TENT PROPERTY OF THE GROWTH INDICATOR
FUNCTIONS AND APPLICATIONS

DONGRYUL M. KIM, YAIR N. MINSKY, AND HEE OH

ABSTRACT. Let I' be a Zariski dense discrete subgroup of a connected
semisimple real algebraic group G. Let k = rankG. Let ¢r : a —
R U {—oo} be the growth indicator function of I', first introduced by
Quint. In this paper, we obtain the following pointwise bound of r:
for all v € a,

Yr(v) < oin, o ti(v)

where A = {a1, -+ ,ax} is the set of all simple roots of (g,a) and
0 < ba; < o0 is the critical exponent of I' associated to a;. When I is
A-Anosov, there are precisely k-number of directions where the equality
is achieved, and the following strict inequality holds for k£ > 2: for all
v € a— {0},

k
Yr(v) < % ; S i (V).

We discuss applications for self-joinings of convex cocompact subgroups
in Hf;l SO(n4,1) and Hitchin subgroups of PSL(d,R). In particular,
for a Zariski dense Hitchin subgroup I' < PSL(d, R), we obtain that for

any v = diag(t1,--- ,tq) € a¥,
Yr(v) < 15%1371(“ —tiy1)-
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1. INTRODUCTION

Let G be a connected semisimple real algebraic group. We let P = M AN
be a minimal parabolic subgroup of G with a fixed Langlands decomposition,
where A is a maximal real split torus of G, M is the maximal compact
subgroup centralizing A and N is the unipotent radical of P. Let g = Lie G,
a = Lie A and a™ denote the positive Weyl chamber so that log N consists
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of positive root subspaces. Let K be a maximal compact subgroup so that
the Cartan decomposition G = K (expa™)K holds. Let u : G — at denote
the Cartan projection map defined by the condition exp u(g) € KgK for
all g € G. Let I' < G be a Zariski dense discrete subgroup. We denote by
L C a* the limit cone of ', which is the asymptotic cone of u(T). It is a
convex cone with non-empty interior [1].

Following Quint [25], the growth indicator function ¢r : a — R U {—o0}
is defined as follows: choose any norm || - || on a. For an open cone C in
a, let 7¢ denote the abscissa of convergence of 3 cpr ,)ec e sl (that
is, the infimum of the set of s for which the series converges). Now for any
non-zero v € a, let

Yr(v) := [|v]| inf 7 (1.1)

where the infimum is over all open cones C containing v, and let p(0) = 0.
The definition of ¥r does not depend on the choice of a norm on a. Note
that ¢yr = —oo outside £. Quint showed that vr is a concave upper-semi
continuous function satisfying £ = {¢r > 0} and ¥r > 0 on the interior
int L.

The main aim of this paper is to present a pointwise bound for the growth
indicator function together with some applications. Throughout the paper,
for any non-negative function f on a™, we denote by

Ong,fSOO

or simply, d7, the critical exponent of I' with respect to f, that is, the
abscissa of convergence of the series > - e~ s (),
Let
A={o, -}

denote the set of simple roots for (g,a™).
Definition 1.1 (Tent function). Let I' < G be a Zariski dense discrete

subgroup with dr o, < oo for some 1 < i < k. We define a tent function
Tr :a— [0,00) by

Tr(v) == 1rgi£1k Ora, - @i(v).

FIGURE 1. Tent on the limit cone

We obtain the following tent property of the growth indicator function:
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Theorem 1.2 (Tent property). For any Zariski dense discrete subgroup
I' < G such that minj<;<j, 0r o, < 00, we have

Yr(v) < Tr(v) for allv € a.

Moreover, when dr ,, < oo, there exists v; € L — {0} such that Yr(v;) =
TF(UZ') = 5r7ai04i(vi).

Remark 1.3. (1) Denote by mg the half-sum of all positive roots of
(g,a™) counted with multiplicity. Then for any discrete subgroup
I' < G, we have Yr < 27 [25, Thm. 1V.2.2].

(2) If G has property (T) and I' is of infinite co-volume, then ¢r <
2mg — © where O is the half-sum of a maximal strongly orthogonal
system ([26], [21], see also [19, Thm. 7.1]). Our bound in Theorem
1.2 provides a sharper bound for Hitchin subgroups; see Remark 3.5.

