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Jacobian determinants for nonlinear gradient of

planar 1-harmonic functions and applications

By Hongjie Dong at Providence, Fa Peng at Beijing, Yi Ru-Ya Zhang at Beijing and

Yuan Zhou at Beijing

Abstract. We introduce a distributional Jacobian determinant detDVˇ .Dv/ in dimen-

sion two for the nonlinear complex gradient Vˇ .Dv/ D jDvjˇ .vx1
;�vx2

/ for any ˇ > �1,

whenever v 2 W 1;2
loc and ˇjDvj1Cˇ 2 W 1;2

loc . This is new when ˇ ¤ 0. Given any planar 1-

harmonic function u, we show that such distributional Jacobian determinant detDVˇ .Du/ is

a nonnegative Radon measure with some quantitative local lower and upper bounds. We also

give the following two applications.

(i) Applying this result with ˇ D 0, we develop an approach to build up a Liouville theorem,

which improves that of Savin. Precisely, if u is an 1-harmonic function in the whole R
2

with

lim inf
R!1

inf
c2R

1

R

«

B.0;R/

ju.x/ � cj dx < 1;

then u D b C a � x for some b 2 R and a 2 R
2.

(ii) Denoting by up the p-harmonic function having the same nonconstant boundary condi-

tion as u, we show that detDVˇ .Dup/ ! detDVˇ .Du/ as p ! 1 in the weak-? sense

in the space of Radon measure. Recall that Vˇ .Dup/ is always quasiregular mappings,

but Vˇ .Du/ is not in general.

1. Introduction

Let � be a domain (connected open subset) in R
n. We say a function u 2 C 0.�/ is

1-harmonic if it is a viscosity solution to the 1-Laplace equation

�1u D D2uDu �Du D 0 in �:
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This equation was derived by Aronsson in the 1960s as the Euler–Lagrange equation for

absolute minimizers with respect to the L1-functional

F.u; U / D









1

2
jDuj2










L1.U /
for domains U b �:

See [1–3, 5]. For a probability interpretation (via Tug-of-War) of the 1-Laplace equation, we

refer the reader to [31]. Jensen [24] identified absolute minimizers with 1-harmonic functions

and, moreover, built up their existence and uniqueness in bounded domains with continuous

boundary data. Since then, the regularity of 1-harmonic functions has been a main issue in this

field. Recall that 1-harmonic functions are always locally Lipschitz and hence differentiable

almost everywhere. In view of the 1-harmonic function w D x
4=3
1 � x4=32 in R

n given by

Aronsson [6], it was conjectured in the literature that 1-harmonic functions have C 1;1=3 and

also W 2;q regularity with q < 3=2.

Towards this conjecture, Crandall–Evans [11] first obtained a linear approximation prop-

erty for any 1-harmonic function u: at each point x and for any sequence ¹rj ºj2N converging

to 0, there are a subsequence ¹rjk
ºk2N and also a vector e depending on x and ¹rjk

ºk2N such

that

lim
k!1

sup
z2B.0;1/

ˇ

ˇ

ˇ

u.x C rjk
z/ � u.x/
rjk

� e � z
ˇ

ˇ

ˇ
D 0

and jej D Lipu.x/, where and in the sequel the pointwise Lipschitz constant of u at x is defined

as

Lipu.x/ D lim sup
x¤y!x

ju.y/ � u.x/j
jx � yj :

The vector e was then proved to be independent of the choice of subsequence, which implies

that u is differentiable at any point x. See Savin [34] for dimension two based on a planar topo-

logical argument and Evans–Smart [20,21] for dimensions n � 2 via some PDE approach (flat-

ness estimates). In dimension two, Savin [34] further proved the C 1 regularity of u, and Evans–

Savin [19] obtained the C 1;˛-regularity of u for some 0 < ˛ � 1=3. Recently, it was proved

in [25] that jDuj˛ 2 W 1;2 for any ˛ > 0, which is sharp as ˛ ! 0 as witted by x
4=3
1 � x4=32 .

Moreover, the distributional determinant of the Hessian, � detD2u, was proved in [25] to be

a Radon measure (in short, � detD2u 2 M.�/) enjoying the lower bound

� detD2u �
ˇ

ˇDjDuj
ˇ

ˇ

2
dx

in measure sense, i.e.,

(1.1)

Z

�

� detD2u dx �
Z

�

ˇ

ˇDjDuj
ˇ

ˇ

2
 dx for all 0 �  2 C 0c .�/;

and also the upper bound
Z

1
2
B

� detD2udx � C

«

B

jDuj2 dx for all balls B b �:

Recall that, for any v 2 W 1;2
loc .�/, the distributional determinant � detD2v is given by

Z

�

detD2v dx D 1

2

Z

�

.D2 Dv �Dv/ dx

� 1

2

Z

�

jDvj2� dx for all  2 C1
c .�/:

(1.2)
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The main purpose of this paper is two-fold. First, via the distributional determinant of the

Hessian, we develop a new approach to build up a gradient estimate and a Liouville theorem for

planar 1-harmonic functions. See Theorem 1.1 below. Recall that Aronsson [4] initiated the

study of such Liouville theorems by proving that planar 1-harmonic functions of C 2.R2/

must be affine functions. In the sequel, we denote by P the collection of affine functions

P.x/ D b C a � x for some b 2 R and a 2 R
2. Evans [17] obtained an analogue result for 1-

harmonic functions of C 4.Rn/ with n � 3. In all dimensions n � 2, Crandall–Evans–Gariepy

[12] showed that any bounded 1-harmonic function in R
n must be a constant, and also that any

1-(sub)harmonic function in R
n bounded from above by some affine functionP must be given

by P . In the plane, from the C 1-regularity and a compactness argument, Savin [34] proved that

any 1-harmonic function u in R
2 with the linear growth at 1 (i.e., ju.x/j � C.1C jxj/) must

be an affine function. However, a high-dimensional analogue is quite open.

We obtain the following interior gradient estimate and Liouville theorem in the plane, the

latter of which improves that of Savin [34] mentioned above.

Theorem 1.1. The following statements hold.

(i) Let u be an 1-harmonic function in a domain � � R
2. Then we have

jDu.x/j � C

r

«

B.x;r/

juj dy whenever B.x; r/ � �;

and hence

kDukL1.B.x;r// � C

r3
kukL1.B.x;2r// whenever B.x; 2r/ � �:

(ii) Let u be an 1-harmonic function in R
2 with

lim inf
R!1

inf
c2R

1

R

«

B.0;R/

ju.x/ � cj dx < 1:

Then u 2 P , i.e., u.x/ D u.0/C a � x in R
2 for some vector a 2 R

2.

Our approach of the proof of the Liouville theorem is completely different from that of

Savin [34]. The crucial point is that, given any 1-harmonic function u in a planar domain �,

� in Lemma 2.2, we derive the identity

Z

�

.� detD2u/u2 dx D �
Z

�

jDuj4 dx �
Z

�

jDuj2.Du �D /udx

C 1

2

Z

�

u2ŒjDuj2� �D2 Du �Du� dx

for all  2 C1
c .�/, which implies Theorem 1.1 (i);

� in Proposition 2.5, we obtain an upper bound which improves the one in [25],

Z

1
4
B

� detD2udx � C inf
P2P










u � P
r










L1.B/

h

jDP j C









u � P
r










L1.B/

i

for all balls B D B.x; r/ b �.



62 Dong, Peng, Zhang and Zhou, Jacobian determinants

Both results have their own interests. These, together with (1.1) and some basic properties,

allow us to obtain Theorem 1.1 (ii). In particular, we obtain an improved Caccioppoli-type

estimate: whenever B.x; 2r/ b �,
Z

B.x;r/

ˇ

ˇDjDuj
ˇ

ˇ

2
dz � C inf

P2P

«

B.x;2r/

jDu �DP j2 dz:

This is better than the one in [25] as we can subtract a constant vector field in the integrand

on the right-hand side of the inequality above. However, on the left-hand side, we only have

DjDuj due to the degeneracy of the equation, for which heuristically there is only one direction

of the Hessian of u. See Section 2 for details. We remark that, once a global Lipschitz bound

of u is obtained, one can also appeal to the result in [34] mentioned above to conclude that u

must be an affine function.

Next, inspired by the limiting behavior of planar p-harmonic functions (see the end of

this section for details), we are interested in the Jacobian determinants of the nonlinear complex

gradient

Vˇ .Du/ D jDujˇ .ux1
;�ux2

/ with ˇ > �1
for planar 1-harmonic functions. In the special case ˇ D 0, detDV0.Du/ D � detD2u is

already defined by (1.2) as a distribution. However, in the general case ˇ ¤ 0, since the Sobolev

regularity of jDujˇDu is quite open, there is no appropriate definition for

detDVˇ .Dv/ D � detDŒjDujˇDu�

available in the literature. In this paper, we find out the following distributional definition,

which has its own interest.

Definition 1.2. Let� � R
2 be a domain. For any ˇ > �1 and v 2 W 1;2

loc .�/ satisfying

ˇjDvjˇC1 2 W 1;2
loc .�/, we define detDVˇ .Dv/ as a distribution by

Z

�

detDVˇ .Dv/ dx

´ �1
2

Z

�

jDvj2ˇ .D2 Dv �Dv/ dx

C 1

2ˇ C 2

Z

�

jDvj2ˇC2� dx

� ˇ

ˇ C 1

Z

�

ŒDjDvjˇC1 �Dv�.Dv �D /jDvjˇ�1 dx

(1.3)

for all  2 C1
c .�/.

Compared to (1.2) in the case when ˇ D 0, we need the additional assumption

jDuj1Cˇ 2 W 1;2
loc .�/

in the case when ˇ ¤ 0.

Before using Definition 1.2, we must first verify that it makes sense. To be precise, if

Vˇ .Dv/ 2 W 1;2
loc .�/ a priori, then we have a pointwise defined Jacobian determinant

detDVˇ .Dv/ 2 L1loc.�/:

On the other hand, since Vˇ .Dv/ 2 W 1;2
loc .�/ implies jDvj1Cˇ 2 W 1;2

loc .�/, Definition 1.2

gives a distributional Jacobian determinant detDVˇ .Dv/. One has to show the coincidence
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between the pointwise definition and the distributional definition of detDVˇ .Dv/. In the case

when ˇ D 0, such coincidence is well known. Indeed, such coincidence holds for smooth func-

tions v 2 C 3.�/ directly via the divergence of structure of � detD2v, and for v 2 W 2;2
loc .�/

via a standard approximation argument and linearity of Dv and D2v. However, in the gen-

eral case when ˇ ¤ 0, due to several essential difficulties caused by the nonlinear structure of

Vˇ .Dv/, essentially new ideas are required to get such coincidence. Eventually, we are able to

prove such coincidence via

� a nonlinear second-order estimate to inhomogeneous .ˇ C 2/-Laplace equations given

by Cianchi–Maz’ya [10],

� a fundamental structural identity and a divergence structure for

� detDŒ.jDvj2 C "/
ˇ
2Dv� with v 2 C1.�/ and " > 0

(see Lemmas 3.7 and 3.2),

� a divergence structure of � detD2v with v 2 C1 and its connection with �1v (see

Lemmas 2.1 and 3.6).

See Section 3 for the proof. In Section 4, we present some useful properties of the distributional

detDVˇ .Dv/.

For any planar 1-harmonic function u and any ˇ > �1, since jDujˇC1 2 W 1;2
loc as

proved in [25], the distributional Jacobian determinant detDVˇ .Dv/ is defined by (1.3). Re-

calling that DjDujˇC1 �Du D 0 almost everywhere (see [25]), for any  2 C1
c .�/, one

has
Z

�

detDVˇ .Du/ dx D �1
2

Z

�

jDuj2ˇ .D2 Du �Du/ dx

C 1

2ˇ C 2

Z

�

jDuj2ˇC2� dx:

(1.4)

We then obtain the following result.

Theorem 1.3. Let� � R
2 be a domain, and let ˇ > �1. For any 1-harmonic function

u in �, we have detDVˇ .Du/ 2 M.�/ with the lower bound

(1.5)

Z

�

detDVˇ .Du/ dx � 1

ˇ C 1

Z

�

ˇ

ˇDjDujˇC1
ˇ

ˇ

2
 dx for all 0 �  2 C 0c .�/

and the upper bound

(1.6)

Z

1
2
B

detDVˇ .Du/ dx � C
�

1C 1

ˇ C 1

�

«

B

jDuj2C2ˇ dx for all balls B b �;

where C > 0 is a universal constant.

