ON DENSENESS OF HOROSPHERES IN HIGHER RANK
HOMOGENEOUS SPACES
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ABSTRACT. Let G be a connected semisimple real algebraic group and
I' < G be a Zariski dense discrete subgroup. Let N denote a maximal
horospherical subgroup of G, and P = M AN the minimal parabolic
subgroup which is the normalizer of N. Let £ denote the unique P-
minimal subset of I'\G and let & be a P°-minimal subset. We consider
a notion of a horospherical limit point in the Furstenberg boundary G/P
and show that the following are equivalent for any [g] € &o,

(1) gP € G/P is a horospherical limit point;

(2) [g]NM is dense in &;

(3) [g]N is dense in &.
The equivalence of (1) and (2) is due to Dal’bo in the rank one case. We
also show that unlike convex cocompact groups of rank one Lie groups,
the N M-minimality of £ does not hold in a general Anosov homogeneous
space.

1. INTRODUCTION

Let G be a connected semisimple real algebraic group. Let (X, d) denote
the associated Riemannian symmetric space. Let P = M AN be a minimal
parabolic subgroup of G with fixed Langlands decomposition, where A is
a maximal real split torus of G, M the maximal compact subgroup of P
commuting with A and N the unipotent radical of P. Note that N is a
maximal horospherical subgroup of (G, which is unique up to conjugations.

Fix a positive Weyl chamber a™ C log A so that log N consists of positive
root subspaces, and we set AT = expa™. This means that N is a contracting
horospherical subgroup in the sense that for any a in the interior of A™,

N={geG:a"ga" — e as n — +o0}.

Let I" be a Zariski dense discrete subgroup of G. In this paper, we are
interested in the topological behavior of the action of the horospherical sub-
group N on I'\G via the right translations. When I"' < G is a cocompact
lattice, every N-orbit is dense in I'\G, i.e., the N-action on I'\G is minimal.
This is due to Hedlund [11] for G = PSLy(R) and to Veech [19] in general.
Dani gave a full classification of possible orbit closures of N-action for any
lattice ' < G [6].

Oh is partially supported by NSF grant DMS-1900101.
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For a general discrete subgroup I' < G, the quotient space I'\G does not
necessarily admit a dense N-orbit, even a dense INM-orbit, for instance in
the case where I' does not have a full limit set. Let F denote the Furstenberg
boundary G/P. We denote by A = Ar the limit set of T,

Az{li)m vi(o) € F:n; €T}

where 0 € X and the convergence is understood as in Definition 2.2. This
definition is independent of the choice of 0 € X. The limit set A is known
to be the unique I'-minimal subset of F (see [1, 9, 14]). Thus the set

E={lg] eT\G:gP € A}

is the unique P-minimal subset of I'\G. For a given point [g] € &, the
topological behavior of the horospherical orbit [g] /N (or of [g]NM) is closely
related to the ways in which the orbit I'(0) approaches gP along its limit
cone. The limit cone £ = Ly of T is defined as the smallest closed cone of a™
containing the Jordan projection A\(I"). It is a convex cone with non-empty
interior: int £ # @ [1]. If rank G = 1, then £ = a*. In higher ranks, the
limit cone of I' depends more subtly on I.

Horospherical limit points. Recall that in the rank one case, a horoball
in X based at £ € F is a subset of the form gN (expa™t)(o) where g € G is
such that & = gP [5]. Our generalization to higher rank of the notion of a
horospherical limit point involves the limit cone of I'. By a I'-tight horoball
based at £ € F, we mean a subset of the form H¢ = gN(expC)(o) where
g € G is such that £ = gP and C is a closed cone contained in int £ U {0}.
For T > 0, we write

He(T) = gN (exp(C — Cr))o
where Cr = {u € C : ||u|]| < T'} for a Euclidean norm || - || on a.

Definition 1.1. We call a limit point £ € A a horospherical limit point of
I' if one of the following equivalent conditions holds:

e there exists a I'-tight horoball H¢ based at £ such that for any 7' > 1,
He(T) contains some point of I'(0);

e there exist a closed cone C C int LU {0} and a sequence v; € I satisfying
that B¢(o,750) € C for all j > 1 and S¢(o,vj0) = 0o as j — oo, where 8
denotes the a-valued Busemann map (Definition 2.3).

See Lemma 3.3 for the equivalence of the above two conditions. We denote
by
A, CA
the set of all horospherical limit points of I'. The attracting fixed point
y of a loxodromic element v € I' whose Jordan projection A(y) belongs
to int £ is always a horospherical limit point (Lemma 3.5). Moreover, for
any u € int £, any u-directional radial limit point £ (i.e, £ = gP for some
g € G such that limsup, ., I'gexp(tu) # 0) is also a horospherical limit
point (Lemma 5.3).
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Remarks 1.2.

(1) There exists a notion of horospherical limit points in the geometric
boundary associated to a symmetric space, see [10]. When rank G >
2, this notion and the one considered here are different.

(2) Unlike the rank one case, a sequence v;(0) € H¢(T;), with T; — oo,
does not necessarily converge to § for a I'-tight horoball H, based
at £. It is hence plausible that a general discrete group I' would
support a horospherical limit point outside of its limit set.

