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GRADIENT ESTIMATES FOR THE INSULATED
CONDUCTIVITY PROBLEM: THE NON-UMBILICAL CASE

HONGJIE DONG, YANYAN LI, AND ZHUOLUN YANG

ABSTRACT. We study the insulated conductivity problem with inclusions em-
bedded in a bounded domain in R™, for n > 3. The gradient of solutions may
blow up as €, the distance between the inclusions, approaches to 0. We es-
tablished in a recent paper optimal gradient estimates for a class of inclusions
including balls. In this paper, we prove such gradient estimates for general
strictly convex inclusions. Unlike the perfect conductivity problem, the es-
timates depend on the principal curvatures of the inclusions, and we show
that these estimates are characterized by the first non-zero eigenvalue of a
divergence form elliptic operator on S*~2.

1. INTRODUCTION AND MAIN RESULTS

In this paper, a continuation of [19], we establish gradient estimates for the
insulated conductivity problem in the presence of multiple closely located inclusions
in a bounded domain in R?, n > 3. Let  C R” be a bounded domain with C?
boundary containing two C?7 (0 < v < 1) relatively strictly convex open sets
Dy and D, with dist(D; U Dy, d9Q) > ¢ > 0. Denote Q := Q\ (D; UD,). The
conductivity problem can be modeled by the following elliptic equation:

div (ak(x)Vuk) =0 in €,
up = ¢(z) on 012,
where aj denotes the conductivity distribution, that is,

ar = kxp,uD, + Xg-
Let
e = diSt(Dl7 DQ)

be small. When k is large or close to 0, the gradient of solutions may blow up,
and it is significant to capture this singular behavior from an engineering point
of view. The problem is motivated by the study of damage and fracture analysis
of composite materials in the work of Babuska, Andersson, Smith, and Levin [6],
where they studied the Lamé system and analyzed numerically that, when the
ellipticity constants are bounded away from 0 and infinity, the gradient of solutions

2000 Mathematics Subject Classification. 35J15, 35Q74, 7T4E30, 74G70, 78 A48.

Key words and phrases. Optimal gradient estimates, high contrast coefficients, insulated con-
ductivity problem, degenerate elliptic equation, the non-umbilical case.

H. Dong is partially supported by Simons Fellows Award 007638, NSF Grant DMS-2055244,
and the Charles Simonyi Endowment at the Institute for Advanced Study.

Y.Y. Li is partially supported by NSF Grants DMS-1501004, DMS-2000261, and Simons Fel-
lows Award 677077.

Z. Yang is supported by the Simons Foundation Institute Grant Award 507536.

1



2 H. DONG, Y.Y. LI, AND Z. YANG

remains bounded independent of the distance between inclusions. Bonnetier and
Vogelius [13] proved it in the context of conductivity problem when inclusions are
two touching balls in R%. This result was extended by Li and Vogelius [34] to
general second order elliptic equations of divergence form with piecewise Hoélder
coefficients and general shape of inclusions D; and D in any dimension, and then
by Li and Nirenberg [33] for general second order elliptic systems of divergence form,
including the linear system of elasticity. Some higher order derivative estimates in
dimension n = 2 were obtained in [18, 20, 24].

When k degenerates to oo (inclusions are perfect conductors) or 0 (insulators), it
was shown in [14,28,38] that the gradient of solutions generally becomes unbounded
as € — 0. For the perfect conductivity problem, it was known that

[Vull oo &) < Ce™ 12| l¢llc2(00) when n = 2,
IVull gy < Clelnel " lglosony whenn =3,
IVull poe @y < CeHIgllc2(00) when n > 4,

see [4,5,7,8,40,41]. These bounds were shown to be optimal and they are inde-
pendent of the shape of inclusions, as long as the inclusions are relatively strictly
convex. Moreover, many works have been done in characterizing the singular be-
havior of Vu, which are significant in practical applications. For further works on
the perfect conductivity problem and closely related works, see e.g. [1-3,9-12,16,
18,20,23,26,27,29-32,37] and the references therein.

For the insulated conductivity problem, it was proved in [8] that

IVull @) < Ce™2ll¢llc200) when n > 2. (1.1)

The upper bound is optimal for n = 2. Yun [42] studied the following free space
insulated conductivity problem in R3: Let H be a harmonic function in R3, D; =

Bl (07031+ %)v and D2 = B1 (0,0,—1 — %)7

A’LL =0 in RS \ (Dl Ul)g)7
gu—0 on dD;, i=1,2,

w(x) — H(z) = O(|z|72) as |z| = oo

He proved that for some positive constant C' independent of ¢,

max [Vu(0,0,z3)| < Ce¥5
|z3|<e/2

He also showed that this upper bound of [Vu| on the e-segment connecting D; and
D is optimal for H(x) = x1. However, this result does not provide an upper bound
of [Vu| in the complement of the e-segment. The upper bound (1.1) was improved
by Li and Yang [36] to

[Vl oo @y < 0571/2+5||g0||(;2(39) when n > 3,

for some B > 0. See [35] for flatter insulator case. When insulators are unit
balls, a more explicit constant 3(n) was given by Weinkove in [39] for n > 4 by a
different method. The constant S(n) obtained in [39] presumably improves that in
[36]. In particular, it was proved in [39] that S(n) approaches 1/2 from below as
n — oco. Despite the significant progress on the conductivity problem that has been
made in the past three decades or so, the optimal blow-up rate for the insulated
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conductivity problem in dimensions n > 3 remains unknown, and it is described as
an outstanding open problem in [25].

In [19], we established optimal gradient estimates for a certain class of inclusions
including two balls of any size in dimensions n > 3. In this paper, we study the
insulated conductivity problem with C7 coefficients in dimensions n > 3, with any
C?7 relatively strictly convex inclusions:

—0;(AY (x)0;u(z)) =0 in €,
A (2)0;u(x)v; =0 on dD;, i=1,2, (1.2)
u=¢ on Jf,

where 0 < v < 1 and (A% (z)) satisfies, for some constants o > 0,
. 1
(AY(z)) € C7 is symmetric, ol < A(z) < —1, (1.3)
o

© € C%(09) is given, and v = (v1,...,v,) denotes the inner normal vector on
0Dy U OD,. We use the notation = = (2, x,,), where 2’ € R"~1. After choosing a
coordinate system properly, we can assume that near the origin, the part of 9D,
and 0D, denoted by I'y and I'_, are respectively the graphs of two C27 functions
in terms of x’. That is, for some Ry > 0,

o _f / ’ _ :_E / /
r, = {xn =35 + f(2"), 12| < RO} and T'_ {xn 5 +g(z), |2'| < RO(}1,4)

where f and g are C%7(0 < v < 1) functions satisfying
f(@') > g(z') for 0 < |2'| < Ry, (1.5)

f0)=g(0) =0, Vuf(0')=Vug(0')=0, D*(f—g)(0)>0. (1.6)
For 0 < r < Ry, we denote

Q= {(@20) €Q | =5+ g(a) <wn <+ S@), 2] <7} (1.7)

We will focus on the following problem near the origin:

{—@({1? (x)0ju(z)) =0 in Qg,, (1.8)
AY(z)0;u(xz)y; =0 onT L UT_.
It was proved in [8] that for u € H(Qg,) satisfying (1.8),
IVu(@)| < Cllull oo g, (€ + [/ )72, Vo € Qg ja, (1.9)

where C' is a positive constant depending only on n, Ry, ,a, ||Allcv, || fllc2~, and
llgllc2.~, and is in particular independent of e.

In this paper, we show that the optimal exponent of the gradient estimates of the
insulated conductivity problem (1.8) is closely related to the following eigenvalue
problem on S"~2. Consider

— divgn-2 (0(§) Vae-2u(€) ) = Aa(@)u(e), € €572, (1.10)

where a(€) is a positive function on S"~2 with Ina € L>(S"~2). Denote

(u, v)gn—2 = ]én_2 a(&)uv do. (1.11)
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From the classical theory, all eigenvalues are real, and the corresponding eigen-
functions can be normalized to form an orthonormal basis of L?(S"~2) under the
inner-product defined above. The first nonzero eigenvalue A; of this problem is
given by the Rayleigh quotient:

fon—z a(§)|Vgn—2 ul? do

A= inf . 1.12
! uZ0,(uD)gn—2=0  fg,_5 a(&)|ul?do (1.12)

Let a(\1) be the positive root of the quadratic polynomial a? + (n — 1)a — A1, that

is,

—(n=1)4++/(n—=1)2+4X
5 )

First, we consider the case when A% (0) = 0ij, where 9;; is the Kronecker delta

function. When two inclusions touch, namely, € = 0, we prove the following gradient
estimates.

a(A) = (1.13)

Theorem 1.1. Forn >3, Ry >0, ande =0, let f,g € C*>7(0 < v < 1) satisfy
(1.5) and (1.6), (A% (z)) satisfy (1.3) with ¢ > 0 in Qg,, and AY(0) = &;;. For
any solution u € H*(Qr,) of (1.8), we have

j .

IVu(@)] < Cllull (o) 12|71 Vo € Qg o \ {0}, (1.14)

where Ay and a(\y) are given by (1.12) and (1.13) with a(§) = &' (D?(f — ¢)(0)) &,
and C' is a positive constant depending only onn, Ry, 7, o, a positive lower bound of
the eigenvalues of D*(f —g)(0"), and upper bounds of || Allc~, || fllc2.~, and ||g||c2~-

Remark 1.2. When a(£) > 0 a.e. satisfies Ina € L>°(S"~2) and fS,,L,z ax; = 0 for
alli=1,...,n — 1, it will be shown that A\; < n — 2 (see Lemma 5.1), and hence
a(/\l) S (071).

