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GRADIENT ESTIMATES FOR THE INSULATED

CONDUCTIVITY PROBLEM: THE NON-UMBILICAL CASE

HONGJIE DONG, YANYAN LI, AND ZHUOLUN YANG

Abstract. We study the insulated conductivity problem with inclusions em-

bedded in a bounded domain in Rn, for n ≥ 3. The gradient of solutions may

blow up as ε, the distance between the inclusions, approaches to 0. We es-

tablished in a recent paper optimal gradient estimates for a class of inclusions

including balls. In this paper, we prove such gradient estimates for general

strictly convex inclusions. Unlike the perfect conductivity problem, the es-

timates depend on the principal curvatures of the inclusions, and we show

that these estimates are characterized by the first non-zero eigenvalue of a

divergence form elliptic operator on Sn−2.

1. Introduction and main results

In this paper, a continuation of [19], we establish gradient estimates for the
insulated conductivity problem in the presence of multiple closely located inclusions
in a bounded domain in R

n, n g 3. Let Ω ¢ R
n be a bounded domain with C2

boundary containing two C2,γ (0 < γ < 1) relatively strictly convex open sets

D1 and D2 with dist(D1 * D2, ∂Ω) > c > 0. Denote Ω̃ := Ω \ (D1 *D2). The
conductivity problem can be modeled by the following elliptic equation:

{
div
(
ak(x)'uk

)
= 0 in Ω,

uk = ϕ(x) on ∂Ω,

where ak denotes the conductivity distribution, that is,

ak = kχD1*D2 + χΩ̃.

Let

ε := dist(D1, D2)

be small. When k is large or close to 0, the gradient of solutions may blow up,
and it is significant to capture this singular behavior from an engineering point
of view. The problem is motivated by the study of damage and fracture analysis
of composite materials in the work of Babuška, Andersson, Smith, and Levin [6],
where they studied the Lamé system and analyzed numerically that, when the
ellipticity constants are bounded away from 0 and infinity, the gradient of solutions
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remains bounded independent of the distance between inclusions. Bonnetier and
Vogelius [13] proved it in the context of conductivity problem when inclusions are
two touching balls in R

2. This result was extended by Li and Vogelius [34] to
general second order elliptic equations of divergence form with piecewise Hölder
coefficients and general shape of inclusions D1 and D2 in any dimension, and then
by Li and Nirenberg [33] for general second order elliptic systems of divergence form,
including the linear system of elasticity. Some higher order derivative estimates in
dimension n = 2 were obtained in [18, 20, 24].

When k degenerates to > (inclusions are perfect conductors) or 0 (insulators), it
was shown in [14,28,38] that the gradient of solutions generally becomes unbounded
as ε³ 0. For the perfect conductivity problem, it was known that

ù
üú
üû

‖'u‖L>(Ω̃) f Cε21/2‖ϕ‖C2(∂Ω) when n = 2,

‖'u‖L>(Ω̃) f C|ε ln ε|21‖ϕ‖C2(∂Ω) when n = 3,

‖'u‖L>(Ω̃) f Cε21‖ϕ‖C2(∂Ω) when n g 4,

see [4, 5, 7, 8, 40, 41]. These bounds were shown to be optimal and they are inde-
pendent of the shape of inclusions, as long as the inclusions are relatively strictly
convex. Moreover, many works have been done in characterizing the singular be-
havior of 'u, which are significant in practical applications. For further works on
the perfect conductivity problem and closely related works, see e.g. [1–3, 9–12, 16,
18, 20, 23, 26, 27, 29–32,37] and the references therein.

For the insulated conductivity problem, it was proved in [8] that

‖'u‖L>(Ω̃) f Cε21/2‖ϕ‖C2(∂Ω) when n g 2. (1.1)

The upper bound is optimal for n = 2. Yun [42] studied the following free space
insulated conductivity problem in R

3: Let H be a harmonic function in R
3, D1 =

B1

(
0, 0, 1 + ε

2

)
, and D2 = B1

(
0, 0,212 ε

2

)
,

ù
üú
üû

∆u = 0 in R
3 \ (D1 *D2),

∂u
∂ν = 0 on ∂Di, i = 1, 2,

u(x)2H(x) = O(|x|22) as |x| ³ >.

He proved that for some positive constant C independent of ε,

max
|x3|fε/2

|'u(0, 0, x3)| f Cε
:

222
2 .

He also showed that this upper bound of |'u| on the ε-segment connecting D1 and
D2 is optimal for H(x) c x1. However, this result does not provide an upper bound
of |'u| in the complement of the ε-segment. The upper bound (1.1) was improved
by Li and Yang [36] to

‖'u‖L>(Ω̃) f Cε21/2+β‖ϕ‖C2(∂Ω) when n g 3,

for some β > 0. See [35] for flatter insulator case. When insulators are unit
balls, a more explicit constant β(n) was given by Weinkove in [39] for n g 4 by a
different method. The constant β(n) obtained in [39] presumably improves that in
[36]. In particular, it was proved in [39] that β(n) approaches 1/2 from below as
n³ >. Despite the significant progress on the conductivity problem that has been
made in the past three decades or so, the optimal blow-up rate for the insulated
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conductivity problem in dimensions n g 3 remains unknown, and it is described as
an outstanding open problem in [25].

In [19], we established optimal gradient estimates for a certain class of inclusions
including two balls of any size in dimensions n g 3. In this paper, we study the
insulated conductivity problem with Cγ coefficients in dimensions n g 3, with any
C2,γ relatively strictly convex inclusions:

ù
üú
üû

2∂i(Aij(x)∂ju(x)) = 0 in Ω̃,

Aij(x)∂ju(x)νi = 0 on ∂Di, i = 1, 2,

u = ϕ on ∂Ω,

(1.2)

where 0 < γ < 1 and (Aij(x)) satisfies, for some constants σ > 0,

(Aij(x)) * Cγ is symmetric, σI f A(x) f 1

σ
I, (1.3)

ϕ * C2(∂Ω) is given, and ν = (ν1, . . . , νn) denotes the inner normal vector on
∂D1 * ∂D2. We use the notation x = (x2, xn), where x2 * R

n21. After choosing a
coordinate system properly, we can assume that near the origin, the part of ∂D1

and ∂D2, denoted by Γ+ and Γ2, are respectively the graphs of two C2,γ functions
in terms of x2. That is, for some R0 > 0,

Γ+ =
{
xn =

ε

2
+ f(x2), |x2| < R0

}
and Γ2 =

{
xn = 2ε

2
+ g(x2), |x2| < R0

}
,

(1.4)

where f and g are C2,γ(0 < γ < 1) functions satisfying

f(x2) > g(x2) for 0 < |x2| < R0, (1.5)

f(02) = g(02) = 0, 'x2f(02) = 'x2g(02) = 0, D2(f 2 g)(02) > 0. (1.6)

For 0 < r f R0, we denote

Ωr :=
{
(x2, xn) * Ω̃

∣∣ 2 ε

2
+ g(x2) < xn <

ε

2
+ f(x2), |x2| < r

}
. (1.7)

We will focus on the following problem near the origin:
{
2∂i(Aij(x)∂ju(x)) = 0 in ΩR0 ,

Aij(x)∂ju(x)νi = 0 on Γ+ * Γ2.
(1.8)

It was proved in [8] that for u * H1(ΩR0) satisfying (1.8),

|'u(x)| f C‖u‖L>(ΩR0
)(ε+ |x2|2)21/2, "x * ΩR0/2, (1.9)

where C is a positive constant depending only on n,R0, γ, σ, ‖A‖Cγ , ‖f‖C2,γ , and
‖g‖C2,γ , and is in particular independent of ε.

In this paper, we show that the optimal exponent of the gradient estimates of the
insulated conductivity problem (1.8) is closely related to the following eigenvalue
problem on S

n22. Consider

2 divSn22

(
a(ξ)'Sn22u(ξ)

)
= λa(ξ)u(ξ), ξ * S

n22, (1.10)

where a(ξ) is a positive function on S
n22 with ln a * L>(Sn22). Denote

〈u, v〉Sn22 =

 

Sn22

a(ξ)uv dσ. (1.11)
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From the classical theory, all eigenvalues are real, and the corresponding eigen-
functions can be normalized to form an orthonormal basis of L2(Sn22) under the
inner-product defined above. The first nonzero eigenvalue λ1 of this problem is
given by the Rayleigh quotient:

λ1 = inf
u6c0,〈u,1〉

Sn22=0

ffl

Sn22 a(ξ)|'Sn22u|2 dσ
ffl

Sn22 a(ξ)|u|2 dσ
. (1.12)

Let α(λ1) be the positive root of the quadratic polynomial α2+(n2 1)α2λ1, that
is,

α(λ1) =
2(n2 1) +

√
(n2 1)2 + 4λ1
2

. (1.13)

First, we consider the case when Aij(0) = δij , where δij is the Kronecker delta
function. When two inclusions touch, namely, ε = 0, we prove the following gradient
estimates.

Theorem 1.1. For n g 3, R0 > 0, and ε = 0, let f, g * C2,γ(0 < γ < 1) satisfy

(1.5) and (1.6), (Aij(x)) satisfy (1.3) with σ > 0 in ΩR0 , and A
ij(0) = δij. For

any solution u * H1(ΩR0) of (1.8), we have

|'u(x)| f C‖u‖L>(ΩR0
)|x2|α(λ1)21 "x * ΩR0/2 \ {0}, (1.14)

where λ1 and α(λ1) are given by (1.12) and (1.13) with a(ξ) = ξt
(
D2(f 2 g)(02)

)
ξ,

and C is a positive constant depending only on n, R0, γ, σ, a positive lower bound of

the eigenvalues of D2(f2g)(02), and upper bounds of ‖A‖Cγ , ‖f‖C2,γ , and ‖g‖C2,γ .

Remark 1.2. When a(ξ) > 0 a.e. satisfies ln a * L>(Sn22) and
´

Sn22 axi = 0 for
all i = 1, . . . , n 2 1, it will be shown that λ1 f n 2 2 (see Lemma 5.1), and hence
α(λ1) * (0, 1).

When ε > 0, the following gradient estimate is proved.

Theorem 1.3. For n g 3, R0 > 0, and ε * (0, 1/4), let (Aij(x)), f , g, λ1, and
α(λ1) be the same as in Theorem 1.1. For any solution u * H1(ΩR0) of (1.8), we
have, for any 0 f α < α(λ1),

|'u(x)| f C‖u‖L>(ΩR0
)(ε+ |x2|2)α21

2 "x * ΩR0/2,

where C is a positive constant depending only on n, R0, γ, σ, a positive lower bound

of α(λ1)2α, a positive lower bound of the eigenvalues of D2(f 2 g)(02), and upper

bounds of ‖A‖Cγ , ‖f‖C2,γ , and ‖g‖C2,γ .

We show that the estimate (1.14) is optimal in the following sense. Note that
in the next three theorems, ∂D1 and ∂D2 near the origin are represented by the
graphs of f and g respectively.

Theorem 1.4. For n = 3, Aij(x) c δij, ε = 0, and for any positive definite

matrix M , there exist smooth strictly convex inclusions D1, D2 inside Ω = B5 with

D2(f 2 g)(02) = M , and a boundary data ϕ * C>(∂Ω) with ‖ϕ‖L>(∂Ω) = 1, such

that the solution u * H1(Ω̃) of (1.2) satisfies

lim sup
x*Ω̃,|x|³0

|x2|12α(λ1)|'u(x)| > 1

C
,
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where λ1 and α(λ1) are given by (1.12) and (1.13) with a(ξ) = ξtMξ, and C is some

positive constant depending only on the positive lower bounds of the eigenvalues of

M , and upper bounds of ‖∂D1‖C4 and ‖∂D2‖C4 .

