RIGIDITY OF KLEINIAN GROUPS VIA SELF-JOININGS

DONGRYUL M. KIM AND HEE OH

ABSTRACT. Let $\Gamma < \mathrm{PSL}_2(\mathbb{C}) \simeq \mathrm{Isom}^+(\mathbb{H}^3)$ be a finitely generated non-Fuchsian Kleinian group whose ordinary set $\Omega = \mathbb{S}^2 - \Lambda$ has at least two components. Let $\rho : \Gamma \to \mathrm{PSL}_2(\mathbb{C})$ be a faithful discrete non-Fuchsian representation with boundary map $f : \Lambda \to \mathbb{S}^2$ on the limit set.

In this paper, we obtain a new rigidity theorem: if f is conformal on Λ , in the sense that f maps every circular slice of Λ into a circle, then f extends to a Möbius transformation g on \mathbb{S}^2 and ρ is the conjugation by g. Moreover, unless ρ is a conjugation, the set of circles C such that $f(C \cap \Lambda)$ is contained in a circle has empty interior in the space of all circles meeting Λ . This answers a question asked by McMullen on the rigidity of maps $\Lambda \to \mathbb{S}^2$ sending vertices of every tetrahedron of zero-volume to vertices of a tetrahedron of zero-volume.

The novelty of our proof is a new viewpoint of relating the rigidity of Γ with the higher rank dynamics of the self-joining $(id \times \rho)(\Gamma) < PSL_2(\mathbb{C}) \times PSL_2(\mathbb{C})$.

1. Introduction

Let $\Gamma < \mathrm{PSL}_2(\mathbb{C}) = \mathrm{Isom}^+(\mathbb{H}^3)$ be a finitely generated torsion-free Kleinian group. Consider the following discreteness locus of Γ in the space of representations of Γ into $\mathrm{PSL}_2(\mathbb{C})$:

$$\mathfrak{R}_{\mathrm{disc}}(\Gamma) = \{ \rho : \Gamma \to \mathrm{PSL}_2(\mathbb{C}) : \mathrm{discrete}, \, \mathrm{faithful} \};$$

each $\rho \in \mathfrak{R}_{disc}(\Gamma)$ gives rise to a hyperbolic manifold $\rho(\Gamma) \backslash \mathbb{H}^3$ which is homotopy equivalent to $\Gamma \backslash \mathbb{H}^3$. Another commonly used notation for $\mathfrak{R}_{disc}(\Gamma)$ is $\mathcal{AH}(\Gamma)$ where \mathcal{H} stands for hyperbolic and \mathcal{A} for the topology on this space given by the algebraic convergence (cf. [27]).

We denote by $\text{M\"ob}(\mathbb{S}^2)$ the group of all M\"obius transformations on \mathbb{S}^2 , by which we mean the group generated by inversions with respect to circles in \mathbb{S}^2 . As well-known, $\text{M\"ob}(\mathbb{S}^2)$ is equal to the group of conformal automorphisms of \mathbb{S}^2 . The group $\text{PSL}_2(\mathbb{C})$ can be identified with the subgroup consisting of compositions of even number of inversions with respect to circles in \mathbb{S}^2 ; in particular, it is a normal subgroup of $\text{M\"ob}(\mathbb{S}^2)$ of index two. This means that conjugations by elements of $\text{M\"ob}(\mathbb{S}^2)$ are contained in $\mathfrak{R}_{\text{disc}}(\Gamma)$; we call them trivial elements of $\mathfrak{R}_{\text{disc}}(\Gamma)$. Note that $\rho \in \mathfrak{R}_{\text{disc}}(\Gamma)$ is trivial if and only if $\Gamma \backslash \mathbb{H}^3$ and $\rho(\Gamma) \backslash \mathbb{H}^3$ are isometric to each other.

Oh is partially supported by the NSF grant No. DMS-1900101.

The rigidity question on Γ concerns a criterion on when a given representation

$$\rho \in \mathfrak{R}_{\mathrm{disc}}(\Gamma)$$

is trivial. Denote by $\Lambda \subset \mathbb{S}^2$ the limit set of Γ , that is, the set of all accumulation points of $\Gamma(o)$, $o \in \mathbb{H}^3$. A ρ -equivariant continuous embedding

$$f: \Lambda \to \mathbb{S}^2$$

is called a ρ -boundary map. There can be at most one ρ -boundary map. Two important class of representations admitting boundary maps are as follows. Firstly, if both Γ and $\rho(\Gamma)$ are geometrically finite, and ρ is type-preserving, then the ρ -boundary map always exists by Tukia [29]. Secondly, if ρ is a quasiconformal deformation of Γ , i.e., there exists a quasiconformal homeomorphism $F: \mathbb{S}^2 \to \mathbb{S}^2$ such that for all $\gamma \in \Gamma$, $\rho(\gamma) = F \circ \gamma \circ F^{-1}$, then the restriction of F to Λ is the ρ -boundary map.

The fundamental role played by the boundary map in the study of rigidity of Γ is well-understood, going back to the proofs of Mostow's and Sullivan's rigidity theorems ([19], [20], [25]). By the Ahlfors measure conjecture ([2], [3]) now confirmed by the works of Canary [7], Agol [1] and Calegari-Gabai [6], the limit set Λ is either all of \mathbb{S}^2 or of Lebesgue measure zero. Mostow rigidity theorem ([19], [20], [21]) says that if Γ is a lattice, that is, if $\Gamma \backslash \mathbb{H}^3$ has finite volume, then any $\rho \in \mathfrak{R}_{\mathrm{disc}}(\Gamma)$ is trivial; he obtained this by showing that the ρ -boundary map has to be conformal on \mathbb{S}^2 . More generally, for any finitely generated Kleinian group Γ with $\Lambda = \mathbb{S}^2$, Sullivan showed that any quasiconformal deformation of Γ is trivial [25]. In fact, Sullivan's original theorem says that any ρ -equivariant quasiconformal homeomorphism of \mathbb{S}^2 which is conformal on the ordinary set $\Omega = \mathbb{S}^2 - \Lambda$ is a Möbius transformation. However Ahlfors measure conjecture implies that this is meaningful only when $\Lambda = \mathbb{S}^2$ (cf. [14], Section 3.13]).

