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Jacobian determinants for nonlinear gradient of
planar co-harmonic functions and applications

By Hongjie Dong at Providence, Fa Peng at Beijing, Yi Ru-Ya Zhang at Beijing and
Yuan Zhou at Beijing

Abstract. We introduce a distributional Jacobian determinant det D Vg (Dv) in dimen-
sion two for the nonlinear complex gradient Vg(Dv) = |Dv|8 (vx,, —Vx,) for any g > —1,
whenever v € Wléc’z and B|Dv|' T8 ¢ Wlééz. This is new when B # 0. Given any planar co-
harmonic function u, we show that such distributional Jacobian determinant det DVg(Du) is
a nonnegative Radon measure with some quantitative local lower and upper bounds. We also

give the following two applications.

(i) Applying this result with § = 0, we develop an approach to build up a Liouville theorem,
which improves that of Savin. Precisely, if u is an co-harmonic function in the whole R?
with

1
liminf inf — lu(x) —cldx < o0,
R—o00 ceR R B(0,R)

thenu = b + a - x forsome b € R and a € R2.

(i1) Denoting by u, the p-harmonic function having the same nonconstant boundary condi-
tion as u, we show that det DVg(Duy) — det DVg(Du) as p — oo in the weak-* sense
in the space of Radon measure. Recall that Vg(Dup) is always quasiregular mappings,
but Vg (Du) is not in general.

1. Introduction

Let © be a domain (connected open subset) in R”. We say a function u € C%(Q) is
oo-harmonic if it is a viscosity solution to the co-Laplace equation

Aoou=D2uDu-Du=0 in Q.

The corresponding author is Hongjie Dong.

H. Dong was partially supported by the Simons Foundation, grant no. 709545, a Simons fellowship, grant no.
007638, and the NSF under agreement DMS-2055244. F. Peng was supported by China Postdoctoral Science Foun-
dation funded project (No. BX20220328). Y. Zhang was supported by the Chinese Academy of Science and NSFC
grant No. 11688101. Y. Zhou was supported by NSFC (No. 11871088 & No. 12025102) and by the Fundamental
Research Funds for the Central Universities.



60 Dong, Peng, Zhang and Zhou, Jacobian determinants

This equation was derived by Aronsson in the 1960s as the Euler-Lagrange equation for
absolute minimizers with respect to the L °°-functional

1
Fu,U) = H§|D for domains U &€ 2.

uP|

L)
See [1-3,5]. For a probability interpretation (via Tug-of-War) of the co-Laplace equation, we
refer the reader to [31]. Jensen [24] identified absolute minimizers with co-harmonic functions
and, moreover, built up their existence and uniqueness in bounded domains with continuous
boundary data. Since then, the regularity of co-harmonic functions has been a main issue in this
field. Recall that co-harmonic functions are always locally Lipschitz and hence differentiable
almost everywhere. In view of the co-harmonic function w = x‘l‘/ - xg/ > in R" given by
Aronsson [6], it was conjectured in the literature that co-harmonic functions have C L.1/3 and
also W24 regularity with ¢ < 3/2.

Towards this conjecture, Crandall-Evans [11] first obtained a linear approximation prop-
erty for any co-harmonic function u: at each point x and for any sequence {r; }jen converging
to 0, there are a subsequence {r}, }xeN and also a vector e depending on x and {7}, }xeN such
that

ulx +rjz) —ulx) .

lim  sup z| =0

k=00 zeB(0,1) Tjk

and |e| = Lip u(x), where and in the sequel the pointwise Lipschitz constant of u at x is defined

as
Lipu(x) = limsup Ju@) Zuol
X#y—x lx =y

The vector e was then proved to be independent of the choice of subsequence, which implies
that u is differentiable at any point x. See Savin [34] for dimension two based on a planar topo-
logical argument and Evans—Smart [20,21] for dimensions # > 2 via some PDE approach (flat-
ness estimates). In dimension two, Savin [34] further proved the C 1 regularity of u, and Evans—
Savin [19] obtained the C 1-%-regularity of u for some 0 < o < 1/3. Recently, it was proved
in [25] that | Du|* € W12 for any a > 0, which is sharp as @ — 0 as witted by xf/3 - xg/3.
Moreover, the distributional determinant of the Hessian, — det D?u, was proved in [25] to be
a Radon measure (in short, —det D?u € M(Q)) enjoying the lower bound

—det D?u > }D|Du|‘2dx
in measure sense, i.e.,
(1.1) /Q—detDzuw dx > /Q\D|Du||2¢ dx forall0 <y € CO(Q),
and also the upper bound

[ —det D?udx < C][|Du|2 dx forall balls B € Q.
5B B

2

Recall that, for any v € W,1-2(Q), the distributional determinant — det D?v is given by

loc
1
(1.2) / det D?vy dx = —/ (D?y Dv- Dv)dx
Q 2 Jq

1
- E/ |IDv?Ay dx  forally € C2(Q).
Q
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The main purpose of this paper is two-fold. First, via the distributional determinant of the
Hessian, we develop a new approach to build up a gradient estimate and a Liouville theorem for
planar co-harmonic functions. See Theorem 1.1 below. Recall that Aronsson [4] initiated the
study of such Liouville theorems by proving that planar co-harmonic functions of C?(R?)
must be affine functions. In the sequel, we denote by & the collection of affine functions
P(x) =b +a-x forsome b € R and a € R?. Evans [17] obtained an analogue result for oco-
harmonic functions of C*#(R") with n > 3. In all dimensions n > 2, Crandall-Evans—Gariepy
[12] showed that any bounded co-harmonic function in R” must be a constant, and also that any
oo-(sub)harmonic function in R” bounded from above by some affine function P must be given
by P. In the plane, from the C !-regularity and a compactness argument, Savin [34] proved that
any oo-harmonic function u in R? with the linear growth at oo (i.e., [u(x)| < C(1 + |x|)) must
be an affine function. However, a high-dimensional analogue is quite open.

We obtain the following interior gradient estimate and Liouville theorem in the plane, the
latter of which improves that of Savin [34] mentioned above.

Theorem 1.1. The following statements hold.

(i) Let u be an oo-harmonic function in a domain Q@ C R?. Then we have

C
|Du(x)| < —][ |u|dy whenever B(x,r) C €2,
r

B(x,r)

and hence
C
| Dul|go0(B(x,r)) = r_3||u||L1(B(x,2r)) whenever B(x,2r) C Q.
(ii) Let u be an oo-harmonic function in R? with

1
liminf inf — lu(x) —c|dx < oo.
R—oc0 ceR R B(0,R)

Thenu € P, i.e., u(x) = u(0) + a - x in R? for some vector a € R2.

Our approach of the proof of the Liouville theorem is completely different from that of
Savin [34]. The crucial point is that, given any co-harmonic function u in a planar domain €2,

* in Lemma 2.2, we derive the identity
/ (—det D2u)u?y dx = —/ | Dul*y dx —/ |Du|?*(Du - Dy)u dx
Q Q Q
1
+ 5/ u?[|Du|> Ay — D*y Du - Du] dx
Q

for all y € C2°(2), which implies Theorem 1.1 (i);
* in Proposition 2.5, we obtain an upper bound which improves the one in [25],

)
r L>(B)

Hu—P

| [1PP1+ ]
r llLeo(B)

/ —det D*udx < C inf
%B PepP

for all balls B = B(x,r) € 2.



62 Dong, Peng, Zhang and Zhou, Jacobian determinants

Both results have their own interests. These, together with (1.1) and some basic properties,
allow us to obtain Theorem 1.1 (ii). In particular, we obtain an improved Caccioppoli-type
estimate: whenever B(x,2r) € €2,

/ |D|Du||dz < C inf][ |Du — DP|*dz.
B(x,r) B(x,2r)

Pep

This is better than the one in [25] as we can subtract a constant vector field in the integrand
on the right-hand side of the inequality above. However, on the left-hand side, we only have
D|Du| due to the degeneracy of the equation, for which heuristically there is only one direction
of the Hessian of u. See Section 2 for details. We remark that, once a global Lipschitz bound
of u is obtained, one can also appeal to the result in [34] mentioned above to conclude that u
must be an affine function.

Next, inspired by the limiting behavior of planar p-harmonic functions (see the end of
this section for details), we are interested in the Jacobian determinants of the nonlinear complex
gradient

Vg(Du) = |DulP (uy,, —ux,) with p > —1

for planar co-harmonic functions. In the special case B = 0, det DVy(Du) = —det D?u is
already defined by (1.2) as a distribution. However, in the general case  # 0, since the Sobolev
regularity of | Du |ﬂ Du is quite open, there is no appropriate definition for

det DVg(Dv) = —det D[|Dulf Du]

available in the literature. In this paper, we find out the following distributional definition,
which has its own interest.

Definition 1.2. Let 2 C R? be a domain. For any 8 > —1 and v € W,!?(Q) satisfying
B|Dv|B+! € Wlééz (€2), we define det DVg(Dv) as a distribution by

(1.3) /detDVB(Dv)de
Q
= —1/ |Dv|2ﬂ(D2w Dv - Dv)dx
2 Ja

/ |Dv|*2 T2 Ay dx
Q

/[D|Dv|ﬂ+1-Dv](Dv-D¢)|Dv|ﬂ—1dx
Q

+

2842
__P
B+1
for all y € C°(Q).

Compared to (1.2) in the case when 8 = 0, we need the additional assumption
|Du|'tP e Wl2(Q)

in the case when 8 # 0.
Before using Definition 1.2, we must first verify that it makes sense. To be precise, if
Vg(Dv) € W 1-2(Q) a priori, then we have a pointwise defined Jacobian determinant

loc
det DVg(Dv) € Ly ().
On the other hand, since Vg(Dv) € W,1;2(Q) implies |Dv|'*# € W}:2(Q), Definition 1.2

loc
gives a distributional Jacobian determinant det DVg(Dv). One has to show the coincidence
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between the pointwise definition and the distributional definition of det DVg(Dv). In the case
when 8 = 0, such coincidence is well known. Indeed, such coincidence holds for smooth func—
tions v € C3(R) directly via the divergence of structure of —det D?v, and for v € WIOC ()
via a standard approximation argument and linearity of Dv and D?v. However, in the gen-
eral case when 8 # 0, due to several essential difficulties caused by the nonlinear structure of
Vg (Dv), essentially new ideas are required to get such coincidence. Eventually, we are able to
prove such coincidence via

* a nonlinear second-order estimate to inhomogeneous (8 + 2)-Laplace equations given
by Cianchi-Maz’ya [10],

* a fundamental structural identity and a divergence structure for
B
—det D[(|Dv|* + ¢)2Dv] withv e C®(Q)ande > 0
(see Lemmas 3.7 and 3.2),

* a divergence structure of —det D?v with v € C® and its connection with Agov (see
Lemmas 2.1 and 3.6).

See Section 3 for the proof. In Section 4, we present some useful properties of the distributional
det DVg(Dv).

