RIGIDITY OF KLEINIAN GROUPS VIA SELF-JOININGS
DONGRYUL M. KIM AND HEE OH

ABSTRACT. Let T' < PSL2(C) ~ Isom™ (H?) be a finitely generated non-
Fuchsian Kleinian group whose ordinary set 0 = S — A has at least two
components. Let p : I' — PSLy(C) be a faithful discrete non-Fuchsian
representation with boundary map f : A — S? on the limit set.

In this paper, we obtain a new rigidity theorem: if f is conformal on
A, in the sense that f maps every circular slice of A into a circle, then
f extends to a Mobius transformation g on S? and p is the conjugation
by g. Moreover, unless p is a conjugation, the set of circles C' such
that f(C' N A) is contained in a circle has empty interior in the space
of all circles meeting A. This answers a question asked by McMullen
on the rigidity of maps A — S? sending vertices of every tetrahedron of
zero-volume to vertices of a tetrahedron of zero-volume.

The novelty of our proof is a new viewpoint of relating the rigidity
of I' with the higher rank dynamics of the self-joining (id xp)(T') <
PSL2 (C) X PSLQ(C)

1. INTRODUCTION

Let T' < PSLy(C) = Isom™ (H?) be a finitely generated torsion-free Kleinian
group. Consider the following discreteness locus of I' in the space of repre-
sentations of I' into PSLy(C):

Raisc(I') = {p : T' — PSLy(C) : discrete, faithful};

each p € Ryis(T) gives rise to a hyperbolic manifold p(I')\H? which is ho-
motopy equivalent to T'\H?. Another commonly used notation for Rgisc(T)
is AH(T') where H stands for hyperbolic and A for the topology on this
space given by the algebraic convergence (cf. [27]).

We denote by Mob(S?) the group of all Mobius transformations on S?,
by which we mean the group generated by inversions with respect to cir-
cles in S2.  As well-known, M&b(S?) is equal to the group of conformal
automorphisms of S?. The group PSLy(C) can be identified with the sub-
group consisting of compositions of even number of inversions with respect
to circles in S?; in particular, it is a normal subgroup of Mob(S?) of index
two. This means that conjugations by elements of M6b(S?) are contained in
Raisc(I'); we call them trivial elements of Ryisc(I'). Note that p € Ryisc(T)
is trivial if and only if T\H? and p(I')\H? are isometric to each other.
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The rigidity question on I' concerns a criterion on when a given represen-
tation

P € 9C{disc (F)

is trivial. Denote by A C S? the limit set of I', that is, the set of all
accumulation points of I'(0), 0 € H3. A p-equivariant continuous embedding

f:A—S?

is called a p-boundary map. There can be at most one p-boundary map.
Two important class of representations admitting boundary maps are as
follows. Firstly, if both I' and p(I") are geometrically finite, and p is type-
preserving, then the p-boundary map always exists by Tukia [29]. Secondly,
if p is a quasiconformal deformation of I, i.e., there exists a quasiconformal
homeomorphism F : S§? — S? such that for all y € T, p(y) = Foyo F~1,
then the restriction of F' to A is the p-boundary map.

The fundamental role played by the boundary map in the study of rigidity
of I' is well-understood, going back to the proofs of Mostow’s and Sullivan’s
rigidity theorems ([19], [20], [25]). By the Ahlfors measure conjecture ([2],
[3]) now confirmed by the works of Canary [7], Agol [1] and Calegari-Gabai
[6], the limit set A is either all of S? or of Lebesgue measure zero. Mostow
rigidity theorem ([19], [20], [21]) says that if T is a lattice, that is, if '\H? has
finite volume, then any p € Rgise(I) is trivial; he obtained this by showing
that the p-boundary map has to be conformal on S?. More generally, for any
finitely generated Kleinian group I' with A = S?, Sullivan showed that any
quasiconformal deformation of I' is trivial [25]. In fact, Sullivan’s original
theorem says that any p-equivariant quasiconformal homeomorphism of S?
which is conformal on the ordinary set Q = S? — A is a Mdbius transforma-
tion. However Ahlfors measure conjecture implies that this is meaningful
only when A = S? (cf. |14 Section 3.13]).

In this paper, we concern the case when A # S?. For example, any
geometrically finite Kleinian group which is not a lattice satisfies A # S?
[26]. We prove that if the p-boundary map is conformal on A, then p is
trivial, provided the ordinary set © = S? — A has at least two connected
components. By the “conformality of f on A”, we mean that f maps circles
in A into circles.