We prove Theorem 1.3 in Section 5. By using Lemmas 2.1, 3.6, 3.7, 4.1, and 4.2, we

build up some analogue lower and upper bounds for exponential e
1

2"
j�j2-harmonic functions u"

in U b �, which are uniform in " 2 .0; 1/. As a consequence, we conclude that

detDVˇ .Du/ 2 M.U /

and detDVˇ .Du
"/ ! detDVˇ .Du/ in the weak-? sense in M.U /.
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Our original motivation of Definition 1.2 and Theorem 1.3 is to study planar p-harmonic

functions up and their limiting behavior as p ! 1. A function v 2 W 1;p
loc .�/ is called p-

harmonic if it is a weak solution to

�pv D div.jDvjp�2Dv/ D 0 in �:

See [32] for a probability interpretation by using Tug-of-War with noise. We refer the reader

to Iwaniec–Manfredi [23] and Aronsson [7] for the C k;˛ and W
kC2;q

loc -regularity of up with

optimal k, ˛, and q. In the literature, the interior regularity of p-harmonic functions in any

dimension has been extensively studied. See [8, 13, 14, 16, 26, 29, 30, 33, 35–37].

Moreover, for each ˇ > �1 and 1 < p < 1, the nonlinear complex gradient Vˇ .Dup/

is well known to be a quasiregular mapping. Precisely, Vˇ .Dup/ 2 W 1;2
loc .�/ and

(1.7) jDVˇ .Dup/j2 �
h

K.p; ˇ/C 1

K.p; ˇ/

i

detDVˇ .Dup/ a.e. in �;

where

K.p; ˇ/ D max
°p � 1
ˇ C 1

;
ˇ C 1

p � 1 ; ˇ C 1;
1

ˇ C 1

±

;

which leads to a pointwise defined Jacobian determinant detDVˇ .Dup/ 2 L1loc.�/. We refer

the reader to Bojarski–Iwaniec [9], Manfredi [29], Iwaniec–Manfredi [23], and Aronsson [7].

See also Lemma A.3 and Remark A.4 for the sharpness of the constant in (1.7) by using some

construction in [23].

Studying the Jacobian determinant and the corresponding Beltrami equation of

f D uz D 1

2
.ux � iuy/

when u is a p-harmonic function leads to the optimal regularity of p-harmonic functions in

the plane [23]. In a follow-up paper [15], the case for 1-Laplacian was studied under an extra

assumption that the solution is C 2. It was pointed out in [15, page 237] that if their calculation

was formulated rigorously in the general setting, then the optimal regularity of 1-Laplacian

would be C 1;
1
3

loc . Especially, one of the key problems is how to define (variants of) the Jacobian

determinant of f D uz for 1-harmonic functions.

In this paper, we obtain the following lower and upper bounds, where the constant is

uniform in p � 2 and hence is quite different from the above quasiregular properties.

Theorem 1.4. Let ˇ > �1 and 1 < p < 1. For any p-harmonic functions up in a

given planar domain �, one has the lower bound

detDVˇ .Dup/ � min¹1; p � 1º
ˇ C 1

ˇ

ˇDjDupjˇC1
ˇ

ˇ

2
a.e.

and upper bound

Z

1
2
B

detDVˇ .Dup/ dx � C
h

1C 1

1C ˇ
C 1

p � 1
ˇ2

ˇ C 1

i

«

B

jDupj2C2ˇ dx

for all balls B b �.
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Theorem 1.4 will be proved in Section 6 based on the approach in [25], Lemma 3.7,

Lemma 2.1, Lemma 3.6, and Lemma 3.2. Note that the case ˇ D 0 was already given in

a similar but simpler way by Lindgren–Lindqvist [27] via the approach in [25].

If p-harmonic functions up in a bounded smooth domain � have the same boundary

data g 2 C 0;1.à�/, then by using the variational approach and Jensen [24], there is a func-

tion u1 2 C 0;1.�/, which is the unique 1-harmonic function with boundary data g, so that

up ! u1 in C 0;˛.�/ for any ˛ 2 .0; 1/ and weakly in W 1;q
loc .�/ for any 1 < q < 1.

Recently, based on the approach in [25] and Theorem 1.4 with ˇ D 0, Lindgren–Lind-

qvist [27] deduced that up ! u1 in W 1;q
loc .�/ for any 1 < q < 1. However, even though

we already know that u1 2 C 1.�/ and C 1;˛.�/ for some 0 < ˛ < 1=3 (see [19, 34]), it

remains open whether up ! u1 in either C 1.�/ or C 1;˛.�/. We also observe that, from p-

harmonic to 1-harmonic functions, the best possible regularity has a huge jump. For example,

one always has up 2 W 3;1
loc but does not necessarily have u1 2 W 2;3=2

loc .

Because Dup ! Du1 in L
q
loc.�/ with 1 < q < 1, for ˇ > �1, the limit of mappings

Vˇ .Dup/ as p ! 1 is naturally expected to be the mapping Vˇ .Du1/ in certain sense.

However, since K.p; ˇ/ ! 1 as p ! 1, one cannot expect that Vˇ .Du1/ is a quasireg-

ular. Indeed, we do not necessarily have Vˇ .Du1/ 2 W 1;2
loc .�/ as witted by Aronsson’s 1-

harmonic function x
4=3
1 � x4=32 . Moreover, the W 1;1

loc -regularity of Vˇ .Du1/ is quite open

and very difficult even in the case special when ˇ D 0, and a pointwise Jacobian determinant

detDVˇ .Du1/ is unavailable.

Instead of the pointwise one, in the case when ˇ D 0, we already have the distributional

Jacobian determinant detDV0.Du1/ D � detD2u1 as in (1.2). Because Dup ! Du1 in

L2loc.�/, one has

detDV0.Dup/ ! detDV0.Du1/

in the sense of distributions. Since detDV0.Du1/ was proved to be a Radon measure in [25],

it is naturally expected that detDV0.Dup/ ! detDV0.Du1/ in the weak-? sense in M.�/.

In the case when 0 ¤ ˇ > �1, it is a basic question whether the limit

lim
p!1

detDVˇ .Dup/

exists in certain sense. If so, it is expected to be given by detDVˇ .Du1/. However, unlike

the case ˇ D 0, a distributional definition for detDVˇ .Du1/ is unavailable in the literature.

This leads us to introduce the distributional detDVˇ .Dv/ as in Definition 1.2 and build up

Theorem 1.5 below, which answer these questions.

Theorem 1.5. Given any ˇ > �1, as p ! 1, one has that Vˇ .Dup/ ! Vˇ .Du1/ in

L
q
loc.�/ for any q > 1, and also that detDVˇ .Dup/ ! detDVˇ .Du1/ in the weak-? sense

in M.�/, that is,

Z

�

detDVˇ .Du1/ dx D lim
p!1

Z

�

detDVˇ .Dup/ dx for all  2 C 0c .�/:

Theorem 1.5 follows from Theorems 1.3 and 1.4, and the convergence Dup ! Du1 in

L
q
loc.�/ with 1 < q < 1 as given in [27]. See Section 6 for details.
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2. Proof of Theorem 1.1

We begin with the following divergence structure of � detD2v for v 2 C1.

Lemma 2.1. For any v 2 C1.�/, one has

� detD2v D 1

2
ŒjD2vj2 � .�v/2� D 1

2
div.D2v Dv ��vDv/

D 1

2
Œ�.jDvj2/ � .vxi

vxj
/xixj

�:

(2.1)

Consequently,
Z

�

� detD2v dx

D �1
2

Z

�

ŒD2v Dv ��vDv� �D dx

D 1

2

Z

�

ŒjDvj2� �D2 Dv �Dv� dx for all  2 C1
c .�/:

(2.2)

From this, we deduce the following formula for .� detD2u/u2 for 1-harmonic func-

tions u in � � R
2. Since u always enjoys locally Lipschitz regularity (see Jensen [24]), by

Rademacher’s theorem, u is differentiable almost everywhere, and hence, for almost all x 2 �,

the derivative Du.x/ exists and Lipu.x/ D jDu.x/j. Moreover,

kDukL1.U / D sup
x2U

Lipu.x/ for any domain U � �:

As such, when there is no confusion, we slightly abuse the notation by writing Lipu instead

of jDuj. We remark that, even though u is known to be everywhere differentiable (see Evans–

Smart [20, 21]) and also C 1-regular (see Savin [34]), all the results in [25] and also all our

results and proofs below do not rely on either the everywhere differentiability or the C 1-

regularity of u.

Lemma 2.2. If u is 1-harmonic in �, then for any  2 C1
c .�/, one has

Z

U

.� detD2u/u2 dx C
Z

U

jDuj4 dx

D �
Z

U

jDuj2.Du �D /udx

C 1

2

Z

U

u2ŒjDuj2� �D2 Du �Du� dx:

(2.3)

Proof. The proof is divided into the following two steps.

Step 1. Given any v 2 C 2.U / with U b �, we show that
Z

U

.� detD2v/v2 dx D �3
2

Z

U

.DjDvj2 �Dv/v dx �
Z

U

jDvj4 dx

�
Z

U

jDvj2.Dv �D /v dx

C 1

2

Z

U

v2ŒjDvj2� �D2 Dv �Dv� dx:

(2.4)
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Indeed, by (2.1), one has
Z

U

.� detD2v/v2 dx D �
Z

U

D2v Dv �
h

v Dv  C 1

2
v2D 

i

dx

C
Z

U

�vDv �
h

v Dv  C 1

2
v2D 

i

dx:

Note that

�
Z

U

D2v Dv �
h

v Dv  C 1

2
v2D 

i

dx D �1
2

Z

U

.DjDvj2 �Dv/v dx

� 1

4

Z

U

.DjDvj2 �D /v2 dx;

where, using integration by parts,

�1
4

Z

U

.DjDvj2 �D /v2 dx D
Z

U

h1

4
jDvj2� v2 C 1

2
jDvj2.Dv �D /v

i

dx:

Moreover, integration by parts yields
Z

U

�vDv �
h

v Dv  C 1

2
v2D 

i

dx

D �
Z

U

Dv �D.jDvj2v C 1

2
v2Dv �D /dx

D �
Z

U

.DjDvj2 �Dv/v dx �
Z

U

jDvj4 dx � 1

4

Z

U

v2DjDvj2 �D dx

�
Z

U

h

2vjDvj2Dv �D C 1

2
v2D2 Dv �Dv

i

dx

D �
Z

U

.DjDvj2 �Dv/v dx �
Z

U

jDvj4 dx C 1

4

Z

U

v2jDvj2� dx

�
Z

U

h3

2
vjDvj2Dv �D C 1

2
v2D2 Dv �Dv

i

dx:

Combining these, we conclude (2.4).

Step 2. Given any smooth subdomain U b �, let u" 2 C1.U / \ C 0.U / be the solu-

tion to

div.e
1

2"
jDu"j2Du"/ D 1

"
e

1
2"

jDu"j2.�1u
" C "�u"/ D 0 with u" D u on àU:

Given any  2 C1
c .U /, we observe that

Z

U

.� detD2u/u2 dx D lim
"!0

Z

U

.� detD2u"/.u"/2 dx:

Indeed,

ˇ

ˇ

ˇ

Z

U

.� detD2u/u2 dx �
Z

U

.� detD2u"/.u"/2 dx
ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

Z

U

.� detD2u/u2 dx �
Z

U

.� detD2u"/u2 dx
ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

Z

U

.� detD2u"/Œu2 � .u"/2� dx
ˇ

ˇ

ˇ
:
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By the definition of � detD2u (see [25, Theorem 1.5] and also the proof of Theorem 1.3

below), the first term goes to 0 as " ! 0. The second term is bounded by

kdetD2u"kL1.supp /k.u"/2 � u2kL1.supp /:

By using the fact � detD2u" 2 L1loc.U / uniformly in small " > 0 (see [25, Theorem 1.5] and

also the proof of Theorem 1.3 below), the second term also goes to 0 as " ! 0.

Applying (2.4) proved in Step 1 to u", one has
Z

U

.� detD2u"/.u"/2 dx

D �3
2

Z

U

.DjDu"j2 �Du"/u" dx �
Z

U

jDu"j4 dx

�
Z

U

jDu"j2.Du" �D /u" dx

C 1

2

Z

U

.u"/2ŒjDu"j2� �D2 Du" �Du"� dx:

Since DjDu"j2 ! DjDuj2 weakly in L2loc.U / and u" ! u in W 1;q
loc .U / for any 1 < q < 1

(see [25]), sending " ! 0 above and noting that DjDuj2 �Du D 0, one has the desired iden-

tity (2.3).

Consequently, one has the following lemma.