For any planar oo-harmonic function u and any g > —1, since |Du|f+1 € W12 as
proved in [25], the distributional Jacobian determinant det DVg(Dv) is defined by (1.3). Re-
calling that D|Du|+!. Du = 0 almost everywhere (see [25]), for any V¥ € C°(R2), one
has

(1.4) f det DVg(Du)y dx = —%/ |Du|*#(D?y Du - Du) dx
Q Q

+

2 +2/ |Du|*P 2 Ay dx.

We then obtain the following result.

Theorem 1.3. Let Q@ C R? be a domain, and let B > —1. For any co-harmonic function
u in 2, we have det DVg(Du) € M(S2) with the lower bound

1
(1.5) / detDVB(Du)wdxzﬂ+1/|D|Du|ﬁ+1|2wdx forall0 <y € C2(Q)
Q Q

and the upper bound
(1.6) [ det DV (Du) dx < C(l + — ][ |Du|>*2B dx  forall balls B € €2,
5B
2
where C > 0 is a universal constant.

We prove Theorem 1.3 in Section 5. By using Lemmas 2. 1 3.6,3.7, 4.1, and 4.2, we
build up some analogue lower and upper bounds for exponential e 2¢/€”_harmonic functions u®
in U € 2, which are uniform in ¢ € (0, 1). As a consequence, we conclude that

det DVg(Du) € M(U)
and det DVg(Du®) — det DVg(Du) in the weak-* sense in M(U).
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Our original motivation of Definition 1.2 and Theorem 1.3 is to study planar p-harmonic
functions u, and their limiting behavior as p — oo. A function v € Wléép (2) is called p-
harmonic if it is a weak solution to

Apv = div(|Dv|?2Dv) =0 inQ.

See [32] for a probability interpretation by using Tug-of-War with noise. We refer the reader
to Iwaniec—Manfredi [23] and Aronsson [7] for the C ke and Wll(f:r ’q—regularity of u, with
optimal k, &, and ¢. In the literature, the interior regularity of p-harmonic functions in any
dimension has been extensively studied. See [8, 13,14, 16,26,29,30,33,35-37].

Moreover, for each B > —1 and 1 < p < oo, the nonlinear complex gradient Vg(Dup)

is well known to be a quasiregular mapping. Precisely, Vg(Dup) € Wlééz (£2) and

(1.7) |DVg(Dup)|? < [K(p B+ (; ﬁ)]detDVg(Dup) ae. inQ,
where | ,3 41 :
K(p,mzmw{ﬁ”_1 B+ ﬁ+1}

which leads to a pointwise defined Jacobian determinant det DVg(Dup) € LIOC(Q). We refer
the reader to Bojarski—-Iwaniec [9], Manfredi [29], Iwaniec—Manfredi [23], and Aronsson [7].
See also Lemma A.3 and Remark A.4 for the sharpness of the constant in (1.7) by using some
construction in [23].

Studying the Jacobian determinant and the corresponding Beltrami equation of

P
f =z = S ux —iuy)

when u is a p-harmonic function leads to the optimal regularity of p-harmonic functions in
the plane [23]. In a follow-up paper [15], the case for co-Laplacian was studied under an extra
assumption that the solution is C2. It was pointed out in [15, page 237] that if their calculation
was formulated rigorously in the general setting, then the optimal regularity of oco-Laplacian
would be C L % . Especially, one of the key problems is how to define (variants of) the Jacobian
determmant of f = uz for co-harmonic functions.

In this paper, we obtain the following lower and upper bounds, where the constant is
uniform in p > 2 and hence is quite different from the above quasiregular properties.

Theorem 1.4. Let B > —1 and 1 < p < oo. For any p-harmonic functions u, in a
given planar domain 2, one has the lower bound

min{l, p — 1}

det DVg(D >
€ g(Dup) = B+ 1

|D|Du, P

and upper bound

1 1
det DVg(D dx < C|1
/IBe ,3( up)dx < [+1+,8+ —1,3+1

2

][ |Dup 212 dx

forall balls B € Q.
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Theorem 1.4 will be proved in Section 6 based on the approach in [25], Lemma 3.7,
Lemma 2.1, Lemma 3.6, and Lemma 3.2. Note that the case B = 0 was already given in
a similar but simpler way by Lindgren—-Lindqvist [27] via the approach in [25].

If p-harmonic functions u, in a bounded smooth domain €2 have the same boundary
data g € C%1(0R2), then by using the variational approach and Jensen [24], there is a func-
tion ueo € C%1(R2), which is the unique co-harmonic function with boundary data g, so that
Up = Ueo IN C%%(Q) for any « € (0, 1) and weakly in WIACQ(Q) forany 1 < ¢ < oc.

Recently, based on the approach in [25] and Theorem 1.4 with 8 = 0, Lindgren—Lind-
qvist [27] deduced that u, — U in WI;C"I(SZ) for any 1 < g < co. However, even though
we already know that 1, € C1(Q) and C1*(Q) for some 0 < a < 1/3 (see [19, 34]), it
remains open whether 1, — uqo in either C1(R2) or C 1:¥(Q). We also observe that, from p-
harmonic to co-harmonic functions, the best possible regularity has a huge jump. For example,
one always has u), € Wl3 ! but does not necessarily have us, € le 3/2,

Because Duy, — Duco in LqOC(Q) with 1 < ¢ < oo, for B > —1, the limit of mappings
Vg(Dup) as p — oo is naturally expected to be the mapping Vg(Ducso) in certain sense.
However, since K(p,f) — oo as p — oo, one cannot expect that Vg(Duo) is a quasireg-
ular. Indeed, we do not necessarily have Vg(Duoo) € Wlécz (2) as witted by Aronsson’s co-
harmonic function xl/ 3 4/ 3. Moreover, the W1 1—regularlty of Vg(Dueo) is quite open
and very difficult even in the case special when 8 = 0, and a pointwise Jacobian determinant
det DVg(Du o) is unavailable.

Instead of the pointwise one, in the case when 8 = 0, we already have the distributional
Jacobian determinant det DVp(Duso) = —det D%u as in (1.2). Because Du, — Duy in
(£2), one has

loc

det DVp(Dup) — det DVp(Duoo)

in the sense of distributions. Since det D Vy(Duso) Was proved to be a Radon measure in [25],
it is naturally expected that det DVo(Dup) — det DVy(Duo) in the weak-» sense in M (£2).
In the case when 0 # 8 > —1, it is a basic question whether the limit

pll)nolo det DVg(Duyp)

exists in certain sense. If so, it is expected to be given by det DVg(Du o). However, unlike
the case B = 0, a distributional definition for det DVg(Duco) is unavailable in the literature.
This leads us to introduce the distributional det DVg(Dwv) as in Definition 1.2 and build up
Theorem 1.5 below, which answer these questions.

Theorem 1.5. Given any B > —1, as p — oo, one has that Vg(Dup) — Vg(Duso) in
lOC(Q)for any q > 1, and also that det DVg(Dup) — det DVg(Duco) in the weak- sense
in M(S2), that is,

/detDVﬁ(Duoo)de= lim / det DVg(Dup)yr dx foraIZWECg(Q).
Q p—=0 Jq

Theorem 1.5 follows from Theorems 1.3 and 1.4, and the convergence Du, — Duo in
(2) with 1 < g < oo as given in [27]. See Section 6 for details.

loc
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2. Proof of Theorem 1.1
We begin with the following divergence structure of —det D?v for v € C.
Lemma 2.1. Forany v € C°°(R2), one has

1
(2.1 —det D?v = —[|D?v]? — (Av)?] = 3 div(D?v Dv — Av Dv)

N = N =

[A(IDV[?) = (vx; Vx, )y, -
Consequently,
(2.2) /Q —det D%vyr dx
= —%[Q[Dzv Dv — Av Dv]- Dy dx

_ %/ (DAY — Dy Dv-Duldx forall y € C2(R).
Q

From this, we deduce the following formula for (—det D?u)u? for co-harmonic func-
tions u in  C R2. Since u always enjoys locally Lipschitz regularity (see Jensen [24]), by
Rademacher’s theorem, u is differentiable almost everywhere, and hence, for almost all x € €2,
the derivative Du(x) exists and Lipu(x) = | Du(x)|. Moreover,

| Du|zooy = sup Lipu(x) forany domain U C Q.
xeU

As such, when there is no confusion, we slightly abuse the notation by writing Lip u instead
of |Du|. We remark that, even though u is known to be everywhere differentiable (see Evans—
Smart [20, 21]) and also C 1-regular (see Savin [34]), all the results in [25] and also all our
results and proofs below do not rely on either the everywhere differentiability or the C!-
regularity of u.

Lemma 2.2. [fu is oco-harmonic in 2, then for any € C2°(2), one has
(2.3) / (—det D2u)u?yr dx +/ | Du|*y dx
U U
= —/ | Du|*>(Du - Dy)u dx
U

1
+§/ w?[|Dul? Ay — D*y Du - Du] dx.
U

Proof.  The proof is divided into the following two steps.
Step 1. Givenany v € C%(U) with U € 2, we show that
2.\,,2 3 2 4
2.4) (—det D“v)v°Yydx = —= | (D|Dv|*- Dv)vydx — | |Dv|"¢¥ dx
U 2 Ju U
— / |Dv|>(Dv - DY)vdx
U

1
+5/ v2[|Dv|?Ay — D2y Dv - Dv]dx.
U
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Indeed, by (2.1), one has

1
/ (—det D2v)v2y dx = —/ D?v Dv - [v Dvy + —szW] dx
U U 2 |
+/ Av Dv - [v Dvy + —UZDW] dx.
U 2
Note that

1 1
—/ D?vDv - [v Dvy + —UZDW] dx = ——/ (D|Dv|?* - Dv)vyr dx
U 2 2Ju
1
——/ (D|Dv|? - Dy)v?dx,
4Ju
where, using integration by parts,
1 1 1
——/ (D|Dv|? - Dy)v? dx =[ [—|Dv|2Aw u2+—|Du|2(Du.Dw)v] dx.
4 Ju uléd 2
Moreover, integration by parts yields
15
Ava-[vaw—i——v Dtﬂ]dx
U 2
1
= —/ Dv - D(|Dv|*vy + EUZDU -Dyr)dx
U
2 4 1 2 2
z—/(Dle| -Dv)vl//dx—/ |Dv| wdx——/ v°D|Dv|* - Dy dx
U U 4 Ju

1
—/ [2v|Dv|2Dv -Dy + Eszzw Dv - Dv] dx
U

1
:_/ (D|Dv|2-Dv)vwdx—/ |Dv|41ﬁdx+—/ V2| Dv|> Ay dx
U U 4 Ju
3 1
—/ [—v|Dv|2Dv-Dw + —v2D?%y Dv-Dv] dx.
vlk2 2
Combining these, we conclude (2.4).