Theorem 1.5. For n g 4, Aij(x) c δij, and ε = 0, there exists an ε0 = ε0(n) *
(0, 1/2) such that for any positive definite matrix M satisfying

(12 ε0)
I

‖I‖ f M

‖M‖ f (1 + ε0)
I

‖I‖ ,

there exist smooth strictly convex inclusions D1, D2 inside Ω = B5 with D2(f 2
g)(02) = M , and a boundary data ϕ * C>(∂Ω) with ‖ϕ‖L>(∂Ω) = 1, such that the

solution u * H1(Ω̃) of (1.2) satisfies

lim sup
x*Ω̃,|x|³0

|x2|12α(λ1)|'u(x)| > 1

C
,

where λ1 and α(λ1) are given by (1.12) and (1.13) with a(ξ) = ξtMξ, and C is

a positive constant depending only on n, ‖M‖, and upper bounds of ‖∂D1‖C4 and

‖∂D2‖C4 .

In the above, ‖M‖ and ‖I‖ denote the standard norm of the matrices. Theorems
1.4 and 1.5 are consequences of the following more general theorem.

Let D1, D2 be two strictly convex smooth domains in B4 ¢ R
n, which are sym-

metric in xj for each 1 f j f n 2 1, and D1 + D2 = {0}. Let Ω = B5 and

Ω̃ = Ω \ {D1 *D2}.

Theorem 1.6. For n g 3, let D1, D2, and Ω be as above, Aij(x) c δij, λ1 and

α(λ1) be given by (1.12) and (1.13) with a(ξ) = ξt
(
D2(f 2 g)(02)

)
ξ. Assume that

the eigenspace corresponding to λ1 contains a function which is odd in xj for some

1 f j f n2 1. Let ϕ = xj and u * H1(Ω̃) be the solution of (1.2). Then

lim sup
x*Ω̃,|x|³0

|x2|12α(λ1)|'u(x)| > 1

C
,

where C is some positive constant depending only on n, a positive lower bound of

the eigenvalues of D2(f 2 g)(02), and upper bounds of ‖∂D1‖C4 and ‖∂D2‖C4 .

We will show in Section 5 (see Theorem 5.2 and Corollary 5.7) that the conditions
in Theorems 1.4 and 1.5 imply the condition in Theorem 1.6.

The rest of this paper is organized as follows. In Section 2, we establish some
estimates for the associated degenerate elliptic operator

Lε := div
[(
ε+ a

( x2
|x2|
)
|x2|2

)
'
]
,

which play an important role in proving Theorems 1.1 and 1.3. Theorems 1.1 and
1.3 are proved in Sections 3 and 4, respectively. Some properties of λ1, the first
nonzero eigenvalue of (1.10), and its corresponding eigenspace, are established in
Section 5. Theorem 1.6 is proved in Section 6, and therefore, Theorems 1.4 and
1.5 follow. Finally in Section 7, we discuss the case when Aij(0) 6= δij , and give a
reduction to the case when Aij(0) = δij .
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2. Some estimates on the associated degenerate elliptic operator

In this section, we establish some estimates that are useful in proving Theorems
1.1 and 1.3. Throughout the section, we work in the domain BR0 ¢ R

n21 for some
R0 > 0 and n g 3. Let a be a function on S

n22 satisfying

a > 0 a.e. and ln a * L>(Sn22), (2.1)

and let λ1 and α(λ1) be given by (1.12) and (1.13).
Here are some notation we will be using throughout this paper: For σ, s * R, we

introduce the following norm

‖F‖ε,σ,s,BR0
:= sup

x2*BR0

|F (x2)|
|x2|σ(ε+ |x2|2)12s

. (2.2)

For any bounded set Ω ¢ R
n21, we denote H1(Ω, |x2|2dx2) to be the following

weighted H1 norm:

‖f‖H1(Ω,|x2|2dx2) =

(
ˆ

Ω

|f |2|x2|2 dx2
) 1

2

+

(
ˆ

Ω

|'f |2|x2|2 dx2
) 1

2

.

For any 0 < ρ < R0, we denote

(u)a∂Bρ
:=

(
ˆ

∂Bρ

a
( x2
|x2|
)
dσ

)21
ˆ

∂Bρ

a
( x2
|x2|
)
u(x2) dσ,

(u)aBρ
:=

(
ˆ

Bρ

a
( x2
|x2|
)
dx2
)21

ˆ

Bρ

a
( x2
|x2|
)
u(x2) dx2.

Proposition 2.1. For n g 3, let a satisfy (2.1), λ1 and α(λ1) be given by (1.12)
and (1.13). For σ > 1, σ 2 1 6= α(λ1), let ū * H1(BR0 , |x2|2dx2) be a solution of

div
[
a
( x2
|x2|
)
|x2|2'ū

]
= divF +G in BR0 ¢ R

n21,

where F,G * L>(BR0) satisfy

‖F‖ε,σ,1,BR0
<>, ‖G‖ε,σ21,1,BR0

<>. (2.3)

Then ū * Cβ(BR0) for some β * (0, 1). Moreover, for any |x2| f R0/2, we have

|ū(x2)2 ū(0)|
f C(‖F‖ε,σ,1,BR0

+ ‖G‖ε,σ21,1,BR0
+ ‖ū2 ū(0)‖L2(∂BR0

))|x2|α̃ (2.4)

where α̃ := min{α(λ1), σ 2 1}, and C is some positive constant depending only on

n, σ, R0, an upper bound of ‖ ln a‖L> , and is independent of ε.

For the proof, we use an iteration argument based on the following two lemmas.

Lemma 2.2. For n g 3, let a satisfy (2.1), λ1 and α(λ1) be given by (1.12) and

(1.13), and v1 * H1(BR0 , |x2|2dx2) satisfy

div
[
a
( x2
|x2|
)
|x2|2'v1

]
= 0 in BR0 ¢ R

n21. (2.5)

Then v1 * Cβ(BR0), for some β > 0 depending only on n and ‖ ln a‖L> . Moreover,

for any 0 < ρ < R f R0, we have

v1(0) = (v1)
a
∂Bρ

,
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(
 

∂Bρ

a

(
x2

|x2|

)
|v1(x2)2 v1(0)|2 dσ

) 1
2

f
( ρ
R

)α(λ1)
(
 

∂BR

a

(
x2

|x2|

)
|v1(x2)2 v1(0)|2 dσ

) 1
2

, (2.6)

and for any x2 * BR0/2,

|v1(x2)2 v1(0)| f CR
2α(λ1)2n21

2
0 ‖v1 2 v1(0)‖L2(∂BR0

)|x2|α(λ1), (2.7)

where C is some positive constant depending only on n and ‖ ln a‖L> .

Proof. By [21, Theorem 2.3.12], v1 * Cβ(BR0) for some β > 0. It should be
noted that when n = 3, the weight |x2|2 does not satisfy the A2 condition (in
R

n21) required in [21, Theorem 2.3.12]. Nevertheless, it satisfies the conditions in
[21, Section 3, pp. 106]. Therefore, the Hölder estimate still holds. Without loss of
generality, it suffices to prove (2.6) and (2.7) for a * C>(Sn22) and R = R0 = 1.
In the polar coordinates, we write x2 = (r, ξ) with 0 < r < 1, ξ * S

n22. Let
ϕ(r) * C>

0 ((0, 1)) and ψ(ξ) * C>(Sn22). Multiplying (2.5) by ϕψ and integrating
by parts gives
ˆ

B1

a(ξ)r2'v1 · '(ϕψ) =

ˆ 1

0

ˆ

Sn22

arn∂rv1ϕ
2ψ + arn22'Sn22v1 · 'Sn22ψϕdξdr

= 2
ˆ

B1

[ar2∂rrv1 + nar∂rv + divSn22(a'Sn22v1)]ϕψ.

Therefore, we can write (2.5) in polar coordinates as

∂rrv1 +
n

r
∂rv1 +

1

a(ξ)r2
divSn22

(
a(ξ)'Sn22v1

)
= 0 in B1 \ {0}, (2.8)

Let λ0 = 0, {λk}>k=1 be the set of all positive eigenvalues of (1.10) satisfying λk <
λk+1 for all k * N*{0}. Let Y0 be the positive constant satisfying 〈Y0, Y0〉Sn22 = 1,
Yk,i be an eigenfunction corresponding to λk, that is,

divSn22

(
a(ξ)'Sn22Yk,i

)
= 2λka(ξ)Yk,i,

and {Yk,i}k,i * {Y0} forms an orthonormal basis of L2(Sn22) with respect to the
inner product (1.11).

For 0 < r < 1, take the decomposition

v1(r, ξ) = V0(r)Y0 +
>∑

k=1

N(k)∑

i=1

Vk,i(r)Yk,i(ξ) in L2(Sn22), (2.9)

where V0(r), Vk,i(r) * C2(0, 1) are given by

V0(r) =

 

Sn22

a(ξ)v1(r, ξ)Y0 dξ, Vk,i(r) =

 

Sn22

a(ξ)v1(r, ξ)Yk,i(ξ) dξ.

Multiplying (2.8) by a(ξ)Y0 and a(ξ)Yk,i(ξ) respectively and integrate over S
n22,

we see that V0(r) and Vk,i(r) satisfy

V 22
0 +

n

r
V 2
0 = 0 and V 22

k,i +
n

r
V 2
k,i 2

λk
r2
Vk,i = 0 in (0, 1).
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Therefore V0 = c1 + c2r
12n and Vk,i = c3r

α(λk)+ + c4r
α(λk)2 for some constants

c1, c2, c3, and c4, where

α(λk)± :=
2(n2 1)±

√
(n2 1)2 + 4λk
2

.

Since v1 * H1(B1, r
2dx2), we have for any 0 < δ < 1,

> >

ˆ

B1\Bδ

a(ξ)v21r
2 dx2 g 1

C

ˆ

B1\Bδ

a(ξ)V0(r)
2r2 dx2

g 1

C

ˆ 1

δ

|c1 + c2r
12n|2rn+1 dr,

which implies c2 c 0. Hence V0(r) c V0(1). Similarly, we have c4 c 0, and hence

Vk,i(r) = rα(λk)+Vk,i(1).

By (2.9), for any 0 < ρ < 1,

 

∂Bρ

a

(
x2

|x2|

)
|v1(x2)2 V0Y0|2 dσ =

>∑

k=1

N(k)∑

i=1

|Vk,i(ρ)|2

f ρ2α(λ1)
>∑

k=1

N(k)∑

i=1

|Vk,i(1)|2

= ρ2α(λ1)

 

∂B1

a

(
x2

|x2|

)
|v1(x2)2 V0Y0|2 dσ.

Therefore, v1(0) = V0(0)Y0 = V0(ρ)Y0 = (v1)
a
∂Bρ

for any ρ * (0, 1), and

(
 

∂Bρ

|v1(x2)2 v1(0)|2 dσ
)1/2

f Cρα(λ1)

(
 

∂B1

|v1(x2)2 v1(0)|2 dσ
)1/2

,

which implies (2.7) by the interior elliptic estimate applied to Bρ \Bρ/2. �

Lemma 2.3. For n g 3 and σ > 1. Let a satisfy (2.1), λ1 and α(λ1) be given by

(1.12) and (1.13), and v2 * H1
0 (BR0 , |x2|2dx2) satisfy

div
[
a
( x2
|x2|
)
|x2|2'v2

]
= divF +G in BR0 ¢ R

n21, (2.10)

where F,G * L>(BR0) satisfy (2.3). Then we have

‖v2‖L>(BR0
) f C(‖F‖ε,σ,1,BR0

+ ‖G‖ε,σ21,1,BR0
),

where C > 0 depends only on n, σ, and an upper bound of ‖ ln a‖L> and is in

particular independent of ε.