When ¢ > 0, the following gradient estimate is proved.

Theorem 1.3. Forn >3, Ry > 0, and € € (0,1/4), let (A¥(x)), f, g, A1, and
a(A1) be the same as in Theorem 1.1. For any solution uw € H'(Qgr,) of (1.8), we
have, for any 0 < a < a(A1),

a—1
IVu(z)| < Cllull L= (g, ) (e + |2'1%)"2 Vz € Qg o,

where C' is a positive constant depending only on n, Ry, v, 0, a positive lower bound
of a(\1) — «, a positive lower bound of the eigenvalues of D*(f — g)(0), and upper
bounds of || Aflc, || fllcar, and llglcan.

We show that the estimate (1.14) is optimal in the following sense. Note that
in the next three theorems, 0D; and dDs near the origin are represented by the
graphs of f and g respectively.

Theorem 1.4. For n = 3, A¥(x) = §;;, € = 0, and for any positive definite
matriz M, there exist smooth strictly convex inclusions Dy, Dy inside 2 = By with
D2(f —g)(0') = M, and a boundary data ¢ € C°°(0Q) with ||¢||L=@00) = 1, such

that the solution u € H'(Q) of (1.2) satisfies

1
limsup |2/|'~*M)|Vu(z)| > =,
zeQ,|z|—0 c
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where A1 and a(\1) are given by (1.12) and (1.13) with a(€§) = £&¢ME, and C is some
positive constant depending only on the positive lower bounds of the eigenvalues of
M, and upper bounds of ||0D1||c4 and ||0Dz2||c4.

Theorem 1.5. Forn >4, AY(z) = 6;;, and € = 0, there exists an g9 = £o(n) €
(0,1/2) such that for any positive definite matriz M satisfying

1 M 1
(I—co)imr < 7o < (L +¢€0) 777
I} = M| 1]

there ewist smooth strictly convex inclusions Dy, Dy inside Q = Bs with D?(f —
9)(0") = M, and a boundary data o € C*(982) with ||¢||L-~aa) = 1, such that the

solution uw € HY(Q) of (1.2) satisfies

1
limsup |2/|'~*M)|Vu(z)| > =,
z€Q,|z|—0 c

where A1 and a(\1) are given by (1.12) and (1.13) with a(§) = E&ME, and C is
a positive constant depending only on n, || M|, and upper bounds of ||0D1| ¢+ and
10Dz ¢4

In the above, ||M|| and ||I]| denote the standard norm of the matrices. Theorems
1.4 and 1.5 are consequences of the following more general theorem.

Let D1, Dy be two strictly convex smooth domains in By C R™, which are sym-
metric in z; for each 1 < j < n —1, and D; N Dy = {0}). Let Q = Bs and
Q =0\ {D; UD,}.

Theorem 1.6. For n > 3, let Dy, Da, and Q2 be as above, A (z) = &;5, A1 and
a(A1) be given by (1.12) and (1.13) with a(&) = &' (D2(f — g)(0')) €. Assume that

the eigenspace corresponding to Ay contains a function which is odd in x; for some

1<j<n-—1. Let o =z; and u € H'(Q) be the solution of (1.2). Then

1
limsup |2/|' =M |Vu(z)| > =,
ZE€S~2,|I|~>O C

where C' is some positive constant depending only on n, a positive lower bound of
the eigenvalues of D?(f — g)(0'), and upper bounds of ||0D1||c+ and ||0D2]|ca.

We will show in Section 5 (see Theorem 5.2 and Corollary 5.7) that the conditions
in Theorems 1.4 and 1.5 imply the condition in Theorem 1.6.

The rest of this paper is organized as follows. In Section 2, we establish some
estimates for the associated degenerate elliptic operator

L. := div {(a + a(i—:) |x’\2)v],

which play an important role in proving Theorems 1.1 and 1.3. Theorems 1.1 and
1.3 are proved in Sections 3 and 4, respectively. Some properties of Ap, the first
nonzero eigenvalue of (1.10), and its corresponding eigenspace, are established in
Section 5. Theorem 1.6 is proved in Section 6, and therefore, Theorems 1.4 and
1.5 follow. Finally in Section 7, we discuss the case when A;;(0) # d;;, and give a
reduction to the case when A;;(0) = d;;.
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2. SOME ESTIMATES ON THE ASSOCIATED DEGENERATE ELLIPTIC OPERATOR

In this section, we establish some estimates that are useful in proving Theorems
1.1 and 1.3. Throughout the section, we work in the domain Br, C R"~! for some
Ry >0 and n > 3. Let a be a function on S*~? satisfying

a>0ae and Inae L>®(S"?), (2.1)

and let Ay and «(A;) be given by (1.12) and (1.13).
Here are some notation we will be using throughout this paper: For o,s € R, we
introduce the following norm

F(x'
TP ——

. 2.2
'€ B |27 (e + |2/[2) 1> (2.2)

For any bounded set 2 C R"™! we denote H'(Q, |2'|?dz’) to be the following
weighted H' norm:

||fH1<Q,|w/|zdx,>=( /Q |f|2|x’|2dx’) +( /Q |Vf|2|x’|2da:') .

For any 0 < p < Ry, we denote

(Wsp, = </SBP a<|i:|) da) /aBp a(|z:|>u(x') do,
(W), = (/B,, a(li—:) d;c’) /Bp a(%)u(m’) dx’.

Proposition 2.1. For n > 3, let a satisfy (2.1), A1 and (A1) be given by (1.12)
and (1.13). For o > 1, 0 — 1 # a(\1), let i € H*(Bg,,|2'|*dx") be a solution of

/

div [a(mx—/)W’FVﬂ} =divF+G in Bgr, CR" !
where F,G € L*°(Bg,) satisfy
1Flle 1 5n, <00 1Gller 1,155, < 00 (2.3
Then @ € CP(Bg,) for some 3 € (0,1). Moreover, for any |2'| < Ro/2, we have
ja(a’) — u(0)]
< CUFllesr1,Bry + 1Glleo—1,1,8r, + 18— @(0)l|z208p,)) 1| (24)

where & := min{a(A\1),0 — 1}, and C is some positive constant depending only on
n, o, Ro, an upper bound of ||Ina| p~, and is independent of €.

For the proof, we use an iteration argument based on the following two lemmas.

Lemma 2.2. Forn > 3, let a satisfy (2.1), A\ and (A1) be given by (1.12) and
(1.13), and v, € HY(Bg,, |2'|?dx’) satisfy
/

div [a<i> \x’|2V111] =0 in Bp, CR" L (2.5)

|2/

Then vy € CP(Bg,), for some 3 > 0 depending only onn and ||Ina| ~. Moreover,
for any 0 < p < R < Ry, we have

v1(0) = (v1)3p,,
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(faBp a <i—> lv1(2/) — 01 (0) 2 da>
< (%)“(A” (]éBRa (é—) o1 () —v1(0)|2da>2, (2.6)

and for any x' € Bg, /2,

1
2

—a(\)—-2L o
o1 (") — 01(0)] < CRy “ 7T oy — 01(0) | 2o 1217, (2.7)

where C' is some positive constant depending only on n and || Inal|fe=.

Proof. By [21, Theorem 2.3.12], v; € CP(Bg,) for some 3 > 0. It should be
noted that when n = 3, the weight |2/|?> does not satisfy the A condition (in
R"~1) required in [21, Theorem 2.3.12]. Nevertheless, it satisfies the conditions in
[21, Section 3, pp. 106]. Therefore, the Holder estimate still holds. Without loss of
generality, it suffices to prove (2.6) and (2.7) for a € C*°(S""2) and R = Ry = 1.
In the polar coordinates, we write ' = (r,£) with 0 < r < 1,£ € S"72. Let
o(r) € C5°((0,1)) and (&) € C*°(S"~2). Multiplying (2.5) by ¢¢ and integrating
by parts gives

1
/ a(&)r*Vuy - V() = / / ar™0,v19" ) + ar™ 2 Vgn—201 - V-2t dédr
B 0 Sn—2
= 7/ [arzarrvl + nard,v + divgn—2(aVgn-2v1)]|p1).
B1

Therefore, we can write (2.5) in polar coordinates as

1
Oprv1 + ;aﬂh + W divgn-2 (a(ﬁ)VSn—ﬂjl) =0 in B \ {0}, (2.8)
Let Ao = 0, {\x}32, be the set of all positive eigenvalues of (1.10) satisfying A\x <
Ai+1 for all k € NU{0}. Let Yy be the positive constant satisfying (Yp, Yo)gn-2 = 1,
Yj:; be an eigenfunction corresponding to A, that is,

divgn-2 (a(é)vS”*2Yk,i> = —Aka(§)Yi,is

and {Yy '}k U {Yo} forms an orthonormal basis of L*(S"~2) with respect to the
inner product (1.11).
For 0 < r < 1, take the decomposition

o N(k)
01 €) = Vo) Yo + 33 Vis(r)Via(€) in L2(S"72), (2.9)

k=1 i=1

where Vy(r), Vi.i(r) € C%(0,1) are given by

o) = £ a@nOYode, Vi) = £ al©n OV de
Multiplying (2.8) by a(¢)Yy and a(€)Yy;(€) respectively and integrate over S"~2,
we see that Vy(r) and Vj ;(r) satisfy

A
Vi + 2V =0 and V{4 SV - S5V =0 i (0,1).
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Therefore Vo = ¢; + cor!™™ and Vi; = c3r®O#)+ 4 ¢,r*A6)~ for some constants
c1,Ca,c3, and ¢4, where

