Euclidean Traveller
in Hyperbolic Worlds

>
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We will discuss all possible closures of a Euclidean line in
various geometric spaces. Imagine the Euclidean traveller,
who travels only along a Euclidean line. She will be travel-
ing to many different geometric worlds, and our question
will be

what places does she get to see in each world?

Figure 1. A Euclidean traveller.

Here is the itinerary of our Euclidean traveller:

« In 1884, she travels to the torus of dimension n > 2,
guided by Kronecker.
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« In 1936, she travels to the world, called a closed hy-
perbolic surface, guided by Hedlund [Hed36].

« In 1991, she then travels to a closed hyperbolic man-
ifold of higher dimension n > 3 guided by Ratner
[Rato1].

« Finally, she adventures into hyperbolic manifolds
of infinite volume guided by Dal’bo [Dal00] in di-
mension two in 2000, by McMullen-Mohammadi-O.
[MMO16] in dimension three in 2016 and by Lee-O.
[LO19] in all higher dimensions in 2019.

Rotations of the Circle
As a warm up, she will first do her exercise of jumping

on the circle S, which may be considered as the one-
dimensional torus T*.
The circle S! can be presented as
Sl={zeC:|z|=1}={z=¢"*: x €R}.
In additive notation,

S! = Z\R.

These two models are isomorphic to each other by the log-
arithm map z = ¢*™* — x (mod 1).
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Let Ry denote the rota-
tion of S! by angle 276.

The map Ry is respectively given by
Ro(z) = ze?™® and Rg(x) = x+ 6 (mod Z2)

in multiplicative and additive models of S!. The orbit of
z = 2™ ¢ S! under iterations of Ry is respectively equal
to

27in6

{ze :neZland {x+n6 (mod1): nezk.

Theorem 1. Let 8 € R. Any orbit of Ry is closed or dense in
S!, depending on whether 0 is rational or not.

If our traveller keeps jumping by an irrational distance
6, she is guaranteed to see all the places in the circle Z\R.

Euclidean Lines on the Torus
2-torus. She travels to the 2-torus T2 = Z2\R2. Let
7 R? - T? = 72\R?
denote the canonical quotient map. A Euclidean line in T2

is the image of a line in R? under 7. For a nonzero vector
(w1, w,) € R?, we denote by

Loyw, = T(R(wy, w3))
the image of the unique line passing through (w;, @,) and
the origin (0, 0). The slope of the line R(w;, @,) is equal to
0 = w,y/w,.
What is the closure of the line L, ,,, in T2, or in other
words, what places does our Euclidean traveller get to see
in T? if she travels along the line L, ,,,?

I

N

Figure 2. Torus.

It is useful to consider the unit square I? = [0,1] X [0,1]
which is a fundamental domain of Z*\R2. When we iden-
tify the pairs of opposite sides labelled by a and b in Fig-
ure 2 using the side pairing transformations y, = (1,0)
and y, = (0,1) respectively, we get the torus T? = I'\R?
where I' = 72 is the subgroup generated by 7, and y;. The
distribution of the line L,,, ,,, can be understood by exam-
ining the line R(w,, w,) inside I*> modulo the action of Z2.
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In Figure 2, when our traveller, walking on the blue line
R, w, With slope 0 < 0 < 1, reaches the boundary of I?
at (1, 0), she gets instantly jumped to (0, 6) by the transfor-
mation y;! = (-1, 0), which also moves the line R(w;, w,)
to the line with the same slope but passing through (0, 6).
She then continues to walk on this new line in I? until she
reaches the boundary of I?. We can observe that the places
on the circle {0} x [0,1) = {0} X Z\R that she is visiting are
precisely given by the orbit {n6 (mod 1) : n € N} of the ro-
tation Ry. Therefore by Theorem 1, if the slope 8 = w,/w;
is a rational number, she visits only finitely many points in
{0}xZ\R, which means the line L, ,,, is periodicand hence
closed in T2. Otherwise, the places she visits in {0} X Z\R
are dense, which means that the line is dense in T?.

Theorem 2 (Kronecker, 1884). Any Euclidean line in T? is
closed or dense, depending on whether its slope is rational or
not.

n-torus. For any n > 2, the n-torus T" can be presented
as ZM\R", and a line in T" is the image of a line under the
quotient map

7R - T = ZMR™

For (w3, -+, w,) € R", let L, ..., denote the line in T"
which is the image of the Euclidean line R(wy, -+, @,).