Denseness of horospheres. The following theorem generalizes Dal’bo’s
theorem [5] to discrete subgroups in higher rank semisimple Lie groups:

Theorem 1.3. Let I' < G be a Zariski dense discrete subgroup. For any
lg] € &, the following are equivalent:

(1) gP € Ap;

(2) [gJNM is dense in E.

Remarks 1.4. Conze and Guivarc’h considered the notion of a horospherical
limit point for Zariski dense discrete subgroups I' of SLy(R) using the de-
scription of SL4(R)/P as the full flag variety and the standard linear action
of ' on R? [4]. By duality, this notion coincides with ours and hence the
special case of Theorem 1.3 for G = SL4(R) also follows from [4, Theorem
4.2,

In order to extend Theorem 1.3 to N-orbits, we fix a P°-minimal subset
&y of I'\G where P° denotes the identity component of P. Clearly, & C £.
Since P = P° M, any P°-minimal subset is a translate of & by an element of
the finite group M°\ M, where M° is the identity component of M. Denote
by ©r = {&,....,&Ey} the finite collection of all P°-minimal sets in £. In
order to understand IN-orbit closures it is hence sufficient to restrict to &.

The following is a refinement of Theorem 1.3:

Theorem 1.5. Let I' < G be a Zariski dense discrete subgroup. For any
[g] € &o, the following are equivalent:

(1) gP € Ap;

(2) [g]N is dense in &.

Remark 1.6. We may consider horospherical limit points outside the context
of A. In this case our proofs of Theorems 1.3 and 1.5 show that if gP € F
is a horospherical limit point, then the closures of [gJM N and [g]N contain
& and &;, for some &; € O, respectively.

For G = SO°(n,1), n > 2, Theorem 1.5 was proved in [16]. When G has
rank one and I' < G is convex cocompact, every limit point is horospherical
and Winter’s mixing theorem [20] implies the N-minimality of &.

!However the claim in [4, Theorem 6.3] is incorrect.
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Directional horospherical limit points. We also consider the following
seemingly much stronger notion:

Definition 1.7. For u € a™, a point £ € F is called u-horospherical if
there exists a sequence ; € I' such that sup;, [|3¢(0,vj0) — Riul| < oo and
Be(0,7vj0) = 00 as j — oo.

Denote by Ap(u) the set of u-horospherical limit points. Surprisingly,
it turns out that every horospherical limit point is u-horospherical for all
u € int L:

Theorem 1.8. For all u € int £, we have
Ah = Ah(u)

Existence of non-dense horospheres. A finitely generated subgroup
I' < G is called an Anosov subgroup (with respect to P) if there exists
C > 0 such that for all v € T, a(u(vy)) > Cly| — C for all simple roots « of
(g,a™), where u(y) € a® denotes the Cartan projection of v and || is the
word length of v with respect to a fixed finite generating set of I'.

For Zariski dense Anosov subgroups of G, almost all N M-orbits are dense
in £ and almost all N-orbits are dense in & with respect to any Patterson-
Sullivan measure on A ([14], [15]). In particular, the set of all horospherical
limit points has full Patterson-Sullivan measures.

On the other hand, as Anosov subgroups are regarded as higher rank gen-
eralizations of convex cocompact subgroups, it is a natural question whether
the minimality of the N M-action persists in the higher rank setting. It turns
out that it is not the case. Our example is based on Thurston’s theorem [18,
Theorem 10.7] together with the following observation on the implication of
the existence of a Jordan projection of an element of I" lying in the boundary
0L of the limit cone.

Proposition 1.9. Let I' < G be a Zariski dense discrete subgroup. For any
loxodromic element v € ', we have

A(y) €int £ if and only if  {yy,y,—1} C Ap

where y, and y,-1 denote the attracting fized points of v and 1 respectively.

In particular, if N(I') NOL # 0, then A # Aj, and hence there exists a
non-dense N M -orbit in £.

Thurston’s work [18] provides many examples of Anosov subgroups sat-
isfying that A(I') N 9L # (. To describe them, let ¥ be a a torsion-free
cocompact lattice of PSLy(R) and let 7 : ¥ — PSLa(RR) be a discrete faithful
representation. Let 0 < d_(m) < d4(m) < oo be the minimal and maximal
geodesic stretching constants:

_ () _ if @)
L dem= s Ty end d-(m= il T

where /(o) denotes the length of the closed geodesic in the hyperbolic man-
ifold X\H? corresponding to o and ¢(7(c)) is defined similarly.
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Consider the following self-joining subgroup
Ip:=(d xm)(X) ={(o,7(0)) : 0 € B} < PSLa(R) x PSLy(R).

It is easy to see that I' is an Anosov subgroup of G = PSLy(R) x PSLa(R).
Moreover when 7 is not a conjugate by a Mobius tranformation, I'; is Zariski
dense in G (cf. [12, Lemma 4.1]). Identifying a = R?, the Jordan projection
A(¥x) of vx = (0,7(0)) € T, is given by (£(0),4(n(c))) € R% Hence the
limit cone L of I'; is given by

L:={(v1,v9) € Rzzo cd_(m)vy < vy < dy(m)vr}.

