1), we have

− "

�"

yn@nv dyn D
− "=2Cf .x0/

�"=2Cg.x0/

xn@nu dxn:

Hence xu satisfies

div.." C jx0j2/rxu/ D div F in B1 � R
n�1;

where

Fi D �2@i g.x0/@nuxn � ei .x0/@i xu
D �2.xi C O.jx0j3//@nuxn C O.jx0j4/@i xu;

@nuxn is the average of @nuxn with respect to xn in .�"=2 C g.x0/; "=2 C f .x0//.
We have, by (2.6), jxnj � C." C jx0j2/, and by (1.10),

jF.x0/j � C.n/jx0j." C jx0j2/; x0 2 B1: (3.3)

Again, we denote Yk;i to be a k-th degree normalized spherical harmonics so that ¹Yk;i ºk;i

forms an orthonormal basis of L2.Sn�2/, Y1;1 to be the one after normalizing x1jSn�2 ,

and x0 D .r; �/. Since xu is odd with respect to x1 D 0, and in particular xu.0/ D 0, we have

the following decomposition:

xu.x0/ D U1;1.r/Y1;1.�/ C
1X

kD2

N.k/X

iD1

Uk;i .r/Yk;i .�/; x0 2 B1 n ¹0º; (3.4)

where Uk;i .r/ D
R

Sn�2 xu.r; �/Yk;i .�/ d� and Uk;i 2 C.Œ0; 1// \ C 1..0; 1//. Since

xu.0/ D 0 and " C jx0j2 is independent of � , U1;1 satisfies U1;1.0/ D 0 and

LU1;1 WD U 00
1;1.r/ C

�n � 2

r
C 2r

" C r2

�
U 0

1;1.r/ � n � 2

r2
U1;1.r/ D H.r/; 0 < r < 1;
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where

H.r/ D
Z

Sn�2

.div F /Y1;1.�/

" C r2
d� D

Z

Sn�2

@rFr C .1=r/r�F�

" C r2
Y1;1.�/ d�

D @r

� Z

Sn�2

Fr

" C r2
Y1;1.�/ d�

�
C

Z

Sn�2

2rFrY1;1

." C r2/2
� F�r�Y1;1

r." C r2/
d�

DW A0.r/ C B.r/; 0 < r < 1;

and A.r/; B.r/ 2 C 1.Œ0; 1// satisfy, in view of (3.3),

jA.r/j � C.n/r; jB.r/j � C.n/; 0 < r < 1: (3.5)

Step 2. We will prove, for some constant C1."/, that

U1;1.r/ D C1."/h.r/ C O.r1C˛/; 0 < r < 1: (3.6)

We use the method of reduction of order to write down a bounded solution v satisfying

Lv D H in .0; 1/, and then give an estimate v D O.r1C˛/.

Let h 2 C.Œ0; 1�/ \ C 1..0; 1�/ be the solution of Lh D 0 satisfying h.0/ D 0 and

h.1/ D 1 as in Lemma 3.1. Let v D hw and

w.r/ WD
Z r

0

1

h2.s/sn�2." C s2/

Z s

0

h.�/�n�2." C �2/H.�/ d�ds; 0 < r < 1:

By a direct computation,

Lv D L.hw/ D hw00 C
h
2h0 C

�n � 2

r
C 2r

" C r2

�
h
i
w0 D h

G
.Gw0/0 D H;

where G D h2rn�2." C r2/. By (3.5) and the fact that h0 > 0, we can estimate

Z s

0

h.�/�n�2." C �2/H.�/ d�

D
Z s

0

h.�/�n�2." C �2/A0.�/ d� C O.1/h.s/sn�1." C s2/

D �
Z s

0

h0�n�2." C �2/A.�/ d� C O.1/h.s/sn�1." C s2/

D O.1/sn�1." C s2/

Z s

0

h0.�/ d� C O.1/h.s/sn�1." C s2/

D O.1/h.s/sn�1." C s2/:

Therefore, using (3.2),

jv.r/j � C h.r/

Z r

0

s

h.s/
ds D O.r1C˛/; 0 < r < 1:

Since U1;1� v is bounded and satisfies L.U1;1 � v/ D 0 in .0;1/, according to Lemma 3.1,

U1;1 � v D C1."/h. Hence (3.6) follows.
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Step 3. We will show that C1."/ > 1=C for some positive "-independent constant C .

Denote

x D .r; �; xn/ 2 RC � S
n�2 � R

and write (1.3) under the condition of Theorem 1.3 as the following:

8
ˆ̂̂
<̂
ˆ̂̂
:̂

urr C n � 2

r
ur C 1

r2
�Sn�2u C unn D 0 in B5 n .D1 [ D2/;

@u

@�
D 0 on @Di ; i D 1; 2;

u D x1 on @B5:

(3.7)

Let

yu.r; xn/ D
Z

Sn�2

u.r; �; xn/Y1;1.�/ d�:

Since u is odd in x1, we have

yu.0; xn/ D 0 for any xn.

Multiplying (3.7) by Y1;1.�/ and integrating over S
n�2, we know that yu.r; xn/ satisfies

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

yurr C n � 2

r
yur � n � 2

r2
yu C yunn D 0 in bB5 n .bD1 [ bD2/;

@yu
@�

D 0 on @bDi ; i D 1; 2;

yu D 0 on ¹r D 0º;
yu D r on @bB5;

(3.8)

where

bB5 WD ¹.r; xn/ 2 RC � R j r2 C x2
n < 25º;

bDi WD
°
.r; xn/ 2 RC � R

ˇ̌
r2 C

�
xn � .�1/i

�
1 C "

2

��2

< 1
±
;

and � is the unit inner normal of @bDi . Clearly, yv.r/ D r satisfies the first line of (3.8), and

@yv=@� < 0 on @bDi , i D 1; 2. Thus, we know that r is a subsolution of (3.8), and therefore

yu � r . Then

U1;1.r/ D
−

�"=2Cg.x0/<xn<"=2Cf .x0/

yu.r; xn/ dxn � r:

By (3.6), (3.2), and the above, we have

r � U1;1.r/ D C1."/h.r/ C O.r1C˛/ � C1."/r˛ C 1

2
r 80 < r � r0;

where r0 is a small constant independent of ", which implies that

C1."/ � 1

2
r1�˛

0 :
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Step 4. Completion of the proof of Theorem 1.3.

It follows, in view of (3.6), step 3, and (3.2), that there exists some positive constant r0

independent of " such that

U1;1.r/ � 1

C
h.r/ C O.r1C˛/ � 1

2C
h.r/; 0 < r � r0: (3.9)

By (3.2),

h.r/ � 1

C
rˇ ." C r2/.˛�ˇ/=2 for ˇ D 2˛2 C ˛.n � 1/

n � 3 C ˛
: (3.10)

By (3.4), (3.9), and (3.10), we have

� Z

Sn�2

jxu.
p

"; �/j2 d�
�1=2

� jU1;1.
p

"/j � 1

C
h.

p
"/ � 1

C
"˛=2:

Then, there exists a �0 2 S
n�2 such that jxu.

p
"; �0/j � "˛=2=C . Since xu is the average

of u in the xn direction, there exists an xn such that

ju.
p

"; �0; xn/j � 1

C
"˛=2: (3.11)

Estimate (1.13) follows from (3.11) and u.0/ D 0.
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