Circular slices. The main result of this paper is the following rigidity
theorem in terms of the behavior of f on circular slices of A: a circular slice
of A is a subset of the form C N A for some circle C' C S2. We denote by Ca
the space of all circles in S? meeting A.

Theorem 1.1. Let ' < PSLy(C) be a finitely generated Zariski dense
Kleinian group whose ordinary set ) has at least two components. Let p €
Raise(I') be a Zariski dense representation with boundary map f: A — S2.

If f maps every circular slice of A into a circle, then p is a conjugation
by some g € MSb(S?) and f = g|a.
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Moreover, unless p is a conjugation, the following subset of Ca
{C €Cp: f(CNA) is contained in a circle} (1.1)
has empty interior.

We call A doubly stable if for any £ € A, there exists a circle C' 3 £ such
that for any sequence of circles C; converging to C, # limsup(C; N A) > 2.
The assumption that I' is finitely generated with 2 disconnected was used
only to ensure that A is doubly stable (Lemma Theorem (4.3)).

Remark 1.2. (1) This theorem holds rather trivially when A = S2, in
which case all circular slices of A are circles.

(2) If I' < PSLy(C) is geometrically finite with connected limit set, then

) is disconnected (cf. [16, Chapter IX]); hence Theorem [I.1|applies.

Tetrahedra of zero-volume. A quadruple of points in S? determines an
ideal tetrahedron of the hyperbolic 3-space H?. Gromov-Thurston’s proof of
Mostow rigidity theorem for closed hyperbolic 3-manifolds uses the fact that
a homeomorphism of S? mapping vertices of a maximal volume tetrahedron
to vertices of a maximal volume tetrahedron is a Mébius transformation ([10]
[28) Chapter 6]). In view of this, Curtis McMullen asked us whether one can
consider the other extreme type of tetrahedra, namely, those of zero-volume
in the study of rigidity of I.

Noting that f : A — S? maps every circular slice of A into a circle if and
only if f maps any quadruple of points in A lying in a circle into a circle,
the following is a reformulation of Theorem [1.1} which answers McMullen’s
question in the affirmative:

Theorem 1.3. Let T',p be as in Theorem 1.1, If the p-boundary map
f: A — S? maps vertices of every tetrahedron of zero-volume to vertices
of a tetrahedron of zero-volume, then f is the restriction of a Mobius trans-
formation g and p is the conjugation by g.

Cross ratios. Theorem [1.3]can also be stated in terms of cross ratios: note
that for four distinct points &1, &2, &3, &4 € C, the cross ratio [§1 : &o @ &3 : &4
is a real number if and only if all &1, &9, &3, &4 lie in a circle.

Corollary 1.4. Let T, f be as in Theorem [1.1, If [f(&) : f(&2) @ f(&3) -
f(&)] € R for any distinct &1,£2,&3,&4 € [} with [&1 : &2 : &3 1 &4] € R, then

f extends to a Mobius transformation on C.

On the proof of Theorem [1.1. The novelty of our approach is to relate
the rigidity question for a Kleinian group I' < PSLy(C) with the dynam-
ics of one parameter diagonal subgroups on the quotient of a higher rank
semisimple real algebraic group G = PSLy(C) x PSLy(C) by a self-joining
discrete subgroup.

For a given p € Ryisc(I'), we consider the following self-joining of T' via p:

[p=(id x p)(I') = {(7,p(7)) : v €T},
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which is a discrete subgroup of G. A basic but crucial observation is that p is
trivial if and only if I, is not Zariski dense in G (Lemma. Our strategy
is then to prove that if f maps too many circular slices of A into circles,
then I', cannot be Zariski dense in G. We achieve this by considering the
action of I', on the space 7, of all tori in the Furstenberg boundary S? x S?
intersecting the limit set A, = {(¢, f(€)) € S* x §? : £ € A}. Here a torus
means an ordered pair of circles in S%.

(1) On one hand, using the Koebe-Maskit theorem ([15], [23], see The-
orem and the hypothesis that the ordinary set {2 has at least 2
components, we show the existence of a torus 1" € 7, such that

T¢T,T
for any torus Ty = (Cp, Do) with f(Co N A) C Dy; in particular
I'To #Tp.
(2) On the other hand, we prove in Theorem that the Zariski den-
sity of I', implies the existence of a dense subset A, of A, such that

I',Ty = T, for any torus Tp meeting Ap. Denoting by A the two di-
mensional diagonal subgroup of G, the main ingredients for this step
are the existence of a dense orbit of some regular one-parameter di-
agonal semigroup in the non-wandering set of the A-action on I',\G
(Theorem as well as a theorem of Prasad-Rapinchuk [22] on the
existence of R-regular elements (Theorem [2.4]). Therefore, if the sub-
set has non-empty interior, we can find a torus Ty = (Cp, Dy)
satisfying that f(CoNA) C Dy and T',)Ty = 7,,.

