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Abstract. We study the insulated conductivity problem with inclusions embedded in a bounded
domain in R”. The gradient of solutions may blow up as &, the distance between inclusions,
approaches to 0. It was known that the optimal blow-up rate in dimension n = 2 is of order g1/2,
It has recently been proved that in dimensions n > 3, an upper bound of the gradient is of order
e~ 1/2+F for some B > 0. On the other hand, optimal values of § have not been identified.
In this paper, we prove that when the inclusions are balls, the optimal value of 8 is [—(n — 1) +
\/(n —1)2 + 4(n — 2)]/4 € (0,1/2) in dimensions n > 3.

Keywords: optimal gradient estimates, high contrast coefficients, insulated conductivity problem,
degenerate elliptic equation, maximum principle.

1. Introduction and main results

First we describe the nature of the domain. Let @ C R” be a bounded domain with C2
boundary containing two C2¥ (0 < y < 1) relatively strictly convex open sets D1 and D,
with dist(D; U D5, dQ2) > ¢ > 0. Let

g :=dist(Dq, D3)

and Q := Q \ (D1 U D3). The conductivity problem can be modeled by the following
elliptic equation:

div(ar (x)Vug) =0 in 2,
ur = ¢(x) onad<2,
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where ¢ € C2(9Q) is given, and

k e (0,00) in D] U Dz,

ax(¥) = {1 in &,

In the context of electric conduction, the elliptic coefficients aj refer to conductivities,
and the solutions vy represent voltage potential. From an engineering point of view, it is
significant to estimate the magnitude of the electric fields in the narrow region between
the inclusions, which is given by |Vuy|. This problem is analogous to the Lamé system
studied by Babuska, Andersson, Smith, and Levin [5], where they analyzed numerically
that when the ellipticity constants are bounded away from 0 and infinity, the gradient of
solutions remains bounded independent of ¢, the distance between inclusions. Later, Bon-
netier and Vogelius [12] proved that when ¢ = 0, |Vuy| is bounded for a fixed k& and
circular inclusions D and D, in dimension n = 2. This result was extended by Li and
Vogelius [28] to general second order elliptic equations of divergence form with piecewise
Holder coefficients and general shape of inclusions D1 and D, in any dimension. Further-
more, they established a stronger piecewise C 1'% control of uy, which is independent of &.
Li and Nirenberg [27] extended this global Lipschitz and piecewise C !* result to general
second order elliptic systems of divergence form, including the linear system of elasticity.
Some higher order derivative estimates in dimension n = 2 were obtained in [15, 16, 18].

When k is equal to oo (inclusions are perfect conductors) or 0 (insulators), it was
shown in [13,22,31] that the gradient of solutions generally becomes unbounded as ¢ — 0.
Ammari et al. in [3, 4] considered the perfect and insulated conductivity problems with
circular inclusions in R2, and established optimal blow-up rates £~'/2 in both cases. Yun
extended in [33, 34] the results above allowing D and D, to be any bounded strictly
convex smooth domains.

The above gradient estimates in dimension n = 2 were localized and extended to
higher dimensions by Bao, Li, and Yin in [6, 7]. For the perfect conductor case, they
proved in [6] that

IVl ooy < C M9l c2a0) whenn = 2,
IVl ooy < Clelnelgllc2pn) whenn =3,
IVl ooy < CeMellc2on) when n > 4.

These bounds were shown to be optimal in the paper and they are independent of the shape
of inclusions, as long as the inclusions are relatively strictly convex. Moreover, many
works have been done in characterizing the singular behaviors of Vu, which are signifi-
cant in practical applications. For further works on the perfect conductivity problem and
closely related ones, see, e.g., [1,2,8-11, 14-17,20,21,23-26, 30] and the references
therein.

For the insulated conductivity problem, it was proved in [7] that

IVl ooy < Ce™*ll@llc2pq) whenn > 2. (1.1)

The upper bound is optimal for n = 2 as mentioned above.
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Yun [35] studied the following free space insulated conductivity problem in R3: Let H
be a harmonic function in R3, D; = B1(0,0,1 + &/2), and D, = B;(0,0, -1 —&/2),

Au =0 inR3\ (D; U D,),
9

M _o ondD;. i = 1.2,
v

u(x) — H(x) = O(|x|™2) as |x| = oo.
He proved that for some positive constant C independent of ¢,

max |Vu(0,0, x3)| < Cs(ﬁ_z)/z. (1.2)
lx3|<e/2
He also showed that this upper bound of |Vu/| on the e-segment connecting D; and D5 is
optimal for H(x) = x;. Although this result does not provide an upper bound of |Vu| in
the complement of the e-segment, it has added support to a long-time suspicion that the
upper bound £1/2 obtained for dimension n = 3 in [7] is not optimal.
The upper bound (1.1) was recently improved by Li and Yang [29] to

IVl ooy < Ce™/**Pllgllc29q) whenn >3

for some B > 0. When insulators are unit balls, a more explicit constant B(n) was given
by Weinkove in [32] for n > 4 by a different method. The constant (n) obtained in [32]
presumably improves that in [29]. In particular, it was proved in [32] that S(n) ap-
proaches 1/2 from below as n — oco. However, the optimal blow-up rate in dimensions
n > 3 remained unknown. We draw reader’s attention to a recent survey paper [19] by
Kang, where in the conclusions section, the three-dimensional case is described as an
outstanding problem.