In this paper, we concern the case when $\Lambda \neq \mathbb{S}^2$. For example, any geometrically finite Kleinian group which is not a lattice satisfies $\Lambda \neq \mathbb{S}^2$ [26]. We prove that if the ρ -boundary map is conformal on Λ , then ρ is trivial, provided the ordinary set $\Omega = \mathbb{S}^2 - \Lambda$ has at least two connected components. By the "conformality of f on Λ ", we mean that f maps circles in Λ into circles.

Circular slices. The main result of this paper is the following rigidity theorem in terms of the behavior of f on circular slices of Λ : a circular slice of Λ is a subset of the form $C \cap \Lambda$ for some circle $C \subset \mathbb{S}^2$. We denote by \mathcal{C}_{Λ} the space of all circles in \mathbb{S}^2 meeting Λ .

Theorem 1.1. Let $\Gamma < \operatorname{PSL}_2(\mathbb{C})$ be a finitely generated Zariski dense Kleinian group whose ordinary set Ω has at least two components. Let $\rho \in \mathfrak{R}_{\operatorname{disc}}(\Gamma)$ be a Zariski dense representation with boundary map $f : \Lambda \to \mathbb{S}^2$.

If f maps every circular slice of Λ into a circle, then ρ is a conjugation by some $g \in \text{M\"ob}(\mathbb{S}^2)$ and $f = g|_{\Lambda}$.

Moreover, unless ρ is a conjugation, the following subset of \mathcal{C}_{Λ}

$$\{C \in \mathcal{C}_{\Lambda} : f(C \cap \Lambda) \text{ is contained in a circle}\}$$
 (1.1)

has empty interior.

We call Λ doubly stable if for any $\xi \in \Lambda$, there exists a circle $C \ni \xi$ such that for any sequence of circles C_i converging to C, $\# \limsup(C_i \cap \Lambda) \ge 2$. The assumption that Γ is finitely generated with Ω disconnected was used only to ensure that Λ is doubly stable (Lemma 3.2, Theorem 4.3).

- Remark 1.2. (1) This theorem holds rather trivially when $\Lambda = \mathbb{S}^2$, in which case all circular slices of Λ are circles.
 - (2) If $\Gamma < \mathrm{PSL}_2(\mathbb{C})$ is geometrically finite with connected limit set, then Ω is disconnected (cf. [16], Chapter IX]); hence Theorem [1.1] applies.

Tetrahedra of zero-volume. A quadruple of points in \mathbb{S}^2 determines an ideal tetrahedron of the hyperbolic 3-space \mathbb{H}^3 . Gromov-Thurston's proof of Mostow rigidity theorem for closed hyperbolic 3-manifolds uses the fact that a homeomorphism of \mathbb{S}^2 mapping vertices of a maximal volume tetrahedron to vertices of a maximal volume tetrahedron is a Möbius transformation (10 \mathbb{Z} , Chapter 6). In view of this, Curtis McMullen asked us whether one can consider the other extreme type of tetrahedra, namely, those of zero-volume in the study of rigidity of Γ.

Noting that $f: \Lambda \to \mathbb{S}^2$ maps every circular slice of Λ into a circle if and only if f maps any quadruple of points in Λ lying in a circle into a circle, the following is a reformulation of Theorem [1.1], which answers McMullen's question in the affirmative:

Theorem 1.3. Let Γ, ρ be as in Theorem [1.1]. If the ρ -boundary map $f: \Lambda \to \mathbb{S}^2$ maps vertices of every tetrahedron of zero-volume to vertices of a tetrahedron of zero-volume, then f is the restriction of a Möbius transformation g and ρ is the conjugation by g.

Cross ratios. Theorem $\boxed{1.3}$ can also be stated in terms of cross ratios: note that for four distinct points $\xi_1, \xi_2, \xi_3, \xi_4 \in \hat{\mathbb{C}}$, the cross ratio $[\xi_1 : \xi_2 : \xi_3 : \xi_4]$ is a real number if and only if all $\xi_1, \xi_2, \xi_3, \xi_4$ lie in a circle.

Corollary 1.4. Let Γ , f be as in Theorem 1.1. If $[f(\xi_1):f(\xi_2):f(\xi_3):f(\xi_4)] \in \mathbb{R}$ for any distinct $\xi_1, \xi_2, \xi_3, \xi_4 \in \Lambda$ with $[\xi_1:\xi_2:\xi_3:\xi_4] \in \mathbb{R}$, then f extends to a Möbius transformation on $\hat{\mathbb{C}}$.

On the proof of Theorem [1.1] The novelty of our approach is to relate the rigidity question for a Kleinian group $\Gamma < \mathrm{PSL}_2(\mathbb{C})$ with the dynamics of one parameter diagonal subgroups on the quotient of a higher rank semisimple real algebraic group $G = \mathrm{PSL}_2(\mathbb{C}) \times \mathrm{PSL}_2(\mathbb{C})$ by a self-joining discrete subgroup.