Step 2. Given any smooth subdomain U € Q, let u® € C*®(U) N C°(U) be the solu-
tion to

& 1 &
div(e2e!P¥ 7 Dyfy = —e26 PP (A i + & Auf) =0 with u® = u on dU.
€

Given any ¥ € C2°(U), we observe that
/ (—det D?u)u?y dx = lim / (—det D2u®)(u®)?y dx.
U e—=>0 Ju
Indeed,
|/ (—det D2u)u?yr a’x—/ (—det D%u®)(u®)y dx)
U U
< ‘/ (— det D>u)u?y dx —/ (— det D%uf)u?y dx‘
U U

+ ‘/U(— det D2u®)[u? — )y dx‘.
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By the definition of —det D?u (see [25, Theorem 1.5] and also the proof of Theorem 1.3
below), the first term goes to 0 as ¢ — 0. The second term is bounded by

[[det D*u® ”L1 (supp ¥) | (u8)2 - u2||L°°(supp ¥)-

By using the fact —det D?u® € LIIOC(U) uniformly in small ¢ > 0 (see [25, Theorem 1.5] and

also the proof of Theorem 1.3 below), the second term also goes to 0 as ¢ — 0.
Applying (2.4) proved in Step 1 to u®, one has

| - detD?ut) 2y ax
U
_ —%/{;(D|Du8|2 . DuS)u&‘w dx _ /(‘]|Du8|4w dx

—/ | Dué|>(Duf - DY )u® dx
U
1
+ 5/ W®)?[|Dué|? Ay — Dy Du® - Du®]dx.
U

Since D|Duf|?> — D|Dul|? weakly in LIZOC(U) and u® — u in Wl;(;q(U) forany 1 < ¢ < o0
(see [25]), sending & — 0 above and noting that D|Du|? - Du = 0, one has the desired iden-
tity (2.3). m]

Consequently, one has the following lemma.

Lemma 2.3. Ifu is co-harmonic in 2, then

(2.5) / (—det D*u)u® dz + | Dulja gy )
B(x,r) ’
=< r_4||u”24(B(x,2r)) whenever B(x,2r) C Q.

In particular, one has

C
(2.6) ||Du||L4(B(x,r)) =< 7||u||L4(B(x,2,)) whenever B(x,2r) C Q.

Proof. Let¢ € C2°(B(x,2r)) be a cut-off function satisfying
C

27) ¢ =1linB(x.r). 0<¢ <1inB(x.2r), |D$|*+|D?¢| < — in B(x.2r).
r

Taking ¥ = ¢* in (2.3), one has

[ (—det D2u)u?¢p* dz +/ |Dul*¢* dz
B(X,ZI‘) B(x,2r)

= —/ |Du|*>(Du - D¢p*)u dz
B(x,2r)

1
+ —/ u?[|Dul?>A¢p* — D?¢*Du - Du]d:z.
2 B(x,2r)

By Young’s inequality, the right-hand side of the above identity is bounded by

1

—/ |Du|4¢4dz+c/ W'l DYI* + 62 D?¢|?] d-.
2 B(x,2r) B(x,2r)

s
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Thus,

/ (—det D>u)u?p*dz + / |Du|*¢p* dz
B(x,2r) B(x,2r)

< C/ ul* I Dg|* + 62| D?9I?) dz.
B(x,2r)

which together with (2.7) gives the desired (2.5). Finally, since — det D?u > 0 (see [25]), (2.6)
follows from (2.5). O

From Lemma 2.3 and some basic properties of co-harmonic functions, we are able to get
the following gradient estimate in Theorem 1.1 (i).

Proof of Theorem 1.1 (). Since u — ¢ is also oo-harmonic for any constant ¢, by Lem-
ma 2.3,

C
1Dl LBy = lu —cllLaer,ar) foralle €R

whenever B(x,2r) C €2. Note that

1 3
”u - C||L4(B(x,2r)) <C ”u - C”zl(B(x,Zr))”u - cl|2°°(B(x,2r))'

Taking ¢ as the average of u in B(x,2r) and applying the Sobolev—Poincaré inequality, one
has

= ellzoe(peeary = €2 1DUl a2
and hence
5 1 3
[ Dullzscpeery = CrmFullpa g o 1P Laairary):
This and Young’s inequality yield that, for any ¢ € (0, 1), one has
r3 | Dullapex,ry) < or3 [ Dullp2(B(x,2r)) + Cellull L (B(x,2r))-

Via a standard iteration argument (see, for instance, [22, pp. 80-82]), we conclude that

5
r2||Dullpageo.r) < ClullLi(s.2r)-

Applying Morrey’s inequality, for any ball B(x,2r) C @ and anyy € Q with |x — y| = r, by
the above, one has

1 C
lu(x) —u()| < |x = yI2[1Dull 4B x.r)) = r—3|x =yl (Bx,2r))-
One obtains
C C
u(y) — r—3|x = ylllullpr(Bex,2r) < ux) <u(y) + r—3|x —yllullL1(Bx,2r))

in d(B(x,r) \ {x}) and then, by the comparison property with cones, in B(x,r). Since u is
differentiable at x (see [21]), this yields that

C
|Du(x)| < —][ lu|dz.
r

B(x,2r)

Theorem 1.1 (i) is proved. O
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Remark 2.4. Let u be an oo-harmonic function in  C RZ2.

(1) It was shown by Lindqvist and Manfredi [28] that

2 .
[Du(x)| < ;llullLoo(B(x,r)) in B(x,r) C Q.

Theorem 1.1 (i) shows that 2||u|| .00 (B(x,r)) can be relaxed to the average C J[B(x ) lu|dx.

(ii) Via directly working on —det D?u® for the ¢2¢€1” _harmonic function u® and some te-
dious calculation, it was shown in [25, Theorem 1.5] that, for any p > 2,

C(p)
-

| Dullrr(B(x,r)) < lullLr(B(x,2r)) Whenever B(x,2r) € Q.

In the case when p = 4, we derived a formula for (— det D?u)u? in Lemma 2.2, simpli-
fying the argument and calculations in [25]. See Lemma 2.3 and its proof.

The following is crucial to prove Theorem 1.1 (ii). Recall that
P={b+a-x:beR, aecR?.

Proposition 2.5. Ifu € C%(Q) is an co-harmonic function in a planar domain , then
i)
r Lo°(B)

[ —det D*udx < C inf
1B

Hu—P
Pep

To prove this proposition, we need the following, which was proved by the comparison
property with cones (see [12, Section 2]). For the reader’s convenience, we briefly recall their
proof below.

Lemma 2.6. [fu is co-harmonic in B(0,2r), then

| ]
r Loo(B(0,2r) ]

28 Dty oo <'f[DP 2”
(2.8) | Du|z, (B(o,r))_Plfelfl | +

Proof. Given any P(x) =b +a-x € P, write A = |[u — P||po(B(0,2r))- Given any
x € B(0,r), for any y € R? with |[x — y| = r, we have y € B(0,2r) and

lu(y) —ux)—a-(y =x)| < |lu(x) —b—a-x|+ [u(y) —b—a-y| <22,
which implies that
A
u(y) Su0)+a- (=) + 24 <u() + (lal +25 ) x =y,
A
u(y) z u(x) +a- (y=x) =22 = u(x) = (jal + 2 )lx = yl.
Applying the comparison property with cones, one has
A
() —u(@)| = (Jal +2% )l = y| forall y € Blx.r),
r

which implies that | Du(x)| < |a| + 2A/r, so (2.8) follows. m
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The following property was observed in [21]. For the reader’s convenience, we give the
proof below.

Lemma 2.7. [fu is co-harmonic in B(0,2r), then for any P € P, we have

][ |Du — DP|?
B(0,r)

Proof. By considering u(rx)/r and P(rx)/r € &, we may assume that » = 1. Write
A = |[u — P||Loo(B(0,2))- If A > |DP|, then by Lemma 2.6, one has

L0 (B(0,2r)) [l Loo(B(o,zr))]'

][ |Du — DP|?dx < ][ 2[|Du|? + |DP|?] dx
B(0,1) B(0,1)

< 2[(|DP| +21)* + |DP|?] < 2012,
Below, assume that 0 < A < |DP|. Set

u p
— , — = =v-— 0o < 1.
DP| 0= DP| W= 0P [v—QllLee(B(0,2))
Then |DQ| = 1. Up to a rotation, we may assume DQ = e;. It then suffices to show
(2.9) ][ |Dv —es]?dx < 16p.
B(0,1)

Indeed, this implies that
][ |Du — DP|?dx < 16A|DP|,
B(0,1)
as desired
To see (2.9), by (2.8) and . < 1, one has
|Dv(x) —es|? = |Dv(x)|? —2uy, +1 (1 + 21)? + 1 —2vyx,

<2+ 4p + 4p = 2uy,
<2(1 +4p —uy,).

‘We therefore obtain

/ |Dv(x) — es]? dx 52/ (1 +4p —vyx,)dx
B(0,1) B(0,1)

V=312
—2/ / [1 +4u — vy, ] dxs dxy.
lxi|<1

A/ 1=1x1]?
Note that
W 1=lx1]?
1 +4u — d
_m[ + 122 sz] X2

=2(144p) /1 — |x1]% = [v(x1, /1 = |x1]2) = v(x1, —y/1 = [x1]?)]
=8/ 1 —|x12 = {[v(x1, /1= [x12) = O (x1, /1 = [x1/?)]

— [, =1 = [x1]?) = O(x1, —y/1 = [x1?)]}
< 8u.
We therefore obtain (2.9). O
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We are ready to prove Proposition 2.5.

Proof of Proposition 2.5. Let u be an co-harmonic function in a planar domain 2. Fix
any xo € Q2 and r > 0 so that B(xg,4r) C Q. Let P € #. Without loss of generality, we
assume that xo = 0. By Lemma 2.7, we only need to prove

(2.10) / —det D?udx < C inf ][ |Du — DP|? dx.
B(0,r) Pe? JB(0,2r)

Note that D?v = D?(v — P), and hence
—det D?v = —det D?(v — P)
for any smooth function v. The distributional definition of —det D?v then must coincide with
that of —det D?(u — P), i.e.,

/ (—det D?u)¢p? dx = 1/ [|D(u— P)|>?A¢p? — D%¢>D(u — P)- D(u — P)]dx
Q 2 Jq

forall ¢ € CZ°(K2). Thus,
/ (—det D?u)¢p? dx < C/ |Du — DP|*(|D?¢||¢| + |D$|?) dx
Q Q

for all ¢ € C2°(2). Since —det D?u > 0 as proved in [25], by a choice of cut-off function ¢
as in (2.7), we have (2.10). D

To prove Theorem 1.1 (ii), we also need the following result by Crandall-Evans [11].

Lemma 2.8. If u is co-harmonic in R? and Lipu(xg) = [ Du| oo (r2) < 00 for some
X0, thenu € P, i.e, u(x) =b+a-xin szorsome b €Randa € R2

This allows us to get the following, via some argument much similar to that for the linear
approximations in [11]. We give the details here for the reader’s convenience.