Lemma 2.3. If u is 1-harmonic in �, then
Z

B.x;r/

.� detD2u/u2 dz C kDuk4
L4.B.x;r//

� C

r4
kuk4

L4.B.x;2r//
whenever B.x; 2r/ � �:

(2.5)

In particular, one has

(2.6) kDukL4.B.x;r// � C

r
kukL4.B.x;2r// whenever B.x; 2r/ � �:

Proof. Let � 2 C1
c .B.x; 2r// be a cut-off function satisfying

(2.7) � D 1 in B.x; r/; 0 � � � 1 in B.x; 2r/; jD�j2 C jD2�j � C

r2
in B.x; 2r/:

Taking  D �4 in (2.3), one has
Z

B.x;2r/

.� detD2u/u2�4 dz C
Z

B.x;2r/

jDuj4�4 dz

D �
Z

B.x;2r/

jDuj2.Du �D�4/u dz

C 1

2

Z

B.x;2r/

u2ŒjDuj2��4 �D2�4Du �Du� dz:

By Young’s inequality, the right-hand side of the above identity is bounded by

1

2

Z

B.x;2r/

jDuj4�4 dz C C

Z

B.x;2r/

juj4ŒjD�j4 C �2jD2�j2� dz:
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Thus,
Z

B.x;2r/

.� detD2u/u2�4 dz C
Z

B.x;2r/

jDuj4�4 dz

� C

Z

B.x;2r/

juj4ŒjD�j4 C �2jD2�j2� dz;

which together with (2.7) gives the desired (2.5). Finally, since � detD2u � 0 (see [25]), (2.6)

follows from (2.5).

From Lemma 2.3 and some basic properties of 1-harmonic functions, we are able to get

the following gradient estimate in Theorem 1.1 (i).

Proof of Theorem 1.1 (i). Since u � c is also 1-harmonic for any constant c, by Lem-

ma 2.3,

kDukL4.B.x;r// � C

r
ku � ckL4.B.x;2r// for all c 2 R

whenever B.x; 2r/ � �. Note that

ku � ckL4.B.x;2r// � Cku � ck
1
4

L1.B.x;2r//
ku � ck

3
4

L1.B.x;2r//
:

Taking c as the average of u in B.x; 2r/ and applying the Sobolev–Poincaré inequality, one

has

ku � ckL1.B.x;2r// � Cr
1
2 kDukL4.B.x;2r//

and hence

kDukL4.B.x;r// � Cr� 5
8 kuk

1
4

L1.B.x;2r//
kDuk

3
4

L4.B.x;2r//
:

This and Young’s inequality yield that, for any " 2 .0; 1/, one has

r
5
2 kDukL4.B.x;r// � "r

5
2 kDukL4.B.x;2r// C C"kukL1.B.x;2r//:

Via a standard iteration argument (see, for instance, [22, pp. 80–82]), we conclude that

r
5
2 kDukL4.B.0;r// � CkukL1.B.0;2r//:

Applying Morrey’s inequality, for any ball B.x; 2r/ � � and anyy 2 � with jx � yj D r , by

the above, one has

ju.x/ � u.y/j � jx � yj 1
2 kDukL4.B.x;r// � C

r3
jx � yjkukL1.B.x;2r//:

One obtains

u.y/ � C

r3
jx � yjkukL1.B.x;2r// � u.x/ � u.y/C C

r3
jx � yjkukL1.B.x;2r//

in à.B.x; r/ n ¹xº/ and then, by the comparison property with cones, in B.x; r/. Since u is

differentiable at x (see [21]), this yields that

jDu.x/j � C

r

«

B.x;2r/

juj dz:

Theorem 1.1 (i) is proved.
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Remark 2.4. Let u be an 1-harmonic function in � � R
2.

(i) It was shown by Lindqvist and Manfredi [28] that

jDu.x/j � 2

r
kukL1.B.x;r// in B.x; r/ � �:

Theorem 1.1 (i) shows that 2kukL1.B.x;r// can be relaxed to the averageC
ª

B.x;r/juj dx.

(ii) Via directly working on � detD2u" for the e
1

2"
j�j2-harmonic function u" and some te-

dious calculation, it was shown in [25, Theorem 1.5] that, for any p > 2,

kDukLp.B.x;r// � C.p/

r
kukLp.B.x;2r// whenever B.x; 2r/ b �:

In the case when p D 4, we derived a formula for .� detD2u/u2 in Lemma 2.2, simpli-

fying the argument and calculations in [25]. See Lemma 2.3 and its proof.

The following is crucial to prove Theorem 1.1 (ii). Recall that

P D ¹b C a � x W b 2 R; a 2 R
2º:

Proposition 2.5. If u 2 C 0.�/ is an 1-harmonic function in a planar domain �, then
Z

1
4
B

� detD2udx � C inf
P2P










u � P
r










L1.B/

h

jDP j C









u � P
r










L1.B/

i

for all B D B.x; r/ b �.

To prove this proposition, we need the following, which was proved by the comparison

property with cones (see [12, Section 2]). For the reader’s convenience, we briefly recall their

proof below.

Lemma 2.6. If u is 1-harmonic in B.0; 2r/, then

(2.8) kDukL1.B.0;r// � inf
P2P

h

jDP j C 2









u � P
r










L1.B.0;2r//

i

:

Proof. Given any P.x/ D b C a � x 2 P , write � D ku � P kL1.B.0;2r//. Given any

x 2 B.0; r/, for any y 2 R
2 with jx � yj D r , we have y 2 B.0; 2r/ and

ju.y/ � u.x/ � a � .y � x/j � ju.x/ � b � a � xj C ju.y/ � b � a � yj � 2�;

which implies that

u.y/ � u.x/C a � .y � x/C 2� � u.x/C
�

jaj C 2
�

r

�

jx � yj;

u.y/ � u.x/C a � .y � x/ � 2� � u.x/ �
�

jaj C 2
�

r

�

jx � yj:

Applying the comparison property with cones, one has

ju.y/ � u.x/j �
�

jaj C 2
�

r

�

jx � yj for all y 2 B.x; r/;

which implies that jDu.x/j � jaj C 2�=r , so (2.8) follows.
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The following property was observed in [21]. For the reader’s convenience, we give the

proof below.

Lemma 2.7. If u is 1-harmonic in B.0; 2r/, then for any P 2 P , we have
«

B.0;r/

jDu �DP j2 dx � 20









u � P
r










L1.B.0;2r//

h

jDP j C









u � P
r










L1.B.0;2r//

i

:

Proof. By considering u.rx/=r and P.rx/=r 2 P , we may assume that r D 1. Write

� D ku � P kL1.B.0;2//. If � � jDP j, then by Lemma 2.6, one has
«

B.0;1/

jDu �DP j2 dx �
«

B.0;1/

2ŒjDuj2 C jDP j2� dx

� 2Œ.jDP j C 2�/2 C jDP j2� � 20�2:

Below, assume that 0 < � < jDP j. Set

v D u

jDP j ; Q D P

jDP j ; and � D �

jDP j D kv �QkL1.B.0;2// < 1:

Then jDQj D 1. Up to a rotation, we may assume DQ D e2. It then suffices to show

(2.9)

«

B.0;1/

jDv � e2j2 dx � 16�:

Indeed, this implies that
«

B.0;1/

jDu �DP j2 dx � 16�jDP j;

as desired

To see (2.9), by (2.8) and � < 1, one has

jDv.x/ � e2j2 D jDv.x/j2 � 2vx2
C 1 � .1C 2�/2 C 1 � 2vx2

� 2C 4�C 4�2 � 2vx2

� 2.1C 4� � ux2
/:

We therefore obtain
Z

B.0;1/

jDv.x/ � e2j2 dx � 2

Z

B.0;1/

.1C 4� � vx2
/ dx

D 2

Z

jx1j�1

Z

p
1�jx1j2

�
p
1�jx1j2

Œ1C 4� � vx2
� dx2 dx1:

Note that
Z

p
1�jx1j2

�
p
1�jx1j2

Œ1C 4� � vx2
� dx2

D 2.1C 4�/

q

1 � jx1j2 �
�

v.x1;

q

1 � jx1j2/ � v.x1;�
q

1 � jx1j2/
�

D 8�

q

1 � jx1j2 �
®�

v.x1;

q

1 � jx1j2/ �Q.x1;
q

1 � jx1j2/
�

�
�

v.x1;�
q

1 � jx1j2/ �Q.x1;�
q

1 � jx1j2/
�¯

� 8�:

We therefore obtain (2.9).
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We are ready to prove Proposition 2.5.

Proof of Proposition 2.5. Let u be an 1-harmonic function in a planar domain �. Fix

any x0 2 � and r > 0 so that B.x0; 4r/ � �. Let P 2 P . Without loss of generality, we

assume that x0 D 0. By Lemma 2.7, we only need to prove

(2.10)

Z

B.0;r/

� detD2udx � C inf
P2P

«

B.0;2r/

jDu �DP j2 dx:

Note that D2v D D2.v � P /, and hence

� detD2v D � detD2.v � P /

for any smooth function v. The distributional definition of � detD2v then must coincide with

that of � detD2.u � P /, i.e.,
Z

�

.� detD2u/�2 dx D 1

2

Z

�

ŒjD.u � P /j2��2 �D2�2D.u � P / �D.u � P /� dx

for all � 2 C1
c .�/. Thus,
Z

�

.� detD2u/�2 dx � C

Z

�

jDu �DP j2.jD2�jj�j C jD�j2/ dx

for all � 2 C1
c .�/. Since � detD2u � 0 as proved in [25], by a choice of cut-off function �

as in (2.7), we have (2.10).

To prove Theorem 1.1 (ii), we also need the following result by Crandall–Evans [11].

Lemma 2.8. If u is 1-harmonic in R
2 and Lipu.x0/ D kDukL1.R2/ < 1 for some

x0, then u 2 P , i.e., u.x/ D b C a � x in R
2 for some b 2 R and a 2 R

2.

This allows us to get the following, via some argument much similar to that for the linear

approximations in [11]. We give the details here for the reader’s convenience.

Lemma 2.9. Let u be an 1-harmonic function in R
2 with 0 < kDukL1.R2/ < 1.

Then there exist a subsequence ¹mj ºj2N � N and a vector a 2 R
2 such that

(2.11) lim
j!1

sup
B.0;4/

ˇ

ˇ

ˇ

u.mjx/

mj
� a � x

ˇ

ˇ

ˇ
D 0:

Proof. Without loss of generality, we may assume that u.0/ D 0. Write

um.x/ D 1

m
u.mx/ for m 2 N:

Since kDumkL1.R2/ D kDukL1.R2/ < 1, we know that ¹umºm2N is equicontinuous and

locally uniformly bounded in R
2. Thus, there exists a subsequence ¹mj º � N such that umj

converges locally uniformly to some continuous function w 2 C 0.R2/ with w.0/ D 0. More-

over, since kDumkL1.R2/ D kDukL1.R2/, one has

jw.x/ � w.y/j D lim
k!1

jumj
.x/ � umj

.y/j � kDukL1.R2/jx � yj for all x; y 2 R
2
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and hence kDwkL1.R2/ � kDukL1.R2/ < 1. Due to the compactness of viscosity solutions,

w is an 1-harmonic function in R
2. To see (2.11), it suffices to prove

Lipw.0/ D kDwkL1.R2/:

This allows us to apply Lemma 2.8 to get that w.x/ D a � x in R
2 for some a 2 R

2. Hence

umj
converges locally uniformly to a � x, that is, (2.11) holds.

Finally, we show that Lipw.0/ D kDwkL1.R2/. We always have

Lipw.0/ � kDwkL1.R2/:

To see the converse, recall that w has the linear approximation property at 0, that is, for

any sequence ¹rj ºj2N converging to 0, there are a subsequence ¹rjk
ºk2N and also a vector

e depending on ¹rjk
ºk2N such that

lim
k!1

sup
z2B.0;1/

ˇ

ˇ

ˇ

w.rjk
z/

rjk

� e � z
ˇ

ˇ

ˇ
D 0

and jej D Lipw.0/. Therefore, for every � > 0, there exists an r� 2 .0; 1/ such that

sup
B.0;2r�/

1

r�
jw.x/ � e � xj � �:

On the other hand, since umj
! w uniformly in B.0; 2/, there exists j� such that, for any

j � j�,

jumj
.z/ � w.z/j � �r� for all z 2 B.0; 2/:

Therefore,

sup
B.0;2r�/

1

r�
jumj

.x/ � e � xj � 2�;

or equivalently,

sup
B.0;2mj r�/

1

2mj r�
ju.x/ � e � xj � �:

By (2.8), one has jDu.x/j � jej C 4� for all x 2 B.0;mj r�/. By sending j ! 1, we also

have this inequality for all x 2 R
2. By the arbitrariness of � > 0, we have jej � kDukL1.Rn/

and hence Lipw.0/ � kDukL1.Rn/, as desired.