For a non-empty subset § C A, a finitely generated subgroup I' < G is
called a 6-Anosov subgroup if there exist constants C,C’ > 0 such that for
all y € I' and all a;; € 0,

ai(u(y)) = Chl = ¢’ (1.2)

where || denotes the word length of v with respect to a fixed finite sym-
metric set of generators of I'. The notion of Anosov subgroups was first
introduced by Labourie for surface groups [17], and was extended to gen-
eral word hyperbolic groups by Guichard-Wienhard [16]. Several equivalent
characterizations have been established, one of which is the above defini-
tion (see [11], [12], [13], [14]). Anosov subgroups are regarded as natural
generalizations of convex cocompact subgroups of rank one groups.

For a #-Anosov subgroup I' < G, it follows from (1.2) that for some
constant C' > 0,

max or,, < Clog#S < oo

a; €0
where S is a fixed finite generating set of I". Therefore Theorem 1.2 applies
to any Zariski dense subgroup contained in some #-Anosov subgroup of G.
For A-Anosov subgroups, we obtain the following sharper result:

Theorem 1.4. Let I' be a Zariski dense A-Anosov subgroup of G. The
following hold:
(1) For each 1 < i < k, there exists a unique v; € int L such that
ai(v;) =1 and ¢r(vi) = dra,-
(2) Forv € a— {0}, we have ¢r(v) < Tr(v) where equality holds if and
only if v = cv; for some 1 <i<k and c> 0.
(3) If k =rank G > 2, then

k
1
Yr < Z ; 0T s -
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When I is A-Anosov, 9r is strictly concave! in int £ by ([28, Thm. A], [23,
Prop. 4.11]). Therefore by the convexity of the unit norm ball {||v|| < 1},
there exists a unique unit vector ur .| € a™, called the direction of maximal
growth, such that wr(un””) = max|y||=1 Yr(v). By [25, Coro. I11.1.4], we
have

Or .| = ¥r(ur). (1.3)
Corollary 1.5. Let k = rank G > 2. Let I" be a Zariski dense A-Anosov
subgroup of G. For any norm ||-|| on a induced from an inner product which

is non-negative on a®, we have

Op. ) < min or o, - oi(ur)-
D < i, Ora, - aur))

In view of the above discussion, any upper bound on dr,, for any «a; €
A provides an explicit pointwise upper bound on ¢r. We discuss some
examples of A-Anosov subgroups.

Self-joinings of hyperbolic manifolds. For 1 < i < k, consider the
hyperbolic space (H",d;), n; > 2, with constant sectional curvature —1,
and let G; = SO°(n;, 1) = Isom™ (H"). Let G = Hle G;. Denote by o
the simple root of g; = LieG;. Then A = {a1, - ,ax} is the set of simple
roots of g. Via the map v — (a1(v),---,ax(v)), we may identify a = R*
and at = {(v,---,v) € RF 1 v; >0 for all 4}.

Let 3 be a countable group and p; : > — G; be a faithful convex cocom-
pact representation with Zariski dense image for each 1 < ¢ < k. Setting
p = (p1, -, pr), the self-joining I, is defined as the following subgroup of
G:

k
Lp= (Hpi) (X) ={(p1(0),--- ,pr(0)) € G:0o € X} (1.4)
i=1

We also assume that no two of p;’s are conjugate, so that I', is a Zariski
dense discrete subgroup of G. The hypothesis on p;’s implies that I', is a
A-Anosov subgroup of G (cf. [16, Thm. 5.15]).

Fix o; € H". For each 1 < i < k, denote by 0 < J,, < oo the crit-
ical exponent of p;(X), that is, the abscissa of convergence of the series
Y ooes e~*di(pi(9)0101)  We also denote by A,, C S"~! the limit set of p;(2),
which is the set of accumulation points of p;(X)o; in the compactification
H™ US™~1. These two notions are independent of the choice of o; € H™:.
By Patterson [22] and Sullivan [29], we have

5, = dim A, (1.5)
where dim A, is the Hausdorff dimension of A, with respect to the spherical

metric dgn,-1. We deduce from Theorem 1.4:

ISince ¥r is homogeneous, the strict concavity of ¢r is equivalent to saying that ¢r(v+
w) > ¢Pr(v) + ¢Yr(w) for all v,w € int £ in different directions
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Corollary 1.6. LetI', < G be a Zariski dense subgroup of G = Hle SO°(n;, 1),

n; > 2, as defined in (1.4). Assume k > 2. For any v = (v1,--- ,vg) € Rk,
we have
1 k
Yr,(v) < z ZdimApi - V;.
i=1

In particular, we have

1 k 1/2
6FP?H‘|IEuc < % (Z(dlmApz)2>

=1

where || - ||gue denotes the standard Euclidean norm on RF.