In this paper, we focus on the following insulated conductivity problem in dimensions
n > 3, and give an optimal gradient estimate for a certain class of inclusions including
two balls of any size:

—Au=0 ingQ,
d
M —0 ondbi,i=12 (1.3)
dv
u=¢ onadx,
where ¢ € C 2(88’2) is given, and v = (vy, ..., v,) denotes the inner normal vector on

8D1 U 8D2

We use the notation x = (x’, x,,), where x’ € R”~L After choosing a coordinate
system properly, we can assume that near the origin, the part of dD; and dD,, denoted
by I'y and T'_, are respectively the graphs of two C2 (0 < y < 1) functions in terms
of x’. That is, for some Ry > 0,

&
[y = {x = 5 + f(). ] < Rol.

Io = o = =2 + 8. '] < ol



H. Dong, Y. Y. Li, Z. Yang 4

where f and g are C2? functions satisfying
Ff(x) > g(x") for0 < |x'| < Ry,
F©) = g(0) =0, Vi f(0)=Vug©) =0, (14)
(X —g(x) = alx'|> + O(x'|*TY) for0 < |x'| < Ry (1.5)
with a > 0. Here and throughout the paper, we use the notation O(A) to denote a quantity

that can be bounded by CA, where C is some positive constant independent of . For
0 < r < Ry, we denote

Q, = {(x’,x,,) eQ | —g +g(x) <x, < g + f(x), |X'] < r}. (1.6)
By standard elliptic estimates, the solution u € H'! (Q) of (1.3) satisfies

el @\vag, ) = € (1.7)
We will focus on the following problem near the origin:

—Au =0 inQg,,
a
P—0 onryur., (1.8)
v

lullLoe@gy) =< 1.
It was proved in [7] that for u € H'(Qg,) satisfying (1.8),
IVux)| < Cle+ |X'))7? Vx € Qg,, (1.9)

where C is a positive constant depending only on 1, Ry, @, || f||c2, and || g||c2, and is in
particular independent of ¢. The above-mentioned improvement on (1.1) in [29, 32] also
applies to (1.9).

Our main results of this paper are as follows.

Theorem 1.1. Forn >3, s € (0,1/4), letu € HI(QRO) be a solution of (1.8) with f, g
satisfying (1.4) and (1.5). Then there exists a positive constant C depending only on n,
Ry, v, a positive lower bound of a, and an upper bound of | f ||c2.» and ||g| c2.v, such
that

IVu(x)| < Cllullzos@py) & + X' )C? Vx € Qpypa, (1.10)

where

—(n—=1D+/(n—12+4(n—-2)
2
Note that o(n) is monotonically increasing in n, and

a=a):= € (0,1). (1.11)

oz(n)zl—’%—i-O(n]—z) asn — oo.

For n = 3, the exponent (« — 1)/2 = (+/2 — 2)/2 is the same as the exponent in (1.2).
For n > 4, the exponent (o — 1)/2 is strictly greater than the one obtained in [32].
A consequence of Theorem 1.1 is, in view of (1.7), as follows.
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Corollary 1.2. Forn >3, e € (0,1/4), let Dy, D, be two balls of radii ry, r,, centered at
(0',&/2 4+ r1) and (', —&/2 — ry), respectively. Let u € H'(Q) be the solution of (1.3).
Then there exists a positive constant C depending only on n, r1, 12, and ||02||c2 such
that

IVull ooy < Cliellc2anys® (1.12)
where o is given by (1.11).
Estimate (1.12) is optimal as shown in the following theorem.

Theorem 1.3. Forn >3, ¢ € (0,1/4), let 2 = Bs, and D1, D, be the unit balls center at
(0,14 &/2) and (0, —1 — &/2), respectively. Let ¢ = xy and u € H'(Q) be the solution
of (1.3). Then there exists a positive constant C depending only on n, such that

l -
IVull oo @np, o = 27" (1.13)

where o is given by (1.11).

Remark 1.4. Estimate (1.13) holds for all C? domains © and C* relatively strictly con-
vex open sets D, D, that are axially symmetric with respect to x,-axis. A modification
of the proof of the theorem yields the result.