Figure 3. Line in T".

Unlike the dimension two case, the closed or dense
dichotomy for a line is not true anymore in T%, n > 3,
as T" contains many lower dimensional tori. In Figure
3, the blue line L is contained in a two-dimensional lin-
ear subspace V' < R3 such that 7(V) is closed in T? and
L = (V) = (V n Z>)\V. However, the lower dimensional
tori are the only other possibilities (cf. [KH95]):

Theorem 3 (Kronecker). For any nonzero (w., -+, w,) € R",
the closure of the line Ly, ..., is a k-dimensional subtorus

of T" where k = dimg Zinzl Qu;. That is, there exists a k-
dimensional linear subspace V < R" such that

Lo, = (V) = (VN Z"\V.
A general Euclidean torus is defined as the quotient
NR"

for some discrete cocompact subgroup I' of R”; a discrete
subgroup I" of R" is called cocompact if the quotient space
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I'\R" is compact. It is not hard to prove that any discrete
cocompact subgroup of R" is of the form

n
r=> 7y
i=1

for some basis vy, -+, v, of R"™.

Theorem 4 (Kronecker). For any line L C T\R" (not neces-
sarily passing through the origin), there exists a linear subspace
V < R" such that

L=(VnD\V up to translations.

This seemingly more general theorem follows easily
from Theorem 3 using the fact that L + v = L + v for any
v € ZM\R" and T = Z"g where g is an element of GL,(R)
whose row vectors are given by vy, -+, vy,.

Closed Hyperbolic Surfaces

Our Euclidean traveller now wants to explore a world
called a closed hyperbolic surface. A closed hyperbolic sur-
face will be defined as a quotient of the hyperbolic plane
HZ.

Hyperbolic plane. The hyperbolic plane H? is the unique
simply connected two-dimensional complete Riemannian
manifold of constant sectional curvature —1. Instead of
this fancy description, we will be using a very explicit
model, called the Poincaré upper half-plane model of H?.
That is,

H? = {(x,y) € R? : y > 0}

\Vdx2+dy? .
VO This

means that the hyperbolic distance between p,q € H? is

defined as
1
. lic’ ()|
d(p,q) = inf . dt
(p.q) = in UO 0) }

where ¢ : [0,1] = H?, c(t) = (x(t),y(t)), ranges over all
differentiable curves with ¢(0) = p and ¢(1) = q. Because
the hyperbolic distance is the Euclidean distance scaled by
the Euclidean height of the y-coordinate, the hyperbolic
distance between two points in H? is larger (resp. smaller)
than their Euclidean distance if their Euclidean height is
small (resp. large).

with the hyperbolic metric given by ds =

hyperbolic lines = geodesics

in H2

Figure 4. Upper half-plane model of H?.
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Geodesics, that is, distance-minimizing curves, in this
upper half-plane model are half-lines or semicircles, per-
pendicular to the x-axis. In other words, to travel from a
point p to q in the fastest way, one has to take the route
given by the unique circle (or a line) passing through p
and q, perpendicular to the x-axis.

Another useful model is the Poincaré unit disk model
in which H? = {x? + y?> < 1} is the open unit disk in R?
2\/dx2+dy?

and the hyperbolic metric is given by ds = o)

Geodesics in this model are
lines or semicircles meeting
the boundary S! orthogo-
nally.

geodesics in H2

Recall that
+ a Euclidean 2-torus is given by a quotient

r\R2

where T is a discrete cocompact subgroup of R2.
In analogy, we wish to be able to say that
+ a closed hyperbolic surface is given by a quotient

\H?

where T is a discrete cocompact subgroup of H?2.

Alas, the hyperbolic plane H? is not a group which makes
this statement nonsense. However, H? is “almost” the
same as the group Isom™ (H2) of orientation preserving
isometries of H2.

Isometry group of H?. On the upper half-plane model
H? = {z = x+iy : y > 0}, now considered as the set of
complex numbers with positive imaginary parts, the group
PSL,(R) acts by linear fractional transformations:

a b Z_az+b.
c d)7 7 cz+d’
az+b _ Im(z)

cz+d lcz+d|?
also check that this action preserves the hyperbolic metric

of H2. Therefore every element of PSL,(R) is an isometry of
H2. Moreover, it turns out that every orientation preserving
isometry arises in this manner, yielding the identification

PSL,(R) = Isom™ (H?).