Let F = Hle S™~1, which is the Furstenberg boundary of G. The limit
set of I is the set of all accumulation points of an orbit I', (o1, - - , ox):

} . (1.6)

dasequence oy € As.t. V1<i<k,
& = limy,o0 pi(0r)(0i)

Ap:{(&,-“,&)efi

In [15], we showed that
dimA, = 11%1?3Xk dim A, (1.7)

where the Hausdorff dimension of A, is computed with respect to the Rie-

mannian metric on F given by \/ Zlgigk dSni712. We deduce the following
from Corollary 1.6 and (1.7):

Corollary 1.7 (Gap theorem). For k > 2, we have
dim A,
Oy IHlmwe < 72

The trivial bound for dr, ||z, 18 given by o, | ||p,. < min;d,, < dimA,.
Hence Corollary (1.7) presents a strong gap for the value of dor j.j,,. from
the trivial bound. This phenomenon is in contrast to the rank one case:
there exist convex cocompact (non-lattice) subgroups I' of SO°(n, 1) whose
critical exponents dr are arbitrarily close to n — 1 (see e.g., [20, Sec.6] on
the construction of McMullen).

Remark 1.8. Let p1, p2 be two convex cocompact faithful representations
into SO°(n, 1) = Isom°(H") and p = (p1, p2). Note that T', < SO°(n,1) x
SO°(n,1) is Zariski dense if and only if p; and pe are not conjugate by
an element of Isom°(H™). Hence Corollary 1.7 can be interpreted as the
following rigidity statement: we have

n—1
O e < 7

and the equality holds if and only if p;(X) and p2(X) are conjugate lattices
of SO°(n, 1). This particular rigidity statement was recently extended in [3]
even to geometrically finite representations.

(1.8)
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In view of special interests in low dimensional hyperbolic manifolds which
come with huge deformation spaces, we also formulate the following conse-
quence of Corollary 1.5, using the isomorphisms PSL(2,C) ~ SO°(3,1) and
PSL(2,R) ~ SO°(2,1), the characterization of the critical exponent in (1.3),

2

and the simple fact sup{min(vy,2vs) : v +v3 =1} = T

Corollary 1.9. Consider the metric on H? x H? given by d = \/dﬁp + d]%p.
For any non-elementary convex cocompact subgroup I'y < PSL(2,R) and any
non-elementary faithful convexr cocompact Zariski dense representation pg :
'y — PSL(2,C), the critical exponent of the group {(vo,p0(70)) : Y0 € To}

with respect to d is strictly less than .

V5

Hitchin representations. We discuss applications to Hitchin representa-
tions. In G = PSL(d,R), we have at = {v = diag(t1, -+ ,tq) : t; > - >
tg, > ti =0} and a;(v) =t; —t;41 for 1 <i < d—1. Let ¥ be a torsion-free
uniform lattice of PSL(2,R), and 74 denote the d-dimensional irreducible
representation PSL(2,R) — PSL(d,R), which is unique up to conjugation.
A Hitchin representation p : ¥ — PSL(d,R) is a representation which be-
longs to the same connected component as 74|y in the character variety
Hom(X, PSL(d,R))/ ~ where the equivalence is given by conjugations.

We call the image of a Hitchin representation I' := p(3) a Hitchin sub-
group of G.

A Hitchin subgroup is known to be a A-Anosov subgroup of PSL(d, R)
by Labourie [17]. By the work of Potrie-Sambarino [23, Thm. B] (see also
[24, Coro. 9.4]), a Hitchin subgroup I' < PSL(d, R) satisfies:

Ore, =1 forall1<i<d-—1. (1.9)
Together with this important result, Theorems 1.2 and 1.4 imply the follow-
ing:
Corollary 1.10. Let d > 3 and I' < PSL(d,R) be a Zariski dense Hitchin
subgroup of PSL(d,R). Then for any v = diag(ty,--- ,tq) € a™,

Yr(v) < lgfglgig_l(ti — tit1); (1.10)
Yr(v) < (t1—tq)/(d—1). (1.11)

This pointwise bound for ¢r is sharper than the one from ([26], [21], [19,
Thm. 7.1]), which for instance, for d = 3, gives the upper bound %(tl —t3)
while the above corollary gives a bound 3(t; — t3).

