DICHOTOMY AND MEASURES ON LIMIT SETS OF
ANOSOV GROUPS.
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ABSTRACT. Let G be a connected semisimple real algebraic group. For
a Zariski dense Anosov subgroup I' < G, we show that a I'-conformal
measure is supported on the limit set of I' if and only if its dimen-
sion is I-critical. This implies the uniqueness of a I'-conformal measure
for each critical dimension, answering the question posed in our ear-
lier paper with Edwards [14]. We obtain this by proving a higher rank
analogue of the Hopf-Tsuji-Sullivan dichotomy for the maximal diagonal
action. Other applications include an analogue of the Ahlfors measure
conjecture for Anosov subgroups.

1. INTRODUCTION

Let G be a connected semisimple real algebraic group. In this paper, we
investigate properties of I'-conformal measures on the Furstenberg boundary
of G for a certain class of discrete subgroups I' of G, called Anosovsubgroups.
Associated to each conformal measure does there exist a linear form on the
Cartan subspace of the Lie algebra of G, which may be regarded as the
dimension of the measure. We show that a I'-conformal measure is supported
on the limit set of I' if and only if this dimension is I'-critical. We deduce
this result from a higher rank analogue of the Hopf-Tsuji-Sullivan dichotomy
for the maximal diagonal action, which relates the supports of conformal
measures, critical exponents of Poincare series, and the dynamical properties
of the action of a maximal diagonal subgroup on I'\ G relative to higher rank
generalizations of Bowen-Margulis-Sullivan measures. Applications include
an analogue of the Ahlfors measure conjecture for Anosov subgroups of G.

To state our main results precisely, we let P = MAN be a minimal
parabolic subgroup of G with a fixed Langlands decomposition, where A
is a maximal real split torus of G, M is the maximal compact subgroup
centralizing A and N is the unipotent radical of P. Let g = Lie G, a = Lie A
and at denote the positive Weyl chamber so that log N consists of positive
root subspaces. Let K be a maximal compact subgroup so that the Cartan
decomposition G = K(expa™)K holds. Let u: G — at denote the Cartan
projection map defined by the condition exp u(g) € KgK for all g € G.
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A finitely generated discrete subgroup I' < G is called an Anosov subgroup
(with respect to P) if there exist constants C,C’ > 0 such that for all y € T
and all simple root « of (g, a),

a(p(v)) = Cly| = C'

where |y| denotes the word length of v with respect to a fixed finite sym-
metric set of generators of I'. The notion of Anosov subgroups was first
introduced by Labourie for surface groups [26], and was extended to gen-
eral word hyperbolic groups by Guichard-Wienhard [18]. Several equivalent
characterizations have been established, one of which is the above defini-
tion (see [17], [21], [22], [23]). Anosov subgroups are regarded as natural
generalizations of convex cocompact subgroups of rank one groups.

Uniqueness of conformal measures. We set F := G/P which is the
Furstenberg boundary of G. Let I' < G be a Zariski dense discrete subgroup.
A Borel probability measure v on F is called a I'-conformal measure if, there
exists a linear form ¢ € a* such that for any v € I" and € € F,

dry.v
dv

where 3 denotes the a-valued Busemann function defined in Def. (2.2). We
call v a (T, ¢)-conformal measure and v the dimension of v. Although ¢ is
a linear form instead of a number, we find it convenient to treat it as a sort
of dimension of the measure v and hence the name.

If p denotes the half sum of all positive roots of (g,a), the K-invariant
probability measure on F (the Lebesgue measure) is the unique G-conformal
measure of dimension 2p [40].

We let ¢r : a - RU{—o00} denote the growth indicator function of I' (see
Def. (2.3)). Let £ C at denote the limit cone of ', which is the asymptotic
cone of the Cartan projection of T

We mention that the dimension of a I'-conformal measure is always bounded
below by ¥r [36]. We call a linear form 1 € a* I'-critical, or simply, critical,
if it is tangent to ¥r, i.e.,

Y >4¢r and (u) =Yr(u) for some u € LNinta™.

(&) = ¥Pele) (1.1)

When G has rank one, 9r is simply the critical exponent § of I and hence
a critical linear form is just given by §. Note that the dimension 3 of a
I'-conformal measure is either critical or ¢ > .

We denote by A the limit set of I', which is the unique I'-minimal subset
of F. For each I'-critical dimension ¢ € a*, Quint constructed a (T',)-
conformal measure supported on the limit set A, following the approach of
Patterson and Sullivan ([33], [43], [36]). Moreover, for any Anosov subgroup
of the second kind (see [15, Def. 5.1]), a (I', ¢)-conformal measure exists for
any dimension ¢ > max(¢r, p) by [15, Cor. 5.3].

Our first theorem gives a criterion on the support of a conformal measure
in terms of its dimension. This generalizes Sullivan’s theorem [43] that for
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I' < SO(n,1) convex cocompact, any I'-conformal measure of dimension
equal to the critical exponent is necessarily supported on the limit set.

Theorem 1.2. Let I' < G be a Zariski dense Anosov subgroup. For any
I'-conformal measure \ on F, we have

A(A) = {

In particular, for each U'-critical linear form ¢ € a*, there exists a unique
I'-conformal measure on F with dimension .

1 if its dimension is I'-critical
0 otherwise.

The second part follows from the first part together with the result in [28],
which showed that there exists a unique I' supported measure supported on A
for each critical dimension. These results together also imply that the space
of all I'-conformal measures on F is homeomorphic to the space of directions
in the interior of the limit cone of I'. It also follows from [28, Thm. 10.20]
that conformal measures of distinct critical dimensions are mutually singular
to each other. The study of I'-conformal measures is directly related to the
study of positive joint eigenfunctions on the associated locally symmetric
manifold I'\G/ K for the ring of G-invariant differential operators ([45], [15]).

Remark 1.1. When the rank of G is at most 3, it was proved in [14] that any
conformal measure of critical dimension is supported on A, and the general
case was posed as an open problem there (see Remark 1.2).

Analogue of the Ahlfors measure conjecture. The Ahlfors measure
conjecture [3] says that the limit set of a finitely generated discrete subgroup
of PSLy(C) is either S? or has Lebesgue measure zero; this is now a theorem
following from the works of Agol [2], Calegari-Gabai [8] and Canary [9]. The
following theorem is analogous to the case of Ahlfors’ conjecture proved by
Ahlfors himself for convex cocompact subgroups [3]. We denote by Leb the
Lebesgue measure on F.

Theorem 1.3. For any Zariski dense Anosov subgroup I' < G, we have
either

A=F or Leb(A)=0.

In the former case, rank(G) =1 and I is cocompact in G.

