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ABSTRACT: Allylic amines are an important class of organic compounds that have inspired the development of numerous
methods for their synthesis. One of the most effective transformations involves coupling of internal alkynes with appropriate
nitrogen-containing electrophiles in the presence of a transition metal catalyst. We have developed a method that allows
transformation of terminal alkynes into allylic amines through a copper-catalyzed reductive cross coupling with a-chloro
phthalimides. The method has a broad substrate scope and results in the highly selective formation of the E-isomer of the
anti-Markovnikov hydroamination product. A preliminary mechanistic study supports a mechanism that involves hydrocu-
pration of the alkyne and the formation of a solvent caged radical pair.

Allylic amines are common among natural products and
biologically active molecules! and can serve as versatile
synthetic intermediates.? As a result, numerous methods
have been developed for their synthesis.? The most common
synthetic strategy involves forming a new C-N bond to the
preexisting carbon skeleton. Notable examples of this ap-
proach include amination of allylic electrophiles* (Tsuji-
Trost reaction) and allylic C-H amination.>

Another strategy for making allylic amines involves cre-
ating a new C-C bond. While various C-C bond-forming re-
actions have been explored, one of the most general and
commonly used transformations is the alkenylation of ni-
trogen-based electrophiles, such as imines, in reactions
with organometallic reagents. Recent advances in transi-
tion metal catalysis have allowed non-functionalized un-
saturated compounds to replace preformed organometallic
reagents in such alkenylation reactions.” Particularly im-
pactful have been catalytic reactions of alkynes with imines,
pioneered by Jamison and Krische (Scheme 1).In 2003 and
2004, Jamison reported alkylative coupling of alkynes and
imines (Scheme 1a).8 The first reductive coupling of alkynes
and imines was reported by Krische in 2007 using an irid-
ium catalyst,® while Zhou reported a nickel-catalyzed vari-
ant of the reaction in 2010 (Scheme 1b).1° More recently, a
redox-neutral variant of the reaction that involves in situ
transformation of amines to imines and their coupling with
alkynes has been developed by Shi (Scheme 1c).!! The same
transformation has been achieved through a different
mechanistic pathway!? using zirconium?3 and titanium cat-
alysts.1#

Using alkynes instead of alkenyl metal reagents offers
well documented advantages,'> but also narrows the scope
of allylic amines that can be accessed using this approach.
The various iterations of the alkyne-imine coupling reac-
tions have been limited to reactions of internal alkynes
(Scheme 1d). In this article we describe a new method for
the transformation of terminal alkynes into allylic amines
with excellent anti-Markovnikov and E-selectivity.

Scheme 1. Alkynes in the Synthesis of Allylic Amines.
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Our approach to the synthesis of allylic amines was based
on a general approach to transformation of terminal al-
kynes into E-alkenes outlined in Scheme 2a.® The key com-
ponent of the approach is the hydrocupration of an alkyne
(1).'7 The addition of NHC-supported copper hydride com-
plexes (2) to terminal alkynes is highly selective!® and sets
the anti-Markovnikov regioselectivity and E-diastereoselec-
tivity of the overall transformation. The E-alkenyl copper
intermediate (3) formed in the hydrocupration then reacts
with an electrophilic coupling partner (4) to afford the final
allylic amine (5). The challenge in using this approach to the
synthesis of allylic amines was to identify an electrophilic
coupling partner 4 that would provide the allylic amine



without interfering with the formation of the copper hy-
dride or alkenyl copper intermediates.

Initially, we explored reactions with imines as electro-
philes. Buchwald!® and Malcolmson?? used them success-
fully in related copper-catalyzed reductive cross coupling
reactions. However, in our attempts to achieve copper-cat-
alyzed reductive coupling of terminal alkynes with various
imines, under a wide range of reaction conditions, we ob-
served the direct reduction of imines to amines as the dom-
inant reaction pathway.