Remark 1.11. Following [7], for any geometrically finite subgroup ¥ <
PSL(2,R), a representation p : ¥ — PSL(d,R) is called cusped Hitchin
if there exists a positive p-equivariant map from the limit set of 3 to the
space F of complete d-dimensional flags. For a cusped Hithin subgroup
I' < PSL(d,R), i.e., the image of a cusped Hitchin representation of a geo-
metrically finite ¥ < PSL(2,R), the inequality

o <1 1.12
| ax Ora; < (1.12)
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was obtained, with equality only when 3 is a lattice, by Canary, Zhang and
Zimmer [7, Thm. 1.1]. Although I' is not Anosov when ¥ is not convex
cocompact, Theorem 1.2, using (1.12), implies that the pointwise bound
(1.10) ¢r(v) < minj<;<g—1(t; — ti+1), and hence ¢r(v) < (t1 —tq)/(d — 1),
also holds for any Zariski dense cusped Hitchin subgroup I' of PSL(d,R) as
well.

Remark 1.12. The bound in Corollary 1.10 is stronger than [23, Coro. 1.4]
(also [7, Thm. 1.1] for cusped Hitchin subgroups) in two aspects: first, the
bound for ¥r given by [23, Coro. 1.4] is weaker than tcll:fid and stated only
for vectors inside a strictly smaller cone than the limit cone (see Remark 3.5

for details).

Remark 1.13. The comparison of ¥r with the half sum 7g of positive roots
is meaningful in view of Sullivan’s theorem that for a convex cocompact
subgroup I' < SO°(n, 1), the inequality opr < g = ”T_l holds if and only if
the bottom of the L2-spectrum on I'\H" is given by (n — 1)?/4 and there
exists no positive square-integrable harmonic function on I'\H" [30, Thm.
2.21].

Corollaries 1.6 and 1.10 imply that ¢r < 7w in their respective settings
(even with the strict inequality). In recent work [9], these results were used
to show that the quasi-regular representation L?(T'\G) is tempered and there
exists no positive square-integrable harmonic function on the associated lo-
cally symmetric manifold.

For any discrete subgroup I' < G, note that or ., < 2 as follows from
Remark 1.3(1). We propose the following conjecture:

Conjecture 1.14. Let k =rank G > 2. IfT' is a A-Anosov subgroup of G,
then

5F,7r(; < 17
or equivalently Yr < mg.

The equivalence is a consequence of [25, Lemma III.1.3].

On the proofs. The proof of Theorem 1.2 consists of two parts: first prove
that each linear form dr ,q; is tangent to ¢r whenever ér ,, < oo and then
take the minimum! Although taking the minimum seems a trivial step,
the resulting tent function turns out to be quite useful, as discussed above.
The proof of Theorem 1.4 is crucially based on special properties of ¥ for
A-Anosov subgroups (see Theorem 3.1).

Organization. In section 2, we prove Theorem 1.2. In section 3, we prove
Theorem 1.4. In section 4, we discuss applications of tent property of ¥ to
self-joining of hyperbolic manifolds.

Acknowledgements. We would like to thank Marc Burger and Dick Ca-
nary for useful comments and Andres Sambarino for pointing out some re-
dundant rank restriction in our earlier version.
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2. TENT PROPERTY

Let G be a connected, semisimple real algebraic group of rank k£ > 1. Let
g denote the Lie algebra of G, and decompose g as g = €@ p, where £ and p
are the +1 and —1 eigenspaces of a fixed Cartan involution respectively. We
denote by K the maximal compact subgroup of G with Lie algebra £. We
also choose a maximal abelian subalgebra a of p. Let A := exp a. Choosing
a closed positive Weyl chamber a™ of a. Let

A={o, -, o}

be the set of simple roots (g,a™).
As in the introduction, for g € G, we denote by u(g) € the unique element
in at such that

g € Kexp(u(g))K.
Let I' < G be a Zariski dense discrete subgroup. We denote by £ C a™
the limit cone of I', which is the asymptotic cone of u(I'):
L = {limt;u(y;) € a* for some t; — 0 and y; € I'}.

It is a convex cone with non-empty interior [1]. The growth indicator
function ¢r : @ - RU{—o0} is defined as in (1.1). It follows easily from the
definition that ¥ does not depend on the choice of a norm on a.

Quint showed the following:

Theorem 2.1. [25, Thm. IV.2.2] The growth indicator function r is con-
cave, upper semi-continuous, and satisfies

L={uca :r(u) > —oo}.
Moreover, ¥r(u) is non-negative on L and positive on int L.

Lemma 2.2. [25, Lem. II1.1.3] Let F' be a continuous function on a*
satisfying F(tu) = tF(u) for allt > 0 and u € a. If F(u) > vr(u) for all

u € a— {0}, then
ZQ*F(M(W)) < 0.
yerl

Moreover, we have or p < 1.