Let us give a brief description of the proof of Theorem 1.3. Consider

u(x") =][ u(x’,x,) dx,, |x'| <1,
—&/2+g(x")<xp<e/2+ f(x')

where f(x') = —y/1—|x'|? + 1 and g(x’) = /1 — |x’|?> — 1. In the polar coordinates,
u(x") = u(r.£), where x’ = (r,£),0 < r < 1, and § € S"72. Since the boundary value ¢
depends only on x; and is odd in x1, the projection of u(r, -) to the span of the spherical
harmonics is Uy,1(r)Y1,1(§), where Y75 is x;|gn—2 modulo a harmless positive normal-
ization constant,

v = f 8, %) dxn,
—&/24+g(x)<xp<e/2+ f(x')

and
A0 = [ g Vi@ de
We analyze the equations satisfied by U 1 (r) and #(r, x,,) and establish a lower bound
Uia(r) > %rﬂ(e + )@ B2 <<,

where B = 2a? + a(n —1))/(n — 3 + «) and C is a positive constant independent of e.
It follows that

_ 1
(Ve )L2n—2) = [U11(Ve)| = 58"‘/2,
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and, consequently, there exist £y € S"72, x, € (—&/2 + g(x'), /2 + f(x’)) such that

1
|wﬁ@JMzgw?

Estimate (1.13) follows since #(0) = 0 by the oddness of u in x;.
Theorems 1.1 and 1.3 will be proved in Sections 2 and 3, respectively.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Without loss of generality, we may assume a = 1.
Namely, we consider

f(x)—g(x") = |x')> + O(|x"*Y) for0 < |x'| < Ro.

We perform a change of variables by setting

xp—g(x)+e/2 1 V(X' xn) € QRy- (2.1
Yn = ( ),

e+ f(xX)—g(x) 2
This change of variables maps the domain Q2g, to a cylinder of height 2¢, denoted
by QRry,e> Where

Osei={y =" yn) eR" | |Y| <s, |yn| <1}

for 5,7 > 0. Moreover, det(d,y) = 2e(e + f(x') — g(x"))~!. Let u(x) € H'(Qg,) be
a solution of (1.8) and let v(y) = u(x). Then v satisfies

=0 (@ ()9;v(y)) =0 in Qrye. 22)
a™(y)ajv(y) =0 on{y, = —e}U{yn = &}
with [|[v||zeo(o Ro.e) = 1, where the coefficient matrix (a' (y)) is given by
. 26(0xY)(9x )"
(@’ (y) = ————=
det(dxy)
e+ 0 0 a' el 0o 0 0
0 e+ 0 a*" 0e2-es 0 0
- I ; " B
0 L Y 00 e 10
1 2. -1 42+X0 ] al"?
a a e 00 00
and

a"l = a'" = —280;g(y") — (yn + )3 () — g())),
e =fO)—g0) -1y
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fori =1,...,n—1.By (1.4), we know that fori =1,...,n—1,

ja" ()] = la"" (p)] = Cely’| and [e'(y")] = Cly'PP*. (2:3)
Note that e!, ..., e"! depend only on y’ and are independent of y,. We define
&
v(y) = ][ (', yn) dyn. (2:4)
—&

Then v satisfies

n—1 n—1
div((e + [y')VD) = =Y 9;(a"0,v) — Y _ 9;(¢'0;D) in Bg, CR"™'  (2.5)

i=1 i=1
with ||§||Loo(BR0) < 1, where ai”d,v is the average of a'”d,v with respect to y, in
(—¢,¢). Since du/dv = 0 on 'y and I'_, we have by (1.4) and (1.9) that

n—1

inaiu

i=1

|9nu(x)| = C <C VxeT,uUT._.

By the harmonicity of d,u, estimate (1.7), and the maximum principle,

[0,u] < C inQRg,, (2.6)
and consequently,
Cle + / 2) )
[0,v] < % in QRrye- 2.7
Therefore, equation (2.5) can be rewritten as
n—1
div((e + [y')VD) = Y 0;F; in Bg, CR"™, (2.8)
i=1
where F; := —ai"d,v — €' 0, satisfies, using (1.9) and (2.3),

[Fil < CUY'IGe+ 1P+ P e + )72,
For y,s € R, we introduce the following norm:

IF()
yesg, VTP E+ 1y

1 F llesys., =
Proposition 2.1. Forn >3,5>0,14+y—25s>0,14+y—2s #«a, &> 0, and Ry > 0,
let v € H'(BRg,) be a solution of

div((e + [y'|*)Vv) =divF + G in Bg, C R*"!,
where F, G € L*°(BRg,) satisfy

”F”s,y,s,BRO < 00, ”G”s,y—l,s,BRO < 00. (2.9)
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Then for any R € (0, Ro/2), we have

1/2
(f'|5—mmﬁmg
0B R
< CUIF ey + G lley—1.0.85, + [T~ TO) 125, VR, (2.10)

where & := min{o, 1 + y — 25}, « is given in (1.11), and C is some positive constant
depending only on n, y, s, and Ry, and is independent of ¢.