For a given $\rho \in \mathfrak{R}_{disc}(\Gamma)$, we consider the following self-joining of Γ via ρ :

$$\Gamma_{\rho} = (\mathrm{id} \times \rho)(\Gamma) = \{(\gamma, \rho(\gamma)) : \gamma \in \Gamma\},\$$

which is a discrete subgroup of G. A basic but crucial observation is that ρ is trivial if and only if Γ_{ρ} is not Zariski dense in G (Lemma [4.1]). Our strategy is then to prove that if f maps too many circular slices of Λ into circles, then Γ_{ρ} cannot be Zariski dense in G. We achieve this by considering the action of Γ_{ρ} on the space \mathcal{T}_{ρ} of all tori in the Furstenberg boundary $\mathbb{S}^2 \times \mathbb{S}^2$ intersecting the limit set $\Lambda_{\rho} = \{(\xi, f(\xi)) \in \mathbb{S}^2 \times \mathbb{S}^2 : \xi \in \Lambda\}$. Here a torus means an ordered pair of circles in \mathbb{S}^2 .

(1) On one hand, using the Koebe-Maskit theorem (15, 23, see Theorem 3.4) and the hypothesis that the ordinary set Ω has at least 2 components, we show the existence of a torus $T \in \mathcal{T}_{\rho}$ such that

$$T \notin \overline{\Gamma_{\rho}T_0}$$

for any torus $T_0 = (C_0, D_0)$ with $f(C_0 \cap \Lambda) \subset D_0$; in particular $\overline{\Gamma_{\rho} T_0} \neq \mathcal{T}_{\rho}$.

(2) On the other hand, we prove in Theorem 2.1 that the Zariski density of Γ_{ρ} implies the existence of a dense subset $\tilde{\Lambda}_{\rho}$ of Λ_{ρ} such that $\overline{\Gamma_{\rho}T_0} = \mathcal{T}_{\rho}$ for any torus T_0 meeting $\tilde{\Lambda}_{\rho}$. Denoting by A the two dimensional diagonal subgroup of G, the main ingredients for this step are the existence of a dense orbit of some regular one-parameter diagonal semigroup in the non-wandering set of the A-action on $\Gamma_{\rho}\backslash G$ (Theorem 2.2) as well as a theorem of Prasad-Rapinchuk [22] on the existence of \mathbb{R} -regular elements (Theorem 2.4). Therefore, if the subset (1.1) has non-empty interior, we can find a torus $T_0 = (C_0, D_0)$ satisfying that $f(C_0 \cap \Lambda) \subset D_0$ and $\overline{\Gamma_{\rho}T_0} = \mathcal{T}_{\rho}$.

The incompatibility of (1) and (2) implies that either the subset (1.1) has empty interior or Γ_{ρ} is not Zariski dense in G, as desired.

Question. There are several different proofs of Mostow rigidity theorem ([19], [20], [21]). By the viewpoint suggested in this paper, it will be interesting to find yet another proof, which directly shows the following reformulation: for any lattice $\Gamma < \mathrm{PSL}_2(\mathbb{C})$ and $\rho \in \mathfrak{R}_{\mathrm{disc}}(\Gamma)$, the self-joining Γ_{ρ} is not Zariski dense in $\mathrm{PSL}_2(\mathbb{C}) \times \mathrm{PSL}_2(\mathbb{C})$.

Acknowledgements. We would like to thank Curt McMullen for asking the question formulated as Theorem [1.3] as well as for useful comments on the preliminary version. We would also like to thank Yair Minsky for useful conversations.

2. Dense orbits in the space of Tori

Let $G = \mathrm{PSL}_2(\mathbb{C}) \times \mathrm{PSL}_2(\mathbb{C})$ and let $X = \mathbb{H}^3 \times \mathbb{H}^3$ be the Riemannian product of two hyperbolic 3-spaces. It follows from $\mathrm{PSL}_2(\mathbb{C}) \simeq \mathrm{Isom}^+(\mathbb{H}^3)$ that $G \simeq \mathrm{Isom}^\circ(X)$. In the whole paper, we regard G as a real algebraic group and the Zariski density of a subset of G is to be understood accordingly. The action of $\mathrm{PSL}_2(\mathbb{C})$ on \mathbb{H}^3 extends continuously to the compactification $\mathbb{H}^3 \cup \partial \mathbb{H}^3$ and its action on $\partial \mathbb{H}^3 \simeq \mathbb{S}^2$ is given by the Möbius

transformation action of $\operatorname{PSL}_2(\mathbb{C})$ on \mathbb{S}^2 . We set $\mathcal{F} = \mathbb{S}^2 \times \mathbb{S}^2$, which coincides with the so-called Furstenberg boundary of G. Note that \mathcal{F} is not the geometric boundary of X. Clearly, the action of G extends continuously to the compact space $X \cup \mathcal{F}$.

For a Zariski dense subgroup Δ of G, its limit set $\Lambda_{\Delta} \subset \mathcal{F}$ is defined as all possible accumulation points of $\Delta(o)$, $o \in X$, on \mathcal{F} . It is a non-empty Δ -minimal subset of \mathcal{F} (4 Section 3.6), 13 Lemma 2.13).

By a torus T, we mean an ordered pair $T = (C_1, C_2) \subset \mathcal{F}$ of circles in \mathbb{S}^2 . The group G acts on the space of tori by extending the action of $\mathrm{PSL}_2(\mathbb{C})$ on the space of circles componentwise. The main goal of this section is to prove the following: denote by \mathcal{T}_{Δ} the space of all tori in \mathcal{F} intersecting Λ_{Δ} .

Theorem 2.1. Let Δ be a Zariski dense subgroup of G. There exists a dense subset $\tilde{\Lambda}_{\Delta}$ of Λ_{Δ} such that for any torus T with $T \cap \tilde{\Lambda}_{\Delta} \neq \emptyset$, the orbit ΔT is dense in \mathcal{T}_{Δ} .

