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Abstract. Let G = SO◦(n, 1)×SO◦(n, 1) and X = Hn×Hn for n ≥ 2.
For a pair (π1, π2) of non-elementary convex cocompact representations
of a finitely generated group Σ into SO◦(n, 1), let Γ = (π1 × π2)(Σ).
Denoting the bottom of the L2-spectrum of the negative Laplacian on
Γ\X by λ0, we show:

(1) L2(Γ\G) is tempered and λ0 = 1
2
(n− 1)2;

(2) There exists no positive Laplace eigenfunction in L2(Γ\X).

In fact, analogues of (1)-(2) hold for any Anosov subgroup Γ in the
product of at least two simple algebraic groups of rank one as well as for
Hitchin subgroups Γ < PSLd(R), d ≥ 3. Moreover, if G is a semisimple
real algebraic group of rank at least 2, then (2) holds for any Anosov
subgroup Γ of G.
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1. Introduction

Motivation and background. Locally symmetric spaces provide key ex-
amples of Riemannian manifolds for which there exist numerous tools for
studying various aspects of spectral geometry. For example, properties of dy-
namical systems related to the manifold are closely connected to the spectral
theory of the Laplace operator, as well as to representation theory. While
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the spectral theory of finite-volume locally symmetric spaces has been quite
extensively developed, the infinite volume setting provides many examples
of interesting phenomena that are less well understood. Nevertheless, for
rank one locally symmetric spaces of infinite volume, a number of key facts
about the spectrum have been established.

Let (Hn, d), n ≥ 2, denote the n-dimensional hyperbolic space of constant
curvature −1, and let G = Isom+(Hn) ' SO◦(n, 1) denote the group of all
orientation preserving isometries of Hn. Let Γ < G be a torsion-free1 discrete
subgroup. The critical exponent 0 ≤ δ = δΓ ≤ n−1 is defined as the abscissa
of convergence of the Poincaré series

∑
γ∈Γ e

−sd(o,γo) for o ∈ Hn. We denote

by ∆ the hyperbolic Laplacian and by λ0 = λ0(Γ\Hn) the bottom of the
L2-spectrum of the negative Laplace operator −∆, which is given as

λ0 := inf

{∫
Γ\Hn ‖grad f‖2 d vol∫

Γ\Hn |f |2 d vol
: f ∈ C∞c (Γ\Hn)

}
(1.1)

(see [45, Theorem 2.2]). In a series of papers, Elstrodt ([11], [12], [13])
and Patterson ([33], [34], [35]) developed the relationship between δ and λ0,
proving the following theorem for n = 2. The general case is due to Sullivan
[45, Theorem 2.21].

Theorem 1.1 (Generalized Elstrodt-Patterson I). For any discrete sub-
group Γ < SO◦(n, 1), the following are equivalent:

(1) δ ≤ 1
2(n− 1);

(2) λ0 = 1
4(n− 1)2.

The right translation action of G on the quotient space Γ\G equipped
with a G-invariant measure gives rise to a unitary representation of G on
the Hilbert space L2(Γ\G), called a quasi-regular representation of G. If we
set K ' SO(n) to be a maximal compact subgroup of G and identify Hn with
G/K, the space of K-invariant functions of L2(Γ\G) can be identified with
L2(Γ\Hn). The bottom of the L2-spectrum λ0 then provides information
on which complementary series representation of G can occur in L2(Γ\G).
Indeed, it follows from the classification of the unitary dual of SO◦(n, 1) that
λ0 = (n−1)2/4 is equivalent to saying that the quasi-regular representation
L2(Γ\G) does not contain any complementary series representation (cf. [45],
[10]), which is again equivalent to the temperedness of L2(Γ\G). As first
introduced by Harish-Chandra [18], a unitary representation (π,Hπ) of a
semisimple real algebraic group G is tempered (Definition 2.6) if all of its
matrix coefficients belong to L2+ε(G) for any ε > 0, or, equivalently, if π is
weakly contained2 in the regular representation L2(G) ([8], see Proposition
2.7).

1all discrete subgroups in this paper will be assumed to be torsion-free
2π is weakly contained in a unitary representation σ of G if any diagonal matrix coef-

ficients of π can be approximated, uniformly on compact sets, by convex combinations of
diagonal matrix coefficients of σ.
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Therefore Theorem 1.1 can be rephrased as follows:

Theorem 1.2 (Generalized Elstrodt-Patterson II). For any discrete sub-
group Γ < G = SO◦(n, 1), the following are equivalent:

(1) δ ≤ 1
2(n− 1);

(2) L2(Γ\G) is tempered.

The size of the critical exponent δ is also related to the existence of a
square-integrable positive Laplace eigenfunction on Γ\Hn. A discrete sub-
group Γ < G is called convex cocompact if there exists a convex subspace
of Hn on which Γ acts co-compactly. For convex cocompact subgroups of
G (more generally for geometrically finite subgroups), Patterson and Sulli-
van showed the following using their theory of conformal measures on the
boundary ∂Hn ([36], [46], [45, Theorem 2.21]):

Theorem 1.3 (Sullivan). For a convex cocompact subgroup Γ < SO◦(n, 1),
the following are equivalent:

(1) δ ≤ 1
2(n− 1);

(2) There exists no positive Laplace eigenfunction in L2(Γ\Hn).

Since λ0 divides the positive spectrum and the L2-spectrum on Γ\Hn by
Sullivan’s theorem [45, Theorem 2.1] (see Theorem 4.1), (2) is equivalent
to saying that any λ0-harmonic function (i.e., −∆f = λ0f) on Γ\Hn is not
square-integrable.

Main results. The main aim of this article is to discuss analogues of Theo-
rems 1.1, 1.2, and 1.3 for a certain class of discrete subgroups of a connected
semisimple real algebraic group of higher rank, i.e., rank at least 2.

We begin by describing a special case of our main theorem when G =
SO◦(n1, 1)× SO◦(n2, 1) with n1, n2 ≥ 2. Let X be the Riemannian product
Hn1 × Hn2 and ∆ the Laplace-Beltrami operator on X. For a torsion-free
discrete subgroup Γ < G, a smooth function f on Γ\X is called λ-harmonic
if −∆f = λf . The number λ0 = λ0(Γ\X) is given in the same way as (1.1)
replacing Γ\Hn by Γ\X.

Theorem 1.4. Let

Γ = (π1 × π2)(Σ) = {(π1(σ), π2(σ)) ∈ G : σ ∈ Σ} (1.2)

where πi : Σ → SO◦(ni, 1) is a non-elementary convex cocompact represen-
tation of a finitely generated group Σ for i = 1, 2. Then

(1) L2(Γ\G) is tempered and λ0 = 1
4((n1 − 1)2 + (n2 − 1)2);

(2) There exists no positive Laplace eigenfunction in L2(Γ\X), or equiv-
alently, no λ0-harmonic function is square-integrable.

Remark 1.5. Theorem 1.4 does not hold for a general subgroup Γ < G
of infinite co-volume. For example, if Γ < SO◦(n1, 1) × SO◦(n2, 1) is the
product of two convex cocompact subgroups, each of which having criti-
cal exponent greater than 1

2(ni − 1), then L2(Γ\G) is not tempered and

L2(Γ\X) possesses a positive Laplace eigenfunction.
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We now discuss a general setting. Let G be a connected semisimple real
algebraic group and X the associated Riemannian symmetric space. In the
rest of the introduction, we assume that Γ < G is a torsion-free Zariski dense
discrete subgroup. We let ψΓ : a → R ∪ {−∞} denote the growth indicator
function of Γ as defined in (2.4), where a is the Lie algebra of a maximal
real split torus of G. The function ψΓ can be regarded as a higher rank
generalization of the critical exponent of Γ. Let ρ denote the half sum of
all positive roots for (g, a), counted with multiplicity. Analogous to the fact
that the critical exponent δ is always bounded above by n− 1 for a discrete
subgroup Γ < SO◦(n, 1), we have the upper bound ψΓ ≤ 2ρ for any discrete
subgroup Γ of G [40].

The following Theorem 1.6 generalizes Theorems 1.1, 1.2, and 1.3 to
Anosov subgroups of G (with respect to a minimal parabolic subgroup of
G) which are regarded as higher rank generalizations of convex cocompact
subgroups. For G = SO◦(n1, 1)×SO◦(n2, 1), they are precisely given by the
class of subgroups considered in Theorem 1.4. We refer to Definition 2.4
for a general case. We mention that they were first introduced by Labourie
[27] for surface groups and then generalized by Guichard and Wienhard for
hyperbolic groups [17] (see also [16], [21]).

In the following theorem, the norm ‖ρ‖ is defined via the identification
a∗ and a using the Killing form on g. Denote by σ(Γ\X) the L2-spectrum
of −∆ on Γ\X.

Theorem 1.6. Let G be a connected semisimple real algebraic group and Γ
a Zariski dense Anosov subgroup of G. The following (1)-(3) are equivalent,
and imply (4):

(1) ψΓ ≤ ρ;
(2) L2(Γ\G) is tempered and λ0(Γ\X) = ‖ρ‖2;
(3) L2(G) and L2(Γ\G) are weakly contained in each other and σ(Γ\X) =

σ(X) = [‖ρ‖2,∞);
(4) There exists no positive Laplace eigenfunction in L2(Γ\X).

Moreover, if rankG ≥ 2, then (4) always holds for any Anosov subgroup
Γ < G.

Our proof of the implication (1)⇒ (2) is based on the asymptotic behavior
of the Haar matrix coefficients for Anosov subgroups obtained in [9] and [6]
as well as Harish-Chandra’s Plancherel formula (see Theorems 6.4 and 9.4).
The implication (2) ⇒ (1) is true for a general discrete subgroup (see the
proof of Theorem 9.4). The equivalence (2)⇔ (3) uses the observation that
L2(G) is weakly contained in L2(Γ\G) whenever the injectivity radius of
Γ\G is infinite, and that Γ\G has infinite injectivity radius for any Anosov
subgroup Γ < G, except for cocompact lattices of a rank one Lie group (see
Section 8). For (4), we first prove that any positive Laplace eigenfunction
in L2(Γ\X) is indeed a joint eigenfunction for the whole ring of G-invariant
differential operators, which then can be studied via Γ-conformal measures
on the Furstenberg boundary of G (see Sections 3 and 6). We establish
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a higher rank version of Sullivan-Thurston’s smearing theorem (Theorem
7.4) from which we deduce the non-existence of square-integrable positive
Laplace eigenfunctions for any higher rank Anosov subgroup (see Section
7 and Corollary 7.2). When rank G = 1, Anosov subgroups are convex
cocompact groups and the implication (1) + (2) ⇒ (4) is obtained in [45]
(see also [42, Theorem 3.1]) for X = Hn and in [50] in general.

Although the condition ψΓ ≤ ρ may appear quite strong, it was verified in
a recent work of Kim-Minsky-Oh [23] for Anosov subgroups in the following
setting, and hence we deduce from Theorem 1.6:

Theorem 1.7. Let Γ be a Zariski dense Anosov subgroup of the product
of at least two simple real algebraic groups of rank one, or a Zariski dense
Anosov subgroup of a Hitchin subgroup of PSLd(R) for d ≥ 3. Then (1)-(4)
of Theorem 1.6 hold.

It is conjectured in [23] that any Anosov subgroup of a higher rank
semisimple real algebraic group satisfies the condition ψΓ ≤ ρ. This con-
jecture suggests that Anosov subgroups in higher rank groups are more like
generalizations of convex cocompact subgroups of small critical exponent.

Groups of the second kind and positive joint eigenfunctions. For
any discrete subgroup Γ which is not cocompact in G and for any λ ≤
λ0(Γ\X), Sullivan proved the existence of a positive λ-harmonic function.
We prove a higher-rank strengthening of this result: for any discrete sub-
group of the second kind (see Definition 5.1) whose limit cone is contained
in the interior of a+ and for any linear form ψ ≥ ψΓ, we construct a positive
joint eigenfunction with character corresponding to ψ (Theorem 5.2).