The incompatibility of (1) and (2) implies that either the subset has

empty interior or I', is not Zariski dense in G, as desired.

Question. There are several different proofs of Mostow rigidity theorem
(J19], [20], [21]). By the viewpoint suggested in this paper, it will be inter-
esting to find yet another proof, which directly shows the following reformu-
lation: for any lattice I' < PSLy(C) and p € Rqisc(I'), the self-joining I, is
not Zariski dense in PSLy(C) x PSLy(C).

Acknowledgements. We would like to thank Curt McMullen for asking
the question formulated as Theorem as well as for useful comments on
the preliminary version. We would also like to thank Yair Minsky for useful
conversations.

2. DENSE ORBITS IN THE SPACE OF TORI

Let G = PSLy(C) x PSLy(C) and let X = H? x H? be the Riemannian
product of two hyperbolic 3-spaces. It follows from PSLy(C) ~ Isom™ (H3)
that G ~ Isom°(X). In the whole paper, we regard G as a real algebraic
group and the Zariski density of a subset of G is to be understood ac-
cordingly. The action of PSLy(C) on H? extends continuously to the com-
pactification H? U OH? and its action on OH? ~ S? is given by the Mobius
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transformation action of PSLy(C) on S?. We set F = S? x S2, which coin-
cides with the so-called Furstenberg boundary of G. Note that F is not the
geometric boundary of X. Clearly, the action of G extends continuously to
the compact space X U F.

For a Zariski dense subgroup A of G, its limit set Aa C F is defined as
all possible accumulation points of A(o0), 0 € X, on F. It is a non-empty
A-minimal subset of F ([4, Section 3.6], [13, Lemma 2.13]).

By a torus 7', we mean an ordered pair T = (Cy, C3) C F of circles in S%.
The group G acts on the space of tori by extending the action of PSLy(C)
on the space of circles componentwise. The main goal of this section is to
prove the following: denote by Ta the space of all tori in F intersecting Aa.

Theorem 2.1. Let A be a Zariski dense subgroup of G. There exists a
dense subset Ax of Aa such that for any torus T with TNAA # 0, the orbit
AT is dense in Ta.

This theorem may be viewed as a higher rank analogue of |18, Theorem
4.1]. The rest of this section is devoted to its proof. It is convenient to
use the upper half-space model of H? so that OH® = C U {oo}. The visual
maps G — F, g — gT, are defined as follows: for ¢ = (g1,92) € G with
g; € PSLQ((C),

9" = (91(0), g2(c0)) and g~ = (g1(0), g2(0)).

For t € C, we set a; = diag(e?/?, e~*/?) and define the following subgroups
of G:

A={(ay,as,) :t1,ta € R} and M = {(as,, as,) : t1,t2 € iR}.

For u = (uy,uz2) € R?, we write a, = (ay,,au,) and consider the following
one-parameter semisubgroup

At = {aw, :t >0}

A loxodromic element h € PSLy(C) is of the form h = pay, mpe~" where
tp, > 0 and my, € PSO(2) are uniquely determined and ¢ € PSLy(C). We
call t;, > 0 the Jordan projection of h and my, the rotational component of h.
The attracting and repelling fixed points of h on S? are given by y; = (00)
and y;-1 = ©(0), respectively.

For a loxodromic element g = (g1, g2) € G, that is, each g; is loxodromic,
its Jordan projection A(g) and the rotational component 7(g) are defined
componentwise: A(g) = (tg,,tg,) € R2, and 7(g) = (mg,,mg,) € M.

1

Dense A} -orbit. For a Zariski dense subgroup A of G, we consider the
following AM-invariant subset

Ra={lg] € A\G:g", 97 € Aa}.

Let L = LA C Rzzo denote the limit cone of A, which is the smallest
closed cone containing the Jordan projection A(A) = {A(J) : 6 € A}. The
Zariski density of A implies that £ has non-empty interior [4, Section 1.2].