For the proof, we use an iteration argument based on the following two lemmas.

Lemma 2.2. Forn > 3,6 > 0, and Ry > 0, let v; € HI(BRO) satisfy
div((e + |y')>)Vv1) =0 in Bg, C R" 1. (2.11)

Then for any 0 < p < R < Ry, we have

(f o) -nord) "< (8)(f me)-norda)”

where o is given in (1.11).

Proof. By the elliptic theory, v € C*°(Bpg,). Without loss of generality, we assume that
v1(0) = 0. By scaling, it suffices to prove the lemma for R = 1. Denote

y = (r,£) € (0,1) x S" 2,

We can rewrite (2.11) as

n—2 2r 1 .
8rrl)1 + ( + 8+—I‘2>8rvl + r—zAszvl =0 in B] \{0}
Take the decomposition
oo N(k)
Vi) =YY Viei(NYii(€). y' € B\ {0}, (2.12)
k=1i=1

where Yy ; is a k-th degree spherical harmonics, that is,
—Agn—2Yr; =k(k +n—-3)Yg,;

and {Y% ; }«,; forms an orthonormal basis of L2(S"~2). Here we used the fact that Vo ; =0
because v1(0) = 0. Then Vi ;(r) € C?(0, 1) is given by

Vi) = [ o0 ds

and satisfies

n—2 2r

k(k +n —3)
2
e+r

)Vlé,i (r) — r—sz,i (r)y=0 1in(0,1)

LV = V{0 +
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foreachk e N,i =1,2,...,N(k). Forany k € N, let

=D+ =12+ 4k(k +n—3)
= > .

(475

For any ¢ € R, we have, by a direct computation,

2

Lir® :rc_z(c2+ (n—3+ )c—k(k+n—3)) in (0,1).

£+ r2
Thus for ¢ > 0 sufficiently small, we have
Lpr™¢ <0 and Lgr* <0 in(0,1).
Therefore, for any y > 0,
L (£Viei(r) —yr=¢ = [V (D[r**) = 0 in (0, 1).
Since vy € L*(Bj;), we know that V ; (r) is bounded in (0, 1), so we have

EViei(r) —yr ¢ — Vi (Dr** <0 asr \ 0.

Clearly,
£Vii(r) —yr=¢ — Vi (D|r* <0 whenr = 1.

By the maximum principle,
WVii(r)] <yr~ ¢ +r*%|Vi;(1)] for0<r <1.
Sending y — 0, we have
WViei(r)] <r®|Vi;(1)] for0<r<1. (2.13)

It follows from (2.12) and (2.13) that

co N(k)

fomede =30 3 Viio)l?
3B k=1i=1
oo N(k)
Sp Y S P =5 f me)Pdo
k=1 i=1 9By

Lemma 2.3. Forn>3,5s>0,1+y —2s >0, and e > 0, suppose that F,G € L*°(B;)
satisfy (2.9) with Ry = 1, and v, € HO1 (B1) satisfies

div((e + |Y'|*)Vva) =divF + G in By C R* L. (2.14)

Then we have
vallLeesy) = CUIF lle,y,s,By + G lley—1,5,81)

where C > 0 depends only on n, y, and s, and is in particular independent of ¢.
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Proof. Without loss of generality, we assume || F|s,y,5,8, + [|G|ls,y—1,5,8, = 1. Denote
r = |y’|. We can rewrite (2.14) as

sz+ 8v2—8(F(8+r2) Y4 2Fyi(e +1r*)72
+GE+r®)"" inB. (2.15)
We use Moser’s iteration argument. By the definitions,
|Fi (e + rz)—1| = ry_zs”F”a,V,S,B],
|Fiyi(e + )72 < /7727 F s,

|G(e +r*)~H <7721 G lle,y—1,5,B, -

For p > 2, we multiply equation (2.15) by —|v,|?~2v, and integrate by parts to obtain

_ 2r
=1 [ Vel - / (sl 0
B,

=< C(p — 1) . |Vl)2| |v2|P—2r}/—2s dy/ + C/B |v2|p—1ry—2s—l dy’.
1 1

The second term on the left-hand side is equal to

2 n—1 2 n—1
——[ / L8, |vs|? drdf = / / r |v2|1’ drdf > 0.
sn—2 Jo sn—2

Therefore, by Holder’s inequality and using 1 + y — 25 > 0,

(p—1) /B Vo 2[valP2 dy'
1

_ —2,,1/2 — 1/2
< C(P - 1)|||VU2||U2|(p 2)/2”L2(31)”v2 ”Ln/(n 2)(Bl)||r2(y 2s)”L/n/Z(l.;])

+ Clllva " o2y 17> g2,

- -21/2

< C(p = DIIVlv2] P22 2 1051 02 5,
1+ Cll[o2l? M2 s)-

By Young’s inequality,

p—1 _ .
5= [, Vel 2l dy' < Cp = Dlllval " llwwo2ay)