Proof. Without loss of generality, we assume R0 = 1 and

‖F‖ε,σ,1,B1 + ‖G‖ε,σ21,1,B1 = 1.
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For p g 2, we multiply the equation (2.10) with 2|v2|p22v2 and integrate by parts
to obtain

(p2 1)

ˆ

B1

a
( x2
|x2|
)
|x2|2|'v2|2|v2|p22 dx2

= (p2 1)

ˆ

B1

F · 'v2|v2|p22 dx2 2
ˆ

B1

Gv2|v2|p22 dx2.

By the definition in (2.2),

|F (x2)| f |x2|σ‖F‖ε,σ,1,B1 and |G(x2)| f |x2|σ21‖G‖ε,σ21,1,B1 for x2 * B1.

Therefore, by Young’s inequality, Hölder’s inequality, and using σ > 1,

(p2 1)

∣∣∣∣
ˆ

B1

F · 'v2|v2|p22 dx2
∣∣∣∣

f (p2 1)δ

2

ˆ

B1

|x2|2|'v2|2|v2|p22 dx2 + C(p2 1)

ˆ

B1

|x2|2σ22|v2|p22 dx2

f (p2 1)δ

2

ˆ

B1

|x2|2|'v2|2|v2|p22 dx2+

+ C(p2 1)

(
ˆ

B1

|x2|(σ21)(n+1+2µ)2(n21+2µ) dx2
) 2

n+1+2µ

×

×
(
ˆ

B1

|x2|2|v2|(p22) n+1+2µ
n21+2µ dx2

)n21+2µ
n+1+2µ

,

and
∣∣∣∣
ˆ

B1

Gv2|v2|p22 dx2
∣∣∣∣ f C

(
ˆ

B1

|x2|(σ21)(n+1+2µ)/22(n21+2µ) dx2
) 2

n+1+2µ

×

×
(
ˆ

B1

|x2|2|v2|(p21) n+1+2µ
n21+2µ dx2

)n21+2µ
n+1+2µ

,

where µ > 0 is chosen sufficiently small so that
ˆ

B1

|x2|(σ21)(n+1+2µ)/22(n21+2µ) dx2 <>.

Hence,

4(p2 1)

p2

ˆ

B1

|x2|2
∣∣∣'|v2|

p
2

∣∣∣
2

dx2 = (p2 1)

ˆ

B1

|x2|2|'v2|2|v2|p22 dx2

f C(p2 1)‖vp22
2 ‖

L
n+1+2µ
n21+2µ (B1,|x2|2dx2)

+ C‖vp21
2 ‖

L
n+1+2µ
n21+2µ (B1,|x2|2dx2)

. (2.11)

We use the following version of the Caffarelli-Kohn-Nirenberg inequality (see [15]):

‖u‖
L

2(n+1)
n21 (B1,|x2|2dx2)

f C‖'u‖L2(B1,|x2|2dx2) "u * H1
0 (B1, |x2|2dx2). (2.12)

Taking p = 2 in (2.11), we have, by (2.12) with u = |v2| and Hölder’s inequality,

‖v2‖
L

2(n+1+2µ)
n21+2µ (B1,|x2|2dx2)

f C. (2.13)
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For p g 2, from (2.11), by (2.12) with u = |v2|
p
2 and Hölder’s inequality,

‖v2‖p
L

(n+1)p
n21 (B1,|x2|2dx2)

f C‖'|v2|
p
2 ‖2L2(B1,|x2|2dx2)

f Cp2‖v2‖p22

L
n+1+2µ
n21+2µ

(p22)
(B1,|x2|2dx2)

+ Cp‖v2‖p21

L
n+1+2µ
n21+2µ

(p21)
(B1,|x2|2dx2)

f max
i=1,2

Cpi‖v2‖p2i

L
n+1+2µ
n21+2µ

p
(B1,|x2|2dx2)

.

By Young’s inequality,

‖v2‖
L

(n+1)p
n21 (B1,|x2|2dx2)

f max
i=1,2

(Cpi)1/p
(
p2 i

p
‖v2‖

L
n+1+2µ
n21+2µ

p
(B1,|x2|2dx2)

+
i

p

)

f (Cp2)1/p
(
‖v2‖

L
n+1+2µ
n21+2µ

p
(B1,|x2|2dx2)

+
2

p

)
.

For k g 0, let

pk = 2

(
n+ 1

n2 1
· n2 1 + 2µ

n+ 1 + 2µ

)k
n+ 1 + 2µ

n2 1 + 2µ
.

Iterating the relations above, we have, by (2.13),

‖v2‖Lpk (B1,|x2|2dx2) f
k21∏

i=0

(
Cp2i

)2/pi ‖v2‖Lp0 (B1,|x2|2dx2)

+
k21∑

i=0

k21∏

j=i

(
Cp2j

)2/pj 4

pi

f C‖v2‖
L

2(n21+2µ)
n23+2µ (B1,|x2|2dx2)

+ C

k21∑

i=0

1

pi
f C, (2.14)

where C is a positive constant depending on n and σ, and is in particular indepen-
dent of k. The lemma is concluded by taking k ³ > in (2.14). �

Now we are in a position to prove Proposition 2.1.

Proof of Proposition 2.1. We first show the (Hölder) continuity of ū. By Lemma
2.2, v1 is locally Hölder continuous. In particular, it satisfies the estimate in [21,
Lemma 2.3.11]. Now for F and G such that

Fr22 * Lp(BR0 , r
2 dx2) and Gr22 * Lp/2(BR0 , r

2 dx2)

with some p > n+2, which are satisfied by the condition of the proposition, we can
apply the Moser iteration to get an L> estimate of v2 as in [21, Lemma 2.3.14].
By combining these two estimates and using the standard iteration argument, we
get the local Hölder continuity of ū with a small exponent. The proof of (2.4)
below essentially follows this scheme, using the more precise L2 oscillation estimate
obtained in Lemma 2.2.

Without loss of generality, we assume that ū(0) = 0 and

‖F‖ε,σ,1,BR0
+ ‖G‖ε,σ21,1,BR0

+ ‖ū‖L2(∂BR0
) = 1.

Consider

ω(ρ) :=
(  

∂Bρ

a
( x2
|x2|
)
|ū(x2)|2 dσ

)1/2
.
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For 0 < ρ f R/2 f R0/2, we write ū = v1 + v2 in BR, where v2 satisfies

div
[
a
( x2
|x2|
)
|x2|2'v2

]
= divF +G in BR

and v2 = 0 on ∂BR. Thus v1 satisfies

div
[
a
( x2
|x2|
)
|x2|2'v1

]
= 0 in BR

and v1 = ū on ∂BR. By Lemma 2.2,

(
 

∂Bρ

a

(
x2

|x2|

)
|v1(x2)2 v1(0)|2 dσ

) 1
2

f
( ρ
R

)α(λ1)
(
 

∂BR

a

(
x2

|x2|

)
|v1(x2)2 v1(0)|2 dσ

) 1
2

. (2.15)

Since ṽ2(x
2) := v2(Rx

2) satisfies

div
[
a
( x2
|x2|
)
|x2|2'ṽ2

]
= div F̃ + G̃ in B1,

where F̃ (x2) := R21F (Rx2) and G̃(x2) := G(Rx2) satisfy

‖F̃‖R22ε,σ,1,B1
= Rσ21‖F‖ε,σ,1,BR

,

‖G̃‖R22ε,σ21,1,B1
= Rσ21‖G‖ε,σ21,1,BR

,

we apply Lemma 2.3 with R0 = 1 to ṽ2 to obtain

‖v2‖L>(BR) f CRσ21. (2.16)

Since ū(0) = v1(0) + v2(0) = 0, we have |v1(0)| = |v2(0)|. Combining (2.15) and
(2.16) yields, using ū = v1 + v2, and ū = v1 on ∂BR,

ω(ρ)

f
(
 

∂Bρ

a

(
x2

|x2|

)
|v1(x2)2 v1(0)|2 dσ

) 1
2

+

(
 

∂Bρ

a

(
x2

|x2|

)
|v2(x2)2 v2(0)|2 dσ

) 1
2

f
( ρ
R

)α(λ1)
(
 

∂BR

a

(
x2

|x2|

)
|v1(x2)|2 dσ

) 1
2

+ C|v1(0)|+ C‖v2‖L>(BR)

f
( ρ
R

)α(λ1)

ω(R) + CRσ21. (2.17)

For a positive integer k, we take ρ = 22i21R0 and R = 22iR0 in (2.17) and iterate
from i = 0 to k 2 1. We have, using σ 2 1 6= α(λ1),

ω(22kR0) f 22kα(λ1)ω(R0) + C

k∑

i=1

22(k2i)α(λ1)(212iR0)
σ21

f 22kα(λ1)ω(R0) + C22kα(λ1)Rσ21
0

12 2k(α(λ1)2σ+1)

12 2α(λ1)2σ+1
.

It follows that

ω(22kR0) f 22kα̃
(
ω(R0) + CRσ21

0

)
,
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where α̃ = min{σ 2 1, α(λ1)}. For any ρ * (0, R0/2), let k be the positive integer
such that 22k21R0 < ρ f 22kR0. Then

ω(ρ) f Cρα̃, "ρ * (0, R0/2),

and hence (  

∂Bρ

|ū(x2)|2 dσ
)1/2

f Cρα̃, "ρ * (0, R0/2).

The proposition then follows from the standard interior elliptic estimate applied to
Bρ \Bρ/2. �

In the remaining part of this section, we consider the case when ε > 0.

Proposition 2.4. For n g 3, s > 2(n2 1)/2, 0 < t f 1, and ε > 0. Let a satisfy

(2.1) and be Hölder continuous, λ1 and α(λ1) be given by (1.12) and (1.13), and
v̄ * H1(BR0) be a solution of

div
[(
ε+ a

( x2
|x2|
)
|x2|2

)
'v̄
]
= divF in BR0 ¢ R

n21

satisfying

‖'v̄‖ε,2t,1,BR0
<>,

where F * L>(BR0) satisfy

‖F‖ε,s,0,BR0
<>.

Then for any 0 < ρ < 1
4R f 1

4R0, we have

( 

Bρ\Bρ/2

|v̄(x2)2 (v̄)aBρ\Bρ/2
|2 dσ

)1/2

f C
( ρ
R

)α(λ1) (  

BR\BR/2

|v̄(x2)2 (v̄)aBR\BR/2
|2 dσ

)1/2

+ C

(
R

ρ

)n
2
(
R1+s

(:
ε

R
+ 1

)
‖F‖ε,s,0,BR0

+
( ε

R2

)α̃(λ1)

R12t‖'v̄‖ε,2t,1,BR0

)
,

(2.18)

where

α̃(λ1) =

ù
üüüú
üüüû

(
α(λ1) +

n2 1

2

)/
2, when n < 52 2α(λ1);

any α < 1, when n = 52 2α(λ1);

1, when n > 52 2α(λ1),

(2.19)

and C is some positive constant depending only on n, s, t, R0, and an upper bound

of ‖ ln a‖L> , and is independent of ε.

Proposition 2.4 will follow from Lemma 2.2 and the following lemma.

Lemma 2.5. For n g 3, B1 ¢ R
n21, and β < 1, let v * H1

0 (B1, |x2|2+βdx2). There
exists a positive constant C depending only on n and β, such that

sup
0<r<1

rn
 

∂Br

|v|2 dσ f C

ˆ

B1

|x2|2+β |'v|2 dx2.
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Proof. Without loss of generality, we may assume v * C1
0 (B1). Then we have

r2
ˆ

∂Br

|v|2 dσ f C

ˆ

Sn22

rn|v(r, ξ)|2 dξ = C

ˆ

Sn22

rn
(
ˆ 1

r

∂sv(s, ξ) ds

)2

dξ

f C

ˆ

Sn22

rn
(
ˆ 1

r

|∂sv(s, ξ)|2sβ ds
)(

ˆ 1

r

s2β ds

)
dξ

f C

ˆ 1

0

ˆ

Sn22

sn+β |∂sv(s, ξ)|2 dsdξ f C

ˆ

B1

|x2|2+β |'v|2 dx2,

where in the last two lines, we used Hölder’s inequality and the Fubini theorem. �

Now we are in a position to prove Proposition 2.4.