This theorem may be viewed as a higher rank analogue of [18]. Theorem 4.1]. The rest of this section is devoted to its proof. It is convenient to use the upper half-space model of \mathbb{H}^3 so that $\partial \mathbb{H}^3 = \mathbb{C} \cup \{\infty\}$. The visual maps $G \to \mathcal{F}$, $g \mapsto g^{\pm}$, are defined as follows: for $g = (g_1, g_2) \in G$ with $g_i \in \mathrm{PSL}_2(\mathbb{C})$,

$$g^+ = (g_1(\infty), g_2(\infty))$$
 and $g^- = (g_1(0), g_2(0)).$

For $t \in \mathbb{C}$, we set $a_t = \operatorname{diag}(e^{t/2}, e^{-t/2})$ and define the following subgroups of G:

$$A = \{(a_{t_1}, a_{t_2}) : t_1, t_2 \in \mathbb{R}\} \text{ and } M = \{(a_{t_1}, a_{t_2}) : t_1, t_2 \in i\mathbb{R}\}.$$

For $u = (u_1, u_2) \in \mathbb{R}^2$, we write $a_u = (a_{u_1}, a_{u_2})$ and consider the following one-parameter semisubgroup

$$A_u^+ = \{a_{tu} : t \ge 0\}.$$

A loxodromic element $h \in \mathrm{PSL}_2(\mathbb{C})$ is of the form $h = \varphi a_{t_h} m_h \varphi^{-1}$ where $t_h > 0$ and $m_h \in \mathrm{PSO}(2)$ are uniquely determined and $\varphi \in \mathrm{PSL}_2(\mathbb{C})$. We call $t_h > 0$ the Jordan projection of h and m_h the rotational component of h. The attracting and repelling fixed points of h on \mathbb{S}^2 are given by $y_h = \varphi(\infty)$ and $y_{h^{-1}} = \varphi(0)$, respectively.

For a loxodromic element $g = (g_1, g_2) \in G$, that is, each g_i is loxodromic, its Jordan projection $\lambda(g)$ and the rotational component $\tau(g)$ are defined componentwise: $\lambda(g) = (t_{g_1}, t_{g_2}) \in \mathbb{R}^2_{>0}$ and $\tau(g) = (m_{g_1}, m_{g_2}) \in M$.

Dense A_u^+ -**orbit.** For a Zariski dense subgroup Δ of G, we consider the following AM-invariant subset

$$\mathcal{R}_{\Delta} = \{ [g] \in \Delta \backslash G : g^+, g^- \in \Lambda_{\Delta} \}.$$

Let $\mathcal{L} = \mathcal{L}_{\Delta} \subset \mathbb{R}^2_{\geq 0}$ denote the limit cone of Δ , which is the smallest closed cone containing the Jordan projection $\lambda(\Delta) = \{\lambda(\delta) : \delta \in \Delta\}$. The Zariski density of Δ implies that \mathcal{L} has non-empty interior [4], Section 1.2].

We use the following theorem which is an immediate consequence of the result of Dang [9] (this also follows from [8] and [5]):

Theorem 2.2. For any Zariski dense subgroup $\Delta < G$ and any $u \in \text{int } \mathcal{L}_{\Delta}$, there exists a dense A_u^+ -orbit in \mathcal{R}_{Δ} .

Proof. As shown in $[\mathfrak{D}, Theorem 7.1]$ and its proof], the semigroup $S^+ := \{a_u^n : n \in \mathbb{N} \cup \{0\}\}$ acts on \mathcal{R}_Δ topologically transitively: for any non-empty open subsets $\mathcal{O}_1, \mathcal{O}_2$ of \mathcal{R}_Δ , $\mathcal{O}_1 a_u^n \cap \mathcal{O}_2 \neq \emptyset$ for some $n \in \mathbb{N}$. This implies the existence of a dense S^+ -orbit on \mathcal{R}_Δ (cf. [24], Proposition 1.1]). Since $S^+ \subset A_u^+$, this proves the claim.

In the following, we fix $u \in \text{int } \mathcal{L}_{\Delta}$ and a dense A_u^+ -orbit, say $[g_0]A_u^+$, in \mathcal{R}_{Δ} , provided by Theorem [2.2]. Set

$$\tilde{\Lambda}_{\Delta} = \Delta g_0^+ = \left\{ \delta g_0^+ \in \Lambda_{\Delta} : \delta \in \Delta \right\}; \tag{2.1}$$

note that this is a dense subset of Λ_{Δ} , as Λ_{Δ} is a Δ -minimal subset. Denote by $\mathcal{T}_{\Delta}^{\spadesuit}$ the space of all tori T with $\#T \cap \Lambda_{\Delta} \geq 2$.

Corollary 2.3. For any torus T meeting $\tilde{\Lambda}_{\Delta}$, the closure of ΔT contains $\mathcal{T}_{\Delta}^{\spadesuit}$.

Proof. Note that $H = \operatorname{PGL}_2(\mathbb{R}) \times \operatorname{PGL}_2(\mathbb{R})$ is a subgroup of G, as $\operatorname{PSL}_2(\mathbb{C}) = \operatorname{PGL}_2(\mathbb{C})$. The space \mathcal{T} of all tori in \mathcal{F} can be identified with the quotient space G/H. Let T be a torus containing $\delta_0 g_0^+ \in \tilde{\Lambda}_\Delta$ for some $\delta_0 \in \Delta$. By the identification of $\mathcal{T} = G/H$, we may write T = gH for some $g \in G$. Then for some $h \in H$, $(gh)^+ = \delta_0 g_0^+$. If we denote by P the stabilizer subgroup of (∞, ∞) in G, which is equal to the product of two upper triangular subgroups of $\operatorname{PSL}_2(\mathbb{C})$, this implies that for some $p \in P$, $gh = \delta_0 g_0 p$. Write p = nam where n belongs to the strict upper triangular subgroup, $a \in A$ and $m \in M$. We claim that $g = \frac{1}{2} \operatorname{Im}_{A_n} \operatorname$

