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ABSTRACT. For any d > 1, we obtain counting and equidistribution
results for tori with small volume for a class of d-dimensional torus
packings, invariant under a self-joining ', < []%_, PSL2(C) of a Kleinian
group I' formed by a d-tuple of convex-cocompact representations p =
(p1,- -, pa). More precisely, if P is a I',-admissible d-dimensional torus
packing, then for any bounded subset E C C? with OF contained in a
proper real algebraic subvariety, we have
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Here 0 < 6,1(p) < 2/+/d is the critical exponent of T', with respect to
the L'-metric on the product [T, H*, A, C (CU{o0})? is the limit set
of T',, and w, is a locally finite Borel measure on C% N A, which can be
explicitly described. The class of admissible torus packings we consider
arises naturally from the Teichmiiller theory of Kleinian groups. Our
work extends previous results of Oh-Shah [24] on circle packings (i.e.
one-dimensional torus packings) to d-torus packings.
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1. INTRODUCTION

In this paper, we obtain counting and equidistribution results for a cer-
tain class of d-dimensional torus packings invariant under self-joinings of
Kleinian groups for any d > 1. One-dimensional torus packings are pre-
cisely circle packings. To motivate the formulation of our main results, we
begin by reviewing counting results for circle packings that are invariant
under Kleinian groups ([15], [23], [24], [25], [27], etc).

Circle counting. A circle packing in the complex plane C is simply a
nonempty family of circles in C, for which we allow intersections among
themselves. In the whole paper, lines are also considered as circles of infinite
radii. Let I' < PSLy(C) = Isom™ (H?) be a Zariski-dense convex-cocompact
discrete subgroup. We call a circle packing P I'-admissible if

e P consists of finitely many I'-orbits of circles;
e P is locally finite, in the sense that no infinite sequence of circles in
P converges to a circle.

We denote by 0 < ér < 2 the critical exponent of I' i.e. the abscissa of
convergence for the Poincare series P(s) := > pe™* d:3(9P-P) where p € H?
is any point and dys is the hyperbolic metric so that (H?,dgs) has con-
stant curvature —1. The extended complex plane C = C U {o0} can be
regarded as the geometric boundary of H?. The limit set of I' is the set of
all accumulation points of the orbit T'(z) of z € C; we denote it by Ar C C.

Theorem 1.1. [24] For any I'-admissible circle packing P, there exists a
constant cp > 0 such that for any bounded measurable subset E C C whose
boundary is contained in a proper real algebraic subvariety of C,

liH(l) s‘sr#{C € P :radius(C) > s, CNE # 0} = ¢p wr(ENAp);
s—

here wp is the dr-dimensional Hausdorff measure on C N Ar with respect to
the Euclidean metric on C.

This theorem holds for a more general class of circle packings invariant by
geometrically finite Kleinian groups, which includes the famous Apollonian
circle packings for which the relevant counting result was first obtained in
[15] (see [24] for more details and examples).

Torus counting. The main goal of this paper is to prove a higher dimen-
sional analogue of Theorem 1.1. Let d > 1. By a torus in C? we mean a

Cartesian product of d-number of circles Cy,--- ,Cy C C. However, it will
be convenient to consider it as a d-tuple of circles
T=(C1,-,Ca) (1.2)

rather than a subset C; x --- x Cy € C% A d-dimensional torus packing
in C% is simply a nonempty family of d-tori in C¢.
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The volume of T is given by

d
Vol(T) = H 27 radius Cj.
i=1
Figure 1 shows some image of a 2-torus packing. Although the torus
T = Cy x Cy in Fig. 1 appears to be in R3, it should be understood as a
subset of R*, representing the Cartesian product of the boundary circles of
two discs.

FIGURE 1. A torus packing

We are interested in understanding the asymptotic counting and distri-
bution of tori with small volumes in a torus packing that is invariant under
a self-joining of a convex-cocompact Kleinian group.

Let I' < PSL2(C) be a convex-cocompact discrete subgroup and p = (p; =
id, p2,- -+, pg) be a d-tuple of faithful convex-cocompact representations of
I' into PSLy(C). Let G = H?:l PSL2(C). The self-joining of ' via p is
defined as the following discrete subgroup of G:

T, ={(p1(9),-- ,palg)) : g €T}

Throughout the paper we will always assume that I', is Zariski-dense in
G. Each p; induces a unique equivariant homeomorphism f; : Ap — A, (),
which is called the p;-boundary map [36]. In this paper, we define the limit
set of I', by
Ap ={(f1(&),++ . fal§)) e C*: £ € Ar}.
We call a torus T = (C1, - - ,Cq) T'p-admissible if for each 1 <1i < d,
e p;(I")C; is a locally finite circle packing;
° fz(Cl N AF> =C;N Api(r‘).