Proof of Proposition 2.4. In this proof, we denote α = α(λ1) and α̃ = α̃(λ1) for
simplicity. Without loss of generality, we may assume v̄(0) = 0. Then by the mean
value formula,

|v̄(x2)| f |x2|12t‖'v̄‖ε,2t,1,BR0
for x2 * BR0 . (2.20)

For any 0 < R < R0, we write v̄ = v1 + v2 so that v1 * H1(BR, |x2|2dx2) satisfies

div
[
a
( x2
|x2|
)
|x2|2'v1

]
= 0 in BR,

with v1 = v̄ on ∂BR. By Lemma 2.2 and (2.20), we have, for 0 < ρ < R,

(
 

∂Bρ

|v1(x2)2 v1(0)|2 dσ
) 1

2

f C
( ρ
R

)α
R12t‖'v̄‖ε,2t,1,BR0

.

Since a is Hölder continuous, by the interior gradient estimate applied in Bρ \Bρ/2

for 0 < ρ < R,

|'v1(x2)| f C‖'v̄‖ε,2t,1,BR0
|x2|α21R12t2α for x2 * BR/2 \ {0}. (2.21)

From the maximum principle, Lemma 2.2, and (2.20), we know that

‖v1‖L>(BR) = sup
x2*∂BR*{0}

|v1(x2)| f CR12t‖'v̄‖ε,2t,1,BR0
.

Therefore, by the boundary gradient estimate,

|'v1(x2)| f C‖'v̄‖ε,2t,1,BR0
R2t for x2 * BR \BR/2. (2.22)

In particular, v1 * H1(BR). Therefore, v2 * H1
0 (BR) satisfies

div
[(
ε+ a

( x2
|x2|
)
|x2|2

)
'v2

]
= divF 2 ε∆v1 in BR.

Let ṽ1(y
2) = v1(Ry

2), ṽ2(y2) = v2(Ry
2), F̃ (y2) = R21F (Ry2), and ε̃ = εR22. Then

by (2.21) and (2.22),

‖F̃‖ε̃,s,0,B1 = R1+s‖F‖ε,s,0,BR
, ‖'ṽ1‖ε̃,α21,1,B1 f CR12t‖'v̄‖ε,2t,1,BR0

, (2.23)

and ṽ2 satifies

div
[(
ε̃+ a

( x2
|x2|
)
|x2|2

)
'ṽ2

]
= div F̃ 2 ε̃∆ṽ1 in B1. (2.24)



14 H. DONG, Y.Y. LI, AND Z. YANG

Denote x2 = (r, ξ) in the polar coordinates, where 0 f r f 1 and ξ * S
n22. We

multiply (2.24) by ṽ2 and integrate by parts to get

ˆ

B1

(ε̃+ a(ξ)r2)|'ṽ2|2 =

ˆ

B1

F̃ · 'v2 + ε̃

ˆ

B1

'ṽ1 · 'ṽ2.

By Young’s inequality and the definitions of ‖F̃‖ = ‖F̃‖ε,s,0,B1 and ‖'ṽ1‖ =
‖'ṽ1‖ε̃,α21,1,B1 , since 2s+ n2 2 > 21,

ˆ

B1

(ε̃+ r2)|'ṽ2|2 f C‖F̃‖2
ˆ

B1

r2s(ε̃+ r2) + C‖'ṽ1‖2
ˆ

B1

ε̃2r2α22

ε̃+ r2

f C‖F̃‖2(ε̃+ 1) + C‖'ṽ1‖2

ù
üüú
üüû

ε̃α+
n21
2 , when n < 52 2α;

ε̃2(| ln ε̃|+ 1), when n = 52 2α;

ε̃2, when n > 52 2α,

By the inequality above and Lemma 2.5 with β = 0,

sup
0<r<1

rn
 

∂Br

|ṽ2|2 dσ f C
(
(ε̃+ 1)‖F̃‖2ε̃,s,0,B1

+ ε̃2α̃‖'ṽ1‖2ε̃,α21,1,B1

)
,

which together with (2.23) implies, for any 0 < ρ < R,

 

∂Bρ

|v2(x2)|2 dσ

f C

(
R

ρ

)n(
R2+2s

( ε

R2
+ 1
)
‖F‖2ε,s,0,BR

+
( ε

R2

)2α̃
R222t‖'v̄‖2ε,2t,1,BR0

)
.

(2.25)

Denote

ω(ρ) :=
(  

Bρ\Bρ/2

a
( x2
|x2|
)
|v̄(x2)2 (v̄)aBρ\Bρ/2

|2 dσ
)1/2

. (2.26)

By Lemma 2.2 and (2.25), for any 0 < ρ < R/4,

 

∂Bρ

a
( x2
|x2|
)
|v̄(x2)2 v1(0)|2 dσ

f C

 

∂Bρ

a
( x2
|x2|
)
|v1(x2)2 v1(0)|2 dσ + C

 

∂Bρ

a
( x2
|x2|
)
|v2(x2)|2 dσ

f C
( ρ
R

)2α  

∂BR

a
( x2
|x2|
)
|v̄(x2)2 (v̄)a∂BR

|2 dσ

+ C

(
R

ρ

)n(
R2+2s

( ε

R2
+ 1
)
‖F‖2ε,s,0,BR

+
( ε

R2

)2α̃
R222t‖'v̄‖2ε,2t,1,BR0

)
.
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Multiplying both sides by ρn22, integrating over (ρ/2, ρ) and dividing both sides
by ρn21, we have for any 0 < ρ < r

4 f R
4 ,

ω(ρ)2 f
 

Bρ\Bρ/2

a
( x2
|x2|
)
|v̄(x2)2 v1(0)|2 dσ

f C
(ρ
r

)2α  

∂Br

a
( x2
|x2|
)
|v̄(x2)2 (v̄)a∂Br

|2 dσ

+ C

(
r

ρ

)n(
r2+2s

( ε
r2

+ 1
)
‖F‖2ε,s,0,Br

+
( ε
r2

)2α̃
r222t‖'v̄‖2ε,2t,1,BR0

)

f C
(ρ
r

)2α  

∂Br

a
( x2
|x2|
)
|v̄(x2)2 (v̄)aBR\BR/2

|2 dσ

+ C

(
r

ρ

)n(
r2+2s

( ε
r2

+ 1
)
‖F‖2ε,s,0,BR

+
( ε
r2

)2α̃
r222t‖'v̄‖2ε,2t,1,BR0

)
.

Multiplying both sides by rn22, integrating r over (R/2, R), and dividing both sides
by Rn21 give (2.18). �

3. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. In this case, Γ+ and Γ2 touch
at the origin. After a suitable rotation in R

n21, we may assume without loss of
generality that D2(f 2 g)(02) is a diagonal matrix whose entries are denoted by
a1, a2, . . . , an21 > 0. Therefore,

f(x2)2 g(x2) =
n21∑

i=1

aix
2
i + e(x2), (3.1)

where e(x2) satisfies |e(x2)| f C|x2|2+γ .
Let u * H1(ΩR0) be a solution of (1.8). For x * ΩR0 , we consider, as in [19],

ū(x2) :=

 f(x2)

g(x2)

u(x2, xn) dxn. (3.2)

It follows from a direct computation that ū * H1(BR0 , |x2|2dx2). For any 0 < R f
R0/2, we make a change of variables by setting

ù
üú
üû

y2 = x2,

yn = 2R2

(
xn 2 g(x2)

f(x2)2 g(x2)
2 1

2

)
,

"(x2, xn) * Ω2R \ ΩR.

This change of variables maps the domain Ω2R \ ΩR to Q2R,R2 \QR,R2 , where

Qs,t := {y = (y2, yn) * R
n
∣∣ |y2| < s, |yn| < t} (3.3)

for s, t > 0. Let v(y) = u(x), so that v(y) satisfies
{
2∂i(Bij(y)∂jv(y)) = 0 in Q2R,R2 \QR,R2 ,

Bnj(y)∂jv(y) = 0 on {zn = 2R2} * {zn = R2},



16 H. DONG, Y.Y. LI, AND Z. YANG

where

(Bij(y)) =
2R2(∂xy)(A

ij(x(y)))(∂xy)
t

det(∂xy)

=
2R2(∂xy)(∂xy)

t

det(∂xy)
+

2R2(∂xy)(A
ij(x(y))2 δij)(∂xy)

t

det(∂xy)
=: (Cij(y)) + (Dij(y))

and
det(∂xy) = 2R2(f(y2)2 g(y2))21.

Note that the top left (n21)×(n21) part of (Cij(y)) is (f(y2)2g(y2))I(n21)×(n21).
Let

v̄(y2) =

 R2

2R2

v(y2, yn) dyn(= ū(y2)).

Then v̄ satisfies in B2R \BR ¢ R
n21 that

div
[(
f(y2)2 g(y2)

)
'v̄
]
= 2

n21∑

i=1

∂iCin∂nv 2
n21∑

i=1

n∑

j=1

∂iDij∂jv,

where h denotes the average of h with respect to yn in the interval (2R2, R2).
Reversing the change of variables, one can see that ū satisfies in BR0 \ {0} ¢ R

n21

that

div
[(
f(x2)2 g(x2)

)
'ū
]
= 2

n21∑

i=1

∂ibi∂nu2
n21∑

i=1

n∑

j=1

∂icij∂ju,

where for 1 f i f n2 1,

bi(x) = (f(x2)2 g(x2))∂ig(x
2) + (xn 2 g(x2))∂i(f(x

2)2 g(x2)),

cij(x) =
(
Aij(x)2Aij(0)

)
(f(x2)2 g(x2)) for 1 f j f n2 1,

cin(x) =

n21∑

k=1

(
Aik(x)2Aik(0)

)
bk +

(
Ain(x)2Ain(0)

)
(f(x2)2 g(x2)) ,

and h denotes the average of h with respect to xn in the interval (g(x2), f(x2)) as
in (3.2). By the weak formulation and ū * H1(BR0 , |x2|2dx2), one can see that ū
satisfies the above equation in BR0 . Therefore, ū satisfies

div
[( n21∑

i=1

ai|xi|2
)
'ū
]
= divF in BR0 ¢ R

n21, (3.4)

where Fi = 2bi∂nu2 e∂iū2
∑n

j=1 c
ij∂ju and e is given in (3.1). From the assump-

tions (1.3), (1.5), and (1.6), we have

|bi(x)| f C|x2|3, |cij(x)| f C|x2|2+γ for i = 1, . . . , n2 1, j = 1, . . . , n.

Hence
|F (x2)| f C|x2|2+γ |'u(x2)| for x2 * BR0 .

Proof of Theorem 1.1. Without loss of generality, we assume that ‖u‖L>(ΩR0
) = 1.

Let ū be defined as in (3.2). By (1.9) with ε = 0,

‖'ū‖0,2s0,1,BR0
<>,

where s0 = 1. Then ū satisfies the equation (3.4) with F satisfying

‖F‖0,2+γ2s0,1,BR0
<>.
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By (1.9) with ε = 0,

|u(x2, xn)2 ū(x2)| f (f(x2)2 g(x2)) max
xn*(g(x2),f(x2))

|∂nu(x2, xn)| f C|x2| in ΩR0 .

(3.5)
By Proposition 2.1 and (1.9), both u and ū are Hölder continuous. Indeed, for any
x, y * ΩR0 such that |x2| f |y2|, we denote r = |x 2 y|. When r f |x2|2, by (1.9)
and the mean value formula, we have

|u(x)2 u(y)| f Cr|x2|21 f Cr1/2.