Therefore

$$\lim_{i\to\infty}[g]ha_{t_iu}=\lim_{i\to\infty}[g_0]nama_{t_iu}=\lim_{i\to\infty}[g_0]a_{t_iu}(a_{-t_iu}na_{t_iu})am=xam;$$

so $xam \in \overline{[g]hA_u^+}$. This proves the claim. Since \mathcal{R}_{Δ} is AM-invariant, and $\mathcal{R}_{\Delta} - [g_0]AM$ is dense in \mathcal{R}_{Δ} (as Λ_{Δ} is a perfect set), it follows that

$$\overline{[g]hA_u^+}\supset \mathcal{R}_{\Delta}.$$

Since $A_u^+ \subset H$, this implies that $\overline{[g]H} \supset \mathcal{R}_{\Delta}H$. Since $\mathcal{R}_{\Delta}H = \Delta \setminus \mathcal{T}_{\Delta}^{\spadesuit}$ and T = gH, we get $\overline{\Delta T} \supset \mathcal{T}_{\Delta}^{\spadesuit}$, as desired.

Loxodromic element $\delta \in \Delta$ with $\tau(\delta)$ generating M. We use the following special case of a theorem of Prasad and Rapinchuk [22]:

Theorem 2.4. [22], Theorem 1, Remark 1] Any Zariski dense subgroup $\Delta < G$ contains a loxodromic element δ such that $\tau(\delta)$ generates a dense subgroup of M.

Corollary 2.5. If Δ is Zariski dense in G, then $\mathcal{T}_{\Delta}^{\spadesuit}$ is dense in \mathcal{T}_{Δ} .

Proof. Let $\delta = (\delta_1, \delta_2) \in \Delta$ be as given by Theorem 2.4. Since M has no isolated point, there exists a sequence m_j , which we may assume tends to $+\infty$, by replacing δ by δ^{-1} if necessary, that $\tau(\delta)^{m_j}$ converges to e. It follows that the semigroup generated by $\tau(\delta)$ is also dense in M. Let $T = (C_1, C_2) \in \mathcal{T}_{\Delta}$ be any torus. It suffices to construct a sequence $T_n = (C_{1,n}, C_{2,n}) \in \mathcal{T}_{\Delta}$ which converges to T. We begin by fixing a point $\xi = (\xi_1, \xi_2) \in T \cap \Lambda_{\Delta}$. Since Δ acts minimally on Λ_{Δ} , there exists a sequence $\delta_n = (\delta_{1,n}, \delta_{2,n}) \in \Delta$ such that that $\delta_n y_{\delta}$ converges to ξ as $n \to \infty$; recall that $y_{\delta} \in \mathcal{F}$ denotes the attracting fixed point of δ . Fix a point $\eta = (\eta_1, \eta_2) \in \Lambda_{\Delta} - \{y_{\delta}, y_{\delta^{-1}}\}$.

For each fixed $n \in \mathbb{N}$, note that, as $k \to \infty$, the sequence $\delta_n \delta^k \eta$ converges to $\delta_n y_{\delta}$, while rotating around $\delta_n y_{\delta}$ by the amount given by $\tau(\delta)^k$. Since $\tau(\delta)$ generates a dense semigroup of M, we can find a sequence $k_n \to \infty$ such that for each i = 1, 2,

$$d(\delta_{i,n}y_{\delta_i},\delta_{i,n}\delta_i^{k_n}\eta_i) < \frac{1}{n}$$
 and $\frac{\pi}{2} - \frac{1}{n} < \theta_{i,n} < \frac{\pi}{2} + \frac{1}{n}$

where $\theta_{i,n}$ is the angle at $\delta_{i,n}y_{\delta_i}$ of the triangle determined by the center of C_i , $\delta_{i,n}y_{\delta_i}$ and $\delta_{i,n}\delta_i^{k_n}\eta_i$. For each i=1,2, we now choose $p_i \in C_i - \bigcup_n \{\delta_{i,n}y_{\delta_i}, \delta_{i,n}\delta_i^{k_n}\eta_i\}$ and set $C_{i,n}$ to be the circle passing through $\delta_{i,n}y_{\delta_i}, \delta_{i,n}\delta_i^{k_n}\eta_i$ and p_i .

From the construction, each sequence $C_{i,n}$ converges to the circle tangent to C_i at ξ_i and passing through $p_i \in C_i$, which must be equal to C_i itself; therefore if we set $T_n = (C_{1,n}, C_{2,n})$,

$$T_n \to T$$
 as $n \to \infty$.

Since $T_n \cap \Lambda_{\Delta}$ contains both $\delta_n y_{\delta}$ and $\delta_n \delta^{k_n} \eta$, we have $T_n \in \mathcal{T}_{\Delta}^{\spadesuit}$. This completes the proof.

Proof of Theorem 2.1. It suffices to consider the set $\tilde{\Lambda}_{\Delta}$ defined in (2.1) by Corollary 2.3 and Corollary 2.5.

3. Limits of circular slices and Koebe-Maskit theorem

Let $\Gamma < \mathrm{PSL}_2(\mathbb{C})$ be a non-elementary Kleinian group and $\Omega = \mathbb{S}^2 - \Lambda$ its ordinary set, i.e., $\Lambda \subset \mathbb{S}^2$ denotes the limit set of Γ . We refer to 14 and 17 for general facts on the theory of Kleinian groups.

Definition 3.1. (1) We call a circle C doubly stable for Λ if for any sequence of circles C_i converging to C, $\# \limsup(C_i \cap \Lambda) \geq 2$.

(2) We call Λ doubly stable if for any $\xi \in \Lambda$, there exists a circle $C \ni \xi$, which is doubly stable for Λ .

The main goal of this section is to prove the following lemma:

Lemma 3.2. If Γ is finitely generated and Ω is not connected, then Λ is doubly stable.

