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TEMPEREDNESS OF L?(I'\G) AND POSITIVE
EIGENFUNCTIONS IN HIGHER RANK.

SAM EDWARDS AND HEE OH

ABSTRACT. Let G = SO°(n,1) xSO°(n,1) and X = H" xH" for n > 2.
For a pair (71, m2) of non-elementary convex cocompact representations
of a finitely generated group X into SO°(n,1), let I' = (m1 X m2)(%).
Denoting the bottom of the L2-spectrum of the negative Laplacian on
I\ X by Ao, we show:

(1) L*(I'\G) is tempered and Ao = (n — 1)

(2) There exists no positive Laplace eigenfunction in L*(T'\X).
In fact, analogues of (1)-(2) hold for any Anosov subgroup I' in the
product of at least two simple algebraic groups of rank one as well as for
Hitchin subgroups I' < PSLg4(R), d > 3. Moreover, if G is a semisimple
real algebraic group of rank at least 2, then (2) holds for any Anosov
subgroup I' of G.
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Motivation and background. Locally symmetric spaces provide key ex-
amples of Riemannian manifolds for which there exist numerous tools for
studying various aspects of spectral geometry. For example, properties of dy-
namical systems related to the manifold are closely connected to the spectral
theory of the Laplace operator, as well as to representation theory. While
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the spectral theory of finite-volume locally symmetric spaces has been quite
extensively developed, the infinite volume setting provides many examples
of interesting phenomena that are less well understood. Nevertheless, for
rank one locally symmetric spaces of infinite volume, a number of key facts
about the spectrum have been established.

Let (H",d), n > 2, denote the n-dimensional hyperbolic space of constant
curvature —1, and let G = Isom™* (H") ~ SO°(n, 1) denote the group of all
orientation preserving isometries of H". Let I' < G be a torsion-free! discrete
subgroup. The critical exponent 0 < § = ér < n—1 is defined as the abscissa
of convergence of the Poincaré series Zwer e~5%70) for o € H™. We denote
by A the hyperbolic Laplacian and by A\g = A\o(I'\H") the bottom of the
L?-spectrum of the negative Laplace operator —A, which is given as

. fr e llgrad flI? dvol
o mf{ \f [fZdvol f e CE(\HY) (1.1)
\H"

(see [45, Theorem 2.2]). In a series of papers, Elstrodt ([11], [12], [13])
and Patterson ([33], [34], [35]) developed the relationship between § and Ao,

proving the following theorem for n = 2. The general case is due to Sullivan
[45, Theorem 2.21].

Theorem 1.1 (Generalized Elstrodt-Patterson I). For any discrete sub-
group I' < SO°(n, 1), the following are equivalent:

(1) 6 < 5(n—1);

(2) Ao =F(n—1)2

The right translation action of G on the quotient space I'\G equipped
with a G-invariant measure gives rise to a unitary representation of G on
the Hilbert space L?(I'\G), called a quasi-regular representation of G. If we
set K ~ SO(n) to be a maximal compact subgroup of G and identify H" with
G/K, the space of K-invariant functions of L?(I'\G) can be identified with
L*(T\H"). The bottom of the L?-spectrum g then provides information
on which complementary series representation of G can occur in L?(T\G).
Indeed, it follows from the classification of the unitary dual of SO°(n, 1) that
Ao = (n—1)2/4 is equivalent to saying that the quasi-regular representation
L?(I'\G) does not contain any complementary series representation (cf. [45],
[10]), which is again equivalent to the temperedness of L*>(I'\G). As first
introduced by Harish-Chandra [18], a unitary representation (mw,H,) of a
semisimple real algebraic group G is tempered (Definition 2.6) if all of its
matrix coefficients belong to L?*¢(G) for any € > 0, or, equivalently, if 7 is
weakly contained? in the regular representation L?(G) ([8], see Proposition
2.7).

Lall discrete subgroups in this paper will be assumed to be torsion-free
2ris weakly contained in a unitary representation o of G if any diagonal matrix coef-
ficients of 7 can be approximated, uniformly on compact sets, by convex combinations of

diagonal matrix coefficients of o.
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Therefore Theorem 1.1 can be rephrased as follows:

Theorem 1.2 (Generalized Elstrodt-Patterson II). For any discrete sub-
group I' < G = S0°(n, 1), the following are equivalent:
(2) LA(T\G) is tempered.

The size of the critical exponent ¢ is also related to the existence of a
square-integrable positive Laplace eigenfunction on I'\H". A discrete sub-
group I' < G is called convex cocompact if there exists a convex subspace
of H” on which I' acts co-compactly. For convex cocompact subgroups of
G (more generally for geometrically finite subgroups), Patterson and Sulli-
van showed the following using their theory of conformal measures on the
boundary OH™ ([36], [46], [45, Theorem 2.21]):

Theorem 1.3 (Sullivan). For a convex cocompact subgroup T' < SO°(n, 1),
the following are equivalent:

(1) 6 < 5(n—1);

(2) There exists no positive Laplace eigenfunction in L*(T\H").

Since )¢ divides the positive spectrum and the L?-spectrum on I'\H" by
Sullivan’s theorem [45, Theorem 2.1] (see Theorem 4.1), (2) is equivalent
to saying that any Agp-harmonic function (i.e., —Af = Agf) on T'\H" is not
square-integrable.

Main results. The main aim of this article is to discuss analogues of Theo-
rems 1.1, 1.2, and 1.3 for a certain class of discrete subgroups of a connected
semisimple real algebraic group of higher rank, i.e., rank at least 2.

We begin by describing a special case of our main theorem when G =
SO°(n1, 1) x SO°(ng, 1) with ny,ne > 2. Let X be the Riemannian product
H" x H™ and A the Laplace-Beltrami operator on X. For a torsion-free
discrete subgroup I' < G, a smooth function f on I'\ X is called A\-harmonic
if —Af = Af. The number Ay = \o(I"\X) is given in the same way as (1.1)
replacing I'\H" by I'\ X.

Theorem 1.4. Let
I'=(m xm)(X) ={(m1(0),m2(c)) € G:0 € X} (1.2)

where m; : X — SO°(n;, 1) is a non-elementary conver cocompact represen-
tation of a finitely generated group 3 for i =1,2. Then

(1) L3(T\G) is tempered and Ao = 1((n1 — 1)? + (ng — 1)?);

(2) There exists no positive Laplace eigenfunction in L*(T\X), or equiv-

alently, no Ag-harmonic function is square-integrable.

Remark 1.5. Theorem 1.4 does not hold for a general subgroup I' < G
of infinite co-volume. For example, if I' < SO°(n1,1) x SO°(ng,1) is the
product of two convex cocompact subgroups, each of which having criti-
cal exponent greater than %(n; — 1), then L?*(I'\G) is not tempered and
L?(I'\ X) possesses a positive Laplace eigenfunction.
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We now discuss a general setting. Let G be a connected semisimple real
algebraic group and X the associated Riemannian symmetric space. In the
rest of the introduction, we assume that I' < G is a torsion-free Zariski dense
discrete subgroup. We let ¢p : a - RU {—o00} denote the growth indicator
function of T as defined in (2.4), where a is the Lie algebra of a maximal
real split torus of G. The function Yr can be regarded as a higher rank
generalization of the critical exponent of I'. Let p denote the half sum of
all positive roots for (g, a), counted with multiplicity. Analogous to the fact
that the critical exponent ¢ is always bounded above by n — 1 for a discrete
subgroup I' < SO°(n, 1), we have the upper bound ¥r < 2p for any discrete
subgroup I' of G [40].

The following Theorem 1.6 generalizes Theorems 1.1, 1.2, and 1.3 to
Anosov subgroups of G (with respect to a minimal parabolic subgroup of
G) which are regarded as higher rank generalizations of convex cocompact
subgroups. For G = SO°(n1,1) x SO°(ng, 1), they are precisely given by the
class of subgroups considered in Theorem 1.4. We refer to Definition 2.4
for a general case. We mention that they were first introduced by Labourie
[27] for surface groups and then generalized by Guichard and Wienhard for
hyperbolic groups [17] (see also [16], [21]).

In the following theorem, the norm ||p|| is defined via the identification
a* and a using the Killing form on g. Denote by o(I'\X) the L?-spectrum
of —A on '\ X.

Theorem 1.6. Let G be a connected semisimple real algebraic group and I’
a Zariski dense Anosov subgroup of G. The following (1)-(3) are equivalent,
and imply (4):

(1) 1/11“ <p;

(2) LA(T\G) is tempered and \o(T\X) = ||p||?;

(3) L*(G) and L*(T\G) are weakly contained in each other and o(I'\ X) =

o(X) = [Ipl1%, o0);

(4) There erists no positive Laplace eigenfunction in L*(T\X).
Moreover, if rank G > 2, then (4) always holds for any Anosov subgroup
I'<aG.

Our proof of the implication (1) = (2) is based on the asymptotic behavior
of the Haar matrix coefficients for Anosov subgroups obtained in [9] and [6]
as well as Harish-Chandra’s Plancherel formula (see Theorems 6.4 and 9.4).
The implication (2) = (1) is true for a general discrete subgroup (see the
proof of Theorem 9.4). The equivalence (2) < (3) uses the observation that
L?(G) is weakly contained in L?(I'\G) whenever the injectivity radius of
I'\G is infinite, and that I'\G has infinite injectivity radius for any Anosov
subgroup I' < G, except for cocompact lattices of a rank one Lie group (see
Section 8). For (4), we first prove that any positive Laplace eigenfunction
in L2(T'\ X) is indeed a joint eigenfunction for the whole ring of G-invariant
differential operators, which then can be studied via I'-conformal measures
on the Furstenberg boundary of G (see Sections 3 and 6). We establish
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a higher rank version of Sullivan-Thurston’s smearing theorem (Theorem
7.4) from which we deduce the non-existence of square-integrable positive
Laplace eigenfunctions for any higher rank Anosov subgroup (see Section
7 and Corollary 7.2). When rank G = 1, Anosov subgroups are convex
cocompact groups and the implication (1) + (2) = (4) is obtained in [45]
(see also [42, Theorem 3.1]) for X = H" and in [50] in general.

Although the condition ¢r < p may appear quite strong, it was verified in
a recent work of Kim-Minsky-Oh [23] for Anosov subgroups in the following
setting, and hence we deduce from Theorem 1.6:

Theorem 1.7. Let I' be a Zariski dense Anosov subgroup of the product
of at least two simple real algebraic groups of rank one, or a Zariski dense
Anosov subgroup of a Hitchin subgroup of PSLy(R) for d > 3. Then (1)-(4)
of Theorem 1.6 hold.