When r > |x2|2, by (3.5) and using the Cβ regularity of ū, we also have

|u(x)2 u(y)| f |u(x)2 ū(x2)|+ |u(y)2 ū(y2)|+ |ū(x2)2 ū(y2)|
f C|x2|+ Crβ f C(r1/2 + rβ).

Combining the above two estimates, we see the Hölder continuity of u. Thus, we
may further assume, without loss of generality, that u(0) = ū(0) = 0. By decreasing
γ if necessary, we may assume that 1 + γ 2 s0 = γ < α(λ1). By Proposition 2.1
and (3.5), we have, for any 0 < R < R0/4,

 

Ω4R\ΩR/2

|u|2 dx f C

 

Ω4R\ΩR/2

|u2 ū|2 dx+ C

 

Ω4R\ΩR/2

|ū|2 dx f CR2α̃,

where α̃ = min{α(λ1), 1 + γ 2 s0}. We make a change of variables by setting
ù
üú
üû

z2 = x2,

zn = 2R2

(
xn 2 g(x2)

f(x2)2 g(x2)
2 1

2

)
,

"(x2, xn) * Ω4R \ ΩR/2.

This change of variables maps the domain Ω4R \ ΩR/2 to Q4R,R2 \QR/2,R2 , where
Qs,t is defined as (3.3). Let w(z) = u(x), so that w(z) satisfies

{
2∂i(bij(z)∂jw(z)) = 0 in Q4R,R2 \QR/2,R2 ,

bnj(z)∂jw(z) = 0 on {zn = 2R2} * {zn = R2},
where

(bij(z)) =
(∂xz)(A

ij(x(z)))(∂xz)
t

det(∂xz)
.

It is straightforward to verify that

I

C
f b(z) f CI and ‖b‖Cγ(Q4R,R2\QR/2,R2 ) f CR2γ .

Let b̃ij(z) = bij(Rz) and w̃(z) = w(Rz). Then w̃ satisfies
{
2∂i(b̃ij(z)∂jw̃(z)) = 0 in Q4,R \Q1/2,R,

b̃nj(z)∂jw̃(z) = 0 on {zn = 2R} * {zn = R},
with

I

C
f b̃ f CI and ‖b̃‖Cγ(Q4,R\Q1/2,R) f C.

Now we define

Sl :=
{
z * R

n
∣∣ 1/2 < |z2| < 4, (2l 2 1)R < zn < (2l + 1)R

}

for any integer l, and

Sm
s,t :=

{
z * R

n
∣∣ s < |z2| < t, |zn| < m

}
.
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Note that Q4,R \ Q1/2,R = S0. We take the even extension of w̃ with respect to
yn = R and then take the periodic extension (so that the period is equal to 4R).
More precisely, we define, for any l * Z, a new function ŵ by setting

ŵ(z) := w̃
(
z2, (21)l (yn 2 2lR)

)
, "z * Sl.

We also define the corresponding coefficients, for k = 1, 2, · · · , n2 1,

b̂nk(z) = b̂kn(z) := (21)lb̃nk
(
z2, (21)l (zn 2 2lρ)

)
, "z * Sl,

and for other indices,

b̂ij(z) := b̃ij
(
z2, (21)l (zn 2 2lρ)

)
, "y * Sl.

Then ŵ and ĉij are defined in the infinite ring Q4,> \ Q1/2,>. In particular, ŵ
satisfies the equation

∂i(b̂
ij∂jŵ) = 0 in S2

1/2,4.

By [33, Proposition 4.1] and [36, Lemma 2.1], we have

‖'ŵ‖L>(S1
1,2)

f C‖ŵ‖L2(S2
1/2,4

) f CRα̃,

which, after reversing the changes of variables, implies,

‖'u‖L>(Ω2R\ΩR) f CRα̃21.

Therefore, we have improved the upper bound |'u(x)| f C|x2|2s0 to |'u(x)| f
C|x2|α̃21, where α̃2 1 = min {α(λ1)2 1,2s0 + γ}. If 2s0+ γ < α(λ1)2 1, we take
s1 = s02γ and repeat the argument above. We may decrease γ if necessary so that
α(λ1) 2 1 6= 2s0 + kγ for any k = 1, 2, . . .. After repeating the argument finitely
many times, we obtain the estimate (1.14). �

4. Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3. Without loss of generality, we
assume ‖u‖L>(ΩR0

) = 1. We perform a change of variables by setting

ù
üú
üû

y2 = x2,

yn = 2ε

(
xn 2 g(x2) + ε/2

ε+ f(x2)2 g(x2)
2 1

2

)
,

"(x2, xn) * ΩR0 . (4.1)

This change of variables maps the domain ΩR0 to QR0,ε, where Qs,t is defined as
in (3.3). Moreover,

det(∂xy) = 2ε(ε+ f(x2)2 g(x2))21. (4.2)

After a suitable rotation in R
n21, we may assume without loss of generality that

D2(f2g)(02) is a diagonal matrix whose entries are denoted by a1, a2, . . . , an21 > 0
and (3.1) holds. Let u * H1(BR0) be a solution of (1.8), and let v(y) = u(x). Then
v satisfies {

2∂i(bij(y)∂jv(y)) = 0 in QR0,ε,

bnj(y)∂jv(y) = 0 on {yn = 2ε} * {yn = ε}
(4.3)
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with ‖v‖L>(QR0,ε) = 1, where the matrix (bij(y)) is given by

(bij(y))

=
2ε(∂xy)(A

ij(x(y)))(∂xy)
t

det(∂xy)
=

2ε(∂xy)(∂xy)
t

det(∂xy)
+

2ε(∂xy)(A
ij(x(y))2 δij)(∂xy)

t

det(∂xy)

=

û
üüüüüüüý

ε+
∑n21

j=1 ajy
2
j 0 · · · 0 b1n

0 ε+
∑n21

j=1 ajy
2
j · · · 0 b2n

...
...

. . .
...

...

0 0 · · · ε+
∑n21

j=1 ajy
2
j bn21,n

bn1 bn2 · · · bn,n21
∑n21

j=1 |bjn|2+4ε2

ε+f(y2)2g(y2)

þ
ÿÿÿÿÿÿÿø

+

û
üüüüüý

e1 0 · · · 0 0
0 e2 · · · 0 0
...

...
. . .

...
...

0 0 · · · en21 0
0 0 · · · 0 0

þ
ÿÿÿÿÿø

+

û
üüüý

c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn

þ
ÿÿÿø ,

and for i = 1, . . . , n2 1,

bni = bin = 22ε∂ig(y
2)2 (yn + ε)∂i(f(y

2)2 g(y2)),

ei = f(y2)2 g(y2)2
n21∑

j=1

ajy
2
j ,

the matrix {cij} is given by

2ε(∂xy)(A
ij(y)2 δij)(∂xy)

t

det(∂xy)
.

By (1.3), (1.5), and (1.6), we know for i = 1, . . . , n2 1,

|bni(y)| = |bin(y)| f Cε|y2| and |ei(y2)| f C|y2|2+γ , (4.4)

and for i = 1, . . . , n2 1, j = 1, . . . , n2 1,

|cij(y)| f C(ε+ |y2|2)
(
|y2|γ + (ε+ |y2|2)γ

)
,

|cin(y)| f Cε
(
|y2|γ + (ε+ |y2|2)γ

)
. (4.5)

Note that e1(y), . . . , en21(y) depend only on y2 and are independent of yn. We
define

v̄(y2) :=

 ε

2ε

v(y2, yn) dyn. (4.6)

It is straightforward to verify that v̄ satisfies in BR0 ¢ R
n21,

div
[(
ε+

n21∑

i=1

aiy
2
i

)
'v̄
]
= 2

n21∑

i=1

∂ibin∂nv 2
n21∑

i=1

∂i(e
i∂iv̄)2

n21∑

i=1

n∑

j=1

∂icij∂jv, (4.7)

with ‖v̄‖L>(BR0
) f 1, where bin∂nv and cij∂jv are the average of bin∂nv and cij∂jv

with respect to yn in (2ε, ε) as in (4.6).
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Proof of Theorem 1.3. We make the change of variables (4.1), and let v(y) = u(x).
Then v satisfies (4.3). Let v̄ be defined as in (4.6). By (1.9),

‖'v̄‖ε,22s0,1,BR0
<>,

where s0 = 1
2 . Then v̄ satisfies the equation (4.7), that is

div
[
(ε+ a(ξ)r2)'v̄

]
= divF in BR0 ¢ R

n21

with

Fi = 2bin∂nv 2 ei∂iv̄ 2 cij∂jv, i = 1, . . . , n2 1.

By (1.9) and (4.2),

|∂nv| f C(ε+ |y2|2)12s0/ε and |'y2v| f C(ε+ |y2|2)2s0 in QR0,ε. (4.8)

Therefore, by (4.4) and (4.5),

‖F‖ε,γ22s0,0,BR0
<>.

Denote the left-hand side of (2.18) by ω(ρ). By Proposition 2.4 with s = γ 2 2s0
and t = 2s0, for 0 < ρ < R/4 f R0/4,

ω(ρ) f C
( ρ
R

)α(λ1)

ω(R) + C

(
R

ρ

)n
2

R122s0

(
Rγ

(:
ε

R
+ 1

)
+
( ε

R2

)α̃(λ1)
)
,

where α̃(λ1) > α(λ1) is given by (2.19) and ω is defined in (2.26). Fix a µ̄ > 0

satisfying µ̄α̃(λ1) < γ. For any 0 < µ < µ̄, 0 < ρ < R/4, and ε
1

2+µ < R/4 f R0/4,
we have

ω(ρ) f C
( ρ
R

)α(λ1)

ω(R) + C

(
R

ρ

)n
2

R122s0+µα̃(λ1).

If 12 2s0 + µα̃(λ1) < α(λ1), by [22, Lemma 5.13],

ω(ρ) f Cρ122s0+µα̃(λ1) " ε 1
2+µ f ρ < R0. (4.9)

By (4.8),

|v(y2, yn)2 v̄(y2)| f 2ε max
yn*(2ε,ε)

|∂nv(y2, yn)| f C(ε+ |y2|2)12s0 in QR0,ε. (4.10)

Therefore, by (4.9) and (4.10),
(
 

Qρ,ε\Qρ/2,ε

∣∣∣v(y)2 (v)Qρ,ε\Qρ/2,ε

∣∣∣
2

dy

) 1
2

f
(
 

Qρ,ε\Qρ/2,ε

|v 2 v̄|2 dy
) 1

2

+ ω(ρ)

f Cρ122s0+µα̃(λ1) " ε 1
2+µ f ρ < R0,

where

(v)Qρ,ε\Qρ/2,ε
:=

 

Qρ,ε\Qρ/2,ε

v(y) dy.

This implies
(
 

Ω4ρ\Ωρ/2

∣∣∣u(x)2 (u)Ω4ρ\Ωρ/2

∣∣∣
2

dx

) 1
2

f Cρ122s0+µα̃(λ1) " ε 1
2+µ f ρ < R0/4.

(4.11)
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We will show that

|'u(x)| f C(ε+ |x2|2)2 1
2+

122s0+µα̃(λ1)
2+µ for x * ΩR0/4. (4.12)

For any ε
1

2+µ f ρ < R0

4 , we make a change of variables by setting
ù
üú
üû

z2 = x2,

zn = 2ρ2
(
xn 2 g(x2) + ε/2

ε+ f(x2)2 g(x2)
2 1

2

)
,

"(x2, xn) * Ω4ρ \ Ωρ/2. (4.13)

This change of variables maps the domain Ω4ρ \ Ωρ/2 to Q4ρ,ρ2 \ Qρ/2,ρ2 . Let
w(z) = u(x)2 (u)Ω4ρ\Ωρ/2

, so that w(z) satisfies
{
2∂i(dij(z)∂jw(z)) = 0 in Q4ρ,ρ2 \Qρ/2,ρ2 ,

dnj(z)∂jw(z) = 0 on {zn = 2ρ2} * {zn = ρ2},
where

(dij(z)) =
(∂xz)(A

ij(x(z)))(∂xz)
t

det(∂xz)
.