Organization: In section 2, we review the basic notions and notations
which will be used throughout the paper. In section 3, we show that any
postive joint eigenfunction on Γ\X (i.e., an eigenfunction for the whole ring
of G-invariant differential operators) arises from a (Γ, ψ)-conformal den-
sity (Proposition 3.7). In section 4, we compute the Laplace eigenvalue
of a positive joint eigenfunction associated to a (Γ, ψ)-conformal measure
(Proposition 4.2). In section 5, we introduce the notion of subgroups of
the second kind. We then construct positive joint eigenfunctions for any
ψ ≥ ψΓ for any subgroup of the second kind with its limit cone contained
in int a+ ∪ {0} (Theorem 5.2). In section 6, we compute the L2-spectrum of
X (Theorem 6.3) and show that λ0 = ‖ρ‖2 if L2(Γ\G) is tempered (The-
orem 6.4). We show that a positive Laplace eigenfunction in L2(Γ\X) is
necessarily a joint eigenfunction (Corollary 6.6) and a spherical vector of a
unique irreducible subrepresentation of L2(Γ\G) (Theorem 6.8). In section
7, we prove a higher rank version of Sullivan-Thurston’s smearing theorem
(Theorem 7.4) to obtain the non-existence theorem of L2-positive Laplace
eigenfunctions in higher rank. In section 8, we prove the weak containment
L2(G) ∝ L2(Γ\G) for all Anosov subgroups Γ in higher rank groups. In
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section 9, we prove the equivalence of the temperedness of L2(Γ\G) and
ψΓ ≤ ρ (Theorem 9.4). We also deduce Theorem 1.6.

Acknowledgements: We would like to thank Marc Burger for bringing the
reference [45] to our attention. We would also like to thank Dick Canary,
Francois Labourie, Curt McMullen and Dennis Sullivan for useful conversa-
tions.

2. Preliminaries and notations

Let G be a connected semisimple real algebraic group, i.e., the identity
component of the group of real points of a semisimple algebraic group defined
over R. Let Γ < G be a torsion-free discrete subgroup. Let P be a minimal
parabolic subgroup of G with a fixed Langlands decomposition P = MAN
where A is a maximal real split torus of G, M is the maximal compact
subgroup of P , which commutes with A, and N is the unipotent radical of
P . We denote by g, a, n respectively the Lie algebras of G,A,N . We fix a
positive Weyl chamber a+ ⊂ a so that n consists of positive root subspaces.
Let Σ+ denote the set of all positive roots for (g, a+). We also write Π ⊂ Σ+

for the set of all simple roots. We denote by

ρ =
1

2

∑
α∈Σ+

α

the half sum of the positive roots for (g, a+), counted with multiplicity.
We denote by 〈·, ·〉 and ‖ · ‖ the inner product and norm on g respectively,
induced from the Killing form: B(x, y) = Tr(adx ad(y)) for x, y ∈ g.

We fix a maximal compact subgroup K of G so that the Cartan decompo-
sition G = K(exp a+)K holds, that is, for any g ∈ G, there exists a unique
element µ(g) ∈ a+ such that g ∈ K expµ(g)K. We call the map µ : G→ a+

the Cartan projection map.
The Riemannian symmetric space (X, d) can be identified with the quo-

tient space G/K with the metric d induced from 〈·, ·〉. We denote by d vol
the Riemannian volume form on X or on Γ\X. We also use dx to denote this
volume form as well as the Haar measure on G, or on Γ\G. In particular,
d(·, ·) will denote both the left G-invariant Riemannian distance function on
X, as well as the left G-invariant and right K-invariant distance on G. We
set o = [K] ∈ X. We then have ‖µ(g)‖ = d(go, o) for g ∈ G. We do not
distinguish a function on X and a right K-invariant function on G.

Let w0 ∈ K be an element of the normalizer of A so that Adw0 a
+ = −a+.

The opposition involution i : a→ a is defined by

i(u) = −Adw0(u) for all u ∈ a. (2.1)

Let F := G/P denote the Furstenberg boundary of G. We define the
following visual maps G→ F : for each g ∈ G,

g+ := gP ∈ F and g− := gw0P ∈ F . (2.2)
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The unique open G-orbit F (2) in F × F under the diagonal G-action is
given by:

F (2) = G(e+, e−) = {(g+, g−) ∈ F × F : g ∈ G}.

Two points ξ, η in F are said to be in general position if (ξ, η) ∈ F (2).

Conformal measures. Let G = KAN be the Iwasawa decomposition,
κ : G → K the K-factor projection of this decomposition, and H : G → a
be the Iwasawa cocycle defined by the relation: for g ∈ G,

g ∈ κ(g) exp
(
H(g)

)
N.

Note that K acts transitively on F and K ∩ P = M , and hence we may
identify F with K/M . The Iwasawa decomposition can be used to describe
both the action of G on F = K/M and the a-valued Busemann map as
follows: for all g ∈ G and [k] ∈ F with k ∈ K,

g · [k] = [κ(gk)],

and the a-valued Busemann map is defined by

β[k](g(o), h(o)) := H(g−1k)−H(h−1k) ∈ a for all g, h ∈ G.

We denote by a∗ = HomR(a,R) the space of all linear forms on a.

Definition 2.1. Let ψ ∈ a∗.

(1) A finite Borel measure νo on F = K/M is said to be a (Γ, ψ)-
conformal measure (with respect to o = [K]) if for all γ ∈ Γ and
ξ = [k] ∈ K/M ,

dγ∗νo
dνo

(ξ) = e−ψ(βξ(γo,o)) = e−ψ
(
H(γ−1k)

)
,

or equivalently

dνo([k]) = eψ
(
H(γk)

)
dνo(γ · [k]),

where γ∗νo(Q) = νo(γ
−1Q) for any Borel subset Q ⊂ F . Unless men-

tioned otherwise, all conformal measures in this paper are assumed
to be with respect to o.

(2) A collection {νx : x ∈ X} of finite Borel measures on F is called a
(Γ, ψ)-conformal density if for all x, y ∈ X, ξ ∈ F and γ ∈ Γ,

dνx
dνy

(ξ) = e−ψ(βξ(x,y)) and dγ∗νx = dνγ(x). (2.3)

A (Γ, ψ)-conformal measure νo defines a (Γ, ψ)-conformal density {νx :
x ∈ X} by the formula:

dνx(ξ) = e−ψ(βξ(x,o))dνo(ξ),

and conversely any (Γ, ψ)-conformal density {νx} is uniquely determined
by its member νo by (2.3). For this reason, by abuse of terminology, we
sometimes do not distinguish conformal measures and conformal densities.
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Growth indicator function. Let Γ < G be a Zariski dense discrete sub-
group. Following Quint [40], let ψΓ : a → R ∪ {−∞} denote the growth
indicator function of Γ: for any non-zero v ∈ a,

ψΓ(v) := ‖v‖ inf
v∈C

τC , (2.4)

where the infimum is over all open cones C containing v and τC denotes the
abscissa of convergence of the series

∑
γ∈Γ, µ(γ)∈C e

−s‖µ(γ)‖. For v = 0, we let

ψΓ(0) = 0. We note that ψΓ does not change if we replace the norm ‖ · ‖ by
any other norm on a. For any discrete subgroup Γ < G, we have the upper
bound ψΓ ≤ 2ρ [40]. On the other hand, when Γ is of infinite co-volume in a
simple real algebraic group of rank at least 2, Quint deduced from [32] that
ψΓ ≤ 2ρ − ηG, where ηG is the half sum of a maximal strongly orthogonal
subset of the root system of G ([41], see also [31, Theorem 7.1]).

Limit cone and limit set. The limit cone L = LΓ of Γ is defined as the
asymptotic cone of µ(Γ), i.e.,

L = {lim tiµ(γi) ∈ a+ : ti → 0, γi ∈ Γ}.
Benoist showed that for Γ Zariski dense, L is a convex cone with non-
empty interior [2]. Quint [40] showed that ψΓ is a concave and upper-
semicontinuous function such that ψΓ ≥ 0 on L, ψΓ > 0 on intL and
ψΓ = −∞ outside L.

For a sequence gi ∈ G, we write gi → ∞ regularly if α(µ(gi)) → ∞ for
all α ∈ Π. For g ∈ G, we write g = κ1(g) exp(µ(g))κ2(g) ∈ KA+K; if
µ(g) ∈ int a+, then [κ1(g)] ∈ K/M = F is well-defined.

Definition 2.2. A sequence pi ∈ X is said to converge to ξ ∈ F and we
write limi→∞ pi = ξ if there exists a sequence gi → ∞ regularly in G with
pi = gi(o) and limi→∞[κ1(gi)] = ξ.

We denote by Λ ⊂ F the limit set of Γ, which is defined as

Λ = {lim γi(o) ∈ F : γi ∈ Γ}. (2.5)

For Γ < G Zariski dense, this is the unique Γ-minimal subset of F ([2], [30]).

Tangent linear forms. We set

DΓ = {ψ ∈ a∗ : ψ ≥ ψΓ}. (2.6)

A linear form ψ ∈ a∗ is said to be tangent to ψΓ at u ∈ a if ψ ∈ DΓ and
ψ(u) = ψΓ(u). We denote by D?

Γ the set of all linear forms tangent to ψΓ at
L ∩ int a+, i.e.,

D?
Γ := {ψ ∈ DΓ : ψ(u) = ψΓ(u) for some u ∈ L ∩ int a+}. (2.7)

For Γ < SO◦(n, 1) and δ its critical exponent, we have D?
Γ = {δ} and

DΓ = {s ≥ δ}.
Extending the construction of Patterson [36] and Sullivan [44], Quint [39]

showed the following:
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Theorem 2.3. For any ψ ∈ D?
Γ, there exists a (Γ, ψ)-conformal measure

supported on Λ.

Anosov subgroups. Let Σ be a finitely generated group. For σ ∈ Σ, let
|σ| denote the word length of σ for some fixed symmetric generating set of
Σ.

Definition 2.4. ([17], [21], [16], [3]) A representation π : Σ→ G is Anosov
with respect to P if there exist a constant c > 0 such that for all σ ∈ Σ and
α ∈ Π,

α(µ(π(σ))) ≥ c|σ| − c−1. (2.8)

A discrete subgroup Γ < G is called an Anosov subgroup (with respect
to P ) if Γ can be realized as the image π(Σ) of an Anosov representation
π : Σ → G. If Γ = π(Σ) is Anosov, then Σ is a Gromov hyperbolic group
([21], [3]). As mentioned in the introduction, Anosov subgroups of G were
first introduced by Labourie for surface groups [27], and then extended by
Guichard and Wienhard [17] to general word hyperbolic groups. Several
equivalent characterizations have been established, one of which is the above
definition (see [16], [21]). When G has rank one, the class of Anosov sub-
groups coincides with that of convex cocompact subgroups, and when G is
a product of two rank one simple algebraic groups, any Anosov subgroup
arises in a similar fashion to (1.2). Examples of Anosov subgroups include
Schottky groups (cf. [9, Def. 7.1]), as well as Hitchin subgroups defined as
follows. Let ιd denote the irreducible representation PSL2(R) → PSLd(R),
which is unique up to conjugations. A Hitchin subgroup is the image of a
representation π : Σ → PSLd(R) of a uniform lattice Σ < PSL2(R), which
belongs to the same connected component as ιd|Σ in the character variety
Hom(Σ,PSLd(R))/ ∼ where the equivalence is given by conjugations.

One of the important features of an Anosov subgroup is the following:

Theorem 2.5. [38] For any Anosov subgroup Γ < G, we have

L ⊂ int a+ ∪ {0}.

Tempered representations. By definition, a unitary representation of G
is a Hilbert space Hπ equipped with a strongly continuous homomorphism
π from G to the group of unitary operators on Hπ. Given two unitary
representations π and σ of G, π is said to be weakly contained in σ if any
diagonal matrix coefficients of π can be approximated, uniformly on compact
sets, by convex combinations of diagonal matrix coefficients of σ. We use
the notation π ∝ σ for the weak containment.

The Harish-Chandra function ΞG : G → (0,∞) is a bi-K-invariant func-
tion defined via the formula

ΞG(g) =

∫
K
e−ρ(H(gk))dk for all g ∈ G
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where dk denotes the probability Haar measure on K. The following esti-
mate is well-known, cf. e.g. [24]: for any ε > 0, there exist C,Cε > 0 such
that for any g ∈ G,

Ce−ρ(µ(g)) ≤ ΞG(g) ≤ Cεe−(1−ε)ρ(µ(g)). (2.9)

Definition 2.6. A unitary representation (π,Hπ) of G is called tempered if
for any K-finite unit vectors v, w ∈ Hπ and any g ∈ G,

|〈π(g)v, w〉| ≤ (dim〈Kv〉 dim〈Kw〉)1/2ΞG(g),

where 〈Kv〉 denotes the linear subspace of Hπ spanned by Kv.

Proposition 2.7. [8] The following are equivalent for a unitary represen-
tation (π,Hπ) of G:

(1) π is tempered;
(2) π ∝ L2(G);
(3) for any vectors v, w ∈ Hπ, the matrix coefficient g 7→ 〈π(g)v, w〉 lies

in L2+ε(G) for any ε > 0;
(4) for any ε > 0, π is strongly L2+ε, i.e., there exists a dense subset of
Hπ whose matrix coefficients all belong to L2+ε(G).