It is conjectured in [23] that any Anosov subgroup of a higher rank
semisimple real algebraic group satisfies the condition ¢¥r < p. This con-
jecture suggests that Anosov subgroups in higher rank groups are more like
generalizations of convex cocompact subgroups of small critical exponent.

Groups of the second kind and positive joint eigenfunctions. For
any discrete subgroup I' which is not cocompact in G and for any A <
Ao(I'\ X)), Sullivan proved the existence of a positive A-harmonic function.
We prove a higher-rank strengthening of this result: for any discrete sub-
group of the second kind (see Definition 5.1) whose limit cone is contained
in the interior of a™ and for any linear form v > v, we construct a positive
joint eigenfunction with character corresponding to ¢ (Theorem 5.2).

Organization: In section 2, we review the basic notions and notations
which will be used throughout the paper. In section 3, we show that any
postive joint eigenfunction on I'\ X (i.e., an eigenfunction for the whole ring
of G-invariant differential operators) arises from a (I',)-conformal den-
sity (Proposition 3.7). In section 4, we compute the Laplace eigenvalue
of a positive joint eigenfunction associated to a (I, 1)-conformal measure
(Proposition 4.2). In section 5, we introduce the notion of subgroups of
the second kind. We then construct positive joint eigenfunctions for any
1 > 4r for any subgroup of the second kind with its limit cone contained
in int at U {0} (Theorem 5.2). In section 6, we compute the L2-spectrum of
X (Theorem 6.3) and show that Ao = ||p||? if L?(IT'\G) is tempered (The-
orem 6.4). We show that a positive Laplace eigenfunction in L?(I'\X) is
necessarily a joint eigenfunction (Corollary 6.6) and a spherical vector of a
unique irreducible subrepresentation of L?(I'\G) (Theorem 6.8). In section
7, we prove a higher rank version of Sullivan-Thurston’s smearing theorem
(Theorem 7.4) to obtain the non-existence theorem of L2-positive Laplace
eigenfunctions in higher rank. In section 8, we prove the weak containment
L*(G) oc L*(T'\G) for all Anosov subgroups I' in higher rank groups. In
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section 9, we prove the equivalence of the temperedness of L2(T'\G) and
tr < p (Theorem 9.4). We also deduce Theorem 1.6.

Acknowledgements: We would like to thank Marc Burger for bringing the
reference [45] to our attention. We would also like to thank Dick Canary,
Francois Labourie, Curt McMullen and Dennis Sullivan for useful conversa-
tions.

2. PRELIMINARIES AND NOTATIONS

Let G be a connected semisimple real algebraic group, i.e., the identity
component of the group of real points of a semisimple algebraic group defined
over R. Let I' < G be a torsion-free discrete subgroup. Let P be a minimal
parabolic subgroup of G with a fixed Langlands decomposition P = M AN
where A is a maximal real split torus of G, M is the maximal compact
subgroup of P, which commutes with A, and NV is the unipotent radical of
P. We denote by g, a,n respectively the Lie algebras of G, A, N. We fix a
positive Weyl chamber a™ C a so that n consists of positive root subspaces.
Let ¥ denote the set of all positive roots for (g, a™). We also write IT € XF
for the set of all simple roots. We denote by

pzéza

aext

the half sum of the positive roots for (g,a’), counted with multiplicity.
We denote by (-,-) and || - || the inner product and norm on g respectively,
induced from the Killing form: B(xz,y) = Tr(adz ad(y)) for z,y € g.

We fix a maximal compact subgroup K of GG so that the Cartan decompo-
sition G = K (exp a®™)K holds, that is, for any g € G, there exists a unique
element p(g) € a® such that g € K exp u(g)K. We call the map p: G — a™
the Cartan projection map.

The Riemannian symmetric space (X, d) can be identified with the quo-
tient space G/K with the metric d induced from (-,-). We denote by dvol
the Riemannian volume form on X or on I'\ X. We also use dx to denote this
volume form as well as the Haar measure on G, or on I'\G. In particular,
d(-,-) will denote both the left G-invariant Riemannian distance function on
X, as well as the left G-invariant and right K-invariant distance on G. We
set o = [K] € X. We then have ||u(g)| = d(go,0) for g € G. We do not
distinguish a function on X and a right K-invariant function on G.

Let wy € K be an element of the normalizer of A so that Ad,, a™ = —a™.
The opposition involution i : @ — a is defined by
i(u) = — Adyy(u) for all u € a. (2.1)

Let F := G/P denote the Furstenberg boundary of G. We define the
following visual maps G — F: for each g € G,

gt :=gPecF and g :=guwyP € F. (2.2)
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The unique open G-orbit F?) in F x F under the diagonal G-action is
given by:
FO =Get,e)={(¢",g)e Fx F:geG}.
Two points &,n in F are said to be in general position if (§,7n) € FO),
Conformal measures. Let G = KAN be the Iwasawa decomposition,

k : G = K the K-factor projection of this decomposition, and H : G — a
be the Iwasawa cocycle defined by the relation: for g € G,

g € r(g) exp (H(g))N.

Note that K acts transitively on F and K N P = M, and hence we may
identify F with K /M. The Iwasawa decomposition can be used to describe
both the action of G on F = K/M and the a-valued Busemann map as
follows: for all g € G and [k] € F with k € K,

g - [k = [(gk)],

and the a-valued Busemann map is defined by
Bix) (g(0), h(0)) = H(g7'k)—H(h 'k)€a forall g,heG.
We denote by a* = Homg(a,R) the space of all linear forms on a.

Definition 2.1. Let ¢ € a*.
(1) A finite Borel measure v, on F = K/M is said to be a (I',%)-

conformal measure (with respect to o = [K]) if for all v € I' and
§ = [k € K/M,
%(5) — e (Bet00) _ o~ (HOB).
Vo

or equivalently

dvo([K]) = (O qu (- k),

where 7,1,(Q) = v,(7 Q) for any Borel subset Q C F. Unless men-
tioned otherwise, all conformal measures in this paper are assumed
to be with respect to o.
(2) A collection {v, : x € X} of finite Borel measures on F is called a
(T, )-conformal density if for all z,y € X, £ € F and v €T,
dvy _ .
d—yy(f) = VBe@Y)  and  dy, = AV (z)- (2.3)
A (T, 4)-conformal measure v, defines a (I',%)-conformal density {v, :
x € X} by the formula:

A (€) = e—Tﬁ(ﬂg(Z’O))d,jo(g)’

and conversely any (I",)-conformal density {v,} is uniquely determined
by its member v, by (2.3). For this reason, by abuse of terminology, we
sometimes do not distinguish conformal measures and conformal densities.
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Growth indicator function. Let I' < G be a Zariski dense discrete sub-
group. Following Quint [40], let ¢r : a — R U {—o0} denote the growth
indicator function of I': for any non-zero v € a,

U (v) = o] inf e, 24)

where the infimum is over all open cones C containing v and 7¢ denotes the
abscissa of convergence of the series Zwel“, u(y)ec e st For v = 0, we let
1r(0) = 0. We note that ¢r does not change if we replace the norm || - || by
any other norm on a. For any discrete subgroup I' < GG, we have the upper
bound ¢r < 2p [40]. On the other hand, when I is of infinite co-volume in a
simple real algebraic group of rank at least 2, Quint deduced from [32] that
Yr < 2p — ng, where n¢g is the half sum of a maximal strongly orthogonal
subset of the root system of G ([41], see also [31, Theorem 7.1]).

Limit cone and limit set. The limit cone £ = Lr of T' is defined as the
asymptotic cone of u(T'), i.e.,

L= {limt;u(y;) €a’ :t; — 0,7 € T}

Benoist showed that for I' Zariski dense, £ is a convex cone with non-
empty interior [2]. Quint [40] showed that #r is a concave and upper-
semicontinuous function such that ¢r > 0 on £, ¢r > 0 on int £ and
Yr = —oo outside L.

For a sequence g; € G, we write g; — oo regularly if a(u(g;)) — oo for
all « € II. For g € G, we write g = r1(g)exp(u(g))r2(g) € KATK; if
w(g) € inta™, then [k1(g)] € K/M = F is well-defined.

Definition 2.2. A sequence p; € X is said to converge to £ € F and we
write lim; .o p; = £ if there exists a sequence g; — oo regularly in G with
pi = gi(0) and lim; o [k1(g:)] = €.

We denote by A C F the limit set of I', which is defined as
A ={lim~;(0) € F:v; €'} (2.5)
For I" < G Zariski dense, this is the unique I'-minimal subset of F ([2], [30]).

Tangent linear forms. We set
Dr={ye€a®:¢y>yYr}. (2.6)
A linear form 1 € a* is said to be tangent to ¢r at u € a if ¢» € Dr and
Y(u) = Yr(u). We denote by Dy the set of all linear forms tangent to r at
LNinta™, ie.,
Df := {4y € Dr : ¢(u) = ¢r(u) for some u € L Ninta™}. (2.7)
For I' < SO°(n,1) and ¢ its critical exponent, we have Df = {0} and
Dr ={s > d}.
Extending the construction of Patterson [36] and Sullivan [44], Quint [39]
showed the following;:
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Theorem 2.3. For any v € Dy, there exists a (I',v)-conformal measure
supported on A.

Anosov subgroups. Let ¥ be a finitely generated group. For o € ¥, let
|o| denote the word length of o for some fixed symmetric generating set of
3.

Definition 2.4. ([17], [21], [16], [3]) A representation 7 : ¥ — G is Anosov
with respect to P if there exist a constant ¢ > 0 such that for all ¢ € ¥ and
«a € 11,

a(u(n(a))) = clo| - (2.8)

A discrete subgroup I' < G is called an Anosov subgroup (with respect
to P) if I" can be realized as the image 7(X) of an Anosov representation
m:X — G. If I' = n(¥) is Anosov, then ¥ is a Gromov hyperbolic group
([21], [3]). As mentioned in the introduction, Anosov subgroups of G were
first introduced by Labourie for surface groups [27], and then extended by
Guichard and Wienhard [17] to general word hyperbolic groups. Several
equivalent characterizations have been established, one of which is the above
definition (see [16], [21]). When G has rank one, the class of Anosov sub-
groups coincides with that of convex cocompact subgroups, and when G is
a product of two rank one simple algebraic groups, any Anosov subgroup
arises in a similar fashion to (1.2). Examples of Anosov subgroups include
Schottky groups (cf. [9, Def. 7.1]), as well as Hitchin subgroups defined as
follows. Let ¢4 denote the irreducible representation PSLa(R) — PSL4(R),
which is unique up to conjugations. A Hitchin subgroup is the image of a
representation 7 : ¥ — PSL4(R) of a uniform lattice ¥ < PSLa(R), which
belongs to the same connected component as ¢4|¥ in the character variety
Hom(X, PSL4(R))/ ~ where the equivalence is given by conjugations.