Proof of Theorem 1.1 (ii). Let u be an 1-harmonic function in R
2 with

lim inf
R!1

inf
c2R

1

R

«

B.0;R/

ju.x/ � cj dx < 1:

For any c 2 R, since u � c is an 1-harmonic function in R
2, by Theorem 1.1 (i), one has

kDukL1.B.0;R=2// � C
1

R

«

B.0;R/

ju.x/ � cj dx for all R > 0:

Thus,

kDukL1.B.0;R=2// � C inf
c2R

1

R

«

B.0;R/

ju.x/ � cj dx for all R > 0:
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This implies

kDukL1.R2/ D lim inf
R!1

kDukL1.B.0;R=2// � lim inf
R!1

inf
c2R

1

R

«

B.0;R/

ju.x/ � cj dx < 1:

We assume that kDukL1.R2/ > 0 because otherwise u is a constant. By Lemma 2.9,

there exist a subsequence ¹mj ºj2N � N and a vector a 2 R
2 such that

(2.12) lim
j!1

sup
B.0;4/

ˇ

ˇ

ˇ

u.mjx/

mj
� a � x

ˇ

ˇ

ˇ
D 0:

From (2.12), (1.1), and Proposition 2.5, we deduce
Z

R2

ˇ

ˇDjDuj
ˇ

ˇ

2
dx � C

Z

R2

� detD2udx

D C lim
j!1

Z

B.0;mj /

� detD2udx

� C lim
j!1

sup
x2B.0;4/

ˇ

ˇ

ˇ

u.mjx/

mj
� a � x

ˇ

ˇ

ˇ
D 0:

Thus, jDuj is a constant almost everywhere, and hence kDukL1.R2/ D jDu.x0/j for some

x0 2 R
2. By Lemma 2.8, we have u 2 P and hence u.x/ D u.0/C a � x.

3. A discussion of Definition 1.2

To see that Definition 1.2 makes sense, one must prove the following Proposition 3.1,

which reads that, for any ˇ > �1, if v 2 W 1;1
loc .�/ and jDvjˇDv 2 W 1;2

loc .�/, then it fol-

lows that � detDŒjDvjˇDv� is defined almost everywhere, � detDŒjDvjˇDv� 2 L1loc.�/,

and � detDŒjDvjˇDv� has a distributional representative as proved in Proposition 3.1 below.

Proposition 3.1. For any ˇ > �1, if v 2 W 1;1
loc .�/ and jDvjˇDv 2 W 1;2

loc .�/, then
Z

�

� detDŒjDvjˇDv� dx

D �1
2

Z

�

jDvj2ˇ .D2 Dv �Dv/ dx

C 1

2ˇ C 2

Z

�

jDvj2ˇC2� dx

� ˇ

ˇ C 1

Z

�

ŒDjDvjˇC1 �Dv�.Dv �D /jDvjˇ�1 dx

(3.1)

for all  2 C1
c .�/.

When ˇ > �1 and ˇ ¤ 0, the assumptions v 2 W 1;1
loc .�/ and jDvjˇDv 2 W 1;2

loc .�/ are

minimal regularity conditions on v to guarantee that the right-hand side of (3.1) is finite. Under

such minimal regularity, a pointwise definition � detDŒjDvjˇDv� may not be available, but

thanks to Proposition 3.1, we could use the right-hand side of (3.1) to define � detDŒjDvjˇDv�
in the distributional sense, as we did in Definition 1.2.

In the remaining part of Section 3, we will prove Proposition 3.1 by leveraging four

auxiliary lemmas, namely Lemmas 3.2 through 3.5. The proofs of Lemmas 3.2 and 3.5 are
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presented in Sections 3.1 and 3.2, respectively. These proofs necessitate the introduction of

several new concepts and approaches.

Recall that, in the case when ˇ D 0, Proposition 3.1 follows from (2.2) and a stan-

dard approximation via smooth functions. Indeed, denote by ¹�"º"2.0;1� the standard smooth

mollifier

�".x/ D "�2�."�1x/; where � 2 C1.B.0; 1// satisfying

� � 0 and

Z

B.0;1/

� dx D 1:

(3.2)

Given any v 2 W 2;2
loc .�/, we know that (2.2) holds for v � �". As " ! 0, since

� detD2.v � �"/ D � detŒ.D2v/ � �"� ! � detD2v in L1loc.�/;

jD.v � �"/j2 ! jDvj2 in L1loc.�/;

D.v � �"/˝D.v � �"/ ! Dv ˝Dv in L1loc.�/;

we know that (2.2) holds for such v.

Below, we consider the case when ˇ ¤ 0. First, we note that, for any v 2 C1.�/, in the

case when ˇ � 0, one has jDvjˇDv 2 W 1;2
loc .�/, but when �1 < ˇ < 0, we do not necessarily

have jDvjˇDv 2 W 1;2
loc .�/. Indeed, if w.x/ D x21 in R

2, then a direct calculation leads to

jDŒjDwjˇDw�j2 D 4.ˇ C 1/2jx1j2ˇ when x1 ¤ 0;

which does not belong to L1loc.R
2/ when ˇ � �1

2
. For this reason, when ˇ < 0, we consider

� detDŒ.jDvj2 C "/
ˇ
2Dv� with " > 0:

We have the following result, whose proof is postponed to Section 3.1.

Lemma 3.2. Let v 2 C1.�/. Given any ˇ � 0 and " � 0, or given any ˇ 2 .�1; 0/
and " > 0, one has

Z

�

� detDŒ.jDvj2 C "/
ˇ
2Dv� dx

D �1
2

Z

�

.jDvj2 C "/ˇ .D2 Dv �Dv/ dx

C 1

2ˇ C 2

Z

�

.jDvj2 C "/ˇC1� dx

� ˇ

ˇ C 1

Z

�

.jDvj2 C "/
ˇ�1

2 ŒD.jDvj2 C "/
ˇC1

2 �Dv�
� .Dv �D /dx

(3.3)

for all  2 C1
c .�/.

We also have the following two divergence structural formulae.

Lemma 3.3. Let v 2C1.�/. For any " > 0 and ˇ >�1, one has, for any 2C1
c .�/,

Z

�

� detDŒ.jDvj2 C "/
ˇ
2Dv� dx

D
Z

�

®

Œ.jDvj2 C "/
ˇ
2 vx2

�x2
.jDvj2 C "/

ˇ
2 vx1

 x1

� Œ.jDvj2 C "/
ˇ
2 vx2

�x1
.jDvj2 C "/

ˇ
2 vx1

 x2

¯

dx:
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Proof. Write F D .jDvj2 C "/
ˇ
2Dv. By integration by parts, one has

Z

�

� det.DF / dx D �
Z

�

Œ.F1/x1
.F2/x2

� .F1/x2
.F2/x1

� dx

D
Z

�

ŒF1.F2/x2
 x1

dx � F1.F2/x1
 x2

� dx;

as desired.

Lemma 3.4. Let v 2W 1;1
loc .�/ satisfy jDvjˇDv 2W 1;2

loc .�/ for some ˇ > �1. One has

Z

�

� detDŒjDvjˇDv� dx

D
Z

�

Œ.jDvjˇvx2
/x2

jDvjˇvx1
 x1

� .jDvjˇvx2
/x1

jDvjˇvx1
 x2

� dx

for all  2 C1
c .�/.

Proof. For " > 0, let F " D .F "1 ; F
"
2 / D .jDvjˇDv/ � �" 2 C1

loc .�/, where �" is the

standard smooth mollifier as in (3.2). By jDvjˇDv 2W 1;2
loc .�/, we know that F " ! jDvjˇDv

in W 1;2
loc .�/ as " ! 0. By this, integration by parts and .F "2 /x1x2

D .F "2 /x2x1
, we have

Z

�

� det.DŒjDvjˇDv�/ dx

D lim
"!0

Z

�

� det.DF "/ dx

D � lim
"!0

Z

�

Œ.F "1 /x1
.F "2 /x2

� .F "1 /x2
.F "2 /x1

� dx

D lim
"!0

Z

�

ŒF "1 .F
"
2 /x2

 x1
dx � F "1 .F "2 /x1

 x2
� dx

D
Z

�

Œ.jDvjˇvx1
/.jDvjˇvx2

/x2
 x1

dx � .jDvjˇvx1
/.jDvjˇvx2

/x1
 x2

� dx

for any  2 C1
c .�/. Hence we complete this proof.

Moreover, we need the following approximation result. Given any 0 ¤ ˇ > �1, let

v 2 W 1;1
loc .�/ satisfy jDvjˇDv 2 W 1;2

loc .�/:

Write

g ´ div.jDvjˇDv/ 2 L2loc.�/:

Given any B D B.x0; r/ b 4B b �, one has g 2 L2.4B/. For any " 2 .0; r�, set

g".x/ ´ g � �".x/ for all x 2 3B;

where ¹�"º"2.0;1� is the standard smooth mollifier as in (3.2). Note that

g" 2 C1.3B/; g" 2 L2.3B/ uniformly in " 2 .0; r�;

and g" ! g in L2.3B/ as " ! 0. Since jDvjˇDv 2 W 1;2.4B/, by the Sobolev embedding

theorem, we have jDvjˇDv 2 Lq.4B/, and hence v 2 W 1;q.4B/, for any 1 < q < 1. Con-
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sider the Dirichlet problem for the inhomogeneous .2C ˇ/-Laplace equation

(3.4) div
�

.jDwj2 C "/
ˇ
2Dw

�

D g" in 2B; w D v on à.2B/:
There exists a unique smooth solution v" 2 C1.2B/ \W 1;2Cˇ .2B/ \ C 0.2B/ to (3.4). The

following convergence result plays a key role in the proof of Proposition 3.1. Its proof is post-

poned to Section 3.2.

Lemma 3.5. We have

Dv" ! Dv in L2Cˇ .2B/ as " ! 0I

ŒjDv"j2 C "�
ˇ
2Dv" 2 W 1;2.2B/ uniformly in " 2 .0; r�;(3.5)

ŒjDv"j2 C "�
ˇ
2Dv" ! jDvjˇDv in Lq.B/ for any q 2 .1;1/ and

weakly in W 1;2.B/ as " ! 0I

ŒjDv"j2 C "�
ˇC1

2 2 W 1;2.B/ uniformly in " 2 .0; r�;(3.6)

ŒjDv"j2 C "�
ˇC1

2 ! jDvjˇC1 in Lq.B/ for any q 2 .1;1/ and

weakly in W 1;2.B/ as " ! 0:

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let ˇ > �1 but ˇ ¤ 0. Up to a partition of unit, we only need

to show that (1.2) for all 2 C1
c .B/wheneverB D B.x0; r/with 4B � �. Fix such a ballB .

Let v" be as in Lemma 3.5. Since ŒjDv"j2 C "�
ˇ
2Dv" ! jDvjˇDv weakly in W 1;2.B/ as

given in (3.5), by Lemmas 3.4 and 3.3, we have
Z

B

� detDŒjDvjˇDv� dx

D
Z

B

Œ.jDvjˇvx2
/x2

jDvjˇvx1
 x1

� .jDvjˇvx2
/x1

jDvjˇvx1
 x2

� dx

D lim
"!0

Z

B

��

.jDv"j2 C "/
ˇ
2 v"x2

�

x2
.jDv"j2 C "/

ˇ
2 v"x1

 x1

�
�

.jDv"j2 C "/
ˇ
2 v"x2

�

x1
.jDv"j2 C "/

ˇ
2 v"x1

 x2

�

dx

D lim
"!0

Z

B

� detDŒ.jDv"j2 C "/
ˇ
2Dv"� dx for all  2 C1

c .B/:

Note that, by Lemma 3.2, (3.3) always holds v" and  2 C1
c .B/. To get (3.1) for v, it then

suffices to show that
Z

B

.jDv"j2 C "/ˇ .D2 Dv" �Dv"/ dx

!
Z

B

jDvj2ˇ .D2 Dv �Dv/ dx;

(3.7)

Z

B

.jDv"j2 C "/ˇC1� dx !
Z

B

jDvj2ˇC2� dx;(3.8)

Z

B

.jDv"j2 C "/
ˇ�1

2 ŒD.jDv"j2 C "/
ˇC1

2 �Dv�.Dv" �D /dx

!
Z

B

ŒDjDvjˇC1 �Dv�.Dv �D /jDvjˇ�1 dx

(3.9)
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for any  2 C1
c .B/. By (3.5), we have .jDv"j2 C "/

ˇ
2Dv" ! jDvjˇDv in L2.B/, which

gives (3.8).

To get (3.7), we only need to show

(3.10) .jDv"j2 C "/ˇDv" ˝Dv" ! jDvj2ˇDv ˝Dv in L2.B/:

Noting

ja˝ a � b ˝ bj � ja˝ a � a˝ bj C ja˝ b � b ˝ bj � ja � bjŒjaj C jbj�;

we have
ˇ

ˇ.jDv"j2 C "/ˇDv" ˝Dv" � jDvj2ˇDv ˝Dv
ˇ

ˇ

�
ˇ

ˇ.jDv"j2 C "/
ˇ
2Dv" � jDvjˇDv

ˇ

ˇŒ.jDv"j2 C "/
ˇC1

2 C jDvjˇC1�:

Since

.jDv"j2 C "/
ˇ
2Dv" ! jDvjˇDv in L2.B/;

.jDv"j2 C "/
ˇC1

2 2 L2.B/ uniformly in " > 0;

jDvjˇC1 2 L2.B/;
we obtain (3.10).