Proof. Convergence of the series is shown in [25, Lem. III.1.3], and in par-
ticular or 7 < 1. To obtain the strict inequality, we claim that there exists
0 < e < 1 such that

(1—¢e)F >9Ypr ona-—{0}. (2.1)

Since Y = —oo outside £ and both F' and ¢r are homogeneous functions,
it suffices to prove (2.1) on {||v]| = 1,v € L}. Since ¥r > 0 on L, we
have F' > 0 on £ — {0}. Hence the claim now follows because % is upper

semi-continuous and thus achieves its maximum on any compact set. ]

We denote by a* the set of all linear forms on a.
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Definition 2.3. A linear form « € a* is called tangent to ¢r at u € a— {0}
if @ > Yr and a(u) = Yr(u).

Consider the following dual cone of the limit cone L:
L5:={a€a”:a(v)>0foralve L} (2.2)

Observe that the set of all positive roots is contained in L£*.
Note that the interior of £* is given as

int L*={a€a":av)>0foralvel —{0}}

For any o € L*, we set
0o = 01 a-

Lemma 2.4. If o € int L*, then

0o < sup Yr(v)
ver—{oy a(v)

< oQ.

Proof. Let k = sup,c,_ (o} %F(SJ)) Since « > 0 on £ — {0}, 0 < Kk =

SUPyer—{0} war(—gjv)) < oo is well-defined. Since ¢r < (k + €)a on a — {0}
for any € > 0, we have, by Lemma 2.2, that §(,1.)o < 1. Hence d, < £ + €.
Since € > 0 is arbitrary, we get 0, < k. O

Theorem 2.5. Let I' < G be a Zariski dense discrete subgroup. For any
non-zero a € L* with §, < 00, the linear form

Ty := 0
is tangent to Ypr and do > 0. In particular, for any subset S C int L*,
oo < T
Proof. Fix any norm || - || on a and we use this norm in the definition of r.

We first claim
Yr(v) < dqa(v) for all v € int L. (2.3)

Fix v € int £ and € > 0. We then consider
g} :

since a(v) > 0, this is a well-defined open cone containing v. Therefore by
the definition of ¥p, we have

Yr(v) < [lvllre, v)- (2.4)

[wll ol

a(w)  afv)

Ce(v) = {w €a:a(w)>0and

Observe that for any s > 0,
DR AU S TR CORD)
~€ET, u(y)€Ce (v) Y€, u(y)€Ce (v)

<y ool (i)

yel’
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Since ¢, (y) is the abscissa of convergence of the series

Z e s

YET, pu(7)ECe (v)
it follows from the definition of d, that

< o Far(v)
Te (v) < - _ .
@ = Jola) T =z ol - ealo)
Together with (2.4), we have
daa(v)
Yr(v) < ||| ———7-—-—.
(v) < ||”v|| —ea(o)

Since € > 0 is arbitrary, we get
Yr(v) < dqa(v).

This proves the claim (2.3).
We now claim that the inequality (2.3) also holds for any v in the bound-
ary 0L. Choose any vy € int L. From the concavity of ¢r, we have

tYr(vo) + (1 — t)Yr(v) < ¢Yr(tvg + (1 —t)v) forall 0 <t < 1.

Since L is convex, tvg+ (1 —t)v € int £ for all 0 < ¢t < 1. As we have already
shown ¢r < 7T, on int L, we get

tYr(vo) + (1 — t)r(v) < Tu(tvg + (1 —t)v) forall 0 <t < 1.
By sending t — 0T, we get
Yr(v) < Ty (v).

Since Y = —oo outside L, we have established ¥r < T,. It remains to show
that ¢r(v) = Ty (v) for some v € a — {0}. Suppose not, i.e., Yr < Joa on
a — {0}. By Lemma 2.2, the abscissa of convergence of the series

Z e~ 80aa(p(v)) (2.5)

yel’

is strictly less than 1. However the abscissa of convergence of the series
(2.5) is equal to 1 by the definition of d,. Therefore we have obtained a
contradiction.

Note that this implies 6, > 0 since ¢r > 0 on int £, which is non-empty
by Zariski density hypothesis by Theorem 2.1. The last part of the theorem
follows from Lemma 2.4. O

Remark 2.6. We also note the following lower bound for v¢r: let T, € L*,
¢ € I, be a finite collection of linear forms which are tangent to ir at
some vy € L — {0}. Then the concavity property of ¢r implies that for any
V=) peq Cove With ¢ >0,

> aTu(ve) < r(v).

el
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Proof of Theorem 1.2 Note that A C £*. Hence this follows from Theo-
rem 2.5 by taking the minimum over all simple roots a; € A with §,, < 0.