One of the important features of an Anosov subgroup is the following:
Theorem 2.5. [38] For any Anosov subgroup I' < G, we have
L Cinta™ U {0}.

Tempered representations. By definition, a unitary representation of G
is a Hilbert space H, equipped with a strongly continuous homomorphism
7w from G to the group of unitary operators on H,. Given two unitary
representations m and ¢ of G, 7 is said to be weakly contained in o if any
diagonal matrix coefficients of 7 can be approximated, uniformly on compact
sets, by convex combinations of diagonal matrix coefficients of 0. We use
the notation m o for the weak containment.

The Harish-Chandra function E¢g : G — (0, 00) is a bi-K-invariant func-
tion defined via the formula

Zalg) = / e PHGR L for all g € G
K
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where dk denotes the probability Haar measure on K. The following esti-
mate is well-known, cf. e.g. [24]: for any € > 0, there exist C,C. > 0 such
that for any ¢ € G,

CeP9)) < 2 (g) < Coe~ (1-9)0(19), (2.9)

Definition 2.6. A unitary representation (7, H,) of G is called tempered if
for any K-finite unit vectors v, w € H, and any g € G,

[(m(9)v, w)| < (dim(Kv) dim(Kw))!/*Za(g),
where (Kv) denotes the linear subspace of H, spanned by Kwv.

Proposition 2.7. [8] The following are equivalent for a unitary represen-
tation (m,Hy) of G:
(1) 7 is tempered;
(2) ™ ox L*(G);
(3) for any vectors v,w € Hy, the matriz coefficient g — (w(g)v,w) lies
in L?>T¢(G) for any e > 0;
(4) for any € > 0, 7 is strongly L*>*¢, i.e., there exists a dense subset of
Hr whose matriz coefficients all belong to L**¢(G).

In the whole paper, the notation f(v) =< g(v) means that the ratio
f(w)/g(v) is bounded uniformly between two positive constants, and f < g
means that | f| < ¢|g| for some ¢ > 0.

3. POSITIVE JOINT EIGENFUNCTIONS AND CONFORMAL DENSITIES

Let G be a connected semisimple real algebraic group and I' < G be a
Zariski dense discrete subgroup. The main goal of this section is to obtain
Proposition 3.7, which explains the relationship between positive joint eigen-
functions on I'\ X and I'-conformal measures on the Furstenberg boundary
of G.

Joint eigenfunctions on X. Let D = D(X) denote the ring of all G-
invariant differential operators on X. We call a real valued function on X a
joint eigenfunction if it is an eigenfunction for all operators in D. For each
joint eigenfunction f, there exists an associated character x; : D — R such
that
Df =xs;(D)f

for all elements D € D. The ring D is generated by rank(G) elements, and
the set of all characters of D is in bijection with the space a* = Hompg(a,R)
modulo the action of the Weyl group, as we now explain. Denote by Z(gc)
the center of the universal enveloping algebra U(gc) of gc. Recall the well-
known fact that the joint eigenfunctions on X can be identified with the
right K-invariant real-valued Z(gc)-eigenfunctions on G (cf. [19]).

Letting 7" be a maximal torus in M with Lie algebra t, set h = (a @ t).
Then he := (a @ t)c is a Cartan subalgebra of gc. We let

v Z(gc) = SV (he)
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denote the Harish-Chandra isomorphism from Z(gc) to the Weyl group-
invariant elements of the symmetric algebra S(hc) of hc [24, Theorem 8.18].
For any 1 € a*, we can extend it to h by letting ¢(J) = 0 for all J € m,
and then to S(hc) polynomially. This lets us define a character x,, on Z(gc)
by
Xo(Z) = T/)(L(Z)) (3.1)
forall Z € Z(gc). Conversely, if f is aright K-invariant Z(gc)-eigenfunction,
then, since t acts trivially on f, the associated character x; must arise as
1 o ¢ for some ¢ € a*.

Example 3.1. e Consider the hyperbolic space H" = {(z1,- -+ ,Zp_1,Yy) €
R™ : y > 0} with the metric —sz'gllytw
H" is given as A = —y2(3 17} ;—;? + 88722) +(n— 2)ya% and the ring
of SO°(n, 1)-invariant differential operators is generated by A, i.e.,
a polynomial in A. If ¢ € a* is given by 1 (v) = dv for some § € R
under the isomorphism a =R, then xy(—A) =d(n — 1 —9).

e Let G =S0°(ng, 1) x SO°(ng, 1) and X be the Riemannian product
H™ x H"2 for ny,ne > 2. Then D(X) is generated by the hyperbolic
Laplacians A1, As on each factor H™ and H"2. If we identify a with
R? and if a linear form v € a* is given by % (v) = (v, (61,82)) for
some vector (01, d02) € R%, then yu(—A4;) = &;(n; —1-6;) fori = 1,2.

. The Laplacian A on

Joint eigenfunctions on I'\X. We now consider joint eigenfunctions on
I\ X or, equivalently, I'-invariant joint eigenfunctions on X.

Definition 3.2. Let ¢ € a*. Associated to a (I, ¢)-conformal density v =
{vy : x € X} on F, we define the following function E, on G: for g € G,

Bu(g) = vyo)| = jf et (HG™D) gy, (k). (3.2)

]:

Since |vy(y)| = [vz| for all vy € T" and = € X, the left T-invariance and right
K-invariance of F, are clear. Hence we may consider E), as a K-invariant
function on I'\G, or, equivalently, as a function on I'\ X.

Proposition 3.3. For each (T, )-conformal density v on F, E, is a posi-
tive joint eigenfunction on I'\X with character x,—,. Conversely, any pos-
itive joint eigenfunction on T'\X arises in this way for some ¥ > p and a
(T, 9)-conformal density v with (1, v) uniquely determined.

In order to prove this proposition, we consider the following right K-
invariant function on G for each ¢ € a* and h € G:

punlg) = e P HEW) (3.3)
so that

@@zﬁwmmmm»
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We may also consider ¢y, as a function on X. Hence the first part of
Proposition 3.3 is a consequence of the following:

Lemma 3.4. (|24, Propositions 8.22 and 9.9]) For any ¢ € a* and h € G,
the function @y, 1s a joint eigenfunction on X with character x.,—,.

Proof. While we refer to [24] for the full proof, we outline some of the key
points below, as we will use some part of this proof later. Since the elements
of Z(gc) commute with translation, we simply need to prove that

[Zoyp.el(e) = Xup—p(Z)pyele) for any Z € Z(gc);
the same identity will then hold for the function g — ¢y (h™1g), and thus
also for ¢y, p, for any h € G. Following [24, Chapter VII], we define the (non-
unitary) principal series representation U¥: for all g € G and f € C(K)

_ -1 _
U (@)f1() = e (1) £ (g1 1)
for all k € K. This extends to a representation dU" of U(gc) on the right
M-invariant functions in C*°(K) by way of the formula
¥ d ¥
[AUY(X) f](k) = pn [UY (exp(tX)) f](k) for any X € g.
t=0

Observe that [Zpy ](e) = [dUY(Z)1](e), so in order to prove the proposi-
tion, it suffices to show that dU¥(Z) = xy_,(Z) for all Z € Z(gc).
The next key observation is that
Z(gc) C U(be) © nlU(ge).

We thus write
Z=Y+)Y XU,
7

where Y € U(hc), X; € n, and U; € U(gce). Note that in this decomposition,
Y is uniquely defined. Now, for arbitrary X € n and f,

[dU¥(X) f(e) = jtt:O [0 (exp(tX)) fl(e) = % . [UY (exp(tX)) f](e)
d - exp(—t _ d _
=l ¢ O (HEew(tXD) ¢ (4 (exp(—£X))) = G fo=0

so applying this to the X; and functions dU¥(U;) f gives
[dU™ (X;U3) f(e) = [dU (X,) (dU¥ (U3) f)](e) = 0,

hence [dUY(Z)f](e) = [dU¥(Y)f](e). For L € m, we have f(exp(—L)) =
f(e), so [dU¥(J)f](e) = 0 for all J € t. Thus, it is only the a component of
Y that contributes to [dU¥(Y)f](e). Finally, note that for X € a, we have
d
dt
d
dt

o (H(exp(~tX))) f (r(exp(—tX)))
t=0

[AU¥ (X) f](e) =

t=0
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Since the Harish-Chandra isomorphism consists of projection onto U (hc)
and then composition with the “-shift” H — H + §(H)1 = H + p(H)1,
where § € b¢ is the half-sum of the positive roots for gc, this shows that
AU(Z) = Xp-p(2). O

Letting h = kan € KAN, we see that for any g € G,

ponl) = e (H6) _ (i) _ o(116710) - ),

Le., the function ¢y p, is a scalar multiple of ¢y ). In fact, the functions
Yy, k € K form a complete set of minimal positive joint eigenfunctions
with character x,_, with ¢» > p, in the sense that if f is a positive joint
eigenfunction on X with character x_, such that f < ¢y for some k € K,
then

f=c opk
for some ¢ > 0 (cf. [15, 22], see also [27, Theorem 1]).
As a consequence, we have the following (cf. [27, Theorem 3]):

Theorem 3.5. For any positive joint eigenfunction f on X, there exist
Y € a* with ¥ > p and a Borel measure v, on F = K/M such that for all
g€@G,

1l6) = [ ovsla) dvof(8).
Moreover, the pair (1, v,) is uniquely determined by f.

Proof of the second part of Proposition 3.3: Let f be a I'-invariant
joint eigenfunction on X. By Theorem 3.5, there exist unique ¢ € a* and a
Borel measure v, on F so that for all g € G,

f(g) = /f () dvo([R]).

Since f is I-invariant, for any v € I,

£(9) = f(rg) = /f o (19) dvo([H])

N /f%,n(vlm (g) e~ (HOT0) gy, (k)

- /f%,z(g) e (1OR) g, (y - R).

By the uniqueness of v, in the integral representation of f,
dvo([k]) = (100 duy( - (1),
Hence v = {v, } is a (', ¢)-conformal density on F, finishing the proof.

We denote by ¥r : a - RU {—o0} the growth indicator function of I" as
defined in (2.4).
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Theorem 3.6. [39, Theorem 8.1]. Let I' < G be Zariski dense. If there
exists a (I',1)-conformal measure on F for some 1p € a*, then

> r.
Therefore Proposition 3.3 and Theorem 3.6 yield the following;:

Proposition 3.7. Let I' < G be a Zariski dense discrete subgroup. If v
is a (T',v)-conformal density for some ¢ € a*, then E, is a positive joint
eigenfunction on T\X with character xy—,. Conversely, any positive joint
eigenfunction on T\X is of the form E, for some (I, 4)-conformal density
v with ¢ > max(p, Yr), where (1, v) is uniquely determined.