Lemma 2.9. Let u be an oo-harmonic function in R? with 0 < | Dullpoor2) < 00.
Then there exist a subsequence {m;}jen C N and a vector a € R? such that
u(m;x
(2.11) lim  sup ulm;x) _
/= pBo.4)! Mj

a-x|=0.

Proof. Without loss of generality, we may assume that u(0) = 0. Write
1
Upm(x) = —u(mx) form € N.
m

Since || Dum||f00r2) = [[Dullpoo(r2) < 00, we know that {us}meN is equicontinuous and
locally uniformly bounded in R2. Thus, there exists a subsequence {m j+ C N such that uy,,
converges locally uniformly to some continuous function w € C°(R?) with w(0) = 0. More-
over, since || Dupm || oor2) = || Duf00(r2), One has

) = wO)| = M i, () = tm, (] < | Dull el = y| forall x.y € R?
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and hence || Dw||p0or2) < [[Dul|p00(r2) < 00. Due to the compactness of viscosity solutions,
w is an oco-harmonic function in RZ. To see (2.11), it suffices to prove

This allows us to apply Lemma 2.8 to get that w(x) = a - x in R? for some a € R?. Hence
Um; converges locally uniformly to a - x, that is, (2.11) holds.
Finally, we show that Lipw(0) = || Dw/| .o (g2). We always have

Lipw(0) < [[Dw/| 00(r2)-

To see the converse, recall that w has the linear approximation property at 0, that is, for
any sequence {7, };eN converging to 0, there are a subsequence {r;, }xen and also a vector
e depending on {rj, }xen such that

. w(rj, z
k=00 zeB(0,1)! Tk

e-z| =0
and |e| = Lip w(0). Therefore, for every A > 0, there exists an r) € (0, 1) such that

1
sup —|w(x)—e-x| < A.
B(0,2r;) T'A

On the other hand, since up; — w uniformly in B(0,2), there exists j, such that, for any
7=

lum,; (z) —w(z)| < Ary forall z € B(0,2).
Therefore,

1
sup  —|um, (x) —e- x| <24,
B(0,2ry) TA

or equivalently,

sup
B(0,2m;ry) 2T

[u(x) —e-x| <A.

By (2.8), one has |Du(x)| < |e| 4 4A for all x € B(0,m;r;). By sending j — oo, we also
have this inequality for all x € R?. By the arbitrariness of A > 0, we have |e| > || Du|| Loo(R7)
and hence Lipw(0) > || Du||z0o(wrn), as desired. o

Proof of Theorem 1.1 (ii). Let u be an co-harmonic function in R? with
NP |
liminf inf — [u(x) —c|dx < oo.
R—oo ceR R B(0,R)

For any ¢ € R, since 4 — ¢ is an co-harmonic function in R2, by Theorem 1.1 (i), one has
1
| Du|lpoo(B0,R/2)) = C—][ |lu(x) —c|dx forall R > 0.
R JB(o,R)
Thus,

1
| Dul|oo(B0,R/2)) < C inf — |lu(x) —c|dx forall R > 0.
(B(0,R/2)) cek R J500.0
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This implies
1
| Dullpoor2y = 11m1nf||Du||Loo(B(0 R/2)) = l}emmf inf — [u(x) —c|dx < oo.

—o00 ceR R B(0,R)

We assume that || Dul|po(r2) > 0 because otherwise u is a constant. By Lemma 2.9,
there exist a subsequence {m; }jcny C N and a vector a € R? such that

u(m;x)
(2.12) lim sup |—— —a- x’ =0.
j—=o0p(o,4)! Mj

From (2.12), (1.1), and Proposition 2.5, we deduce
/ ‘D|Du||2dx§C/ —det D%u dx
R2 R2

= C lim —det D?u dx
J =00 B(O,m_,-)

u(m;x) ‘oo

<C lim sup ‘

J 70 xeB(0,4)! Mj

Thus, |Du| is a constant almost everywhere, and hence || Du|| 002y = [Du(xo)| for some
xo € R2. By Lemma 2.8, we have u € & and hence u(x) = u(0) + a - x. o

3. A discussion of Definition 1.2

To see that Definition 1.2 makes sense, one must prove the following Proposition 3.1,
which reads that, for any g > —1, if v € W1 1(Q) and |Dv|BDv e W1 2(Q) then it fol-
lows that —det D[|Dv|® Dv] is defined almost everywhere, —detD[|Dv|ﬂDv] € LIIOC(Q)
and — det D[|Dv|® Dv] has a distributional representative as proved in Proposition 3.1 below.

Proposition 3.1.  Forany f > —1, ifv € W,1:1(Q) and | Dv|B Dv € WL2(Q), then

(3.1 /—detD[|Dv|ﬂDv]1//dx
Q
:—l/ |Dv|*#(D?y Dv - Dv) dx
2 Ja

D 25+2A d
+2/3+2/| v| Ydx

ﬁ+1/[D|Dv|ﬂ+1 Dv](Dv - Dy)|Dv|P~! dx

forally € C(RQ).

When > —1 and 8 # 0, the assumptions v € WléC’I(Q) and |Dv|# Dv € Wléc’z(Q) are
minimal regularity conditions on v to guarantee that the right-hand side of (3.1) is finite. Under
such minimal regularity, a pointwise definition —det D[|Dv|? Dv] may not be available, but
thanks to Proposition 3.1, we could use the right-hand side of (3.1) to define — det D[| Dv|# D]
in the distributional sense, as we did in Definition 1.2.

In the remaining part of Section 3, we will prove Proposition 3.1 by leveraging four
auxiliary lemmas, namely Lemmas 3.2 through 3.5. The proofs of Lemmas 3.2 and 3.5 are
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presented in Sections 3.1 and 3.2, respectively. These proofs necessitate the introduction of
several new concepts and approaches.

Recall that, in the case when 8 = 0, Proposition 3.1 follows from (2.2) and a stan-
dard approximation via smooth functions. Indeed, denote by {7¢}c¢(0,1] the standard smooth
mollifier

(3.2) ns(x) = e 2n(ex), where n € C®(B(0, 1)) satisfying
n>0 and / ndx = 1.
B(0,1)

Given any v € ngéz(Q), we know that (2.2) holds for v * .. As ¢ — 0, since
—det D% (v % 1) = —det[(D?v) % 1] > —det D?v in LIIOC(Q),
D *ne)l> — D> in Li(Q).
D(w=*ng) @ D(v*n,) > Dv® Dv in LIIOC(Q),

we know that (2.2) holds for such v.

Below, we consider the case when 8 # 0. First, we note that, for any v € C°°(£2), in the
case when 8 > 0, one has [Dv|[f Dv € W1 2(Q) but when —1 < 8 < 0, we do not necessarily
have | Dv|# Dv € W1 2(SZ) Indeed, if u)(x) = xl in R, then a direct calculation leads to

ID[IDw|? Dw]l> = 4(8 + D*x1[?# when x; # 0,
which does not belong to L]IOC (R?) when B < —%. For this reason, when 8 < 0, we consider
B
—det D[(|Dv|* + €)2 Dv] withe > 0.

We have the following result, whose proof is postponed to Section 3.1.

Lemma 3.2. Let v € C®(Q2). Given any B > 0 and ¢ > 0, or given any B € (—1,0)
and € > 0, one has

(3.3) / —det D[(|Dv|? + €)% D]y dx
Q

= —% /Q(|Dv|2 + &) (D2y Dv - Dv) dx

2 B+1
2,3+2/(|Dv| + &)’ T AY dx

/(|Dv|2+8) N [D(|Dv|2+8) Dv]

,3+1
x (Dv-Dvy)dx

forally € CZ°(R).
We also have the following two divergence structural formulae.
Lemma 3.3. Letv € C*°(2). Forany e > 0and 8 > —1, one has, for any € CZ°(2),
/Q —det D[(|Dv|* + s)gDv]glf dx

/{[(|Dv|2+s)2vx21x2<|Dv|2+a)zvxlvfxl
— (DU + &) T vyl (IDV2 + £) 20y, Yy } dix
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Proof. Write F = (|Dv|? + s)g Dwv. By integration by parts, one has
| = et @Eydx = = [ [y (B, = (Fi)as (Fabe I

- /Q [F1(F2)xa Ve, dx — Fi(Fa)w Vras] dox,

as desired. O

Lemma 3.4. Letv € WL1(Q) satisfy |Dv|P Dv € WL-2(Q) for some B > —1. One has

loc loc
/—detD[le|BDv]¢dx
Q
= /Q [(IDVIPvsy)xs | DV vy, ¥k — (1D VP sy )y D[P o, Yy ] dix
forally € C°(RQ).

Proof. For ¢ >0, let F® = (F}, F}) = (|Dv|BDv) x n, € Co2(82), where 7, is the
standard smooth mollifier as in (3.2). By | Dv|# Dv € W 1-2(Q), we know that F€ — |Dv|# Dv

loc

in W 1.2(Q) as ¢ — 0. By this, integration by parts and (F3)x1x> = (F§)x,x,, We have

loc
[—det(D[|Dv|ﬂDv])1ﬂdx
Q
= lim | —det(DF®)y dx

e—>0 J

= lim [ [(FE) ey (F) ey — (F)y (F) s, 0 dx
e—=0 Jo

= liny [ [F{ (P, dx = FECED s ] d

/Q [(DIP v )(IDIP vy )y Yy dx = (|D0P v ) (I D[P vy )y Y]
for any ¥ € C2°(£2). Hence we complete this proof. O

Moreover, we need the following approximation result. Given any 0 # 8 > —1, let
ve Wk (Q) satsfty |DvfDve wl2(Q).

Write
g :=div(|Dv|P Dv) € L2 ().

Given any B = B(xo,r) € 4B € Q, one has g € L?(4B). For any ¢ € (0, r], set
g%(x) := g * ne(x) forall x € 3B,
where {7¢}¢e(0,1] is the standard smooth mollifier as in (3.2). Note that
g€ C®(3B), g°e L*(3B) uniformlyine € (0, ],

and g¢ — g in L2(3B) as ¢ — 0. Since |Dv|# Dv € W'-2(4B), by the Sobolev embedding
theorem, we have |Dv|# Dv € L9(4B), and hence v € W14 (4B), for any 1 < ¢ < co. Con-



Dong, Peng, Zhang and Zhou, Jacobian determinants 77

sider the Dirichlet problem for the inhomogeneous (2 4+ 8)-Laplace equation
(3.4) div((|Dw[? + )2 Dw) = g°in2B. w = v ond2B).

There exists a unique smooth solution v¥ € C®°(2B) N W12tB(2B) N C°(2B) to (3.4). The
following convergence result plays a key role in the proof of Proposition 3.1. Its proof is post-
poned to Section 3.2.