Finally, (3.9) follows fromD.jDv"j2 C "/
ˇC1

2 ! DjDvjˇC1 weakly in L2.B/ as given

in (3.6), and also

.jDv"j2 C "/
ˇ�1

2 Dv" ˝Dv" ! jDvjˇ�1Dv ˝Dv in L2.B/;

which is proved similarly to (3.10).

3.1. Proof of Lemma 3.2. We first recall the following fundamental identity (3.11);

see [14, 25].

Lemma 3.6. For any v 2 C1.�/, we have

(3.11) jD2v Dvj2 ��v�1v D 1

2
ŒjD2vj2 � .�v/2�jDvj2 in �:

Next we build up the following structural identity.

Lemma 3.7. For any v 2 C1.�/, ˇ 2 R, and " > 0, we have

� detDŒ.jDvj2 C "/
ˇ
2Dv�

D 1

2
.jDvj2 C "/ˇ ŒjD2vj2 � .�v/2�

C ˇ.jDvj2 C "/ˇ�1ŒjD2v Dvj2 ��v�1v� in �:

(3.12)

Moreover, if in addition jDvj > 0 in �, then (3.12) holds with " D 0.

Proof. For 1 � i; j � 2, one has

Œ.jDvj2 C "/
ˇ
2 vxi

�xj
D .jDvj2 C "/

ˇ
2

h

vxixj
C ˇ.jDvj2 C "/�1

� jDvj2
2

�

xj

vxi

i

:
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Thus,

detDŒ.jDvj2 C "/
ˇ
2Dv�

D .jDvj2 C "/ˇ
h

vx1x1
C ˇ.jDvj2 C "/�1

� jDvj2
2

�

x1

vx1

i

�
h

vx2x2
C ˇ.jDvj2 C "/�1

� jDvj2
2

�

x2

vx2

i

� .jDvj2 C "/ˇ
h

vxixj
C ˇ.jDvj2 C "/�1

� jDvj2
2

�

x2

vx1

i

�
h

vx2x1
C ˇ.jDvj2 C "/�1

� jDvj2
2

�

x1

vx2

i

D .jDvj2 C "/ˇ Œvx1x1
vx2x2

� vx1x2
vx2x1

�C ˇ.jDvj2 C "/ˇ�1

�
°h

vx1x1

� jDvj2
2

�

x2

vx2
C vx2x2

� jDvj2
2

�

x1

vx1

i

�
h

vx1x2

� jDvj2
2

�

x1

vx2
C vx2x1

� jDvj2
2

�

x2

vx1

i±

C ˇ2.jDvj2 C "/ˇ�2
h� jDvj2

2

�

x1

vx1

� jDvj2
2

�

x2

vx2

�
� jDvj2

2

�

x2

vx1

� jDvj2
2

�

x1

vx2

i

:

Observe that the last term is 0, the first term equals .jDvj2 C "/ˇ detD2v. Regarding the

second term, since

�1v D
� jDvj2

2

�

x1

vx1
C

� jDvj2
2

�

x2

vx2
;

jD2v Dvj2 D vx1x1

� jDvj2
2

�

x1

vx1
C vx2x2

� jDvj2
2

�

x2

vx2

C vx1x2

� jDvj2
2

�

x1

vx2
C vx2x1

� jDvj2
2

�

x2

vx1
;

we have

h

vx1x1

� jDvj2
2

�

x2

vx2
C vx2x2

� jDvj2
2

�

x1

vx1

i

�
h

vx1x2

� jDvj2
2

�

x1

vx2
C vx2x1

� jDvj2
2

�

x2

vx1

i

D vx1x1
�1v C vx2x2

�1v � vx1x1

� jDvj2
2

�

x1

vx1
� vx2x2

� jDvj2
2

�

x2

vx2

�
h

vx1x2

� jDvj2
2

�

x1

vx2
C vx2x1

� jDvj2
2

�

x2

vx1

i

D �v�1v � jD2v Dvj2:

Thus, the second term equals �ˇ.jDvj2 C "/ˇ�1ŒjD2v Dvj2 ��v�1v�. We therefore obtain

(3.12). Finally, we note that if jDv.x/j > 0, the above argument holds with " D 0. This com-

pletes the proof of Lemma 3.7.
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We are ready to prove Lemma 3.2.

Proof of Lemma 3.2. By (2.1) and integration by parts, for any  2 C1
c .�/, we have

Z

�

.jDvj2 C "/ˇ ŒjD2vj2 � .�v/2� dx

D
Z

�

.jDvj2 C "/ˇ div.D2v Dv ��vDv/ dx

D �2ˇ
Z

�

.jDvj2 C "/ˇ�1ŒjD2v Dvj2 ��1v�v� dx

C
Z

�

.jDvj2 C "/ˇ Œ�v Dv �D �D2v Dv �D � dx:

From this and (3.12), it follows that

Z

�

� detDŒ.jDvj2 C "/
ˇ
2Dv� dx

D 1

2

Z

�

.jDvj2 C "/ˇ Œ�v Dv �D �D2v Dv �D � dx:

By integration by parts again, we have

1

2

Z

�

�v.jDvj2 C "/ˇ .Dv �D /dx D �1
2

Z

�

.jDvj2 C "/ˇ .D2 Dv �Dv/ dx

� 1

2

Z

�

.jDvj2 C "/ˇ .D2v Dv �D /dx

� 1

2

Z

�

ŒD.jDvj2 C "/ˇ �Dv�.Dv �D /dx:

Noting

.jDvj2 C "/ˇD2v Dv D D.jDvj2 C "/ˇC1

2ˇ C 2
;

one further gets

�
Z

�

.jDvj2 C "/ˇD2v Dv �D dx D � 1

2ˇ C 2

Z

�

ŒD.jDvj2 C "/ˇC1 �D � dx

D 1

2ˇ C 2

Z

�

.jDvj2 C "/ˇC1� dx:

We also observe that

D.jDvj2 C "/ˇ D 2ˇ

ˇ C 1
.jDvj2 C "/

ˇ�1
2 D.jDvj2 C "/

ˇC1
2 :

Thus,

� 1

2

Z

�

ŒD.jDvj2 C "/ˇ �Dv�.Dv �D /dx

D � ˇ

ˇ C 1

Z

�

.jDvj2 C "/
ˇ�1

2 ŒD.jDvj2 C "/
ˇC1

2 �Dv�.Dv �D /dx:

Combining all the above, we obtain the desired identity (3.3).
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3.2. Proof of Lemma 3.5.

Proof of Lemma 3.5. Up to some scaling and translation, we assume that x0 D 0 and

r D 1. Write Bm D B.0;m/ D mB.0; 1/ for m � 1. We divide the proof into four steps.

Step 1. Prove v" 2 L2.B2/ and Dv" 2 L2Cˇ .B2/ uniformly in " 2 .0; 1�.
Since v" � v 2 W 1;ˇC2

0 .B2/, by the Sobolev–Poincaré inequality, it suffices to prove that

Dv" 2 L2Cˇ .B2/ uniformly in " 2 .0; 1�. Choosing the test function v" � v 2 W 1;ˇC2
0 .B2/

to equation (3.4), we get

(3.13)

Z

B2

.jDv"j2 C "/
ˇ
2Dv" � .Dv" �Dv/ dx D �

Z

B2

g".v" � v/ dx;

or equivalently,

Z

B2

.jDv"j2 C "/
ˇ
2 jDv"j2 dx D

Z

B2

.jDv"j2 C "/
ˇ
2Dv" �Dv dx �

Z

B2

g".v" � v/ dx:

Young’s inequality yields that

Z

B2

.jDv"j2 C "/
ˇ
2Dv" �Dv dx �

Z

B2

.jDv"j2 C "/
ˇC1

2 jDvj dx

� 1

24Cˇ

Z

B2

.jDv"j2 C "/
ˇ
2

C1 dx C C.ˇ/

Z

B2

jDvj2Cˇ dx

� 1

4

Z

B2

jDv"jˇC2 dx C 1

4
C C.ˇ/

Z

B2

jDvj2Cˇ dx:

By Hölder’s inequality, the Sobolev–Poincaré inequality, and Young’s inequality, one has

�
Z

B2

g".v" � v/ dx �
�

Z

B2

.g"/2 dx
�

1
2
�

Z

B2

jv" � vj2 dx
�

1
2

� C
�

Z

B3

g2 dx
�

1
2
�

Z

B2

jDv" �Dvj2Cˇ dx
�

1
2Cˇ

� C
�

Z

B3

g2 dx
�

2Cˇ
2.1Cˇ/ C 1

4

Z

B2

jDv"j2Cˇ dx C C

Z

B2

jDvj2Cˇ dx:

Therefore, we obtain

Z

B2

jDv"jˇC2 dx � C.ˇ/

Z

B2

jDvjˇC2 dx C
�

Z

B3

g2 dx
�

2Cˇ
2.1Cˇ/ C C:

Thus, Dv" 2 LˇC2.B2/ uniformly in " 2 .0; 1�.

Step 2. Prove v" ! v in W 1;2Cˇ .B2/ as " ! 0.

Since g D div.jDvjˇDv/ and v" � v 2 W 1;p
0 .B2/, we have

�
Z

B2

g.v" � v/ dx D
Z

B2

jDvjˇDv � .Dv" �Dv/ dx:
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By this and (3.13), one has
Z

B2

.jDv"j2 C "/
ˇ
2Dv" � .Dv" �Dv/ dx

D
Z

B2

jDvjˇDv � .Dv" �Dv/ dx C
Z

B2

.g" � g/.v" � v/ dx;

and hence
Z

B2

�

.jDv"j2 C "/
ˇ
2Dv" � .jDvj2 C "/

ˇ
2Dv

�

� .Dv" �Dv/ dx

D
Z

B2

�

jDvjˇDv � .jDvj2 C "/
ˇ
2Dv

�

� .Dv" �Dv/ dx C
Z

B2

.g" � g/.v" � v/ dx:

Observe that, when ˇ > �1, it holds that

.j�j2 C j�j2 C "/
ˇ
2 j� � �j2

� C.ˇ/
�

.j�j2 C "/
ˇ
2 � � .j�j2 C "/

ˇ
2 �

�

� .� � �/ for all �; � 2 R
2:

Thus,
Z

B2

.jDv"j2 C jDvj2 C "/
ˇ
2 jDv" �Dvj2 dx

� C.ˇ/

Z

B2

�

jDvjˇDv � .jDvj2 C "/
ˇ
2Dv

�

� .Dv" �Dv/ dx

C
Z

B2

.g" � g/.v" � v/ dx:

By Hölder’s inequality, we have
Z

B2

.jDv"j2 C jDvj2 C "/
ˇ
2 jDv" �Dvj2 dx

� C.ˇ/
�

Z

B2

ˇ

ˇjDvjˇDv � .jDvj2 C "/
ˇ
2Dv

ˇ

ˇ

ˇC2
ˇC1 dx

�
ˇC1
ˇC2

�
�

Z

B2

ŒjDv"jˇC2 C jDvjˇC2�
�

1
ˇC2

C C.ˇ/
�

Z

B2

jg" � gj2 dx
�

1
2
�

Z

B2

Œjv"j2 C jvj2� dx
�

1
2
:

(3.14)

Recalling that v" 2 W 1;ˇC2.B2/ uniformly in " 2 .0; 1� as given in the step 1, and noting that

.jDvj2 C "/
ˇ
2Dv ! jDvjˇDv in L

ˇC2
ˇC1 .B2/ as " ! 0;

we deduce that the first term in the right-hand side of (3.14) tends to zero as " ! 0. Since

v" 2 W 1;ˇC2.B2/ uniformly in " 2 .0; 1� and recalling g" ! g in L2.B2/, the second term of

the right-hand side of (3.14) tends to 0 as " ! 0. Thus,

(3.15)

Z

B2

.jDv"j2 C jDvj2 C "/
ˇ
2 jDv" �Dvj2 dx ! 0:

If ˇ > 0, since

jDv" �Dvj2Cˇ � C.ˇ/.jDv"j2 C jDvj2 C "/
ˇ
2 jDv" �Dvj2;
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we have Dv" ! Dv in L2Cˇ .B2/ as " ! 0. Thus, by v" � v 2 W 1;2Cˇ
0 .B2/ and using the

Sobolev inequality, we always have v" ! v in W 1;2Cˇ .B2/ as " ! 0.