The second condition is equivalent to
TﬂAP - {(517 7€d) € Ap:fl S ClﬂAF},

that is, the circular slice C1 N Ar completely determines the toric slice TNA,,.
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Definition 1.3. A torus packing P is called I',-admissible if

o P consists of finitely many I ,-orbits of I' -admissible tori;
o P is locally finite in the sense that no infinite sequence of tori in P
converges to a torus.

Remark 1.4. We remark that when #(C; N Ar) > 3, the locally finiteness
hypotheses in the above definition can be reduced to the local-finiteness of
the circle packing I'C (see Prop. 3.11).

We denote by dr1(p) the abscissa of convergence of the series

s Pri(s) := Z e_szi‘i:l dy3 (pi(9)p,p)
gel

for p € H3, which is the critical exponent of I', with respect to the Lt
product metric on ngl(HS, dys ).
We first state the following special case of the main result of this paper.

Theorem 1.5. Let P be a I',-admissible torus packing. There exists a
constant cp > 0 such that for any bounded measurable subset E C C¢ with
boundary contained in a proper real algebraic subvariety, we have

lim s’ 0) T € P : Vol(T) > s, TN E # 0} = cp wr, (ENA),

S—

where wr, is a locally finite Borel measure on CdﬂAp which can be explicitly
described. In particular, if P is bounded, then

lir% $21(P) T € P Vol(T) > s} = cp |wr, |-
S—r

Remark 1.6. (1) Since d71(p) is bounded above by the usual critical
exponent ér, of I, with respect to the Riemannian metric (which

equals the L? product metric) on H?Zl H?, we have

1 2
0< 6L1(p) < 51",; < ﬁmzax(dlm(Apz(F))) < ﬁ
by [13, Coro. 3.6]; here the notation dim(-) means the Hausdorff
dimension of a measurable subset of C ~ S? with respect to the
spherical metric.

(2) If all p; : I' — PSLy(C) are quasiconformal deformations of I" and
oo ¢ UleApi(p), then for any bounded torus packing P = I',)T
with T = (C4,---,Cy), P is locally finite if and only if {p;(7)C; :
~v € T'} is a locally finite circle packing for all 1 < i < d. This
is because the boundary map f; is the restriction to A, ) of the
quasiconformal homeomorphism Fj : C — C associated to pi, and
under the hypothesis oo ¢ U;-izlApi (1), the F; are bi-Holder maps on
any compact subset of C ([7], [36]).
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More general torus-counting theorems. In order to present a more
general torus-counting theorem, we define the length vector of a torus T =
(Cr,-++,Cq) by

v(T) = —(logradius(C}), - - - ,logradius(Cy)) € RY;

where we used the negative sign so that the i-th coordinate of v(T") tends
to +00 as C; shrinks to a point. The following result is the main theorem
of this paper.

Theorem 1.7. Let 1) be any linear form on R? such that ) > 0 on (Rzo)d—
{0}. There exist 6 > 0 and a locally finite Borel measure wy on A, N
C? depending only on ', and 1 for which the following hold: for any I ,-
admissible torus packing P, there exists a constant cy, = cpy, > 0 such that
for any bounded measurable subset E C C* with boundary contained in a
proper real algebraic subvariety, we have, as R — oo,

) 1
ngréo W#{T eEP:Yw(T) <R, TNE#0} =cypwy(ENA,. (1.8)
The description of the measure wy, (Def. 6.1) depends on the higher rank
Patterson-Sullivan theory. In fact, it is equivalent to the unique (I',,%9)-
conformal measure on A,, where 1)y is the unique I',-critical linear form
(Def. 2.8) proportional to 1. We refer to Def. 2.6 for the definition of dy.

Remark 1.9. (1) Theorem 1.5 can be deduced from this theorem by
considering the linear form ¢ : (t1,--- ,tq) — t1 + -+ + tq (see Ex.
8.3).

(2) Our approach can also handle the case where ¢ (v(T)) is replaced by
the Euclidean norm of v(T") in (1.8); indeed, the analysis involved in
that case is easier due to the strict convexity of the Euclidean balls
in R? (see the last subsection of Sec 8).

(3) The fact that the sublevel sets {t € R? : ¢)(t) < ¢} are linear (hence
not strictly convex) presents new technical difficulties which were
not dealt with in related previous works such as [24] and [5].

We now discuss examples of admissible torus packings arising naturally
from the Teichmiiller theory of Kleinian groups.