4. EIGENVALUES OF POSITIVE EIGENFUNCTIONS

Let I' be a torsion-free discrete subgroup of a connected semisimple real
algebraic group GG. Let A denote the Laplace-Beltrami operator on X or on
M\ X. Since A is an elliptic differential operator, an eigenfunction is always
smooth. We call a smooth function A-harmonic if

—Af =\

Let C € Z(gc) denote the Casimir operator on C*°(G) (or on C*°(I'\G))
whose restriction to K-invariant functions coincides with A. Then K-
invariant C-eigenfunctions on I'\G correspond to Laplace eigenfunctions on

M\ X. In particular, a joint eigenfunction of I'\ X is a Laplace eigenfunction.
Define the real number \g = \o(T'\X) € [0, 00) as follows:

grad f||? dvol
Ao = inf Jrx | . |
fF\X\f| dvol

Positive Laplace eigenfunctions.

. f e C®(I\X), f%o}. (4.1)

Theorem 4.1. [45, Theorem 2.1, 2.2] Suppose that I'\X is not compact.

(1) For any X < )Xo, there exists a positive \-harmonic function on I'\ X;
(2) For any A > Ao, there is no positive A\-harmonic function on I'\ X .

We identity a* with a via the inner product on a induced by the Killing
form on g. This endows an inner product on a*. More precisely, for each
Y € a*, there exist a unique vy € a such that ¢ = (vy, ). Then (1, 19) =
(U, Uy ). Equivalently, fixing an orthonormal basis {H;} of a, we have
(b1, v2) = > 1 (Hi)po (Hi).

For ¢ € a*, we set
Ao = (llll? = 1o = ol?). (4.2)

Proposition 4.2. (1) A positive joint eigenfunction on X with charac-
ter Xy—p, ¥ € a*, is Ay-harmonic.
(2) A positive Laplace eigenfunction on X is Ay-harmonic for some 1) €
a® with ¥ > p.
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Proof. Let 1 € a*. Recall the functions ¢y 4 in (3.3). By Theorem 3.5, (1)
follows if we show that for any h € G,

—Cgozp,h = )\wng,h. (4.3)

Let {H;} be an orthonormal basis of a. To each a € X, let H, € a be the
unique vector such that o(z) = B(x, H,) = (z, H,) for all € a, and choose
a unit root vector E, € n so that [z, E,] = a(z)E, for all x € a. We may
write

C=Y H}+ > (BaB-o+E_oE)+J,

aext

where J € U(m¢) (cf. [25, Proposition 5.28]). Now using E_,F, = EoF_o—

H, gives
C=> H}— > Hy+ Y 2EE o+
7

aeXt aext

As in the proof of Lemma 3.4, [Jpy p](e) = 0, and [EqE_qpy.p|(e) = 0.
Applying —C to ¢y p gives

~Coun=—| D_V(H)* = > (Ha) | pun

aext
= — (1%l = 2(p, %)) py.n
= (lol* = Il = plI*) @y,

proving (4.3). Let f be a positive Ad-harmonic function on X, which we
consider as a K-invariant function on G. By [27, Theorem 2|, f is of the
form: for any g € G,

flg) = oyk(g) du((k], )

/K/Mx{qup:/\w:,\}
for some Borel measure p on K/M x {1 > p : Ay, = A}. By (4.3), this
implies (2). O

Corollary 4.3. For any Zariski dense discrete subgroup I' < G,
sup{Ay : ¥ € Df} < Ao.

Proof. If T' is cocompact in G, then ¢r = 2p and hence D} = {2p}. Since
Ao = 0 = Ay, in this case, the claim follows. In general, it follows from
Theorem 2.3 and Proposition 3.7 that for any i) € Dy, there exists a positive
joint eigenfunction on I'\X with character x,_,. Hence the claim for the

case when I is not cocompact in G follows from Theorem 4.1 and Proposition
4.2. O
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5. GROUPS OF THE SECOND KIND AND POSITIVE JOINT EIGENFUNCTIONS

When G has rank one (in which case the Furstenberg boundary is same
as the geometric boundary of X), a discrete subgroup I' < G is said to be of
the second kind if A # F. We extend this definition to higher rank groups
as follows:

Definition 5.1. A discrete subgroup I' < G is of the second kind if there
exists & € F which is in general position with all points of A, i.e., ({,A) C
F@),

Theorem 4.1 provides a positive A-harmonic function for any A < Ay, when
I\ X is not compact. The following theorem can be viewed as a higher rank
strengthening of this result.

Theorem 5.2. Let I' < G be of the second kind with £ C inta™ U {0}.
For any v € Dr, there exists a positive joint eigenfunction on I'\X with
character xy—p.

By Proposition 3.7, we get the following immediate corollary:

Corollary 5.3. Let I' < G be of the second kind with £ C intat U {0}.
Then for any 1 > max(yr, p), there exists a (I',)-conformal density.

Remark 5.4. (1) Let T9 < G be an Anosov subgroup. Then any
Anosov subgroup I' < I'g with Ar, # Ar is of the second kind.
To see this, choose any ¢ € Ar, — Ar, and note that (Ar,¢) ¢ F®),
since any two distinct points of Ar, are in general position by the
Anosov assumption on I'g.

(2) If A € gNwgP for some g € G, then (A,g7) ¢ F®. One can
construct many Schottky groups with A C NwgP, which would then
be of the second kind.

(3) Let G = Hle G, be a product of simple algebraic groups G; of rank
one. Then F =[], F; where F; = G;/P;. Let m; : F — F; denote
the canonical projection. Then any discrete subgroup I' < G such
that m;(A) # F; for all 7 is of the second kind. To see this, it suffices
to note that (A, &) € F@ for any € = (&); € F with & € Fj —m;(A).

(4) The well-known properties of the limit set of a Hitchin subgroup
of PSLy(R) imply that Hitchin groups are not of the second kind
for any even d > 4 or d = 3; we thank Canary and Labourie for
communicating this with us.

For g € X and r > 0, we set
B(q,r) ={z € X : d(z,q) <r}.
For p = g(0) € X, the shadow of the ball B(q,r) viewed from p is defined as
O,r(p,q) :={(gk)" € F: k€ K, gkint AToN B(q,r) # 0}.
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Similarly, for £ € F, the shadow of the ball B(q,r) viewed from & is
defined by

O,(&,q) :={ht € F: h € G satisfies h~ =€, ho € B(q,7)}.
We will use the following shadow lemma to prove Theorem 5.2:

Lemma 5.5. [30, Lemma 5.6, 5.7]

(1) If a sequence q; € X converges ton € F, then for any g€ X, r >0
and € > 0,

Or—c(gi»q) C Or(n,q) C Orye(qi, q)

for all sufficiently large i.
(2) There ezists k > 0 such that for any g € G and r > 0,

sup [|Be(9(0), 0) — u(g™ )| < wr.
£€0r(g(0),0)

Lemma 5.6. If £ C intat U{0}, then the union I'(0) UA is compact in the

topology given in Definition 2.2.

Proof. The hypothesis implies that any sequence ; — oo in I' tends to oo
regularly, and hence has a limit in F. Moreover the limit belongs to A by
its definition. O

Lemma 5.7. Suppose that L C inta™ U{0}. If £ € F satisfies that (§,A) C
F@ | then there exists R > 0 such that

¢ € () Or(3(0), 0).

yel

Proof. We first claim that £ € (1,5 Or(n,0) for some R > 0. Note that
limp o0 Or(n,0) = {z € F : (2,n) € FA}. Hence for each € A, we have

R, :=inf{R+1:{ € Or(n,0)} < cc.

It suffices to show that R := sup,c, R; < co. Suppose not; then R, — oo
for some sequence {n;} C A. By passing to a subsequence if necessary, we
may assume that the 7; converge to some 7. From this it follows that
ORr,+1(n,0) C Og,12(m,0) for all sufficiently large i. Therefore R,, <
R, + 3, yielding a contradiction.

We now claim that £ € ﬂveF Og/(v0,0) for some R’ > 0. Suppose
not; then there exist sequences v; — oo in I' and R; — oo such that
¢ ¢ Og,(7i0,0). By Lemma 5.6, after passing to a subsequence, we may
assume that v;(o) converges to some 1 € A. By the first claim, we have
¢ € Ogr(n,0). By Lemma 5.5, we have £ € Or(n,0) C Ogr41(7i(0),0) for all
sufficiently large ¢. This is a contradiction, since for ¢ large enough so that
R; > R+ 1, we have £ ¢ Op41(7i(0),0). This proves the claim. O

As an immediate corollary of Lemmas 5.5 and 5.7, we obtain:
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Corollary 5.8. If £ C intat U {0} and ¢ € F satisfies that (£,A) C F?),
then

sup [|8¢(v "0, 0) — p(7)] < o0.

el

Proof of Theorem 5.2: If ¢ € Dy, this follows from Theorem 2.3. Hence
we assume ¢ € Dr — Dy; this implies that

Ze—w(m)) < 00 (5.1)
~yel

by [40, Lem. III. 1.3]. AsT is of the second kind, there exists £ € F such that
(€,n) € FO for all n € A. By Corollary 5.8, we have supcr ||Be (710, 0) —
wu(y)|] < oo. Therefore (5.1) implies that

Ze_w(55(7_10’0)) < 0. (5.2)
yer

For any fixed z € X, we have B¢(y " 1z,0) = Be(v10,0) + By¢(x,0) and

|By¢(z,0)|| < d(x,0). Hence e~ (8e7100) = =) with implied con-
stant uniform for all v € T".
Therefore, by (5.1) the following function Fy, ¢ on X is well-defined:

Fye(x Ze (Be(r™'w0)  for g € X (5.3)
yel’

If we write § = [ko] € K/M = F, then for any g € G,
Be(v ™ g0, 0) = Bur(ky 'y g0,0) = H(g™ "vko)
and hence e ¥(F(171900)) — O vko (9). Therefore
Fw’g = Z SDT/’:’Y’CO'
vyel

It now follows from Lemma 2.2 that Fy¢ is a positive I'-invariant joint
eigenfunction on X with eigenvalue xy_,. This finishes the proof.

Remark 5.9. In the above proof, for any ¥ € Dr — Df and any { € F
with (A,§) C F (2)| we have constructed a positive joint eigenfunction Fy¢
on I'\ X of eigenvalue xy_,.