Let d̃ij(z) = dij(ρz) and w̃(z) = w(ρz). Then w̃ satisfies
{
2∂i(d̃ij(z)∂jw̃(z)) = 0 in Q4,ρ \Q1/2,ρ,

d̃nj(z)∂jw̃(z) = 0 on {zn = 2ρ} * {zn = ρ}.
It is straightforward to verify that

I

C
f d̃ f CI and ‖d̃‖Cγ(Q4,ρ\Q1/2,ρ) f C.

Using the similar “flipping argument” as in the proof of Theorem 1.1, we have, by
(4.11),

|'u(x)| f C|x2|22s0+µα̃(λ1) for ε
1

2+µ f |x2| < R0/4 (4.14)

and

oscΩ2ρ\Ωρ
u f Cρ122s0+µα̃(λ1) for ε

1
2+µ f ρ < R0/4. (4.15)

By the maximum principle and (4.15), we have

oscΩ
2ε

1
2+µ

u f Cε
122s0+µα̃(λ1)

2+µ . (4.16)

For ε
1
2 f ρ < 1

2ε
1

2+µ , we consider u in Ω4ρ \Ωρ/2. By the change of variables (4.13),
the same “flipping argument” as above, and (4.16), we have

|'u(x)| f C|x2|21ε
122s0+µα̃(λ1)

2+µ for ε
1
2 f |x2| < ε

1
2+µ . (4.17)

Finally, we consider u * Ω2
:
ε, and make changes of variables (4.1). By the same

“flipping argument” and (4.16), we have

|'u(x)| f Cε2
1
2+

122s0+µα̃(λ1)
2+µ for |x2| < ε

1
2 . (4.18)

Therefore, (4.12) is concluded from (4.14), (4.17), and (4.18).
We have improved the upper bound of |'u(x)| f C(ε + |x2|2)2s0 to |'u(x)| f

C(ε+ |x2|2)2s1 , where s1 = 1
2 2 122s0+µα̃(λ1)

2+µ . We can repeat the argument with

‖'v̄‖ε,22s1,1,BR0
+ ‖F‖ε,γ22s1,0,BR0

<>.
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Let

si+1 =
1

2
2 12 2si + µα̃(λ1)

2 + µ
,

which is equivalent to

si+1 2
1

2
=

2

2 + µ

(
si 2

1

2

)
2 µα̃(λ1)

2 + µ
.

Since s0 = 1
2 , iterating the equation above gives

sk =
1

2
2 µα̃(λ1)

2 + µ

k21∑

i=0

(
2

2 + µ

)i

"k * N.

After repeating this argument k times, we have

ω(ρ) f C
( ρ
R

)α(λ1)

ω(R) + C

(
R

ρ

)n
2

R122sk+µα̃(λ1) " ε 1
2+µ f ρ <

R

4
f R0

4
,

(4.19)
provided that

12 2sk21 + µα̃(λ1) = µα̃(λ1)
k21∑

i=0

(
2

2 + µ

)i

< α(λ1).

Since

µα̃(λ1)
>∑

i=0

(
2

2 + µ

)i

= (2 + µ)α̃(λ1) > α(λ1),

there exists a k * N such that

µα̃(λ1)
k21∑

i=0

(
2

2 + µ

)i

< α(λ1) f µα̃(λ1)
k∑

i=0

(
2

2 + µ

)i

= 12 2sk + µα̃(λ1).

For such k, (4.19) implies that for any α < α(λ1),

ω(ρ) f C(α)ρα " ε 1
2+µ f ρ <

R0

4
.

By the same argument of proving (4.12), we can conclude that

|'u(x)| f C(ε+ |x2|2)2 1
2+

α
2+µ for x * ΩR0/4.

By taking µ sufficiently small, this concludes the proof. �

5. Properties of λ1 and its corresponding eigenspace

In this section, we consider the eigenvalue problem (1.10) with a(ξ) = ξtMξ for
some positive definite (n 2 1) × (n 2 1) matrix M . We study the properties of
λ1, the first nonzero eigenvalue of (1.10), and the properties of its corresponding
eigenspace. After a suitable rotation in R

n21, we may assume without loss of
generality that

(x2)tMx2 =
n21∑

j=1

ajx
2
j , a1 g . . . g an21 > 0. (5.1)
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Recall that

S
n22 =

ù
ú
ûx

2 = (x1, . . . xn21) * R
n21

∣∣
n21∑

j=1

x2j = 1

ü
ý
þ .

First we prove an estimate on λ1 under a more general assumption on a(ξ).

Lemma 5.1. For n g 3, let λ1 be the first nonzero eigenvalue of the eigenvalue

problem (1.10) with a(ξ) > 0 a.e. satisfying ln a * L>(Sn22) and
´

Sn22 axi = 0 for

all i = 1, . . . , n 2 1. Then λ1 f n 2 2, and the equality holds if and only if a is

constant.

Proof. Since

2∆Sn22xi = (n2 2)xi on S
n22 (5.2)

for i = 1, . . . , n 2 1, multiplying the above equation by axi, and integrating over
S
n22, we have, by the identity xi∆Sn22xi = 2|'Sn22xi|2 + 1

2∆Sn22(x2i ),

(n2 2)

ˆ

Sn22

ax2i = 2
ˆ

Sn22

axi∆Sn22xi

=

ˆ

Sn22

a|'Sn22xi|2 2
1

2

ˆ

Sn22

a∆Sn22(x2i ).

Summing over i = 1, . . . , n2 1, since
∑n21

i=1 xi = 1 on S
n22, we have

(n2 2)

n21∑

i=1

ˆ

Sn22

ax2i =

n21∑

i=1

ˆ

Sn22

a|'Sn22xi|2.

Thus for at least one i,
ˆ

Sn22

a|'Sn22xi|2 f (n2 2)

ˆ

Sn22

ax2i ,

which implies λ1 f n2 2. If λ1 = n2 2, then by the Rayleigh quotient formula,
ˆ

Sn22

a|'Sn22xi|2 = (n2 2)

ˆ

Sn22

ax2i

for all i = 1, . . . , n2 1. This implies

2 divSn22

(
a'Sn22xi

)
= (n2 2)axi for i = 1, . . . , n2 1. (5.3)

By an orthogonal transformation, we have

2 divSn22

(
a'Sn22(e · ξ)

)
= (n2 2)a(e · ξ) on S

n22

for any unit vector e * R
n21. Let η * C>(Sn22). Multiplying the above equation

by η and integrating over Sn22, we have

(n2 2)

ˆ

Sn22

a(e · ξ)η =

ˆ

Sn22

a'Sn22(e · ξ) · 'Sn22η

=

ˆ

Sn22

a(e2 (e · ξ)ξ) · 'Sn22η =

ˆ

Sn22

ae · 'Sn22η.

This implies
∣∣∣∣
ˆ

Sn22

ae · 'Sn22η

∣∣∣∣ f C‖η‖L1(Sn22) "η * C>(Sn22).
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Therefore, ae * W 1,>(Sn22) and hence a * W 1,>(Sn22). Multiplying (5.2) by a
and subtracting (5.3), we have

'Sn22a · 'Sn22xi = 0 a.e. for i = 1, . . . , n2 1.

Since the span of {'Sn22x1, . . . ,'Sn22xn21} is the tangent space of Sn22 at x, we
have 'Sn22a = 0 a.e. Therefore, a is constant. �

In the sequel, we will first discuss the case when n = 3 and then the case when
n g 4.

5.1. The case when n = 3. We write x1 = cos θ and x2 = sin θ, so that (5.1)
takes the form

(x2)tMx2 =
2∑

j=1

ajx
2
j =

a1 + a2
2

+
a1 2 a2

2
cos(2θ), a1 g a2 > 0. (5.4)

Theorem 5.2. For n = 3, let λ1 be the first nonzero eigenvalue of the eigenvalue

problem (1.10) with a(ξ) = ξtMξ, where M satisfies (5.4). Then λ1 is strictly

decreasing with respect to a1

a2
* [1,>), and satisfies

C1a
1/2
2

(a1 + a2)1/2
f λ1 f C2a

1/2
2

(a1 + a2)1/2
and λ1 f a1 + 3a2

3a1 + a2

for some positive constants C1, C2 independent of M . Moreover, when a1 > a2, the
eigenspace corresponding to λ1 is one dimensional, the corresponding eigenfunctions

have exactly two zeros at θ = π/2 and 3π/2, and they are odd with respect to θ = π/2
and 3π/2.

We prove Theorem 5.2 through the following two lemmas. Denote β = a12a2

a1+a2
.

Then β * [0, 1) and the eigenvalue problem (1.10) becomes

[(1 + β cos(2θ))u2(θ)]2 = 2λ(1 + β cos(2θ))u(θ) on (0, 2π), (5.5)

with periodic boundary condition. When β = 0, it is easy to see that λ1 = 1.

Lemma 5.3. For β * (0, 1), consider the eigenvalue problem (5.5). If the first

nonzero eigenvalue λ1(β) is simple, then the eigenfunctions corresponding to λ1(β)
must have zeros at θ = 0, π or θ = π/2, 3π/2.

Proof. By [17, Theorem 3.1 in Chapter 8], the problem (5.5) has eigenvalues 0 =
λ0 < λ1 f λ2 < λ3 f λ4 < . . .. Namely, λ2i < λ2i+1 f λ2i+2 for i = 0, 1, 2, . . ..
Moreover, an eigenfunction corresponding to λ2i+1 or λ2i+2 must have exactly 2i+2
zeros on [0, 2π). To conclude the lemma, we only need to construct two solutions
u1 and u2 of (5.5), whose zeros are at θ = 0, π and θ = π/2, 3π/2, respectively.

First we consider the Dirichlet problem on (0, π):
{[

(1 + β cos(2θ))u2(θ)
]2
= 2µ(1 + β cos(2θ))u(θ) in (0, π),

u(0) = u(π) = 0.

From the standard Sturm-Liouville theory, the first eigenvalue µ1 > 0 is simple and
there exists an eigenfunction u1 > 0 in (0, π). Taking the odd extension of u1, since
cos(2θ) is even, we know that u1 satisfies (5.5) on S1 with λ = µ1, and u1 only has
zeros at θ = 0, π on [0, 2π).



INSULATED CONDUCTIVITY PROBLEM: THE NON-UMBILICAL CASE 25

Then we consider the following Dirichlet problem on (π/2, 3π/2):
{[

(1 + β cos(2θ))u2(θ)
]2
= 2µ(1 + β cos(2θ))u(θ) in (π/2, 3π/2),

u(π/2) = u(3π/2) = 0.

Let v(θ) = u(θ + π/2). Then v satisfies
{[

(12 β cos(2θ))v2(θ)
]2
= 2µ(12 β cos(2θ))v(θ) in (0, π),

v(0) = v(π) = 0.

By the same argument as above, we know that there exist u2 and the first eigenvalue
µ2 > 0, such that u2 satisfies (5.5) with λ = µ2, and u2 only has zeros at θ =
π/2, 3π/2 on [0, 2π). Therefore, {µ1, µ2} = {λ1, λ2} and u1, u2 are eigenfunctions
corresponding to µ1, µ2 respectively. �

As a consequence of this lemma, the problem (5.5) can be reduced to the following
Dirichlet problem in case of studying the first nonzero eigenvalue:

{[
(1 + β̃ cos(2θ))u2(θ)

]2
= 2µ(1 + β̃ cos(2θ))u(θ) in (0, π),

u(0) = u(π) = 0,
(5.6)

with β̃ * (21, 1]. Denote µ1(β̃) to be the first eigenvalue of (5.6), which is given
by the follow Rayleigh quotient

µ1(β̃) = inf
u>0*H1

0 ((0,π))

´ π

0
(1 + β̃ cos(2θ))u2(θ)2 dθ

´ π

0
(1 + β̃ cos(2θ))u(θ)2 dθ

. (5.7)

Lemma 5.4. Consider the eigenvalue problem (5.6) and let µ1(β̃) be as above.