6 DONGRYUL M. KIM AND HEE OH

We use the following theorem which is an immediate consequence of the
result of Dang [9] (this also follows from [8] and [5]):

Theorem 2.2. For any Zariski dense subgroup A < G and any u € int LA,
there exists a dense Al -orbit in Ra.

Proof. As shown in |9, Theorem 7.1 and its proof], the semigroup St :=
{al : n € NU{0}} acts on Ra topologically transitively: for any non-empty
open subsets 01,02 of Ra, O1al N Oy # () for some n € N. This implies
the existence of a dense St-orbit on Ra (cf. [24, Proposition 1.1]). Since
St C A, this proves the claim. O

In the following, we fix u € int LA and a dense A} -orbit, say [go] A, in
Ra, provided by Theorem Set

An = Agy = {69 € Aa:6€ A} (2.1)

note that this is a dense subset of Aa, as Aa is a A-minimal subset.
Denote by T: the space of all tori T with #T N AA > 2.

Corollary 2.3. For any torus T meeting An, the closure of AT contains
TR

Proof. Note that H = PGL2(R) xPGL4(R) is a subgroup of G, as PSLy(C) =
PGLy(C). The space T of all tori in F can be identified with the quotient
space G/H. Let T be a torus containing 6096r € Aa for some 8y € A. By
the identification of 7 = G/H, we may write T = gH for some g € G.
Then for some h € H, (gh)t = dogg. If we denote by P the stabilizer
subgroup of (00, 00) in G, which is equal to the product of two upper trian-
gular subgroups of PSLg(C), this implies that for some p € P, gh = dpgop.
Write p = nam where n belongs to the strict upper triangular subgroup,
a € Aand m € M. We claim that [g]hA] D (Ra — [go]A})ma. Let

T € Ra — [go]Af. Since [go]Ad = Ra, there exists a sequence t; — 400

such that = = lim;,oo[go]at;u. Since u = (uj,uz) € int LA, we have
up > 0,u2 > 0, and hence a_¢;ynay, — € as ¢ — 00.
Therefore

lim [g|hat,, = lim [go]namar,, = lim [go]at,u(a—t,unai.)am = zam;
1—>00 1—00 1—00

so zam € [g]hAy. This proves the claim. Since Ra is AM-invariant, and
R — [90]AM is dense in R (as Aa is a perfect set), it follows that

[g]hA;r O RA.

Since A} C H, this implies that [g|H D RaH. Since RaH = A\TA‘ and
T = gH, we get AT > T*, as desired. O
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Loxodromic element § € A with 7(J) generating M. We use the fol-
lowing special case of a theorem of Prasad and Rapinchuk [22]:

Theorem 2.4. [22, Theorem 1, Remark 1] Any Zariski dense subgroup
A < G contains a lozodromic element § such that 7(§) generates a dense
subgroup of M.

Corollary 2.5. If A is Zariski dense in G, then TA‘ is dense in TAa.

Proof. Let 6 = (01,d2) € A be as given by Theorem Since M has no
isolated point, there exists a sequence m;, which we may assume tends to
+00, by replacing § by 6! if necessary, that 7(§)" converges to e. It follows
that the semigroup generated by 7(0) is also dense in M. Let T' = (C4,Cs) €
Ta be any torus. It suffices to construct a sequence T,, = (C1 ,Ca,) € TA‘
which converges to T'. We begin by fixing a point £ = (£1,&2) € T N Aa.
Since A acts minimally on Aa, there exists a sequence §,, = (01,n,02,) € A
such that that d,ys converges to & as n — oo; recall that ys € F denotes
the attracting fixed point of §. Fix a point n = (n1,12) € Aa — {ys,ys—1}-

For each fixed n € N, note that, as k — 0o, the sequence 8,87 converges
to d,ys, while rotating around &,ys by the amount given by 7(6)*. Since
7(9) generates a dense semigroup of M, we can find a sequence k,, — oo
such that for each i =1, 2,

d(5¢7ny5i,5i7néf"ni) < % and 7§ — % <bOin < %—i—%
where 6; , is the angle at 0;,ys5, of the triangle determined by the cen-
ter of Cj, 0;,ys5, and 5i7n65"77i. For each i = 1,2, we now choose p; €
C; — Un{éivny(;i,éi’néf"m} and set C;, to be the circle passing through
8im¥s;> Siny " and p;.
From the construction, each sequence C;,, converges to the circle tangent

to C; at & and passing through p; € C;, which must be equal to C; itself;
therefore if we set T, = (Cin,Capn),

T, —T as n — oo.