We also note the following corollary of Theorem 2.5:

Corollary 2.7. Let I' < G be a Zariski dense discrete subgroup. For any
«a € int L*, we have

0 <0, = max vr(v) < 00
veL—{0} a(v)

Proof. By Lemma 2.4, §, < oo. Hence Theorem 2.5 implies ¢r < d,a and
Yr(v) = dqa(v) for some v # 0. This implies the claim. O

By the following theorem, the above corollary applies to a € 6 for 6-
Anosov subgroups.

Theorem 2.8 ([11], [13]). IfT' is 6-Anosov, then
6 C int L*.
In particular, if I' is A-Anosov, then
L C intat U{0}. (2.6)

3. PROOF OF THEOREM 1.4
In this section, let
I' < G be a Zariski dense A-Anosov subgroup,

as defined in the introduction (1.2).

By Quint’s duality lemma [27, Lem. 4.3] and the works of Quint [27],
Sambarino [28, Lem. 4.8] and Potrie-Sambarino [23, Prop. 4.6 and 4.11],
which is based on the work [4], we have the following fundamental properties
of I':

Theorem 3.1. On int £, ¢r is analytic, strictly concave, and vertically
tangent on OL.

The vertical tangency of ¢r on L means that there are no linear forms
which are tangent to i at a point of L.

In the following, we fix a norm on a induced from an inner product (-, -)
which is non-negative on a*, i.e., {(u,v) > 0 for all u,v € a™. We denote by
Vir(u) € a the gradient of ¢r at u so that d(¢r),(v) = (Vir(u),v) for all
v € a—{0}.

The following theorem was first observed by Quint for Schottky groups
[27] and is deduced from Theorem 3.1 in general:

Theorem 3.2 ([8, Coro. 7.8] [18, Prop. 4.4]). Let u € int L.

(1) There exists a unique ¥, € a* which is tangent to Y¥r at u.
(2) We have ¢, € int L* and

d}u() = <V¢F(u)’ > = d(wF)u (31)
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(3) The map u — 1y, induces a bijection between directions in int L and
directions in int L*.
(4) We have 6y, = 1.

FIGURE 2. Limit cone and its dual cone.

We deduce the following from the above two theorems:
Proposition 3.3. Consider the map int £ — int L* given by u — oy, where
L
7 r(u)
(1) The map u > «y, is a bijection.
(2) Its inverse map int L* — int L is given by o — u, where uy € int £
is the unique vector such that Vir(uy) is perpendicular to ker o and

a(uq) = 1.
We also have

= . 3.2

Yr(ue) = foax r(v) (3.2)

Proof. For t > 0, ¥y, = ¥, and 9r(tu) = tir(u); hence az = tlay,.
Therefore (1) follows from Theorem 3.2.

Let a € int £*. Let u, € int £ be the vector given by the relation oy, = «,

that is, a = w;ﬁzﬁ;). By the definition of v, given in (3.1), Vir(uq) is

perpendicular to ker o, and

a(ua) _ wua(ua) _ Q[)F(ua)
(o (Ua) Yp (ua)
To show the uniqueness, suppose that v € int £ is a vector such that Vir(v)
is parallel to Viir(uqs) and «(v) = 1. The strict concavity of ¢)p on int £ as in
Theorem 3.1 implies that v must be parallel to u,. Since a(v) = a(uq) =1,
it follows that v = u,.
Observe that for any v € £ with «(v) = 1, we have

Yr(v) < Yuq (v) = Pr(ua)a(v) = r(ua) = Pr(ua).
Since a(uq) = 1, this implies (3.2). O

=1.
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{¢r = ¥r(ua)}

parallel to ker a
V"/)F (ua)

FIGURE 3. From o to uq

Theorem 3.4. For any o € int L*, we have

do = Ur(u) and 1y, = dq0u.

Proof. The first claim follows from (3.2) and Corollary 2.7. Since v, =
r(uq)a by Proposition 3.3, the first claim implies the second. O

Proof of Theorem 1.4. For (1), we claim that v; := u,, satisfies the
claim. By Proposition 3.3, we have u,, € int £ and it satisfies a;(uq,) = 1.
By Lemma 3.4, ¥r(uq,) = 04, The uniqueness follows easily from the strict
concavity of ¢r (Theorem 3.1).

For (2), suppose that for some v € a and 1 < i < k, we have ¢r(v) =
da; @i (v). Since Yuo, = 0q; v is a tangent form to Yr at u,,, it follows again
from the strict concavity of ¢r and the vertical tangency property (Theorem
3.1 that v is parallel to uq,.