Lemma 3.5. We have
Dvé — Dv in L>*P(2B) as s — 0;
3.5) [|Dve% + ]2 Dve € WY2(2B)  uniformly in ¢ € (0, ],
[|Dve]? + 8]gDv8 — |Dv|PDv in LY(B) forany q € (1, 00) and
weakly in W12 (B) as ¢ — 0;

(3.6) [[DvE|? + 8]% e WY2(B)  uniformly in e € (0, r],

[|Dvé|? —i—e]% — |Dv|5Jrl in LY(B) for any q € (1, 00) and

weakly in W12(B) as ¢ — 0.
Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let 8 > —1but 8 # 0. Up to a partition of unit, we only need
to show that (1.2) forall y € C°(B) whenever B = B(xq,r) with4B C . Fix such aball B.
Let v¥ be as in Lemma 3.5. Since [|Dv¢|? + s]gDv“’ — |Dv|® Dv weakly in W12(B) as
given in (3.5), by Lemmas 3.4 and 3.3, we have

/—detD[|Dv|ﬁDv]wdx
B
= /B [(1DV]Pv))x, [ DVIP v, Yy — (1DVPvsy)xy [ DVIP g, Y, dx
. B B
= lim | [(ADV'F* +0)205,) , (IDVI* + )2 v5, ¥,
B B
—((IDV*P? +#)20,) . (IDV®|* + )2 0§ Y, | dx
- 111%/ —det D[(|DvE)? + )2 Dvely dx  forall ¢ € CX(B).
E—> B

Note that, by Lemma 3.2, (3.3) always holds v® and ¢ € C£°(B). To get (3.1) for v, it then
suffices to show that

(3.7) / (|Dv®|? + &) (D?y Dv® - Dv®)dx
B

N / |Dv|*#(D?*y Dv - Dv) dx,
B

(3.8) /(|Dv8|2+8)ﬂ+1mpdx—>/|Dv|2ﬂ+2mpdx,
B B

(3.9) [ (IDVP + &) 5 DD + &) 3
B

_>/[D|Dv|ﬂ+1 - Dv](Dv - Dy)|Dv|P~'dx
B

- Dv](Dv®- DY) dx
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for any ¥ € CX(B). By (3.5), we have (|Dv®|? + £)% Dv® — |Dv|# Dv in L2(B), which
gives (3.8).
To get (3.7), we only need to show

(3.10) (|Dvé)? + &) Dvé ® Dvé — |Dv|** Dv ® Dv in L%(B).
Noting
la®a—-b®b|<la®a—-a®b|+|a®@b—b®b|<l|a—>bl|[la|+ |b]].
we have
|(IDV*|? + &) Dv® ® Dv® — |Dv|** Dv ® Dv|
< |(IDV*]? + )2 Dv® — [Dvlf Do|[(IDVP + )3 + | Dulf+1).
Since 5
(|Dvé|? + ¢)Z2Dv¢ — |Dv|PDv in L3(B),
Dvé? + ¢ B c L*(B uniformly in & > 0,
(| Dv®| y
|Dv|P*1 e L2(B),

we obtain (3.10).
Finally, (3.9) follows from D(|Dv¢|? + ¢)
in (3.6), and also

%35 - D|Dv|B+! weakly in L2(B) as given

ﬂf
(|Dve|? + e?)Tle'3 ® Dv® — |Dv[f"'Dv® Dv in L?(B),

which is proved similarly to (3.10). D

3.1. Proof of Lemma 3.2. We first recall the following fundamental identity (3.11);
see [14,25].

Lemma 3.6. For any v € C®°(R2), we have

(3.11) |D2v Dv|? — AvAgov = %[|D2v|2 — (Av)?]|Dv]* in Q.
Next we build up the following structural identity.

Lemma 3.7. Foranyv € C*®(Q2), B € R, and ¢ > 0, we have

(3.12) —det D[(|Dv]? + ¢)5 Dv]

1
= S(IDvP + &) [ D2v]* — (Av)?]
+ B(Dv|? + &) 7| D%v Dv|> — AvAsov] in Q.
Moreover, if in addition |Dv| > 0 in 2, then (3.12) holds with ¢ = 0.

Proof. Forl <1i,j <2, onehas

8 8 _1/|Dv|?
(1DVP + 0% 0Ly = (D + )8 [, + D2 +07 (1) ]
J
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Thus,
N
det D[(|Dv|* + ¢)2 Dv]

L (1DoP
= DV + &) [vee, + BIDV + )7 () v ]

_1/|Dv|?
o+ D + 7 (20 wn]

2
_ 2 B 2 —1(|Dv|
(1D + )8 [vx,s, + BUDVE + )7 (F5) o]

_./|Dv|?
X [szxl + IB(|DU|2 + 8) 1(%))611)362]

= (|Dv|* + S)ﬁ[vxlxl Uxaxs = UxyxaVxpx; | + B(Dv|? + S)ﬂ_l

|Dv? |Dvf?
X {[lexl( 2 )xzvx2 + szxz( 2 )x1 vxl}

|Dv|? |Dv|?
[ (50), e e (550) o)

_ |Dv|2 |Dv|2
+ﬂ2(|Dv|2+e)ﬂ 2[( 2_>x1vx]( > )xzvx2

(1228 o (225 o]
— v e U .
2 x> 1 2 X1 *2

Observe that the last term is 0, the first term equals (| Dv|? + ¢)# det D2v. Regarding the
second term, since

|Dvf? |Dvf?
AoV = ( ) Uy, + ( ) Uxys
2 X1 2 X2

2 2 _ |Dvl? |Dv]?
|D v Dvl == vxlxl - A vx1 + szxz vx2
2 X1 2 X2

|Dv|? |Dv|?
+ Vxixo (—) Ux, + Uxoxg (—) Uxy,
2 X1 2 X2

we have

|Dvf? |Dv?
|:vx1x1( 2 )x2vx2 + Ux2x2( 2 )xlvx1:|

|Dv|? |Dv|?
- [vxlxz (—2 )xlvxz + Uxax (—2 )xzvn]

|Dvl|? |Dvl|?
= Uxyx; AsV + szszoov — Uxyx; Uxy — Uxoxo Uxy
2 X1 2 X2

|Dvl? |Dv?
_[lexz( ) )xlvx2+vx2x1( ) )xzvxl]

= AvAgv — |D?v D%

Thus, the second term equals —B(| Dv|? + €)#~1[|D%v Dv|? — AvAoov]. We therefore obtain
(3.12). Finally, we note that if | Dv(x)| > 0, the above argument holds with ¢ = 0. This com-
pletes the proof of Lemma 3.7. o
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We are ready to prove Lemma 3.2.

Proof of Lemma 3.2. By (2.1) and integration by parts, for any y € C°(2), we have
[ 4DV + 1D — vy
/ (|Dv|? + 6)’3 div(D?v Dv — Av Dv)y dx
= -2 /Q(|Dv|2 + 8)5_1[|D2v Dv|? — AsovAv]yr dx
+ /Q(|Dv|2 + e)ﬂ[Av Dv- Dy — D?v Dv- Dy]dx.
From this and (3.12), it follows that
fg—detD[(|Du|2 + )5 Doy dx
=3 /Q(|Dv|2 + &)#[AvDv- Dy — D*>v Dv- Dy]dx
By integration by parts again, we have
%/Q Av(|Dv|?* + s)ﬂ(Dv -Dy)dx = —% /Q(leI2 + 8)ﬁ(D21ﬁ Dv - Dv)dx
- % /Q(|Dv|2 + &)8(D*v Dv- DY) dx
1

— E/ [D(|Dv|* + 6‘)’3 -Dv](Dv-Dvyr)dx.
Q

Noting

D(|Dv|? + ¢)f+1
2B +2 ’

(|Dv|? + )8 D?v Dv =

one further gets

~ [4DoP 07 D20 Dy Dyrdx = 2 [ DDV + e+ Dyjax
Q

2,3 +2
/(|Dv|2 + )P Ay dx.
Q

- 2,3 +2
‘We also observe that

2
D(DVP +6)f = ﬂ—ﬂuDvF + 0 DD + 63
Thus,

1 2 B _
2/Q[D(|Dv| + &)’ - Dv](Dv - DY) dx

- ﬁ+1/(|Dv|2+8) [D(|DU|2+8) -Dv](Dv-Dvyr)dx.

Combining all the above, we obtain the desired identity (3.3). O



Dong, Peng, Zhang and Zhou, Jacobian determinants 81
3.2. Proof of Lemma 3.5.

Proof of Lemma 3.5. Up to some scaling and translation, we assume that xo = 0 and
r = 1. Write By, = B(0,m) = mB(0, 1) for m > 1. We divide the proof into four steps.

Step 1. Prove v¢ € L2(B,) and Dv® € L2TP(B,) uniformly in ¢ € (0, 1].

Since v® —v € Wol’ﬂ *2(B,), by the Sobolev—Poincaré inequality, it suffices to prove that
Dv® € L>*P(By) uniformly in & € (0, 1]. Choosing the test function v® — v € WA +2(B,)
to equation (3.4), we get

(3.13) / (|Dve|? + s)gDvs -(Dv® — Dv)dx = —/ gf(v® —v)dx,
B>

B>
or equivalently,

(|Dv8|2+8)§|DvE|2dx =/ (|Dv8|2+8)§Dv8-Dvdx—/ gf(v® —v)dx.
B, B> B>

Young’s inequality yields that

(|Dv£|2+8)gDvs-Dvdx < (|Dv8|2+8)%|Dv|dx
Bz B2
1 B
— Dve|? +¢e)2tldx 4+ C / Dv|?>P dx
— /Bzu 2 +e) ® [ 1D

1 1
< —/ |IDVEB2dx 4+ - + C(ﬂ)/ |Dv|?>TP dx.
4 /B, 4 B>

By Holder’s inequality, the Sobolev—Poincaré inequality, and Young’s inequality, one has
1 1
—f ¢ (v° — v)dx < ( (¢°)? dx)z( v® — v|2a’x)2
B> B> B,

< C(/B3 gzdx)é([leDvg — Du|**A dx)z}rﬂ

saxm |
< c(/ g2 dx)z““” + - | Dv¥FPax +C | |Dv*tE dx.
B3 4 /g, B>
Therefore, we obtain
248
|DvE|PT2 4y < C(,B)/ |Dv|P+2dx + (/ g> dx) 4
B> B> B3

Thus, Dv? € LP*2(B,) uniformly in ¢ € (0, 1].