—(n—=1)%/(n—1)2+4)\

a()\k)i = B

Since v; € H(By,r2dx’), we have for any 0 < § < 1,

1
00 > / a(&)vir? da’ > —/ a(&)Vo(r)?r? da’
Bi\Bs C JB\Bs
1 1
> 6/5 lex + cor' T P dr,

which implies ¢o = 0. Hence Vy(r) = Vo(1). Similarly, we have ¢4 = 0, and hence
Vii(r) = r*) eV 5(1).
By (2.9), for any 0 < p < 1,

oo N(k)

f o (%) )~ Vetaldo = 30 3 Wit

k=1 i=1
N (k)

< p2a()\1 i Z 'sz

k=1 i=1

— p20‘()‘1) ][ a (/) |'U1(CUI) — V0Y0|2 do.
0B ||

Therefore, v1(0) = V5(0)Yo = Vo(p)Yo = (v1)§p, for any p € (0,1), and

(pr vy (2") — v1(0)]? do—> v < Cp) (7{93 luy(2) — v1(0)]? da> v ,

which implies (2.7) by the interior elliptic estimate applied to B, \ Ep /2 |

Lemma 2.3. Forn >3 and o > 1. Let a satisfy (2.1), A1 and a(A1) be given by
(1.12) and (1.13), and vy € H(Bg,, |2'|?dz’) satisfy

div[ (I /‘)|x| wz] —divF+G in Bp, C R™ !, (2.10)

where F,G € L*°(Bg,) satisfy (2.3). Then we have
V20| 2o (Bry) < CUIFlle,01,Bry + IGlle,0—1,1,B5, )

where C' > 0 depends only on n, o, and an upper bound of ||Inal =~ and is in
particular independent of €.

Proof. Without loss of generality, we assume Ry = 1 and

||FH5»‘771731 + ”G”s,o—l,l,& =1
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For p > 2, we multiply the equation (2.10) with —|vs|[P~2vy and integrate by parts
to obtain

!
0= [ a5l PVl e d
B, |
= (p - 1)/ F- V’UQ|U2|;D72 dIE, - / G”U2|’U2|p72 dl‘/.
Bl Bl

By the definition in (2.2),
F@)) < 10 NPz and [G@)] < 217 |Gllw—r1.8, for o' € By.

Therefore, by Young’s inequality, Holder’s inequality, and using o > 1,

(r—1)

/ F - Vug|ve|P~2 da’
B1

—1)0
S (p 5 ) / ‘$/|2‘V’02|2"02|I)_2 dm'+C(p— 1)/ |1'/|20_2|’U2|p_2d$l
B,

B,

—1)
S (p 5 ) / ‘$/|2‘V02|2‘U2|p_2 d.’l?l-i-
B1

2
w o) ([ oo ) T
B:

n—1+42u

oy nli2a EESE=m
([ Pl )T
By
2
I(o—1)(n+142u)/2 142 AN
<o [ e Dmrrizz—t-tiz g, "
B

n—14+2u
ntitap
_q)yntlt2u n
4 </ |$/|2|,U2|(P ) T da’ ’
B,

where p > 0 is chosen sufficiently small so that

/ g [(= D (14210 /2=(n—14210) o/ < o,
By

and

Gug|vo|P~2 da’
B,

Hence,
4(p—1 2
M/ |2 ’V|v2|g da’ = (pfl)/ [ 2|V o] [vz|P 2 da’
p Bl Bl
<Cp—D|E7?| » o[ . .
< Clp = Dllvy Il nrez Bt paey Cllog™ || ntaze (B Jor 242 (2.11)

We use the following version of the Caffarelli-Kohn-Nirenberg inequality (see [15]):

”u”LZ(:jll) (B ‘ ’|2d /) S CHVUHLz(Bl,\m’Pdr’) V’U, S H& (Bl, |x’|2dx’). (212)
1,|T T

Taking p = 2 in (2.11), we have, by (2.12) with u = |vs| and Holder’s inequality,

||U2|| 2(n+1+42u) S C. (213)
L n=1+2u (By,|z’|2dx’)
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For p > 2, from (2.11), by (2.12) with u = |vs|% and Hoélder’s inequality,

P
Hv2||p@(3 o/ |2da) < ClIVIval® 2B, o paar)
n— 1,z T
< p—
Cp ||’UQH M(F 2)( |r,|2dz)+cp||v2|| Mﬁ(p 1)(31,\1/\2dm’)
< max Co' o ey
= (Bl \z/sz)
By Young’s inequality,
4 i
< Cph)M/r p
||U2|| (n+1)p (Bl |z /|2dT/) '}Ilzlié( p) ||U2H 112 p(B |m’|2dz ) + p

2
< (Cp?) o (||’Uz|| - T —) |

“TEP(By o' da’) | P
For k > 0, let

_ n+1l n—-—14+2p kn+1+2u
Pe=2\ 0 n+1+2u) n—1+2u
Iterating the relations above, we have, by (2.13),

—1
2/pi
o2l 2o By o2y < TT (CPF) ™" o2l oo By forj2aer)

=0
k—1k—1 2/
Pj
TR
=0 j=1
1
< CHUQH 2(n 142u) CZ - S C, (2.14)

=3%2u (By,|z’|2dz’)

where C' is a positive constant depending on n and ¢, and is in particular indepen-
dent of k. The lemma is concluded by taking k — oo in (2.14). O

Now we are in a position to prove Proposition 2.1.

Proof of Proposition 2.1. We first show the (Holder) continuity of 4. By Lemma
2.2, vy is locally Holder continuous. In particular, it satisfies the estimate in [21,
Lemma 2.3.11]. Now for F' and G such that

Fr=% € LP(Bg,,r*d2’) and Gr~2 e LP/*(Bg,,r? dz')

with some p > n+ 2, which are satisfied by the condition of the proposition, we can
apply the Moser iteration to get an L estimate of vy as in [21, Lemma 2.3.14].
By combining these two estimates and using the standard iteration argument, we
get the local Hoélder continuity of 4 with a small exponent. The proof of (2.4)
below essentially follows this scheme, using the more precise L? oscillation estimate
obtained in Lemma 2.2.

Without loss of generality, we assume that @(0) = 0 and

1Elle.01,Bry +1Glle.0-1,1,Br, + [@llL2085,) = 1-

Consider
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For 0 < p < R/2 < Ry/2, we write @ = v1 + vy in Bg, where vy satisfies
div [ (| /|>|z | VU2:| =divF+G in Bg
and vo = 0 on 0Bg. Thus vy satisfies
div[ (| /|)|x| Vvl} =0 in Bp

and v; = w on dBR. By Lemma 2.2

(lin a <i—|> l1(27) — v1(0)2 da>%
< (%)“(A” (]éBR a (é—) lo1(2') — 01(0)]? dO—)% . (2.15)

Since Da(x’) := va(Rx') satisfies
div[ (| ,|>|x| sz} =divF+G in B,
where F(z') := R~'F(Rz') and G(z') := G(Rz') satisfy
IFr-2c00.8, = B7 I Flleo1,Br
”éHR—%,o—l,l,Bl = RG_IHGHE,U*LLBRﬂ
we apply Lemma 2.3 with Ry = 1 to ¥3 to obtain
|02l (BR) < CRTTY (2.16)

Since 4(0) = v1(0) + v2(0) = 0, we have |v1(0)| = |v2(0)|. Combining (2.15) and
(2.16) yields, using @ = vy + v9, and @ = v; on OBg,

( BBP Ix’l |U1(x/) v ”1(0)|2d0>% + (7{9& a <%> [ug(2”) — v2(0)|? da)é
( )a(m (]éBR (é—|> Ivl(w’)l2da>% + Clv1(0)| + Cllvall o (Br)

( ) M (R + ORI, (2.17)

IN

IN

IN

For a positive integer k, we take p = 2771 Ry and R = 27 'Ry in (2.17) and iterate
from i = 0 to k — 1. We have, using 0 — 1 # a(\1),

k
W(27kR0) S 27ka()\1)w(Ro) 4 CZQ*(k*i)a(Al)(217iR0)0’71
i=1
1 — 2k(a(Ad1)=o+1)
1 — 2a(A1)—o+1 °

< 27ka)yy(Ry) + 2 kM) go—t

It follows that
w(2FRy) < 274 (w(Ro) + CR™),
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where & = min{o — 1, (A1) }. For any p € (0, Ry/2), let k be the positive integer
such that 27*"1Ry < p < 27%Ry. Then
w(p) < Cp%, Wpe (0, Rof2),
and hence

1/2 _
(][ a@)2do) < Co" p e (0.Ro/2).
8B,

The proposition then follows from the standard interior elliptic estimate applied to
B, \ B,s. |

In the remaining part of this section, we consider the case when € > 0.

Proposition 2.4. Forn >3, s> —(n—1)/2,0<t <1, and e > 0. Let a salisfy
(2.1) and be Holder continuous, A1 and a(A\1) be given by (1.12) and (1.13), and
v € HY(Bg,) be a solution of

/
div {(5 + a<|x—/) \x’P)V@} =divF in Br, CR"!
x
satisfying
”V'EH&—t,LBRO < o0,
where F' € L>(Bg,) satisfy
1 Fle,5,0,Br, < 00

Then for any 0 < p < %R < LRy, we have

|

(‘7@0\30/2
p a(A1) ][ D, B 5 1/2

<c(2 [0(a') — (©)% 1 5y |7 do
()™ (f. =)

RN (v (VF cnan
+C (p) <R1+ <R + 1> ||F||€,S,O,BRO + (7) Rl t||vv||€,t,1,BRo> s

<l

1/2
(2') = (0), s, 4/ dor)

R2
(2.18)
where
(a()\l) + nT—1> /2, when n < 5 —2a(A1);
(M) = any a < 1, when n =5 — 2a(A1); (2.19)
1, when n > 5 — 2a(Aq),

and C' is some positive constant depending only on n, s, t, Rg, and an upper bound
of || Inal| L, and is independent of .