Thurston [18, Theorem 10.7] showed that d(7) is realized by a simple
closed geodesic of ¥\H? in most of cases, which hence provides infinitely
many examples of I'; which satisfy A(I'z) N 9L # 0. Therefore Proposition
1.9 implies (in this case, we have NM = N):

Corollary 1.10. There are infinitely many non-conjuagte Zariski dense
Anosov subgroups I'y < PSLa(R) x PSLy(R) with non-dense N M -orbits in
E.

We close the introduction by the following question (cf. [13],[17]):

Question 1.11. For a simple real algebraic group G with rank G > 2, is every
discrete subgroup I' < G with A = A, = F necessarily a cocompact lattice
in G?7

Acknowledgments. We would like to thank Dick Canary and Pratyush
Sarkar for helpful conversations regarding Corollary 1.10. The first named
author would also like to thank Subhadip Dey and Ido Grayevsky for helpful
and enjoyable discussions. We thank the anonymous referee for pointing out
to us the paper [4].

2. PRELIMINARIES

Let G be a connected, semisimple real algebraic group. We fix, once and
for all, a Cartan involution 6 of the Lie algebra g of G, and decompose g as
g =t D p, where ¢ and p are the +1 and —1 eigenspaces of 6, respectively.
We denote by K the maximal compact subgroup of G with Lie algebra ¢,

Choose a maximal abelian subalgebra a of p. Choosing a closed positive
Weyl chamber at of a, let A := expa and AT = expa™. The centralizer
of A in K is denoted by M, and we set N to be the maximal contracting
horospherical subgroup: for a € int AT,

N={geG:a "ga" — e asn— +oo}.

We set P = M AN, which is the unique minimal parabolic subgroup of G,
up to conjugation.
For w € a, we write a, = expu € A. We denote by | - || the norm on
g induced by the Killing form. Consider the Riemannian symmetric space
X := G/K with the metric induced from the norm ||-||ongand o = K € X.
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Let F = G/ P denote the Furstenberg boundary. Since K acts transitively
on F and K NP = M, we may identify F = K/M. We denote by F?) the
unique open G-orbit in F x F.

Denote by wg € K the unique element in the Weyl group such that
Ady, at = —a™; it is the longest Weyl element. We then have P := woPw; '
is an opposite parabolic subgroup of G, with N its unipotent radical. The
map i = — Ady, : aT — a™ is called the opposition involution.

For g € G, we consider the following visual maps

gt :=gPcF and g :=guwyPecF.

Then F® = {(g*,g7) e FxF:g€ G}.

Any element g € G can be uniquely decomposed as the commuting prod-
uct gn, ge, gu, where gn, ge, and g, are hyperbolic, elliptic and unipotent
elements respectively. The Jordan projection of g is defined as the element
Ag) € at satisfying g, = pexp A(g)¢~! for some ¢ € G.

An element g € G is called loxodromic if A(g) € inta™; in this case,
gu is necessarily trivial. For a loxodromic element g € G, the point ot €
F is called the attracting fixed point of g, which we denote by y,. For
any loxodromic element g € G and § € F with (§,y,-1) € F@ | we have
limy_yo0 gF€ = Yy and the convergence is uniform on compact subsets.

Note that for any loxodromic element g € G,

Mg~ =iXg)-
Let I' < G be a Zariski dense discrete subgroup of G. The limit cone £ = Lr
of T is the smallest closed cone of a® containing A(T'). It is a convex cone
with non-empty interior [1].
We will use the following simple lemma.

Lemma 2.1. For anyv € X(I') and ¢ € F, there exists a loxodromic element
v € I with A(y) = v and a neighborhood U of ¢ in F such that {y,} x U is

a relatively compact subset of F@ and as k — oo,
T Yy—1  uniformly on U.

Proof. Let ¢ € F. Choose 71 € I' such that A(y;) = v. Since the set of all
loxodromic elements of T is Zariski dense in G [2] and F(?) is Zariski open
in F x F, there exists v € I' such that (¢, v2y,,) € F@ . Let v = 72’}/1"}/2_1,
so that yy = 72y4,. It now suffices to take any neighborhood U of ¢ such
that U x {72y, } is a relatively compact subset of F(2). O

Convergence of a sequence in X to F. By the Cartan decomposition
G = KA'K, for g € G, we may write

g = r1(g) exp(p(g))r2(g) € KATK

where pu(g) € a™, called the Cartan projection of g, is uniquely determined,
and r1(9g), k2(g) € K. If u(g) € inta™, then [k1(g)] € K/M = F is uniquely
determined.
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Let IT be the set of simple roots for (g,a). For a sequence g; — G, we
say g; — oo regularly if a(u(g;)) — oo for all a € II. Note that if g; — oo
regularly, then for all sufficiently large 4, u(g;) € int a™ and hence [k1(g;)] is
well-defined.

Definition 2.2. A sequence p; € X is said to converge to & € F if there
exists g; — oo regularly in G with p; = g;(0) and lim;_,~[x1(gi)] = &.

P°-minimal subsets. We denote by A C F the limit set of I', which is
defined as

(2.1) A = {lim~;(0) : v; € T'}.