It is easy to see that this action of PSL,(R) on H? is
transitive with the stabilizer of i being equal to the rota-
tion group SO(2). Therefore the orbit map PSL,(R) — H?,
g > g(i), induces the identification

PSL,(R)/SO(2) = H2.

So modulo the compact subgroup SO(2), the hyperbolic
plane H? is equal to its isometry group PSL,(R).

since Im , this action preserves H2. We can
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Closed hyperbolic surfaces.

Definition 1. A closed hyperbolic surface is a quotient
I\H?

where I is a discrete (torsion-free) cocompact subgroup of
PSL,(R).

By the quotient I'\H?, we mean the set of equivalence
classes of elements of z € H? where [z,] = [z,] if and
only if z; = yz, for some y € T'. The discreteness of I' im-
plies that I'\H? is locally H? and the cocompactness of " in
PSL,(R) implies that I'\H? = I'\ PSL,(R)/ SO(2) is compact.

r:<xa,Yb,7c.Yd> F\]HI2

Figure 5. Hyperbolic octagon.

Does there exist a closed hyperbolic surface? Equiva-
lently, does there exist a discrete cocompact subgroup of
PSL,(R)? To present an example, consider the hyperbolic
regular octagon O as illustrated in Figure 5, where each side
is a hyperbolic geodesic segment of same length and angles
between them are 45°.

For the two sides of the octagon labelled by a, there ex-
ists an isometry y, € PSL,(R) which moves one to the
other. Similarly, we have yy, 7., 74 € PSL,(R) for labels
b, ¢, d respectively. Let

L' = (Ya>VbsYer Ya) < PSL,(R)

be the subgroup generated by these four side-pairing trans-
formations. Then the hyperbolic octagon O is a fundamen-
tal domain for the action of T in H2, which implies that T
is a discrete cocompact subgroup of PSL,(R). The closed
hyperbolic surface I'\H? is what we obtain by gluing the
four pairs of edges of the hyperbolic octagon according to
labels; it is topologically a two-holed torus, or genus-two
surface.

Any closed hyperbolic surface is topologically a closed
surface with genus at least 2. Conversely, the Uniformiza-
tion theorem says that any closed surface with genus at least
2 can be realized as a closed hyperbolic surface. Indeed,
for any g > 2, the space of all marked closed hyperbolic
surfaces of genus is homeomorphic to R®~6.

Now that our traveller learned that there exist many
(even a continuous family of) closed hyperbolic surfaces
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Sg g = # of holes

Figure 6. Surface with genus g > 2.

to explore, she has to understand what a Euclidean line is
in this world.

Euclidean Lines in Closed Hyperbolic Surfaces

In the upper half-plane model of H?, the horizontal line
{y = 1} will be called a Euclidean line in H2. In a given
geometric space, objects which are isometric to each other
should be given the same name. We note that the image of
{y = 1} under an isometry of H? is either another horizon-
tal line, or a circle which is tangent to the x-axis. So all of
these objects will be called Euclidean lines in H2. A nick-
name for a Euclidean line is a horocycle. A horocycle in
H? is characterized as an isometric embedding of the real
line R to H? with constant curvature one; geodesics in H?
have constant curvature zero.

Euclidean lines

) = horocycles in H2

Figure 7. Euclidean lines in H?.

From the point of view of our Euclidean traveller, imag-
ine that she wants to drive in a car where the steering wheel
is in one fixed position and to travel without bumps. If her
car is turning at a constant rate, she can lean back against
the seat, feeling stable. It’s the change in curvature that
makes the car trip bumpy. If the wheel is fixed at a small
angle, she stays within a bounded distance of a geodesic.
If the wheel is fixed at a large angle, she goes around in
a circle and stays a bounded distance from a point. But
in between there is a perfect angle where neither happens,
and she moves along a horocycle!

A Euclidean line in a closed hyperbolic surface T\H? is
the image of a Euclidean line in H? under the quotient map

. H? - T\H2.
Where does our Euclidean traveller get to visit in a
closed hyperbolic surface?
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Figure 8. Traveling along a Euclidean line.

Here is an illustration given in Figure 8. Fix a (blue-
colored) fundamental domain O for I'\H2. When the trav-
eller, walking along the mint-colored Euclidean line L,
reaches the boundary of O, she gets instantly moved to
a different side of O by some side-pairing transformation
y € T. She then continues her journey on the new Eu-
clidean line y(L) inside O until she reaches the boundary
of O again, etc. The instant jumps and the shapes of trans-
lates of L made by I in H? appear more complicated than
those in the Euclidean torus T?.