Example 1.10. (1) Let I' < PSLy(C) be a Zariski-dense and convex-
cocompact subgroup whose domain of discontinuity Qr := C - Ap
has a connected component which is a round open disk B. Let
(1 := 0B and d > 2. By the Teichmiiller theory of I', which relates
the Teichmiiller space of the Riemann surface I'\Qr and the quasi-
conformal deformation space of I' ([20, Thm. 5.27], [19]) we may
choose quasi-conformal deformations p; : I' — PSLs(C), 2 < i < d,
whose associated quasiconformal maps f; : C - C map C] to a
circle, say, C;. Then T' = (Cy,---,Cq) is a I'p-admissible torus for
p = (id, p2,--- ,pq) and hence P = I',T is a I',-admissible torus
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T=(CA(C))

FIGURE 2. The left-hand side is the limit set of a
convex-cocompact Kleinian group I' and the right-hand side
is the limit set of a quasi-conformal deformation, say, pg, of

I". Denoting by f the associated quasiconformal map, f
maps the first green circle, say C, to the second green circle.
Hence the torus T' = (C, f(C)) is a (id x pp)(I")-admissible
torus. (image credit: C. McMullen, Y. Zhang)

packing (see Figure 2 for an example when d = 2). Note also that P
consists of disjoint tori, and hence gives rise to a genuine packing.
(2) Let I' be arigid acylindrical convex-cocompact Kleinian group, that
is, Qr is a union of infinitely many round disks with mutually disjoint
closures. Let pp : I' = PSLy(C) be a quasiconformal deformation
of T" which is not a conjugation, and f : C — C the associated
quasiconformal map. Denoting by C the space of all round circles
in C, it follows from ([21], [22], [2]) that the set of all circles C' € C
such that #C N Ar > 2 and f(C) is a circle is a finite union of
closed I'-orbits in C. Indeed, if C' € C meets Ar at more than one
point, then either C' separates Ar or C C Ap. Since the set of circles
contained in Ar is a finite union of closed I'-orbits, it suffices to note
that the set of all separating circles such that f(C) is a circle is a
finite union of closed I'-orbits. This follows from [21, Thm. 1.5] and
[2, Thm. 1.6], since otherwise such a set must be dense in the space
Cap of all circles meeting Ar, and hence f must map all circles in
Ca, to circles. That implies that f is conformal [20] and hence p is
a conjugation, a contradiction.
Therefore the following 2-dimensional torus packing

P :={(C, f(C)): C, f(C) are circles and #C NAr > 2}
is (id x pg)(T")-admissible.

On the proof of Theorem 1.7. First of all, the self-joining group I', is an
Anosov subgroup of G introduced in [10] (see Def. (2.2)), which enables us
to apply the general ergodic theory developed for Anosov subgroups. While
certain types of counting problems for orbits of Anosov subgroups in affine
symmetric spaces were studied in our earlier paper [5] using higher rank
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Patterson-Sullivan theory, there were certain serious technical restrictions
imposed in [5] which made it unclear what kind of torus packing counting
problems could be approached using techniques there. One of the main
novelties of this paper is to have isolated a natural class of torus packings
(which are provided by the Teichmiiller theory of Kleinian groups) for which
we can apply the counting machinery of [5].

It is not hard to reduce the proof of Theorem 1.7 to the case where P
is of the form I',Tp, where Tj is the product of the unit circles centered at
the origin and 1) is a so-called I',-critical linear form (see Def. 2.8). As
in [24], we first translate the counting problem for torus packings into an
orbital counting problem in H\G where H = Stabg(71p); by introducing a
suitable bounded measurable subset By (E,R) C H\G in (4.12), we are led
to consider the asymptotic of

#([e]T, N By(E, R))

as R — oo. The key ingredient for obtaining (1.8) as R — oo is a description
of the asymptotic behavior of

/ ( / f([h]g)d[h]> dlg] (1.11)
By(E,R) \JT,nH\H

for f € C.(I',)\G), as R tends to infinity, as given in Theorem 7.1. The
I' ;-admissibility assumption on P = I' )T} is used to guarantee

e the existence of some compact subset S C I'y N H\H, independent
of R, such that the integral (1.11) can be expressed as

/ ( / o d[h}) dlg] (1.12)
lg]eBy (E,R) [h]es

e the finiteness of the skinning constant of I'y N H\H (see (5.5)).

With this information, as well as the analysis of the asymptotic shape
of the family of the subsets {By(E,R) : R > 0}, we are able to apply the
mixing result from [6, Thm. 3.4] and [4, Thm. 1.3 & Thm. 1.4], and
the equidistribution result from [5] which describes the asymptotic of the
integral (1.11) in terms of the Burger-Roblin measures introduced in [5].
We emphasize that due to the higher rank nature of the subsets By (E, R),
combined with the linear nature of ¢, whose sublevel sets are not strictly
concave, the uniformity aspect in these results (see Propositions 5.6 and 5.8
for the nature of the uniformity that is required) is crucial for our analysis.
In fact, working on this article led us to conjecture the precise uniformity
formulation of the mixing results in [4], which were verified and appeared
in an updated version by the authors. Finally, we remark that the measure
wy is the leafwise measure of the Burger-Roblin measure on the strict upper
triangular subgroup of G (~ C%) (see Proposition 6.3).
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Organization.

e In Section 2, we start by recalling the basic higher rank Patterson-
Sullivan theory of self-joining groups.