1
+ C o2l w2 gy)- (2.16)

Taking p = 2 in the above, we have, by Holder’s inequality,

/ [Vua|2dy" < C + Cllvallpn/m-2p,)
By

< C + Cllvzllp2n/0-2(g,)-
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Applying the Sobolev—Poincaré inequality on the left-hand side, we have

||v2||22n/(n72)(31) = CA |VU2|2dyl <C+ C||v2||L2”'/(”'_2)(Bl)7
1

which implies
||U2||L2n/(n72)(31) < C. (217)

From (2.16), by Holder’s inequality,

4 1
(” )[ VInal??Rdy = (= 1) [ VoaPlual? 2 dy’
B]

< Cplvall7,, + Cllvall7,

an/(n 2)(By) an/(n 2)(By)’

which implies that

p/22/p 1/p (p—i)/p
||V|U2| ||L2(B )y = = II{I?);}(CP ) ||v2”an/(n—2)(Bl)'

Then by the Sobolev inequality and Young’s inequality, we have

ool oz = max (Cph7 (25
L n=5/

i i
v n — + _)
2By ie{1.2) lvallzerro=a,) p

2
< (sz)l/p(||vz||L"ﬂ/‘”_2)(Bl) * ;)

For k > 0, let

A ((n=1/2)(n=2)\k n
_2( (n—5/2)n )n—2'

Iterating the relations above, we have, by (2.17),

k—1k—1
loallLex < H(CPZ)Z/I” lozllzrocsy + ) 1"[<Cp2)2“’f
i=0 i=0j=i
< Cllvz|lp2n/a-2 g,y + € = C, (2.18)

where C is a positive constant depending on #, y, and s, and is in particular independent
of k. The lemma is concluded by taking k — oo in (2.18). ]

Proof of Proposition 2.1. Without loss of generality, we assume that v(0) = 0 and

”F”E,)’,S,BRO + ”GHS,V—I,S,BRO + ”6”L2(BBRO) =

w(p) = (faB |v]? do)l/z.

For0 < p < R/2 < Ry/2, we write v = vy + v, in B, where v, satisfies

Consider

div((e + |y |»)Vvs) =divF + G in Bg



H. Dong, Y. Y. Li, Z. Yang 12

and v, = 0 on dBg. Thus v, satisfies
div((e + [y'|*)Vv1) =0 in Bg

and v; = v on dBg. By Lemma 2.2,

(f wo)-uoPda)” <(2)(f mo)-unokda)™ e

Since U5(y’) := va(Ry’) satisfies
div(R™%e + |y'|>)VD,) =divF + G in By,
where F(y') := R™YF(Ry’) and G (y') := G(RY’) satisfy
| Fllr2¢y.5,8 = RV 72| Fllesys. 5.
1G I r26y-1.5.8, = R 1Glle;y—1,5,8z
we apply Lemma 2.3 to T, with & replaced by R™2¢ to obtain
lv2llLeo(Bg) < CR'TY725. (2.20)
Since v(0) = v1(0) + v2(0) = 0, we have |v1(0)| = |v2(0)|. Combining (2.19) and (2.20)
yields, using v = vy + v, and v = vy on dBg,

o = (f 1m6)-uPd) "+ (f 1209 m0pdo)”

PN ne Y2 (P
= (%) (£ wOHPde) " + (&) 101O] +2lv2lleoea
R 3Bxr R
o
< (%) o(R) + CRF7=25 2.21)
For a positive integer k, we take p = 2771 Ry and R = 27" Ry in (2.21) and iterate from

i =0tok — 1. We have, using 1 + y — 2s # «,

k
a)(2_kR0) < 2—kaw(RO) +C Z 2—(k—i)ot (21—i R0)1+y—2s
i=1
1— 2k(a—1—y+23)

—k —k 1+y—2s
S 2 a(l)(Ro) + C2 aRO W

It follows that
w(27FRo) < 27%F(w(Ro) + CRYT' ™).

For any p € (0, Ro/2), let k be the integer such that 27¥~1Ry < p < 2% R,. Then
5 R
w(p) < Cp* Vpe (0, 70)

Therefore, (2.10) is proved. ]
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Proof of Theorem 1.1. Without loss of generality, we assume that @ = 1, u(0) = 0 and
”u”LOO(QRO) = 1. We make the change of variables (2.1), and let v(y) = u(x). Then v
satisfies (2.2). Let v be defined as in (2.4). By (1.9),

VU le.0.50+1.8r, < 0©.

where 5o = 1/2. Then v satisfies equation (2.8) with F satisfying

”FHE,)/—ZSO,O,BRO < o0.