Nevertheless, Hedlund (1936) assures that our Eu-
clidean traveller gets to see all the places in a closed hy-
perbolic surface, no matter where her initial point of de-
parture is.

Theorem 5. [Hed36] Any Euclidean line in a closed hyper-
bolic surface is dense.

Figure 9. Euclidean traveller.

Hyperbolic lines can be very wild. We remark that this
theorem of Hedlund is about Euclidean lines. The closure
of a hyperbolic line does not even have to be a submani-
fold in general.

g >

Figure 10. Hyperbolic traveller.

As illustrated in Figure 10, a geodesic can “spiral”
around closed geodesics and its closure can be a fractal of
dimension strictly between one and two.

Going upstairs. Hedlund's proof of Theorem 5 relies on
the fact that H? is almost PSL,(R). The isometric action
of PSL,(R) on H?, which gave us the identification H? =
PSL,(R)/ SO(2), extends to an action on the unit tangent
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bundle T'(12). In this action, the stabilizer of a vector
is trivial, as no rotation in the plane fixes a vector. If we
denote vy, € T'(H?) the upward normal vector based at i,
then the orbit map g — g(vy) now gives an isomorphism
PSL,(R) = T'(H2), where the identity matrix of PSL,(R)
corresponds to the vector vy. Moreover, if we consider the
following one-dimensional subgroup

o-{ )oren)

then the subgroup U corresponds to the set of all upward
normal vectors on the Euclidean line {y = 1} (see Figure
11).

T 1T T 1T 7T

Figure 11. U-orbits.

Similarly, for g € PSL,(R) with g{y = 1} a circle tan-
gent at &, the coset gU corresponds to the set of all inward
normal vectors on g{y = 1} pointing to £. Indeed, any Eu-
clidean line (EL) in H? arises as the image of some gU un-
der the basepoint projection map PSL,(R) = T*(H?) — H?2
given by g — g(i):

T'(1?) = PSL,(R) o gU
) )
H2 = PSL,(R)/SO(2) DEL

Since the image of gU in I'\ PSL,(R), under the pro-
jection PSL,(R) — T\PSL,(R), is equal to I'\I'gU and
H? = PSL,(R)/SO(2), this picture is preserved under the
quotient map 7 : H? — T'\H?:

THI\H?) = '\ PSL,(R) > xU
) )
I\H? = T\PSL,(R)/SO(2) DEL

It follows that any Euclidean line in T\H? is of the form
xU(i) and xU(i) = xU(i), as the basepoint projection map
g — g(i) has compact fibers. Therefore if we can describe
the closures of all orbits xU in I'\G, we understand the
closure of a Euclidean line in T\H?.

Indeed, Hedlund says that every U-orbit is dense up-
stairs in T (T\H?):

Theorem 6. [Hed36] For any x € T'\ PSL,(R),
xU =T\ PSL,(R).
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Figure 12. Traveling with an arrow.

This means that our Euclidean traveller in a closed hy-
perbolic surface not only gets to see all the places, but she
is able to appreciate those places from all angles as in Fig-
ure 9.

Closed Hyperbolic n-manifolds

For n > 2, the hyperbolic n-space H" is the unique simply
connected complete n-dimensional Riemannian manifold
of constant sectional curvature —1. Its upper half space
model is given by

H" = {(xl""’xn—l’y) Y>> 0}

\Jdx?+-+dx?_,+dy? .
! ol .In this

model, geodesics are vertical lines or seglicircles meeting
the hyperplane R"~! x {0} orthogonally.

The hyperboloid model (also called the Minkowski
model) of H" is given by {Qq(xy, -+, Xp41) = =1, X541 > 0}
where

with the hyperbolic metricds =

Qo(X1, s Xpy1) = X7 + X5+ -+ X5 — x50, (1)

In this model, the hyperbolic distance d(x, y) is given by
coshd(x,y) = —Qu(x,y) (cf. [Rat94]). In particular, any
element g of the special orthogonal group SO(Q,), that is,
g € SL,,41(R) satisfying

Qo(gv) = Qu(v) for all v € R™*1,

is an isometry of H”. Indeed, the group Isom™* (H") of ori-
entation preserving isometries is given by the identity com-
ponent of the special orthogonal group SO(Qy); so

Isom™ (H") ~ SO°(n, 1).