If ˇ 2 .�1; 0/, by Hölder’s inequality, we get
Z

B2

jDv" �DvjˇC2 dx

�
�

Z

B2

.jDv"j2 C jDvj2 C "/
ˇ
2 jDv" �Dvj2 dx

�
ˇC2

2

�
�

Z

B2

.jDv"j2 C jDvj2 C "/
ˇC2

2 dx
�

�ˇ
2
:

By Step 1, we have v" 2 W 1;2Cˇ .B2/ \ L2.B2/ uniformly in " 2 .0; 1/. Then (3.15) yields

thatDv" !Dv inL2Cˇ .B2/ as "! 0. We further conclude v" ! v inW 1;2Cˇ .B2/ as "! 0.

Step 3. Prove

.jDv"j2 C "/
ˇ
2Dv" 2 W 1;2.B1/ uniformly in " 2 .0; 1�;

.jDv"j2 C "/
ˇ
2Dv" ! jDvjˇDv weakly in W 1;2.B1/ as " ! 0:

By the local second-order estimates in [10, Theorem 2.1], we have
Z

B1

ˇ

ˇDŒ.jDv"j2 C "/
ˇ
2Dv"�

ˇ

ˇ

2
dx � C0

Z

B2

.g"/2 dx C C0

�

Z

B2

ŒjDv"jˇC1 C "
ˇC1

2 � dx
�2
:

Since g" 2 L2.B2/ uniformly in " 2 .0; 1� and, by Step 1, Dv" 2 L2Cˇ .B2/ uniformly in

" 2 .0; 1�, one has DŒ.jDv"j2 C "/
ˇ
2Dv"� 2 L2.B1/ uniformly in " 2 .0; 1�. By the Sobolev–

Poincaré inequality, we also have
Z

B1

ˇ

ˇ.jDv"j2 C "/
ˇ
2Dv"

ˇ

ˇ

2
dx

�
Z

B1

ˇ

ˇ

ˇ
.jDv"j2 C "/

ˇ
2Dv" �

«

B1

.jDv"j2 C "/
ˇ
2Dv" dx

ˇ

ˇ

ˇ

2
dx

C
ˇ

ˇ

ˇ

Z

B1

.jDv"j2 C "/
ˇ
2Dv" dx

ˇ

ˇ

ˇ

2

� C0

Z

B1

ˇ

ˇDŒ.jDv"j2 C "/
ˇ
2Dv"�

ˇ

ˇ

2
dx C C0

ˇ

ˇ

ˇ

Z

B1

ŒjDv"jˇC1 C "
ˇC1

2 � dx
ˇ

ˇ

ˇ

2
:

Thus, .jDv"j2 C "/
ˇ
2Dv" 2 L2.B1/ uniformly in " 2 .0; 1�.

By the weak compactness of the Sobolev space W 1;2, there exists f 2 W 1;2.B1/ such

that, along a subsequence,

DŒ.jDv"j2 C "/
ˇ
2Dv"� ! Df weakly in L2.B1/;

.jDv"j2 C "/
ˇ
2Dv" ! f in L2.B1/:

By Step 2, Dv" ! Dv in L2Cˇ .B2/ as " ! 0, and hence .jDv"j2 C "/
ˇ
2Dv" ! jDvjˇDv

almost everywhere along a subsequence. We conclude that f D jDvjˇDv in B1, as desired.

Step 4. Prove

.jDv"j2 C "/
ˇC1

2 2 W 1;2.B1/ uniformly in " 2 .0; 1�;

.jDv"j2 C "/
ˇC1

2 ! jDvjˇC1 weakly in W 1;2.B1/ as " ! 0:
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Note that

jD.jDv"j2 C "/
ˇC1

2 j2 D .ˇ C 1/2.jDv"j2 C "/ˇ�1jD2v"Dv"j2;
ˇ

ˇDŒ.jDv"j2 C "/
ˇ
2Dv"�

ˇ

ˇ

2 D .jDv"j2 C "/ˇ jD2v"j2 C 2ˇ.jDv"j2 C "/ˇ�1jD2v"Dv"j2

C ˇ2.jDv"j2 C "/ˇ�2jDv"j2jD2v"Dv"j2:

If ˇ > 0, then

jD.jDv"j2 C "/
ˇC1

2 j2 � .ˇ C 1/2.jDv"j2 C "/ˇ jD2v"j2

� C.ˇ/
ˇ

ˇDŒ.jDv"j2 C "/
ˇ
2Dv"�

ˇ

ˇ

2
:

If ˇ 2 .�1; 0/,
ˇ

ˇDŒ.jDv"j2 C "/
ˇ
2Dv"�

ˇ

ˇ

2

D .jDv"j2 C "/ˇ�1ŒjD2v"j2jDv"j2 C 2ˇjD2v"Dv"j2 C ˇ2jD2v"Dv"j2�
C .jDv"j2 C "/ˇ�2Œ.jDv"j2 C "/"jD2v"j2 � ˇ2"jD2v"Dv"j2�

� .ˇ C 1/2.jDv"j2 C "/ˇ�1jD2v"Dv"j2

D
ˇ

ˇD.jDv"j2 C "/
ˇC1

2

ˇ

ˇ

2
:

Thus, by Step 3,

.jDv"j2 C "/
ˇC1

2 2 W 1;2.B1/ uniformly in " 2 .0; 1�;

.jDv"j2 C "/
ˇC1

2 ! jDvjˇC1 weakly in W 1;2.B1/ as " ! 0:

4. Some properties of distributional Jacobian determinant

We build up the following stability result.

Lemma 4.1. Let ˇ > �1. If

vj ! v in W 1;2Cˇ
loc .�/ as j ! 1 and ˇjDvj jˇC1 2 W 1;2

loc .�/ uniformly in j;

then

(i) ˇjDvj jˇC1 ! ˇjDvjˇC1 in L
q
loc.�/ for any q > 1 and weakly in W 1;2

loc .�/;

(ii) ˇjDvj jˇDvj ! ˇjDvjˇDv and ˇjDvj jˇ�1Dvj ˝ Dvj ! ˇjDvjˇ�1Dv ˝ Dv in

L
q
loc.�/ for any q > 1.

(iii) � detDŒjDvj jˇDvj � ! � detDŒjDvjˇDv� in the distributional sense, i.e.,
Z

�

� detDŒjDvj jˇvj � dx

!
Z

�

� detDŒjDvjˇDv� dx for all  2 C1
c .�/:

(4.1)

Proof. The case ˇ D 0 is easy. We only consider the case ˇ ¤ 0. Since

jDvj jˇC1 2 W 1;2
loc .�/;
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by the compact embedding theorem, there is a function f 2W 1;2
loc .�/ such that jDvj jˇC1 ! f

in L
q
loc.�/ for any 1 < q < 1 and weakly in W 1;2

loc .�/ as j ! 1 up to some subsequence.

Since Dvj ! Dv in L1loc.�/, we know f D jDvjˇC1. Thus, we have jDvjˇC1 2 W 1;2
loc .�/

and jDvj jˇC1 converges strongly to jDvjˇC1 in L
q
loc.�/ for any 1 < q < 1 and weakly in

W 1;2
loc .�/. Therefore, (i) holds.

To see (ii), observe that if Dv.x/ D 0, one has

ˇ

ˇjDvj jˇDvj � jDvjˇDv
ˇ

ˇ �
ˇ

ˇjDvj jˇC1 � jDvjˇC1
ˇ

ˇ;
ˇ

ˇjDvj jˇ�1Dvj ˝Dvj � jDvjˇ�1Dv ˝Dv
ˇ

ˇ �
ˇ

ˇjDvj jˇC1 � jDvjˇC1
ˇ

ˇ:

If Dv.x/ ¤ 0, one has

ˇ

ˇjDvj jˇDvj � jDvjˇDv
ˇ

ˇ �
ˇ

ˇjDvj jˇC1 � jDvjˇC1
ˇ

ˇ

C jDvjˇC1jDvj �Dvj;
ˇ

ˇjDvj jˇ�1Dvj ˝Dvj � jDvjˇ�1Dv ˝Dv
ˇ

ˇ �
ˇ

ˇjDvj jˇC1 � jDvjˇC1
ˇ

ˇ

C jDvjˇC1jDvj ˝Dvj �Dv ˝Dvj;

where we set � D �=j�j when � ¤ 0 and � D 0 when � D 0. Since Dvj ! Dv almost every-

where along a subsequence, we know that Dvj ˝Dvj ! Dv ˝Dv almost everywhere in

� n ¹x 2 � W Dv.x/ D 0º. By the Lebesgue dominated convergence, we conclude (ii) from

above and (i).

Finally, note that (i) and (ii) imply

Z

�

jDvj j2ˇC2� dx !
Z

�

jDvj2ˇC2� dx;

Z

�

jDvj j2ˇ .D2 Dvj �Dvj / dx !
Z

�

jDvj2ˇ .D2 Dv �Dv/ dx;
Z

�

ŒDjDvj jˇC1 �Dvj �.Dvj �D /jDvj jˇ�1 dx

!
Z

�

ŒDjDvjˇC1 �Du�.Dv" �D /jDvjˇ�1 dx

for all  2 C1
c .�/. We conclude (4.1) from these and the definitions of � detDŒjDvj jˇDvj �

and � detDŒjDvjˇDv�.

Lemma 4.2. Let v 2 C1.�/ satisfy ˇjDvjˇC1 2 W 1;2
loc .�/ for some ˇ > �1. We have

lim
"!0

Z

�

� detDŒ.jDuj2 C "/
ˇ
2Du� dx

!
Z

�

� detDŒjDujˇDu� dx for all  2 C1
c .�/:

Proof. The case ˇ D 0 is easy. The case ˇ ¤ 0 would follow if we let " ! 0 in (3.3)

by Definition 1.2. To this end, it suffices to build up the following convergence.

Firstly, since .jDvj2 C 1/ˇC1 2 Lqloc.�/ for 1 < q < 1, by the Lebesgue dominated

convergence, one has

.jDvj2 C "/ˇ jDvj2 ! jDvj2ˇC2 and .jDvj2 C "/ˇDv ˝Dv ! jDvj2ˇDv ˝Dv
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in L
q
loc.�/. Similarly,

.jDvj2 C "/
ˇ�1

2 Dv ˝Dv ! jDvj
ˇ�1

2 Dv ˝Dv in L
q
loc.�/:

Moreover, we observe that

(4.2) D.jDvj2 C "/
ˇC1

2 ! DjDvjˇC1 weakly in L2loc.�/:

Indeed, when ˇ > 0, since v 2 C 2.�/, one has

D.jDvj2 C "/
ˇC1

2 D C.ˇ/.jDvj2 C "/
ˇ�1

2 D2v Dv 2 L2loc.�/ uniformly in " 2 .0; 1/;

and hence D.jDvj2 C "/
ˇC1

2 ! DjDvjˇC1 weakly in L2loc.�/. When �1 < ˇ < 0, by the

assumption DjDujˇC1 2 L2loc.�/, we have

D.jDvj2 C "/
ˇC1

2 D C.ˇ/.jDvj2 C "/
ˇ�1

2 jDvj1�ˇDjDvjˇC1 2 L2loc.�/

uniformly in " 2 .0; 1/. Thus, together with .jDvj2 C "/
ˇC1

2 ! jDvjˇC1 weakly in L2loc.�/,

we conclude (4.2), as desired.

5. Proof of Theorem 1.3

Proof of Theorem 1.3. Let u be any 1-harmonic function in planar domain �. Since

u 2 C 0;1loc .�/ and jDujˇC1 2 W 1;2
loc .�/;

by Definition 1.2, the distributional Jacobi � detDŒjDujˇDu� is well defined. We proceed

as below to show that � detDŒjDujˇDu� 2 M.�/ with the lower bound (1.5) and the upper

bound (1.6).

Step 1. Given any smooth subdomain U b �, for any " 2 .0; 1/, denote by

u" 2 C1.U / \ C 0.U /

the unique solution to the equation

div.e
1

2"
jDu"j2Du"/ D 1

"
e

1
2"

jDu"j2.�1u
" C "�u"/ D 0 with u" D u on àU:

It was shown in [18] that

lim sup
"!0

kDu"kL1.V / � kDukL1.U / for all V b U:

By [25], for any ˇ > �1,

jDu"jˇC1 2 W 1;2
loc .U / uniformly in " > 0

and

lim
"!0

kDu" �DukLq.V / ! 0 for all 1 < q < 1 and all V b U:



Dong, Peng, Zhang and Zhou, Jacobian determinants 87

Thus, it follows that jDujˇC1 2 W 1;2
loc .U /, and along a subsequence, jDu"jˇC1 ! jDujˇC1

strongly in L2loc.U / as " ! 0.

In view of Definition 1.2, the distributional Jacobi � detDŒjDu"jˇDu"� is well defined.