Higher rank analogue of the Hopf-Tsuji-Sullivan dichotomy. Both
theorems are deduced from a higher rank analogue of the Hopf-Tsuji-Sullivan
dichotomy for the action of the maximal diagonal subgroup A. To state this
dichotomy, we need to introduce some notations first. Letting F2) denote
the unique open diagonal G-orbit in F x F, the quotient space G/M is home-
omorphic to F?) x a via the Hopf parameterization. The notation i denotes
the opposition involution of a, and let db denote the Lebesgue measure on a.
For a given pair of I'-conformal measures Ay and Ayo; on F with respect to
1) and 9 o1 respectively, one can use the Hopf parameterization to define a
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non-zero A-invariant Borel measure my, y,.; on the quotient space I'\G//M,
which is locally equivalent to dAy ® dAye; ® db in the Hopf coordinates. We
will call it the Bowen-Margulis-Sullivan measure (or simply BMS measure)
associated to the pair (Ay, Ayoi). Each BMS measure my, ., on ['\G/M
can be considered as an AM-invariant measure on I'\G, for which we will
use the same notation. For example, for ¢ = 2p = ¢ o i, the corresponding
measure my,, »,, is a G-invariant measure on I'\G.
The conical limit set of I is defined as

A, = {gP € F : gA" accumulates on I'\G},

in other words, A, = {gP € F : limsupI'gA* # 0},} where AT = expa™.
For Anosov subgroups, we have

A=A,

as proved in [22] using the Morse property.
For ¢ € a*, let M, denote the collection of all (I, 4)-conformal measures.

Theorem 1.4 (Dichotomy for the maximal diagonal action). Let I be a
Zariski dense Anosov subgroup of G. Let ¢ € a* be such that My # 0.
Then the following are all equivalent to each other:

(1) Z’YGF efw(/‘(y)) = 0 (resp. Z’YGF efw(ﬂ("/)) < OO),'

(2)

(3) for any Ay € My, Ap(Ae) > 0 (resp. Ayp(Ae) =0);

(4) for any Ay € My, A\p(Ae) =1 (resp. Ayp(Ae) =0);

(5)

Apoi| 7(2)) @5 ergodic and completely conservative (resp. non-ergodic

and completely dissipative);

(6) for any (Mg, Ayoi) € My X Myoi, the A-action on (I\G /M, mx, x,.;)
is ergodic and completely conservative (resp. non-ergodic and com-
pletely dissipative);

(7) for any (Ay, Apoi) € My X Myoi and any P°-minimal subset &

of T\G, the A-action on (Ey, My, x,.le) @8 ergodic and completely

conservative (resp. either my  x,..(£0) = 0, or non-ergodic and com-
pletely dissipative).

In the rank one case, the A-action on I'\G /M corresponds to the geodesic
flow on the unit tangent bundle of the locally symmetric manifold I'\G/K.
Therefore this theorem generalizes the Hopf-Tsuji-Sullivan dichotomy for
the geodesic flow in the rank one case ([46], [43], [44], [19], [1], [11], [31));
we refer to Roblin’s article [41] for the most comprehensive exposition.

Theorem 1.3 is deduced from Theorem 1.4 and Theorem 7.1 proved by
Quint [38], using the matrix coefficient bounds for higher rank simple alge-
braic groups in [32]. This in turn implies that, unless I'\G is compact, 2p

Ior a sequence S, of subsets of a topological space X, limsup S, is defined as the set
of all possible limits s = lim; o0 Sn; in X where s,, € Sy, for some infinite sequence n;.
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is not I'-critical and hence the Haar measure on I'\G is non-ergodic for the
AM-action.

Since there exists a I'-conformal measure supported on A for each critical
dimension, Theorem 1.2 immediately follows from Theorem 1.4 together
with the uniqueness of I'-conformal measures supported on A [13, Thm.

7.9).

Remark 1.2. When rank G is at most 3, it was shown in [14] that any (I", ¢)-
conformal measure is supported on the u-directional conical limit set A,
where u is the unique unit vector ¢ (u) = ¥r(u); this implies Theorem 1.2.
The proof of this result was based on the Hopf-Tsuji-Sullivan Dichotomy
for one dimensional diagonal flows {exp(tu) : t € R} as established in [7].
When the rank of G exceeds 3, directional conical limit sets have negligible
conformal measures, and hence this result of [14] did not prove Theorem
1.2. We note that while the dichotomy for one dimensional diagonal flows
was obtained for any Zariski dense discrete subgroup, our proof of Theorem
1.4 is heavily based on the hypothesis that I' is Anosov.

While some of the implications of Theorem 1.4 were previously obtained
in ([28], [29]), the implication (1) = (3) is the main new result of this
paper, which is needed for the application to Theorem 1.2. Fixing a (T",v)-
conformal measure Ay for a critical ¢» € a*, we consider the generalized

Bowen-Margulis-Sullivan measure m = m]il:/[zo, on I'\G for some conformal

measure Ayoi of dimension 1oi (see (2.4) for the definition). We use a variant
of the Borel-Cantelli lemma for the A" action (Lemma 5.3) by relating the
correlations functions of m with the Poincare series ZWGRHH(V)HST e~ ™),
This requires a control on the multiplicity of certain shadows (Lemma 3.1),
the proof of which uses the following property of Anosov subgroups that
for any x € I'\G, accumulations of an orbit A in I'\G can occur only via
sequences in AT UwgATwy ! where wy is the longest Weyl element. In other
words, for any other Weyl element w # e, wy, the subset zwAtw™! is a
proper embedding of wA*w™!, as was first observed in [28, Lem. 8.13]. See
Lemmas 2.8 and 3.4. This phenomenon makes this higher rank situation a
bit more like a rank one situation where the one dimensional subgroup A
is simply the union A* UwgATw,'. Based on this and other properties of
Anosov subgroups, we are able to extend the rank one argument in [41] to
this higher rank Anosov setting.

In a higher rank simple algebraic group, the conical limit has Lebesgue
measure zero for a discrete subgroup of infinite co-volume (see Proposition
7.6). We end the introduction by the following question:

Question 1.5. Let G be a connected simple real algebraic group with rank
at least 2 and I' < G be a Zariski dense discrete subgroup. Is the following
true?:

A=F ifand only if T isa a lattice in G.
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We remark that A = F is equivalent to the minimality of the P-action on
I'\G, which means that every P-orbit is dense in I'\G. Hence a weaker (still
unknown) question than the above is whether I' is necessarily a lattice if the
N M-action is minimal on I'\G, or equivalently if F is equal to the set of
horospherical limit points of I, in the sense of [27]. In view of a theorem of
Fraczyk and Gelander [16], one can also ask whether the infinite injectivity
radius of I'\G implies that A cannot be all of F in higher rank setting.