In the whole paper, the notation f(v) � g(v) means that the ratio
f(v)/g(v) is bounded uniformly between two positive constants, and f � g
means that |f | ≤ c|g| for some c > 0.

3. Positive joint eigenfunctions and conformal densities

Let G be a connected semisimple real algebraic group and Γ < G be a
Zariski dense discrete subgroup. The main goal of this section is to obtain
Proposition 3.7, which explains the relationship between positive joint eigen-
functions on Γ\X and Γ-conformal measures on the Furstenberg boundary
of G.

Joint eigenfunctions on X. Let D = D(X) denote the ring of all G-
invariant differential operators on X. We call a real valued function on X a
joint eigenfunction if it is an eigenfunction for all operators in D. For each
joint eigenfunction f , there exists an associated character χf : D → R such
that

Df = χf (D)f

for all elements D ∈ D. The ring D is generated by rank(G) elements, and
the set of all characters of D is in bijection with the space a∗ = HomR(a,R)
modulo the action of the Weyl group, as we now explain. Denote by Z(gC)
the center of the universal enveloping algebra U(gC) of gC. Recall the well-
known fact that the joint eigenfunctions on X can be identified with the
right K-invariant real-valued Z(gC)-eigenfunctions on G (cf. [19]).

Letting T be a maximal torus in M with Lie algebra t, set h = (a ⊕ t).
Then hC := (a⊕ t)C is a Cartan subalgebra of gC. We let

ι : Z(gC)→ SW (hC)
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denote the Harish-Chandra isomorphism from Z(gC) to the Weyl group-
invariant elements of the symmetric algebra S(hC) of hC [24, Theorem 8.18].

For any ψ ∈ a∗, we can extend it to h by letting ψ(J) = 0 for all J ∈ m,
and then to S(hC) polynomially. This lets us define a character χψ on Z(gC)
by

χψ(Z) := ψ
(
ι(Z)

)
(3.1)

for all Z ∈ Z(gC). Conversely, if f is a rightK-invariant Z(gC)-eigenfunction,
then, since t acts trivially on f , the associated character χf must arise as
ψ ◦ ι for some ψ ∈ a∗.

Example 3.1. • Consider the hyperbolic space Hn = {(x1, · · · , xn−1, y) ∈
Rn : y > 0} with the metric

√∑n−1
i=1 dx2

i+dy
2

y . The Laplacian ∆ on

Hn is given as ∆ = −y2(
∑n−1

i=1
∂2

∂x2
i

+ ∂2

∂y2 ) + (n− 2)y ∂
∂y and the ring

of SO◦(n, 1)-invariant differential operators is generated by ∆, i.e.,
a polynomial in ∆. If ψ ∈ a∗ is given by ψ(v) = δv for some δ ∈ R
under the isomorphism a = R, then χψ(−∆) = δ(n− 1− δ).
• Let G = SO◦(n1, 1)× SO◦(n2, 1) and X be the Riemannian product
Hn1×Hn2 for n1, n2 ≥ 2. Then D(X) is generated by the hyperbolic
Laplacians ∆1,∆2 on each factor Hn1 and Hn2 . If we identify a with
R2 and if a linear form ψ ∈ a∗ is given by ψ(v) = 〈v, (δ1, δ2)〉 for
some vector (δ1, δ2) ∈ R2, then χψ(−∆i) = δi(ni−1−δi) for i = 1, 2.

Joint eigenfunctions on Γ\X. We now consider joint eigenfunctions on
Γ\X or, equivalently, Γ-invariant joint eigenfunctions on X.

Definition 3.2. Let ψ ∈ a∗. Associated to a (Γ, ψ)-conformal density ν =
{νx : x ∈ X} on F , we define the following function Eν on G: for g ∈ G,

Eν(g) := |νg(o)| =
∫
F
e−ψ

(
H(g−1k)

)
dνo([k]). (3.2)

Since |νγ(x)| = |νx| for all γ ∈ Γ and x ∈ X, the left Γ-invariance and right
K-invariance of Eν are clear. Hence we may consider Eν as a K-invariant
function on Γ\G, or, equivalently, as a function on Γ\X.

Proposition 3.3. For each (Γ, ψ)-conformal density ν on F , Eν is a posi-
tive joint eigenfunction on Γ\X with character χψ−ρ. Conversely, any pos-
itive joint eigenfunction on Γ\X arises in this way for some ψ ≥ ρ and a
(Γ, ψ)-conformal density ν with (ψ, ν) uniquely determined.

In order to prove this proposition, we consider the following right K-
invariant function on G for each ψ ∈ a∗ and h ∈ G:

ϕψ,h(g) = e−ψ
(
H(g−1h)

)
(3.3)

so that

Eν(g) =

∫
F
ϕψ,k(g) dνo([k]).
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We may also consider ϕψ,h as a function on X. Hence the first part of
Proposition 3.3 is a consequence of the following:

Lemma 3.4. ([24, Propositions 8.22 and 9.9]) For any ψ ∈ a∗ and h ∈ G,
the function ϕψ,h is a joint eigenfunction on X with character χψ−ρ.

Proof. While we refer to [24] for the full proof, we outline some of the key
points below, as we will use some part of this proof later. Since the elements
of Z(gC) commute with translation, we simply need to prove that

[Zϕψ,e](e) = χψ−ρ(Z)ϕψ,e(e) for any Z ∈ Z(gC);

the same identity will then hold for the function g 7→ ϕψ,e(h
−1g), and thus

also for ϕψ,h for any h ∈ G. Following [24, Chapter VII], we define the (non-

unitary) principal series representation Uψ: for all g ∈ G and f ∈ C(K)

[Uψ(g)f ](k) := e−ψ
(
H(g−1k)

)
f
(
κ(g−1k)

)
for all k ∈ K. This extends to a representation dUψ of U(gC) on the right
M -invariant functions in C∞(K) by way of the formula

[dUψ(X)f ](k) =
d

dt

∣∣∣∣
t=0

[Uψ
(

exp(tX)
)
f ](k) for any X ∈ g.

Observe that [Zϕψ,e](e) = [dUψ(Z)1](e), so in order to prove the proposi-

tion, it suffices to show that dUψ(Z) = χψ−ρ(Z) for all Z ∈ Z(gC).
The next key observation is that

Z(gC) ⊂ U(hC)⊕ nU(gC).

We thus write
Z = Y +

∑
i

XiUi,

where Y ∈ U(hC), Xi ∈ n, and Ui ∈ U(gC). Note that in this decomposition,
Y is uniquely defined. Now, for arbitrary X ∈ n and f ,

[dUψ(X)f ](e) =
d

dt

∣∣∣∣
t=0

[Uψ
(

exp(tX)
)
f ](e) =

d

dt

∣∣∣∣
t=0

[Uψ
(

exp(tX)
)
f ](e)

=
d

dt

∣∣∣∣
t=0

e−ψ
(
H(exp(−tX))

)
f
(
κ(exp(−tX))

)
=

d

dt

∣∣∣∣
t=0

f(e) = 0,

so applying this to the Xi and functions dUψ(Ui)f gives

[dUψ(XiUi)f ](e) = [dUψ(Xi)
(
dUψ(Ui)f

)
](e) = 0,

hence [dUψ(Z)f ](e) = [dUψ(Y )f ](e). For L ∈ m, we have f(exp(−L)) =
f(e), so [dUψ(J)f ](e) = 0 for all J ∈ t. Thus, it is only the a component of
Y that contributes to [dUψ(Y )f ](e). Finally, note that for X ∈ a, we have

[dUψ(X)f ](e) =
d

dt

∣∣∣∣
t=0

e−ψ
(
H(exp(−tX))

)
f
(
κ(exp(−tX))

)
=

d

dt

∣∣∣∣
t=0

et ψ(X)f(e) = ψ(X)f(e).
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Since the Harish-Chandra isomorphism consists of projection onto U(hC)
and then composition with the “δ-shift” H 7→ H + δ(H)1 = H + ρ(H)1,
where δ ∈ h∗C is the half-sum of the positive roots for gC, this shows that

dUψ(Z) = χψ−ρ(Z). �

Letting h = kan ∈ KAN , we see that for any g ∈ G,

ϕψ,h(g) = e−ψ
(
H(g−1h)

)
= e−ψ

(
H(g−1kan)

)
= e−ψ

(
H(g−1k)

)
· e−ψ

(
log(a)

)
,

i.e., the function ϕψ,h is a scalar multiple of ϕψ,κ(h). In fact, the functions
ϕψ,k, k ∈ K form a complete set of minimal positive joint eigenfunctions
with character χψ−ρ with ψ ≥ ρ, in the sense that if f is a positive joint
eigenfunction on X with character χψ−ρ such that f ≤ ϕψ,k for some k ∈ K,
then

f = c · ϕψ,k
for some c > 0 (cf. [15, 22], see also [27, Theorem 1]).

As a consequence, we have the following (cf. [27, Theorem 3]):

Theorem 3.5. For any positive joint eigenfunction f on X, there exist
ψ ∈ a∗ with ψ ≥ ρ and a Borel measure νo on F = K/M such that for all
g ∈ G,

f(g) =

∫
F
ϕψ,k(g) dνo([k]).

Moreover, the pair (ψ, νo) is uniquely determined by f .

Proof of the second part of Proposition 3.3: Let f be a Γ-invariant
joint eigenfunction on X. By Theorem 3.5, there exist unique ψ ∈ a∗ and a
Borel measure νo on F so that for all g ∈ G,

f(g) =

∫
F
ϕψ,k(g) dνo([k]).

Since f is Γ-invariant, for any γ ∈ Γ,

f(g) = f(γg) =

∫
F
ϕψ,k(γg) dνo([k])

=

∫
F
ϕψ,κ(γ−1k)(g) e−ψ

(
H(γ−1k)

)
dνo([k])

=

∫
F
ϕ
ψ,k̃

(g) eψ
(
H(γk̃)

)
dνo(γ · [k̃]).

By the uniqueness of νo in the integral representation of f ,

dνo([k]) = eψ
(
H(γk)

)
dνo(γ · [k]).

Hence ν = {νx} is a (Γ, ψ)-conformal density on F , finishing the proof.

We denote by ψΓ : a→ R ∪ {−∞} the growth indicator function of Γ as
defined in (2.4).
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Theorem 3.6. [39, Theorem 8.1]. Let Γ < G be Zariski dense. If there
exists a (Γ, ψ)-conformal measure on F for some ψ ∈ a∗, then

ψ ≥ ψΓ.

Therefore Proposition 3.3 and Theorem 3.6 yield the following:

Proposition 3.7. Let Γ < G be a Zariski dense discrete subgroup. If ν
is a (Γ, ψ)-conformal density for some ψ ∈ a∗, then Eν is a positive joint
eigenfunction on Γ\X with character χψ−ρ. Conversely, any positive joint
eigenfunction on Γ\X is of the form Eν for some (Γ, ψ)-conformal density
ν with ψ ≥ max(ρ, ψΓ), where (ψ, ν) is uniquely determined.

4. Eigenvalues of positive eigenfunctions

Let Γ be a torsion-free discrete subgroup of a connected semisimple real
algebraic group G. Let ∆ denote the Laplace-Beltrami operator on X or on
Γ\X. Since ∆ is an elliptic differential operator, an eigenfunction is always
smooth. We call a smooth function λ-harmonic if

−∆f = λf.

Let C ∈ Z(gC) denote the Casimir operator on C∞(G) (or on C∞(Γ\G))
whose restriction to K-invariant functions coincides with ∆. Then K-
invariant C-eigenfunctions on Γ\G correspond to Laplace eigenfunctions on
Γ\X. In particular, a joint eigenfunction of Γ\X is a Laplace eigenfunction.

Define the real number λ0 = λ0(Γ\X) ∈ [0,∞) as follows:

λ0 := inf

{∫
Γ\X ‖grad f‖2 d vol∫

Γ\X |f |2 d vol
: f ∈ C∞c (Γ\X), f 6= 0

}
. (4.1)

Positive Laplace eigenfunctions.

Theorem 4.1. [45, Theorem 2.1, 2.2] Suppose that Γ\X is not compact.

(1) For any λ ≤ λ0, there exists a positive λ-harmonic function on Γ\X;
(2) For any λ > λ0, there is no positive λ-harmonic function on Γ\X.