Hence we get the following strengthened version of Corollary 4.3:
Corollary 5.10. IfT' < G is of the second kind with £ C inta* U{0}, then
sup{Ay 19 € Dr} < Ao. (5.4)

If T' < SO°(n, 1) is a discrete subgroup with A # JH", we have equality
n (5.4), as was proved by Sullivan [45, Theorem 2.17].
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6. THE L2-SPECTRUM AND UNIQUENESS

Let I' be a torsion-free discrete subgroup of a connected semisimple real
algebraic group G. The space L?(I'\X) consists of square-integrable func-
tions together with the inner product (fi, fo) = fI‘\X f1fodvol.

Let WH(I'\X) C L?(I'\X) denote the closure of C2°(T'\ X) with respect
to the norm || - ||y induced by the inner product

(f1, f)wn = /1“\)( fif dv01—|—/F\X<gradf1,gradf2>dVOl

for any f1, fo € WHI\X).

As T'\X is complete, there exists a unique self-adjoint operator on the
space W'\ X) extending the Laplacian A on C°(I'\X), which we also
denote by A. The L?-spectrum of —A, which we denote by

o(IX),
is the set of all A € C such that A + A does not have a bounded inverse
(A+ N1 2T\ X) — WHT\X). The self-adjointness of A and the fact
that (—Af, f) = [y [lgrad f||*dvol for all f € C*(I'\X) imply o(I'\X) C
[0, 00).

We will be using Weyl’s criterion to determine o(I'\ X):

Theorem 6.1. (c¢f. [48, Lemma 2.17]) For A\ € R, we have A € o(I'\X) if
and only if there exists a sequence of unit vectors F, € W1(I'\X) such that

Tim [[(A+ N Fy | = 0.
The number A9 = Ag(I'\X) defined in (4.1) is the bottom of the L2-
spectrum o (I'\ X):
Theorem 6.2. [45, Theorem 2.1, 2.2] We have
Ao € o(T\X) C [Ag, 00).

Using Harish-Chandra’s Plancherel formula, we can identify A\o(X) and
o(X) for the symmetric space X = G/K:

Proposition 6.3. We have \o(X) = ||p||? and o(X) = [||p||?, 00).

Proof. 1t is shown in [22] that there are no positive Laplace eigenfunctions on
X with eigenvalue strictly bigger than ||p||?; hence the inequality Ao(X) <
|pl|? follows from Theorem 4.1 for I' = {e}. On the other hand, as seen in
the proof of (1), ¢, is a positive | p|*-harmonic function (for any h € G),
hence A\o(X) = |/p||*> by Theorem 4.1. We now deduce the second claim
a(X) = [||p||?, 00) from Harish-Chandra’s Plancherel theorem (cf. e.g. [43]).
For ¢ € a*, define &, € C*(K\G/K) by

Py (9) :/KSOerz’w,k(g) dk.
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where @, ipx(g) = o~ (P+iY) (H(g’lk))_
Then by the same computation as (4.3), we have
—CPy = —Ay = (|lp|* + [V[*) Dy
Given any f € C°(a*), we can define a function F € L?(X) by the

formula p
)= [ 1092606 i

here di) denotes the Lebesgue measure on a* and c(¢) denotes the Harish-
Chandra c-function. The Plancherel formula says

d
IF e = [ £ o

(see [43]). Let A € [||p||?,00) be any number. Choose 1y € a* so that
A = |lpll® + ||ol/?>. We then choose a sequence of non-negative functions
{fn} - Cgo(a*) with supp fn - Bl/n(wO) and ||FnHL2(X) =1

Then

_dy
A+NF, = | fa(¥)(A
dy
—1lpll? = N .
/ Fal) (= ol® = 1912)2u(0)
This gives
dy
I8+ N Elace = [ 10101 = 1P £l 05
2 _ 2|2
< e sl = P

Consequently,
lim H(A + )\)FHHLZ(X) = 0.
n—oo

By Weyl’s criterion (Theorem 6.1), this implies that A € ¢(X). This proves
the claim. O

Theorem 6.4. If L*>(I'\G) is tempered, then
Mo(T\X) = [lplf*.

Proof. Note that A\g = M\o(I'\X) < Ao(X) = ||p/|> by Proposition 6.3. As-
sume that \g < ||p||?>. By Theorem 6.1, we can then find a K-invariant unit
vector f € L?(T'\G)g such that

2
- A
(A — ) < 1A= 20

This gives

1A= IAFIF < (A = Ao)fll + Ao <
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On the other hand, consider the direct integral representation of L?(T'\G) =

fz@ (¢, He) dp(€) into irreducible unitary representations of G which are

tempered, by the hypothesis on the temperedness of L?(I'\G). Hence
les? = [ldm@selzaue) = (| v 1dn(O)F).

7 spherical tempered

where dr denotes the derived representation of U(gc) induced by 7. By
Schur’s lemma, there exists a character x, of Z(gc) such that dn(Z) =
X=(Z) for all Z € Z(gc). Moreover, for any spherical 7, there exists ¥r € af
such that xr = xy, (cf. (3.1)). Now, by Harish-Chandra’s Plancherel
formula (cf. e.g. [20]), for any tempered spherical representation, we have

% =p+1 Im(%),
where Im(¢);) € a*. As in the proof of Proposition 6.3, we then obtain

X (=C) = [Ipll* + [ Tm(yr) |-
Thus for any spherical tempered representation (w,H), we have dr(C) €
o(X) and hence, by Proposition 6.3,
min |dr(C)] = Il

7 spherical tempered

giving a contradiction. ([l

Theorem 6.5. [45, Theorem 2.8 and Corollary 2.9]
(1) Any positive Laplace eigenfunction in L?(T'\X) is Ao-harmonic.
(2) If there exists a \o-harmonic function in L*(T\X), then the space
of Ao-harmonic functions in T'\X is one-dimensional and generated
by a positive function.

Proof. Sullivan’s proof in [45] uses the heat operator and superharmonic
functions. We provide a more direct proof here.

Note that if f € L2(T'\X) N C>®(I'\X) is a real-valued A-harmonic func-
tion, then f € W1(I'\X), since

/ ngadf||2dv01:—/ fAfdvol = A f2dvol.
\X r\X r\X
The key fact for us is that Ay may also be expressed as an infimum over
real-valued functions in W(I'\ X); for f # 0 in W(T'\ X), define R(f) by
1135
=——"——-1>0
I1f1I

where || - || denotes the L?(I'\X) norm. For any f # 0 € W!(I'\X), and all
© with || f — ¢|ly1 small enough, we have

R(f)

lellwr —IIf = ellwe R(f) < lellwr + I1f = ellwe
el +11f = ellws lell = 1If = ellws

7]_’
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ie. f > R(f) is continuous at each f # 0 € W(I'\X). The density of
C®(T\X) in WHT'\X) then gives

= inf  R(f)= inf R(f)
0= recl g BU) = it ) BU)
F#0 F#0

Now suppose that ¢ € L?(T'\X) is a positive A-harmonic function; so
¢ € WHI\X). We claim that A\ = \g. By Green’s identity, we have

fr\x lgrad ¢||* d vol fF\X d(—A¢) dvol
Yo = HHO) = fF\X |¢|? dvol N fF\X |¢|2 d vol -

(cf. Proposition 4.2). On the other hand, since ¢ > 0, we have that for any
p € C2(I\X),

fF\X llgrad ¢l d vol B fF\X ||lgrad (QS . %)Hdeol
fF\X lo|2 d vol fF\X |o|2 d vol
By Barta’s identity [1],

/ ngad((z;-g)n?dvol:/ ¢2||gradg;|y‘2dvol—/ (2)*6Ad dvol,
X X X

SO

/ ||gradcp||2dv012/ (Z)ng(—Agb)dvol:)\/@?dvol,
INDe X

i.e.
fF\X |lgrad ¢l d vol
fF\X |p|? dvol

showing that A\g > A. Hence A = ).

In order to prove (2), we first claim that f € W1(I'\ X) satisfies —Af =
Xof if and only if R(f) = A\g. Suppose that R(f) = Ag. We will then show
that for any ¢ € C°(I'\X), we have

this implies that f is Ag-harmonic. Let ¢ € C°(I'\X). Since R(f) = Ao, f
minimizes R. So for any ¢ € C°(I'\X), the function F' : R — R>( defined
by F(z) = R(f 4+ x¢) has a local minimum at x = 0, hence F’(0) = 0. Now
computing F’(0) gives

A<

2(f, olwrll£11? = 2{f, @)1 £ 1IF
LA

From R(f) = Ao, we obtain [|f[|%,, = (Ao + 1)[|f[|?, which, when entered
into the identity above, gives

(fso)wr = Qo+ 1)(f,9). (6.2)

=0.

F(0) =
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Letting {f;}ien C C°(I'\X) be a sequence converging to f in W1(I'\X),
Green’s identity again gives

(f, @hwr = lim (fir @)y = lim / fip + (grad f;, grad @) dvol
71— 00 1— 00 F\X

= lim fio + fi(=Ap)dvol = (f,¢) + (f,—Ap).  (6.3)
1—00 F\X
Combined with (6.2), this gives (f, —Ap) = Ao(f, ¢) as in (6.1).
Conversely, if f € WY(I'\X) satisfies —Af = Aof, then for any ¢ €
C(I'\X), we have (as in (6.3))

(froywr = (f,0) + (f, =Ap) = (Mo + 1)(f, ¥),

hence

IfIlf = sup  (fioywr = sup o+ 1){f,0) = (Ao +DIfII*
peC(T\X) PeC(T\X)
giving R(f) = A\o. This proves the claim.

Let f € WY\ X)NC>®(I'\X) now be a real-valued \g-harmonic function.
Then |f| € WYT\X) and R(|f]) = Ao. As shown above, |f| is also a Ag-
harmonic function. Hence either f is a constant multiple of |f| or f must
change sign at some point g, hence |f(z)| > |f(zo)| = 0 for all z € T'\ X.
However, since A|f| = —Xo|f| < 0, the strong minimum principle (cf. e.g.
[37, Theorem 66, p. 280]) gives that if |f| attains its infimum, then |f] is
in fact constant (in this case equal to zero). We therefore conclude that
any Ao-harmonic function in L?(I'\X) is a constant multiple of a positive
function. This then implies that the space of A\g-harmonic functions must
be one-dimensional as two positive functions cannot be orthogonal to each
other. ]

The uniqueness in the above theorem has the following implications for
joint eigenfunctions:

Corollary 6.6. (1) There exists at most one positive joint eigenfunc-
tion in L*>(T\X) up to a constant multiple.
(2) If there exists a positive joint eigenfunction in L?(T'\X) with char-
acter Xy—p, ¥ € a*, then

Ao = Ay

(3) There exists a positive Laplace eigenfunction in L*>(T\X) if and only
if there exists a positive joint eigenfunction in L?(\X) of character
X—p with )\¢ = )\0.