Organization. In section 2, basic definitions and properties of Anosov sub-
groups will be recalled. In section 3, we prove a uniform bound on the mul-
tiplicity of certain shadows, which is a main technical ingredient. In section
4, we show that if Zyer e ¥(1) = oo, then for a large compact subset
Q C I'\G, the events P, = QN Qa~ ', a € A do not have a strong corre-
lation with respect to the BMS measures of the form milx[fwoi; this will be
used as a main input for the Borel-Cantelli lemma, in section 5 to show that
any (I, 1)-conformal measure is necessarily supported on the conical limit
set A.. In section 6, we establish all the equivalences of Theorem 1.4. In
section 7, we prove Theorem 1.3.

Acknowledgements. We would like to thank Peter Sarnak and David
Fisher for useful comments.

2. PRELIMINARIES

Let G be a connected semsimple real algebraic group. We let P = M AN,
g,a,a", etc, be as defined in the introduction. We fix a maximal compact
subgroup K < G so that the Cartan decomposition G = K (exp a™)K holds.
Denote by p : G — a™ the Cartan projection, i.e., for ¢ € G, its Cartan
projection u(g) € a™ is the unique element such that

g€ Kexpu(g)K. (2.1)
We fix a norm || - || on a which is induced from the Killing form on g. The
quotient space X = G/K is the associated Riemannian symmetric space.
We denote by d the Riemannian distance on X induced by || -||. We also set

o=[K]eX.

Denote by wg € K a representative of the unique element of the Weyl
group W = N (A)/M such that Ad,, a™ = —a™. The opposition involution
i:a— ais defined by

i(u) = — Ady,(u) for u € a.

We have i(u(g)) = u(g?t) for all g € G.

The Furstenberg boundary F = G/P is isomorphic to K/M as K acts
on F transitively with K N P = M. The a-valued Busemann function
B :F x G x G — ais defined as follows: for £ € F and g,h € G,

Be(g.h) = 0(g™",€) —a(h™,€) (2.2)
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where the Iwasawa cocycle o(g™!,€) € a is defined by the relation g~ 'k €
Kexp(o(g~t &)N for ¢ =kP, k€ K.

Let I' < G be a Zariski dense discrete subgroup of G. Denote by £ C a*
the limit cone of I", which is the asymptotic cone of u(T'), i.e.,

L={veat:v= lim t;u(y) for some t; — 0 and 7; — oo in T'}.
71— 00

It is a convex cone with non-empty interior [4].

The growth indicator function ¢r : at — R U {—oc} is defined as a
homogeneous function, i.e., ¥r(tu) = tir(u) for all t € R, such that for any
unit vector u € a™,

Yr(u) == inf TC (2.3)

u€C,open cones CCat

where 7¢ is the abscissa of convergence of the series —HrMll,

We have ¥r > 0 on £ and ¢yr = —oo outside L.

~vel,u(v)ec €

The generalized BMS-measures m,, ,,. For ¢ € G, we consider the
following visual images:

gt:=gPcF and g¢g :=guwPcF.
Let F®?) denote the unique open G-orbit in F x F under the diagonal action.
In fact,
FO ={(¢*,97): g€ G}
Then the map
gM — (g7, 97,b = B,-(e,9))

gives a homeomorphism G/M ~ F ) x a, called the Hopf parametrization
of G/M.

For a pair of linear forms 91, 1y € a* and a pair of (I', ¢1) and (T, ¢2) con-

formal measures 7 and v respectively, define a locally finite Borel measure
My e o0 G/M as follows: for g = (g%, g7,b) € F® x q,

ity an(g) = € 0ot 0200 €O s (Vg7 ), (2.4)

where db = d{(b) is the Lebesgue measure on a. By abuse of notation, we
also denote by m,, ., the M-invariant measure on G induced by m, ,,. This
is always left I'-invariant and right A quasi-invariant: for all a € A,

~ _ _(=Y1+Yo0i)(loga) ~ .
a*myl7y2 76( 1/}1 TZJQ )( g )mV17V27

we refer to [13] for more details on these measures. We denote by m,, ., the
M-invariant measure on I'\G induced by 7, 4, .
We will need the following notion:

Definition 2.5. Let g; € G be a sequence whose Cartan decomposition is
given by g; = kail; € KATK. Asi— oo,

(1) we say that g; — oo regularly if a(loga;) — oo for all simple root «
of (g,a);
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(2) we say that g; converges to £ € F, if g; — oo regularly and Zlglolo kf =
13

(3) we say that p; = g;(0) € X converges to £ € F if g; does.
We then define the limit set A of I" as the set of all accumulation points

of I'(0) in F; this is the unique I'-minimal subset ([28, Lem. 2.13], [4]). As
in the introduction, we also define the conical limit set:

there exist ; € I" and a; — 0o in AT }

Ae= {gP €7 such that v;ga; is bounded

In the rest of this section, we assume that I' < G is a Zariski dense Anosov
subgroup (with respect to P) as defined in the introduction. We collect some
important properties of Anosov subgroups that we will be using.

Lemma 2.6. ([22], [18]) IfT' < G is Anosov, then we have:

(1) (Regularity) If v; — oo in T', then v; — oo regularly as i — oo.
(2) (Antipodality) If €,m € A are distinct, then (€,1) € F®.
(3) (Conicality) A = A..

Indeed, these three properties characterize Anosov subgroups [22, Thm.
1.1]. Note that the regularity of (1) implies that I'(0) UA is compact. More-
over, by [28, Lem. 2.10], we have:

Lemma 2.7. For any compact subset QQ C G, the union I'(Q)UA is compact.

The following is a consequence of the antipodal property of Anosov sub-
groups, and plays a key role in this paper.

Lemma 2.8. [28, Lem. 8.13] Let I' < G be Anosov. For xz = [g] € T'\G, the
following are equivalent:

(1) limsup zA # 0;

(2) limsupzA™ Ulimsup zwoA+ # 0;

(3) {9P, gwoP} N A 0.

Theorem 2.9. [34] For I' Anosov, we have
L C intat U{0}.

Corollary 2.10. IfT" < G is Anosov and rank G > 2, there exists no finite
A-invariant Borel measure on I'\G.

Proof. Suppose there exists a finite A-invariant Borel measure m on I'\G.
Let v € int a™. By the Poincare recurrence theorem, m-almost all points are
recurrent for the action of exp Rv. In particular, there exist g € G, v; € T’
and t; — 400 such that ;g exp(t;v) is bounded. Then the sequence ju(v; ')
stays in a bounded distance from the ray Riv by [4, Lem. 4.6]; it follows
that v € £. Therefore £ = at U{0}. If rank G > 2, then a* — {0} # inta™.
Hence the claim follows from Theorem 2.9.