We identity a∗ with a via the inner product on a induced by the Killing
form on g. This endows an inner product on a∗. More precisely, for each
ψ ∈ a∗, there exist a unique vψ ∈ a such that ψ = 〈vψ, ·〉. Then 〈ψ1, ψ2〉 =
〈vψ1 , vψ2〉. Equivalently, fixing an orthonormal basis {Hi} of a, we have
〈ψ1, ψ2〉 =

∑
i ψ1(Hi)ψ2(Hi).

For ψ ∈ a∗, we set

λψ :=
(
‖ρ‖2 − ‖ψ − ρ‖2

)
. (4.2)

Proposition 4.2. (1) A positive joint eigenfunction on X with charac-
ter χψ−ρ, ψ ∈ a∗, is λψ-harmonic.

(2) A positive Laplace eigenfunction on X is λψ-harmonic for some ψ ∈
a∗ with ψ ≥ ρ.
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Proof. Let ψ ∈ a∗. Recall the functions ϕψ,h in (3.3). By Theorem 3.5, (1)
follows if we show that for any h ∈ G,

−Cϕψ,h = λψϕψ,h. (4.3)

Let {Hi} be an orthonormal basis of a. To each α ∈ Σ, let Hα ∈ a be the
unique vector such that α(x) = B(x,Hα) = 〈x,Hα〉 for all x ∈ a, and choose
a unit root vector Eα ∈ n so that [x,Eα] = α(x)Eα for all x ∈ a. We may
write

C =
∑
i

H2
i +

∑
α∈Σ+

(
EαE−α + E−αEα

)
+ J,

where J ∈ U(mC) (cf. [25, Proposition 5.28]). Now using E−αEα = EαE−α−
Hα gives

C =
∑
i

H2
i −

∑
α∈Σ+

Hα +
∑
α∈Σ+

2EαE−α + J.

As in the proof of Lemma 3.4, [Jϕψ,h](e) = 0, and [EαE−αϕψ,h](e) = 0.
Applying −C to ϕψ,h gives

−Cϕψ,h = −

Ñ∑
i

ψ(Hi)
2 −

∑
α∈Σ+

ψ(Hα)

é
ϕψ,h

= −
(
‖ψ‖2 − 2〈ρ, ψ〉

)
ϕψ,h

=
(
‖ρ‖2 − ‖ψ − ρ‖2

)
ϕψ,h,

proving (4.3). Let f be a positive λ-harmonic function on X, which we
consider as a K-invariant function on G. By [27, Theorem 2], f is of the
form: for any g ∈ G,

f(g) =

∫
K/M×{ψ≥ρ:λψ=λ}

ϕψ,k(g) dµ([k], ψ)

for some Borel measure µ on K/M × {ψ ≥ ρ : λψ = λ}. By (4.3), this
implies (2). �

Corollary 4.3. For any Zariski dense discrete subgroup Γ < G,

sup{λψ : ψ ∈ D?
Γ} ≤ λ0.

Proof. If Γ is cocompact in G, then ψΓ = 2ρ and hence D?
Γ = {2ρ}. Since

λ0 = 0 = λ2ρ in this case, the claim follows. In general, it follows from
Theorem 2.3 and Proposition 3.7 that for any ψ ∈ D?

Γ, there exists a positive
joint eigenfunction on Γ\X with character χψ−ρ. Hence the claim for the
case when Γ is not cocompact in G follows from Theorem 4.1 and Proposition
4.2. �
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5. Groups of the second kind and positive joint eigenfunctions

When G has rank one (in which case the Furstenberg boundary is same
as the geometric boundary of X), a discrete subgroup Γ < G is said to be of
the second kind if Λ 6= F . We extend this definition to higher rank groups
as follows:

Definition 5.1. A discrete subgroup Γ < G is of the second kind if there
exists ξ ∈ F which is in general position with all points of Λ, i.e., (ξ,Λ) ⊂
F (2).

Theorem 4.1 provides a positive λ-harmonic function for any λ ≤ λ0, when
Γ\X is not compact. The following theorem can be viewed as a higher rank
strengthening of this result.

Theorem 5.2. Let Γ < G be of the second kind with L ⊂ int a+ ∪ {0}.
For any ψ ∈ DΓ, there exists a positive joint eigenfunction on Γ\X with
character χψ−ρ.

By Proposition 3.7, we get the following immediate corollary:

Corollary 5.3. Let Γ < G be of the second kind with L ⊂ int a+ ∪ {0}.
Then for any ψ ≥ max(ψΓ, ρ), there exists a (Γ, ψ)-conformal density.

Remark 5.4. (1) Let Γ0 < G be an Anosov subgroup. Then any
Anosov subgroup Γ < Γ0 with ΛΓ0 6= ΛΓ is of the second kind.

To see this, choose any ξ ∈ ΛΓ0 − ΛΓ, and note that (ΛΓ, ξ) ⊂ F (2),
since any two distinct points of ΛΓ0 are in general position by the
Anosov assumption on Γ0.

(2) If Λ ⊂ gNw0P for some g ∈ G, then (Λ, g+) ⊂ F (2). One can
construct many Schottky groups with Λ ⊂ Nw0P , which would then
be of the second kind.

(3) Let G =
∏k
i=1Gi be a product of simple algebraic groups Gi of rank

one. Then F =
∏
iFi where Fi = Gi/Pi. Let πi : F → Fi denote

the canonical projection. Then any discrete subgroup Γ < G such
that πi(Λ) 6= Fi for all i is of the second kind. To see this, it suffices

to note that (Λ, ξ) ⊂ F (2) for any ξ = (ξi)i ∈ F with ξi ∈ Fi−πi(Λ).
(4) The well-known properties of the limit set of a Hitchin subgroup

of PSLd(R) imply that Hitchin groups are not of the second kind
for any even d ≥ 4 or d = 3; we thank Canary and Labourie for
communicating this with us.

For q ∈ X and r > 0, we set

B(q, r) = {x ∈ X : d(x, q) ≤ r}.

For p = g(o) ∈ X, the shadow of the ball B(q, r) viewed from p is defined as

Or(p, q) := {(gk)+ ∈ F : k ∈ K, gk intA+o ∩B(q, r) 6= ∅}.
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Similarly, for ξ ∈ F , the shadow of the ball B(q, r) viewed from ξ is
defined by

Or(ξ, q) := {h+ ∈ F : h ∈ G satisfies h− = ξ, ho ∈ B(q, r)}.

We will use the following shadow lemma to prove Theorem 5.2:

Lemma 5.5. [30, Lemma 5.6, 5.7]

(1) If a sequence qi ∈ X converges to η ∈ F , then for any q ∈ X, r > 0
and ε > 0,

Or−ε(qi, q) ⊂ Or(η, q) ⊂ Or+ε(qi, q)

for all sufficiently large i.
(2) There exists κ > 0 such that for any g ∈ G and r > 0,

sup
ξ∈Or(g(o),o)

‖βξ(g(o), o)− µ(g−1)‖ ≤ κr.

Lemma 5.6. If L ⊂ int a+ ∪{0}, then the union Γ(o)∪Λ is compact in the
topology given in Definition 2.2.

Proof. The hypothesis implies that any sequence γi → ∞ in Γ tends to ∞
regularly, and hence has a limit in F . Moreover the limit belongs to Λ by
its definition. �

Lemma 5.7. Suppose that L ⊂ int a+ ∪{0}. If ξ ∈ F satisfies that (ξ,Λ) ⊂
F (2), then there exists R > 0 such that

ξ ∈
⋂
γ∈Γ

OR(γ(o), o).

Proof. We first claim that ξ ∈
⋂
η∈ΛOR(η, o) for some R > 0. Note that

limR→∞OR(η, o) = {z ∈ F : (z, η) ∈ F (2)}. Hence for each η ∈ Λ, we have

Rη := inf{R+ 1 : ξ ∈ OR(η, o)} <∞.

It suffices to show that R := supη∈ΛRη < ∞. Suppose not; then Rηi → ∞
for some sequence {ηi} ⊂ Λ. By passing to a subsequence if necessary, we
may assume that the ηi converge to some η. From this it follows that
ORη+1(η, o) ⊂ ORη+2(ηi, o) for all sufficiently large i. Therefore Rηi ≤
Rη + 3, yielding a contradiction.

We now claim that ξ ∈
⋂
γ∈ΓOR′(γo, o) for some R′ > 0. Suppose

not; then there exist sequences γi → ∞ in Γ and Ri → ∞ such that
ξ /∈ ORi(γio, o). By Lemma 5.6, after passing to a subsequence, we may
assume that γi(o) converges to some η ∈ Λ. By the first claim, we have
ξ ∈ OR(η, o). By Lemma 5.5, we have ξ ∈ OR(η, o) ⊂ OR+1(γi(o), o) for all
sufficiently large i. This is a contradiction, since for i large enough so that
Ri > R+ 1, we have ξ /∈ OR+1(γi(o), o). This proves the claim. �

As an immediate corollary of Lemmas 5.5 and 5.7, we obtain:
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Corollary 5.8. If L ⊂ int a+ ∪ {0} and ξ ∈ F satisfies that (ξ,Λ) ⊂ F (2),
then

sup
γ∈Γ
‖βξ(γ−1o, o)− µ(γ)‖ <∞.

Proof of Theorem 5.2: If ψ ∈ D?
Γ, this follows from Theorem 2.3. Hence

we assume ψ ∈ DΓ −D?
Γ; this implies that∑

γ∈Γ

e−ψ(µ(γ)) <∞ (5.1)

by [40, Lem. III. 1.3]. As Γ is of the second kind, there exists ξ ∈ F such that

(ξ, η) ∈ F (2) for all η ∈ Λ. By Corollary 5.8, we have supγ∈Γ ‖βξ(γ−1o, o)−
µ(γ)‖ <∞. Therefore (5.1) implies that∑

γ∈Γ

e−ψ
(
βξ(γ

−1o,o)
)
<∞. (5.2)

For any fixed x ∈ X, we have βξ(γ
−1x, o) = βξ(γ

−1o, o) + βγξ(x, o) and

‖βγξ(x, o)‖ ≤ d(x, o). Hence e−ψ
(
βξ(γ

−1o,o)
)
� e−ψ(µ(γ)) with implied con-

stant uniform for all γ ∈ Γ.
Therefore, by (5.1) the following function Fψ,ξ on X is well-defined:

Fψ,ξ(x) :=
∑
γ∈Γ

e−ψ(βξ(γ
−1x,o)) for x ∈ X. (5.3)

If we write ξ = [k0] ∈ K/M = F , then for any g ∈ G,

βξ(γ
−1go, o) = βM (k−1

0 γ−1go, o) = H(g−1γk0)

and hence e−ψ(βξ(γ
−1go,o)) = ϕψ,γk0(g). Therefore

Fψ,ξ =
∑
γ∈Γ

ϕψ,γk0 .

It now follows from Lemma 2.2 that Fψ,ξ is a positive Γ-invariant joint
eigenfunction on X with eigenvalue χψ−ρ. This finishes the proof.

Remark 5.9. In the above proof, for any ψ ∈ DΓ − D?
Γ and any ξ ∈ F

with (Λ, ξ) ⊂ F (2), we have constructed a positive joint eigenfunction Fψ,ξ
on Γ\X of eigenvalue χψ−ρ.

Hence we get the following strengthened version of Corollary 4.3:

Corollary 5.10. If Γ < G is of the second kind with L ⊂ int a+ ∪{0}, then

sup{λψ : ψ ∈ DΓ} ≤ λ0. (5.4)

If Γ < SO◦(n, 1) is a discrete subgroup with Λ 6= ∂Hn, we have equality
in (5.4), as was proved by Sullivan [45, Theorem 2.17].
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6. The L2-spectrum and uniqueness

Let Γ be a torsion-free discrete subgroup of a connected semisimple real
algebraic group G. The space L2(Γ\X) consists of square-integrable func-
tions together with the inner product 〈f1, f2〉 =

∫
Γ\X f1f̄2 d vol.

Let W 1(Γ\X) ⊂ L2(Γ\X) denote the closure of C∞c (Γ\X) with respect
to the norm ‖ · ‖W 1 induced by the inner product

〈f1, f2〉W 1 :=

∫
Γ\X

f1f̄2 d vol +

∫
Γ\X
〈grad f1, grad f2〉 d vol

for any f1, f2 ∈W 1(Γ\X).
As Γ\X is complete, there exists a unique self-adjoint operator on the

space W 1(Γ\X) extending the Laplacian ∆ on C∞c (Γ\X), which we also
denote by ∆. The L2-spectrum of −∆, which we denote by

σ(Γ\X),

is the set of all λ ∈ C such that ∆ + λ does not have a bounded inverse
(∆ + λ)−1 : L2(Γ\X) → W 1(Γ\X). The self-adjointness of ∆ and the fact
that 〈−∆f, f〉 =

∫
X ‖ grad f‖2d vol for all f ∈ C∞c (Γ\X) imply σ(Γ\X) ⊂

[0,∞).