e In Section 3, we discuss an important property of I' ,-admissible torus
packings and its consequences.

e In Section 4, we define the family {By(E,R) C H\G : R > 0}
and explain how Theorem 1.5 can be translated into an orbital-
counting problem for a I',-orbit in H\G with respect to the family
{By(E,R): R > 0}.

e In Section 5, mixing and and equidistribution results from [4] [5] will
be recalled with an emphasis on their uniformity aspects.

e In Section 6, the measure w, will be given explicitly and analyzed.

e In Section 7, we prove the key technical ingredient (Theorem 7.1)
of the paper, which accounts for the asymptotic distribution of the
average of translates of the H-orbit over the set By, (E, R) as R — oo.

e In Section 8, we prove the main theorem (Theorem 1.5).

e In Section 9, we prove that every proper subvariety of C¢ has zero
Patterson-Sullivan measure and hence zero w,, measure; this is shown
for a general Anosov subgroup of a semisimple real algebraic group.

Acknowledgements. We would like to thank Dongryul Kim for useful
conversations on a related topic.

2. SELF-JOININGS AND HIGHER RANK PATTERSON-SULLIVAN THEORY

Let H® = {(2,7) : z € C,r > 0} denote the upper halfspace model of
hyperbolic 3-space with constant curvature —1, d the hyperbolic metric on
H3 and o = (0,1) € H?. The geometric boundary of H? is the extended
complex plane C:=cCu {o0}, which is the Riemann sphere. The Md&bius
transformation action of the group PSLo(C) on C extends to the action on
the compactification H3 U C, and gives rise to the identification PSLy(C) ~
Isom®(H?), the identity component of the isometry group of H3. Similarly,
the product group

d
G = [[PsLa(C)
i=1
acts on C¢ component-wise, giving rise to an isomorphism of the group G
with Isonrlo(l_[?:1 H?3), the identity component of the isometry group of the
Riemannian product (H3)<.

Self-joinings of convex-cocompact subgroups. Let I' < PSLy(C) be
a torsion-free convex-cocompact subgroup, that is, the convex core of the
associated hyperbolic manifold I'\H? is compact.

Let p = (p1 = id, p2, -+, pa) be a d-tuple of faithful convex-cocompact
representations of I' into PSLy(C), i.e. each p;(I") is a convex-cocompact
subgroup of PSLy(C).
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Definition 2.1. The self-joining of I" by p is defined as the following discrete
subgroup of G:

Ly ={(p1(9); - palg)) € G:g T}

Recall that throughout the entire paper we assume that

I', is Zariski-dense in G.

Anosov subgroups. Let |-| denote the word length on I with respect to a
fixed finite generating set. Since each p; is convex-cocompact , there exists
C > 0 such that

d(pi(g)o,0) > C|g| —C L forall ge T and 1 <i < d. (2.2)

In other words, I', is an Anosov subgroup (with respect to a minimal par-
abolic subgroup) (see [12] and [10]). This is the most important feature of
the self-joining I', which will be used in this paper. We remark that any
Anosov subgroup of G arises in this way in view of the characterization [12,
Thm 1.5].

Limit set. The product F = C? is equal to the Furstenberg boundary of
G; note that for d > 1, F is not the geometric boundary of H‘ii:l H3. Let
P < G be the product of the upper triangular subgroups of the PSLy(C)
components of G, i.e., P = Stabg(oo, -+ ,00). Then

F ~G/P.

The limit set of I’y in F is defined as the set of all accumulation points

of any I',-orbits in Hle H? on F = C%:
Ap = {hm (pl(gj)07 T apd(gj)o) € @d 195 € L, g; — OO}
j—o0

This definition coincides with the definition of the limit set given by Benoist
([17, Lemma 2.13], [1]). Note that for d = 1, this is the usual limit set Ap
of the Kleinian group I'.  Let A, 1) C C denote the usual limit set of p;(I').

By the convex-cocompact assumption on p;, there exists a unique p;-
equivariant homeomorphism f; : Ap — A, 1):

fi(g€) = pi(g)fi(§) forallgeT and & € Ar. (2.3)

In particular, we have
Ay ={(f1(§),--, fa(§)) : § € Ar}.

Cartan projection. For t = (t1,--- ,t4) € R?, set

/2 /2
ay = ((etB 5*91/2> A (eté efi)d/Q )) . (24)
We let

A={a;:tcRY} <G and A" ={a;:t; >0forall 1 <i<d}.
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We respectively identify R? and R%O with the Lie algebra a = log A and
its positive Weyl chamber a™ = log AT via the map t + loga;. For g =
(91, ,94) € G, the Cartan projection of g is defined as

:U’(g) = (d(g107 0)7 T 7d(gd07 0)) ea’.

Limit cone and its dual cone.