For a non-Zariski dense subgroup, A may be an empty set. For I' < G
Zariski dense, this is the unique I'-minimal subset of F ([1], [14]).
It follows that the following set &£ is the unique P-minimal subset of I'\G:

E={lg)eT\G:g" € A}.

Let P° denote the identity component of P. Then &£ is a disjoint union
of at most [P : P°]-number of P°-minimal subsets. We fix one P°-minimal
subset & once and for all. Note that any P°-minimal subset is then of the
form &ym for some m € M. We set

(2.2) Q:={[g]eT\G:g9", g7 €A} and Qp:=QN&.
Busemann map. The Iwasawa cocycle o : G x F — a is defined as follows:

for (g,€) € G x F with € = [k] for k € K, expo(g,&) is the A-component of
gk in the K AN decomposition, that is,

gk € K exp(o(g,§))N.

The a-valued Busemann function 8 : F x X x X — a is defined as follows:
for £ € F and g, h € G,

Be(ho, go) :=a(h™1,€) —a(g™",€).
We note that for any g € G, £ € F, and z,y,2z € X,
(23)  Belz,y) = Bee(gr.gy), and  Be(z,y) = Be(x, 2) + Pe(z,p).
In particular, f¢(o, go) € a is defined by
(2.4) 9 ke € K exp(—P¢ (0, go)) N,

and hence fp(0,a,0) = u for any v € a. For h,g € G, we set f¢(h,g) =
Be(ho, go).



Shadows. For ¢ € X and r > 0, we set B(q,r) = {z € X : d(z,q) < r}.
For p = g(0) € X, the shadow of the ball B(q,r) viewed from p is defined as
Or(p,q) :=={(gk)T € F: k € K, gkint ATon B(q,r) # 0}.
Similarly, for £ € F, the shadow of the ball B(q,r) as viewed from ¢ is

O,(&,q) :={ht € F: h € G satisfies h~ =€, ho € B(q,7)}.

Lemma 2.3. [14, Lemma 5.6 and 5.7
(1) There exists k > 0 such that for any g € G and r > 0,
sup  [|Be(g(0),0) — u(g )| < r.
feor(g(o)vo)

(2) If a sequence p; € X converges to § € F, then for any 0 < e <r, we
have

Orfs(pia 0) C Or(ga O) C Or+€(pia 0)
for all sufficiently large i.

3. HOROSPHERICAL LIMIT POINTS

Let I' < G be a Zariski dense discrete subgroup. A I'-tight horoball based
at £ € F is a subset of the form H¢ = gN (expC)(0) where g € G is such that
¢ = gP and C is a closed cone contained in int £U {0}. For T' > 0, we write
He(T) = gN(exp(C — Cr))o. We recall the definition from the introduction:

Definition 3.1. We say that £ € F is a horospherical limit point of I' if
there exists a I'-tight horoball ¢ based at ¢ such that H¢(T) NT'(0) # O for
all T > 1.

In this section we provide a mostly self-contained proof of the following
theorem:
Theorem 3.2. Let [g] € €. The following are equivalent:
(1) gt = gP € A is a horospherical limit point;
(2) [gJNM is dense in E.

The main external ingredient in our proof is the density of the group
generated by the Jordan projection \(I'), due to Benoist [2], that is,

a = A(D))

for every Zariski dense discrete subgroup I' < G. In fact, for every cone
C C L with non-empty interior, there exists a Zariski dense subgroup IV < T"
with Lp C C (see [1]); therefore we have

a=\T)Nint L£).

It is convenient to use a characterization of horospherical limit points in
terms of the Busemann function.
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Lemma 3.3. For &£ € A, we have & € Ay, if and only if there exists a closed
cone C C int LU {0} and a sequence v; € I' satisfying

(3.1) Be(0,7j0) = 00 and  f¢(o,vj0) € C for all large j > 1.

Proof. Let £ = gP € Ap be as defined in Definition 3.1. Then there exists
vj = gpnjay;k; € I' for some p € P, n; € N, k; € K and uj — 00 in some
closed cone C contained in int £LU{0}. Fix some closed cone C' C int LU {0}
whose interior contains C. Note that
Be(0,v50) = Byr(e, g) + Byr(g, gpnjau;)

= Bplg~",e) + Bp(e,p) + Bp(e,n;) + Bp(e, ay,)

= Bp(g~",p) + uj.
Therefore the sequence fB¢(0,7;) — u; is uniformly bounded. Since u; € C,
Be(0,7j0) € C' for all large j. Therefore (3.1) holds. For the other direction,
let v; and C satisfy (3.1) for { = gP for g € G. Since G = gNAK, we may
write v; = gnjayk; for some n; € N,u; € a and k; € K. By a similar
computation as above, the sequence f¢(0,7;0) — u; is uniformly bounded.
It follows that u; € C’ for all large j and u; — oo. Therefore for any

T > 1, there exists j > 1 such that v;(0) € gN exp(C’ —C})(0). This proves
e Ap. O

We note that condition (3.1) is independent of the choice of basepoint o.
Indeed, for any g € G and £ € F and for all v € I" we have

Be(0,7v0) = Be(0, go) + Be(go,vgo) + Be(vgo,vo),
and hence
18¢ (0, 7v0) — Be(go, vgo) || = || Be(0, go) + Be(vgo, yo)||
- "55(07 gO) - ﬂ'y*lf(oa gO)H
I [185(0, go)|.
Since this bound is independent of v € T', condition (3.1) implies that for
any p=go € X,
(3.2) Be(p,vjp) = oo and  fe(p,yjp) € C for all large j.