By Theorem 1.2, we have

Yr(v) < min 0,04 (v) < % Z 0, i (V). (3.3)

T 1<i<k -
1<i<k

Suppose that ¢r(v) = %Zlgigk 0o, ai(v) for some v # 0. It then follows
from (3.3) that

Yr(v) = min 0,,0;(v) = % Z 0, i (V).

1<i<k .
1<i<k
It implies that for all 1 <7 < k,

Yr(v) = 0o, i(v).

Then, as we just have seen, this implies that v is parallel to all u,,, 1 <17 < k.
When k > 2, this contradicts Theorem 3.2. This proves (3).
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Proof of Corollary 1.5. For simplicity, we omit || - | in the subscript
in this proof, e.g., ur = up . Recall that ér = ¥r(ur). Since dr =
max||y(=1 ¥r(v), [25, Lem. II1.3.4], applied to ¢r, implies that there exists a
tangent form, v, to ¢r at ur. By the vertical tangent condition in Theorem
3.1, it follows that ur € int £. Moreover, we have Vir(ur) € Rsour [8, Lem.
2.24]. Therefore, by Theorem 3.2(2), there exists ¢o > 0 such that

¢UF() = (cour,-). (3.4)

We now claim that

¢F('UJF) < TF(UF).

Suppose not. Then, by Theorem 1.4, there exist ¢ > 0 and 1 < ¢ < k
such that ur = cuq, and hence ¢y = Py, = da,; @i By (3.4), it follows that
a;(+) = (ciur,-) for some ¢; > 0.

Since ur € int £, and (,) is non-negative on a™ by the hypothesis, the
linear form (cjur,-) is positive on a* — {0}. On the other hand, the simple

root «; is zero on a wall of a*. Therefore we obtained a contradiction. This
finishes the proof.

We note that in the above proof, the hypothesis that the norm | - || is
induced from an inner product was used to deduce that 1, TR strictly

positive on at — {0}.

Remark 3.5. We explain how Theorem 1.4 can be compared with [23,
Coro. 1.4]. Let (a*)* = {a € a*: a(v) > 0 for all v € a*} so that

int(a™)* = {a € a* : a(v) > 0 for all v € a™ — {0} }.

Recall that [23, Coro. 1.4] concerns the Hitchin representations, but their
argument applied to our Zariski dense Anosov subgroups yields the follow-
ing: For any a € int(a™)*, the quantity ¢, satisfies

1
0o <

i=1 Qi

(3.5)

where o = Zle(aiéai)ai; the hypothesis a € int(a™)* is equivalent to a # 0
and a; >0 forall 1 <7 <k.
On the other hand, our Theorem 1.4 says that for all « € int £*,

= < i O :
0o = Ur(uy) < 11%1%1]~C O, i (U ); (3.6)

this is equivalent to saying that for all v € a, ¥r(v) < minj<;<k dq, i (V).
Since

1= a(uq) Z:aléoélaZ (uq) > <Z al> lrélzln O, i (Ugy) (3.7)

we have

1
da A
o) =
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where the equality is strict except for one direction of u, satisfying
0a; i (Uq) = 0a;tj(uq) foralld,j=1,--- k.

Therefore our bound (3.6) is sharper than the bound (3.5) in addition to the

point that it applies to the optimal cone int £*, while [23, Coro. 1.4] applies

only for v € int(a™)*, which is strictly smaller than int £*.

Both approaches are based on the observation that the linear forms d,a’s
are tangent to ¢r for a € A, but [23, Coro. 1.4] considers these tangent
forms as points on the boundary of the subset D = {¢ € int(a®)*: §, < 1}
and deduce (3.5) from the convexity of D, whereas we think of the tangent
forms as functions on a and obtain a stronger bound of (3.6) simply by
taking minimum of these tangent forms over a € A.

Alternate proof of Theorem 1.4(2). For Anosov subgroups, we present
an alternate proof of

Yr <TIr (3.8)
for k < 3, using the following “strip theorem”:

Theorem 3.6 (Strip theorem). [6, Thm. 6.3] Let I' be a Zariski dense A-
Anosov subgroup of G. Let k = #A < 3 and v € int L. For all sufficiently
large R > 0, the abscissa of convergence of the series

3 o5 (u(2))

e, ||p(v)—Ro[|<R

is equal to 1.