Definition 2.5. The limit cone of I', is the asymptotic cone of {u(y) €
(Rs0)? : 7 € I',}, which we denote by £,. Alternatively, it is the smallest
closed cone in a' containing {(¢1(g), - ,a(g)) : g € '}, where £;(g) denotes
the length of the closed geodesic representing the conjugacy class of p;(g)
([3], [1, Thm. 1.2]).

Since sup,er(4i(9)/¢j(g)) < oo for all i,j by the convex-cocompactness
assumption, we have
L,—{0} Cinta®,
where int C denotes the interior of a cone C. We denote by a* the space of
all linear forms on a. The dual cone of £, is given by

£y = (b ea i, > 0.
Note that
Y|z, —10y > 0 if and only if ¢ € int L7,

Definition 2.6. For ¢ € int L7, let dy€ [0, 00| denote the abscissa of con-

vergence for the series
s 3 o),
vel'y

Critical linear forms. Let ||| denote the Euclidean norm on a = RY,
The growth indicator function ®,: at — RU {—oco} [30, §4.2] is defined as
follows: @,(0) = 0 and for any vector u € a™—{0},

D,(u) = ||u inf 2.7
p( ) H H open cones DCat P ( )
u€D

where 7p is the abscissa of convergence of the series
Pp(s) = Z e sleMIl
YETp, u(v)ED
Definition 2.8. A linear form 1 € a* is said to be I',-critical if
o) >, onat;
o Y(u) = ®,(u) for some u € at — {0}.
The following lemma is due to Quint.

Lemma 2.9. [30, Thm. 4.2.2, Lem. 3.1.3, 3.1.7]

e For each ¢ € int L7, there exists s > 0 such that sy is a I'p-critical

linear form.
o If 1 is I'y-critical, then 6, = 1.
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Proof. Set sp := inf{s > 0 : s1p > ®,}; we have 5o € (0,00) by [30, Thm.
4.2.2]. Tt follows that sgtp > @, and spyp(u) = ®,(u) for some u € at with
|ul| = 1, by the upper semi-continuity of ®, [30, Lem. 3.1.7]. In particular,
501 is I' p-critical and the first assertion follows. The second assertion follows
from [30, Lem.3.1.3]. O

Patterson-Sullivan measures. Fix o = (0,1) € H?. By abuse of notation,
we set

d
0:(0,-~-,0)€HH3.
i=1

For ¢ = (&,-+-,&) € C4and g = (g1, ,94) € G, the vector-valued
Busemann map is defined as

Bf(gov 0) = (/351 (9107 0)7 T 765(1(9610’ 0)) €a,
where {&;(t) : t > 0} is a geodesic ray in H® with . li+m &i(t) =& and
—400

Be,; (gio,0) = tlj_lglood(gi@ &i(t)) —d(o,&(t)).

Given a linear form v € a*, a Borel probability measure v supported on
A, is called a (I, 9)-Patterson-Sullivan (PS) measure if for all v € ', and
e F,

dysv
dv

We will say that v is a I',-PS measure if it is a (I'y,4)-PS measure for
some ¥ € a*. Extending the Patterson-Sullivan theory for rank one groups
(28], [34]), Quint [31] constructed a (I',,1)-PS measure for each I ,-critical
linear form v € a* (see [3] for earlier works on this). As T, is a Zariski-dense
Anosov subgroup of G, the following is a special case of [17].

Lemma 2.10. [17, Thm. 1.1 and Thm. 4.3] For each u € int L,, there
exists a unique I'-critical linear form i, € a* such that 1, (u) = ®,(u),
and a unique (I' 5, 1y)-PS measure vy,,. The maps u — 1, and u — vy,
give bijections among

(&) = e ¥ Be(ro0),

{ueint L, : ||u|| = 1} <> {T'p-critical linear forms} <+ {I',- PS measures}.

3. PROPERTIES OF ADMISSIBLE TORUS PACKINGS

Notations. We will be using the following notations throughout the paper:
For z = (2;)%_, € C4, set

z 1z
ne= (o). (%)) €G (3.1)
We also define the following subgroups:
N={n,:2eC%, N={nl:zecC,

d d
K =]]PSU(2) and H =[] (PSU(1, 1)U (Y §)PSU, 1)),
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where
PSU(2) = {( %5 ) : lal+b* = 1} and PSU(L,1) = {(¢2) : af*~Jb[* = 1}.
We set
M = {<(6igl ooy ) ,(e’jd e,%d)) 201,04 € RY;

note that M is equal to the centralizer of A in K.

Let C denote the space of all circles in C (recall that a union of line and
{o0} is considered as a circle with infinite radius) and 7 =C X --- x C the
space of all tori in H?:l C. Under the identification made in (1.2), we may
consider a torus as an element of 7, and a torus packing with a subset of

T.

H-orbits corresponding to admissible torus packings. Throughout
the paper, we fix the following torus

Ty = (COa"' >CO) eT
where Cy = {|z| = 1} is the unit circle centered at the origin. Note that
H = Stabg(Tp), and K = Stabg(o).