Let us now consider the following seemingly stronger condition for a limit
point being horospherical:

Definition 3.4. For u € at, a point £ € F is called a u-horospherical limit
point if for some p € X (and hence for any p € X), there exists a constant
R > 0 and a sequence v; € I satisfying

Be(p,vjp) = o0 and ||Be(p,vip) — Ryu| < R for all j.

We denote the set of u-horospherical limit points by Ay, (u).
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By G-invariance of the Busemann map, the set of horospherical (resp.
u-horospherical) limit points is '-invariant. Therefore for x = [g] € T'\G,
we may say xT := ['gP horospherical (resp. u-horospherical) if g

For u € a, we call x € T'\G a wu-periodic point if za, = zmg for some
mo € M; note that zar,My is then compact. Note that for u € int a™, the
existence of a u-periodic point is equivalent to the condition that u € A(T').

Lemma 3.5. Let u € a*. If v € T'\G is u-periodic, then z* € F is a
w-horospherical limit point.

Proof. Since x is u-periodic, there exist g € G with x = [g] and v € T" such
that v = ga,mg~! for some m € M, and yy = g+ € A. Moreover, for any
k>1

Byp(90,7"90) = Bp(0,ato) = ku.
This implies gP is u-horospherical. U

Proposition 3.6. Let x € T\G. If x™ is u-horospherical for some u € A\(T')
then the closure xIN contains a u-periodic point.

Proof. Choose g € G so that + = [g]. We may assume without loss of
generality that ¢ = k € K, since kanN = kNa, and a translate of a u-
periodic point by an element of A is again a u-periodic point. Since u € \(T'),
there exists a u-periodic point, say, zg € I'\G. It suffices to show that

(3.3) [E]N NzgAM # 0

as every point in xgAM is u-periodic.

Since kT is u-horospherical and using (2.4), there exists R > 0 and
sequences 7; € I, u; — oo in at and k; € K and n; € N satisfying
'y;lk = kja_y;n; or

(3.4) k; = 'yj*lk:njflauj,

with |Ryu — u;|| < R for all j. Let £; — oo be a sequence of integers
satisfying

(3.5) 6ju—ujl| <R+ |lul| forall j>1.

By passing to a subsequence, we may assume without loss of generality
that vflkP converges to some & € F. Since NP is Zariski open and T
is Zariski dense, we may choose g9 € G such that zg = [go] and g, e €
NP. Let hy € N be such that & = gohoP.  Since goNP is open and

1k'P — goho P, we may assume that for all j, there exists h; € N satisfying
goh P = v; kP = k;P with h; — hg. Let p; = Ay, min; € P = AMN be
such that goh;p; = k;; since h; — hg and the product map NxP— NPis
a diffeomorphism, the sequence p;, as well as v; € a, are bounded.

10



Therefore by (3.4), we get for all j,

90 = kjpj 'hy"
—17. —1 ~—1 -1 -1
=75 knga (g mya—,)h;

1a,uj)aujm

[ B s | -1 -1
=5 kng (au Ny amu)my (Qu—o g Gouto;)Quy—o; -

-1 -1

I R
=7 knj(au;n; j 4l

Since hj_l e N and v; € a are uniformly bounded and since u; — oo
within a bounded neighborhood of the ray R, u € int a™, we have

- . .
hj = auj,vjhj a—y;4v; — € in N.
-1
J

(@, 77t

. !
By setting n; = n ne

a_y;) € N, we may now write
=Ly 17
9o =", knjmj hjay; —v, -

Since zg is u-periodic, there exists vy € I' such that o = goau,mog, L for
some mg € M. Hence for all j > 1,

—¢; -4 1 15,7, —17 =i\ —1
Yo = 90a—g;umy Tgg = (7j knjym; hjau;—v;)(a—g;umg 7 )gg -

In other words,
_ ;4 s
’7] 1kn; = 70 Jgomoja—uj'-‘réju-i-vj h] lmj'
Since the sequence —u; + fju + v; € a is uniformly bounded by (3.5) and
h; — ein N, we conclude that the sequence Fkn} has an accumulation point
in I'goAM . This proves (3.3). O

It turns out that a horospherical limit point is also u-horospherical for
any u € int L:

Proposition 3.7. For each u € int £, we have A, = Ap(u).

Proof. Let £ € Aj. By definition, there is a sequence 7; € I' satisfying
v; == Be(e,vj) — oo with the sequence |vj||'v; converging to some point
vo € int L. By passing to a subsequence, we may assume that 'y]-_lﬁ converges
to some &y € F.