To show the inequality (3.8), we fix v € int £ and 1 < ¢ < k. For R > 0,
we write Sg := {g € G : ||u(g9) — Rv|| < R}. By Theorem 3.6, there exists
R > 0 such that the series Dr(s) = . crng, e~ (7)) has the abscissa of
convergence 1. Recalling that a; > 0 on int Lr, there exists C' > 0 so that
for any v € Sg, we have

ai(p(v))
2\l < e
Hu(v) i) S
It then follows that
o (r(7) i (p(v)
Dp(s)= Y e 0D « 3 e i vl o Zefsia;‘(]) vr ()
vyel'NSgr vyel'NSgr vyel’

_s o (1(7)) ¢F('U)

a;(v)

a;(v)

is finite whenever s > or (o) 0q;, we have

Since the series > e

1< 1';;((?) da;. Hence

Yr(v) < da;ai(v).
Since v € int £ and 1 <4 < k are arbitrary, we get

Yr <Ir on int L.

By the concavity of ¢r, this implies or < Tp on L as well (see the proof of
Theorem 2.5). Since ¢r = —oo outside L, (3.8) follows.
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4. APPLICATIONS TO SELF-JOININGS

We consider the case when G = Hle SO°(ni, 1), n; > 2, and p; : ¥ —
SO°(n;, 1) is a faithful convex cocompact representation with Zariski dense
image. We let I'; < G be the subgroup defined as in (1.4). The hypothesis
on p;’s implies that I', is A-Anosov. We assume

k> 2 and I', is Zariski dense in G

in the entire section.

Proof of Corollaries 1.6 and 1.7. Corollary 1.6 follows since d,, = 6,, =
dim A,,. For Corollary 1.7, note that we have

& 1/2
(Z(dim Api)2>

=1

| =

<

Ol e

1/2

—_

(k: max (dim Api)2>

S —
k 1<i<k

= —= max dim A,.

Vk 1<i<k
On the other hand, we showed in [15],

dimA, = max A,

Hence
1
Oyl lewe < 7 A A

Critical exponent with respect to the L!'-metric. Set 6,1 := 5Zk s
=17

which is the critical exponent of T', for the L!-metric Zle di on X =

Hle H". We deduce the following from Corollary 1.6, whose special case
when k£ = 2 and dim A,, = 1 was proved by Bishop and Steger [2]:

Corollary 4.1. We have
dim A,

L (4.1)

5L1 <

Proof. Noting o := Zle a; € int L*, write uq, = (ug,---,ux) € int L.
Lemma 3.4 and Corollary 1.6 imply

1 max; dim A, <
Ot = Yr(ug) < % ZZ;dim./Xpiui < ka’;uz
Since a(ua) = > 1<) ui = 1 by Lemma 3.3(2) and max; dim A,, = dim A,
by [15], we get the desired inequality. O
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Geodesic stretching between two hyperbolic manifolds. When k£ =
2, the limit cone £ of I', can also be described as

L:={(vi,v2) ERLy:d_vy < vp < dyvri}

where d and d_ are respectively the maximal and minimal geodesic stretch-
ing constants of ps relative to pi:

ly(o)
di(p1,p2) = sup
+ ) vex—fey L1(0)

- la(0)
f
oS (e} 1(0)

and  d_(p1,p2) =

where ¢;(0) denotes the length of the closed geodesic in the hyperbolic man-
ifold p;(A)\H"™ corresponding to p;(c) (cf. [5], [1]).

Thurston [31] showed that the maximal geodesic stretching constant is
always strictly bigger than 1 for finite-area hyperbolic surfaces. (See also
[10]). Theorem 1.4 implies the following corollary; this was already observed
by Burger [5, Thm. 1 and its Coro.] and generalizes a theorem of Thurston
[31, Thm. 3.1]:

Corollary 4.2. We have

dim A,
di(p17p2) < dimAp2 < d+(p17p2)'
Proof. By Theorem 1.4,
Yr < min(daq, d2a2). (4.2)

By Theorem 3.4, we have ¢r(uq, ) = d1a1(uq, ). Hence
6101 (Ua,) < min(dran(ua, ), 6202(ua, ),
which implies 011 (uq, ) < d202(uq, ). Therefore,

(il < a2(ua1)
o2~ a1(ua,)

Similarly, we have daaa(ua,) < min(dyaq(Uay ), 0202(Ua,)), and hence

O‘Q(UCVQ) < (il
a1(Uay) ~ 02
Since dim A,, = ¢§; for i = 1,2 by Patterson [22] and Sullivan [29], we now
have
a2(uoc2) < dimAPl < aQ(uOél)
al(utm) N dimAm N al(“m).

Since Ug,,Ua, € It L, d_(p1,p2) < ngzzz; and ZTEZZS < dy(p1,p2). Tt

completes the proof. O
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