We will be using Weyl’s criterion to determine σ(Γ\X):

Theorem 6.1. (cf. [48, Lemma 2.17]) For λ ∈ R, we have λ ∈ σ(Γ\X) if
and only if there exists a sequence of unit vectors Fn ∈W 1(Γ\X) such that

lim
n→∞

‖(∆ + λ)Fn‖ = 0.

The number λ0 = λ0(Γ\X) defined in (4.1) is the bottom of the L2-
spectrum σ(Γ\X):

Theorem 6.2. [45, Theorem 2.1, 2.2] We have

λ0 ∈ σ(Γ\X) ⊂ [λ0,∞).

Using Harish-Chandra’s Plancherel formula, we can identify λ0(X) and
σ(X) for the symmetric space X = G/K:

Proposition 6.3. We have λ0(X) = ‖ρ‖2 and σ(X) = [‖ρ‖2,∞).

Proof. It is shown in [22] that there are no positive Laplace eigenfunctions on
X with eigenvalue strictly bigger than ‖ρ‖2; hence the inequality λ0(X) ≤
‖ρ‖2 follows from Theorem 4.1 for Γ = {e}. On the other hand, as seen in
the proof of (1), ϕρ,h is a positive ‖ρ‖2-harmonic function (for any h ∈ G),
hence λ0(X) = ‖ρ‖2 by Theorem 4.1. We now deduce the second claim
σ(X) = [‖ρ‖2,∞) from Harish-Chandra’s Plancherel theorem (cf. e.g. [43]).
For ψ ∈ a∗, define Φψ ∈ C∞(K\G/K) by

Φψ(g) =

∫
K
ϕρ+iψ,k(g) dk.
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where ϕρ+iψ,k(g) = e−(ρ+iψ)
(
H(g−1k)

)
.

Then by the same computation as (4.3), we have

−CΦψ = −∆Φψ = (‖ρ‖2 + ‖ψ‖2)Φψ.

Given any f ∈ C∞c (a∗), we can define a function F ∈ L2(X) by the
formula

F (g) =

∫
a∗
f(ψ)Φψ(g)

dψ

|c(ψ)|2
;

here dψ denotes the Lebesgue measure on a∗ and c(ψ) denotes the Harish-
Chandra c-function. The Plancherel formula says

‖F‖2L2(X) =

∫
a∗
|f(ψ)|2 dψ

|c(ψ)|2

(see [43]). Let λ ∈ [‖ρ‖2,∞) be any number. Choose ψ0 ∈ a∗ so that
λ = ‖ρ‖2 + ‖ψ0‖2. We then choose a sequence of non-negative functions
{fn} ⊂ C∞c (a∗) with supp fn ⊂ B1/n(ψ0) and ‖Fn‖L2(X) = 1.

Then

(∆ + λ)Fn =

∫
a∗
fn(ψ)(∆ + λ)Φψ(g)

dψ

|c(ψ)|2

=

∫
a∗
fn(ψ)

(
λ− ‖ρ‖2 − ‖ψ‖2

)
Φψ(g)

dψ

|c(ψ)|2
.

This gives

‖(∆ + λ)Fn‖2L2(X) =

∫
a∗
|
(
λ− ‖ρ‖2 − ‖ψ‖2

)
fn(ψ)|2 dψ

|c(ψ)|2

≤ max
ψ∈B1/n(ψ0)

∣∣‖ψ0‖2 − ‖ψ‖2
∣∣2 .

Consequently,

lim
n→∞

‖(∆ + λ)Fn‖L2(X) = 0.

By Weyl’s criterion (Theorem 6.1), this implies that λ ∈ σ(X). This proves
the claim. �

Theorem 6.4. If L2(Γ\G) is tempered, then

λ0(Γ\X) = ‖ρ‖2.

Proof. Note that λ0 = λ0(Γ\X) ≤ λ0(X) = ‖ρ‖2 by Proposition 6.3. As-
sume that λ0 < ‖ρ‖2. By Theorem 6.1, we can then find a K-invariant unit
vector f ∈ L2(Γ\G)K such that

‖(∆− λ0)f‖ < ‖ρ‖
2 − λ0

2
.

This gives

‖Cf‖ = ‖∆f‖ ≤ ‖(∆− λ0)f‖+ λ0 <
‖ρ‖2 + λ0

2
< ‖ρ‖2.
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On the other hand, consider the direct integral representation of L2(Γ\G) =∫ ⊕
Z (πζ ,Hζ) dµ(ζ) into irreducible unitary representations of G which are

tempered, by the hypothesis on the temperedness of L2(Γ\G). Hence

‖Cf‖2 =

∫
Z
‖dπζ(C)fζ‖2ζ dµ(ζ) ≥

Å
min

π spherical tempered
|dπ(C)|2

ã
,

where dπ denotes the derived representation of U(gC) induced by π. By
Schur’s lemma, there exists a character χπ of Z(gC) such that dπ(Z) =
χπ(Z) for all Z ∈ Z(gC). Moreover, for any spherical π, there exists ψπ ∈ a∗C
such that χπ = χψπ (cf. (3.1)). Now, by Harish-Chandra’s Plancherel
formula (cf. e.g. [20]), for any tempered spherical representation, we have

ψπ = ρ+ i Im(ψπ),

where Im(ψπ) ∈ a∗. As in the proof of Proposition 6.3, we then obtain

χπ(−C) = ‖ρ‖2 + ‖ Im(ψπ)‖2.

Thus for any spherical tempered representation (π,H), we have dπ(C) ∈
σ(X) and hence, by Proposition 6.3,

min
π spherical tempered

|dπ(C)| ≥ ‖ρ‖2,

giving a contradiction. �

Theorem 6.5. [45, Theorem 2.8 and Corollary 2.9]

(1) Any positive Laplace eigenfunction in L2(Γ\X) is λ0-harmonic.
(2) If there exists a λ0-harmonic function in L2(Γ\X), then the space

of λ0-harmonic functions in Γ\X is one-dimensional and generated
by a positive function.

Proof. Sullivan’s proof in [45] uses the heat operator and superharmonic
functions. We provide a more direct proof here.

Note that if f ∈ L2(Γ\X) ∩ C∞(Γ\X) is a real-valued λ-harmonic func-
tion, then f ∈W 1(Γ\X), since∫

Γ\X
‖ grad f‖2 d vol = −

∫
Γ\X

f∆f d vol = λ

∫
Γ\X

f2 d vol .

The key fact for us is that λ0 may also be expressed as an infimum over
real-valued functions in W 1(Γ\X); for f 6= 0 in W 1(Γ\X), define R(f) by

R(f) =
‖f‖2W 1

‖f‖2
− 1 ≥ 0

where ‖ · ‖ denotes the L2(Γ\X) norm. For any f 6= 0 ∈W 1(Γ\X), and all
ϕ with ‖f − ϕ‖W 1 small enough, we have

‖ϕ‖W 1 − ‖f − ϕ‖W 1

‖ϕ‖+ ‖f − ϕ‖W 1

− 1 ≤ R(f) ≤ ‖ϕ‖W 1 + ‖f − ϕ‖W 1

‖ϕ‖ − ‖f − ϕ‖W 1

− 1,



22 SAM EDWARDS AND HEE OH

i.e. f 7→ R(f) is continuous at each f 6= 0 ∈ W 1(Γ\X). The density of
C∞c (Γ\X) in W 1(Γ\X) then gives

λ0 = inf
f∈C∞c (Γ\X)

f 6=0

R(f) = inf
f∈W 1(Γ\X)

f 6=0

R(f).

Now suppose that φ ∈ L2(Γ\X) is a positive λ-harmonic function; so
φ ∈W 1(Γ\X). We claim that λ = λ0. By Green’s identity, we have

λ0 ≤ R(φ) =

∫
Γ\X ‖gradφ‖2 d vol∫

Γ\X |φ|2 d vol
=

∫
Γ\X φ(−∆φ) d vol∫

Γ\X |φ|2 d vol
= λ

(cf. Proposition 4.2). On the other hand, since φ > 0, we have that for any
ϕ ∈ C∞c (Γ\X),∫

Γ\X ‖gradϕ‖2 d vol∫
Γ\X |ϕ|2 d vol

=

∫
Γ\X ‖grad

(
φ · ϕφ

)
‖2 d vol∫

Γ\X |ϕ|2 d vol
.

By Barta’s identity [1],∫
Γ\X
‖grad

(
φ · ϕφ

)
‖2 d vol =

∫
Γ\X

φ2‖grad ϕ
φ‖

2 d vol−
∫

Γ\X

(ϕ
φ

)2
φ∆φd vol,

so ∫
Γ\X
‖gradϕ‖2 d vol ≥

∫
Γ\X

(ϕ
φ

)2
φ(−∆φ) d vol = λ

∫
ϕ2 d vol,

i.e.

λ ≤

∫
Γ\X ‖gradϕ‖2 d vol∫

Γ\X |ϕ|2 d vol
,

showing that λ0 ≥ λ. Hence λ = λ0.
In order to prove (2), we first claim that f ∈ W 1(Γ\X) satisfies −∆f =

λ0f if and only if R(f) = λ0. Suppose that R(f) = λ0. We will then show
that for any ϕ ∈ C∞c (Γ\X), we have

〈f,−∆ϕ〉 = λ0〈f, ϕ〉; (6.1)

this implies that f is λ0-harmonic. Let ϕ ∈ C∞c (Γ\X). Since R(f) = λ0, f
minimizes R. So for any ϕ ∈ C∞c (Γ\X), the function F : R→ R≥0 defined
by F (x) = R(f + xϕ) has a local minimum at x = 0, hence F ′(0) = 0. Now
computing F ′(0) gives

F ′(0) =
2〈f, ϕ〉W 1‖f‖2 − 2〈f, ϕ〉‖f‖2W 1

‖f‖4
= 0.

From R(f) = λ0, we obtain ‖f‖2W 1 = (λ0 + 1)‖f‖2, which, when entered
into the identity above, gives

〈f, ϕ〉W 1 = (λ0 + 1)〈f, ϕ〉. (6.2)
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Letting {fi}i∈N ⊂ C∞c (Γ\X) be a sequence converging to f in W 1(Γ\X),
Green’s identity again gives

〈f, ϕ〉W 1 = lim
i→∞
〈fi, ϕ〉W 1 = lim

i→∞

∫
Γ\X

fiϕ+ 〈grad fi, gradϕ〉 d vol

= lim
i→∞

∫
Γ\X

fiϕ+ fi(−∆ϕ) d vol = 〈f, ϕ〉+ 〈f,−∆ϕ〉. (6.3)

Combined with (6.2), this gives 〈f,−∆ϕ〉 = λ0〈f, ϕ〉 as in (6.1).
Conversely, if f ∈ W 1(Γ\X) satisfies −∆f = λ0f , then for any ϕ ∈

C∞c (Γ\X), we have (as in (6.3))

〈f, ϕ〉W 1 = 〈f, ϕ〉+ 〈f,−∆ϕ〉 = (λ0 + 1)〈f, ϕ〉,
hence

‖f‖2W 1 = sup
ϕ∈C∞c (Γ\X)

〈f, ϕ〉W 1 = sup
ϕ∈C∞c (Γ\X)

(λ0 + 1)〈f, ϕ〉 = (λ0 + 1)‖f‖2,

giving R(f) = λ0. This proves the claim.
Let f ∈W 1(Γ\X)∩C∞(Γ\X) now be a real-valued λ0-harmonic function.

Then |f | ∈ W 1(Γ\X) and R(|f |) = λ0. As shown above, |f | is also a λ0-
harmonic function. Hence either f is a constant multiple of |f | or f must
change sign at some point x0, hence |f(x)| ≥ |f(x0)| = 0 for all x ∈ Γ\X.
However, since ∆|f | = −λ0|f | ≤ 0, the strong minimum principle (cf. e.g.
[37, Theorem 66, p. 280]) gives that if |f | attains its infimum, then |f | is
in fact constant (in this case equal to zero). We therefore conclude that
any λ0-harmonic function in L2(Γ\X) is a constant multiple of a positive
function. This then implies that the space of λ0-harmonic functions must
be one-dimensional as two positive functions cannot be orthogonal to each
other. �

The uniqueness in the above theorem has the following implications for
joint eigenfunctions:

Corollary 6.6. (1) There exists at most one positive joint eigenfunc-
tion in L2(Γ\X) up to a constant multiple.