Let u € int L. We claim that & € Ap(u). We first consider the case
u & Ryvp. Let 7 :=rankG — 1 > 0. Since UyerR4A(7) is dense in £, there
exist wy,- -+ ,w, € A\(I') such that vy belongs to the interior of the convex
cone spanned by u,wi, - ,w,, so that

,,
v = cou + Z Cpwy
(=1

for some positive constants cg, - - - , cp.
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Since ||v;||~1v; = vo, we may assume, by passing to a subsequence, that
for each j > 1, we have

.
(3.6) ol ~toj = coju+ ) cojuwe

(=1
for some positive ¢y j, £ = 0,--- ,7. Note that for each 0 < £ <7, ¢cgj — ¢
as j — o0.

By Lemma 2.1, we can find a loxodromic element g; € I' and a neighbor-
hood Uy of & such that A(g; ') = wi, {yg, } x U1 € F® and g U — Yo
uniformly. Applying Lemma 2.1 once more, we can find g € I' satisfying
)\(92—1) = wy and a neighborhood Us C F of Yoo satisfying {yg, } xUs C F@
and that gy kU, — Yoyt uniformly.

Continuing inductively, we get elements g¢i,...,9, € I' and open sets
Uy, ...,U, C F satisfying that for all £ =1, ....r,

Wy = ( 1)7
0 S Ug,

3
4) {yy,} x Uy is a relatively compact subset of F(2).

(1)
(2) y
3) 9, Ug =Yg uniformly; and
(4)

We set & := Yg; ! for each 1 < ¢ < r; so Uy is a neighborhood of &_4 for
each 1 < /¢ <r.

Since Q,, := {n € F : (n0,n) € FP} = Up-oOr(no,0) for any ng € F
and Uy C ngl is a relatively compact subset of F(), there exists Ry > 0

such that Uy C Og,(yy,,0). Since gfo converges to yg, as k — +o0o, by
Lemma 2.3(2),

(3.7) Or, (y4,0.0) C Or,+1(gf0.0)

for all sufficiently large k& > 1.

For each 1 < ¢ <r and j > 1, let k;; be the largest integer smaller than
cejllvill. As |lvj]] = oo, and ¢ j — c¢, we have kg j — 00 as j — oco. By the
uniform contraction g[k U; — &, there exists jo > 1 such that for all j > jo,

_ —ky .
(38)  ~7'¢eUn, g,"Ui CUp, and Uy C Opei(g,0,0)
forall¢=1,...,r

For each j > jo, we now set

lj kQJ

~ kr,'
Vi =79 92 g’ €L
We claim that f¢(e, ;) — 0o as j — oo and that

(3.9) sup || ¢ (e, 7;) — Ryul| < oo;
J=Jjo
this proves that £ is u-horospherical.
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Fix j > jo and for each 1 < ¢ <r, let ky := kyj, by := ¢ j]|v4]|, and set
k1 k k
he = 911922 e '9/7

and gg = e. The cocycle property of the Busemann function gives that

(3.10) Be(e,7;) = Bele, V) Zﬁhe 11 g/,e).

By (3.8), '7]-_15 € Uy and for each 1 < ¢ <,
h v te e g gr M UL C Urir € Opyqa(gyto,0).
Hence by Lemma 2.3(1), there exists x > 1 such that for each 1 < ¢ < r
k —k
8yt ok €) — o ™))l < w(By + 1)
Note that for some Cy > 0, ||1u(g, ) — kA(g,")|| < Cy for all k > 1. Since
A(g[l) = wy, we get
k
1851 4-16(90" s €) — kewel] < K(Re + 1) + Ce.
Therefore by (3.10), we obtain

| Be (e, ;) Z kowy)|| (Rg +Cy+1).
=1

y (3.6), we have

.
cojllvjllu=wv; = bowy.
/=1

Since |by — k¢| <1 and ¢g; > 0, we deduce that for all j > jo,

1Be(e; %) — Ryull < ||Be(e, 75) — cojllvgll - ull
Be(e,75) — (vj — Z kowy)
=1

< kY (Re+ Co+ |lwel +1).
=1

+ Z lkewe — bowy||

This proves (3.9), and consequently £ is u-horospherical for any u ¢ R vy.
To show that { is wp-horospherical, fix any u ¢ Rivy and 7; € I’ be a
sequence as in (3.9) associated to u. If we set 9; = SB¢(e,7;), then |7, 9,
converges to a unit vector in int £ proportional to u. Therefore by repeating
the same argument only now switching the roles of vy and u, we prove that
& is vp-horospherical as well. This completes the proof. O

We may now prove theorem 3.2:
13



Proof of theorem 3.2. Let g € G be such that £ = g™ € A is a horospherical
limit point. Set Y := [g]NM. We claim that Y = £. By Benoist [1], the
group generated by A\(T') Nint £ is dense in a. Hence for every ¢ > 0 there
exist loxodromic elements 71, ...,7, € I' such that

A7) -5 A(7g) € IntL

and the group ZA(y1)+- - - +ZA\(74) is an e-net in a, i.e., its e-neighborhood
covers all a. Denote u; = A\(v;) for i = 1,...,q. By Proposition 3.7, the point
¢ is up-horospherical. By Proposition 3.6, there exists a uj-periodic point
x1 € &€ contained in Y, set

Yi:=x1NM CY.