In the rest of this section, we assume Γ is finitely generated. Lemma 3.2 is an immediate consequence of the following lemma, since, if $\xi_1, \xi_2 \in \Omega$ belong to different components of Ω , then for any $\xi \in \Lambda$, the circle C passing through ξ, ξ_1, ξ_2 is not contained in the closure of any component of Ω .

Lemma 3.3. Let $C \subset \mathbb{S}^2$ be a circle such that $C \not\subset \overline{\Omega_0}$ for any component Ω_0 of Ω . If C_n is a sequence of circles converging to C, then

$$\# \limsup (C_n \cap \Lambda) \geq 2.$$

The main ingredient is the following formulation of the Koebe-Maskit theorem ([15], Theorem 6], [23], Theorem 1]):

Theorem 3.4. Let $\{\Omega_i\}$ be the collection of all components of the ordinary set Ω . Then for any $\alpha > 2$, $\sum_i \operatorname{Diam}(\Omega_i)^{\alpha} < \infty$ where $\operatorname{Diam}(\Omega_i)$ is the diameter of Ω_i in the spherical metric on \mathbb{S}^2 .

We will only need the following immediate corollary of Theorem 3.4

Corollary 3.5. For any $\varepsilon > 0$, there are only finitely many components of the ordinary set of Γ with diameter bigger than ε .

Proof of Lemma 3.3. Given Corollary 3.5, the proof is similar to the proof of 12, Lemma 8.1, which deals with the case when all components of Ω are round disks.

Let C and $C_n \to C$ be as in the statement of the lemma. It suffices to show that there exists $\varepsilon_0 > 0$ such that $C_{n_i} \cap \Lambda$ contains two points of distance at least ε_0 for some infinite sequence $n_i \to \infty$. Suppose not. Then, letting I_n be the minimal connected subset of C_n containing $C_n \cap \Lambda$, we have $\operatorname{Diam}(I_n) \to 0$ as $n \to \infty$.

Setting $\eta = \operatorname{Diam}(C)/2$, we have $\operatorname{Diam}(C_n) > \eta$ for all sufficiently large n. Let $0 < \varepsilon < \eta/4$ be arbitrary. Since $\operatorname{Diam}(I_n) \to 0$, we have $\operatorname{Diam}(I_n) < \varepsilon$ for all large n. Noting that $C_n - I_n$ is a connected subset of Ω , let Ω_n be the connected component of Ω containing $C_n - I_n$. Then C_n is contained in the ε -neighborhood of Ω_n , which implies

$$\operatorname{Diam}(\Omega_n) \geq \operatorname{Diam}(C_n) - 2\varepsilon > \eta/2.$$

By Corollary 3.5, the collection $\{\Omega_n : \text{Diam}(\Omega_n) > \eta/2\}$ must be a finite set, say, $\{\Omega_1, \dots, \Omega_N\}$. Therefore, for some $1 \le j \le N$, there exists an infinite sequence C_{n_i} contained in the ε -neighborhood of Ω_j . Hence C is contained in the 2ε -neighborhood of Ω_j . Since the collection $\{\Omega_1, \dots, \Omega_N\}$ does not

¹For a sequence of subsets S_n in a topological space, we define $\limsup S_n = \bigcap_n \overline{\bigcup_{i \ge n} S_i}$.

depend on ε , we can find a sequence $\varepsilon_k \to 0$ and a fixed $1 \le j \le N$ such that C is contained in the $2\varepsilon_k$ -neighborhood of Ω_j . It follows that $C \subset \overline{\Omega_j}$, contradicting the hypothesis on C. This finishes the proof.

4. Self-joinings of Kleinian groups and Proof of Theorem 1.1

Let $\Gamma < \mathrm{PSL}_2(\mathbb{C})$ be a Zariski dense discrete subgroup with limit set Λ . As before, we denote by $\Omega = \mathbb{S}^2 - \Lambda$ its ordinary set.

We fix a discrete faithful representation $\rho: \Gamma \to \mathrm{PSL}_2(\mathbb{C})$ such that $\rho(\Gamma)$ is Zariski dense.

We now define the self-joining of Γ via ρ as

$$\Gamma_{\rho} := (\mathrm{id} \times \rho)(\Gamma) = \{(\gamma, \rho(\gamma)) : \gamma \in \Gamma\},\$$

which is a discrete subgroup of G.

We begin by recalling two standard facts:

Lemma 4.1. The subgroup Γ_{ρ} is Zariski dense in G if and only if ρ is not a conjugation by an element of $M\ddot{o}b(\mathbb{S}^2)$.

Proof. It is clear that if ρ is a conjugation by an element of $\text{M\"ob}(\mathbb{S}^2)$, then Γ_{ρ} is not Zariski dense in G. To see the converse, let $G_0 < G$ be the Zariski closure of Γ_{ρ} and suppose that $G_0 \neq G$. Denote by $\pi_i : G = \text{PSL}_2(\mathbb{C}) \times \text{PSL}_2(\mathbb{C}) \to \text{PSL}_2(\mathbb{C})$ the projection onto the i-th component.