O
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3. UNIFORM BOUND ON THE MULTIPLICITY OF SHADOWS

Forpe X =G/K and S > 0, we set B(p,S) :={z € X : d(z,p) < S}.
Recall the notation o = [K] € X = G/K. For p € X and S > 0, the
shadow of the ball B(p, S) as seen from o is defined by
Os(o,p) :=={€ € F: for some k € K with ¢ = kP, kATon B(p, S) # 0}.

Lemma 3.1. Let I' < G be a Zariski dense Anosov subgroup of G. For any
S, D > 0, there exists ¢ = q(S, D) > 0 such that for any T > 0, the shadows

{Os(0,70) : T < ||l <T + D}

have multiplicity at most q.

The rest of this section is devoted to the proof of Lemma 3.1.

Throughout the section, we fix a compact subset ) of G. The notation
T ~q y means that x — y is contained in a bounded set that depends only
on ). We will simply write x = y if the implicit bounded set depends only
on I" and G.

Lemma 3.2. [4, Lem. 4.6] For all g € G and ¢1,q2 € Q, we have

1(q1992) ~q p(g)-

Lemma 3.3. Let a € A and w € W be such that waw™' € AT. If QN
YQa~t £ 0, then u(y) ~¢g Ady loga.

Proof. If @ NyQa~! # 0, then there exists qo, ¢ € @ such that goa = vqj).
The conclusion follows from Lemma 3.2. U

We set A~ = woATw, !, and for any C' > 0, set A¢ :={a € A: |loga| <
C'}. The following lemma is a key ingredient in the proof of Lemma 3.1; we
use the regularity and antipodality of Anosov subgroups.

Lemma 3.4. Let I' < G be Anosov. There exists Cy > 1 depending only
on @ such that whenever @ N fleal_l N ’ngagl # 0 for v1,72 € T and
ai,as € AT, we have

(1) aytag € (AT UAT)Ag,;
(2) u(y2) = nln) + p(vy y2) or p(m) =g p(v2) + nlrg 'n)-
Proof. We first prove (1). Suppose not. Then there exists a compact set

) C G and sequences qo;, q1,i, 92, € @, 14,025 € ATt and Y1,i,7Y2,; € I such
that

aytas; & (AYUAT)A;, (3.5)
40,5 Q15 = V1,914, 40,5025 = 72,5 2,5

where A; = {a € A : ||logal| <i}.
Observe that (3.5) implies ai}au — oo in A and ay4,a2; — oo in AT.
Observe that aj;,as,; — oo regularly, by (3.6) and Lemmas 2.6 and 3.2.
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Passing to a subsequence, we may assume that for each m = 1,2, g
converges to some ¢, € @, and %;,1,'410,1'0 converges to some element £ € A
as i — 00. Since 7;%11-(10,2-0 = qm,ia%}io, it follows that £ = ¢, by [28, Lem.
2.11] for each m = 1,2. Therefore ¢, € A. On the other hand, we have

’Yiilw,i 2 = quiay;az;. (3.7)

Note that 71_37271- — oo and there exists w; € W — {e,wp} such that

1ai}a27iwi € AT. Passing to a subsequence, we may assume that w; = w

w;
is constant and 71_, Z-lfyg,i @2,; 0 converges to an element of A by Lemma 2.7.
By (3.7) and [28, Lem. 2.11], it follows that gw™ € A. This contradicts
Lemma 2.6, as neither gyw™ = ¢ nor (qw™,¢y) € F@_ proving (1).

To prove (2), observe that we have p(v1) =g logai, p(v2) =g logas by
Lemma 3.3, since Q N 'leafl N ’nga;l # (). On the other hand, it follows
from (1) that

(v ') =g logaitay or  p(yy 'y2) ~q logay 'a.
Hence (2) is proved. O

The following lemma follows from Theorem 2.9 and the fact that the angle
between two walls of a Weyl chamber is at most /2.

Lemma 3.8. There exist constants (1,82 > 0 depending only on I' such
that for all z,y € pu(T"), we have

-+ yl1* > [l=]* + lll* + Ball=lllly] - 52

Proof of Lemma 8.1. Suppose that there exist £ € (i Og(0,70) and T <

()|l < T + D for some ~; (i = 1,---,n). Set Q := KA{K. Choose

k € K such that & = kP. Then d(kA%o,v;0) < S. It follows that there

exists a sequence a,--- ,a, € A" such that k € Qﬁ'leafl N~ NyQayt.
We claim that there exists D' = D'(Q, D) > 0 such that

max [lu(y; )l < D" (3.9)
This implies that n < #{y € ' : [|u(y)| < D'}.

To prove (3.9), we apply Lemma 3.4(2) to each pair (v;,7;); suppose

first that u(vy;) ~qg u(vi) + u(y; tv;). Since ||u(v)|| < T + D, there exists
Dy = D1(Q) > 0 such that

ln(ye) + p(y )P < (leGi)ll + D1)* < (T + D+ Di)*. (3.10)
Set Dy = D + D;. By Lemma 3.8 and (3.10), we deduce that
Bl )IT + [l )P < 2D2T + D + B,

in particular, ||u(y; ')l < max(y/D3 + B2,2D26; ). The other case of
Lemma 3.4(2) also yields the same conclusion by a symmetric argument.

This proves the claim (3.9). O
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We remark that the boundedness of the multiplicity of the intersection
of shadows and the limit set for projective Anosov representations, with
respect to the word length || is given [35, Prop. 3.5].

4. POINCARE SERIES AND THE AVERAGE OF CORRELATIONS

Let I' < G be a Zariski dense Anosov subgroup. We fix ¢ € a* and a
(I, ¢)-conformal measure Ay on F (not necessarily supported on A). We

assume that
~yel'

This implies that v is I'-critical by [39, Lem. III.1.3]. Therefore, there exists
a (I', 4 o i)-conformal measure, say Ayoi, €.g., as constructed by Quint.
Let

denote the generalized BMS measure on G, which is left I'-invariant and
right AM-invariant.

The notations = <, y (resp. <, y) are to be understood that z < y+C
(resp. x < Cy) for some constant C' > 0 that depends on z.

The main aim of this section is to prove the following proposition. For
r > 0 and any subset S C A, we set S, = {a € S : | logal <r}.

Proposition 4.1. Let Q, = KA KA, forr > 0. For any sufficiently large
r > 1, the following holds: for any T > 1,

2
~ -1 —1 —p(u(7))
/A}L " E Mm(QrNY1Qra; NY2Qra; ) day das <<< g e )

T y1,72€l ~€L,

lpI<T
and
/ Z m(Q, NyQra~ ') da > Z o~ %(n(v))
AJTr vyel’ ~er,
lI<T

where the implied constants depend only on r.