Proposition 2.4 will follow from Lemma 2.2 and the following lemma.

Lemma 2.5. Forn >3, By CR" ! and 8 < 1, letv € H}(By, |2'|>TPdz’). There
exists a positive constant C depending only on n and 3, such that

sup r”][ [v|? do < C/ |2')2 | Vol da’.
0<r<1 8B, By
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Proof. Without loss of generality, we may assume v € C}(Bj). Then we have

r2/(jB”.v|2d0§C/S’ r”|v(r,g)\2d5:0/ (/ dsv(s, &) d > d¢
[ ([ st a) ([ orar)

< c/ / S HB10,0(s, €2 dsde < c/ o P8V do
0 Sn—2 B4

where in the last two lines, we used Holder’s inequality and the Fubini theorem. [
Now we are in a position to prove Proposition 2.4.

Proof of Proposition 2.4. In this proof, we denote @ = a(\1) and & = @(A1) for
simplicity. Without loss of generality, we may assume ©(0) = 0. Then by the mean
value formula,

[o(2')] < [2/[" |Vl 0155, for 2’ € B (2.20)

For any 0 < R < Ry, we write ¥ = v; + v so that vy € H(Bg, |2'|?dz’) satisfies
div[ <| /|>\x| Vvl} =0 in Bg,

with v; = ¥ on 0Bg. By Lemma 2.2 and (2.20), we have, for 0 < p < R,

<faBp o1 (z') — vy (0)? da) <C (%) Rl_t||V17||a7_t)17BR0.

Since a is Holder continuous, by the interior gradient estimate applied in B, \Ep /2
for 0 < p < R,

V0r(@')] < OVl i1,y 117 R0 for o’ € B\ {0} (221)
From the maximum principle, Lemma 2.2, and (2.20), we know that

[ville(Br) = Jup o lv1(2")] < CR™(|V0lle, 1,85, -
z'e rU

Therefore, by the boundary gradient estimate,
|VU1($/)| S CHVI_}”E,—t,l,BRO Rit for IE/ € BR \ BR/Q. (222)

In particular, v; € H'(Bg). Therefore, vy € H}(Bgr) satisfies
div [(5 + a(l /‘)|x/|2>Vv2] = divF —eAv, in Bp.

Let 91 (y') = v1(Ry'), t2(y') = va(Ry'), F(y') = R-'F(Ry'), and é = eR~2. Then
by (2.21) and (2.22),

1F]z.50.8, = R F|l26,0,B1 < CR''|Vu

€,—t,1,BRry> (2'23)

sl

and 7, satifies

div{(s—&—a(‘ /|)|x )WQ} = divF — £A%; in B. (2.24)
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Denote z' = (r,£) in the polar coordinates, where 0 < r < 1 and £ € S"2. We
multiply (2.24) by 7 and integrate by parts to get

/ (§+a(§)r2)\V62\2:/ F~vv2+5/ Vi, - V.
Bl Bl Bl

By Young’s inequality and the definitions of |F| = ||F|lcs0.5 and ||[Vi| =
||V1~11||g,a_171731, since 2s +n — 2 > —1,

52,,,20( 2

E+r?

/ (E+12)|Vin 2 < OHF||2/ T2S(5+r2)+0||va1||2/
Bl Bl

B,

when n < 5 — 2a;
< C|F|*E+ 1)+ C|[Ver]*{ &2(|Ing| + 1), whenn =5 — 2w

2, when n > 5 — 2q,

By the inequality above and Lemma 2.5 with g = 0,

sup 7 f o < O (€4 DIFI 0 + 21V 11,
o<r<1 9B,

which together with (2.23) implies, for any 0 < p < R,

][ lva(2/) 2 do
OB

P

<C (%)n <R2+28 (% + 1) |

eN2E
+ (ﬁ) R? 2t||VU||§7t,1,BRU>
(2.25)

Denote

!

w(p) == <]{Bp\3p/2 a(%) |o(a") — (T})GBP\BP/QF do) 1/2' (2.26)
By Lemma 2.2 and (2.25), for any 0 < p < R/4,
de a(%) |o(z") — v1(0)|* do
<cf (| ,|)|v1( ) — 01 (0 )|2da+c][ o ,|)|v2( 2|2 do
<c (g)“ a5 - @, P do

R\" [ oyas( € 2 € \** g2t wg)2
+C (;) (R + (ﬁ + 1) ||F||6,S,O,BR + (ﬁ) R t”vq}”&*t’lvBRo ’
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Multiplying both sides by p"~2, integrating over (p/2,p) and dividing both sides
by p"~1, we have for any 0 < p < 7 < %

/

gc(g)”]{m (|j|)|v<> 35,2 do

- n £\ 2a _ _
+ C (;) (7’2+23 ( + 1) HFHE S, 0 B + (T2> 7'2 2t||vv||gxt’1vBRo>

/

<C(§)2aﬁ37,a(|if|)|”( 7) = @b paal” Ao

! i
T 9u9s [ € 2 €2 o ot o2
+C (;) (7" o (r—z + 1) IF|2 5 0.5, + (T—Q) r tllells,t,l,BRo) :

Multiplying both sides by "2, integrating r over (R/2, R), and dividing both sides
by R~ give (2.18). O

3. PROOF OF THEOREM 1.1

In this section, we give the proof of Theorem 1.1. In this case, I'y and I'_ touch
at the origin. After a suitable rotation in R® !, we may assume without loss of
generality that D?(f — ¢)(0') is a diagonal matrix whose entries are denoted by
ai,as,...,an—1 > 0. Therefore,

n—1
£) = g(a') = 3 aia? + (@), (3.1)

where e(z') satisfies |e(z’)| < C|a2/|?T7.
Let u € H'(Qg,) be a solution of (1.8). For z € Qg,, we consider, as in [19],

I ICOR
a(z') = u(z', xy) dy,. (3.2)
g(z')

It follows from a direct computation that 4 € H(Bg,, |2'|?dz’). For any 0 < R <
Ry/2, we make a change of variables by setting

’ ’
y =,

. 2R2 < Ty — g(:l?l) 1) V(l’l,l'n) € Qop \ Qr.
= fi ,

(z) —g(z’) 2
This change of variables maps the domain Qg \ Qg to Q2r, g2 \ Qg g2, Where
Qsp={y = yn) ER" [ Y| <5, ]yl <t} (3.3)

for s,t > 0. Let v(y) = u

—~

x), so that v(y) satisfies

{ (BZJ W 3]1)( ))=0 in Q2R Rr2 \QR,R%
B (y)d;jv(y) =0 on {z, = —R*} U{z, = R*},

~—~
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where
2 ij (o )t
~ 2R?(0.y)(02y)' | 2R%(8,y)(AY (x(y)) — 0i)(8xy)" i i
T det(d,y) det(D,y) =: (CY(y)) + (D (y))
and

det(9ry) = 2R*(f(y") — 9(y") "
Note that the top left (n—1) x (n—1) part of (C*(y)) is (f(y') —9(¥')) I tn-1)x(n—1)-
Let
R2
o) = o o) dua(=aly),

Then v satisfies in Bog \ Br C R" 7! that

div |(1(0) - 9v)) Vo] = - S 0,075 53 0D,
i=1 i=1 j=1

where h denotes the average of h with respect to ¥, in the interval (—R2, R?).
Reversing the change of variables, one can see that @ satisfies in Bp, \ {0} ¢ R"~!
that

div [ (@) - g(a")) V| = - S opta- 3> o,
i=1 i=1 j=1

where for 1 <i<n —1,
b (x) = (f(2') = g(="))dig(a) + (xn — g(2"))0;(f(z") = g(a")),
() = (AY(x) — AY(0)) (f(2") — g(z")) for1<j<n—1,
M) = (A%(x) — AT(0)) b + (A7 (x) — A™(0)) (f(2) — g(a")),
k=1

and h denotes the average of h with respect to x,, in the interval (g(z'), f(z')) as
in (3.2). By the weak formulation and 4 € H'(Bg,,|2'|?dx"), one can see that @
satisfies the above equation in Bg,. Therefore, @ satisfies

div [(Eaimi2>Vu} = divF in Bg, C R"!, (3.4)

where F; = —b'0,u—ed;ji— Y 7_ ¢0;u and e is given in (3.1). From the assump-
tions (1.3), (1.5), and (1.6), we have
bi(2)] < Cl2'|3,  |c¥(2)] < Cl'PTT fori=1,....,n—1,j=1,...,n.
Hence
|F(2")| < Cl2'[*™Vu(a’)| for 2’ € Bg,.
Proof of Theorem 1.1. Without loss of generality, we assume that [ul|p< @y ) = 1.
Let @ be defined as in (3.2). By (1.9) with e =0,
HV’["HU,*SO,LBRO < 0,
where sg = 1. Then @ satisfies the equation (3.4) with F' satisfying

||F||072+’Y*5071,BR0 < 0.
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By (1.9) with & = 0,

u(z’, zn) — ()] < (f(2') — g(2')) |Onu(a’, )] < Cla’| - in Qg

(3.5)
By Proposition 2.1 and (1.9), both v and @ are Hélder continuous. Indeed, for any
z,y € Qg, such that |2/| < |y/|, we denote r = |z — y|. When r < |2/|?, by (1.9)
and the mean value formula, we have
lu(z) — u(y)| < Crla’|~* < Cr'/2
When r > |2/|?, by (3.5) and using the C? regularity of @, we also have
lu(z) — u(y)] < fu(@) —a(2)| + |uly) — a(y)] + a(=") — aly')|
< Clz'|+ CrP < C(r'/? +P).
Combining the above two estimates, we see the Holder continuity of u. Thus, we
may further assume, without loss of generality, that u(0) = @(0) = 0. By decreasing

v if necessary, we may assume that 1+~ — sp = v < a(A;). By Proposition 2.1
and (3.5), we have, for any 0 < R < Ry /4,

max
zn€(g(z’),f(2)