We now claim that $\pi_1|_{G_0}$ is an isomorphism. Since Γ is Zariski dense, $\pi_1|_{G_0}$ is surjective. Hence, it suffices to show that $\pi_1|_{G_0}$ is injective. Note that $G_0 \cap \ker \pi_1 = G_0 \cap (\{e\} \times \operatorname{PSL}_2(\mathbb{C}))$ is a normal subgroup of G_0 . Hence, $G_0 \cap \ker \pi_1$ is normalized by $\{e\} \times \operatorname{PSL}_2(\mathbb{C})$ since $\rho(\Gamma)$ is Zariski dense $\operatorname{PSL}_2(\mathbb{C})$. Thus, $G_0 \cap \ker \pi_1$ is a normal subgroup of $\ker \pi_1$. As $\ker \pi_1 \cong \operatorname{PSL}_2(\mathbb{C})$ is simple, $G_0 \cap \ker \pi_1$ is either trivial or $\{e\} \times \operatorname{PSL}_2(\mathbb{C})$. In the latter case, note that $\{e\} \times \operatorname{PSL}_2(\mathbb{C}) < G_0$. Since $\pi_1|_{G_0}$ is surjective, it follows that $G_0 = G$, yielding contradiction. Therefore $\pi_1|_{G_0}$ is injective, and hence an isomorphism. Similarly, $\pi_2|_{G_0}$ is an isomorphism. Hence, $\pi_2|_{G_0} \circ \pi_1|_{G_0}^{-1}$ is a Lie group automorphism of $\operatorname{PSL}_2(\mathbb{C})$. Hence it is a conjugation by a Möbius transformation (cf. [11]). Since this map restricts to ρ on Γ , it finishes the proof.

Since ρ gives an isomorphism from Γ to $\rho(\Gamma)$ and f is an equivariant embedding, it follows that ρ maps every loxodromic element γ to a loxodromic element $\rho(\gamma)$ and f sends the attracting fixed point of $\gamma \in \Gamma$ to the attracting fixed point of $\rho(\gamma)$. Since the set of attracting fixed points of loxodromic elements of Γ is dense in Λ , this implies the following.

Lemma 4.2. There can be at most one ρ -boundary map $f: \Lambda \to \mathbb{S}^2$. In particular, if ρ is a conjugation by $g \in \text{M\"ob}(\mathbb{S}^2)$, then $f = g|_{\Lambda}$.

Proof of Theorem 1.1. By Lemma 3.2, Theorem 1.1 follows from the following:

Theorem 4.3. Let $\Gamma < \mathrm{PSL}_2(\mathbb{C})$ be a Zariski dense Kleinian group such that Λ is doubly stable. Let $\rho \in \mathfrak{R}_{\mathrm{disc}}(\Gamma)$ be a Zariski dense representation with boundary map $f : \Lambda \to \mathbb{S}^2$. Unless ρ is a conjugation, the subset

$$\Lambda_f := \bigcup \{C \cap \Lambda : f(C \cap \Lambda) \text{ is contained in a circle}\}$$
 (4.1)

has empty interior in Λ ; hence

$$\{C \in \mathcal{C}_{\Lambda} : f(C \cap \Lambda) \text{ is contained in a circle}\}$$

has empty interior in \mathcal{C}_{Λ} .

Proof. If $\Lambda = \mathbb{S}^2$, it is easy to prove this. So we assume below that $\Lambda \neq \mathbb{S}^2$. Suppose that ρ is not a conjugation, so that Γ_{ρ} is Zariski dense by Lemma [4.1]. It follows easily from the minimality of the limit set Λ_{ρ} of Γ_{ρ} that

$$\Lambda_{\rho} = \{ (\xi, f(\xi)) \in \mathbb{S}^2 \times \mathbb{S}^2 : \xi \in \Lambda \}. \tag{4.2}$$

Let $\tilde{\Lambda}_{\Gamma_{\rho}}$ be as in Theorem 2.1, which must be of the form $\{(\xi, f(\xi)) : \xi \in \tilde{\Lambda}\}$ for some dense subset $\tilde{\Lambda}$ of Λ .

Suppose on the contrary that Λ_f has non-empty interior. Then $\Lambda_f \cap \tilde{\Lambda} \neq \emptyset$. It follows that there exists $C_0 \in \mathcal{C}_{\Lambda}$ such that $C_0 \cap \tilde{\Lambda} \neq \emptyset$ and $f(C_0 \cap \Lambda)$ is contained in some circle, say, D_0 . Set $T_0 = (C_0, D_0)$. Since $C_0 \cap \tilde{\Lambda} \neq \emptyset$, it follows from Theorem 2.1 that

$$\overline{\Gamma_{\rho}T_0} = \mathcal{T}_{\rho} \tag{4.3}$$

where $\mathcal{T}_{\rho} = \mathcal{T}_{\Gamma_{\rho}}$ is the space of all tori intersecting Λ_{ρ} . On the other hand, we now show that the condition $f(C_0 \cap \Lambda) \subset D_0$ implies that $\Gamma_{\rho}T_0$ cannot be dense in \mathcal{T}_{ρ} , using Lemma [3.3].

Step 1: There exists a circle D which intersects $\Lambda_{\rho(\Gamma)}$ precisely at one point, say $f(\xi_0)$. To show this, fix any $f(\xi) \in \Lambda_{\rho(\Gamma)}$ and let D' be the boundary of the minimal disk B' centered at $f(\xi)$ which contains all of $\Lambda_{\rho(\Gamma)}$. By the minimality of B', $D' \cap \Lambda_{\rho(\Gamma)} \neq \emptyset$. Choose $f(\xi_0) \in D' \cap \Lambda_{\rho(\Gamma)}$, and let D be a circle tangent to D' at $f(\xi_0)$ which does not intersect the interior of B'.

Step 2: By the hypothesis that Λ is doubly stable, we can find a circle C containing ξ_0 which is doubly stable for Λ .

Step 3: Setting T = (C, D), we have $T \notin \overline{\Gamma_{\rho}T_1}$ for any torus $T_1 = (C_1, D_1)$ with $f(C_1 \cap \Lambda) \subset D_1$. In particular, $T \notin \overline{\Gamma_{\rho}T_0}$.