Step 2. Prove v¢ — vin W121B(B,) as e — 0.
Since g = div(|Dv|# Dv) and v¥ —v € Wol’p(Bz), we have

—/ g(v‘g—v)dx=/ |Dv|Dv - (Dv® — Dv)dx.
Bz B2
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By this and (3.13), one has

/(le |2+8)2Dv -(Dv® — Dv)dx

|Dv|PDv - (Dv® Dv)dx+/ (g°—g)(W® —v)dx,
B>

and hence
/ ((|DvE|* + fs)gDv"2 —(|Dv|* + e)gDv) - (Dv® — Dv)dx
B,

= / (|Dv|’3Dv —(|Dv]* + s)gDv) -(Dv® — Dv)dx + / (g° —g)(v® —v)dx.
Bz BZ
Observe that, when > —1, it holds that

(&P + [0 + &) % |t — ]2
<CO((EP+ 02— (> +)%n)-(E—n) forall,yeR2
Thus,

B
(|Dv|? + |Dv|? + )2 | Dv® — Dv|* dx
B>

< C(,B)fB (IDv|B Dv — (|DV[? + &) 2 Dv) - (Dv* — Dv)dx

4 Lz(gs—g)w—v) dx.

By Hélder’s inequality, we have

(3.14) / (IDve2 + |Dvf? + €)2 | Dv® — Do) dx
B> B+1

fc(ﬂ)(/ “D”|ﬁDU—(|DU|2+8)2Dv‘% dx) "

<(f, iove 2 4 D 2)) 752

1
se@([ 16—l ax) ([ e ppran)”
Bz B2
Recalling that v¢ € W1-A+2(B,) uniformly in & € (0, 1] as given in the step 1, and noting that
2 B B . B+2
(|Dv|* +&)2Dv — |Dv|PDv in LA+T1(By)ase — 0,

we deduce that the first term in the right-hand side of (3.14) tends to zero as ¢ — 0. Since
vé € WLB+2(B,) uniformly in & € (0, 1] and recalling g¢ — g in L2(B>), the second term of
the right-hand side of (3.14) tends to 0 as ¢ — 0. Thus,

(3.15) / (IDve? + |Dof? + €) 2| Dv® — Dol dx — 0.
B>

If B > 0, since

IDv® — Du?*8 < C(B)(IDv)? + |Dv|? + €)% | Dv® — Du?,
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we have Dv® — Dv in L2#(B,) as ¢ — 0. Thus, by v® — v € W28 (B,) and using the
Sobolev inequality, we always have v& — v in W12+t8(B,) as e — 0.
If B € (—1,0), by Holder’s inequality, we get

|Dve — Dv|P+2 dx

B> B+2

2

< (/ (|Dv¥]> + |Dv|* + a‘)ngv‘s - Dv|2dx>
B>

y (/ (DR +1Dv? + )% dx) *
B>

By Step 1, we have vé € W28 (B,) N L2(B,) uniformly in ¢ € (0, 1). Then (3.15) yields
that Dvé — Dv in L2T#(B,) as ¢ — 0. We further conclude v& — v in W12+ (B,) as e — 0.

Step 3. Prove
(|Dvé|? + s)gDva e WY2(By)  uniformly in ¢ € (0, 1],
(|Dvé|? + &‘)gDv‘s — |Dv|®Dv  weakly in W'?(By) as & — 0.
By the local second-order estimates in [10, Theorem 2.1], we have

/ |D[(|Dv* |2+e)zDv€]} dx<C0/ (gs)zdx-f-Co / [IDve P+ 4 55 ]dx)z.

Since g® € L?(B3) uniformly in €€ (0,1] and, by Step 1, Dvé € L2t#(B,) uniformly in
e € (0,1], one has D[(|Dv®|? + &) 2 Dv®] € L?(By) uniformly in ¢ € (0, 1]. By the Sobolev—
Poincaré inequality, we also have

/ }(|Dv |2+8)2DU ! dx

<,

(IDv®[? + ¢)5 Dv® —][ (IDv®[? + ¢)5 Dv® dx( dx
+‘/ (|Dv8|2+8)5Dvsdx|
< Cy }D (|Dv® |2+8)2Dv ‘ dx—i—Co‘/ [|[Dv® |‘g+1+s 2 ]dx

Thus, (|Dv¢|? + 8)2 Dvé € L?(By) uniformly in ¢ € (0, 1].
By the weak compactness of the Sobolev space W12, there exists f € W12(B;) such
that, along a subsequence,

D[(|DvE|* + 8)gDv8] — Df weakly in L?(B)),
(IDV)2 +6)2Dve — £ in L2(B)).
By Step 2, Dve — Dv in L2+ (B,) as ¢ — 0, and hence (|Dvé|* + e)gDvs — |Dv|BDv

almost everywhere along a subsequence. We conclude that f = |Dv |’3 Dv in By, as desired.

Step 4. Prove
B+1
(|Dvé]> +¢) 2 € WY2(By) uniformly in ¢ € (0, 1],
B+1
(IDve]? + )2 — |Dv|PT! weakly in W'2(B;) as ¢ — 0.



84 Dong, Peng, Zhang and Zhou, Jacobian determinants

Note that
DDV + )3 2 = (B + 2DV + £)f ' D>v* Dve P2,
|DI(IDv)? + s)§Dv8]|2 = (|Dv|? + )| D%v®)? + 2B(|Dv°|* + £)P 7! | D%ve Dv®|?
+ BA(IDVE* + &) 72| Dv? 2| D2vf DvF |2,
If B > 0, then
ID(DV? + )2 2 < (B + D2(IDv|? + £)f | D202
< C(B)| DIIDV P + £)2 Dv¥]|”.
If B € (—1,0),
IDI(DvE[? + €)% Dve]|?
= (1DV]* + &)’ T [|D?v* 2| Dvf * + 28| D*v° DvF|* + B2 D0 D]
+ (1D ? + )P 2[(1 D ? + £)e| D*vf|* — B2e| D>vf Do ]
> (B + DX(IDv| + )P 7 D Dvf|?
= DDV +2)F
Thus, by Step 3,
(|DvE? + 8)% e WY2(By) uniformly in e € (0, 1],

B+1
(IDv?|®> +6) 2 — |Dv/Pt! weakly in W2(By) as e — 0. O

4. Some properties of distributional Jacobian determinant
We build up the following stability result.

Lemmad4.1. Letp > —1.1If
vj = vin Wléc’2+’3(9) as j — oo and ,3|va|ﬂJrl € WléC’Z(Q) uniformly in j,

then

1) ,B|va|'3"'1 — BIDv|Ft1in LfIOC(Q)for any q > 1 and weakly in Wlééz(Q);

(i) B|Dv;|PDv; — B|Dv|PDv and B|Dv;|F~1Dv; ® Dv; — B|Dv|P~'Dv ® Dv in
L?OC(Q)for any q > 1.
(iii) —det D[|Dv;|# Dv;] — —det D[|Dv|® Dv] in the distributional sense, i.e.,
.1 / —det D[|Dvj[Pv;]y dx
Q
—>/ —det D[|Dv|P Dvly dx  forall y € CX(R).
Q

Proof. The case B = 0 is easy. We only consider the case 8 # 0. Since
Doy P! e W (),
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by the compact embedding theorem, there is a function f € Wl;C’Z(Q) such that | Dv; A1
in L{ (Q) for any 1 < ¢ < oo and weakly in W,:>(Q) as j — oo up to some subsequence.
Since Dv; — Dv in L] (2), we know f = |Dv|B+1. Thus, we have |Dv|f+! e Wl2(Q)
and |va|/9"'1 converges strongly to |Dv|A+! in L;IOC(Q) for any 1 < ¢ < 0o and weakly in
W, :2(Q). Therefore, (i) holds.

To see (ii), observe that if Dv(x) = 0, one has

|IDv; P Dv; — |Dv|f Dv| < ||Dv; [P — |Dv|fT1],
}|va|B_1va ® Dv; — |Dv|B_1Dv ® Dv! < “va|ﬂJrl — |Dv|ﬂ+1‘.

If Dv(x) # 0, one has

IDv; | Dv; — Dol Dv| < ||Dv;|PH! — | Dv|PT|

+ |Dv|#*1Dv; — Du|,
}|va|ﬂ_1va ® Dv; — |Dv|ﬂ_1Dv ® Dv{ < ‘|va|'3+1 — |Dv|'3+1‘

+ |Dv/f*Dv; ® Dv; — Dv ® D,
where we set £ = £/|£| when £ # 0 and § = 0 when £ = 0. Since Dv; — Dv almost every-
where along a subsequence, we know that Dv; ® Dv; — Dv ® Dv almost everywhere in
Q\ {x € Q: Dv(x) = 0}. By the Lebesgue dominated convergence, we conclude (ii) from

above and (1).
Finally, note that (i) and (ii) imply

/|va|2ﬂ+2A¢dx—>/|Du|2ﬂ+2mpdx,

Q Q

[|va|2ﬂ(02¢ va-va)dx—>/|Dv|2ﬂ(D2va-Dv)dx,
Q Q

/Q[D|va|ﬂ+1 - Dv;](Dvj - DY)|Dv; [P~ dx

—>/[D|Dv|ﬂ+1-Du](Dv£~D1p)|Dv|’3_1 dx
Q

for all Y € C2°(£2). We conclude (4.1) from these and the definitions of —det D[|Dv; 18 Dv il
and —det D[|Dv| Dv]. |

Lemmad4.2. Letv € C°(Q) satisfy B|Dv|B+! € WL2(Q) for some B > —1. We have

loc
lim / —det D[(|Dul® + &) Duly dx
e—>0 Jo
_>/ —det D[|DulP Duly dx  forall ¥ € CX(RQ).
Q
Proof. The case B = 0 is easy. The case 8 # 0 would follow if we let ¢ — 0 in (3.3)
by Definition 1.2. To this end, it suffices to build up the following convergence.

Firstly, since (|Dv|? + 1)+1 e Lﬁ)C(Q) for 1 < g < o0, by the Lebesgue dominated
convergence, one has

(|Dv|* + 8)’9|Dv|2 — |Dv|2'6"'2 and (|Dv]* + &) Dv® Dv — |Dv|2ﬂDv ® Dv
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in L] (Q). Similarly,
2 B-1 B=1 . q
(IDv|*+¢) 2 Dv® Dv — |Dv| 2 Dv® Dv in L} ().
Moreover, we observe that
4.2) D(IDv? + &% — D|DuP+!  weakly in L2 ().
Indeed, when 8 > 0, since v € C?(2), one has
B+ B—
DD + )2 = CB)(IDv? + &) D*vDv e L2 () uniformlyine € (0, 1),

and hence D(|Dv|? + 8)% — D|Dv|B*1 weakly in Lﬁ)C(Q). When —1 < 8 <0, by the
assumption D|Du|B+1 e leoc(Q), we have

D(Dv? + )5 = C(B)(IDv[? + )= |Dv|' B D|Dv P+ € L2 (Q)

loc

uniformly in & € (0, 1). Thus, together with (| Dv|? + )3~ — [Dv|B+! weakly in L2 (Q),
we conclude (4.2), as desired. D

5. Proof of Theorem 1.3

Proof of Theorem 1.3.  Let u be any co-harmonic function in planar domain €2. Since
ueCL(Q) and |Dulft! e WliA(Q).

by Definition 1.2, the distributional Jacobi — det D[|Du|? Du] is well defined. We proceed
as below to show that — det D[|Du|? Du] € M(S2) with the lower bound (1.5) and the upper
bound (1.6).