][ 2 de < C lu— a2 de + C a2 de < CR2,
Qur\Qr/2 Qur\OQr/2 Qur\Qr/2

where & = min{a(A1),1 4+ v — so}. We make a change of variables by setting
Z=a,
. = 2R> < zn—ga) 1) V(@' x) € Qur \ Qrya-
f@)—g@) 2)°
This change of variables maps the domain Q4r \ Qr/2 to Qur, g2 \ @r/2,r2, Where
Qs,; is defined as (3.3). Let w(z) = u(z), so that w(z) satisfies

—9;(b"(2)0;w(2)) =0 in Qup g2 \ Qry2,R2;
b (2)0;w(z) =0 on {z, = —R*} U{z, = R?},

where

g 0.2)(AY(2(2)))(0,2)
ey = A DO
It is straightforward to verify that
é <b(z) <CI and ||b||C‘Y(Q4R,R2\QR/21R2) < CR™.
Let b7 (2) = b (Rz) and w(z) = w(Rz). Then o satisfies
0 in Qur\Qi/2r,
b (2)0;w(z) =0 on {z, = —R}U{z, = R},
with
<b<CI and  |bllor(Qum\@ijan) < C-
Now we define
Sii={zeR"|1/2< 2| <4, 21— 1)R <z, < (2l +1)R}
for any integer [, and

ST i={zeR" | s<|Z| <t, |za| <m}.
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Note that Q4 r \ Q1/2,r = So. We take the even extension of @ with respect to
yn = R and then take the periodic extension (so that the period is equal to 4R).
More precisely, we define, for any [ € Z, a new function w by setting

W(2) == w (¢, (1) (yn — 2IR)), Vz€S.
We also define the corresponding coefficients, for k =1,2,--- ,n — 1,
0" (2) = b (2) == (1) (2, (1) (20 — 2lp)), Yz €S,
and for other indices,
b (2) := b (2, (~1) (2, — 2lp)), Vy€ S

Then @ and ¢¥ are defined in the infinite ring Q4 o0 \ Q1/2,00- In particular, @
satisfies the equation

0i(b70;) =0 in SF ) .

By [33, Proposition 4.1] and [36, Lemma 2.1], we have
||Vw|\Loo(si2) < C\WHLQ(sf/M) < CR®,

which, after reversing the changes of variables, implies,

HquLoo(QzR\QR) < CR&_l'

Therefore, we have improved the upper bound |Vu(z)| < Cla’'|7% to |Vu(z)| <
Clz'|% 1, where & — 1 = min {a(\;) — 1, —s0 +7}. If —sg+7v < a(\;) — 1, we take
s1 = sg—y and repeat the argument above. We may decrease - if necessary so that
a(A) —1# —sg + kv for any k = 1,2,.... After repeating the argument finitely
many times, we obtain the estimate (1.14). O

4. PROOF OF THEOREM 1.3

In this section, we give the proof of Theorem 1.3. Without loss of generality, we
assume [[u| L~ (@, ) = 1. We perform a change of variables by setting

e+ fl@)—gla) 2

This change of variables maps the domain 2, to Qr,,., where @, is defined as
in (3.3). Moreover,

on(B ) e

det(9,y) = 2¢(e + f(2') — g(2') 7. (4.2)

After a suitable rotation in R*™!, we may assume without loss of generality that
D?*(f—g)(0') is a diagonal matrix whose entries are denoted by ay,as,...,a,_1 >0
and (3.1) holds. Let u € H!(Bg,) be a solution of (1.8), and let v(y) = u(x). Then
v satisfies

{ai(b”(ywjv(y)) =0 in Qg,., w3

0" (y)0ju(y) =0 on {y, = —e} U{yn = ¢}
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with [[v]| o< (@, .) = 1, Where the matrix (b (y)) is given by

(" (y))
_ 26(0y)(AY (x()))(0:y)" _ 22(0:y) (0ry)* N 26(02y) (AY (z(y)) — 05) (0uy)"
det((“) Y) det(9,y) det(0,y)
e+ T agy? 0 e 0 bin
0 5+Z] Lagy? e 0 b2
0 0 5+Z] | ajy] pr—Ln
n—1 jn |2 2
nl n2 n,n—1 e e
b b o b s o)
1
60 602 8 8 Al p2 L n
2122 L @2n
+ : + : :
0 0 enil 0 nl 7.12 nn
0 0 0 0 o e
and fori=1,...,n—1,

bV = b = —220i9(y') — (yn + )0 (F(y) — 9(¥/)),
n—1
e =1 —aly) =D a?,
Jj=1

the matrix {c*} is given by

22(0) (AY (1) — 61,) (0u)"

det(0,y)
y (1.3), (1.5), and (1.6), we know for i = 1,...,n — 1,
0™ (y)] = b (y)] < Cely’| and |e'(y")| < Cly'[**7, (4.4)

and fori=1,....n—1,5=1,...,n—1,
) < Cle+ 1y ) (I + e+ 1y1%)7).
()| < Ce (ly']" + (e +1y'1*)7) - (4.5)

Note that e!(y),...,e" !(y) depend only on 3’ and are independent of y,. We
define

€
u(y) :=][ 0y, Yn) dYn- (4.6)
—€&
It is straightforward to verify that v satisfies in Bp, C R"~!,
n—1 n—1 n
div[(s—&—Zaiyf)Vﬁ]: Zabmav_za e'0,0) — ZZacjau (4.7)
i=1 i=1 j=1

with [|9]| Lo (Bg,) < 1, where b0, v and ¢ 0;v are the average of b"9,v and ¢ ;v
with respect to y, in (—¢,¢) as in (4.6).
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Proof of Theorem 1.3. We make the change of variables (4.1), and let v(y) = u(x).
Then v satisfies (4.3). Let © be defined as in (4.6). By (1.9),

[VOle,~250,1,Br, < 0,

where sg = % Then o satisfies the equation (4.7), that is
div [(e + a(§)r*)Vo] =divF in Bg, C R"*
with — ‘ L
F, = —b"0,v —e'0;0 — c0jv, i=1,...,n—1
By (1.9) and (4.2),
0,0 < Cle+ Y[ /e and |Vyu| <O+ Y]*)™° inQpry..  (4.8)

Therefore, by (4.4) and (4.5),

||F||57’Y—230707BR0 < 0.

Denote the left-hand side of (2.18) by w(p). By Proposition 2.4 with s = v — 25
and t = 2sp, for 0 < p < R/4 < Ry/4,

w(p) <C (%)a(l\l)w(R) +C (%) : R12s0 <R7 <§ 4 1) P (%>&(M)) 7

where @&(A1) > a()1) is given by (2.19) and w is defined in (2.26). Fix a g > 0
satisfying (A1) <. For any 0 < u < fi, 0 < p < R/4, and eTH < R/4 < Ry/4,
we have

a(A1) i ~
w(p) SC(%) W(R>+C(§> RI-2s0tna()

If 1 — 2sg + pa(A1) < a(A1), by [22, Lemma 5.13],

w(p) < Cpl=2sotuaN) vy cxiw < p < Ry, (4.9)
By (4.8),
[(y'syn) —0(y)] < 26 max (0u0(y',yn)| < Cle+ )™ in Qrye- (410)

Therefore, by (4.9) and (4.10),

2
<][ ‘U(y) - (U)Qp,s\Qp/2,e dy)
Qp,e\Qp/z,a

%
< f w—oldy | +w(p)
QP,E\Qp/Q,s

< Cp1_230+u5¢()\1) \v4 gﬁ <p< Ry,

Nl

where
(0)a, 0, = o(y) dy.
Qp,s\Qp/Z,e

This implies

ulxr) — (u
(-7{2@\99/2‘ ( ) ( )Q4ﬂ\Qp/2

2 2 B
dx> < Cpl2s0tnd\) Y e3in < p < Ry/d.

(4.11)
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‘We will show that

1—2s94+pa(Ag)
Vu(z)] < Cle + [/ )75 50— for x € Qg4 (4.12)
For any e7hn <p< %, we make a change of variables by setting

! !/
Z=a,

i 2p2 (;cn — g(;],'/) + 5/2 1) V(ZE,,JL‘n) S Q4p \ Qp/g. (413)

e+ f(@)—g(@) 2

This change of variables maps the domain Q4, \ Q,/2 to Qup 2 \ Q,/2,2. Let
w(z) = u(r) — (u)q,,\q,,, S0 that w(z) satisfies

_a’b(dw(z)ajw(’z)) =0 in C?élp,p2 \Qp/Z,an
P (2)050(z) =0 on {zn =~} U {zn = 2,

where
iy (0:2)(AY (2(2)))(0:2)"
(d7(2)) = det (9, 2) '

Let d(z) = d'(pz) and w(z) = w(pz). Then & satisfies
{_3i(dij(z)5jw(z)) =0 inQ4,\Qi/2,,

d™(2)0;0(z) =0 on {z, = —p} U{z, = p}.
It is straightforward to verify that

7 . A
6 S d S CI and ||dHCw(Q4,p\Q1/2,p) S C

Using the similar “flipping argument” as in the proof of Theorem 1.1, we have, by
(4.11),