Since G acts transitively on 7, we can endow 7 ~ G/H with the quo-
tient topology on G/H. Similarly, the topology on C will be induced from
PSL(2,C)/PSU(1,1).
We call a torus T' = (C1,--- ,Cq) I'p-admissible if for each 1 <1i < d,
o {pi(7)C; € C:~y €T} is a locally finite circle packing;
] fZ(Cl N AF) =C;N Ap (T)-

i

Definition 3.2. A torus packing PC T is called I ,-admissible if

o P consists of finitely many I ,-orbits of I' ,-admissible tori;
e P is locally finite in the sense that no infinite sequence of tori in P
converges to a torus.

The following lemma is rather standard (see for instance [24, Lem. 3.2].)

Lemma 3.3. The followings are equivalent:

(1) The torus packing I ,ToC T is locally finite;
(2) The inclusion map f:T', N H\H — I',\G is proper;
(3) T,\I',H is closed in I' )\G.

Proposition 3.4. IfP = I',Tj is ' y-admissible, then for any bounded subset
O CcI',\G, the subset

{[h] €T, N H\H : [)]AT N O # 0} (3.5)

1s bounded.
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Proof. Suppose not. Then there exist sequences g; € I', (hj1, -+, hiq) € H,
and (tz‘,h R 7tz‘,d) € at such that (Fp N H)(hzﬂ, K hi,d) — o0 in FpﬂH\H
as 7 — oo and for each 1 < 5 < d,

ti /2
si.j = Pi(9i)hi (6 N e%?,ﬂz) (3.6)

is a bounded sequence in PSL(2,C).
Let Hy = Stabpgr,c)(Co) and D be a Dirichlet fundamental domain for

the action of I' N Hy on the convex hull 60 C H? of Cy. By the admissibility
hypothesis, I'Cy is a locally finite circle packing. Hence the inclusion map
FﬁHg\ag — I'\H? is a proper map. Since I' is convex-cocompact , it follows
that D N Ar = @ [26, Prop. 5.1] where D := DN Cy C C denotes the
boundary at infinity of D.

By replacing h;; with an element of (I' N Hy)h;1 and modifying g; if
necessary, we may assume that h; 10 € D. Since (I, N H)(hi1,--- ,hiq) =
oo inI'y,NH\H as i — oo, we must have h; ; — oo in Hy for some 1 < /¢ < d.
By (3.6) and by the assumption that the sequence {s;; : i = 1,2,---} is
bounded for each 1 < j < d, we have

ti /2
&= lim by (<07 0 2 ) o= lim py(g7 sigo € Ay (37)
It follows from the pj-equivariance of f; that {; = f;(&1) for each 1 < j < d.
We will need the following general fact from hyperbolic geometry: for any
sequence h; € Hy and t; > 0 (i € N), the sequence
{hi (e%” 6791_/2) oeH3:ic N} (3.8)
accumulates on Cy if and only if {h; € Hy : i € N} is unbounded. In this
case, (3.8) shares the same limit point with {h;o € H3 : i € N} along any of
1ts convergent subsequence.

Now, since h;y; — oo, it follows from (3.7) and the above fact that
& eCyn Apg(F)'

Since Cop N Ar = f,1(Co N A,,ry) by the assumption that P is I'p-
admissible, we have & = f; (&) € ConNAr. By (3.7) and the previous fact
from hyperbolic geometry, this implies that h;; is unbounded and h; 10 — &
as ¢ — 00. Omn the other hand, since h;j10 € D, we have & € dD. Hence
&1 € OD N Ar; this yields a contradiction since 9D N Ar = 0. O

Proposition 3.9. If P =I',Tj is I' ,-admissible, then the following hold:
(1) the set
{[h]eT,NH\H : hP € A,}

18 compact;
(2) for any bounded subset S C G and any closed cone £ C a™ such that
ENL,={0}, we have

#((H\HT,) N (H\H exp(€)S)) < 0.
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To prove the proposition we will use the following lemma, which is equiv-
alent to [17, Prop. 7.4] in view of the characterization of the limit cone £,
as an asymptotic cone of {p(v) : vy € I'p} given in [1, Thm. 1.2].

Lemma 3.10 (Uniform conicality of A,). [17, Prop. 7.4] There exists a
compact subset Q C G such that the following holds: for any g € G with
gP € A, and any closed convex cone D C int aTU{0} whose interior contains
L, — {0}, we can find sequences v; € T', and loga; — oo in D such that

~viga; € @ for all i > 1.

Proof of Proposition 3.9. Let @ C G be as in Lemma 3.10. Choose any
closed convex cone D C int a™U{0} whose interior contains £, — {0}. Since
the inclusion map I'y " H\H — I',\G is a proper map, Lemma 3.10 implies
that

{[h eT,NH\H :hP € A,} C{[h] €T,NH\H : [hlexpD N Q # 0}.