Step 1. Given any smooth subdomain U € 2, for any ¢ € (0, 1), denote by
ut e C®WU)NCO0)
the unique solution to the equation

& 1 &
div(e%le" |2Du"f) — ~e2slDu ‘Z(Aooua +eAu®) =0 withu® = u onoU.
€

It was shown in [18] that

lim sup|| Du®||poo(yy < | Dul|pooy forall V & U.

e—0

By [25], for any 8 > —1,
|Duf|PTt e WL2(U)  uniformly in g > 0

and
lin})”Du‘8 — Dullpaqyy > 0 foralll <g <ocandall V € U.
£—
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Thus, it follows that | Du[f*+1 € W 1;2(U), and along a subsequence, | Du®|A+1 — | Dy|f+1
strongly in LIOC(U) ase — 0.

In view of Definition 1.2, the distributional Jacobi — det D[| Du¢|# Du?] is well defined.
By Lemma 4.2, one has

(5.1) lim/ —det D[(|Du®|? + 8)5 Dully dx
§—0JUu
=/ —det D[|Du®| Du®ly dx forall y e CX°(U).
U
By Lemma 4.1, we know that
(5.2) lim/ —det D[|Du®|® Du®ly dx
e—=>0 Ju

=/ —det D[|Du|? Duly dx forall y € C*(U).
U

Step 2. By Lemma 3.6 and Aou® + ¢ Au® = 0in U, we have

1

5[|l)2u(£|2 (AME)ZHDM |2 |D2 EDu8|2 oouaAus

= |D%*u®Duf|* + —(Aoou's)2 in U.
e
For § > 0, by this and Lemma 3.7, we obtain
(5.3) — det D[(|Du’)? + 8)% Duf]
1
= S(Du? + 8P (ID?uf? — (Auf)?]
+ B(IDu)? + 8)P~1|D2uf Du® > — AufAsou®]

v

1
B+ D(Du + 8)5-1[|D2u60u8|2 + —(Boou”)’]
D(|Duf|* +§
ﬂﬂ\ (1 u1|+) l
+ (B + D=(Duf]* + 8P (Asouf)® inU.
&
Forany 0 < ¢ € C2°(U), by Lemma 4.2, one has
(5.4) /—detD[|Du8|’3Du8]wdx
U

— lim | —det D[(|Du’)? + 8)% Dufly dx
§—0Jy

| 1
> B ll(gIl)l(I)lf/ [‘D(lDu |2+8) {
+(B+ 1)~ L(1DuR + 8P (Aoor) 2]y dx
= o [ LD 4 8 4 D Du P2 Ao i,

where, in the last inequality, we used that (| Du®|? + 8)% — |Duf|B+! weakly in Wlééz(U)
as § — 0, and also that (| Du®|? + 8)2 1 (Asou?)? — | Duf|2P~2(Asou?)? almost everywhere

and it has a dominant function | Du?|?2+2|D2u?|? € LIIOC(U).
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Letting & — 0, since | Du®[#+1 — | Du|B+1 weakly in W }:2(U), we further have
2
/ |D|Duf Py dx
U

1
z—/ ‘D|Du|ﬂ+1‘21/fdx forall 0 <y € C°(U),
p+1Ju

1
/ —det D[|Du|? Duly dx > liminf
U e—0 B+ 1

which gives the lower bound (1.5).
Step 3. Forany ¢ € C°(U) and § € [0, 1), we have

(5.5) f —det D[(|Du®|? + 8)5 Du’)p? dx
U

1 4 B2

1+ 8

Indeed, by Lemma 3.2 for § € (0, 1] and Definition 1.2 for § = 0, and by Young’s inequality,
one has

<C

/ (IDut> + 8)P T |¢p D2¢p| + | Dp|*] dx.
U

/ —det D[(|Du’|? + §)% Du®|$? dx
U
1
- ‘Ef (IDu*? + 8P (D>¢> Du’ - Du®) dx
U

2 B+1
2,3+2/(|Du| + 8P T AP? dx

2ﬂ+2/ (1Du®? + 8) T [D(Du®? + 8) 3" - Duf)(Du® - D$?) dx

1 1 2 B+1 2
SC(§+2+M+2+M /(|Du| + 8P [lp D2g| + | Dg|*] dx

/\D(|Du |2+8) |¢ dx.

2812
Applying (5.3) for § € (0, 1] and (5.4) for § = 0, one has

1
25”/ |D(| Du® 2+8)°2 \ $? dx <5/ —det D[(|Du®|? + 8)% Dufp? dx,

and therefore, we get (5.5).
Step 4. By (5.3) and (5.5), we know that
(5.6) 0 < —det D[(|Du’|? + 5)§Du8] € Llloc(U) uniformly in § € (0, 1].
By (5.6), (5.1), and a density argument, we know that
lim / —det D[(|Du’|? + 8) Dufly dx
§—0Ju
always exists for all ¥ € C2(U), and is denoted by u®(y). Moreover, u¢ is a nonnegative

Radon measure, i.e., 0 < uf € M(U), and —det D[(|Duf|? + §)2 Du®] dx converges to j®
in the weak-* sense in M(U) as § — 0. Note that (5.1) implies that u«® is induced by the
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distribution — det D[| Duf|? Du*] uniquely. Therefore, we can view — det D[|Du®|f Du®] as
the measure .

Moreover, by (5.5) with § = 0, given any subdomain V' &€ U, by a suitable choice of test
function ¢, we also have

|- det D[| Du®|F Duf]||(V) < C 1 = ﬂZ/ |Du P2 ax,
~ [dist(V,0U)]2 1+ B
where V € W € U with dist(W,dU) = dist(V,0W) = % > dist(V,0U). As |Du®| € L>=(W)
uniformly in ¢ € (0, ey) for some ey > 0, we have that ||—detD[|Du€|/3 Du?]||(V) is bounded
uniformly in € € (0, ey). Since

0 < —det D[|Du®|? Du®] € M(U),

by (5.2) and a density argument, we know that

lim | —det D[|Du®| Du®]y dx

e—>0 Ju
always exists for all ¥ € C2(U), and is denoted by (). Moreover, 0 < € M(U), and
—det D[|Duf|B Du#] dx converges to 1 in the weak-x sense in M(U) as ¢ — 0. By (5.2),
we know that y is induced by the distribution — det D[| Du|? Du] uniquely, and hence we can
view —det D[|Du|? Du] as p.

By the arbitrariness of U, we know that — det D[| Du|? Du] € M(S2). The upper bound

(1.6) follows from (1.4) and a suitable choice of test functions 0 < v € CZ°(R2). O

6. Proofs of Theorems 1.4 and 1.5

Given p € (1, 00), let u, be any nonconstant p-harmonic function in a planar domain .
For f > —1, one has |Dup|’3Dup € Wléc’z(Q) and hence —detD[|Dup|ﬂDup] € Llloc(Q).
Moreover, we know that £y, := {x € Q, Du,(x) = 0} is always discrete and hence is a null
set,andu € C*°(Q\ Ey,). See [9,29].

Lemma 6.1. Let f > —1. Then
1
(6.1) —det D[|Du,p|? Du,] = m‘D|Dup|ﬂ+1}2

2
© (B + D)(p — 2)| Duy 28 Boottr)”

Duy [ inQ\ Ey,.

Consequently,

1 2 . .
—detD[|Dup|‘8Dup]:m‘D|Dup|l3+1} inQ\ Ey, ifp=2;

1
(6.2) —detD[lDup|’3Dup]zIB+1|D|Du,,|ﬁ+1{2 inQ\ Ey, ifp>2;

p—1 2
(6.3) m}D|Dup|f’+1| < —det D[|Du,|? Duy]

=

1
o 1|D|Dup|5+1|2 inQ\ Ey, ifl<p<2.
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Proof of Lemma 6.1.  In Q \ E,,, applying Lemma 3.7, we have

1
—det D[|Du,|P Duy) = E|1)up|2ﬂ[|1)2u,,|2 — (Aup)?
+ B Duy 2PV D%u, Duy|? — AupAsou].

Applying (3.11) to up, we have
1 _ .
and hence
—det D[|Dup|? Dup] = (B + D) Dup PP V(| D?up Dup|* — AupAcoup] inQ\ Ey,

Note

Aol )
Aup = —(p —Z)ﬁ inQ\ Ey,.

For B > —1, one gets (6.1). When2 < p < 00, (6.1) gives (6.2). When 1 < p <2and > —1,
since
|D2u1,,Dup|2 — AulAsou = |D2upDup|2 +(p— 2)|Du1,,|_2(Aooup)2
> (p — D|D*upDuy> inQ\ Ey,,

one has

—det D[|Du,|? Du,) > \D|D wp PP inQ\ Ey,,

/3

as desired. m]
Lemma 6.2. Forany ¢ € C°(S2), one has

(6.4) / —det D[|Du,|P Duy)¢p? dx
Q

! 1 28+2
<clit gt o] [1PuPP e D%l + 1067 dx

Proof. Forall ¢ € C2°(2), write

/ —det D[|Du,|P Du,|¢? dx
Q

1
:_5/ |Du,|?# (D%¢? Duy, - Duy) dx + /lDu 2BT2Ag2 dx
Q

2/3—{—2
—IB B+1 2 B—1
_IB—|—1 Q[D|Dup| - Dup|(Duyp - D$*)| Dup| dx
=11 + 1+ I3.

Clearly,
1
It 1= C(1+ 55) [ 1D P*2716 D21+ D9 dx.
Q
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When 1 < p < 2, by Young’s inequality and (6.3), one has

p—1 / B+1(2,2 4p> 2428 2
Iz < D|Duy| o dx + | Duy| |[Do|” dx
2+28 g‘ A C+28)(p—-DJa 7
1/ :32 242 2
< - | —detD[|Du,|?Du ]¢2dx—|—C—/|Du 1>*28|Dg|? dx.
2 Ja r r 1+B(p—-1Jo 7
When 2 < p < 4, by (6.1), similarly to the case 1 < p < 2, one also has
2
I < 1/ —detD[|Dup|BDup]¢2dx+C'B—/ |Du, 228 | D)2 dx.
2 Ja 1+p(p-1Ja

When p > 4, by Young’s inequality and (6.1), one has
281
1< B [ |8scitp DDy PP~ dx
(p—2)B+1 _
< % /Q|Aooup|2|Dup|2‘3 492 dx

8182 s g
+(P—2)(ﬁ+1)/sz|D¢| [ Dup[ 7 dx

1
< —det D[|Duy|P Du,|¢? dx
+ cﬂ—Z/ |Du, |28 | D2 dx.
(1+B(p—-1)Ja
We therefore obtain (6.4). O

Proof of Theorem 1.4. Theorem 1.4 follows immediately from Lemmas 6.1 and 6.2. ©

Proof of Theorem 1.5. Given any bounded smooth domain Q2 and g € Lip(02) denote
by up for 1 < p < oo the unique p-harmonic functions in €2 with boundary g. Moreover,
Up = Ugo in CO¥(Q) for any « € (0,1) and weakly in W14(Q) for any 1 < ¢ < oo as
p — oo. This is well known; see for example [28]. For the reader’s convenience, a proof is
given below. Since 1 is the absolute minimizer with boundary g, we know that

[ Dullpoo@) = lgllLipeg)-

Moreover, we may extend g to 2 with the same Lipschitz norm via the McShane extension.
For 1 < p < o0, since u,, is the minimizer, we see that

1
[ DupllLr) < 1DgllLr@) < 12]7 IgllLipen)-

Given any 1 < g < oo, for p > ¢, by the Holder inequality, we know that

1
[Dupllree) < 12|17 glLipee)

and hence it is uniformly bounded. Then u, € C 0.1-1/4(Q) for large p > ¢ uniformly. Thus,
up converges to u in C 0.1-n/q (Q) as p — oo up to some subsequence. Since u p 1s also a vis-
cosity solution to Asov + ﬁAv|Dv|2 = 0 in 2 with boundary g, by the compactness of
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viscosity solution, we see that u is a viscosity solution to Asov = 0. Observing that u and 1
satisfy the same boundary condition, by Jensen’s uniqueness result, we know that u = U .
Since Duy, € L9(S2) for p > ¢ uniformly, we know that Du, converges weakly to Du in
L1(Q2) as p — oo.