(2) If there exists a positive joint eigenfunction in L2(Γ\X) with char-
acter χψ−ρ, ψ ∈ a∗, then

λ0 = λψ.

(3) There exists a positive Laplace eigenfunction in L2(Γ\X) if and only
if there exists a positive joint eigenfunction in L2(Γ\X) of character
χψ−ρ with λψ = λ0.

Proof. We only need to verify the third claim. Suppose that φ ∈ L2(Γ\X) is
a postive Laplace eigenfunction. Via the identification L2(Γ\X) = L2(Γ\G)K ,
we may consider φ ∈ L2(Γ\G)K as a positive C-eigenfunction for the Casimir
operator C. By Theorem 6.5, Cφ = −λ0φ. Let D ∈ Z(gC). Then C ◦Dφ =
D ◦ Cφ = −λ0Dφ. By the uniqueness in Theorem 6.5, it follows that Dφ
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is a constant multiple of φ; and hence φ is an eigenfunction for D as well.
Therefore φ is a joint eigenfunction. �

Spherical unitary representations contained in L2(Γ\G). We let
Cc(G//K) denote the Hecke algebra of G, i.e.

Cc(G//K) = {f ∈ Cc(G) : f(k1gk2) = f(g) for all g ∈ G, k1, k2 ∈ K}.

Each element of Cc(G//K) acts on C(G) via right convolution ∗.

Lemma 6.7. A positive K-invariant joint eigenfunction on G is an eigen-
function for the action of the Hecke algebra. More precisely, if

φ(g) =

∫
F
ϕψ,k(g) dνo([k]), g ∈ G, (6.4)

for some ψ ∈ a∗ and a (Γ, ψ)-conformal measure νo on F = K/M , then for
all f ∈ Cc(G//K),

(φ ∗ f)(g) =

Å∫
G
f(h)e−ψ

(
H(h)

)
dh

ã
φ(g).

Proof. Given f ∈ Cc(G//K), we have(
φ ∗ f

)
(g) =

∫
G
φ(gh−1)f(h) dh =

∫
G

∫
F
ϕψ,k(gh

−1)f(h) dνo([k]) dh

=

∫
F

∫
G
f(h)e−ψ

(
H(hg−1k)

)
dh dνo([k]).

Now using H(hg−1k) = H(hκ(g−1k)) + H(g−1k) and then the change of
variables h′ = hκ(g−1k) gives(

φ ∗ f
)
(g) =

∫
F

Å∫
G
f
(
hκ(g−1k)−1

)
e−ψ

(
H(h)

)
dh

ã
e−ψ

(
H(g−1k)

)
dνo([k])

=

∫
F

Å∫
G
f(h)e−ψ

(
H(h)

)
dh

ã
e−ψ

(
H(g−1k)

)
dνo([k])

=

Å∫
G
f(h)e−ψ

(
H(h)

)
dh

ã
φ(g),

since f ∈ C(G//K), and is thus right K-invariant. In total, we have shown

that φ is an eigenfunction of the f -action, with eigenvalue
∫
G f(h)e−ψ

(
H(h)

)
dh.
�

Theorem 6.8. If φ ∈ L2(Γ\G)K is a positive Laplace eigenfunction of
norm one, there exists a unique irreducible spherical unitary subrepresen-
tation (π,Hφ) of L2(Γ\G), and φ is the unique K-invariant unit vector in
Hφ.

Proof. By Corollary 6.6, φ is given by (6.4) for some ψ ∈ a∗. Define Φ :
G→ C by

Φ(g) := 〈g.φ, φ〉
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for all g ∈ G where the g action on L2(Γ\G) is via the translation action
of G on Γ\G from the right. Given f ∈ Cc(G//K), we then have, using
Lemma 6.7,(

Φ ∗ f
)
(g) =

∫
G

Φ(gh−1)f(h) dh =

∫
G
〈(gh−1).φ, φ〉f(h) dh

=

∫
G
〈f(h)h−1.φ, g−1.φ〉 dh =

〈
φ ∗ f, g−1.φ

〉
=

Å∫
G
f(h)e−ψ

(
H(h)

)
dh

ã
Φ(g),

i.e. Φ is also a Cc(G//K)-eigenfunction. Also note that Φ(e) = 1, and since
φ is right K-invariant, Φ is bi -K-invariant. Moreover, being the matrix
coefficient of a unitary representation, Φ is also positive definite, i.e., for
any g1, · · · , gn ∈ G and z1, · · · , zn ∈ C,∑

1≤i,j≤n
ziz̄jΦ(g−1

j gi) ≥ 0.

We have thus shown that Φ is a positive definite spherical function. Letting
Hφ denote the closure of span{g.φ : g ∈ G} in L2(Γ\G), by [28, Chapter
IV§5, Corollary of Theorem 9], Hφ is an irreducible (spherical) unitary sub-
representation of the quasi-regular representation L2(Γ\G). The uniqueness
follows from Corollary 6.6. �

We require the following lemma in the proof of Theorem 6.10:

Lemma 6.9. Let ψ ≥ ρ and ψ 6∈ Rρ. Denote by ψ′ be the element of the
line Rψ closest to ρ. Then ψ′ 6≥ ρ.

Proof. Let φ := ψ − ρ. Note that φ ≥ 0 on a by the hypothesis. Then

ψ′ =
〈ψ, ρ〉
‖ψ‖2

ψ =
〈ρ+ φ, ρ〉
‖ρ+ φ‖2

ψ =

Å
1− ‖φ‖

2 + 〈ρ, φ〉
‖ρ+ φ‖2

ã
ψ,

i.e. ψ′ = tψ with 0 < t < 1. Now, if ψ′ ≥ ρ, we could repeat the process
with ψ′ in place of ψ to find another, different, closest vector in Rψ to ρ,
which is not possible. �

Theorem 6.10. Let Γ < G be of the second kind with L ⊂ int a+ ∪ {0}. If
there exists a λ0-harmonic function in L2(Γ\X), then

λ0 = λψ

for some ψ ∈ D?
Γ ∪ {ρ}.

Proof. Suppose that ψ ∈ DΓ\({ρ}∪D?
Γ) and that ψ ≥ ρ. Assume that there

exists a positive joint eigenfunction φ ∈ L2(Γ\X) with character χψ−ρ. By
Corollary 6.6,

λ0 = λψ = ‖ρ‖2 − ‖ψ − ρ‖2. (6.5)
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Since ψΓ is concave, there exists 0 < c ≤ 1 such that cψ(u) = ψΓ(u) for
some u ∈ L. So ψ0 := cψ ∈ D?

Γ. Since ψ 6∈ D?
Γ, we have 0 < c < 1. There

exists a unique s0 ∈ R such that

‖s0ψ0 − ρ‖ = min{‖sψ − ρ‖ : s ∈ R}, (6.6)

that is, s0ψ0 be the element on the line Rψ that is closest to ρ.
We claim that s0c ≤ 1; since 0 < c < 1, this implies that max{1, s0} <

c−1. If ψ ∈ Rρ, then s0ψ0 = ρ. Since ψ0 = cψ, we get s0cψ = ρ. By the
hypothesis ρ ≤ ψ, s0c ≤ 1. Now suppose ψ /∈ Rρ. Assume that s0c > 1.
Then s0ψ0 = s0cψ > ψ. Hence s0cψ ∈ DΓ. By Corollary 5.10 and (6.5), we
get

‖s0cψ − ρ‖ ≥ ‖ψ − ρ‖.
By the choice of s0 in (6.6), it follows that ‖s0cψ − ρ‖ = ‖ψ − ρ‖. Since
s0cψ > ψ ≥ ρ, this yields a contradiction. Therefore the claim s0c ≤ 1
follows.

We now choose t so that max{1, s0} < t < c−1. Since t > 1 and ψ0 ∈ D?
Γ,

tψ0 ∈ DΓ. Note also that s 7→ λsψ0 is strictly decreasing on the interval
[s0,∞). Since s0 < t < c−1 and c−1ψ0 = ψ, we get

λ0 = λψ < λtψ0 .

This contradicts Corollary 5.10. This implies the claim by Corollary 6.6. �

If we use the norm on so(n, 1) which endows the constant curvature −1
metric on Hn, then for any non-elementary discrete subgroup Γ < SO◦(n, 1),
D?

Γ = {δ} and hence the above theorem says that if a λ0-harmonic function

belongs to L2(Γ\Hn), then λ0 must be given by either δ(n−1−δ) or 1
4(n−1)2.

7. Smearing argument in higher rank

Let Γ be a torsion-free discrete subgroup of a connected semisimple real
algebraic group G. The goal of this section is to prove the following:

Theorem 7.1. If L 6= a+, then no positive joint eigenfunction belongs to
L2(Γ\X).

Combined with Corollary 6.6, we get the following corollary which implies
Theorem 1.6(4) in higher rank.

Corollary 7.2. If L 6= a+, there exists no positive Laplace eigenfunction in
L2(Γ\X). In particular, if rank G ≥ 2 and Γ < G is Anosov, no positive
Laplace eigenfunction belongs to L2(Γ\X).

The second part follows from the first by Theorem 2.5. Theorem 7.1 will
be deduced from Theorem 7.4, the proof of which is based on the smearing
argument of Thurston and Sullivan (see [46], [7] and also [47] for historical
remarks and the origin of the name “smearing argument”). We also refer to
[42, Theorem 3.1].
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Definition 7.3 (Hopf parameterization). The homeomorphism G/M →
F (2) × a given by gM 7→ (g+, g−, b = βg−(e, g)) is called the Hopf parame-
terization of G/M .

Fix a pair of linear forms ψ1, ψ2 ∈ a∗. For x ∈ X and (ξ, η) ∈ F (2), let

φx(ξ, η) = eψ1

(
βξ(x,go)

)
+ψ2

(
βη(x,go)

)
, (7.1)

where g ∈ G is such that g+ = ξ and g− = η.
Let ν = {νx : x ∈ X} and ν̄ = {ν̄x : x ∈ X} be respectively (Γ, ψ1)

and (Γ, ψ2)-conformal densities on F . Using the Hopf parametrization, we
define the following locally finite Borel measure m̃ν,ν̄ on G/M : for (ξ, η, v) ∈
F (2) × a,

dm̃ν,ν̄(ξ, η, v) = φx(ξ, η)dνx(ξ)dν̄x(η)dv (7.2)

where dv is the Lebesgue measure on a and x ∈ X is any element; it follows
from the Γ-conformality of {νx} and {ν̄x} that this definition is independent
of x ∈ X. The measure m̃ν,ν̄ is left Γ-invariant and right A-semi-invariant:
for all a ∈ A,

a∗m̃ν,ν̄ = e(−ψ1+ψ2◦i)(log a) m̃ν,ν̄ . (7.3)

Note that ψ2 = ψ1 ◦ i if and only if m̃ν,ν̄ is A-invariant. We denote by mν,ν̄

the M -invariant Borel measure on Γ\G induced by m̃ν,ν̄ ; this measure is
called the (generalized) Bowen-Margulis-Sullivan measure associated to the
pair (ν, ν̄) [9].

Theorem 7.4 (Smearing theorem). For any pair (ν, ν̄) of Γ-conformal den-
sities on F , there exists c > 0 such that

mν,ν̄(Γ\G) ≤ c
∫
one-neighborhood of suppmν,ν̄

Eν(x)Eν̄(x) d vol(x).

Proof. Let Z = G/K×F (2). For any (ξ, η) ∈ F (2), we write [ξ, η] = gAo ⊂ X
for any g ∈ G such that g+ = ξ and g− = η; [ξ, η] is a maximal flat in X
defined independently of the choice of g ∈ G. Let ψ1, ψ2 ∈ a∗ be linear forms
such that ν and ν̄ are respectively (Γ, ψ1) and (Γ, ψ2)-conformal densities.
Let φx be defined as in (7.1) for all x ∈ X. We also denote by Wξ,η ⊂ X
the one neighborhood of [ξ, η]. Consider the following locally finite Borel
measure α on Z defined as follows: for any f ∈ Cc(Z),

α(f) =

∫
(ξ,η)∈F(2)

∫
z∈Wξ,η

f(z, ξ, η) dz dm(ξ, η),

where dz is the G-invariant measure on X, and

dm(ξ, η) = φx(ξ, η)dνx(ξ)dν̄x(η)

(observe that this definition is independent of x).
Consider the natural diagonal action of Γ on Z. Since dz and dm are

both left Γ-invariant, α is also left Γ-invariant and hence induces a measure
on the quotient space Γ\Z, which we also denote by α by abuse of notation.
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Define the projection π′ : Z → G/M as follows: for (x, ξ, η) ∈ X × F (2),
choose g ∈ G so that g+ = ξ and g− = η. Then there exists a unique
element a ∈ A such that

d(x, gao) = d(x, gAo) = inf
b∈A

d(x, gbo);

this follows from [4, Proposition 2.4] since X is a CAT(0) space and gA(o)
is a convex complete subspace of X. In other words, the point gao is the
orthogonal projection of x to the flat [ξ, η] = gAo. We then set

π′(x, ξ, η) = gaM ∈ G/M ;

this is well-defined independent of the choice of g ∈ G. Noting that π′ is
Γ-equivariant, we denote by

π : supp(α) ⊂ Γ\Z → supp (mν,ν̄) ⊂ Γ\G/M

the map induced by π′. Fixing [ga] ∈ Γ\G/M , the fiber π−1[ga] is of the
form [(gaD0, g

+, g−)], where

D0 = {s ∈ X : d(s, o) ≤ 1,

the geodesic connecting s and o is orthogonal to Ao at o}.