By Proposition 3.4, the subset on the right-hand side is bounded. There-
fore (1) follows.

Suppose (2) is false. Then there exists a bounded subset S C G and
infinite sequences t; € £, t; — 00, v; € I'y, h; € H, and s; € S such that

vi = h;ag;s;,

and H~; # H~; for i # j. Since the image of ’yi_lhiati = sz-_l € S~ under
the projection G — I',\G is bounded, it follows again from Proposition 3.4
that there exists a sequence ¢; € I', N H such that the sequence h; := 8;h; is
bounded. Set 7; := §;y;.- Note that Hy; = H~; and #; = ﬁiatisi € I'y. Since
both BZ and s; are bounded, the sequences t; and p(5;) are within bounded
distance of each other. Now using the fact that £, is the asymptotic cone
of {p(vy) :v €Ty}, and ENL, = {0}, we have t; ¢ £ for all sufficiently large
1, which is a contradiction.

Closedness of I',Ty. The following proposition says that local finiteness of
I')/ToC T is a consequence of the local finiteness of I'CoC C when Tj is an
admissible torus with #(Co N Ar) > 3.

Proposition 3.11. Let I'Cy be closed in C with #(CoNAr) > 3. If fi(CoN
Ar) = CoN A,y for each 1 <i < d, then T',Ty is closed in T and p;(I")Cy
is closed in C for all 2 < i < d.

Proof. Suppose that a sequence T, = (p1(gn)Co, p2(gn)Co, " , pa(gn)Co)
converges to some torus T' = (C1,Co,- -+ ,Cy) for g, € I'. We need to show
that T' € ', Tp. Since I'Cy is closed and hence locally finite by Lemma 3.3, we
may assume that for all n > 1, g,Cy = C; by throwing away finitely many
gn’s (recall p; = id). Observe that p;(gn)fi(Co N Ar) = fi(gn(Co N Ar)) =
fl(Cl N AF) by (23) On the other hand fz(CO N A[‘) =ConN Api(p) and it
contains at least 3 distinct points. Since two circles sharing three distinct
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points must be equal to each other, we get p;(g,)Co = Cq for all 1 <i <d
and all n. It follows that T;, = T = Tj for all n, proving the first claim. The
second claim can be proved similarly. O

Although we won’t be using the following proposition in the rest of our pa-
per, it is of independent interest and extends the analogous fact for convex-
cocompact groups for d = 1.

Proposition 3.12. Let T be a torus and Hr be the stabilizer of T in G.
Suppose ', T is closed with #(TNA,) > 3. ThenT' ,NHr is a non-elementary
Anosov subgroup and

TN Ap = ArpﬁHT'

Proof. Without loss of generality, we may assume that Hp is the product
of PSLy(R)’s. We use the characterization of an Anosov subgroup as a sub-
group of G satisfying the properties of Regularity, Conicality, Antipodality,
shown in [11, Thm. 1.1]. Since HrNT', is a subgroup of an Anosov subgroup
Iy, Hr contains A and Hr/(Hr N P) C G/P is the Furstenberg boundary
of Hrp, the regularity and antipodality are immediate.

We deduce the conicality as follows. Let £ € TN A,. We can choose
h € Hr such that h(Hy N P) = . Since I', is Anosov, £ is a radial limit
point of ', that is, there exist a,, — oo in AT and d,, € ', such that d,ha,
is bounded. Since the map I', N Hy\Hr — I',\G is proper by Lemma 3.3
and ha, € Hyp, it follows that there exists Sn € I', N Hr that

gnhan

is bounded. This implies that £ = h(Hp N P) is a radial limit point of
I'yNHy in Hp/(Hr N P). Hence we have shown that TN A, is equal to the
set Arﬁ’“pdm Hy of all radial limit points of I') N Hr. Since Arpm ap CTNA,, it
follows that

Ar,nmr = AP,
Hence I',NHr is conical. This proves that I',NHr is Anosov. The hypothesis
#(T'NA,) > 3 now implies that I', N Hr is non-elementary. O

4. TORUS COUNTING FUNCTION FOR ADMISSIBLE TORUS PACKINGS

We write r(C') for the radius of a circle C'. GivenatorusT = (Cy,--- ,Cy) €
T, we define its length vector v(T) € aU {oco} by
v(T) = —(logr(Cy),--- ,logr(Cy))
if r(C;) < oo for all 1 <i <d, and v(T") = oo otherwise.
We will call a linear form 1 € a* positive if
¥ >0ona" —{0}.
In the rest of this section, we fix

e a I',-admissible torus packing P = I, T;
e a positive I'j-critical linear form v € a*.
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Definition 4.1 (Counting function). For a bounded subset E C C% and
R > 0, we set

Nr(P,,E)=#{T e P :¢y(v(T)) <R, TNE # 0}. (4.2)

The local finiteness assumption on P together with the positivity hypoth-
esis on 1 guarantees that

Lemma 4.3. For any bounded subset E C C% and R > 0,
NR(P, ¢, E) < 00.