By Lemma 3.5, azf is ui-horospherical; in particular, it is a horospherical
limit point. Therefore we can inductively find a w;-periodic point x; in
Yio1 = ;-1 NM for each 2 < i < ¢q. By periodicity z;(expu;)M = x; M,
and hence Y; exp Zu; = Y; for each 1 < i < q. Therefore we obtain

q
Y D YiexpZuy D Yoexp(Zuy + Zug) D - -+ D Yy exp (Z Zuy).
i=1

Recalling the dependence of Y, and "7 | Zu; on €, set

q
Ze :=Y,MNexp()  Zu;) C Y.
i=1
Since MN exp(>_7_, Zu;) is an e-net of P and € is P-minimal, Z, is a 2e-net
of € for all ¢ > 0. Since Y contains a 2e-net of £ for all ¢ > 0 and Y is
closed, it follows that Y = &.

For the other direction, suppose that [g|NM is dense in £ for g € G.
Choose any u € int £ and a closed cone C C int £ U {0} which contains w.
Then He = gN (expC)(o) is a I'-tight horoball. Let ¢t > 1. Since ga_s, € &,
there exist 7; € I', n; € N, m; € M and ¢; — e in G such that for all
i > 1, yignimiq; = ga—_sy,. Since d(v; 'g, gnimias,) < d(giasiu, ase) — 0
as 1 — oo, it follows that for all sufficiently large ¢ > 1, ’y;lgo € He(t).
Hence g7 is a horospherical limit point by Definition 3.1. (]

4. TOPOLOGICAL MIXING AND DIRECTIONAL LIMIT POINTS

There is a close connection between denseness of N-orbits and the topo-
logical mixing of one-parameter diagonal flows with direction in int £. This
connection allows us to make use of recent topological mixing results by
Chow-Sarkar [3]: recall the notation Qg from (2.2).

Theorem 4.1. [3] For any u € int £, {ay, : t € R} is topologically mizing
on Qo, i.e., for any open subsets O1, Oy of T\G intersecting €,

OrexptunOs £ 0 for all large |t| > 1.
14



The above theorem was predated by a result of Dang [7] in the case where
M is abelian.

N-orbits based at directional limit points along int L.

Definition 4.2. For u € inta™, denote by A, the set of all u-directional
limit points, i.e., £ € A, if and only if limsup,_, , . I'gexp(tu) # () for some
(and hence any) g € G with gP = &.

It is easy to see that A, C A for u € inta™.
Proposition 4.3. If [g] € & satisfies g € Ay for some u € int L, then

[9]N = &.

Proof. Since QoN = &, we may assume without loss of generality that
x = [g] € Qo. There exist v; € I and t; — +o00 such that 7;gas,,, converges
to some h € G. In particular, zexp(t;u) — [h]. Since zas, € Qo and Qo
is A-invariant and closed, we have [h] € Q. We write 7;gat,, = hg; where
¢i — e in G. Therefore N = [h]g;Na_y,, for all i > 1. Let O C I'\G be
any open subset intersecting Q¢. It suffices to show that xN N O # (). Let
O; be an open subset intersecting Qg and V' C P be an open symmetric
neighborhood of e such that O,V C O.

Since ¢; — e and NV is an open neighborhood of e in G, there exists
an open neighborhood, say, U of e in G and iy such that U C ¢; NV for all
i > ig. By Theorem 4.1, we can choose i > iy such that [h]U N Oray,, # 0.
It follows that [h]g;NVa_t,, N O1 # (0. Since V C a—yVag,, as u € at, we
have

[hgiNVa_i, N Oy C [hlgiNa—_t;,V N Os.
Since V = V=1, we get [h]giNa_i,, N O1V # (). Therefore tN N O # (), as
desired. O

This immediately implies:

Corollary 4.4. If [g] € Qg is u-periodic for some u € int L, then

[9]N = &.
Proof. Since [g](exp ku) = [g]m§ for any integer k and M is compact, we
have gt € A,. Therefore the claim follows from Proposition 4.3. ([

We may now conclude our main theorem in its fullest form:

Theorem 4.5. Let [g] € &. The following are equivalent:
(1) gt € A is a horospherical limit point;
(2) [g]N is dense in Ey;
(3) [g)JNM is dense in E.

Proof. The implication (2) = (3) is trivial and (3) = (1) was shown in
Theorem 3.2. Hence let us prove (1) = (2).

Let z = [g] € &. Suppose that gt € Ay. Fix any v € A\(I') Nint Lr. By
Propositions 3.7 and 3.6, x N contains a u-periodic point, say, zog. Hence by
Corollary 4.4, N D zgN D QoN = &. This proves (1) = (2). O
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5. CONICAL LIMIT POINTS, MINIMALITY AND JORDAN PROJECTION

A point £ € F is called a conical limit point of T" if there exists a sequence
u; — oo in at such that for some (and hence every) g € G with { = gP
lim sup I'gay,; # 0.
Jj—00
A conical limit point of T" is indeed contained in A. We consider the following
restricted notion:

Definition 5.1. We call £ € F a strongly conical limit point of I' if there
exists a closed cone C C int LU {0} and a sequence u; — oo in C such that
for some (and hence every) g € G with £ = gP,
lim sup 'gay,; # 0.
Jj—ro0
Remarks 5.2. We mention that a conical limit point defined in [4] for ' <
SL4(R) coincides with our strongly conical limit point.