This is consistent with our previous statement that
Isom™ (H?) = PSL,(R), since PSL,(R) ~ SO°(2,1). As in
the dimension two case, we have

+ any closed hyperbolic n-dimensional manifold is a

quotient

M =T\H"
where T is a discrete (torsion-free) cocompact sub-
group of SO°(n, 1).

Unlike the dimension two case where there is a con-
tinuous family of closed hyperbolic surfaces, higher di-
mensional closed hyperbolic manifolds are rarer. The
Mostow rigidity theorem [Mos73] implies that there exist
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only countably many closed hyperbolic manifolds of di-
mension at least three. Nevertheless, there are infinitely
many of them [Bor63].

In the upper half-space model H" = {(x;, -+, X,,_1,¥) :
y > 0}, the horizontal line {(x;,0,---,0,1) : x; € R}, and
its isometric images will be called a Euclidean line (=horo-
cycle) in H". As before, a Euclidean line in M = T'\H" is
the image of an Euclidean line in H" under the canonical
quotient map 7w : H" — TI'\H". They are isometric im-
mersions of R with zero torsion and constant curvature 1.
What places does our Euclidean traveller get to see in M?

a
gal

9

" MH

Figure 13. Euclidean traveller in T\H".

The answer to this question is a special case of Ratner’s
theorem on orbit closure classification.

Homogeneous Dynamics

Let G be a connected simple linear Lie group. (e.g.,
SL,(R),SO°(n,1)), and T < G be a discrete subgroup. The
quotient space I'\G is a homogeneous space, in the sense
that there is a transitive action of a Lie group, which is G
in our case. Any subgroup U of G acts on this homoge-
neous space I'\G by translations on the right, giving rise to
a topological dynamical system:

NG ~U.

Studying dynamical properties of subgroup action on a ho-
mogeneous space I'\G is a main subject in the field of ho-
mogeneous dynamics. A fundamental question in homoge-
neous dynamics is whether one can understand all possi-
ble orbit closures:

Question 2. For a given point x € I'\G, what is the closure
xU?

Moore’s ergodicity theorem [Mo066] implies that if the
homogeneous space I'\G is compact, or more generally is
of finite volume, then for any non-compact subgroup U
of G, almost all U-orbits are dense, that is, for almost all
x € "G,

xU =T\G.

Indeed, a hyperbolic line in a closed hyperbolic surface
I'\H? is the image of an orbit of the diagonal subgroup
A= {(eot eft) : t € R} of PSL,(R) under the basepoint
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projection T'\ PSL,(R) = T'(I'\H?) — T'\H?; hence this the-
orem implies that almost all hyperbolic lines are dense in
a closed hyperbolic surface.

The weakness of this ergodicity theorem is that it is only
the existence of many dense orbits. If one specifies the
initial point x, it gives no information about the closure
of the given orbit xU.

The following celebrated theorem of Ratner fixes this
weakness for unipotent subgroup actions, answering the
conjecture of Raghunathan in the affirmative.

A matrix u is called unipotent if all of its eigenvalues are

. 1 . .
equal to 1. For instance, u;, = (O i) is unipotent but
a; = ¢
t7\o
Theorem 7. [Rat91] Let Vol(T\G) < oo and U be a connected

subgroup of G generated by unipotent elements. For any x €
G,

0. .
e‘t) is not unipotent for t # 0.

xU = xH
for some closed connected subgroup H of G which contains U.

Back to Euclidean Lines in Closed

Hyperbolic Manifolds

Given a closed hyperbolic manifold M = T'\H", its frame
bundle F(M), consisting of positively oriented orthono-
mal frames on M, is identified with the homogeneous
space I'\SO°(n, 1), as the action of Isom™* (H") = SO°(n,1)
is simply transitive on F(H"). Moreover, we have a one-
dimensional subgroup U of SO°(n, 1) given by

1t 0 -~ 0 —t32
0 0 0 —t
1
v=1? 20 70 Y |icer
000 0 1 0
000 0 0 1

(up to conjugation) such that every Euclidean line (EL) in
M is the image of some U-orbit in I'\SO°(n, 1) under the
basepoint projection map:

F(T\H") Nso’(n,1) > xU

l
n D EL

=
= <« |l

Since U consists of unipotent elements, Ratner’s theo-
rem 7 applies to orbits of U.