By (2.7),

0O yn) =00 =26 max 18,00, yn)| = Cle + ') in Qree.  (2.22)

By decreasing y if necessary, we may assume that 1 + y — 259 = y < «. By Proposi-
tion 2.1 and (2.22), we have

f |v—v(0)|2dyscf |v—ﬁ|2dy+c][ 5 TO)P dy
Q251/2.5 Q281/2,£ Q2£]/2.£
< Cé?, (2.23)

where & = min{a, 1 +y — 2s0}. Let @7 (y) = a” (¢!/2y) and 5(y) = v(e/2y) — 1(0).
Then v satisfies

—8;(@ (y)3;5(») =0 in Qy1/2,
@ (y)d;5(y) =0 on{y, = —"2} U {y, = &'/?}.

It is straightforward to verify that

<a<CIl and ”VZiHLO"(Q2 e1/2) =C.

Al ~

Now we define
Spi={y eR"||y| <2l —e'? <y, <@ +1)e"/?
for any integer /, and
S:={y eR" [ Y| <2, |yal <2}

Note that Q, ,1/2 = So. We take the even extension of ¥ with respect to y, = g!/2 and
then take the periodic extension (so that the period is equal to 4'/2). More precisely,
we define, for any [ € Z, a new function ¥ by setting

D) =30, (=1 (yn —2e"?) Vye S
We also define the corresponding coefficients, fork = 1,2,...,n—1,

a"k(y) = a*"(y) := ~D)'@" (', (1) (yu —21"?) Vy e s,
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and for other indices,
a’(y):=a’(y', (1)) (yn —216'?)) Vyes;.

Then ¥ and @ are defined in the infinite cylinder Q5 . In particular, by using the conor-
mal boundary conditions, it is easily seen that v satisfies the equation

9;(@79;0) =0 inS.
By [27, Proposition 4.1], [29, Lemma 2.1] and (2.23),
”Vﬁ”Loo(%s) = C”ﬁ”LZ(S) = CS&/Z,
which implies, after reversing the changes of variables,
@-1/2

|VulLoga,y a) < Ce

For any R € (¢'/2, Ry/4), by Proposition 2.1 and (2.22), we have
][ lv —T(0)|>dy < CR*®.
Q4r.e\QR/2.¢

This implies
f lu —9(0)]> dx < CR*.
Q4r\QR/2

We make a change of variables by setting

z =X,

oo Xn—8(X) +e/2 1 V(x',xn) € Qar \ Qry2-
=2 g )

This change of variables maps the domain Q4g \ g2 t0 Q4p g2 \ Q)2 g2-Letw(z) =
u(x) — v(0), so that w(z) satisfies

—3; (b7 (2)9;w(z)) =0 in Qur g2 \ Qr/2.82:
b (z)d;w(z) =0 on{z, = —R*}U{z, = R?},
where
(axZ)(axZ)t

0 (@) = det(9,2)

It is straightforward to verify that
1 -1
E <b(z) <CI and ”Vb||L°°(Q4R.R2\QR/2.R2) <CR .
We can apply the “flipping argument” as above to get

a—1
”Vw||LOO(Q2R,[€2\QR,[€2) = CR* ’
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which implies
”VMHLOO(QZR\QR) = CR*!
for any R € (¢'/2, Ry/4). Therefore, we have improved the upper bound |Vu(x)| <
C(e + [X']?)7% to |Vu(x)| < C(e + |x'|2)@ /2 where
a—1
2

oa—1
,—So-f-Z

:min{ 2 2}'

If —so + y/2 < (o — 1)/2, we take s; = 59 — y/2 and repeat the argument above. We may
decrease y if necessary so that

a—1

Y
#* —5o +k§ forany k =1,2,...

After repeating the argument finite number of times, we obtain estimate (1.10). ]

3. Optimality

In this section, we prove Theorem 1.3. We will make use of the following lemma.
Lemma 3.1. For ¢ > 0, there exists a unique solution h € L*°((0, 1)) N C*°((0, 1]) of

n—2 2r ,
+£+r2)h(r)_

satisfying h(1) = 1. Moreover, h € C(]0, 1]), h(0) = 0, and for

)
" Chy =0, 0<r<l1, 3D
r

Lh=1'(r) + (

202 +a(n—1)

>
pz n—3+2«x

)

there exist positive constants C () and C(B) such that

r <h(r) <min{C(e)r,r*} and h(r)> Pe+rH)@ P2 fpro<r<1, (3.2)

1
—CB)

where « is given by (1.11) and h is strictly increasing in [0, 1].

Proof. For0 < a < 1,let h, € C?([a, 1]) be the solution of Lh, = 0 in (a, 1) satisfying
hq(a) =aand h,(1) = 1. Since Lr > 0and Lr® < 01in (0, 1), by the maximum principle
and the strong maximum principle,

r<h,(ry<r® a<r<l.