Lemma 5.3. Any strongly conical limit point of I' is horospherical.

Proof. Suppose that £ = gP is strongly conical, that is, there exist v; € T’
and uj — oo in some closed cone C C int LU {0} such that v;ga.,,; converges
to some h € G. Write yjga,; = hq; where ¢; — e in G. Let C' be a closed
cone contained in int £ U {0} whose interior contains C \ {0}.

Then fyj_l = gay, qj_lff1 and

Bep(e,7; ") = Brlg™" auq; 'h1) = Br(g ", q; B 1Y) + Br(e, auy).

Since Bp(e,ay;) = u; and qj_lh_1 are uniformly bounded, the sequence

5913(67 'Yj_l) — Uy
is uniformly bounded. Since u; € C and C C int C" U {0}, it follows that

BgP(ea'Yj_l) € C/
for all sufficiently large j. This proves that £ € Ay,.

Corollary 5.4. For any g € G with strongly conical g* € F, we have

[g]NM = E.

Directionally conical limit points. If v € int £, then clearly A, is con-
tained in the horospherical limit set of I', and hence any INM-orbit based
at a point of A, is dense in £. On the other hand, we would like to show
in this section that the existence of a point in A, for v € dLr implies the
existence of a nondense N M-orbit in &£.

The flow exp(Ru) is said to be topologically transitive on Q/M = {T'gM :
gt € A} if, for any open subsets Oy, Oy intersecting /M, there exists a
sequence t,, — +oo such that Oy N Ozay, . # 0.

We make the following simple observation:

16



Lemma 5.5. For g € Q, we have
gNM > Q if and only if gwoNM D Q.

Proof. We have N = woNwy'. Note that [g] € Q if and only if [gwo] € Q,
since (qwo)* = gT. So Quy = Q. Hence gNM is dense in Q if and only if

gwoNMuwy ' is dense in Q if and only if [glwgN M is dense in Qg = Q. O

Since the opposition involution preserves £ and A(g~!) = iA(g) for any
loxodromic element, it follows that A(y) € AL if and only if A(y~1) € OL.

Proposition 5.6.
(1) If A = Ay, then exp(Rv) is topologically transitive on Q/M for any
v € inta’ such that A, # 0.
(2) For any lozodromic element v € I' with {yy,y,—1} C Ap, the flow
exp(RA(Y)) is topologically transitive on /M.

Proof. Assume that A = Ap; so the NM-action on £ is minimal. Suppose
that A, # 0 for some v € intat. We claim that for any O, Oy be two
right M-invariant open subsets intersecting Q, Ojexp(t;v) N Oy # @ for
some sequence t; — +o0o. Choose r = [g] € Q so that gt € A,. Then
there exists v; € I' and ¢; — +o00 such that v;gas,, converges to some go.
Note that xg := [go] € 2. So write v;gat,, = gohi with h; — e. By the
N M-minimality assumption, x/N M intersects every open subset of ). Since
v € inta™ and hence a_snay, — e as t — +oo, we may assume without
loss of generality that x € (O;. Choose an open neighborhood U of e in G
so that @1 D xUM. Note that there exists a sequence T; — 0o as i — o0
such that for all 7,

2UMag;y O xag;v0—t;0NeMag,y O xoh; Ny,

where Np = N N Bg is the the set of elements of N of norm< R. So
Olatw D) xth‘NT,--

Choose an open neighborhood V of e in G and some open subset O
intersecting Q so that Oy D O4V. Since 1N M is dense in Q, zgn € O
for some n € N. Hence zoh;n = xzon(n~'hin) € OLV C O for all i large
enough so that n~'h;n € V. Therefore for all i such that n € NT“ we get

xohin € Olatw N Oy 7’é 0.

This proves the first claim.

Now suppose that v € I' is a loxodromic element with y.,y,-1 € Ap.
Write v = gma,g~! for some ¢ € G and m € M. Since yy = g+ and
y,-1 = gwg , we have each [g)NM and [glwoNM contains € in its closure.
Now in the notation of the proof of the first claim, note that z¢ = [go] € [g]M

since [g] exp(Rv)M is closed. Therefore each 29N M and 2oN M contains Q.

Based on this, the same argument as above shows the topological transitivity

of exp Rv, which finishes the proof since v = A(y). O
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Since £ is invariant under the opposition involution i and A(y) = iA(y 1)
for any loxodromic element v € T", the Jordan projection A(vy) belongs to 0L
if and only if the Jordan projection A(y~!) belongs to L. Together with
the result of Dang and Gloriuex [8, Proposition 4.7] which say that exp(Ru)
is not topologically transitive on /M for any u € L Nint at, Proposition
5.6 implies the following:

Corollary 5.7.
(1) If Ay # O for some v € L Ninta™, then

A # Ay,
(2) For any lozodromic element v € I', we have \(y) € OL if and only if

{y’y’y'y_l} ¢ Ah-
Hence, if A = Ay, then \(T') C int L.
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