Noting that each fiber π−1(v), v ∈ suppmν,ν̄ , is isometric to D0, we have
for any Borel subset S ⊂ suppmν,ν̄ ,

α(π−1(S)) = Vol(D0) ·mν,ν̄(S); (7.4)

the volume of D0 being computed with respect to the volume form induced
by the G-invariant measure on X. Consider now the map p : supp(α) →
Γ\X defined by p([(z, ξ, η)]) = [z] for any (z, ξ, η) ∈ supp(α). Let F =
π−1(suppmν,ν̄) ⊂ supp(α). We write

α(F ) =

∫
Γ\X

αx(p−1(x) ∩ F ) dx,

where αx is a conditional measure on the fiber p−1(x). We claim that there
exists a constant c > 0 such that for any x ∈ Γ\X,

αx(p−1(x)) ≤ cEν(x) · Eν̄(x). (7.5)

Since p−1(x) ∩ F = ∅ for x outside of the one neighborhood of supp(mν,ν̄),
this together with (7.4), implies that

Vol(D0) · |mν,ν̄ | = α(F ) ≤ c ·
∫

one neighborhood of supp(mν,ν̄)
Eν(x)Eν̄(x) dx

finishing the proof. Note that for any h ∈ G,

Vho := {(ξ, η) ∈ F (2) : [ξ, η] ∩B(ho, 1) 6= ∅}

is a compact subset of F (2); if {gi} ⊂ G and {ai} ⊂ A are sequences such
that d(giaio, ho) ≤ 1, then (by passing to a subsequence) we may assume

that giai converges to some g0 ∈ G. This implies (g+
i , g

−
i )→ (g+

0 , g
−
0 ) ∈ F (2)
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as i→∞ and d(g0o, ho) ≤ 1, from which the compactness of Vho follows. It
follows that

c := sup{φo(ξ, η) : (ξ, η) ∈ Vo} <∞.
By the equivariance φho(ξ, η) = φo(h

−1ξ, h−1η), we have for any h ∈ G,

sup{φho(ξ, η) : (ξ, η) ∈ Vho} = c.

Note that if x = [ho] ∈ Γ\X for h ∈ G, then

p−1(x) = {[(ho, ξ, η)] ∈ supp(α) : [ξ, η] ∩B(ho, 1) 6= ∅} ' Vho.

Therefore for any x = [ho] ∈ Γ\X,

αx(p−1(x)) = αx(Vho)

=

∫
(ξ,η)∈Vho

φho(ξ, η) dνho(ξ)dν̄ho(η)

≤ c
∫

(ξ,η)∈Vho
dνho(ξ)dν̄ho(η)

≤ c · |νho| · |ν̄ho| = c · Eν(x) · Eν̄(x).

This proves (7.5), and hence finishes the proof. �

Proof of Theorem 7.1. Suppose that φ ∈ L2(Γ\X) is a positive joint
eigenfunction. By Proposition 3.7, φ = Eν for some (Γ, ψ)-conformal density
ν. We may form the MA-semi-invariant measure mν,ν , and apply Theorem
7.4. Since Eν ∈ L2(Γ\G), it follows that mν,ν(Γ\G) <∞. The finiteness of
|mν,ν | implies that mν,ν is indeed MA-invariant by (7.3) and it is conserva-
tive for any one-parameter subgroup of A. In particular, for any non-zero
v ∈ a+, there exist g ∈ G, sequences ti → +∞ and γi ∈ Γ such that the se-
quence γig exp(tiv) is convergent. This implies that supi ‖tiv−µ(γ−1

i )‖ <∞
and hence t−1

i µ(γ−1
i ) converges to v, and hence v ∈ L. Therefore L = a+.

This finishes the proof.

Remark 7.5. If Γ < G is Zariski dense and ψ > ψΓ, then for any (Γ, ψ)-
conformal density ν, Eν /∈ L2(Γ\X). To see this, note that by [40, Lem. III.
1.3], the condition ψ > ψΓ implies that∑

γ∈Γ

e−ψ(µ(γ)) <∞.

On the other hand, by Theorem 1.4 of [5], the finiteness of mν,ν implies that∑
γ∈Γ e

−ψ(µ(γ)) = ∞. Hence we must have |mν,ν | = ∞. Then the claim
follows from Theorem 7.4.

8. Injectivity radius and L2(G) ∝ L2(Γ\G)

As before let G be a connected semisimple real algebraic group. Recall
from Proposition 6.3 that σ(X) = [‖ρ‖2,∞). In this section, we prove the
following:
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Theorem 8.1. Let Γ < G be an Anosov subgroup. We suppose that Γ is
not a cocompact lattice in a rank one group G. Then

L2(G) ∝ L2(Γ\G) and σ(X) = [‖ρ‖2,∞) ⊂ σ(Γ\X).

Note that if Γ < G is Anosov, Γ\G has infinite volume except when Γ is
a cocompact lattice in a rank one group G. The latter case has to be ruled
out from the above theorem since the conclusions are not true in that case;
L2(Γ\G) contains the constant function and σ(Γ\X) is countable. When
G = SO◦(n, 1), an Anosov subgroup Γ < G is simply a convex cocompact
subgroup, in which case this theorem is well-known due to the work of Lax
and Phillips [29].

We will need the following lemma: when G is of rank one, we may write
A = {at : t ∈ R} as a one-parameter subgroup, and a loxodromic element
g ∈ G is of the form g = hatmh

−1 for some t 6= 0, m ∈ M and h ∈ G. The
translation axis of g is then given by hA(o).

Lemma 8.2. Let G be a simple real algebraic group of rank one. For any
loxodromic element g ∈ G with translation axis L and any sequence xi ∈ X
such that d(xi, L)→∞, we have d(xi, gxi)→∞.

Proof. Without loss of generality, we may assume g = m−1a−s0 ∈ MA
with s0 6= 0 so that L = A(o). Let xi ∈ X be a sequence such that
d(xi, A(o))→∞ as i→∞. Write xi = nia−ti(o) with ni ∈ N and ti ∈ R.

We may then write

d(gxi, xi) = d(atihinia−ti , a
−1o).

where hi = mas0n
−1
i a−s0m

−1 ∈ N . As d(xi, A(o))→∞, we have atinia−ti →
∞. It suffices to show atihinia−ti →∞.

By the assumption that G has rank one, there is only one simple root,
say α, and n is the sum of at most two root subspaces n = nα + n2α where
[n, n] = n2α. Note that when N is abelian, n2α = {0}. Hence we have that
for any X,Y ∈ n,

log
(

exp(X) exp(Y )
)

= X + Y +
1

2
[X,Y ]. (8.1)

Write log ni = Yi + Zi with Yi ∈ nα and Zi ∈ n2α. Since Adm preserves
nα and n2α, we have

log hi = −Admas0 log ni = −eα(s0)AdmYi − e2α(s0)AdmZi.

Therefore by (8.1), we get

log hini = (1− eα(s0)Adm)Yi + (1− e2α(s0)Adm)Zi −
1

2
[eα(s0)AdmYi, Yi].

Hence

Adati log hini = (1− eα(s0)Adm)eα(ti)Yi+

(1− e2α(s0)Adm)e2α(ti)Zi − [eα(s0)Adme
α(ti)Yi, e

α(ti)Yi].
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Now suppose that atihinia−ti does not go to infinity as i → ∞. By
passing to a subsequence, we may assume that Adati log hini is uniformly

bounded. It follows that both sequences (1 − eα(s0)Adm)eα(ti)Yi and (1 −
e2α(s0)Adm)e2α(ti)Zi − [eα(s0)Adme

α(ti)Yi, e
α(ti)Yi] are uniformly bounded.

Since α(s0) 6= 0, we have eα(ti)Yi is uniformly bounded, which then im-

plies that e2α(ti)Zi is uniformly bounded. This implies that Adati log ni =

eα(ti)Yi + e2α(ti)Zi is uniformly bounded, contradicting the hypothesis that
d(atinia−ti)→∞ as i→∞. This proves the claim. �

Let Γ < G be a discrete subgroup. For x = [g] ∈ Γ\G, the injectivity
radius inj x is defined as the supremum r > 0 such that the ball Br(g) = {h ∈
G : d(h, g) < r} injects to Γ\G under the canonical quotient map G→ Γ\G.
The injectivity radius of Γ\G is defined as inj(Γ\G) = supx∈Γ\G inj(x).

Proposition 8.3. For any Anosov subgroup Γ < G which is not a cocompact
lattice in a rank one group G, we have inj(Γ\G) =∞.

Proof. If G has rank one, Γ is a convex cocompact subgroup which is not a
cocompact lattice. In this case, take any ξ ∈ ∂X which is not a limit point,
and any gi ∈ G such that gi(o)→ ξ. Then inj(gi(o))→∞ as i→∞.

Now suppose rankG ≥ 2. We first observe that Vol(Γ\G) = ∞; other-
wise, Γ < G is a co-compact lattice, as Anosov subgroups consist only of
loxodromic elements. Since any Anosov subgroup Γ is a Gromov hyperbolic
group as an abstract group ([21], [3]), it follows that G is a Gromov hyper-
bolic space and hence must be of rank one, which contradicts the hypothesis.

If every simple factor of G has rank at least 2, the claim inj(Γ\G) =
∞ follows from a more general result of Fraczyk and Gelander [14] which
applies to all discrete subgroups of infinite co-volume. Therefore it remains
to consider the case where G = G1 ×G2 where G1 and G2 are respectively
semisimple real algebraic subgroups of rank at least one and of rank precisely
one. Let Σ be a finitely generated group and π : Σ → G be an Anosov
representation with Γ = π(Σ) as in Definition 2.4. Let πi : Σ → Gi be
the composition of π and the projection G → Gi for each i. It follows
from (2.8) that πi(Σ) is a discrete subgroup of Gi for each i = 1, 2. Let Xi

denote the rank one symmetric space associated to Gi and let X denote the
Riemmanian product X = X1×X2. Let R > 0 be an arbitrary number. We
will find a point x ∈ X with inj(x) ≥ R, i.e., d(x, γx) > R for all non-trivial
γ ∈ Γ; this implies the claim. Choose any x1 ∈ X1. By the discreteness of
π1(Σ), the set {σ ∈ Σ− {e} : d1(π1(σ)x1, x1) < R} is finite, which we write
as {σ1, · · · , σm}. For each σ ∈ Σ \ {e}, define a subset T2(σ) ⊂ X2 by

T2(σ) = {z ∈ X2 : d2(π2(σ)z, z) < R}.
Note that π2(σ) is a loxodromic element of G2 and T2(σ) is contained in
a bounded neighborhood of the translation axis of π2(σ) by Lemma 8.2.
In particular, the symmetric space X2 is not covered by the finite union⋃m
j=1 T2(σj). Hence we may choose x2 ∈ X2 outside of

⋃m
j=1 T2(σj). We
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now claim that the injectivity radius at x := (x1, x2) is at least R; suppose
not. Then for some σ ∈ Σ−{e}, d((π1(σ)x1, π2(σ)x2), x) < R. In particular,
for i = 1, 2, di(πi(σ)xi, xi) < R. It follows that σ = σj for some 1 ≤ j ≤ m
and x2 ∈ T2(σj), contradicting the choice of x2. This proves the claim. �

Theorem 8.1 follows from Proposition 8.3 and the following proposition,
which was suggested by C. McMullen.

Proposition 8.4. Let Γ < G be a discrete subgroup with inj(Γ\G) = ∞.
Then

L2(G) ∝ L2(Γ\G) and σ(X) ⊂ σ(Γ\X).

Proof. To prove the first claim, we need to show that the diagonal matrix
coefficients of L2(G) can be approximated by the diagonal matrix coefficients
of L2(Γ\G) uniformly on compact subsets of G.