Sending @ — 0 along a subsequence, h, — h in C2.((0, 1]) for some h € C([0, 1]) N

C*°((0, 1]) satistying r < h(r) <r*, Lh = 01in (0, 1), and /£(0) = 0. By the strong
maximum principle,

r<h(ry<r%* 0<r<l.
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Let v = r(1 — r'/2/2). By a direct computation,

1 1 1

Lv= ——(ﬂ - —)r_l/2 4+ -0(r) asr — 0.

4 2 €
Hence Lv < 0 in (0, ro(¢e)), for some small ro(e). Recall that Lh = 0 and & < r% in
(0, r9(¢)), h(0) = v(0) = 0. By the maximum principle, we have

< hrole)
v(ro(e))

where C(g) = 1 (e)/v(ro(e)).
For B € R, let U(r) = rP (¢ + r2)@=P)/2 By a direct computation,

v < C(e)r in(0,ro(e)),

LU = rP72(e + 1) P/2{ (g — a2 Jrr r2)2 + 1B +n— )@ —p) +26]
2
x(g_:rz)—i-(n—Z—i—ﬂ)(ﬁ—l)}, 0<r<l.

Consider the second order polynomial

p(X)=B—-a)’ x> +[2B+n—Da—B)+2Blx +(m—2+B)(B—1), xe]0,1].

Since p(1) = 0, a sufficient condition for LU > 0in (0, 1) is

P'(x) =2(B —a)’x + 2B +n—1)(a—p) +28
<2B-a)’+ @B +n—1)(a—p)+26<0.

This is equivalent to 8 > (2a? + a(n — 1))/(n — 3 + 2a). Therefore, U is a subsolution
of (3.1) when B > (2a? + a(n — 1))/(n — 3 + 2«a). Estimate (3.2) follows.
Next we show that / is strictly increasing in (0, 1). If not, there exists an rg € (0, 1)
such that 4’ (rg) = 0and h” (ro) < 0. Since h(rg) > 0, we have Lh(rg) < 0, a contradiction.
Finally, we show the uniqueness of . Let i, € L°°((0, 1)) N C*°((0, 1]) be a solution
of (3.1) in (0, 1) satisfying h,(1) = 1. Then w(r) := ha(r)/ h(r) satisfies

(GwY =0, 0<r<l,
where G = h%r"~2(e + r?). Therefore, for some constants Cy and C;, we have

Co
h2(s)s"2(e + 52)

ha(r) = h(r)w(r) = h(r)/1 ds + Cih(r), 0<r<1.

By the first inequality in (3.2),

! 1
h(r)/r 20) (e 1 57) ds — +o0

as r — 0. Therefore, since /1, and h are bounded, Cy = 0, C; = 1, and hy = h. [ ]
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Proof of Theorem 1.3. Step 1. By the elliptic theory, the fact that Qis symmetric in xp,
and the fact that ¢ is odd in x;, we know that u is smooth and u is odd in x1. In {(x’, x,,) €
R” | |x'| < 1}, f and g can be written as

' |x'?

[ = +O(IX'h) and g(x) = —f(x") = — x|,

respectively. In €21, where €2, is defined as in (1.6), we define
e/2+ f(x')
u(x') = f udxy,.
—&/2+g(x’)

We perform the change of variables (2.1) with Ry = 1, and let v(y) = u(x). Note that
v(y’) = u(x"), where we define v as (2.4). By the same argument as in Section 2, we know
that v satisfies equation (2.5) with Ry = 1, a’*(y) = 2y,0;g(»"), and e’ (y') = f()') —
g(y") — |y’|?. Therefore, by reversing the change of variables (2.1), we have

e g/2+ f(x")
][ VnOpvdy, = ][ XnOpu dxy.
—& —e/2+g(x")

Hence u satisfies
div((e + |x'|*)Vii) = divF in By Cc R*7 !,
where

F; = —20;g(x")0pux, — ' (x')0;u
= —2(x; + O(|x']?))pux, + O(x'|*)0;11,

dpuxy is the average of d,ux, with respect to x, in (—&/2 + g(x), e/2 + f(x')).
We have, by (2.6), |x,| < C(e + |x’|?), and by (1.10),

|F(x")| < C(n)|x"|(e + |x|*). x" € By. (3.3)

Again, we denote Yy ; to be a k-th degree normalized spherical harmonics so that {Y ; }x ;
forms an orthonormal basis of L?(S"~2), Y71 to be the one after normalizing x1 |gn—2,
and x’ = (r,€). Since u is odd with respect to x; = 0, and in particular #(0) = 0, we have
the following decomposition:

oo N(k)
H(x) = Uni(Y10E) + D> Y Ui(MYii(®). x € Bi\{0}, (34
k=2 i=1
where Uy ;(r) = fS”—Z u(r,§)Yg,i(§) d§ and Uy; € C([0, 1)) N C*°((0, 1)). Since
#(0) = 0 and ¢ + |x’|? is independent of £, U ; satisfies U 1(0) = 0 and
2 2r