For each integer 1 < k < n, we set J :=
{(x1,+ s Xg-1,0,--+,0,¥) € H"}. A hyperbolic k-subspace
of H", which will be denoted by HF, is an isometric image
of K, that is, g(H}) for some g € Isom™ (H").
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Definition 3. By a closed hyperbolic (properly immersed)
k-submanifold of M, we mean the compact image

w(H*) ¢ T\H"
for a hyperbolic k-subspace H* ¢ H".

Note that for any k > 2, a closed hyperbolic
k-submanifold of M contains many dense Euclidean
lines. So certainly, if M possesses a closed hyperbolic k-
submanifold N, then some Euclidean lines lying in N will
have their closures equal to N. There are other possibili-
ties for the closure of a Euclidean line in M. To explain
what they are, we introduce the notion of a tilting of a hy-
perbolic subspace, which is analogous to a translation of
a subspace by a vector in the Euclidean space R".

Figure 14. Tilted hyperbolic subspace.

Definition 4 (Tilting). For a given hyperbolic k-subspace
H¥ of H" for 1 < k < n —1, choose a hyperbolic subspace
HKk+1 containing H¥ equipped with an orientation, and a
nonnegative number d, > 0. For x € HF, let T(x) € H*+!
be the unique point lying in the geodesic determined by
the outward normal vector to H¥ and d(x, T(x)) = d,. We
call T : H¥ — HK*1 a tilt map and its image T(H¥) a tilted
hyperbolic k-subspace of H" (Figure 14).

The significance of a tilt map relevant to our discussion
is that the image of a Euclidean line lying in H* under a
tilt map is a Euclidean line and that if N = z(H¥) is a
closed hyperbolic submanifold of M, then 7(T(H¥)) is also
a compact submanifold which is equidistant from 7(H¥).
Noting that a tilt map commutes with isometric action of
G, the following

T(N) = 7(T(HY))

is well-defined; we call T(N) a tilting of a hyperbolic man-
ifold N. If a Euclidean line L is dense in N = 7(H¥), then
T(L) is dense in T(N).

Now the following consequence of Ratner’s theorem
[Rat91] implies that these are all possible closures of a Eu-
clidean line.
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Figure 15. Closures of Euclidean lines.

Theorem 5. Let M = T'\H" be a closed hyperbolic n-manifold
for n > 2. Then the closure of any Euclidean line in M is a
closed hyperbolic submanifold, up to tilting.

Therefore, no matter where she starts her journey, our

Euclidean traveller in a closed hyperbolic world is guaran-
teed to see all the places of some hyperbolic subworld or
at least a tilted version of it.
Traveling only in one direction. From a traveller’s point
of view, a natural question to the travel guide is whether
she can still sightsee the same places by walking only in
one direction, in other words, is the closure of a half Eu-
clidean line in a closed hyperbolic manifold the same as
the closure of the whole Euclidean line? The answer is yes
by the following version of Ratner’s theorem:

Theorem 8. [Rat91] Let Vol (I'\G) < oo as in Theorem 7, and
let U = {u, : t € R} be a one-parameter subgroup of unipotent
elements. For any x € T\G,

xU = xU+ (2)
where Ut ={u; : t > 0}
t

Hyperbolic Manifolds of Infinite Volume

After adventuring all closed hyperbolic manifolds, our Eu-
clidean traveller is now ready to venture into a hyperbolic
manifold of infinite volume. Will she again be able to see
all the places of some hyperbolic subworld?

It turns out that there are certain hyperbolic manifolds
homeomorphic to the product of a closed surface and R
where some Euclidean lines have wild closures. On the
other hand, our wonderful travel agency presents a list of
infinitely many hyperbolic manifolds of infinite volume
where similar well-planned sightseeing is possible as in
closed hyperbolic manifolds. This class of hyperbolic man-
ifolds are called hyperbolic manifolds with Fuchsian ends.
They are all obtained from closed hyperbolic manifolds by
a certain removing and growing process; we may think of
them as children of closed hyperbolic manifolds.

Hyperbolic Surfaces with Fuchsian Ends

We first explain how to construct a hyperbolic surface with
Fuchsian ends as illustrated in Figure 16. For any closed
hyperbolic surface S = T;,\H?, choose a simple closed ge-
odesic £ (S contains infinitely many such), which may or
may not be separating.
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)
C’L : simple closed
geodesic

L x (0,)

Figure 16. Hyperbolic surface with Fuchsian ends.