As Dup, € L?(S2) uniformly in p, by Lemma 6.2, we know that —det D?u, € L] ()
uniformly in p > 2. By Lemma 6.1, D|Du,| € Lﬁ)C(Q) uniformly in p > 2. By the Sobolev
embedding theorem, we know that | Du,| converges to some function /4 in L () and weakly

loc
in W,1:2(Q) as p — oo. By building up a flatness estimates similarly to [25, Lemma 2.7] (here
we omit the details; see [27]), one has & = |Duqo|. Since Du, — Duo, weakly in L9(S2)
with ¢ > 1, we deduce that Du, — Duqo in L?OC(Q) as p — oo.
Applying Lemma 4.1, we know that |Dup|/3 Du, — | Dutoo|® Duoo in LI (2) for any

loc
1 < g < o0, and moreover,

(6.5) [—detD[|Duoo|’3Duoo]wdx
Q
= lim [ —det D[|Du,|? Duyly dx forally € C2(R).
pP—>0 Jo

Lemma 6.2 yields that —det D[|Du, & Duyp) € L' (Q) uniformly in p > 2. By a density argu-
ment, we know that (6.5) holds for all v € C2(Q), i.e.,

—det D[| Dup|? Duy) — — det D[| Duo|? Duo]

in the weak-+ sense in M (2). m|

Remark 6.3. One could also prove Theorem 1.3 via Lemma 6.1, Lemma 6.2, and (6.5).

A. Some sharpness in the plane
At the borderline case 8 = —1, we have the following result, which will be used later.

Lemma A.l. Let1 < p < 0. If up is a nonconstant p-harmonic function in a domain

Q C R2?, then
_ 2 2 (Asottp)®
!D[|Dup| 1Dup]} = ‘Dlog|Dup|‘ + (p—2)poo—p4 a.e.
| Dup|
In particular,
-1 2 2 .
|D[|Duy|~" Dup)|” = | D log|Dup|| ae. ifp=2;
‘D[|Dul,|_1Dul,]|2 > |Dlog|DupH2 ae. ifp>2;

|Dlog| Duy||> = |D[|Duy| ™  Duyl|” = (p — 1)?|Dlog| Duyl|> ae. ifl < p<2.

Proof. InQ \ Ey,, one has

B |D?upDuyl® | D2up|?
= <
[Dup|* = |Dupl|?

‘D 10g|DupH2
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and

| D[|Dup| ™' Dup)|? = || Dup| ™ D?uy — |Duy| ™2 D?up Duy @ Duy|?
_ |D?up? _ |D?up Dup|?

|D”p|2 |D”p|4

Recall that

1 .
D?upDuy — AupAcoup = 5[|D2u,,|2 — (Aup)?]|Dup|* inQ\ Ey,.

. . Aocclt
Replacing Au, with (p — 2)W, one has
1[ 2. 12 z(AooMp)2 |Dz“pD“p|2 (Aooup)z
S[IP%u,2 = (-2 |- —(p-2)
2 P | Dupl* | Dup|? | Dupl*
or equivalently,
D?u,Du,|? (Aootip)?
D2y |2 :2| pPUp _9 coUp)
107 | Dup|? =2 | Dup|*
Thus,
D?u,Du,|? (Asottp)?
Dl|Duy |~ Duy) 2 = 2o PYUnl” (g, (Booltp)”
| D[| Dup| ™" Duy| Dot P2
_ 1|D2“p|2 1 (p—2)p (Aooup)2
2 |Dup|? 2 |Dupl|® -
When p = 2, then
_ 2 1|D?u,|? D2u,Du,|*> .
| D[|Dup| ™' Dup)|” = D7up|” _ [D7up Dup| inQ\ Ey:

T2 |D”p|2 B |D”p|4

When p > 2, we have

_ 2> 1|D?upy|®>  |D?u,Duy,|?
| DDup| ™ Duy)[* > 5L > PR
2 [Dup| | Dup|

while when 1 < p < 2, we have

1 |D?u,|?

2 (p—1)2 |D2”p|2 - (p—1)72 |D2”17D“p|2
2 |Dup|? '

-2 |Dupl? — 2 |Dup|*

= |D[|D“p|_1D”p]‘

For 1 < p < oo, we recall the extremal p-harmonic function constructed by [23, Sec-
tion 7]. Here we keep notation the same as therein. Let

(A1) H(E):(é—|+e|§—|33)|§|clf forall £ € C
with . | oy
E=§(—p+\/16(p—1)+(p—2)2)>0 and 8=1+3d.
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If p=2,thend = lande = 0,and hence H(§) = &.1f p #% 2,thend > Oand ¢ # 0, and H
is a quasiconformal homeomorphism on the whole plane. According to [23, Theorem 2], H(§)
satisfies [23, (18) with n = 1], that is,

(A2) Hg = (% = %)[gl‘lg + gl‘;g],

where Hy = 3(Hyx —iHy) and Hi = 3(Hy + iHy) for £ = x + iy.
Let f(z) denote the inverse of H(§) in C so that f(H(§)) = £ and H(f(z)) = z for all
z,& € C. From (A.2), one deduces

f= (b DL+ L]

where f, = %(fx —ify) and f; = %(fx +ify) for z = x 4 iy. This then defines a p-har-
monic function w in the whole plane so that its complex derivative is w, = f.
We have the following properties.

Lemma A.2. One has log|Dw| = log| f| ¢ W,1-2(R?) and |Dw|" ' Dw ¢ W.1-2(R?).

loc loc

Proof. By Lemma A.1, we only need to prove lo W1-2(R2). We argue by con-
y y p g g y

loc

tradiction. Assume that log| f| € Wléc’z (C). Note that f(rz) =t f(z) for any ¢ > 0. A direct
calculation implies that

D|fl(2)

(A.3) D|fl(z) = tl_dD|f|(tZ), Dlog|fl(z) = /()|

zeC\{f Loy, >0,
where f~1(0) = {z € C : f(z) = 0}. For each R > 0, we know that
Y 0)Nn{zeC:|z] <R}

is discrete, and from f(rz) = t% f(z), (A.3), we conclude that

2 '
2 DI DI &
/|Z|<R’Dl°g'f @) dz /|z|<R ror /|s|<tR VO

:/ GO L
|€|<tR (%)2d|f(§)|2 12

=f |Dlog| £1(5)> g forall >0,
lE|<tR

Letting t — 0, we conclude that D log| f|(z) = 0 whenever |z| < R, and hence, by the arbi-
trariness of R, forall z € C. Thus, | | is a positive constant in the whole plane. This contradicts
that f(tz) = 12 f(z) forallt > 0 and z € C, where we recall that d > 0. m]

Lemma A.3. One has

(A4) sup /2] = lp—2| _ K(p)—1

c\oy | /21 p K +1

1
with K(p) zmax{ ,p—l}.
p—1
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In general, for B > —1, writing g = | f'|P f, one has

lgz|  K(p.p)—1

AS =
(A=) SO gzl ~ K(p )+ 1

. p—1 B+1 1
with K(p, zmax{ ,—, —|—1,—}.

(r-P) ﬁ+1p—1ﬂ B+1
Proof. Since H () is the inverse of f(z), (A.4) is equivalent to

|Hg|  |p—2
sup —— = .
c\{oy | Hel P

We already have

lp —2|
p

1 £ _
|Hg:j§%+§H4§ |He| inC\ {0}.

Taking the derivative J¢ on both sides of (A.1), one has
1.1 /1 1 I
£=3 €] 7 +1)+ ] £ £

If § € R, then Hg(§) € R, and hence (A.1) gives Hg = pTTzHg as desired.
Next, for 8 > —1, write g = | f|# f and G = g~1. By [9, Section 3], one has

o lyp-2-8 B \& lp—=2-B B \&._
§2 = 2(p+ﬁ +ﬁ+»g& 2(p+ﬁ ﬂ+ﬁg&
and hence
__lp-2-8 _ B \& 1/ p=2—=B B \&-
o (%_5(p+ﬁ JrﬁJrz)EGS ﬂ:p+ﬁ _ﬁ+95%'
Thus,
wp @max{lp—z—m LR L
c\oy |Gel — p+B B+2 K(p.B)+1

with K(p, B) as in (A.5). Moreover, note that

3 1
G®) = HUE776) = (£ + ek )77 forag e

and hence

Ge(®) = 316170 (b 1) + (g~ 3)e o |

p-2-Bl _ Il
p+B T B+2
for § € R, we have G¢(§) € R, and therefore, (A.6) gives

p—2-p
p+B

If

Ge(§) = G ().
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as desired. If

p—2-8l __IB
p+h p+2
for £ € R — iR, we have § = i, Ge(§) € R, and

%cg(s) — —£Ge(®) = ~iGe(®),

which together with (A.6) gives G¢(§) = %i Gg(§), as desired. m]
Lemma A.3 gives the sharpness of constants in (1.7).

Remark A.4. By a standard calculation, (A.4) gives

ess su A2 +1/:P  (p—1D2+1
p - .

c |fPP=1f17 p—1
Since |[D?w|? = 2[| f5|*> + | f5|?] and —det D?>w = | f;|?> — | f5|?, we write this as

D?w|? —1)%+1 1
€ss sup | w|2 = (p= 1"+ =(p-1+—-:-.
c —detD?w p—1 p—1

Thus, the constant in (1.7) is sharp. Note that (p — 1) + ﬁ converges to 0o as p — 00.
For B > —1, in a similar way, (A.5) gives

IDIDwfDw]|*>  K(p, B2+ 1

€SS S =
P e D[DwlfDw] ~ K(p.p)

= K(p.B) + ﬁ

and hence the constant in (1.7) is sharp. We also note that K(p, ) + m converges to 0o
as p — oo.
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