IVu(z)| < Cla’|~ 206 for e < || < Ro/4 (4.14)
and
0sCo, \Q, U < Cpt=2s0tnaM) - for e7m < p < Ry/4. (4.15)
By the maximum principle and (4.15), we have
1-2s &(rq)
oscog , u<Ce e (4.16)
2e 244
For e2 < p < %eﬁ, we consider u in €4, \ €2, /2. By the change of variables (4.13),
the same “flipping argument” as above, and (4.16), we have
1-2sg+pua(ig)
|Vu(z)| < Cla'| e Y foret < |2'| < e7a (4.17)
Finally, we consider u € €, sz, and make changes of variables (4.1). By the same
“flipping argument” and (4.16), we have
1—2spg4+pua(Ny)

[Vu(z)| < Ce 3t Fru for 2| < £3. (4.18)

Therefore, (4.12) is concluded from (4.14), (4.17), and (4.18).
We have improved the upper bound of |Vu(z)| < C(e + [2|?)7% to |Vu(z)| <
1 1=2s0+pa(\)

C(e+ |2/|*)~**, where s1 = § — —%57, - We can repeat the argument with

va‘_)”E,*QSlalyBRo + ||F||€,'Y*251-,073R0 < 0.
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Let
1 1—2s; 4 pa(Ar)
2 2+

Si+1 = ’

which is equivalent to

oot 2 (0 1\ paly)
e Ty U2 24 u

Since sg = %, iterating the equation above gives

After repeating this argument k times, we have

a(A1) R\ ? ) R R
wp) <C (%) ' w(R) +C (;> RI72sHna(N)  emn < p < u < TO’
(4.19)

provided that

k—1 [
1—2sp_1+ [1,5((/\1 ,ua )\1 Z < ) < Oé()\l).

=0

Since

) (e’ 2 %
uaw);(m) = @4 Wa(h) > a(A),

there exists a k € N such that
k—1 9 i k i
pée(Ar) Z (m) < a(A1) < pa() Z ( ) =1—2s + pa(Ar).
=0 =

For such k, (4.19) implies that for any a < a(\1),

w(p) < Cla)p® ¥V eTn < p < %.

By the same argument of proving (4.12), we can conclude that
Vu(z)] < Cle + [«/) 2757 for € Qp, /a-

By taking p sufficiently small, this concludes the proof. O

5. PROPERTIES OF A1 AND ITS CORRESPONDING EIGENSPACE

In this section, we consider the eigenvalue problem (1.10) with a(§) = £tM¢ for
some positive definite (n — 1) x (n — 1) matrix M. We study the properties of
A1, the first nonzero eigenvalue of (1.10), and the properties of its corresponding
eigenspace. After a suitable rotation in R"~!, we may assume without loss of
generality that

VMo —Zaj 3, > ap—1 > 0. (5.1)
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Recall that

n—1
S”_Q =<2 = (.’1,'17 .. .l’n,l) S Rn_l ’ Z l‘? =1
J=1

First we prove an estimate on \; under a more general assumption on a(&).

Lemma 5.1. For n > 3, let \1 be the first nonzero eigenvalue of the eigenvalue
problem (1.10) with a(§) > 0 a.e. satisfying Ina € L>°(S""?) and [g,_, ax; =0 for
alli =1,...,n—1. Then \;1 < n — 2, and the equality holds if and only if a is
constant.

Proof. Since
— Agn—22; = (n—2)z; on S" 2 (5.2)

for i = 1,...,n — 1, multiplying the above equation by ax;, and integrating over
S"=2, we have, by the identity z;Agn-2x; = —|Vgn-23;]? + 3 Agn-2(x?),

(n— 2)/ azx? = —/ ax;Agn—21;
Sn—2 Sn—2
2 1 2
= a|Vgn—22;]° — = alAgn—2(27).
S§n—2 2 Sn—2

. . . n—1 —
Summing over i = 1,...,n — 1, since y ;. x; =1 on S"2, we have

n—1 n—1
(n—2) E / ax? = E / alVgn—2a;]?.
i=1 /5”72 P

Thus for at least one 1,

/ a|VSn,721’i|2 <(n- 2)/ axi27
Sn—2 §n—2

which implies Ay < n — 2. If A\; =n — 2, then by the Rayleigh quotient formula,

/ a|Vgn2z;]? = (n — 2)/ ax?
S§n—2 S§n—2

foralli=1,...,n — 1. This implies
— divgn-=2 (annfzxi) =(n—-2)ax; fori=1,...,n—1. (5.3)
By an orthogonal transformation, we have
— divgn-2 (avgn&(e : f)) =(n—2)a(e-&) onS"?

for any unit vector e € R"~1. Let n € C°°(S"~2). Multiplying the above equation
by 1 and integrating over S*~2, we have

(n—2) /SM2 ale-&n = /Sni2 aVgn-2(e - €) - Vgn-21
:/san a(e — (e-&)¢) -ngzn:/ ae - Vgn_a1.

Sn72
This implies
/ ae - Vgn-21
S§n—2

< Clnllprgn-2y Vn e C®(S"2).
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Therefore, ae € W1°°(S"~2) and hence a € W1°°(S"~2). Multiplying (5.2) by a
and subtracting (5.3), we have

Vgn-2a-Vgn-2x; =0a.e fori=1,...,n—1.
Since the span of {Vgn-221, ..., Vgn-22,_1} is the tangent space of S"~2 at x, we
have Vgn-2a = 0 a.e. Therefore, a is constant. (|

In the sequel, we will first discuss the case when n = 3 and then the case when
n > 4.

5.1. The case when n = 3. We write 21 = cosf and z3 = sinf, so that (5.1)
takes the form

2
(2" Mz = Zajx? _— ;—a2 + 4 ;ag cos(20), a; > az > 0. (5.4)
j=1

Theorem 5.2. For n = 3, let A1 be the first nonzero eigenvalue of the eigenvalue
problem (1.10) with a(§) = £'ME, where M satisfies (5.4). Then A1 is strictly

decreasing with respect to Z—z € [1,00), and satisfies

1/2 1/2
(a ij 7 S s Cat gy Ny < 2302
1 2

(a1—|—a2)1/2 — 3a1 + as
for some positive constants C1, Cy independent of M. Moreover, when a; > as, the
eigenspace corresponding to \1 is one dimensional, the corresponding eigenfunctions
have exactly two zeros at = 7/2 and 37/2, and they are odd with respect to 8 = /2
and 3m/2.

We prove Theorem 5.2 through the following two lemmas. Denote § = Zi;gi
Then 8 € [0,1) and the eigenvalue problem (1.10) becomes
[(1+ Bcos(20))u'(0)) = —A(1 + Bcos(20))u(f) on (0,27), (5.5)

with periodic boundary condition. When 8 = 0, it is easy to see that A\; = 1.

Lemma 5.3. For 8 € (0,1), consider the eigenvalue problem (5.5). If the first
nonzero eigenvalue \1(B) is simple, then the eigenfunctions corresponding to A1 (8)
must have zeros at 0 = 0,7 or 0 = w/2,37/2.

Proof. By [17, Theorem 3.1 in Chapter 8], the problem (5.5) has eigenvalues 0 =
M <A< <A< A< Namely, Aoi < /\2,’4_1 < )\27;_;,_2 for i = 0,1,2,....
Moreover, an eigenfunction corresponding to Ag; 11 or Ag; 4o must have exactly 2:+2
zeros on [0,27). To conclude the lemma, we only need to construct two solutions
uy and wug of (5.5), whose zeros are at § = 0, and § = 7/2, 37 /2, respectively.
First we consider the Dirichlet problem on (0, ):
[(1+ Beos(20)u'(8)] = —pu(1 + Beos(20))u(d) in (0,7),
u(0) = u(mr) = 0.

From the standard Sturm-Liouville theory, the first eigenvalue p1 > 0 is simple and
there exists an eigenfunction w; > 0 in (0, 7). Taking the odd extension of u;, since
cos(20) is even, we know that u; satisfies (5.5) on S; with A = p1, and u; only has
zeros at 0 = 0,7 on [0, 27).
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Then we consider the following Dirichlet problem on (7/2,37/2):

{ [(1+ Bcos(ZG))u’(@)]/ = —pu(1+ Beos(20)u(f) in (7/2,37/2),
u(m/2) = u(37/2) = 0.

Let v(6) = u(6 4+ 7/2). Then v satisfies

{ [(1- BCOS(ZQ))U'(Q)]/ = —pu(1 — Beos(20))v(d) in (0,7),
v(0) = v(m) = 0.

By the same argument as above, we know that there exist us and the first eigenvalue
w2 > 0, such that uy satisfies (5.5) with A = ug, and ug only has zeros at § =
7w/2,37/2 on [0,27). Therefore, {u1,u2} = {A1, A2} and uq,us are eigenfunctions
corresponding to g1, o respectively. ([l

As a consequence of this lemma, the problem (5.5) can be reduced to the following
Dirichlet problem in case of studying the first nonzero eigenvalue:

{[(1 + Beos(20))u/(0)] = —pu(1 + Bos(20))u(@) in (0,7),

!

u(0) = u(mr) = 0, (5:6)

with 3 € (—1,1]. Denote p1(3) to be the first eigenvalue of (5.6), which is given
by the follow Rayleigh quotient
- Jo 1+ 3 cos(26))u/ (0)% do

= 1 f = .
m(P) u>06115%((0,7r)) foﬂ(l + [ cos(20))u(9)? do

(5.7)

Lemma 5.4. Consider the eigenvalue problem (5.6) and let p1(B) be as above.
The functionﬂl(ﬁ) is strictly increasing with respect to € (—1,1], u1(1) = 3, and
limz , ; u(B) = 0. Moreover, we have

Ci(1+B)? < m(B) < Co(1+P)V? and  pi(B) <

[N}
s

+

(5.8)

[\V]

o

for some constants C1,Cs > 0 independent of B

Proof. First, suppose that uj is an eigenfunction corresponding to u1(B), which is
positive on (0, 7). Since cos(260) = cos(2(m—#0)), it is easily seen that us (7 —-) is also
an eigenfunction. Therefore, uz(m —-) is a multiple of uz. Because maxus(r—-) =
max uj and both are nonnegative, we get ué(w —) = ug- This implies that uj can
be written as an expansion of sin(kf),k =1,3,5,... on [0, 7].