By Lemma 4.2, one has

lim
ı!0

Z

U

� detDŒ.jDu"j2 C ı/
ˇ
2Du"� dx

D
Z

U

� detDŒjDu"jˇDu"� dx for all  2 C1
c .U /:

(5.1)

By Lemma 4.1, we know that

lim
"!0

Z

U

� detDŒjDu"jˇDu"� dx

D
Z

U

� detDŒjDujˇDu� dx for all  2 C1
c .U /:

(5.2)

Step 2. By Lemma 3.6 and �1u
" C "�u" D 0 in U , we have

1

2
ŒjD2u"j2 � .�u"/2�jDu"j2 D jD2u"Du"j2 ��1u

"�u"

D jD2u"Du"j2 C 1

"
.�1u

"/2 in U:

For ı > 0, by this and Lemma 3.7, we obtain

� detDŒ.jDu"j2 C ı/
ˇ
2Du"�

D 1

2
.jDu"j2 C ı/ˇ ŒjD2u"j2 � .�u"/2�

C ˇ.jDu"j2 C ı/ˇ�1ŒjD2u"Du"j2 ��u"�1u
"�

� .ˇ C 1/.jDu"j2 C ı/ˇ�1
h

jD2u"Du"j2 C 1

"
.�1u

"/2
i

D 1

ˇ C 1

ˇ

ˇD.jDu"j2 C ı/
ˇC1

2

ˇ

ˇ

2

C .ˇ C 1/
1

"
.jDu"j2 C ı/ˇ�1.�1u

"/2 in U:

(5.3)

For any 0 �  2 C1
c .U /, by Lemma 4.2, one has

Z

U

� detDŒjDu"jˇDu"� dx

D lim
ı!0

Z

U

� detDŒ.jDu"j2 C ı/
ˇ
2Du"� dx

� 1

ˇ C 1
lim inf
ı!0

Z

U

h

ˇ

ˇD.jDu"j2 C ı/
ˇC1

2

ˇ

ˇ

2

C .ˇ C 1/
1

"
.jDu"j2 C ı/ˇ�1.�1u

"/2
i

 dx

� 1

ˇ C 1

Z

U

h

ˇ

ˇDjDu"jˇC1
ˇ

ˇ

2 C .ˇ C 1/
1

"
jDu"j2ˇ�2.�1u

"/2
i

 dx;

(5.4)

where, in the last inequality, we used that .jDu"j2 C ı/
ˇC1

2 ! jDu"jˇC1 weakly in W 1;2
loc .U /

as ı ! 0, and also that .jDu"j2 C ı/ˇ�1.�1u
"/2 ! jDu"j2ˇ�2.�1u

"/2 almost everywhere

and it has a dominant function jDu"j2ˇC2jD2u"j2 2 L1loc.U /.
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Letting " ! 0, since jDu"jˇC1 ! jDujˇC1 weakly in W 1;2
loc .U /, we further have

Z

U

� detDŒjDujˇDu� dx � lim inf
"!0

1

ˇ C 1

Z

U

ˇ

ˇDjDu"jˇC1
ˇ

ˇ

2
 dx

� 1

ˇ C 1

Z

U

ˇ

ˇDjDujˇC1
ˇ

ˇ

2
 dx for all 0 �  2 C1

c .U /;

which gives the lower bound (1.5).

Step 3. For any � 2 C1
c .U / and ı 2 Œ0; 1/, we have

Z

U

� detDŒ.jDu"j2 C ı/
ˇ
2Du"��2 dx

� C
1C ˇ2

1C ˇ

Z

U

.jDu"j2 C ı/ˇC1Œj� D2�j C jD�j2� dx:

(5.5)

Indeed, by Lemma 3.2 for ı 2 .0; 1� and Definition 1.2 for ı D 0, and by Young’s inequality,

one has
Z

U

� detDŒ.jDu"j2 C ı/
ˇ
2Du"��2 dx

D �1
2

Z

U

.jDu"j2 C ı/ˇ .D2�2Du" �Du"/ dx

C 1

2ˇ C 2

Z

U

.jDu"j2 C ı/ˇC1��2 dx

� ˇ

2ˇ C 2

Z

U

.jDu"j2 C ı/
ˇ�1

2 ŒD.jDu"j2 C ı/
ˇC1

2 �Du"�.Du" �D�2/ dx

� C
�1

2
C 1

2C 2ˇ
C ˇ2

2C 2ˇ

�

Z

.jDu"j2 C ı/ˇC1Œj� D2�j C jD�j2� dx

C 1

2ˇ C 2

Z

U

ˇ

ˇD.jDu"j2 C ı/
ˇC1

2

ˇ

ˇ

2
�2 dx:

Applying (5.3) for ı 2 .0; 1� and (5.4) for ı D 0, one has

1

2ˇ C 2

Z

U

ˇ

ˇD.jDu"j2 C ı/
ˇC1

2

ˇ

ˇ

2
�2 dx � 1

2

Z

U

� detDŒ.jDu"j2 C ı/
ˇ
2Du"��2 dx;

and therefore, we get (5.5).

Step 4. By (5.3) and (5.5), we know that

(5.6) 0 � � detDŒ.jDu"j2 C ı/
ˇ
2Du"� 2 L1loc.U / uniformly in ı 2 .0; 1�:

By (5.6), (5.1), and a density argument, we know that

lim
ı!0

Z

U

� detDŒ.jDu"j2 C ı/
ˇ
2Du"� dx

always exists for all  2 C 0c .U /, and is denoted by �". /. Moreover, �" is a nonnegative

Radon measure, i.e., 0 � �" 2 M.U /, and � detDŒ.jDu"j2 C ı/
ˇ
2Du"� dx converges to �"

in the weak-? sense in M.U / as ı ! 0. Note that (5.1) implies that �" is induced by the
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distribution � detDŒjDu"jˇDu"� uniquely. Therefore, we can view � detDŒjDu"jˇDu"� as

the measure �".

Moreover, by (5.5) with ı D 0, given any subdomain V b U , by a suitable choice of test

function �, we also have

k� detDŒjDu"jˇDu"�k.V / � C
1

Œdist.V; àU/�2
1C ˇ2

1C ˇ

Z

W

jDu"j2C2ˇ dx;

where V b W b U with dist.W; àU/ D dist.V; àW / D 1
2

dist.V; àU/. As jDu"j 2 L1.W /

uniformly in " 2 .0; "V / for some "V > 0, we have that k� detDŒjDu"jˇDu"�k.V / is bounded

uniformly in " 2 .0; "V /. Since

0 � � detDŒjDu"jˇDu"� 2 M.U /;

by (5.2) and a density argument, we know that

lim
"!0

Z

U

� detDŒjDu"jˇDu"� dx

always exists for all  2 C 0c .U /, and is denoted by �. /. Moreover, 0 � � 2 M.U /, and

� detDŒjDu"jˇDu"� dx converges to � in the weak-? sense in M.U / as " ! 0. By (5.2),

we know that � is induced by the distribution � detDŒjDujˇDu� uniquely, and hence we can

view � detDŒjDujˇDu� as �.

By the arbitrariness of U , we know that � detDŒjDujˇDu� 2 M.�/. The upper bound

(1.6) follows from (1.4) and a suitable choice of test functions 0 �  2 C1
c .�/.

6. Proofs of Theorems 1.4 and 1.5

Given p 2 .1;1/, let up be any nonconstant p-harmonic function in a planar domain�.

For ˇ > �1, one has jDupjˇDup 2 W 1;2
loc .�/ and hence � detDŒjDupjˇDup� 2 L1loc.�/.

Moreover, we know that Eup
´ ¹x 2 �;Dup.x/ D 0º is always discrete and hence is a null

set, and u 2 C1.� nEup
/. See [9, 29].

Lemma 6.1. Let ˇ > �1. Then

� detDŒjDupjˇDup� D 1

ˇ C 1

ˇ

ˇDjDupjˇC1
ˇ

ˇ

2

C .ˇ C 1/.p � 2/jDupj2ˇ .�1up/
2

jDupj4 in � nEup
:

(6.1)

Consequently,

� detDŒjDupjˇDup� D 1

ˇ C 1

ˇ

ˇDjDupjˇC1
ˇ

ˇ

2
in � nEup

if p D 2I

� detDŒjDupjˇDup� � 1

ˇ C 1

ˇ

ˇDjDupjˇC1
ˇ

ˇ

2
in � nEup

if p > 2I(6.2)

p � 1
ˇ C 1

ˇ

ˇDjDupjˇC1
ˇ

ˇ

2 � � detDŒjDupjˇDup�(6.3)

� 1

ˇ C 1

ˇ

ˇDjDupjˇC1
ˇ

ˇ

2
in � nEup

if 1 < p < 2:
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Proof of Lemma 6.1. In � nEup
, applying Lemma 3.7, we have

� detDŒjDupjˇDup� D 1

2
jDupj2ˇ ŒjD2upj2 � .�up/2�

C ˇjDupj2.ˇ�1/ŒjD2upDupj2 ��up�1u�:

Applying (3.11) to up, we have

1

2
ŒjD2upj2 � .�up/2� D jDupj�2ŒjD2upDupj2 ��1up�up� in � nEup

;

and hence

� detDŒjDupjˇDup� D .ˇ C 1/jDupj2.ˇ�1/ŒjD2upDupj2 ��up�1up� in � nEup
:

Note

�up D �.p � 2/ �1up

jDupj2 in � nEup
:

For ˇ > �1, one gets (6.1). When 2 < p < 1, (6.1) gives (6.2). When 1 < p < 2 and ˇ > �1,

since

jD2upDupj2 ��u�1u D jD2upDupj2 C .p � 2/jDupj�2.�1up/
2

� .p � 1/jD2upDupj2 in � nEup
;

one has

� detDŒjDupjˇDup� � p � 1
ˇ C 1

ˇ

ˇDjDupjˇC1
ˇ

ˇ

2
in � nEup

;

as desired.

Lemma 6.2. For any � 2 C1
c .�/, one has

Z

�

� detDŒjDupjˇDup��2 dx

� C
h

1C 1

1C ˇ
C 1

p � 1
ˇ2

ˇ C 1

i

Z

�

jDupj2ˇC2Œj� D2�j C jD�j2� dx:

(6.4)

Proof. For all � 2 C1
c .�/, write

Z

�

� detDŒjDupjˇDup��2 dx

D �1
2

Z

�

jDupj2ˇ .D2�2Dup �Dup/ dx C 1

2ˇ C 2

Z

�

jDupj2ˇC2��2 dx

� ˇ

ˇ C 1

Z

�

ŒDjDupjˇC1 �Dup�.Dup �D�2/jDupjˇ�1 dx

µ I1 C I2 C I3:

Clearly,

I1 C I2 � C
�

1C 1

1C ˇ

�

Z

�

jDupj2C2ˇ Œj� D2�j C jD�j2� dx:
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When 1 < p � 2, by Young’s inequality and (6.3), one has

I3 � p � 1
2C 2ˇ

Z

�

ˇ

ˇDjDupjˇC1
ˇ

ˇ

2
�2 dx C 4ˇ2

.2C 2ˇ/.p � 1/

Z

�

jDupj2C2ˇ jD�j2 dx

� 1

2

Z

�

� detDŒjDupjˇDup��2 dx C C
ˇ2

.1C ˇ/.p � 1/

Z

�

jDupj2C2ˇ jD�j2 dx:

When 2 < p � 4, by (6.1), similarly to the case 1 < p � 2, one also has

I3 � 1

2

Z

�

� detDŒjDupjˇDup��2 dx C C
ˇ2

.1C ˇ/.p � 1/

Z

�

jDupj2C2ˇ jD�j2 dx:

When p � 4, by Young’s inequality and (6.1), one has

I3 � ˇ

Z

�

j�1up � D�jjDupj2ˇ�1 dx

� .p � 2/.ˇ C 1/

2

Z

�

j�1upj2jDupj2ˇ�4�2 dx

C 8jˇj2
.p � 2/.ˇ C 1/

Z

�

jD�j2jDupj2ˇC2 dx

� 1

2

Z

�

� detDŒjDupjˇDup��2 dx

C C
ˇ2

.1C ˇ/.p � 1/

Z

�

jDupj2C2ˇ jD�j2 dx:

We therefore obtain (6.4).

Proof of Theorem 1.4. Theorem 1.4 follows immediately from Lemmas 6.1 and 6.2.

Proof of Theorem 1.5. Given any bounded smooth domain � and g 2 Lip.à�/ denote

by up for 1 < p � 1 the unique p-harmonic functions in � with boundary g. Moreover,

up ! u1 in C 0;˛.�/ for any ˛ 2 .0; 1/ and weakly in W 1;q.�/ for any 1 < q < 1 as

p ! 1. This is well known; see for example [28]. For the reader’s convenience, a proof is

given below. Since u1 is the absolute minimizer with boundary g, we know that

kDukL1.�/ D kgkLip.à�/:

Moreover, we may extend g to � with the same Lipschitz norm via the McShane extension.