The rest of this section is devoted to the proof of this proposition, given
as the proofs of Propositions 4.11 and 4.14.

The a-valued Gromov product on F?) is defined as follows: for (¢F,¢7) €
F@),

G(gt,g7) == By+(e,9) +1(By-(e,9));
this is well-defined independent of the choice of g € G.

Lemma 4.2. [5, Prop. 8.12] There exist ¢, ¢ > 0 such that for all g € G,
¢ HIG(g", g7)Il < d(o,gA0) < c|G(gt, g7 + ¢
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For r > 0, let
G, =KATK
and
L(0,90) :={(h*,h7) € FP : h e G,, ha € gG, for some a € A*}.
Lemma 4.3. For any g € G and r > 0, we have
L,(0,go) C Oz.(0, go) x Oa-(go,0).

Proof. Let (&,n) € L,(0,go). Then there exists h € G, such that (hT,h™) =
(&,m) and d(hAT0,g0) < r. Let k € K be such that k™ = h™. Then the
Hausdorff distance between kA*o and hA* o is given by d(o,ho) < r [12,
1.6.6(4)] and hence d(kA*o0,go) < 2r. It follows that £ = kT € Os,(0, go).
A similar computation shows that n € O2,.(go,0). O

Lemma 4.4. Letr > 0. If g € Q. NyQra~! fory €T and a € AT, then

(1) (g*,97) € Lar(0,70).
(2) |¥(G(gt,97))| < 2|||ler where ¢ is from Lemma 4.2.
(3) gANQr NYQra~! C gAy,.

Proof. (1) follows from the definition since @, C Ga.. (2) follows from
Lemma 4.2 and the fact that d(gAo,o0) < d(go,0) < 2r. (3) follows from
the stronger inclusion gA N Q, C gA4,; if g, gb € @, for some b € A, then
be Q- Qr C Gy since Q C Go,. Note that G4 N A = Ay, O

We will need the following shadow lemma:

Lemma 4.5. [28, Lem. 7.8]: There exists So > 0 such that for all S > S
and all v € T, we have

e () & Ay (O5(0,70)) < e~ ()
with implied constants independent of .
Lemma 4.6. Let r > 0. For any a € A", we have
M(Qr NYQra™") <, e V().
Proof. By Lemmas 4.3, 4.4 and 4.5, we have
M(Qr NyQra™)

_ / ( / Lo a1 (gb)e" (O ) db) dri(g") dryeilg)
['27‘(07’70) A

<

/ VOI(A4T)62”1/’HC"’ d)\w (g-i-) d)\lboi(g_)
O4r(0,70) X O4r (v0,0)NF ()

<, €_¢(“(’Y)),
which proves the lemma. [l

The following is easy to prove (cf. [7, Lem. 5.14]).
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Lemma 4.7. There exists o > 0 such that any v € T with ||u(y)|| > bo and
any (§,1) € Os,(0,70) X Os,(70,0) satisfies |G(€,n)]| < Lo
In the rest of this section, we fix constants Sy, £y ¢, ¢’ from Lemmas 4.2,

4.5 and 4.7. We set
g 1= So+0€0+0/+1. (4.8)

Lemma 4.9. For all r > 1o, there exists Co = Ca(r) > 0 such that for any
T > Cy and any g € G with

(g%.97) € J{Os(0,70) x Ogy(v0,0) : v € T, 4y < ||u(y)|| < T — Ca},
we have
/A ]].Qrm,era—l(gb) dbda > Vol(A,) Vol(Af),

Af
Proof. Let C = C4(r) be the implied constant in Lemma 3.3 associated to
Q=Q. Set Cy:=CL+1. Let T > Cs. Let g € G and «y € T be such that
bo < l|p(II <T —Cy and (97,97) € Og,(0,70) x Os,(70,0). By Lemmas
4.2 and 4.7, we have d(o0,gA40) < c||G(g7,97)|| + ¢ < cly+ . Therefore, we
may assume without loss of generality that d(o, go) < ¢ly + ¢ by replacing
g by an element of gA.
Since gt € Og,(0,70), there exists k¥ € K such that k* = ¢g* and
d(kao,v0) < Sp for some a € A™.
Since d(kao, gao) < d(o, go) by [12, 1.6.6(4)], we get
d(vo, gA"0) < d(vo, kao) + d(kao, gao)
< d(vo, kao) + d(ko, go)
<So+cly+c =rg—1.
Since 7 > 1o, we have g € G,_1 and gag € YG,_1 for some ag € A™T.
Therefore g € G_1 ﬂ'yGT_laal. By Lemma 3.3, this implies that ||u(y)—
log ag|| < C4. Since ||u(y)|| < T — C5 — 1, we have ag € A} |, and hence
aoAl+ C A; Since Q, = G, A,, we have g4, C Q,NvQ,a" ' for all a € agA;.
Therefore

/+/ 19, nQra—1(gb) dbdaZ/ +/ 1, vQ,a-1(gb) dbda
At JA apAt JA

2/0A+/A]19Ar(gb) dbda > Vol(AT) Vol(4,).
a0y

This finishes the proof. U

We now deduce the following from Lemma 3.1 and the shadow lemma
4.5.

Lemma 4.10. For any D > 0, we have:

sip Y ) < oo
T>0 ~eT,

T<|[p(I<T+D
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Proof. For any T > 0,

Z VM) Z Ay (Os,(0,70)) < q(So, D)
T<||u(y)||<T+D T<[|pMI<T+D

where ¢(Sp, D) is given by Lemma 3.1. This proves Lemma 4.10. O

We are now ready to give estimates for correlation functions in terms of
Poincaré series, which was the main goal of the section.

Proposition 4.11. For all r > rg, we have, for all T > 1,

2
T ! . —(u())
/A; /A+ Z m(QrMmQray M2Qray ™) day day <<r( Z e ) )

T vy1,72€l ~er,
leNII<T

Proof. Let Cp > 0 be as in Lemma 3.4(1) associated to @ = @,. Set

-1 —1
By = {(al,ag) e A x A QN mQrar N2Qray” #0 } . (4.12)
1(v2) Q. m(m) + 1y 72)
where the implied constant for ~¢, is chosen to be the one in Lemma 3.4(2)
with @ = Q,. Note that by Lemma 3.3, the subset E,, ,, is contained in
some bounded ball around (p(7y1), p(7y2)) whose radius depends only on r.
Hence the volume of E,, ,, has a uniform upper bound depending only on
r. Observe that if there exists (a1, a2) € Ey, ~,, then ||u(y;)]| = || logal < T.
Since the angle between any two walls of a® is at most 7/2, we deuce