The function µ1(β̃) is strictly increasing with respect to β̃ * (21, 1], µ1(1) = 3, and

limβ̃³21 µ1(β̃) = 0. Moreover, we have

C1(1 + β̃)1/2 f µ1(β̃) f C2(1 + β̃)1/2 and µ1(β̃) f
2 + β̃

22 β̃
(5.8)

for some constants C1, C2 > 0 independent of β̃.

Proof. First, suppose that uβ̃ is an eigenfunction corresponding to µ1(β̃), which is

positive on (0, π). Since cos(2θ) = cos(2(π2θ)), it is easily seen that uα(π2·) is also
an eigenfunction. Therefore, uβ̃(π2·) is a multiple of uβ̃ . Because maxuβ̃(π2·) =
maxuβ̃ and both are nonnegative, we get uβ̃(π2 ·) = uβ̃ . This implies that uβ̃ can

be written as an expansion of sin(kθ), k = 1, 3, 5, . . . on [0, π].
We define

Aβ̃ : =

ˆ π

0

|u2
β̃
|2 2 µ1(β̃)

ˆ π

0

|uβ̃ |2,

Bβ̃ : =

ˆ π

0

cos(2θ)|u2
β̃
|2 2 µ1(β̃)

ˆ π

0

cos(2θ)|uβ̃ |2.

Because uβ̃ is a solution of (5.6) with µ = µ1(β̃), we have Aβ̃ = 2β̃Bβ̃ . For

β̃ * (21, 1], by taking u = sin(θ) in the Rayleigh quotient (5.7), we see that

µ1(β̃) f (2 + β̃)/(22 β̃).
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This concludes the second inequality in (5.8). When β̃ = 1, u = sin(θ) is a solution
to (5.6) with µ = 3. Since sin(θ) is strictly positive on (0, π), we infer that µ1(1) = 3.

Thus µ1(β̃) < µ1(1) = 3, and
ˆ π

0

(1 + cos(2θ))|u2
β̃
|2 g 3

ˆ π

0

(1 + cos(2θ))|uβ̃ |2 > µ1(β̃)

ˆ π

0

(1 + cos(2θ))|uβ̃ |2.

Namely, Aβ̃ + Bβ̃ > 0. Therefore, (1 2 β̃)Bβ̃ > 0, which implies Bβ̃ > 0 for any

β̃ * (21, 1). For any 21 < β̃1 < β̃ < 1, we have Aβ̃ = 2β̃Bβ̃ < 2β̃1Bβ̃ . Namely,
ˆ π

0

(1 + β̃1 cos(2θ))|u2β̃ |
2 < µ1(β̃)

ˆ π

0

(1 + β̃1 cos(2θ))|uβ̃ |2.

Therefore, µ1(β̃1) < µ1(β̃). Next, we show the first inequality in (5.8). We may

certainly assume that β̃ * (21,21/2). Let ε = 1 + β̃ * (0, 1/2). Define u(θ) =
ε21/2θ when θ * [0, ε1/2], u(θ) = 1 when θ * (ε1/2, π2ε1/2), and u(θ) = ε21/2(π2θ)
when θ * [π 2 ε1/2, π]. Then

ˆ π

0

(1 + β̃ cos(2θ))|u2|2 dθ = 2

ˆ

:
ε

0

(1 + β̃ cos(2θ))ε21 dθ

= 2

ˆ

:
ε

0

(ε2 2β̃ sin2 θ)ε21 dθ f C

ˆ

:
ε

0

(12 β̃θ2ε21) dθ f C
:
ε.

This together with the obvious inequality
ˆ π

0

(1 + β̃ cos(2θ))|u|2 dθ g C

and (5.7) imply the upper bound of first inequality in (5.8). To see the lower bound,
without loss of generality, we assume that

uβ̃(θ0) = max
θ*[0,π]

uβ̃(θ) = 1.

By symmetry, we may also assume that θ0 f π/2. Then by Hölder’s inequality,

1 = u2
β̃
(θ0) f

( ˆ θ0

0

|u2
β̃
| dθ
)2

f
( ˆ θ0

0

(1 + β̃ cos(2θ))|u2
β̃
|2 dθ

)(ˆ θ0

0

(1 + β̃ cos(2θ))21 dθ
)
. (5.9)

Note that
ˆ θ0

0

(1 + β̃ cos(2θ))21 dθ =

ˆ θ0

0

(ε2 2β̃ sin2 θ)21 dθ

f C

ˆ

:
ε

0

ε21 dθ + C

ˆ θ0

:
ε

θ22 dθ f Cε21/2.

Thus from (5.9), we get
ˆ θ0

0

(1 + β̃ cos(2θ))|u2
β̃
|2 dθ g Cε1/2,

which together with the obvious inequality
ˆ π

0

(1 + β̃ cos(2θ))|u|2 dθ f C
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and (5.7) imply the lower bound of first inequality in (5.8). Finally, from (5.8), we

conclude that limβ̃³21 µ1(β̃) = 0. The lemma is proved. �

Proof of Theorem 5.2. Let 0 < λ1(β) f λ2(β) denote the first and the second

nonzero eigenvalues of the problem (5.5), respectively. By Lemma 5.4, µ1(β̃) is
strictly increasing in (21, 1], so we know that λ1(β) = µ1(2β), λ2(β) = µ1(β).
Therefore, λ1 being strictly decreasing with respect to a1

a2
* [1,>) follows from

the monotonicity of µ1(β̃) for β̃ * (21, 0). The inequalities in Theorem 5.2 follow

from (5.8) with β̃ = 2β = 2a12a2

a1+a2
. Finally, when β > 0, we can see from the

proof of Lemma 5.3 that the eigenspace corresponding to λ1 is one dimensional,
the corresponding eigenfunctions have exactly two zeros at θ = π/2 and 3π/2, and
they are odd with respect to θ = π/2 and 3π/2. �

5.2. Higher dimensional case. In this subsection, we consider the case when
n g 4. We will show that there exists a small constant ε0, depending only on n,
such that if

(12 ε0)
I

‖I‖ f M

‖M‖ f (1 + ε0)
I

‖I‖ ,

the eigenspace corresponding to the first nonzero eigenvalue λ1 of (1.10) satisfies
the property O, which is defined as follows.

Definition 5.5. We say that a function space on S
n22 ¢ R

n21 satisfies the property
O if it is the span of functions which are odd in one of the xi variables and even
with respect to other variables.

Indeed, we consider the following operator on S
n22:

Lµ = 2divSn22

(
(1 + µb(x))'Sn22

)
for µ * R,

where b(x) * L>(Sn22). Let λ1,µ and V1,µ be the corresponding first nonzero
eigenvalue and the eigenspace of the eigenvalue problem

Lµu = λ(1 + µb(x))u.

Proposition 5.6. Consider the above eigenvalue problem, and assume that b(x) is
even with respect all variables, and V1,µ0 satisfies the property O for some µ0 * R.

Then there exists a constant ε0, depending only on n, an upper bound of ‖b‖L> ,

and µ0, such that V1,µ also satisfies the property O for any µ * (µ0 2 ε0, µ0 + ε0).

Proof. Suppose that an orthogonal basis of V1,µ0 is given by {f1, . . . , fm} with
m * {1, . . . , n 2 1}, where for j = 1, . . . ,m, fj is odd in xj and even in other
variables. Let ε0 > 0 be a small constant to be specified later. The perturbation
argument below gives all the eigenfunctions of Lµ close to λ1,µ0 when µ is in a small
neighborhood of µ0.

For any µ * (µ0 2 ε0, µ0 + ε0), we consider the expansions

λ̃1 = λ1,µ0 +

>∑

k=1

εkck, f̃1 = f1 +

>∑

k=1

εkvk, (5.10)

where ε = µ2 µ0 * (2ε0, ε0). Then

Lµf̃1 = λ̃1(1 + µb(x))f̃1
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is equivalent to

[(
λ1,µ0 +

>∑

k=1

εkck

)(
1 + (µ0 + ε)b(x)

)
2 Lµ0

](
f1 +

>∑

k=1

εkvk

)

= 2εdivSn22

(
b(x)'Sn22

(
f1 +

>∑

k=1

εkvk

))
. (5.11)

To solve for ck, vk, k = 1, . . ., we compare the coefficients of εk on both sides of
(5.11). The zeroth order term on the left-hand side is equal to zero because f1 is
an eigenfunction of Lµ0 with the eigenvalue λ1,µ0 .

Considering the first order terms, we get
(
λ1,µ0(1 + µ0b(x))2 Lµ0

)
v1

= 2(λ1,µ0b(x) + c1(1 + µ0b(x)))f1 2 divSn22

(
b(x)'Sn22f1

)
. (5.12)

Let X0 and X2 be the orthogonal (complement) spaces of V1,µ in L2(Sn22) and
H2(Sn22), respectively. Then because λ1,µ0(1 + µ0b(x)) 2 Lµ0 is self-adjoint, it is
easily seen that

(λ1,µ0(1 + µ0b(x))2 Lµ0)X2 ¢ X0.

Moreover, the mapping λ1,µ0(1 + µ0b(x)) 2 Lµ0 : X2 ³ X0 is injective. By
the Fredholm theorem, we also know that the mapping is surjective. Therefore,
λ1,µ0(1 + µ0b(x))2 Lµ0 has a bounded inverse R from X0 to X2, and (5.12) has a
unique solution v1 * X2 if and only if its right-hand side is orthogonal to f1, . . . , fm.
Since the right-hand side is odd in x1 and even in the other variables, we know that
it is orthogonal to f2, . . . , fm. To make it to be also orthogonal to f1, we find a
unique c1 given by

c1 =

´

Sn22

(
b(x)|'Sn22f1|2 2 λ1,µ0b(x)f

2
1

)

´

Sn22(1 + µ0b(x))f21
.

Then

v1 = 2R
(
(λ1,µ0b(x) + c1(1 + µ0b(x)))f1 + divSn22

(
b(x)'Sn22f1

))
* X2,

which is odd in x1 and even in other variables because b(x) is even with respect to
all variables.

Now considering the second order terms, we get

(λ1,µ0(1 + µ0b(x))2 Lµ0)v2 = 2
(
c2(1 + µ0b(x)) + c1b(x)

)
f1

2 (λ1,µ0b(x) + c1(1 + µ0b(x)))v1 2 divSn22

(
b(x)'Sn22v1

)
.

As before, the right-hand side above is orthogonal to f2, . . . , fm. To make it to be
also orthogonal to f1, we find a unique c2 given by

c2 =

´

Sn22

(
b'Sn22v1 · 'Sn22f1 2 (λ1,µ0b+ c1(1 + µ0b))v1f1 2 c1bf

2
1

)

´

Sn22
(1 + µ0b)f21

.

Then

v2 = 2R
((
c2(1 + µ0b(x)) + c1b(x)

)
f1

+ (λ1,µ0b(x) + c1(1 + µ0b(x)))v1 + divSn22

(
b(x)'Sn22v1

))
* X2,
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which is odd in x1 and even in other variables.
We can repeat this procedure and solve all the ck and vk’s inductively. Moreover,

all the vk’s are odd in x1 and even in other variables. Note that |ck| and the H2

norm of vk can be bounded by Ck (C to the power of k), where C is some positive
constant depending only on f1, b(x), and the norm of R. Therefore, by taking ε0
sufficiently small (with the same dependence), both series in (5.10) are convergent

in R and H2(Sn22) respectively, and f̃1 is odd in x1 and even in other variables.