Scheme 2. Hydrofunctionalization of Terminal Alkynes
and the Synthesis of Allylic Amines.
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To avoid the direct reduction of electrophilic coupling
partners by NHC copper hydride, we focused our attention
on o-electrophiles. a-Bromo esters,?! alkyl iodides,?? and a-
chloro boronates,'¢d are all compatible with the hydrocu-
pration of alkynes. Their reactions with NHC copper hy-
dride complexes, when occur, are relatively slow two-elec-
tron processes.164 23 Based on these considerations, and in-
spired by Fu’s recent report?* we chose «o-chloro
phthalimides as coupling partners for the reductive trans-
formation of terminal alkynes into allylic amines (Scheme
2b). We anticipated that a-chloro phthalimides (6) would
couple with the alkenyl copper intermediate through a rad-
ical pathway initiated by inner-sphere single electron trans-
fer (SET) (see 7).25 Similar mechanism has been docu-
mented in other transformations of alkenyl copper com-
plexes?! and in nickel-catalyzed cross coupling of a-chloro
phthalimides with alkyl zinc reagents.?* Another considera-
tion in favor of a-chloro phthalimides as coupling partners
is that the phthalimide group could be easily removed after
the reaction to afford primary (E)-allylic amines.2¢

The proposed reactivity outlined in Scheme 2b prompted
us to explore the catalytic reductive coupling of terminal al-
kynes with a-chloro phthalimides promoted by a copper
catalyst in the presence of a silane and a turnover reagent.
We found that the best results in the reaction of alkyne 9
with a-chloro phthalimide 10 were achieved using condi-
tions shown in Table 1 (entry 1). The desired allylic amine
11 was obtained in 83% yield, as a single regioisomer and
with greater than 70 to 1 E/Z selectivity (see SI for details).
During the reaction development, we identified factors that
were important for the success of the reaction. Among the

NHC supported catalysts, only IPrCuCl and the closely re-
lated SIPrCuCl performed well (entries 1 and 2). Even the
catalyst supported by the closely related IMes ligand gave a
significantly lower yield of the desired product (entry 3).
Similarly, catalysts prepared in situ from CuCl and various
nitrogen-based or phosphine ligands provided no desired
product (see SI). We also found that alkoxy silanes other
than TMCTS (tetramethylcyclotetrasiloxane) gave lower
yields (entries 4 and 5), while still outperforming a variety
of alkyl or aryl silanes (see SI). Turnover reagents closely
related to LiOEt, including LiOMe, LiOt-Bu, NaOEt, and
KOEt, provided 11 in significantly diminished yields (en-
tries 6-9). A mixture of toluene and cyclopentyl methyl
ether (CPME) in a 9:1 ratio emerged as the best solvent. Us-
ing CPME or toluene individually or varying their ratio in
the mixture led to diminished yields (entries 10-12). Nota-
bly, polar aprotic solvents, like DMA and THF, were not suit-
able as reaction solvents (entries 13 and 14).

Table 1. Reaction Development.

IPrCuCl (10 mol%)

NPhth T'\';I‘STEé ((20-072‘4”“’_) ) NPhth
.75 equiv
Bn/\/// * Cl)\Me ) BnWMe
toluene/CPME (9:1) 1
9, 1.5 equiv 10, 1.0 equiv 60°C,18h single regioisomer
Entry Change from standard conditions Yield (%)?