(v v2) | < (le(rn) + (i )l Se llu(r2)ll S T
Therefore we get

/ / Z m(Q, N 71Qra1_1 N ngraQ_I) day das
AL Jat

T ~vy1,72€l

< 2/+ /+ Z m(Qr N1Qra; ™ N ’Yqu"GEI)]lEWM2 (a1, az) day das
Ar JAr ~v1,72€l

—¥(p(v2))
<<T/A; [4+ Z (& ]lEylw(al,aQ)daldag

T y1,72€l’

_ — 1
<, Z e~ V() =¥ (1 72)) /A; /A; g, ., (a1,az) day day

Y1,72€T,
HM(W%)HSrT,
le(yy " v2) ST

2
<, ( Z ewww») : (4.13)
v€T,
IS T
note here that the first inequality follows from Lemma 3.4(2) and the sym-
metricity of the expression with respect to v1,72. The second inequality is
due to Lemma 4.6. The third inequality is valid again by Lemma 3.4(2).
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The last inequality is obtained by reindexing v, 1y € T with a new variable.
Finally note that (4.13) together with Lemma 4.10 finishes the proof. [

Proposition 4.14. For all r > rg, we have, for all T > 0,

/+ Z m(Q, NYQra~ ') da >, Z b))
A

T ~yel ver,
IeI<T

Proof. By Lemma 4.7, for all a € AT and v € T with [|u(y)|| > 4o,
m(Qr N ’VQra_l)

> / / 19, 17Q,a-1(90) db dAy (g7) dAyei(g ™).
Os, (0,70)xOg (vo,0)NF (2 J A

Hence by Lemmas 4.5 and 4.9,

/+Zm(Qrﬁ’7Qra_l)da > Y e,
A

T vel’ yel’
leNILT-C2

This finishes the proof in view of Lemma 4.10. ([

5. CONICAL LIMIT POINTS AND POINCARE SERIES
We begin by recalling:

Lemma 5.1. [28, Lem. 7.11]. Let I' < G be a Zariski dense discrete
subgroup and +p € a*. If there exists a (I',v)-conformal measure Ay with
Ap(Ae) >0, then

Z e~ V() — oo
~yel’
The goal of this section is to establish the converse for Anosov subgroups:
Proposition 5.2. Let ' < G be a Zariski dense Anosov subgroup of G. Let
e a*. If Z’yEF e YWM) = oo, then for any (T,)-conformal measure Ay,

we have
)\1/) (Ae) > 0.

We will need the following version of the Borel-Cantelli lemma:

Lemma 5.3. Let (2, M) be a Borel probability measure space. Let 1p, (w) be
a jointly measurable function of (a,w) € AT xQ. Suppose that [, M(P,) da =
oo and

fA; IA; M(Pa ﬂPb) dbda

(S M(Pa)da)z

for some C < co. Then we have

lim inf
T—o0

<C (5.4)

M({w : /A+ Ip, (w)da = 50}) > %
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Proof. The proof is an easy adaption of [1]. Set

+1p, (w)da
b(t,w)zm and Qoz{w:A+1pa(w)da:w}.

Since [, M(P,)da = oo, we have b(t,w) — 0 as t — oo for all w € QF. On
the other hand, by (5.4), there exists ¢, — oo such that

c, ;:/b(tn,w)QdM(choo
Q

for some Coy < C, as n — oo. Since the family of functions w — b(ty,,w) is
uniformly bounded in their L?-norms, they are uniformly integrable. Hence
fQS b(tn,w)dM(w) — 0 as n — co. Since [, b(t,w)dM(w) = 1, it follows
that

lim b(tn,w)dM(w) = 1.

n—oo QO

By the Cauchy-Schwartz inequality, for all n > 1,

2
M(920)C), = / 2 dM(w)/ bt )2 AM(w) > (/ bt ) dM(w)) |
Qo Qo Q
Therefore ) ) )

> lim — = — > =

M(Qp) > nh_}ngo oo 2

and the conclusion follows. O

Let m denote the measure on I'\G induced from m = mEﬁm. For r > 0,

set G, := KATK, Q, := G, A, and M :=m|pq,. For all a € A™, set
P, :=T(Q,NTQ,a"!) cT\G.
We will prove:

Proposition 5.5. For all sufficiently large r > 1, we have, for all T > 1,

= (u(v))
/A+ M(P,) da >, Z e and
T el

letnI<T
2
/+/+ M(P,, N P,,) day das <y ( Z e-#f(#(v))) '
A v€r,
IeIILT

Proof. Note that for all a,a1,as € AT,

M(Pa) > Y m(Qr NyQra™") and
~yel’
M(Pay N Pay) < > W(Qr Nm1Qray ! N2Qray');
1,726l

Indeed, if @, is small enough so that it injects to I'\G, then we have equalities
in the above by the definition of measures. In general, the above inequalities
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follow by covering @, by finitely many subsets which inject to I'\G and the
implied constants depend only on the multiplicity of the covering. With this
observation, the proposition follows from Propositions 4.11 and 4.14. O

Proof of Proposition 5.2. By Proposition 5.5 and Lemma 5.3, the fol-
lowing set has positive m-measure:

W, = {|g] €TQ, : /A rq, (ga) da = oo} (5.6)

for all r large enough. On the other hand, note that for all [g] € W,
there exists a; — oo in AT such that [g]a; is bounded; and hence g € A..
Therefore Ay (Ac) > 0. This finishes the proof.  [J

6. DICHOTOMY THEOREM FOR THE A-ACTION

We begin by recalling the notion of complete conservativity and dissipa-
tivity. Let H be either a countable group or a connected closed subgroup
of A. We denote by dh the Haar measure on H. Consider the dynamical
system (€, u, H) where Q is a separable, locally compact and o-compact
topological space on which H acts continuously and g is a Radon measure
which is quasi-invariant by H.

A Borel subset B C Q is called wandering if [, 1p(h.w)dh < oo for p-
almost all w € B. The Hopf decomposition theorem says that €2 can be
written as the disjoint union Q¢ U Qp of H-invariant subsets where Qp
is a countable union of wandering subsets which is maximal in the sense
that Q¢ does not contain any wandering subset of positive measure. If
w(Qp) =0 (resp. u(Qc) = 0), the system is called completely conservative
(resp. dissipative). When (2, u, H) is ergodic, H is countable and p is
atom-less, then it is completely conservative (cf. [20, Thm. 14]).

The following is standard (cf. [7, Proof of Thm . 4.2])

Lemma 6.1. Suppose that u is H-invariant. Then (Q, H, p) is completely
conservative if and only if for p a.e. x € ), there exists a compact subset
B, C Q such that [, . 1p,(h.x) dh = oco.