Similarly, we can find the eigenpairs (λ̃j , f̃j) for j = 2, . . . ,m. From the min-max
formula of the eigenvalues, we know that every eigenvalue is Lipschitz in µ. In
particular, for ε0 sufficiently small, we know that λ1,µ = min{λ̃1, . . . , λ̃m} and V1,µ
is spanned by f̃j ’s for those j such that λ̃j = λ1,µ. Therefore, V1,µ satisfies the
property O. �

Applying Proposition 5.6 with n g 4, ‖b‖L> f 8, µ0 = 0, we obtain an ε0 such
that V1,µ also satisfies the property O for any µ * (2ε0, ε0). Setting

b(x) =
n22∑

i=1

ai 2 an21

ε0an21
2x2i and µ =

ε0
2
,

we have

1 + µb(x) =
1

an21

n21∑

i=1

aix
2
i .

Therefore, the following corollary follows.

Corollary 5.7. For n g 4, there exists a small constant ε0 depending only on n,
such that if

(12 ε0)
I

‖I‖ f M

‖M‖ f (1 + ε0)
I

‖I‖ ,

the eigenspace corresponding to the first nonzero eigenvalue λ1 of (1.10) with a(ξ) =
ξtMξ satisfies the property O.

The following lemma will not be used in this paper.

Lemma 5.8. For n g 4, let λ1 be the first nonzero eigenvalue to the eigenvalue

problem (1.10) with a(ξ) = ξtMξ, where M satisfies (5.1). Then for any a2 g
. . . g an21 > 0, we have λ1 ³ 0 as a1 ³ +>.

Proof. We consider in the spherical coordinate: for x2 * S
n22 ¢ R

n21, we can write

x1 = cos θ1, x2 = sin θ1 cos θ2, x3 = sin θ1 sin θ2 cos θ3, . . . ,

xn22 = sin θ1 sin θ2 · · · sin θn23 cos θn22, xn21 = sin θ1 sin θ2 · · · sin θn23 sin θn22,

where θ1, θ2, . . . , θn23 * [0, π] and θn22 * [0, 2π). Then the proof is similar to that
of the first upper bound in (5.8) by considering u(θ1) = max{21,min{1, ε21(θ1 2
π/2)}}. �

6. Proof of Theorem 1.6

Proof of Theorem 1.6. In this proof, we denote α = α(λ1) for simplicity. After a
suitable rotation in R

n21, we may assume without loss of generality that

(f 2 g)(x2) =
n21∑

j=1

ajx
2
j + e(x2),
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where |e(x2)| f C|x2|4.
Step 1. Since Ω̃ is symmetric in xi and ϕ is odd in xj , by the uniqueness of

solutions, we know that u is odd in xj . In Ω1, where Ωr is defined as in (1.7), let
ū be defined as (3.2). By a similar argument as in Section 3 and Theorem 1.1, we
know that ū satisfies

div
[( n21∑

i=1

ai|xi|2
)
'ū
]
= divF in B1 ¢ R

n21,

where F satisfies

|F (x2)| f C|x2|2+α for x2 * B1, (6.1)

C is a positive constant depending only on n and upper bounds of ‖∂D1‖C4 and
‖∂D2‖C4 . Again, we denote Yk,i to be a normalized eigenfunction corresponding to
(k+1)-th eigenvalue λk of the problem (1.10), so that {Yk,i}k,i forms an orthonormal
basis of L2(S1) under the inner product (1.11). By the assumption, we denote Y1,j to
be the eigenfunction that is odd in xj . It is easily seen that Y1,j is an eigenfunction
corresponding to λ1 in the half sphere Sn22+{xj > 0} with zero Dirichlet boundary
condition. Since λ1 is the first nonzero eigenvalue of the eigenvalue problem in the
sphere, it must be the first eigenvalue of the eigenvalue problem in the half sphere.
Therefore, it is simple and Y1,j does not change its sign in the half sphere. Without
loss of generality, we assume Y1,j is positive in {xj > 0} and negative in {xj < 0}.
Since ū is odd with respect to xj = 0, and in particular ū(0) = 0, we have the
following decomposition

ū(x2) =
>∑

k=1

N(k)∑

i=1

Uk,i(r)Yk,i(ξ), x2 * B1 \ {0}, (6.2)

where Uk,i(r) =
ffl

S1
a(ξ)ū(r, ξ)Yk,i(ξ) dξ and Uk,i * C([0, 1)) + C>((0, 1)). Then

U1,j satisfies U1,j(0) = 0 and

LU1,j := U 22
1,j(r) +

n

r
U 2
1,j(r)2

λ1
r2
U1,j(r) = H(r), 0 < r < 1,

where

H(r) =

ˆ

Sn22

(divF )Y1,1(ξ)

a(ξ)r2
dξ =

ˆ

Sn22

∂rFr +
1
r'ξFξ

a(ξ)r2
Y1,1(ξ) dξ

= ∂r

(
ˆ

Sn22

Fr

a(ξ)r2
Y1,1(ξ) dξ

)
+

ˆ

Sn22

2FrY1,1
a(ξ)r3

2 Fξ

r3
'ξ

(
Y1,1(ξ)

a(ξ)

)
dξ

=: A2(r) +B(r), 0 < r < 1,

and A(r), B(r) * C1([0, 1)) satisfy, in view of (6.1), that

|A(r)| f C(n)rα, |B(r)| f C(n)rα21, 0 < r < 1. (6.3)

Step 2. We will prove, for some constant C1, that

U1,j(r) = C1r
α + v(r), 0 < r < 1, (6.4)

where |v(r)| f Cr1+α. We use the method of reduction of order to find a bounded
solution v satisfying Lv = H in (0, 1), and then show that |v(r)| f Cr1+α. Note
that h = rα is a solution of Lh = 0. Let v = hw and

w(r) :=

ˆ r

0

1

sn+2α

ˆ s

0

τn+αH(τ) dτds, 0 < r < 1.
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By a direct computation,

Lv = L(hw) = hw22 +
(
2h2 +

n

r
h
)
w2 = H.

By (6.3), we can estimate |w(r)| f Cr. Therefore, |v(r)| f Cr1+α. Since U1,j 2 v
is bounded and satisfies L(U1,j 2 v) = 0 in (0, 1), we know that U1,j = C1h+ v and
(6.4) follows.

Step 3. Completion of the proof.
Since D1 and D2 are strictly convex and symmetric in x1, . . . , xn21, it is easy

to see that ∂νxj g 0 in {xj g 0} and ∂νxj f 0 in {xj f 0}. Therefore, under
the assumptions of Theorem 1.6, xj is a subsolution of (1.2) in {xj g 0}, and is
a supersolution of (1.2) in {xj f 0}. Hence, u g xj in {xj g 0} and u f xj in
{xj f 0}. Then, |ū(x2)| g |xj | in B1 ¢ R

n21. Since Y1,j has the same sign as xj ,
we have

U1,j =

 

Sn22

a(ξ)ū(r, ξ)Y1,j(ξ) dξ g Cr

for some positive constant C. This implies C1 > 0. By (6.2) and (6.4), we have

(
ˆ

Sn22

a(ξ)|ū(r, ξ)|2 dξ
)1/2

g |U1,j(r)| g
C1

2
rα for 0 < r < r0,

where r0 is some small positive constant. Then, for any r * (0, r0), there exists a
ξ0(r) * S

n22 such that

|ū(r, ξ0(r))| g
1

C2
rα

for some positive constant C2. Since ū is the average of u in the xn direction, by
(1.9) with ε = 0, we have

|u(r, ξ0(r), 0)2 ū(r, ξ0(r))| f Cr2 sup
xn*(g(x2),f(x2))

|∂xnu(r, ξ0(r), xn)| f Cr.

Therefore, there exists a small constant r1 such that for any r * (0, r1),

|u(r, ξ0(r), 0)| g
1

2C2
rα.

We denote x0 = (r, ξ0(r), 0). For a sufficiently large constant C3, independent of
x0, we have, by Theorem 1.1,

∣∣∣∣u
(
x0
C3

)∣∣∣∣ f C

( |x20|
C3

)α

f 1

4C2
|x20|α.

Therefore, there exists an x on the line segment between x0 and x0/C3, such that

|'u(x)| g 1

C
|x2|α21

for some positive constant C depending only on n, a positive lower bound of the
eigenvalues of D2(f 2 g)(02), and upper bounds of ‖∂D1‖C4 and ‖∂D2‖C4 . This
concludes the proof. �
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7. The variable coefficients case

In this section, we study the insulated problem with variable coefficients in di-
mension n g 3: ù

üú
üû

2∂i(Aij(x)∂ju(x)) = 0 in ΩR0 ,

Aij(x)∂ju(x)νi = 0 on Γ+ * Γ2,

‖u‖L>(ΩR0
) f 1,

(7.1)

where Γ+ and Γ2 are given in (1.4), (Aij(x)) * Cγ(ΩR0), γ > 0 is symmetric and
uniformly elliptic with the Lipschitz constant σ, i.e.

Aij(x) = Aji(x), σI f A(x) f 1

σ
I.

We want to find a point x0 and a linear transformation l, so that after the linear
transformation, the coefficients Aij becomes δij at the point l(x0), and l(x0) is the

middle point of the closet points of Γ̃+ := l(Γ+) and Γ̃2 := l(Γ2). Then we can
apply Theorem 1.1 or 1.3 to get the gradient estimates.

When ε = 0, x0 is the origin, and l = C21(0), where C(x) =
√
A(x). When

ε 6= 0, by the change of variables
{
y2 = x2,

yn = xn 2 g(x2),
"(x2, xn) * ΩR0 ,

we may assume that g c 0. Then any linear transformation l (with no translation)

maps the lower boundary Γ2 to a hyperplane Γ̃2. It also maps the tangent plane

xn = ε/2 of the upper boundary Γ+ to the tangent plane of Γ̃+, which is paralleled

to Γ̃2 as the mapping is linear. Then l(enε/2) is the closest point on Γ̃+ to Γ̃2. Let
C(x) =

√
A(x) and Cn be the last column of C(x). We have the following Lemma.

Lemma 7.1. Under the settings above, let R =
:
n2 1ε/(2σ2), there exists x0 *

BR + {xn = 0} such that with the mapping l = C21(x0), l(x0) is the middle point

of the closet points of Γ̃+ and Γ̃2.

Proof. It is easily seen that the normal direction of Γ̃2 is given by Cn(x0). By
linearity, the distance from l(x0) to l({xn = ε/2}) is equal to the distance from

l(x0) to Γ̃2. Thus, it suffices to have l(x0 2 enε/2)‖Cn(x0). This is equivalent
to x0 2 enε/2‖C(x0)Cn(x0), where C(x0)Cn(x0) =: An(x0) is the last column of
A(x0). Thus, we only need to have

(x0)
2 = 2ε

2

(An(x0))
2

Ann(x0)
,

where (x0)
2 and (An(x0))

2 are the first n2 1 components of x0 and An(x0), respec-
tively. Now we define a mapping T on Rn21 by

Ty = 2ε
2

(An(y, 0))
2

Ann(y, 0)
.

Clearly, T is continuous. Since Ann g σ and |Ani| f 1/σ, for i = 1, 2, . . . , n2 1, we
have |Ty| f R for any y * BR. By the Brouwer fixed point theorem, T has a fixed
point (x0)

2 * BR. �
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After applying this linear transform and picking an appropriate coordinate sys-
tem, we reduce the problem (7.1) to the case when Aij(0) = δij . Therefore, Theo-
rems 1.1 and 1.3 apply.
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