Proof. We only need to verify the third claim. Suppose that ¢ € L?(I'\ X) is
a postive Laplace eigenfunction. Via the identification L?(T'\X) = L*(I'\G)x,
we may consider ¢ € L?(I'\G)k as a positive C-eigenfunction for the Casimir
operator C. By Theorem 6.5, Co = —X\g¢pp. Let D € Z(gc). Then Co D¢ =
D oC¢p = —AgD¢. By the uniqueness in Theorem 6.5, it follows that D¢
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is a constant multiple of ¢; and hence ¢ is an eigenfunction for D as well.
Therefore ¢ is a joint eigenfunction. O

Spherical unitary representations contained in L?(I'\G). We let
C.(G//K) denote the Hecke algebra of G, i.e.

CC(G//K) = {f S CC(G) : f(k:lgl{?Q) = f(g) for all g € G, ki,ko € K}
Each element of C.(G//K) acts on C(G) via right convolution .

Lemma 6.7. A positive K-invariant joint eigenfunction on G is an eigen-
function for the action of the Hecke algebra. More precisely, if

é(g) = /f con(g) dwo([K)), g€ G, (6.4)

for some ¢ € a* and a (I',v)-conformal measure v, on F = K/M, then for

all f € Co(G//K),
/f H(h)dh> ?(9)-

Proof. Given f € C.(G//K), we have

g) = / B(gh™")f(h) dh = / / o (gh™) £ (h) dvo([K]) dh
/ / (e~ (HOs™0) gy (1)),

Now using H(hg~'k) = H(hx(g~'k)) + H(g k) and then the change of
variables h/ = hx(g~'k) gives

(¢>|< fg) = /]—' (/Gf(h/f(g_lk)_l)e_zp(H(h)) dh) e_w(H(gflk)) dve([k])
-/ ( / £y () ) = (1067 9) 1)

= ([ e o) an) o),

since f € C(G//K), and is thus right K-invariant. In total, we have shown

that ¢ is an eigenfunction of the f-action, with eigenvalue [, f(h)e ™ () dh.
U

Theorem 6.8. If ¢ € L*(I'\G)k is a positive Laplace eigenfunction of
norm one, there exists a unique irreducible spherical unitary subrepresen-
tation (m,He) of L*(T\G), and ¢ is the unique K -invariant unit vector in
He.

Proof. By Corollary 6.6, ¢ is given by (6.4) for some 1) € a*. Define ® :
G — C by

(g) = (9.0, 9)
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for all g € G where the g action on L?*(T'\G) is via the translation action
of G on I'\G from the right. Given f € C.(G//K), we then have, using
Lemma 6.7,

(®+ ) (9) = /G B(gh™")f(h) dh = /G ((gh™)., &)1 ()
=:]Q<fawh—1¢»g—¥¢>dh::<¢*f;g—¥¢>
=(/fwk1“m”NM)®wm

G

ie. @ isalso a C.(G//K)-eigenfunction. Also note that ®(e) = 1, and since
¢ is right K-invariant, ® is bi-K-invariant. Moreover, being the matrix
coefficient of a unitary representation, ® is also positive definite, i.e., for
any gi, -+ ,9n € G and 21, -+, z, € C,

> 25%(g; 'gi) > 0.

1<i,j<n

We have thus shown that ® is a positive definite spherical function. Letting
H, denote the closure of span{g.¢ : g € G} in L*(I'\G), by [28, Chapter
IV§5, Corollary of Theorem 9], H, is an irreducible (spherical) unitary sub-
representation of the quasi-regular representation L?(I'\G). The uniqueness
follows from Corollary 6.6. O

We require the following lemma in the proof of Theorem 6.10:

Lemma 6.9. Let ¢ > p and 1 & Rp. Denote by ' be the element of the
line Ry closest to p. Then ¢ # p.

Proof. Let ¢ := 1 — p. Note that ¢ > 0 on a by the hypothesis. Then

W.p) Aot o), (1 lgl® + (p7¢>) "

VY T Tt el o+ ol

ie. ¢ =t with 0 < ¢t < 1. Now, if ¢/ > p, we could repeat the process
with ¢’ in place of 9 to find another, different, closest vector in R to p,
which is not possible. O

Theorem 6.10. Let I' < G be of the second kind with £ C inta®™ U {0}. If
there exists a \o-harmonic function in L?>(I'\X), then

Ao = Ay
for some ¥ € Dj U {p}.

Proof. Suppose that ¢ € Dr\ ({p}UD5) and that ¢» > p. Assume that there
exists a positive joint eigenfunction ¢ € L*(T'\ X) with character Xy—p- By
Corollary 6.6,

Mo = Ay = [pll* = [l — ol (6.5)
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Since tr is concave, there exists 0 < ¢ < 1 such that cy)(u) = ¥r(u) for
some u € L. So ¢y := cp € Df. Since ¢ € Dy, we have 0 < ¢ < 1. There
exists a unique sg € R such that

[soto — pll = min{[|s — p[| : s € R}, (6.6)

that is, sgyg be the element on the line Ry that is closest to p.

We claim that sgc < 1; since 0 < ¢ < 1, this implies that max{1,sp} <
¢t If ¢ € Rp, then sgiyg = p. Since 1y = ctb, we get socp = p. By the
hypothesis p < ¢, spc < 1. Now suppose ¢ ¢ Rp. Assume that spc > 1.
Then sgipg = socyp > 1. Hence spcyp € Dr. By Corollary 5.10 and (6.5), we
get

[soct = pll = [l = pll.
By the choice of sp in (6.6), it follows that |[socty — p|| = || — p||. Since
socy > Y > p, this yields a contradiction. Therefore the claim sgc < 1
follows.
We now choose t so that max{1,s0} <t < ¢~ !. Since t > 1 and vy € D},
tYg € Dr. Note also that s +— Mgy, is strictly decreasing on the interval
[s9,00). Since sg <t < ¢! and ¢ g = 1, we get

Ao = )\1/; < )\w,o.
This contradicts Corollary 5.10. This implies the claim by Corollary 6.6. [

If we use the norm on so0(n, 1) which endows the constant curvature —1
metric on H", then for any non-elementary discrete subgroup I' < SO°(n, 1),
D = {4} and hence the above theorem says that if a A\g-harmonic function
belongs to L*(I"\H"), then Ao must be given by either §(n—1—6) or 3(n—1)2.

7. SMEARING ARGUMENT IN HIGHER RANK

Let I" be a torsion-free discrete subgroup of a connected semisimple real
algebraic group G. The goal of this section is to prove the following:

Theorem 7.1. If L # a*t, then no positive joint eigenfunction belongs to
LT\ X).

Combined with Corollary 6.6, we get the following corollary which implies
Theorem 1.6(4) in higher rank.

Corollary 7.2. If L # a™, there exists no positive Laplace eigenfunction in
L*(T\X). In particular, if rank G > 2 and T' < G is Anosov, no positive
Laplace eigenfunction belongs to L*(T'\ X).

The second part follows from the first by Theorem 2.5. Theorem 7.1 will
be deduced from Theorem 7.4, the proof of which is based on the smearing
argument of Thurston and Sullivan (see [46], [7] and also [47] for historical
remarks and the origin of the name “smearing argument”). We also refer to
[42, Theorem 3.1].
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Definition 7.3 (Hopf parameterization). The homeomorphism G/M —
F@ x q given by gM — (g, 97,b = By~ (e, g)) is called the Hopf parame-
terization of G/M.

Fix a pair of linear forms 11, € a*. For z € X and (£,n) € FP, let
bu(E,m) = ¥ (Be(.90)) +v2 (5,,(90,90))7 (7.1)

where g € G is such that g7 = ¢ and g~ = 7.

Let v = {v, : x € X} and v = {7, : © € X} be respectively (I', )
and (I, 19)-conformal densities on F. Using the Hopf parametrization, we
define the following locally finite Borel measure m,, 5 on G/M: for (§,n,v) €
F@ x q,

din,p(§,m,v) = ¢ (&, 1) dve(§)dry (n)dv (7.2)

where dv is the Lebesgue measure on a and x € X is any element; it follows
from the I'-conformality of {v,} and {,} that this definition is independent
of x € X. The measure m, ; is left I'-invariant and right A-semi-invariant:
for all a € A,

4T,y = e(TViTveellosa) 5 o (7.3)

Note that 19 = 91 oi if and only if m, 5 is A-invariant. We denote by m,
the M-invariant Borel measure on I'\G induced by m, p; this measure is
called the (generalized) Bowen-Margulis-Sullivan measure associated to the
pair (v,7) [9].

Theorem 7.4 (Smearing theorem). For any pair (v,v) of I'-conformal den-
sities on JF, there exists ¢ > 0 such that

myp(I\G) < c/ E,(xz)Es(x)dvol(x).
one-neighborhood of supp my,

Proof. Let Z = G/KxF®. For any (¢,1) € F®), we write [£,1] = gdo C X
for any g € G such that ¢g* = £ and g~ = n; [{,7] is a maximal flat in X
defined independently of the choice of g € G. Let ¥, 19 € a* be linear forms
such that v and v are respectively (I',11) and (T, 12)-conformal densities.
Let ¢, be defined as in (7.1) for all z € X. We also denote by W¢, Cc X
the one neighborhood of [£,7]. Consider the following locally finite Borel
measure « on Z defined as follows: for any f € C.(Z),

= 1S d d ) Y
o= ol SEEDEmED

where dz is the G-invariant measure on X, and

dm(é, 77) = ¢ (67 W)dl/:c(f)dﬂx(ﬁ)

(observe that this definition is independent of z).

Consider the natural diagonal action of I' on Z. Since dz and dm are
both left I'-invariant, « is also left I'-invariant and hence induces a measure
on the quotient space I'\ Z, which we also denote by a by abuse of notation.
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Define the projection 7’ : Z — G/M as follows: for (z,&,1) € X x F®),
choose g € G so that g© = & and g- = 7. Then there exists a unique
element a € A such that

d(z, gao) = d(z, gAo) = inf d(z, gbo);

this follows from [4, Proposition 2.4] since X is a CAT(0) space and gA(o)
is a convex complete subspace of X. In other words, the point gao is the
orthogonal projection of x to the flat [£, 1] = gAo. We then set

7' (x,&,m) = gaM € G/M;

this is well-defined independent of the choice of ¢ € G. Noting that 7’ is
I'-equivariant, we denote by

7 :supp(a) C I'\Z — supp (my5) C I\G/M
the map induced by /. Fixing [ga] € T\G/M, the fiber 7~ ![ga] is of the
form [(gaDy, g™, g7)], where
Dy={se X :d(s,0) <1,
the geodesic connecting s and o is orthogonal to Ao at o}.