Since T}, N Aa contains both §,ys and 6,61, we have T, € TA‘. This
completes the proof. ([l

Proof of Theorem IE It suffices to consider the set Aa defined in (2.1))
by Corollary and Corollary

3. LIMITS OF CIRCULAR SLICES AND KOEBE-MASKIT THEOREM

Let I' < PSLy(C) be a non-elementary Kleinian group and Q = S? — A
its ordinary set, i.e., A C S? denotes the limit set of I'. We refer to [14] and
[17] for general facts on the theory of Kleinian groups.

Definition 3.1. (1) We call a circle C' doubly stable for A if for any
sequence of circles C; converging to C, # limsup(C; N A) > 2.
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(2) We call A doubly stable if for any £ € A, there exists a circle C' 3 &,
which is doubly stable for A.

The main goal of this section is to prove the following lemma:

Lemma 3.2. If I' is finitely generated and 2 is not connected, then A is
doubly stable.

In the rest of this section, we assume I' is finitely generated. Lemma
[3.2] is an immediate consequence of the following lemma, since, if &,& € Q
belong to different components of €2, then for any £ € A, the circle C' passing
through &, &1, & is not contained in the closure of any component of Q.

Lemma 3.3. Let C C S? be a circle such that C ¢ Qq for any component
Qo of Q. If C), is a sequence of circles converging to C, the

#limsup(C,, N A) > 2.

The main ingredient is the following formulation of the Koebe-Maskit
theorem (|15, Theorem 6], [23, Theorem 1]):

Theorem 3.4. Let {€;} be the collection of all components of the ordinary
set Q. Then for any o > 2, > . Diam(§;)* < oo where Diam();) is the
diameter of Q; in the spherical metric on S?.

We will only need the following immediate corollary of Theorem

Corollary 3.5. For any € > 0, there are only finitely many components of
the ordinary set of I' with diameter bigger than .

Proof of Lemma|3.3. Given Corollary[3.5] the proof is similar to the proof
of [12, Lemma 8.1], which deals with the case when all components of € are
round disks.

Let C and C, — C be as in the statement of the lemma. It suffices
to show that there exists ¢g > 0 such that C;,, N A contains two points of
distance at least ¢y for some infinite sequence n; — co. Suppose not. Then,
letting I,, be the minimal connected subset of C}, containing C,, N A, we have
Diam(I,,) — 0 as n — oo.

Setting n = Diam(C') /2, we have Diam(C,,) > n for all sufficiently large n.
Let 0 < € < n/4 be arbitrary. Since Diam(7,) — 0, we have Diam([,) < ¢
for all large n. Noting that C,, — I,, is a connected subset of €2, let €, be
the connected component of ) containing C,, — I,. Then C,, is contained in
the e-neighborhood of €2, which implies

Diam(£2,,) > Diam(C,,) — 2¢ > n/2.
By Corollary [3.5] the collection {€2, : Diam(£),,) > 1/2} must be a finite set,
say, {Q1,---,Qn}. Therefore, for some 1 < j < N, there exists an infinite

sequence Cj,, contained in the e-neighborhood of €2;. Hence C' is contained
in the 2e-neighborhood of ;. Since the collection {€,---,Qxn} does not

Ior a sequence of subsets S, in a topological space, we define limsup Sn, =, U,>,, Si-
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depend on €, we can find a sequence € — 0 and a fixed 1 < j < N such
that C' is contained in the 2ez-neighborhood of €2;. It follows that C' C ;,
contradicting the hypothesis on C'. This finishes the proof.

4. SELF-JOININGS OF KLEINIAN GROUPS AND PROOF OF THEOREM [1L.1]

Let I' < PSLy(C) be a Zariski dense discrete subgroup with limit set A.
As before, we denote by Q = S? — A its ordinary set.

We fix a discrete faithful representation p : I' — PSLy(C) such that p(I")
is Zariski dense.

We now define the self-joining of I' via p as

[p:=(idxp)(I) ={(v,p() : y € T'},

which is a discrete subgroup of G.
We begin by recalling two standard facts:

Lemma 4.1. The subgroup I, is Zariski dense in G if and only if p is not
a conjugation by an element of Mob(S?).