For 1 < p < 1, since up is the minimizer, we see that

kDupkLp.�/ � kDgkLp.�/ � j�j
1
p kgkLip.à�/:

Given any 1 < q < 1, for p > q, by the Hölder inequality, we know that

kDupkLq.�/ � j�j
1
q kgkLip.à�/;

and hence it is uniformly bounded. Then up 2 C 0;1�n=q.�/ for large p > q uniformly. Thus,

up converges to u in C 0;1�n=q.�/ as p ! 1 up to some subsequence. Since up is also a vis-

cosity solution to �1v C 1
p�2

�vjDvj2 D 0 in � with boundary g, by the compactness of
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viscosity solution, we see that u is a viscosity solution to �1v D 0. Observing that u and u1

satisfy the same boundary condition, by Jensen’s uniqueness result, we know that u D u1.

Since Dup 2 Lq.�/ for p > q uniformly, we know that Dup converges weakly to Du1 in

Lq.�/ as p ! 1.

As Dup 2 L2.�/ uniformly in p, by Lemma 6.2, we know that � detD2up 2 L1loc.�/

uniformly in p > 2. By Lemma 6.1, DjDupj 2 L2loc.�/ uniformly in p > 2. By the Sobolev

embedding theorem, we know that jDupj converges to some function h in L
q
loc.�/ and weakly

inW 1;2
loc .�/ as p ! 1. By building up a flatness estimates similarly to [25, Lemma 2.7] (here

we omit the details; see [27]), one has h D jDu1j. Since Dup ! Du1 weakly in Lq.�/

with q > 1, we deduce that Dup ! Du1 in L
q
loc.�/ as p ! 1.

Applying Lemma 4.1, we know that jDupjˇDup ! jDu1jˇDu1 in L
q
loc.�/ for any

1 < q < 1, and moreover,

Z

�

� detDŒjDu1jˇDu1� dx

D lim
p!1

Z

�

� detDŒjDupjˇDup� dx for all  2 C1
c .�/:

(6.5)

Lemma 6.2 yields that � detDŒjDupjˇDup� 2 L1.�/ uniformly in p > 2. By a density argu-

ment, we know that (6.5) holds for all  2 C 0c .�/, i.e.,

� detDŒjDupjˇDup� ! � detDŒjDu1jˇDu1�

in the weak-? sense in M.�/.

Remark 6.3. One could also prove Theorem 1.3 via Lemma 6.1, Lemma 6.2, and (6.5).

A. Some sharpness in the plane

At the borderline case ˇ D �1, we have the following result, which will be used later.

Lemma A.1. Let 1 < p < 1. If up is a nonconstant p-harmonic function in a domain

� � R
2, then

ˇ

ˇDŒjDupj�1Dup�
ˇ

ˇ

2 D
ˇ

ˇD logjDupj
ˇ

ˇ

2 C .p � 2/p .�1up/
2

jDupj4 a.e.

In particular,

ˇ

ˇDŒjDupj�1Dup�
ˇ

ˇ

2 D
ˇ

ˇD logjDupj
ˇ

ˇ

2
a.e. if p D 2I

ˇ

ˇDŒjDupj�1Dup�
ˇ

ˇ

2 �
ˇ

ˇD logjDupj
ˇ

ˇ

2
a.e. if p > 2I

ˇ

ˇD logjDupj
ˇ

ˇ

2 �
ˇ

ˇDŒjDupj�1Dup�
ˇ

ˇ

2 � .p � 1/2
ˇ

ˇD logjDupj
ˇ

ˇ

2
a.e. if 1 < p < 2:

Proof. In � nEup
, one has

ˇ

ˇD logjDupj
ˇ

ˇ

2 D jD2upDupj2
jDupj4 � jD2upj2

jDupj2
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and

ˇ

ˇDŒjDupj�1Dup�
ˇ

ˇ

2 D
ˇ

ˇjDupj�1D2up � jDupj�3D2upDup ˝Dup
ˇ

ˇ

2

D jD2upj2
jDupj2 � jD2upDupj2

jDupj4 :

Recall that

D2upDu
2
p ��up�1up D 1

2
ŒjD2upj2 � .�up/2�jDupj2 in � nEup

:

Replacing �up with .p � 2/�1up

jDup j2
, one has

1

2

h

jD2upj2 � .p � 2/2 .�1up/
2

jDupj4
i

D jD2upDupj2
jDupj2 � .p � 2/.�1up/

2

jDupj4 ;

or equivalently,

jD2upj2 D 2
jD2upDupj2

jDupj2 C .p � 2/p .�1up/
2

jDupj4 :

Thus,

ˇ

ˇDŒjDupj�1Dup�
ˇ

ˇ

2 D jD2upDupj2
jDupj4 C .p � 2/p .�1up/

2

jDupj6

D 1

2

jD2upj2
jDupj2 C .p � 2/p

2

.�1up/
2

jDupj6 :

When p D 2, then

ˇ

ˇDŒjDupj�1Dup�
ˇ

ˇ

2 D 1

2

jD2upj2
jDupj2 D jD2upDupj2

jDupj4 in � nEuI

When p > 2, we have

ˇ

ˇDŒjDupj�1Dup�
ˇ

ˇ

2 � 1

2

jD2upj2
jDupj2 � jD2upDupj2

jDupj2 ;

while when 1 < p < 2, we have

1

2

jD2upj2
jDupj2 �

ˇ

ˇDŒjDupj�1Dup�
ˇ

ˇ

2 � .p � 1/2
2

jD2upj2
jDupj2 � .p � 1/2

2

jD2upDupj2
jDupj4 :

For 1 < p < 1, we recall the extremal p-harmonic function constructed by [23, Sec-

tion 7]. Here we keep notation the same as therein. Let

(A.1) H.�/ D
� �

j�j C "
j�j3
�3

�

j�j 1
d for all � 2 C

with
1

d
D 1

2

�

�p C
q

16.p � 1/C .p � 2/2
�

> 0 and " D 1 � d
1C 3d

:
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If p D 2, then d D 1 and " D 0, and henceH.�/ D �. If p ¤ 2, then d > 0 and " ¤ 0, andH

is a quasiconformal homeomorphism on the whole plane. According to [23, Theorem 2],H.�/

satisfies [23, (18) with n D 1], that is,

(A.2) H N� D
�1

2
� 1

p

�h�

N�
H� C

N�
�

NH�
i

;

where H� D 1
2
.Hx � iHy/ and H N� D 1

2
.Hx C iHy/ for � D x C iy.

Let f .z/ denote the inverse of H.�/ in C so that f .H.�// D � and H.f .z// D z for all

z; � 2 C. From (A.2), one deduces

f Nz D
� 1

p
� 1

2

�hf

Nf
Nfz C

Nf
f
fz

i

;

where fz D 1
2
.fx � ify/ and f Nz D 1

2
.fx C ify/ for z D x C iy. This then defines a p-har-

monic function w in the whole plane so that its complex derivative is wz D f .

We have the following properties.

Lemma A.2. One has logjDwj D logjf j … W 1;2
loc .R

2/ and jDwj�1Dw … W 1;2
loc .R

2/.

Proof. By Lemma A.1, we only need to prove logjf j … W 1;2
loc .R

2/. We argue by con-

tradiction. Assume that logjf j 2 W 1;2
loc .C/. Note that f .tz/ D tdf .z/ for any t � 0. A direct

calculation implies that

Djf j.z/ D t1�dDjf j.tz/; D logjf j.z/ D Djf j.z/
jf .z/j ;

z 2 C n ¹f �1.0/º; t � 0;

(A.3)

where f �1.0/ D ¹z 2 C W f .z/ D 0º. For each R > 0, we know that

f �1.0/ \ ¹z 2 C W jzj < Rº

is discrete, and from f .tz/ D tdf .z/, (A.3), we conclude that

Z

jzj<R

ˇ

ˇD logjf j.z/
ˇ

ˇ

2
dz D

Z

jzj<R

ˇ

ˇDjf j.z/
ˇ

ˇ

2

jf .z/j2 dz D
Z

j�j<tR

ˇ

ˇDjf j. �
t
/
ˇ

ˇ

2

jf . �
t
/j2

d
�

t

D
Z

j�j<tR

.1
t
/2d�2

ˇ

ˇDjf j.�/
ˇ

ˇ

2

.1
t
/2d jf .�/j2

1

t2
d�

D
Z

j�j<tR

ˇ

ˇD logjf j.�/
ˇ

ˇ

2
d� for all t > 0:

Letting t ! 0, we conclude that D logjf j.z/ D 0 whenever jzj < R, and hence, by the arbi-

trariness ofR, for all z 2 C. Thus, jf j is a positive constant in the whole plane. This contradicts

that f .tz/ D tdf .z/ for all t > 0 and z 2 C, where we recall that d > 0.

Lemma A.3. One has

(A.4) sup
Cn¹0º

jf Nzj
jfzj

D jp � 2j
p

D K.p/ � 1
K.p/C 1

with K.p/ D max
° 1

p � 1; p � 1
±

:
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In general, for ˇ > �1, writing g D jf jˇf , one has

sup
Cn¹0º

jg Nzj
jgzj

D K.p; ˇ/ � 1
K.p; ˇ/C 1

with K.p; ˇ/ D max
°p � 1
ˇ C 1

;
ˇ C 1

p � 1 ; ˇ C 1;
1

ˇ C 1

±

:

(A.5)

Proof. Since H.�/ is the inverse of f .z/, (A.4) is equivalent to

sup
Cn¹0º

jH N� j
jH� j

D jp � 2j
p

:

We already have

jH N� j D 1

2

ˇ

ˇ

ˇ

�

N�
H� C

N�
�

NH�
ˇ

ˇ

ˇ
� jp � 2j

p
jH� j in C n ¹0º:

Taking the derivative à� on both sides of (A.1), one has

H� D 1

2
j�j 1

d
�1

h� 1

d
C 1

�

C
� 1

d
� 3

�

"
j�j4
�4

i

:

If � 2 R, then H�.�/ 2 R, and hence (A.1) gives H N� D p�2
p
H� as desired.

Next, for ˇ > �1, write g D jf jˇf and G D g�1. By [9, Section 3], one has

g Nz D �1
2

�p � 2 � ˇ
p C ˇ

C ˇ

ˇ C 2

� Ng
g
gz � 1

2

�p � 2 � ˇ
p C ˇ

� ˇ

ˇ C 2

�g

Ng Ngz

and hence

(A.6) G N� D 1

2

�p � 2 � ˇ
p C ˇ

C ˇ

ˇ C 2

� N�
�
G� C 1

2

�p � 2 � ˇ
p C ˇ

� ˇ

ˇ C 2

��

N�
NG� :

Thus,

sup
Cn¹0º

jG N�
j

jG� j
� max

² jp � 2 � ˇj
p C ˇ

;
jˇj
ˇ C 2

³

D K.p; ˇ/ � 1
K.p; ˇ/C 1

with K.p; ˇ/ as in (A.5). Moreover, note that

G.�/ D H.j�j�
ˇ

ˇC1 �/ D
� �

j�j C "
j�j3
�3

�

j�j�
1

.ˇC1/d for all � 2 C;

and hence

G�.�/ D 1

2
j�j

1
.ˇC1/d

�1
h� 1

.ˇ C 1/d
C 1

�

C
� 1

.ˇ C 1/d
� 3

�

"
j�j4
�4

i

:

If
jp � 2 � ˇj
p C ˇ

� jˇj
ˇ C 2

;

for � 2 R, we have G�.�/ 2 R, and therefore, (A.6) gives

G N�.�/ D p � 2 � ˇ
p C ˇ

G�.�/;
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as desired. If
jp � 2 � ˇj
p C ˇ

<
jˇj
ˇ C 2

;

for � 2 R � iR, we have N� D i�, G�.�/ 2 R, and

�

N�
G�.�/ D �

N�
�

NG�.�/ D �iG�.�/;

which together with (A.6) gives G N�.�/ D ˇ
2Cˇ

iG�.�/, as desired.

Lemma A.3 gives the sharpness of constants in (1.7).

Remark A.4. By a standard calculation, (A.4) gives

ess sup
C

2Œjfzj2 C jf Nzj2�
jfzj2 � jf Nzj2

D .p � 1/2 C 1

p � 1 :

Since jD2wj2 D 2Œjfzj2 C jf Nzj2� and � detD2w D jfzj2 � jf Nzj2, we write this as

ess sup
C

jD2wj2
� detD2w

D .p � 1/2 C 1

p � 1 D .p � 1/C 1

p � 1:

Thus, the constant in (1.7) is sharp. Note that .p � 1/C 1
p�1

converges to 1 as p ! 1.

For ˇ > �1, in a similar way, (A.5) gives

ess sup

ˇ

ˇDŒjDwjˇDw�
ˇ

ˇ

2

� detDŒjDwjˇDw�
D K.p; ˇ/2 C 1

K.p; ˇ/
D K.p; ˇ/C 1

K.p; ˇ/
;

and hence the constant in (1.7) is sharp. We also note that K.p; ˇ/C 1
K.p;ˇ/

converges to 1
as p ! 1.
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