Noting that each fiber 771(v), v € supp m,,, is isometric to Dy, we have
for any Borel subset S C suppm,.,

a(r=1(S)) = Vol(Dy) - mu.5(S); (7.4)

the volume of Dy being computed with respect to the volume form induced
by the G-invariant measure on X. Consider now the map p : supp(a) —
M\X defined by p([(2,£,7n)]) = [z] for any (z,£,n) € supp(a). Let F =
7Y (suppm, ) C supp(a). We write

= o _1;U x
a@U—AwAp()ﬂFM,

where a, is a conditional measure on the fiber p~!(x). We claim that there
exists a constant ¢ > 0 such that for any = € T'\ X,

a(p”!(2)) < cBy(x) - Ey(z). (7.5)

Since p~!(x) N F = () for = outside of the one neighborhood of supp(m,»),
this together with (7.4), implies that

Vol(Dy) - [myp| = a(F) < c- / E,(z)E5(x) dx

one neighborhood of supp(mu,»)

finishing the proof. Note that for any h € G,

Vio :={(&,m) € FP 1 [€,] N B(ho, 1) # 0}

is a compact subset of F(?); if {g;} C G and {a;} C A are sequences such
that d(g;a;0,ho) < 1, then (by passing to a subsequence) we may assume
that g;a; converges to some go € G. This implies (g;7,g;) — (94, 95) € F?
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as ¢ — oo and d(ggo, ho) < 1, from which the compactness of V}, follows. It
follows that

¢ :=sup{do(&,m) : (§,m) € Vo} < oo
By the equivariance ¢p,(&,1) = ¢o(h~1¢, h71n), we have for any h € G,
sup{¢no(§, 1) : (§,1) € Vho} = c.
Note that if © = [ho] € T'\X for h € G, then

p~' (@) = {[(ho,€,n)] € supp(a) : [€, 7] N B(ho, 1) # O} = Vo
Therefore for any z = [ho] € I'\ X,

aw(p™ (7)) = aa(Vho)

_ / Onol€. 1) dvno(€)dirmo(n)
(€m)EVho

< C/ tho(g)dDho(n)
(fﬂ?)EVho
< ¢ |Whol * |Pho|l = ¢+ Ey(x) - Ep(x).
This proves (7.5), and hence finishes the proof. O

Proof of Theorem 7.1. Suppose that ¢ € L?(T'\X) is a positive joint
eigenfunction. By Proposition 3.7, ¢ = E,, for some (I, ¢)-conformal density
v. We may form the M A-semi-invariant measure m,,,, and apply Theorem
7.4. Since E, € L*(T'\G), it follows that m,,,(I'\G) < co. The finiteness of
|my,,,| implies that m,,,, is indeed M A-invariant by (7.3) and it is conserva-
tive for any one-parameter subgroup of A. In particular, for any non-zero
v € aT, there exist g € G, sequences t; — +00 and ; € I" such that the se-
quence ;g exp(t;v) is convergent. This implies that sup; ||[t;v—u(y; 1) < oo
and hence tz-_l w(v; 1) converges to v, and hence v € £. Therefore £ = a*.
This finishes the proof.

Remark 7.5. If I' < G is Zariski dense and 1 > vr, then for any (T',v)-
conformal density v, E, ¢ L?(T'\X). To see this, note that by [40, Lem. III.
1.3], the condition ¥ > ¢p implies that

Z e_¢(u(7)) < 0.

yel
On the other hand, by Theorem 1.4 of [5], the finiteness of m,, , implies that
> ver e V) = 0o, Hence we must have |m,,| = co. Then the claim

follows from Theorem 7.4.

8. INJECTIVITY RADIUS AND L?(G) o« L*(T'\G)

As before let G be a connected semisimple real algebraic group. Recall
from Proposition 6.3 that o(X) = [||p||?,00). In this section, we prove the
following:
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Theorem 8.1. Let I' < G be an Anosov subgroup. We suppose that I’ is
not a cocompact lattice in a rank one group G. Then

L*(G) o< L*(T\G)  and  o(X) = [|pll*, 00) € o(I'\X).

Note that if I' < G is Anosov, I'\G has infinite volume except when I' is
a cocompact lattice in a rank one group G. The latter case has to be ruled
out from the above theorem since the conclusions are not true in that case;
L?*(T\G) contains the constant function and o(I'\X) is countable. When
G = S0°(n,1), an Anosov subgroup I' < G is simply a convex cocompact
subgroup, in which case this theorem is well-known due to the work of Lax
and Phillips [29].

We will need the following lemma: when G is of rank one, we may write
A = {a; : t € R} as a one-parameter subgroup, and a loxodromic element
g € G is of the form g = haymh™! for some t # 0, m € M and h € G. The
translation axis of g is then given by hA(o).

Lemma 8.2. Let G be a simple real algebraic group of rank one. For any
loxodromic element g € G with translation axis L and any sequence x; € X
such that d(z;, L) — oo, we have d(z;, gx;) — oo.

Proof. Without loss of generality, we may assume g = m la_s, € MA

with sg # 0 so that L = A(o). Let z; € X be a sequence such that

d(x;, A(0)) — o0 as i — oo. Write x; = nja_¢,(0) with n; € N and ¢; € R.
We may then write

d(gx;, z;) = d(ag;hinja_y,, a_lo).

where h; = masOn;1a,SOm_1 € N. Asd(x;, A(o)) — oo, we have aynja_y, —
oo. It suffices to show a;, hin;a—; — oo.

By the assumption that G has rank one, there is only one simple root,
say «, and n is the sum of at most two root subspaces n = n, + no, where
[n,n] = ny,. Note that when N is abelian, ng, = {0}. Hence we have that
for any X,Y € n,

log (exp(X)exp(Y)) =X +Y + %[X, Y] (8.1)

Write logn; = Y; + Z; with Y; € n, and Z; € no,. Since Ad,, preserves
N and no,, we have

log hi = —Adpa,, logn; = —e**Ad,,Y; — e**(*0)Ad,, Z;.
Therefore by (8.1), we get
log hing = (1 — e Ad,,)Y; + (1 — €220 Ad,,) Z; — %[ea@o)Adei, Yi).
Hence
Adg,, log hin; = (1 — 50 Ad,, ) et Y+
(1-— eza(sO)Adm)eza(t")Zi — [eO‘(SO)Admea(ti)Yg, ea(ti)Yfi].
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Now suppose that a; h;n;a—;, does not go to infinity as i — oco. By
passing to a subsequence, we may assume that Ad,,, logh;n; is uniformly

bounded. It follows that both sequences (1 — e*(0)Ad,,)e*®)Y; and (1 —
e2a(50)Adm)62°‘(ti)Zi — [ea(SO)Admea(ti)Y;,ea(ti)Yi] are uniformly bounded.
Since a(sg) # 0, we have e**)Y; is uniformly bounded, which then im-
plies that e2e(ti) 7. is uniformly bounded. This implies that Adati logn; =
e(t)y; 4 ¢2(t) 7, is uniformly bounded, contradicting the hypothesis that
d(ag;nia—¢;) = 0o as i — oo. This proves the claim. O

Let I' < G be a discrete subgroup. For xz = [g] € I'\G, the injectivity
radius inj z is defined as the supremum 7 > 0 such that the ball B,(g) = {h €
G : d(h,g) < r} injects to I'\G under the canonical quotient map G — I'\G.
The injectivity radius of I'\G is defined as inj(I'\G') = sup,ep\ ¢ inj(z).

Proposition 8.3. For any Anosov subgroup I' < G which is not a cocompact
lattice in a rank one group G, we have inj(I'\G) = cc.

Proof. If G has rank one, I' is a convex cocompact subgroup which is not a
cocompact lattice. In this case, take any £ € X which is not a limit point,
and any g; € G such that g;(0) — &. Then inj(g;(0)) — oo as i — oo.

Now suppose rank G > 2. We first observe that Vol(I'\G) = oo; other-
wise, I' < G is a co-compact lattice, as Anosov subgroups consist only of
loxodromic elements. Since any Anosov subgroup I' is a Gromov hyperbolic
group as an abstract group ([21], [3]), it follows that G is a Gromov hyper-
bolic space and hence must be of rank one, which contradicts the hypothesis.

If every simple factor of G has rank at least 2, the claim inj(I'\G) =
oo follows from a more general result of Fraczyk and Gelander [14] which
applies to all discrete subgroups of infinite co-volume. Therefore it remains
to consider the case where G = G; X G3 where G and (G5 are respectively
semisimple real algebraic subgroups of rank at least one and of rank precisely
one. Let ¥ be a finitely generated group and m : ¥ — G be an Anosov
representation with I' = 7(X) as in Definition 2.4. Let m; : ¥ — G; be
the composition of 7 and the projection G — G; for each i. It follows
from (2.8) that m;(X) is a discrete subgroup of G; for each i = 1,2. Let X;
denote the rank one symmetric space associated to G; and let X denote the
Riemmanian product X = X; x Xo. Let R > 0 be an arbitrary number. We
will find a point € X with inj(z) > R, i.e., d(z,yz) > R for all non-trivial
~v € I'; this implies the claim. Choose any x1 € X;. By the discreteness of
m1(X), the set {o € £ — {e} : di(m1(0)z1,21) < R} is finite, which we write
as {01, -+ ,om}. For each o € ¥\ {e}, define a subset T»(0) C X3 by

To(o) = {z € Xo : do(m2(0)z,2) < R}.

Note that m2(c) is a loxodromic element of Gy and T5(o) is contained in
a bounded neighborhood of the translation axis of m2(0) by Lemma 8.2.
In particular, the symmetric space X5 is not covered by the finite union
UjL; Ta(o;). Hence we may choose zo € X outside of L, To(0;). We
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now claim that the injectivity radius at x := (z1, z2) is at least R; suppose
not. Then for some o € ¥—{e}, d((m1(0)x1, m2(0)x2), ) < R. In particular,
for i = 1,2, di(m;(0)x;, ;) < R. It follows that 0 = o for some 1 < j <m
and xo € Ty(0j), contradicting the choice of xo. This proves the claim. [J

Theorem 8.1 follows from Proposition 8.3 and the following proposition,
which was suggested by C. McMullen.