Proof. Suppose (2, H, pu) is completely conservative. Suppose that there
exists a p-positive measurable subset £ C Q such that for all x € F,
fhe g 1B(h.z) dh < oo for any compact subset B. Then any compact sub-
set of F with positive measure is a wandering set. This proves the only
if direction. Now suppose that for p a.e. x € €, there exists a compact
subset B, C Q such that [, , 1p,(h.z) dh = co. Assume that there exists
a wandering set W C Q with 0 < p(W) < co. By the o-compactness of €2,
there exists a compact subset B C €2 such that

ple e W /H I1p(h.x)dh = oo} > p(W)/2. (6.2)

For any n € N, set W,, := {w e W : [ lw(h.w)dh <n}. Fix n such
that w(W,) > p(W)/2. For any compact subset C' C H, we get, using the



18 MINJU LEE AND HEE OH

H-invariance of p,

// 15 (hw) dhdu:/ /n]lg(h.w)dudh
/ w(B N AW, dh = //Bmen Iy, (b~ .x)dudh

/ /]lW dhd,u</ /ﬂWn dhd,u
BNHW,, BNHW,

_/ ndu <n-pu(B) < oo.
BNHW,

Hence [y, [ 1p(h.w)dhdu < oo; so

plz e W / I1p(hw)dh < oo} > u(Wy,) > p(W)/2,
contradicting (6.2). O

Proof of Theorem 1.4. The equivalence (1) < (2) follows from [37, Prop.
2.8, Lem. 4.4] and [34, Prop. 2.10] (see also [28, Cor. 7.12]).

The equivalence (3) < (4) follows because the restriction of Ay to any
I-invariant measurable subset is again a (I, ¢))-conformal measure, up to a
positive constant multiple, if not-trivial.

The equivalence (5) < (6) follows from the I'-equivariant homeomorphism
F@ ~ @G JAM and Lemma 6.1. More precisely, for any I'-invariant subset
Z ¢ F@_ define a T-invariant subset Z € G/M by

7 =ZxACF?xA

using the Hopf parametrization F) x A ~ G/M. We may view Z as
an A-invariant subset of I'\G/M as well. It follows from Lemma 6.1 that
the assignment Z — Z preserves the conservativity (and complete dissi-
pativity) of the action of ' on (F®), Ay ® Apei| 7») and the action of A
on (I\G/M,my, ,.;)- The equivalence (5) < (6) now follows in view of
the Hopf decompositions (see the beginning of Section 6) for the systems
(F@, Ay ® Mol 7@, T) and (T\G/M, mx, 5,0 A).-

The direction (3) = (1) is proved in [28, Lem. 7.11].

The direction (1) = (3) was shown in Proposition 5.2.

For the implication (4) = (5), we will use that all (1) — (4) are equivalent.
Suppose that A\y(A:) = 1, and hence 1) is I'-critical. In this case, see ([42],
[28, Cor. 4.9]) for the AM-ergodicity of my, x,.;- Hence Ay ® Ayoi| z2) is
ergodic. To prove it is conservative, observe that since A\y(A;) = 1, and
no point in A, can be an atom by Lemma 4.5, A\ is atom-less. Therefore
Ay @ Ayoi| 72 has no atom. This implies Ay ® Ayoi| 7(2) is conservative by
[20, Thm. 14]. Therefore (5) follows. To show (5) = (4), suppose that
My e 18 completely conservative and ergodic. Fix any compact subset
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B c T'\G/M. Then by Lemma 2.8, we have for g € G,
limsupTgAM N B # 0 if and only if limsup Tg(A* UwoATwy )M N B # 0.

Therefore, it follows that max(Ay(Ac), Ayoi(Ac)) > 0. On the other hand,
Since 3. cp e~ ¥()) = > er e~ ¥ei(t() | the equivalence (4) < (1) implies
that min(Ay(Ac), Agoi(Ac)) > 0. This proves (4).

If \y(Ae) = 0, the measure Ay, ® Ayoi| 72y must be non-ergodic by the
previous argument, which shows that any ergodic measure would be con-
servative, which would then imply max(Ay(Ac), Ayoi(Ae)) > 0 and hence
Ay(Ae) > 0 by the equivalence of (1) and (3). This completes the proof of
the equivalence (4) < (5).

These establish the equivalence of all (1)-(6). To see that these are all
equivalent to (7), we recall that for any I'-critical v, the ergodicity of the
A-action on (Eo, mx, ,0l&) 18 proved in [29, Thm. 1.1]. The conservativity
(resp. dissipativity) in (6) and the conservativity in (7) (resp. dissipativity)
are equivalent as the projection & — I'\G/M has the compact fiber, which
is a closed subgroup between M° and M. Hence (&, A, mA¢,A¢oi’€o) is con-
servative only when ¢ is I'-critical by (2) < (6). This completes the proof
of Theorem 1.4.

We also show the following:

Proposition 6.3. If ¢ is I'-critical, then for any (Ay, Apoi) € My X My,
the diagonal I'-action on (F X F, Ay ® Ayoi) is ergodic and completely con-
servative.

Proof. By Theorem 1.4, it suffices to show that
(Mg X Agoi) (A x A) — A®)) = 0.
Set Q:=AxA—A® and Q(z) :={y € A : (z,y) € Q} for each = € A. By

Lemma 2.6(2), we have
Q(x) ={z} forall z € A.

On the other hand, the conical property of an Anosov subgroup (Lemma
2.6(3)) implies that Ay is not atomic (Prop. 7.4 and Lem. 7.8 of [28]), and
hence Ay (Q(x)) = 0 for all x € A. Therefore

(g % Ao (Q) = / A (Q()) dyoi() = 0, (6.4)

TEA
proving the proposition. ([

7. GROWTH INDICATOR FUNCTION AND LEBESGUE MEASURE OF A

We denote by p the half sum of all positive roots of (g,a). A subset S of
positive roots is called strongly orthogonal if any any two distinct roots «, 8
in § are strongly orthogonal to each other, i.e., neither of o+ is a root. Let
© denote the half sum of all roots in a maximal strongly orthogonal system
of (g, a); this does not depend on the choice of a maximal strongly orthogonal
system (see [32] where O is explicitly given for each simple algebraic group).
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Theorem 7.1. Let G be a connected semisimple real algebraic group with
no rank one simple factors. Let I' < G be a discrete subgroup of infinite
co-volume. Then

Yr <2p—06.

Proof. This is proved by Quint [38], but the above explicit bound was not
formulated, although his proof certainly gives that. We give a slightly dif-
ferent and more direct proof for the sake of completeness.