After removing £ from S, we get a hyperbolic surface
N, whose boundary is one or two copies of £, depending
on whether L is separating or not. If we let each boundary
component grow naturally in hyperbolic world, we get a hy-
perbolic surface with Fuchsian ends. In other words, there
is a canonical way to extend N, to a complete hyperbolic
surface which is homeomorphic to N, namely, by gluing
the continuous stack £x[0, 00) = {£! : t € [0, )} of titled
hyperbolic lines to each boundary component of Ny. The
resulting hyperbolic surface is of the form N = I'\H? where
I < T is the fundamental group of N,. This is an example
of a hyperbolic surface with Fuchsian ends (Figure 16).

More generally, a hyperbolic surface with Fuchsian ends
is obtained from a closed hyperbolic surface S by a sim-
ilar procedure for a finite set of disjoint simple closed
geodesics {£q,---,L;}. A connected surface, say N,, of
S — |UJ; £i is a hyperbolic surface with boundary compo-
nents and the resulting complete hyperbolic surface, say,
N, obtained by gluing the corresponding hyperbolic cylin-
ders to each boundary component is a hyperbolic surface
with Fuchsian ends. The metric closure of N, is a com-
pact hyperbolic surface which is homotopy-equivalent to
N. By a hyperbolic surface with Fuchsian ends, we mean a
surface obtained in this way.

In any hyperbolic surface with (non-empty) Fuchsian
ends, there exist many Euclidean lines contained in the
end of N, that is, in N — N,, and they, as well as Euclidean
lines which are equidistant from them, are proper immer-
sions of the Euclidean line in H? via 7.

The following theorem of Dal’bo, which extends Hed-
lund'’s theorem 5, says that they are the only possible non-
dense Fuclidean lines.

Theorem 9. [Dal00] If N is a hyperbolic surface with Fuchsian
ends, any Euclidean line in N is closed or dense.

So our Euclidean traveller will simply disappear from
the hyperbolic world or she will be seeing all the places
even including the Fuchsian ends. There is a friendly warn-
ing in the pamphlet that walking along a half line won't
take her to all the places she would be seeing on the full
line unlike closed hyperbolic manifolds.
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Figure 17. Hyperbolic manifold with one Fuchsian end.

Hyperbolic n-manifolds with Fuchsian Ends

A hyperbolic n-manifold with Fuchsian ends for n > 3
is constructed similarly to the surface case, based on the
observation that simple closed geodesics describe all prop-
erly embedded hyperbolic submanifolds of a closed hyper-
bolic surface of codimension one.

Recall that there are only countably many closed hyper-
bolic n-manifolds for n > 3. There are infinitely many
of them (though not all) which contain properly embed-
ded hyperbolic submanifolds of codimension one. Take
one such closed hyperbolic n-manifold M with a properly
embedded hyperbolic submanifold § of codimension one;
see the illustration in Figure 17.

A connected component N, of M — § is a hyperbolic
manifold with one or two totally geodesic boundary com-
ponents isometric to S. If we let Ny naturally grow in
the hyperbolic world, or if we glue the continuous stack
8 x[0,00) = {8 : t € [0,00)} of tilted hyperbolic sub-
manifolds to each boundary component of N,,, we obtain
a complete hyperbolic n-manifold N, homeomorphic to
its submanifold N. This is a hyperbolic manifold with
Fuchsian ends; connected components of N —Nj, are called
Fuchsian ends of N.

®&

Figure 18. Hyperbolic manifold with 3 Fuchsian ends.

As in the surface case, we mean by a hyperbolic mani-
fold with Fuchsian ends a complete hyperbolic manifold
obtained from a closed hyperbolic manifold with a choice
of finitely many disjoint properly embedded hyperbolic
submanifolds of codimension one.
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We may regard a closed hyperbolic manifold as a hyper-
bolic manifold with empty Fuchsian ends.

Theorem 10 ([MMO17], [MMO16] for n = 3, and [LO19]
forall n > 4). Let N = T\H" be a hyperbolic manifold with
Fuchsian ends for n > 2. Any Euclidean line in N is closed or
its closure is a hyperbolic submanifold with Fuchsian ends, up
to tilting.

So our Euclidean traveller in a hyperbolic manifold with
Fuchsian ends again finds herself either disappearing from
the hyperbolic world or enjoys her sightseeing in some
hyperbolic submanifold with Fuchsian ends, or at least a
tilted version of it.
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