Proposition 8.4. Let I' < G be a discrete subgroup with inj(I'\G) = oo.
Then

L}(G) x LA(I\G) and o(X)C o(T\X).

Proof. To prove the first claim, we need to show that the diagonal matrix
coefficients of L2(G) can be approximated by the diagonal matrix coefficients
of L2(T'\G) uniformly on compact subsets of G.

Let v be any element of L?(G) and K C G a compact subset containing e.
We will use the fact that inj(I'\G) = oo to construct a sequence of functions
{F;} € C,(T'\G) such that

Jlim I;g%‘(av,vhz(c) - <9-Fi7Fi>L2(F\G)‘ =0,

as required. By the density of C.(G) in L?(G), there exists a sequence
{fi} € Ce(G) such that lim; o0 || fi — v||z2(@) = 0, hence

zllglo I;leaiéi ‘(g.’U,’U)LQ(G) - <g-fi7 fi>L2(G)) =0. (82)

For each ¢ > 1, we let R; > 0 be such that (suppf;)K C Bg,(e). Since
inj(I'\G) = oo, there then exists a sequence {g;} C G such that g; Bg,(e)
injects to I'\G, i.e. the map h +— T'h is injective on g; Bg, (e).

For each 4, consider the function F; € C.(T'\G) given by

Fi(z) = Zfi(gflwh) for any =z = [h] € T'\G.
vyel’
We then have that for any g € G,

(0.F F) 2ova) = / Fi(wg)Fi(x) da
NG

_/I‘\GFi(th> D filgi v d(rh)—/GFi(Phg)fi(gflh) dh

yel’
Z/ > filg7 ' vgihg) | fi(h) dh.
G ~yel’

We now observe that for h € G, g € K, and v € T, fi(gi_lfygihg)fi(h) #0
implies that g; Yvgihg € Bg,(e) and h € supp f. This in turn implies that
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both vg;hg and g;hg are in g; B, (e). Since g; Bg,(e) injects to I'\G, we must
then have v = e. Hence for all 1 > 1 and g € I,

(9-Fi, Fi) 2 (n\a) :/G > filg; “vgihg) | fi(h)dh

~yel
=/ fig;  egihg) fi(h)dh 2/ fi(hg) fi(h)dh = (g.fi, fi) 2(c)-
c a

Combined with (8.2), this proves the first claim.

In order to prove the second claim, let W (I'\X) ¢ L?(I'\X) be as defined
in the proof of Theorem 6.5. Let A € o(X). By Weyl’s criterion (Theorem
6.1), there exists a sequence of L?(X)-unit vectors {uy}neny € W1(X) such
that

Tim (A + Nunp2(x) = 0.

Since C°(X) is dense in W!(X) with respect to || - w1 (x), we may assume
that {u, }neny € C°(X). Since I'\ X has infinite injectivity radius, for each
n € N, we can find g, € G so that g,supp(uy) injects to I'\G. We may
therefore define {v, }pen € WHT\X) by

o (Cgnit) = un () ifz € S}lpp(un)
0 otherwise.
The G-invariance of A then gives
Tim [[(A -+ Aoallzye = Tm (A + Nl ) = 0

and so using Weyl’s criterion again yields A € o(I'\X). Hence o(X) C
o(T\X), as claimed. O

9. TEMPEREDNESS OF L%(T'\G)

Let G be a connected semisimple real algebraic group and I' < G be a
Zariski dense discrete subgroup. The goal of this section is to prove Theorem
9.4 and Corollary 9.6.

Burger-Roblin measures. We set N* = wono_1 and N~ = N. For
a (T',1)-conformal measure v, on F, or equivalently for a (I, ¢)-conformal
density v = {v, : € X}, we denote by mER and mBR+ the associated N T
and N~ -invariant Burger-Roblin measures on I'\ G respectively, as defined in
[9]. By [9, Lem. 4.9], it can also be defined as follows: for any f € C.(I'\G),

mER(f) = / f([k]m(exp a)n)e YN dyy (k™ )dmdadn
[klm(exp a)n€ K/MxMAN+
and
mBR(f) = / F([Klm(exp a)n)e?® duy(k™)dmdadn
[kJm(expa)n€ K/ MXMAN—

where dm, da, dn are Haar measures on M, a, N* respectively.
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Recall that dz denotes the G-invariant measure on I'\G which is defined
using the (G, 2p)-conformal measure, that is, the K-invariant probability
measure on F (see [9, (3.11)]). For real-valued functions fi, fo on I'\G, we
write

(it = [ filo)fae)do
NG
whenever the integral converges. We write C.(I'\G)x for the space of K-
invariant compactly supported continuous functions on I'\G.

Lemma 9.1. For a (T, v)-conformal density v and any f € C.(I'\G)k, we
have

my(f) = (f, By) = my™ (f).
Proof. If g = (expb)nk € ANTK, then
ﬁe— (go, 0) = Be"’ (exp(—i(b)), O) = l(b)

Hence

my M (f) = / / F(kexp bnko)e V' ®) dkodu, (k™) dbdn
KAN+

/ / Fkg)e ¥ Be=(900) gy (k™) dg
/ fo / V(B (900) qy, (k™ )dg = (f, E,)
If g = (expb)nk € ANK, then S.+(go,0) = —b and using this, the second

identity can be proved similarly. O

Local matrix coefficients for Anosov subgroups. In the rest of this
section, we assume that

I' < G is a Zariski dense Anosov subgroup.

Lemma 9.2. For any ¢ € Dr, there exists a unique unit vector u € a* and
0 < ¢ <1 such that cip(u) = Yr(u). Moreover u € int L.

Proof. Since tr is strictly concave [38, Propositions 4.6, 4.11], there exists
0 < ¢ <1 and unique u € L such that ¢ - ¢ (u) = ¥r(u). Moreover there is
no linear form tangent to ¢r at 9L [38], and hence u € int L. O

For each v € int £, there exists a unique linear form 1, € Dy such that
Yy(v) = Yr(v) and a unique (I, 1), )-conformal density supported on A [9,
Corollary 7.8 and Theorem 7.9], which we denote by v,. Hence [9, Theorem
7.12], together with Lemma 9.1, implies (let r = rank G):

Theorem 9.3. For any v € int L, there exists K, > 0 such that for all
f1, f2 € Co(T\G) g and any w € ker iy,

lim ¢ D/2el e (Vi) (o (40 + VW) fi, fo)

t——+o00
= K/Ueil(w) . <f17EVi('u)> . <f2,EVv>
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where I(w) € R is given as in [9, 7.5]. Moreover, the left-hand side is
uniformly bounded over all (t,w) € (0,00) x ker ), such that tv + vtw € a*

Theorem 9.4. (1) We have L*(T'\G) is tempered if and only if r < p.
(2) If L3(T\G) is tempered, then

M(M\X) =lpl*  and  o(I\X) = [||p*, o).

Proof. The second claim follows from Theorems 6.4 and 8.1. Suppose that
Yr < p. In order to show that L?(I'\G) is tempered, by Proposition 2.7, it
suffices to show that the matrix coefficients g + (g.f1, f2) are in L?>T¢(G) for
all ¢ > 0 and for all f1, fo € C.(T'\G), since C.(T'\G) is dense in L?(T\G).
Without loss of generality, we may just consider non-negative functions
fi, f2 € C.(I'\G). Fix any € > 0. Then using the Cartan decomposition
G = KATK, we have

/G<g.f1, f2>2+€ dg = /K /a+ /K<k‘1 eXp(’U)kQ.fl, f.2>2+E E(’U) dk)l dv de,

where Z(v) = e2() (cf. [24]). Denoting F;(I'g) = maxpeg fi(Lgk) €
C.(T'\G)k, we then have

[t dg < [ fexplo). Fap e .
G

at

Since Yr < p, we have p € Dr. By Lemma 9.2, there exists 0 < ¢ < 1
such that cp € Dy and a unit vector ug € int £ such that

Yr(uo) = cp(uo).
We now parameterize at as follows: for each v € ker p, define
ty :=min{t € Ry : tug + Vitv € a+}.

Substituting v = tug++/tv for t > 0 and v € bNker p gives du = st dt dv
for some constant s > 0. Then (letting r = dim(a))

/ (exp(u).Fy, Fp)2 e gy,
a+
< / / (exp(tug + Vtv).Fy, Fy)2+ee2tewo)y(r=1/2 gy gy,
kerp Jt,
By Theorem 9.3, there exists C' = C'(F, F2) > 0 such that
tr=1/22=e)tp(w0) (exp (tug + Viv).Fy, Fy) < C

for all (v,t) € ker p x [t,,00). Combining this with the trivial bound

(g-F1, Fo) < [|Full[| Fl,



36 SAM EDWARDS AND HEE OH

we have (again, for all (v,t) € ker p X [t,, 00)),
(exp(tug + Vtv).Fy, Fp)*te
< (C7+-HIH]HEEH)2+5(Inhl{1’t—(p-n/ze_42_cﬁp&m)})2+s
< min{1, e MP0)} < g=teluo)

where n = (2 — ¢)(2 + ¢) > 2. This gives

/ (9.1, f2)* e dg < / gm0l g2tp(uo)y(r=1)/2 gt gy
G veker p J i,

<</ e~ (1=2p(W) gy < 0.
at

Therefore L?(T'\G) is tempered.

The converse holds for a general discrete subgroup. Suppose now that
L*(T'\G) is tempered. Then by the definition of temperedness and the es-
timate of Zg(g) in (2.9), it follows that for any € > 0, there exists C. > 0
such that for any fi, fo € L*(T'\G)k and u € a™,

[(exp(u)-f1, f2)| < Cell fullll falle™ (=), (9.1)
Applying [31, Prop. 7.3], we get ¢r < p. O

Now recall the following recent theorem of Kim, Minsky, and Oh [23]:

Theorem 9.5. [23] Let I' be an Anosov subgroup of the product G of at least
two simple real algebraic groups or ' < G = PSLy(R) be a Zariski dense
Anosov subgroup of a Hitchin subgroup. Then

Yr < p.
Hence by Theorem 9.4, we get:

Corollary 9.6. Let I' < G be as in Theorem 9.5. Then L*(T\G) is tem-
pered.

Proofs of Theorem 1.6. The equivalence (1) < (2) is proved in Theorem
9.4. The equivalence (2) < (3) follows from Theorems 8.1 and 9.4. When
rank G > 2, (4) holds for any Anosov subgroup by Corollary 7.2. When
rank G = 1, the implication (1) + (2) = (4) is due to Sullivan [45] (see also
[42, Theorem 3.1]) when X is a real hyperbolic space and to [50, Theorem
1.1 and Proposition 5.1] in general.
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