Note that the right translation action of G on I'\G gives a unitary repre-
sentation L?(I'\G) with no non-zero fixed vector as I'\G has infinite volume.
We then use [32, Thm. 1.2] which gives that for any K-invariant functions
f € L*(\G), any v € a*, and any ¢ > 0,

((exp)f, f) < d-e” 17990 )2 (7.2)

where d. > 0 depends only on €. Therefore this theorem follows from Propo-
sition 7.3. O

Proposition 7.3. Suppose that there exists a function 0 : a™ — R such that
for any K-invariant functions f € L*(T\G), any v € a*, and any ¢ > 0,

((expv) f, f) < dee” 17200 )2 (7.4)

where d. > 0 depends only on €. Then

Yr <2p—0.

Proof. Fix u € at be a unit vector such that ¥r(u) > 0. Fix an open cone
C C a™ containing u, and set Cr = {v € C : ||v|]| < T} and Br = K exp(Cr)K
for each T' > 1.

Define

Pr(g.,h) ==Y 1p, (g 'vh)
~yel’

which we regard as a function on I'\G x I'\G. Let ¢ > 0. Let U. = KU. K
be a symmetric open neighborhood of e which injects to I'\G such that
U.BrU; C Bry. for all T > 1. Let ®. be a non-negative K-invariant
continuous function supported in I'\I'U with fF\G b dx = 1.

Let

1 =1e = sup{[2p(v) = 2p(u)| : v € C, |Jv]| = 1}.
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Using that for g = k;(exp v)ks, dg = E(v)dkidvdky with Z(v) =< €*(¥), and
(7.4), we compute

#I'N Br = Fr(e,e)

< / Fri([g], [))®<([g)) @ ([A])dgdh
MN\GxI'\G

= -1
- /F\er\(;; 1g,,. (9~ 7vh)®([g])®([R]) dg dh

- / / L5y, (g7 0)®e(lg))®-([A]) dg dh
neJa

- / / 1y, (g7 ") 0 ([h]g)®([h]) dg dh
neJa

_ / ( / <I>s([h]g)<1>s([h])dh) dg
Kexp(Crye)K \JI\G

x/ (expv. ., B.)e ) dy
UECT+5

<d / e@20=(1-20)®) gy, . [, 2
vECT+E

T+e

<d / / 20— (=0 ®) gt . |, 2
0 veC,||v||=1

< e(2pf(175)9)((T+s)u)+2(T+€)17

where the implied constants are independent of 7' > 1. Therefore
log #(I' N Br) <

lim sup < (2p —0)(u) + €6(u) + 2n.
T—00 T
On the other hand, when ¥ (u) > 0,
log#(I' N K exp(Cr)K)

ot
vrle) = T

where the infimum is taken over all open cones C containing u. Since 1 =
nc — 0 as C shrinks to the ray Ryu, we get

br(u) < (20— 6)(u) + £6(w).
Since € > 0 was arbitrary, this implies
Yr(u) < (2p — 0)(u)
as desired. O
Remark 7.1. (1) Corlette’s theorem [10] shows a uniform gap theorem
as above for rank one groups with property (T).

(2) We remark that in a recent work [24], a stronger bound ¢r < p was
conjectured for I' Anosov.
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A connected simple real algebraic group is isomorphic to one of the follow-
ing groups: SO(n,1),SU(n,1),Sp(n,1), Fy, which are groups of isometries
of real, complex, quarternionic hyperbolic spaces and the Cayley plane re-
spectively. If X denotes the corresponding Riemannian symmetric space as
listed above, the Hausdorff dimension of X with respect to the Riemannian
metric is given by k(n + 1) — 2 where k = 1,2,4, and 22 respectively([10],
[30]) ; they are equal to the volume entropy Dx of X with respect to a
properly normalized Riemannian metric on X.

The following theorem is well-known due to the works of Sullivan ([43],
[45]), Corlette [10] and Corlette-lIozzi [11].

Theorem 7.5. Let G be a connected simple algebraic group of rank one.
Let ' < G be a convex cocompact subgroup such that I'\G is not compact.
Then

dlmH(A) < dimH(aX).
where dimp denotes the Hausdorff dimension with respect to the Riemannian
metric on 0X.

Proof. Let 6 denotes the critical exponent of I'. By [11, Thm. 6.1, Cor. 6.2],
§ is equal to dimy(A) and the bottom, say, A of the L?-spectrum of the
negative Laplacian is given by 6(Dx — §). Now suppose that § = Dx. By
([10, Thm. 5.5], [45]), there exists a unique harmonic function on I"'\ X, and
it is square-integrable. Since the constant function is a harmonic function,
it follows that I'\ X has finite volume, and hence compact, as I' is assumed
to be convex cocompact. This proves the claim. O

‘We now deduce Theorem 1.3 from Theorems 1.4 and 7.1.

Proof of Theorem 1.3. Let I' < G be Zariski dense and Anosov. If
rankG = 1 and I < G is cocompact, then it is immediate that A = F. We
now suppose that I' is not a cocompact lattice in a rank one group G. We
claim that the Lebesgue measure of A is zero. We write G = G1Go where Gy
is a product of all simple factors of rank one, and Gs is a product of all simple
factors of rank at least 2. Consider first the case when Gy is trivial. Then I
is of the form: T" = (]_[f:1 7ri) (X) where X is a Gromov hyperbolic group and
m; is a convex cocompact representation of ¥ into a rank one simple factor
of G. If k =1, it follows from Theorem 7.5. If k£ > 2, then the Hausdorff
dimension of A is at most the maximum of the Hausdorff dimension of
the boundary of a rank one factor of G (cf. proof of [25, Theorem 3.1]);
therefore it is strictly smaller than the Hausdorff dimension of G/P. Hence
the Lebesgue measure of A is zero. Now suppose that G5 is not trivial. Let
p : G — G2 denote the canonical projection. By the Anosov property of
I, the projection p(I') < G9 is again an Anosov subgroup. It suffices to
prove that the limit set of p(I') has Lebesgue measure zero. Therefore, we
may assume without loss of generality that G = G2. Since I' has infinite
co-volume in G, as w(I') is Gromov hyperbolic, it follows from Theorem
7.1 that the growth indicator function ¢r of I' satisfies ¢r < 2p, i.e., 2p is
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not I'-critical. Since the Lebesgue measure on F is the (G, 2p)-conformal
measure, Theorem 1.4 implies the claim.

Remark 7.2. Note that it is the consequence of Theorem 1.3 that ¢r < 2p
for all Anosov subgroups of G which is not cocompact in G.

For a general discrete subgroup I' < G, we record the following:

Proposition 7.6. If I' < G is a discrete subgroup with ¥r < 2p, then the
Lebesgue measure of the conical limit set A, is zero. In particular, if I' and
G are as in Theorem 7.1, Leb(A.) = 0.

Proof. 1f ¢r < 2p, then Y- e” () < o0 by [39, Lem. 111 1.3]. By [28,
Lem. 7.11] (Lemma 5.1), this implies that Leb(A.) = 0. O
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