1 none 83°

2 SIPrCuCl instead of IPrCuCl 80

3 IMesCuCl instead of IPrCuCl 7

4 PMHS instead of TMCTS 73

5 (EtO)3SiH instead of TMCTS 67

6 LiOMe instead of LIOEt 0

7 LiOt-Bu instead of LiOEt 55

8 NaOEt instead of LiOEt 7

9 KOEt instead of LIOEt 42

10 toluene instead of toluene/CPME (9:1) 75

1 CPME instead of toluene/CPME (9:1) 49

12 toluene/CPME (1:1) instead of toluene/CPME (9:1) 56

13 DMA instead of toluene/CPME (9:1) 0

14 THF instead of toluene/CPME (9:1) 21

/\ I\
Ar’N\/N\Ar Ar’N\/N\Ar

IPr: Ar = 2,6-(i-Pr),CgH3

SIPr: Ar = 2,6-(i-Pr),CH
IMes: Ar = 2,4,6-Me3CgH ' (Pr)2Cef

aYields determined by GC using an internal standard.
bE:Z>70:1 determined by GC analysis using authentic samples
of isomers.

With the optimized reaction conditions in hand, we ex-
plored the reaction scope and found that a variety of termi-
nal alkynes and a-chloro phthalimides gave the desired
products in moderate to high yields (Scheme 3). The allylic
phthalimide products were obtained with excellent regio-
and diastereoselectivity as only the anti-Markovnikov E-
isomers of the products were detected by 'H NMR spectros-
copy. We also found that alkynes containing primary (20),
secondary (12, 24), and tertiary (16) alkyl substituents per-
formed well. The reaction could be successfully performed
in the presence of oxygen and nitrogen heterocycles (15,
19, 21, 33), protected amines (21, 25), protected alcohols
(13, 17), alkyl chlorides (29), esters (30), nitriles (22), and
acetals (35).



Scheme 3. Substrate Scope.®
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aReactions performed on 0.5 mmol scale. Yields of isolated products are reported. "Two equivalents of the alkyne were used. <The
reaction was performed on 3 mmol scale. dConditions: N2H4.H20 (1.1 equiv), MeOH.

Ortho and para substituted aryl halides (18, 26, and 31)
afforded products in yields exceeding 70%. Even the sub-
strate containing an additional internal alkyne (34) per-
formed well, underscoring a preference for terminal

alkynes in the hydrocupration step. One limitation of the re-
action is that internal alkynes, such as 49, fail to provide the
desired allylic phthalimide products. Interestingly, our in-
vestigation unveiled substantial disparity in the reactivity



of conjugated alkynes. Electron-rich aryl alkynes (23, 32)
delivered high yields, aryl alkynes with moderately elec-
tron-withdrawing groups (28, 31) gave moderate yields of
the allylic amine products, while the electron-deficient aryl
alkynes (50, 51) afforded the desired product in about 10%
yield. Intriguingly, the introduction of a single methyl group
at the ortho position (27) caused a notable 26% reduction
in yield (compared to 32). We postulate that the lower yield
in this case could be attributed to the effects of steric hin-
derance on the hydrocupration step.

We also explored the reactivity of different o-chloro
phthalimide electrophiles and observed that alkyl halides
(42, 43), aryl halides (41, 46), naphthalene (44), and
chloroindazole (39) are well tolerated. Unfortunately, the
a-aryl substituted a-chloro phthalimide yielded less than
40% of the expected product (52, 53).

To illustrate the practical applicability of our method, we
prepared 11 in 78% yield on a gram scale using standard
conditions. Furthermore, we prepared Naftifine?” precursor
4828 from phenyl acetylene through hydroalkylation and
phthalimide deprotection in 71% overall yield (see SI for
details).

Next, we explored the reaction mechanism. Our initial hy-
pothesis was that the reaction proceeds through a SET
mechanism similar to the one established for the reductive
coupling of terminal alkynes and a-bromo esters.?! This hy-
pothesis was also consistent with Fu’s observations of the
TEMPO adduct of an a-phthalimide radical in the nickel cat-
alysed cross coupling of a-chloro phthalimides with alkyl
zinc reagents.?* Surprisingly, we found that the addition of
two equivalents of TEMPO did not inhibit the reaction
(Scheme 4a). Furthermore, the stoichiometric reaction of
alkenyl copper with a-chloro phthalimide also proceeded
successfully in the presence of two equivalents of TEMPO
(Scheme 4b). No TEMPO adducts were detected in either ex-
periment, suggesting the absence of free radical intermedi-
ates.