LU111—U11(’”)+(_+ T Z)Ull()

-2
Ul,l(r) =H(r), O0<r<l,
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where

L[ WEYLE [ BE /YR
ney = [ SRS [ S T @ a

F, UFE Y, FeVeY),
=an( M@ de) + | Y

n—2 &+ r? w2 (47122  r(e+r2)
= A'(r)+ B(r), 0<r<l,

and A(r), B(r) € C'([0, 1)) satisfy, in view of (3.3),

|A(n)| < Cm)r, [B(r)|<C(n), 0<r<l. 3.5)
Step 2. We will prove, for some constant Cy (¢), that

Uia(r) = Ci(e)h(r) + O(r'%), 0<r <. (3.6)

We use the method of reduction of order to write down a bounded solution v satisfying
Lv = H in (0, 1), and then give an estimate v = O(r'7%).

Let 1 € C([0, 1]) N C*°((0, 1]) be the solution of LA = 0 satisfying #(0) = 0 and
h(1) = 1 asin Lemma 3.1. Let v = hw and

r 1 K] e
w(r) :=/0 h2(s)sn—2(g+s2)[o h(t)t"2(e + t2)H(t)dvds, 0<r <.

By a direct computation,

_ _ " 1 n—72 2r /_ﬁ "o o__
Lv = L(hw) = hw +[2h +( - +8+r2)h]w = Z(GuY = A,

where G = h?r"2(e 4+ r?). By (3.5) and the fact that #’ > 0, we can estimate
/OS h(t)t"2(e + 12)H(v)dt
= /OS h(t)t" (e + 1) A () dt + O(D)h(s)s" (e + 5?)
=— /OS Wt"2(e + ) A(r) dt + O()h(s)s" (e + 5?)

= 0(1)s" e+ 5?) / W (t)dt + O(1)h(s)s" (e + 5?)
0
= O(1)h(s)s" (e + 5?).
Therefore, using (3.2),

,
l(r)| < Ch(r)/ 2 ds =00, 0<r<l.
o h(s)
Since Uy,; — v is bounded and satisfies L(U;,; —v) =01in (0, 1), according to Lemma 3.1,
Ui,1 — v = Ci(e)h. Hence (3.6) follows.
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Step 3. We will show that Cy(¢) > 1/C for some positive e-independent constant C.

Denote
x=(rEx,) e Ry xS"2 xR

and write (1.3) under the condition of Theorem 1.3 as the following:

n—2 1 -
Urr + ur + r_2ASVl*2u +uny =0 in Bs\ (D1 U Dy),
0
M_0 ondD;.i=1.2, (.7
dv

U =x; ondBs.

Let
ur, x,) = '/;n72 u(r,§,xn)Y1,1(8) dé.

Since u is odd in x;, we have
1(0,x,) =0 forany x,.

Multiplying (3.7) by ¥1,1(£) and integrating over S"~2, we know that #(r, x,) satisfies

~ n—2_. n—2_. _ oA ==
Upr + Uy — p Uy, =0 inBs\ (D1 UDj),
ou ~ .
5 =0 on aDi, 1 = 1,2, (38)
#=0 on{r=0}
u=r 0n8§5,

where
Bs:={(r.x,) € Ry xR | r? + x2 < 25},
~ . 2
D; = {(r,xn) eRy xR |r2+ (x,, - (—1)’(1 n %)) < 1},

and v is the unit inner normal of 813i. Clearly, 0(r) = r satisfies the first line of (3.8), and
d00/dv <0ondD;,i = 1,2. Thus, we know that r is a subsolution of (3.8), and therefore
7 > r. Then

v = § 80, %) dn > .
—&/2+g(x)<xp<e/2+ f(x")
By (3.6), (3.2), and the above, we have
1
r <Upi(r) = Ci(e)h(r) + O(r't®) < Cy(e)r® + Er VO < r <ryp,

where rg is a small constant independent of &, which implies that

1 ,_
Ci(e) > Er& o,
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Step 4. Completion of the proof of Theorem 1.3.
It follows, in view of (3.6), step 3, and (3.2), that there exists some positive constant rg
independent of ¢ such that

Uri(r) > éh(r) L o(ite) > %h(r)’ 0<r<r. (3.9)

By (3.2),
202 +a(n—1)

1
h > ;B 2y@=p)/2 —
(r)_Cr (e+7r7) or 3+ a

(3.10)

By (3.4), (3.9), and (3.10), we have
12 1 I
([ eoras)” = 1061z ghive = ze
sn—2

Then, there exists a £ € S”2 such that |(/z, £)| > €*/2/C. Since u is the average
of u in the x, direction, there exists an x, such that

lu(Ve. &0, xn)| = és"‘/z. (3.11)

Estimate (1.13) follows from (3.11) and u(0) = 0. [ ]
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