We define
A= [P = [ sl
Bj:= /OTr cos(20)|u|* — m (B) /07r cos(20)|ug|*.
Because uj is a solution of (5.6) with p = p1(B3), we have Az = _BBB' For

Be (—1,1], by taking u = sin(#) in the Rayleigh quotient (5.7), we see that
p(B) < (2+8)/(2-B).
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This concludes the second inequality in (5.8). When 8 = 1, u = sin(6) is a solution
to (5.6) with u = 3. Since sin(0) is strictly positive on (0, 7), we infer that p; (1) = 3.

Thus p1(8) < p1(1) = 3, and

/()(1+cos(29))|u2§| 23/0 (1+ cos(20)) >u1(5)/0 (1 + cos(20)) u; 2.

Namely, A5 + B > 0. Therefore, (1- B)BB > 0, which implies B > 0 for any
Be (=1,1). For any —1 < B < B <1, we have AB = _BBB < —3135. Namely,

" 31 cos uw’s|? (B 31 cos uzl?.
| Breosonil? < B |1+ cos(zn)lug

Therefore, 111(61) < p1(B). Next, we show the first inequality in (5.8). We may
certainly assume that 3 € (—=1,-1/2). Let ¢ = 1+ 3 € (0,1/2). Define u(f) =
=120 when 0 € [0,/2), u(0) = 1 when 0 € (¢'/2,7—'/?), and u(f) = e~ /?(7—0)
when 6 € [r — '/2,7]. Then

= 3 Ve .
/ (1+ Bcos(20))|u'|*db = 2/ (1+ B cos(20))e* db
0 0

Ve . Ve -
_ 2/ (e — 23 sin? )1 db < c/ (1— B6%=—1)db < OVE.
0 0
This together with the obvious inequality
/ (14 Beos(20))|u>do > C
0

and (5.7) imply the upper bound of first inequality in (5.8). To see the lower bound,
without loss of generality, we assume that

uz(00) = erél[éafr] us(0) = 1.

By symmetry, we may also assume that 6y < /2. Then by Hoélder’s inequality,

90 2
1 =12 (6o) < (/O A do)

< (/090(1 +Bcos(29))|u/5‘2d9> (/090(1 +Bcos(29>)_1d9>~ (5.9)

Note that

90 - 90 -
/ (1+5cos(29))*1d9:/ (e —2Bsin*0)~* db
0 0

NG 0o
< c/ e ldo+C 0=2do < Ce~ 12,
0 VE

Thus from (5.9), we get
00 -
/ (1+ 5 cos(26))[ufs|* db > Cel/?,
0
which together with the obvious inequality

/Tr(l + Bcos(20))|u>do < C
0
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and (5.7) imply the lower bound of first inequality in (5.8). Finally, from (5.8), we

conclude that limgz , | w1 (8) = 0. The lemma is proved. O

Proof of Theorem 5.2. Let 0 < Ai(B8) < A2(B) denote the first and the second
nonzero eigenvalues of the problem (5.5), respectively. By Lemma 5.4, pi(f8) is
strictly increasing in (—1,1], so we know that A1(8) = pi1(=08), X2(8) = wi(B).

Therefore, A\; being strictly decreasing with respect to Z—; € [1,00) follows from

the monotonicity of ul(B) for 3 € (—1,0). The inequalities in Theorem 5.2 follow
from (5.8) with B=-8= —ﬁ. Finally, when 8 > 0, we can see from the
proof of Lemma 5.3 that the eigenspace corresponding to A; is one dimensional,
the corresponding eigenfunctions have exactly two zeros at § = 7/2 and 37/2, and

they are odd with respect to 6 = w/2 and 37/2. O

5.2. Higher dimensional case. In this subsection, we consider the case when
n > 4. We will show that there exists a small constant ¢y, depending only on n,
such that if

I M 1
(I=¢o)i7r < 7 < (1 +¢20) 777
11} = M| 1]

the eigenspace corresponding to the first nonzero eigenvalue A; of (1.10) satisfies
the property O, which is defined as follows.

Definition 5.5. We say that a function space on S*~2 C R"~! satisfies the property
O if it is the span of functions which are odd in one of the z; variables and even
with respect to other variables.

Indeed, we consider the following operator on S"~2:
L, = —divgn-2((1 + pb(z))Vgn-2) for u € R,

where b(z) € L*(S"72). Let A\, and Vi, be the corresponding first nonzero
eigenvalue and the eigenspace of the eigenvalue problem

Lyu= X1+ pb(x))u.

Proposition 5.6. Consider the above eigenvalue problem, and assume that b(x) is
even with respect all variables, and Vi ,, satisfies the property O for some ug € R.
Then there exists a constant g, depending only on n, an upper bound of ||b|| e,
and po, such that Vi, also satisfies the property O for any p € (po — €o, fto + €0)-

Proof. Suppose that an orthogonal basis of Vi ,, is given by {fi,..., fm} with
m € {1,...,n — 1}, where for j = 1,...,m, f; is odd in z; and even in other
variables. Let €9 > 0 be a small constant to be specified later. The perturbation
argument below gives all the eigenfunctions of L, close to Ay ,, when p is in a small
neighborhood of .

For any p € (uo — €0, o + €0), we consider the expansions

5\1 = )\1»#0 + ngckv f~1 - fl + ngvka (510)
k=1 k=1

where e = u — po € (—€p,€0). Then
L;zf1 = 5\1(1 + Nb(m))fl
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is equivalent to

O 351 o wt) ] (5435

= —edivgn-2 (b(2)Vaus (1 + Z chur) ). (5.11)
k=1

To solve for ci,vi, k = 1,..., we compare the coefficients of €¥ on both sides of
(5.11). The zeroth order term on the left-hand side is equal to zero because fy is
an eigenfunction of L, with the eigenvalue Ay ..

Considering the first order terms, we get

()‘1,#0(1 + pob(z)) — Luo)vl
= —(A1ub(@) + e1(1 + pob(2))) f1 — divgn—2 (b(z) Vgn-2 f1). (5.12)

Let Xy and X, be the orthogonal (complement) spaces of V4, in L2(S"~2) and
H?(S"~2), respectively. Then because A (1 + pob(x)) — Ly, is self-adjoint, it is
easily seen that
(/\1#0(1 + Nob(x)) - LMO)X2 C Xop.

Moreover, the mapping A (1 + pob(x)) — Ly, : Xo — X is injective. By
the Fredholm theorem, we also know that the mapping is surjective. Therefore,
Ao (1 + pob(x)) — Ly, has a bounded inverse R from Xy to X», and (5.12) has a
unique solution v; € X3 if and only if its right-hand side is orthogonal to fi1, ..., fi.-
Since the right-hand side is odd in x; and even in the other variables, we know that
it is orthogonal to fo,..., fi;n. To make it to be also orthogonal to f;, we find a
unique ¢y given by

Jsn- 2( NVsn-2f112 = A1 g (x)f12>
fSn 2 1+M0b($))f1 '

1 =

Then
o1 = =R b(a) + e (1 + pob(w))) 1 + diven-2 (Hx)Ven-2/1) ) € Xa,

which is odd in 7 and even in other variables because b(z) is even with respect to
all variables.
Now considering the second order terms, we get

(M ouo (14 p10b(2)) = Ly Jva = —(c2(1 + pob(2)) + e1b()) fr
— (M, pob(@) + 1 (1 4 pob(z)))ve — divs, (b(m)Vg%zvl).

As before, the right-hand side above is orthogonal to fs, ..., f;,. To make it to be
also orthogonal to f1, we find a unique co given by

Js. (bVS"*2vl Vs, o f1 = Arpueb + (1 + pob))vr fr — Clbf12>
fsn72(1 + pob) f1 ‘

Cy =

Then
vz = =R((ea(1+ puob(x)) + e1b(x)) fy

g b(2) + e (1+ prob(a)))os + divs, _, (W) Vs, 1) ) € X,
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which is odd in z; and even in other variables.

We can repeat this procedure and solve all the ¢, and vi’s inductively. Moreover,
all the vi’s are odd in x; and even in other variables. Note that |cx| and the H?
norm of vy, can be bounded by C* (C to the power of k), where C' is some positive
constant depending only on fi, b(x), and the norm of R. Therefore, by taking &
sufficiently small (with the same dependence), both series in (5.10) are convergent
in R and H?(S"?) respectively, and f1 is odd in z; and even in other variables.
Similarly, we can find the eigenpairs (5\j7 fj) for j = 2,...,m. From the min-max
formula of the eigenvalues, we know that every eigenvalue is Lipschitz in yg. In
particular, for ¢ sufficiently small, we know that A\, , = min{j\l, ceey S\m} and V7,
is spanned by fj’s for those j such that S\j = A1,,. Therefore, Vi , satisfies the
property O. (]

Applying Proposition 5.6 with n > 4, ||b||~ < 8, up = 0, we obtain an gy such
that V1, also satisfies the property O for any p € (—€¢,€0). Setting

n—2
a; —0p—1, 9 €0
b(x) = ——2x; and pu=—,
( ) 1:21 500477,-1 7 2

we have

n—1
1
1+ ub(x) = Z a; 73

Qn—1 i—1

Therefore, the following corollary follows.