Scheme 4. Radical Trap Experiments.

a)
IPrCuCl (10 mol%)
LiOEt (2.0 equiv)

NPhth TMCTS (0.75 equiv) NPhth
/// TEMPO (X equiv)
+ _—
R cI” Me toluene/CPME Bn N Me
9 10 60 °C, 18 h 1
X=05 81% yield
X=20 81% yield
b)
NPhth . NPhth
S _IPIC TEMPO (X equiv)
rCu -
R * o Me X" Me
toluene/CPME
54 10 60 °C, 6 h 1"
X=0.5 92% yield
Me X=20 96% yield

NPhth

Me
CLx
Me

Me | not detected in the catalytic or

Me 55 the stoichiometric reaction

TEMPO adduct

aR = Bn(CHz)2

A plausible alternative mechanism consistent with the re-
sults of TEMPO experiments involves the formation of a

radical pair followed by the radical recombination that is
faster than the diffusion from the solvent cage.?’ To investi-
gate this possibility, we explored the stereochemistry of the
reaction (Scheme 5). A stoichiometric reaction with enanti-
oenriched a-chloro phthalimide 56 provided a nearly race-
mic product 38 (6% ee). Additionally, the recovered start-
ing material remained highly enantioenriched (95% ee).
The loss of ee% in the allylic amine product is attributed to
the equilibrium between two configurations of the a-
phthalimide radical. The highly enantioenriched a-chloro
phthalimide recovered after the reaction provides support-
ing evidence for the rapid and irreversible radical recombi-
nation step. It also eliminates the possibility of starting ma-
terial racemization through a process unrelated to the for-
mation of the allylic amine product. Similar results were ob-
tained when enantioenriched 56 was used in a catalytic re-
action (see SI).

Scheme 5. Stereochemical Probe Experiment.
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Based on our experiments and literature precedents, we
propose a reaction mechanism shown in Scheme 6. Alkenyl
copper intermediate 3 is formed through a sequence that
involves transmetalation of the NHC-supported copper
alkoxide (58) with a silane (step b) and the subsequent hy-
drocupration of the alkyne (step c).172

Scheme 6. Proposed Reaction Mechanism.
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An inner-sphere electron transfer2s 30 from alkenyl cop-
per intermediate (3) (Epa = 0.90 V vs. SCE in THF) to an a-
chloro phthalimide (Epc = -2.19 V vs. SCE in THF, (see SI))
results in C-Cl bond dissociation and the formation of a rad-
ical pair (7) (step d). The rapid radical recombination within
a solvent cage, followed by the reductive elimination from a

[Si]-OR?



copper(Ill) intermediate yields allylic amine 8 (step e).30-31
Finally, the catalyst turnover is achieved by the recovery of
copper alkoxide 58 in a reaction with lithium alkoxide.

In conclusion, we have developed a new method for
transformation of terminal alkynes into allylic amines. The
transformation is accomplished through the reductive cou-
pling of terminal alkynes with a-chloro phthalimides pro-
moted by a copper catalyst in the presence of a silane as the
hydride source. The overall transformation is highly regi-
oselective and affords anti-Markovnikov product with ex-
cellent E-selectivity (>70:1). The transformation is also
compatible with a wide range of functional groups, includ-
ing esters, nitriles, alkyl chlorides, aryl bromides and io-
dides, and a variety of heterocycles. Preliminary mechanis-
tic investigation supports a mechanism that involves hydro-
cupration of the alkyne, followed by the cross coupling of
the resulting alkenyl copper intermediate with an a-chloro
phthalimide. We found evidence that the cross coupling in-
volves the formation of a solvent caged radical pair through
the initial inner-sphere SET followed by a rapid radical re-
combination.
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