Proof. It is clear that if p is a conjugation by an element of M&b(S?), then
I’y is not Zariski dense in G. To see the converse, let Go < G be the
Zariski closure of I', and suppose that Go # G. Denote by m; : G =
PSLy(C) x PSLy(C) — PSL2(C) the projection onto the i-th component.
We now claim that 7|, is an isomorphism. Since I' is Zariski dense, m1|g,
is surjective. Hence, it suffices to show that mi|g, is injective. Note that
Gonkerm; = GogN({e} x PSLy(C)) is a normal subgroup of Gy. Hence, GoN
ker 71 is normalized by {e} x PSLa(C) since p(I") is Zariski dense PSLa(C).
Thus, Gy N ker 7 is a normal subgroup of kerm. As kerm; & PSLo(C) is
simple, G N kerm; is either trivial or {e} x PSLy(C). In the latter case,
note that {e} x PSL2(C) < Go. Since m|g, is surjective, it follows that
Go = G, yielding contradiction. Therefore 7 |g, is injective, and hence an
isomorphism. Similarly, m2|g, is an isomorphism. Hence, ma|g, o 7r1]5(1) is a
Lie group automorphism of PSLy(C). Hence it is a conjugation by a Mdbius
transformation (cf. [11]). Since this map restricts to p on I', it finishes the
proof. O

Since p gives an isomorphism from I" to p(I") and f is an equivariant em-
bedding, it follows that p maps every loxodromic element v to a loxodromic
element p(y) and f sends the attracting fixed point of v € T to the attract-
ing fixed point of p(7). Since the set of attracting fixed points of loxodromic
elements of I" is dense in A, this implies the following.

Lemma 4.2. There can be at most one p-boundary map f: A — S%. In
particular, if p is a conjugation by g € M&b(S?), then f = g|a.

Proof of Theorem [1.1. By Lemma Theorem follows from the
following:
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Theorem 4.3. Let I' < PSLy(C) be a Zariski dense Kleinian group such
that A is doubly stable. Let p € Ryisc(I') be a Zariski dense representation
with boundary map f: A — S?. Unless p is a conjugation, the subset

Aj = U{C NA: f(CNA) is contained in a circle} (4.1)
has empty interior in A; hence
{C €Cp: f(CNA) is contained in a circle}
has empty interior in Cx.

Proof. If A = S?, it is easy to prove this. So we assume below that A # S2.
Suppose that p is not a conjugation, so that I', is Zariski dense by Lemma
It follows easily from the minimality of the limit set A, of ', that

Ap={(& f(6) €S* x §*: £ € A}, (4.2)

Let JNXFP be as in Theorem which must be of the form {(&, f(£)) : € €
A} for some dense subset A of A.

Suppose on the contrary that Ay has non-empty interior. Then A NA # 0.

It follows that there exists Cy € Cx such that CoNA # 0 and f (ConA)is

contained in some circle, say, Dy. Set Ty = (Cp, Dy). Since Cp N A # 0, it
follows from Theorem 2.1] that

L)y =17, (4.3)
where 7, = Tr, is the space of all tori intersecting A,. On the other hand,

we now show that the condition f(Co N A) C Dy implies that I', 7y cannot
be dense in 7, using Lemma

Step 1: There exists a circle D which intersects A,y precisely at one point,
say f(£o). To show this, fix any f(§) € A,ry and let D' be the boundary
of the minimal disk B’ centered at f(£) which contains all of Ayr). By the
minimality of B’, D’ N A,y # 0. Choose f(&0) € D' N Ayry, and let D be
a circle tangent to D" at f(§) which does not intersect the interior of B’.

Step 2: By the hypothesis that A is doubly stable, we can find a circle C
containing &y which is doubly stable for A.

Step 3: Setting 7' = (C, D), we have T' ¢ T,/ T} for any torus 71 = (Cy, D1)
with f(C1 NA) C Dy. In particular, T' ¢ I',)Tp.

Suppose on the contrary that there exists a sequence ~, € I' such that
vnC1 converges to C' and p(v,)D1 converges to D. Since C' is doubly stable
for A, we have

# limsup(y,C1 NA) > 2. (4.4)
By the p-equivariance of f, we have
FmC1 1 A) = F(a(C1 N A) = () F(C1 N1 A) € p(ra) D1 A Ay,
Hence

limsup f(v,C1 NA) C limsup(p(vn)D1 0 Ayry) C DN Ayry.
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It now follows from (4.4) and the injectivity of f that

#DnN Ap(r‘) > 2.

This contradicts the choice of D made in Step (1), hence proving Step (3).

Since (&, f(&0)) € TN A,, we have T' € 7,. Hence we obtained a contra-
diction to (4.3). Therefore A; has empty interior, completing the proof. [

(1
2l
3]
(4]

(5]
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