Corollary 5.7. For n > 4, there exists a small constant g depending only on n,
such that if

(1—e)i < 2 (1492
—€)m S S €0) 177>
I~ (1] 1]l
the eigenspace corresponding to the first nonzero eigenvalue Ay of (1.10) with a(§) =
EEME satisfies the property O.

The following lemma will not be used in this paper.

Lemma 5.8. For n > 4, let \1 be the first nonzero eigenvalue to the eigenvalue
problem (1.10) with a(§) = EME, where M satisfies (5.1). Then for any as >
. > ap_1 >0, we have \;y — 0 as a; — +oo.

Proof. We consider in the spherical coordinate: for 2’ € S"=2 C R"~!, we can write
x1 =cosfy, x9 =-sinbicoslly, x3=sinb;sinbscosls,...,
Tp_o =sinfysinfy---sinf, _scosb,_o, T,_1 =sinf;sinby---sinf,_3sinb,_o,
where 01,05, ...,0,_35 € [0,7] and 0,,_2 € [0,27). Then the proof is similar to that
of the first upper bound in (5.8) by considering u(6;) = max{—1, min{1,e~1(0; —
w/2)}}. O
6. PROOF OF THEOREM 1.6

Proof of Theorem 1.6. In this proof, we denote o = (A1) for simplicity. After a
suitable rotation in R"~!, we may assume without loss of generality that

(- o)) = 3 aga? + ele),
j=1



30 H. DONG, Y.Y. LI, AND Z. YANG

where |e(z)| < C|2'[*.

Step 1. Since Q is symmetric in x; and ¢ is odd in z;, by the uniqueness of
solutions, we know that u is odd in ;. In Q;, where €2, is defined as in (1.7), let
@ be defined as (3.2). By a similar argument as in Section 3 and Theorem 1.1, we
know that @ satisfies

n—1
div K Zai\xi\Q)Vﬁ} =divF in By cR" !,
i=1
where F' satisfies
|F(2")] < Cl2'|**™ for 2’ € By, (6.1)

C is a positive constant depending only on n and upper bounds of ||0D1]|c+ and
|0D2||c4. Again, we denote Yy ; to be a normalized eigenfunction corresponding to
(k+1)-th eigenvalue A;, of the problem (1.10), so that {Y% ; }x; forms an orthonormal
basis of L?(S') under the inner product (1.11). By the assumption, we denote Y; ; to
be the eigenfunction that is odd in x;. It is easily seen that Y7 ; is an eigenfunction
corresponding to A; in the half sphere S*~2N {z; > 0} with zero Dirichlet boundary
condition. Since \; is the first nonzero eigenvalue of the eigenvalue problem in the
sphere, it must be the first eigenvalue of the eigenvalue problem in the half sphere.
Therefore, it is simple and Y} ; does not change its sign in the half sphere. Without
loss of generality, we assume Y] ; is positive in {z; > 0} and negative in {z; < 0}.
Since @ is odd with respect to 2; = 0, and in particular @(0) = 0, we have the
following decomposition

oo N(k)
u(2') = Z Z Uk,i(r)Yei(§), «' € By \ {0}, (6.2)
k=1 i=1
where Uy (1) = fq a(§)a(r,€)Ye,i(€) d§ and Uy; € C([0,1)) N C*°((0,1)). Then
Us,; satisfies Uy ;(0) = 0 and

" / A
LU,y ;== Uy ;(r) + gULj(T) - T—;ULj(r) =H(r), 0<r<l,
where
_ [ WPV . [ OF Ve
H(r) = /Sn—2 a(&)r? dg = - a(©)r? Y11(8) d¢

B F, 2F. Y11 Fg Y1,1(8)
=0 (/S a@re 1 © df) R el A ( a(© ) “
cA'(r)+ B(r), 0<r<l,

and A(r), B(r) € C1([0,1)) satisfy, in view of (6.1), that

|A(r)| < C(n)r®, |B(r)| <CH)r*™t, 0<r<1. (6.3)
Step 2. We will prove, for some constant C7, that
Upj(r)=Cir*4o(r), 0<r<l, (6.4)

where |v(r)] < Cri*t®. We use the method of reduction of order to find a bounded
solution v satisfying Lv = H in (0,1), and then show that |v(r)| < Cr'*®. Note
that h = r“ is a solution of Lh = 0. Let v = hw and
T 1 S
w(r) ::/ —/ " H(T)drds, 0<r <1
0

0 sn+2a
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By a direct computation,
" / n !
Lv = L(hw) = hw" + (2" + —h ) w' = H.
T

By (6.3), we can estimate |w(r)| < Cr. Therefore, [v(r)| < Cr'*e. Since Uy ; — v
is bounded and satisfies L(Uy ; —v) = 0in (0, 1), we know that Uy ; = C1h+v and
(6.4) follows.

Step 3. Completion of the proof.

Since D7 and D are strictly convex and symmetric in x1,...,%,_1, it is easy
to see that d,z; > 0 in {z; > 0} and J,z; < 0 in {z; < 0}. Therefore, under
the assumptions of Theorem 1.6, z; is a subsolution of (1.2) in {z; > 0}, and is
a supersolution of (1.2) in {z; < 0}. Hence, u > z; in {z; > 0} and v < z; in
{xz; < 0}. Then, |u(z')] > |z;| in By C R"~!. Since Y7 ; has the same sign as z;,
we have

Uij = ]éH a(§)u(r,§)¥1,;(§) d§ > Cr

for some positive constant C. This implies C; > 0. By (6.2) and (6.4), we have

1/2 o
(/ a(§)|u(r, §)|2d§> > |Uq,(r)] > 77“0‘ for 0 < r < rg,
§n—2

where 7( is some small positive constant. Then, for any r € (0,7¢), there exists a
&o(r) € S"72 such that
1

|a(r; &o(r))| = @TQ

for some positive constant C5. Since u is the average of u in the x,, direction, by
(1.9) with € = 0, we have

|u(r, &o(r),0) — a(r,&(r))| < Cr? sup |0x,, u(r, &o(r), 2n)| < Cr.
zn€(g(x"), f(x'))

Therefore, there exists a small constant r; such that for any r € (0,r;),
[u(r,&9(r),0)| 2 551
u(r, &o(r .
» S0 ’ = 202

We denote z¢g = (r,&y(r),0). For a sufficiently large constant Cs, independent of
xg, we have, by Theorem 1.1,

w2 <o (1) o L
Cs)| = \Cs) ~4C,"
Therefore, there exists an x on the line segment between xy and x/C3, such that
V()| > gl
- C
for some positive constant C' depending only on n, a positive lower bound of the

eigenvalues of D?(f — ¢)(0'), and upper bounds of ||0D1||cs and [|0Ds||c1. This
concludes the proof. O



32 H. DONG, Y.Y. LI, AND Z. YANG

7. THE VARIABLE COEFFICIENTS CASE

In this section, we study the insulated problem with variable coefficients in di-
mension n > 3:

—0;(A" (2)0;u(x)) =0 in Qg,,
AV (2)0;u(x)v; =0 on T UT_, (7.1)
[ull L= @ry) < 1,
where T'; and T'_ are given in (1.4), (A% (z)) € C7(Qg,),y > 0 is symmetric and

uniformly elliptic with the Lipschitz constant o, i.e.

AY(g) = AT (x), ol < A(z) < ~1I.

S

We want to find a point ¢ and a linear transformation [, so that after the linear
transformation, the coefficients A% becomes d;; at the pomt l(z), and {(zg) is the
middle point of the closet points of I'y := [(I'y) and T'_ := [(P_). Then we can
apply Theorem 1.1 or 1.3 to get the gradient estimates.

When e = 0, x¢ is the origin, and [ = C~1(0), where C(x) = \/A(z). When
e # 0, by the change of variables

y =1, )
, V(SE,LL’”)GQRO,
Yn = 2o — g(2"),

we may assume that g = 0. Then any linear transformation ! (with no translation)
maps the lower boundary I'_ to a hyperplane I'_. It also maps the tangent plane

= ¢/2 of the upper boundary I'y to the tangent plane of I‘+, which is paralleled
to I‘ as the mapping is linear. Then [(e,&/2) is the closest point on 1"+ to'_. Let
C(z) = y/A(z) and C), be the last column of C'(z). We have the following Lemma.

Lemma 7.1. Under the settings above, let R = \/n — 1¢/(20?), there exists xo €
Bgr N {x, = 0} such that with the mapping | = C~1(x¢), l(z0) is the middle point
of the closet points of T'y and T'_.

Proof. Tt is easily seen that the normal direction of T_ is given by C,,(z¢). By
linearity, the distance from I(zg) to I({z, = £/2}) is equal to the distance from
I(z) to T_. Thus, it suffices to have I(zo — ene/2)||Cp (o). This is equivalent
to 2o — €ne/2||C(x0)Cr(xo), where C(x9)Cp(xz0) =: An(xp) is the last column of
A(zg). Thus, we only need to have

€ (An(20))’

(@) = ~5 ey

where (z9) and (A, (x0))" are the first n — 1 components of 2y and A, (z), respec-
tively. Now we define a mapping T on R"~! by

£ (An(y,0))
2 A’an(y’O) :

Clearly, T' is continuous. Since A" > ¢ and |A™| < 1/o, fori=1,2,...,n—1, we
have |T'y| < R for any y € Br. By the Brouwer fixed point theorem, T" has a fixed
point (zo)’ € Bg. O
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After applying this linear transform and picking an appropriate coordinate sys-

tem, we reduce the problem (7.1) to the case when A% (0) = §;;. Therefore, Theo-
rems 1.1 and 1.3 apply.
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