Suppose on the contrary that there exists a sequence $\gamma_n \in \Gamma$ such that $\gamma_n C_1$ converges to C and $\rho(\gamma_n)D_1$ converges to D. Since C is doubly stable for Λ , we have

$$\#\limsup(\gamma_n C_1 \cap \Lambda) \ge 2. \tag{4.4}$$

By the ρ -equivariance of f, we have

$$f(\gamma_n C_1 \cap \Lambda) = f(\gamma_n (C_1 \cap \Lambda)) = \rho(\gamma_n) f(C_1 \cap \Lambda) \subset \rho(\gamma_n) D_1 \cap \Lambda_{\rho(\Gamma)}.$$

Hence

$$\limsup f(\gamma_n C_1 \cap \Lambda) \subset \limsup (\rho(\gamma_n) D_1 \cap \Lambda_{\rho(\Gamma)}) \subset D \cap \Lambda_{\rho(\Gamma)}.$$

It now follows from (4.4) and the injectivity of f that

$$\#D \cap \Lambda_{\rho(\Gamma)} \geq 2.$$

This contradicts the choice of D made in Step (1), hence proving Step (3).

Since $(\xi_0, f(\xi_0)) \in T \cap \Lambda_\rho$, we have $T \in \mathcal{T}_\rho$. Hence we obtained a contradiction to (4.3). Therefore Λ_f has empty interior, completing the proof. \square

References

- [1] I. Agol. Tameness of hyperbolic 3-manifolds. arXiv preprint math/0405568, 2004.
- [2] L. Ahlfors. Finitely generated Kleinian groups. Amer. J. Math., 86:413–429, 1964.
- [3] L. Ahlfors. Fundamental polyhedrons and limit point sets of Kleinian groups. Proc. Nat. Acad. Sci. U.S.A., 55:251–254, 1966.
- [4] Y. Benoist. Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal., 7(1):1-47, 1997.
- [5] M. Burger, O. Landesberg, M. Lee, and H. Oh. The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups. J. Mod. Dyn., 19:301–330, 2023.
- [6] D. Calegari and D. Gabai. Shrinkwrapping and the taming of hyperbolic 3-manifolds. J. Amer. Math. Soc., 19(2):385–446, 2006.
- [7] R. Canary. Ends of hyperbolic 3-manifolds. J. Amer. Math. Soc., 6(1):1–35, 1993.
- [8] M. Chow and P. Sarkar. Local mixing of one-parameter diagonal flows on Anosov homogeneous spaces. arXiv:2105.11377, 2021. To appear in Int. Math. Res. Not. IMRN.
- [9] N.-T. Dang. Topological mixing of positive diagonal flows. arXiv:2011.12900, 2020. To appear in Isr. J. Math.
- [10] M. Gromov. Hyperbolic manifolds. In Bourbaki Seminar, Vol. 1979/80, volume 842 of Lecture Notes in Math., pages 40–53. Springer, 1981.
- [11] H. Gündoğan. The component group of the automorphism group of a simple Lie algebra and the splitting of the corresponding short exact sequence. *J. Lie Theory*, 20(4):709–737, 2010.
- [12] M. Lee and H. Oh. Orbit closures of unipotent flows for hyperbolic manifolds with Fuchsian ends. arXiv:1902.06621, 2019. To appear in Geom. Topol.
- [13] M. Lee and H. Oh. Invariant measures for horospherical actions and Anosov groups. arXiv:2008.05296, 2020. To appear in Int. Math. Res. Not. IMRN.
- [14] A. Marden. Hyperbolic manifolds. Cambridge University Press, Cambridge, 2016. An introduction in 2 and 3 dimensions.
- [15] B. Maskit. Intersections of component subgroups of Kleinian groups. Ann. of Math. Studies, No. 79. Princeton Univ. Press, 1974.
- [16] B. Maskit. Kleinian groups, volume 287 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1988.
- [17] K. Matsuzaki and M. Taniguchi. Hyperbolic manifolds and Kleinian groups. Oxford Mathematical Monographs. Oxford University Press, 1998.
- [18] C. McMullen, A. Mohammadi, and H. Oh. Geodesic planes in hyperbolic 3-manifolds. Invent. Math., 209(2):425–461, 2017.
- [19] G. Mostow. Quasi-conformal mappings in *n*-space and the rigidity of hyperbolic space forms. *Inst. Hautes Études Sci. Publ. Math.*, (34):53–104, 1968.
- [20] G. Mostow. Strong rigidity of locally symmetric spaces. Annals of Mathematics Studies, No. 78. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973.
- [21] G. Prasad. Strong rigidity of Q-rank 1 lattices. Invent. Math., 21:255–286, 1973.
- [22] G. Prasad and A. Rapinchuk. Existence of irreducible ℝ-regular elements in Zariskidense subgroups. Math. Res. Lett., 10(1):21–32, 2003.

- [23] T. Sasaki. On the Koebe-Maskit theorem. Tohoku Math. J. (2), 33(4):503-513, 1981.
- [24] S. Silverman. On maps with dense orbits and the definition of chaos. Rocky Mountain J. Math., 22(1):353–375, 1992.
- [25] D. Sullivan. On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. volume 97 of Ann. of Math. Stud. Princeton Univ. Press, 1981.
- [26] D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math., 153(3-4):259–277, 1984.
- [27] W. Thurston. Hyperbolic structures on 3-manifolds. I. Deformation of acylindrical manifolds. Ann. of Math. (2), 124(2):203–246, 1986.
- [28] W. Thurston. The Geometry and Topology of Three-Manifolds: With a Preface by Steven P. Kerckhoff, volume 27. American Mathematical Society, 2022.
- [29] P. Tukia. On isomorphisms of geometrically finite Möbius groups. Inst. Hautes Études Sci. Publ. Math., (61):171–214, 1985.

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CT 06511, USA *Email address*: dongryul.kim@yale.edu

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CT 06511, USA AND KOREA INSTITUTE FOR ADVANCED STUDY, SEOUL, SOUTH KOREA

Email address: hee.oh@yale.edu