Let v be any element of L2(G) and K ⊂ G a compact subset containing e.
We will use the fact that inj(Γ\G) =∞ to construct a sequence of functions
{Fi} ⊂ Cc(Γ\G) such that

lim
i→∞

max
g∈K

∣∣∣〈g.v, v〉L2(G) − 〈g.Fi, Fi〉L2(Γ\G)

∣∣∣ = 0,

as required. By the density of Cc(G) in L2(G), there exists a sequence
{fi} ⊂ Cc(G) such that limi→∞ ‖fi − v‖L2(G) = 0, hence

lim
i→∞

max
g∈K

∣∣∣〈g.v, v〉L2(G) − 〈g.fi, fi〉L2(G)

∣∣∣ = 0. (8.2)

For each i ≥ 1, we let Ri > 0 be such that (suppfi)K ⊂ BRi(e). Since
inj(Γ\G) = ∞, there then exists a sequence {gi} ⊂ G such that giBRi(e)
injects to Γ\G, i.e. the map h 7→ Γh is injective on giBRi(e).

For each i, consider the function Fi ∈ Cc(Γ\G) given by

Fi(x) =
∑
γ∈Γ

fi(g
−1
i γh) for any x = [h] ∈ Γ\G.

We then have that for any g ∈ G,

〈g.Fi, Fi〉L2(Γ\G) =

∫
Γ\G

Fi(xg)Fi(x) dx

=

∫
Γ\G

Fi(Γhg)

Ñ∑
γ∈Γ

fi(g
−1
i γh)

é
d(Γh) =

∫
G
Fi(Γhg)fi(g

−1
i h) dh

=

∫
G

Ñ∑
γ∈Γ

fi(g
−1
i γgihg)

é
fi(h) dh.

We now observe that for h ∈ G, g ∈ K, and γ ∈ Γ, fi(g
−1
i γgihg)fi(h) 6= 0

implies that g−1
i γgihg ∈ BRi(e) and h ∈ supp f . This in turn implies that
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both γgihg and gihg are in giBRi(e). Since giBRi(e) injects to Γ\G, we must
then have γ = e. Hence for all i ≥ 1 and g ∈ K,

〈g.Fi, Fi〉L2(Γ\G) =

∫
G

Ñ∑
γ∈Γ

fi(g
−1
i γgihg)

é
fi(h)dh

=

∫
G
fi(g

−1
i egihg)fi(h)dh =

∫
G
fi(hg)fi(h)dh = 〈g.fi, fi〉L2(G).

Combined with (8.2), this proves the first claim.
In order to prove the second claim, let W 1(Γ\X) ⊂ L2(Γ\X) be as defined

in the proof of Theorem 6.5. Let λ ∈ σ(X). By Weyl’s criterion (Theorem
6.1), there exists a sequence of L2(X)-unit vectors {un}n∈N ⊂ W 1(X) such
that

lim
n→∞

‖(∆ + λ)un‖L2(X) = 0.

Since C∞c (X) is dense in W 1(X) with respect to ‖ · ‖W 1(X), we may assume
that {un}n∈N ⊂ C∞c (X). Since Γ\X has infinite injectivity radius, for each
n ∈ N, we can find gn ∈ G so that gnsupp(un) injects to Γ\G. We may
therefore define {vn}n∈N ⊂W 1(Γ\X) by

vn(Γgnx) =

®
un(x) if x ∈ supp(un)

0 otherwise.

The G-invariance of ∆ then gives

lim
n→∞

‖(∆ + λ)vn‖L2(Γ\X) = lim
n→∞

‖(∆ + λ)un‖L2(X) = 0;

and so using Weyl’s criterion again yields λ ∈ σ(Γ\X). Hence σ(X) ⊂
σ(Γ\X), as claimed. �

9. Temperedness of L2(Γ\G)

Let G be a connected semisimple real algebraic group and Γ < G be a
Zariski dense discrete subgroup. The goal of this section is to prove Theorem
9.4 and Corollary 9.6.

Burger-Roblin measures. We set N+ = w0Nw
−1
0 and N− = N . For

a (Γ, ψ)-conformal measure νo on F , or equivalently for a (Γ, ψ)-conformal
density ν = {νx : x ∈ X}, we denote by mBR

ν and mBR∗
ν the associated N+

and N−-invariant Burger-Roblin measures on Γ\G respectively, as defined in
[9]. By [9, Lem. 4.9], it can also be defined as follows: for any f ∈ Cc(Γ\G),

mBR
ν (f) =

∫
[k]m(exp a)n∈K/M×MAN+

f([k]m(exp a)n)e−ψ◦i(a) dνo(k
−)dmdadn

and

mBR∗
ν (f) =

∫
[k]m(exp a)n∈K/M×MAN−

f([k]m(exp a)n)eψ(a) dνo(k
+)dmdadn

where dm, da, dn are Haar measures on M, a, N± respectively.
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Recall that dx denotes the G-invariant measure on Γ\G which is defined
using the (G, 2ρ)-conformal measure, that is, the K-invariant probability
measure on F (see [9, (3.11)]). For real-valued functions f1, f2 on Γ\G, we
write

〈f1, f2〉 =

∫
Γ\G

f1(x)f2(x) dx

whenever the integral converges. We write Cc(Γ\G)K for the space of K-
invariant compactly supported continuous functions on Γ\G.

Lemma 9.1. For a (Γ, ψ)-conformal density ν and any f ∈ Cc(Γ\G)K , we
have

mBR
ν (f) = 〈f,Eν〉 = mBR∗

ν (f).

Proof. If g = (exp b)nk ∈ AN+K, then

βe−(go, o) = βe+(exp(−i(b)), o) = i(b).

Hence

mBR
ν (f) =

∫
KAN+

∫
K
f(k exp bnk0)e−ψ◦i(b)dk0dνo(k

−)dbdn

=

∫
G

∫
K
f(kg)e−ψ(βe− (go,o))dνo(k

−)dg

=

∫
G
f(g)

∫
K
e−ψ(βk− (go,o))dνo(k

−)dg = 〈f,Eν〉

If g = (exp b)nk ∈ ANK, then βe+(go, o) = −b and using this, the second
identity can be proved similarly. �

Local matrix coefficients for Anosov subgroups. In the rest of this
section, we assume that

Γ < G is a Zariski dense Anosov subgroup.

Lemma 9.2. For any ψ ∈ DΓ, there exists a unique unit vector u ∈ a+ and
0 < c ≤ 1 such that cψ(u) = ψΓ(u). Moreover u ∈ intL.

Proof. Since ψΓ is strictly concave [38, Propositions 4.6, 4.11], there exists
0 < c ≤ 1 and unique u ∈ L such that c · ψ(u) = ψΓ(u). Moreover there is
no linear form tangent to ψΓ at ∂L [38], and hence u ∈ intL. �

For each v ∈ intL, there exists a unique linear form ψv ∈ D?
Γ such that

ψv(v) = ψΓ(v) and a unique (Γ, ψv)-conformal density supported on Λ [9,
Corollary 7.8 and Theorem 7.9], which we denote by νv. Hence [9, Theorem
7.12], together with Lemma 9.1, implies (let r = rankG):

Theorem 9.3. For any v ∈ intL, there exists κv > 0 such that for all
f1, f2 ∈ Cc(Γ\G)K and any w ∈ kerψv,

lim
t→+∞

t(r−1)/2et(2ρ−ψv)(tv+
√
tw)〈exp(tv +

√
tw)f1, f2〉

= κve
−I(w) · 〈f1, Eνi(v)

〉 · 〈f2, Eνv〉
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where I(w) ∈ R is given as in [9, 7.5]. Moreover, the left-hand side is
uniformly bounded over all (t, w) ∈ (0,∞)× kerψv such that tv+

√
tw ∈ a+

Theorem 9.4. (1) We have L2(Γ\G) is tempered if and only if ψΓ ≤ ρ.
(2) If L2(Γ\G) is tempered, then

λ0(Γ\X) = ‖ρ‖2 and σ(Γ\X) = [‖ρ2,∞).

Proof. The second claim follows from Theorems 6.4 and 8.1. Suppose that
ψΓ ≤ ρ. In order to show that L2(Γ\G) is tempered, by Proposition 2.7, it
suffices to show that the matrix coefficients g 7→ 〈g.f1, f2〉 are in L2+ε(G) for
all ε > 0 and for all f1, f2 ∈ Cc(Γ\G), since Cc(Γ\G) is dense in L2(Γ\G).
Without loss of generality, we may just consider non-negative functions
f1, f2 ∈ Cc(Γ\G). Fix any ε > 0. Then using the Cartan decomposition
G = KA+K, we have∫

G
〈g.f1, f2〉2+ε dg =

∫
K

∫
a+

∫
K
〈k1 exp(v)k2.f1, f2〉2+ε Ξ(v) dk1 dv dk2,

where Ξ(v) � e2ρ(v) (cf. [24]). Denoting Fi(Γg) = maxk∈K fi(Γgk) ∈
Cc(Γ\G)K , we then have∫

G
〈g.f1, f2〉2+ε dg �

∫
a+

〈exp(v).F1, F2〉2+εe2ρ(v) dv.

Since ψΓ ≤ ρ, we have ρ ∈ DΓ. By Lemma 9.2, there exists 0 < c ≤ 1
such that cρ ∈ D?

Γ and a unit vector u0 ∈ intL such that

ψΓ(u0) = cρ(u0).

We now parameterize a+ as follows: for each v ∈ ker ρ, define

tv := min{t ∈ R>0 : tu0 +
√
tv ∈ a+}.

Substituting u = tu0 +
√
tv for t ≥ 0 and v ∈ b∩ker ρ gives du = s ·t

r−1
2 dt dv

for some constant s > 0. Then (letting r = dim(a))∫
a+

〈exp(u).F1, F2〉2+εe2ρ(u) du

�
∫

ker ρ

∫ ∞
tv

〈exp(tu0 +
√
tv).F1, F2〉2+εe2tρ(u0)t(r−1)/2 dt dv.

By Theorem 9.3, there exists C = C(F1, F2) > 0 such that

t(r−1)/2e(2−c)tρ(u0)〈exp(tu0 +
√
tv).F1, F2〉 ≤ C

for all (v, t) ∈ ker ρ× [tv,∞). Combining this with the trivial bound

〈g.F1, F2〉 ≤ ‖F1‖‖F2‖,
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we have (again, for all (v, t) ∈ ker ρ× [tv,∞)),

〈exp(tu0 +
√
tv).F1, F2〉2+ε

≤ (C + ‖F1|‖F2‖)2+ε
Ä
min
¶

1, t−(r−1)/2e−(2−c)tρ(u0)
©ä2+ε

� min{1, e−ηtρ(u0)} ≤ e−ηtρ(u0),

where η = (2− c)(2 + ε) > 2. This gives∫
G
〈g.f1, f2〉2+ε dg �

∫
v∈ker ρ

∫ ∞
tv

e−ηtρ(u0)e2tρ(u0)t(r−1)/2 dt dv

�
∫
a+

e−(η−2)ρ(u) du <∞.

Therefore L2(Γ\G) is tempered.
The converse holds for a general discrete subgroup. Suppose now that

L2(Γ\G) is tempered. Then by the definition of temperedness and the es-
timate of ΞG(g) in (2.9), it follows that for any ε > 0, there exists Cε > 0
such that for any f1, f2 ∈ L2(Γ\G)K and u ∈ a+,

|〈exp(u).f1, f2〉| ≤ Cε‖f1‖‖f2‖e−(1−ε)ρ(u). (9.1)

Applying [31, Prop. 7.3], we get ψΓ ≤ ρ. �

Now recall the following recent theorem of Kim, Minsky, and Oh [23]:

Theorem 9.5. [23] Let Γ be an Anosov subgroup of the product G of at least
two simple real algebraic groups or Γ < G = PSLd(R) be a Zariski dense
Anosov subgroup of a Hitchin subgroup. Then

ψΓ ≤ ρ.

Hence by Theorem 9.4, we get:

Corollary 9.6. Let Γ < G be as in Theorem 9.5. Then L2(Γ\G) is tem-
pered.

Proofs of Theorem 1.6. The equivalence (1)⇔ (2) is proved in Theorem
9.4. The equivalence (2) ⇔ (3) follows from Theorems 8.1 and 9.4. When
rank G ≥ 2, (4) holds for any Anosov subgroup by Corollary 7.2. When
rank G = 1, the implication (1) + (2)⇒ (4) is due to Sullivan [45] (see also
[42, Theorem 3.1]) when X is a real hyperbolic space and to [50, Theorem
1.1 and Proposition 5.1] in general.
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