Proof. By the local-finiteness of p;(I")Cy, there are only finitely many circles
in p;(I')Cy of radius bounded from below intersecting a fixed bounded set.
In particular,

no:=#{T €P:v(T)¢ga" and TNE # 0} < oo.

By the positivity hypothesis on 1, we have ¢ := inf,cq+ |jp|=1 P (v) > 0 and
hence 1(v) > c||v|| for all v € a*. Hence

Ngr(P,9,E) —ng

d
<H#HT =(Cr,--,Cq) €P: Y |logr(Cy)|> < R*/c® and TN E # 0}
=1

d
<#> {Cep(D)Co:e e <r(Ci) and C N my(E) # 0}
=1

where m;(E) denotes the projection of E to the i-th factor C. The last
quantity is finite by the local-finiteness of p;(I')Cy. This proves the claim.
O

We will introduce a subset B¢ (E, R) C H\G and explain how Ng(P, ), E)
is related to the number of I',-orbits in the set By (E, R).
Definition of By (F, R). For R > 0, we define
Al p={a € AT 9(t) < R},
where a; is defined as in (2.4). As 1) is positive, A;Z  is bounded.
For any subset E C C%, we define
Ng={n,eN:z€FE}
where n, is defined as in (3.1). For any € > 0, set
E-:= ()] E+w, and El:= ] E+w (4.4)
llwll<e llwll<e

Definition 4.5. For any bounded E C C? and R > 0, we define the follow-
ing bounded subset of H\G by

By(E,R):= H\HKA] ;N_p C H\G. (4.6)
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The following proposition allows us to reformulate the counting problem
in terms of the sets By (EL, R) (cf. [24, Proposition 3.7]): For € > 0, set

d
90(P,E,e) :=#{T = (Cy,---,Ca) €P: Y _r(Ci)* >*/4 and TN E # }.
=1

(4.7)
The finiteness of qo(P, E,¢) can be seen as in the proof of Lemma 4.3.

Proposition 4.8. Let E C C% be a bounded subset. For any ¢ > 0 small
enough and any R > 0, we have

#([el0, N By(EZ, R)) — qo < Nr(P,4, E) < #([e]T, N By(EX, R)) + qo0

where qo = qo(P, E,¢€).
Proof. Let Tg = OO X oo X C’o. Note that

(I, VT AT oV )

=#{yel,NnH\I', : HyN KAT—Z,RN*EE # 0}

=#{y€T,/T,NH : YHK N Ngx(A} o) 'K # 0}

= #{vTo € P : vTo N Nz (A} p)"'o # 0}. (4.9)
Observe that for z = ()%, € C¢, ¢t = (t;,)4, € R? and 0 = (0,1)%; €
H?:l H3, we have n.ato = (z,t;)%, € H?:l H3. Hence, if 4Ty € P,
¥To N Np= (A g)"lo # 0 and 37 r(pi(7)Co)? < €2/4, then vTy N E # 0
and ¢¥(v(yTp)) < R. This observation combined with (4.9) gives the lower
bound in the statement of the proposition. Similarly, if 4Ty € P satisfies
VI NE # 0, ¥(v(yTh)) < R and 3¢, r(pi(7)Co)? < €2/4, then 4Ty C E+

and hence vTp N N E:(A:Z r)to # (. This combined with (4.9) gives the
upper bound, proving the proposition. O

Definition of By (E,R). Let D C intat be any closed cone such that

intD > L, —{0}. (4.10)
Throughout the section we fix one such D and set, for any R > 0,
D:=expD and Dygr=DNA] L. (4.11)

Analogously to B¢ (E, R), we now define
Bw(E,R) :BD7¢(E,R) = H\HKDWRN,E CH\G (4.12)

By(E, R) in terms of G = HATK decomposition. We will now express
the set By(E,R) in terms of the generalized Cartan decomposition G =
HATK (cf. 9, p. 439]). Given ¢ > 0 and a subset W C G, let W, denote
the intersection of W and the e-ball around e in G.

Lemma 4.13. [24, Proposition 4.2] For d = 1, we have
(1) If a; € HKasK for some s > 0, then |t| < s.
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(2) For any e > 0, there exists Ri(g) > 0 such that
{ke K : atk € HKA" forsomet > Ry(e)} C K. M.

We set
Xe = {a € A"+ min t; < Ri(e/Vd)}, (4.14)

that is the closed R;(e/v/d)-neighborhood of AT, where Ry(e/v/d) > 0 is
the constant as given in Lemma 4.13(2).
We deduce the following.

Lemma 4.15. For any e >0 and R > 0,
KA} p C H(AL , — XK. UHX.K.
Proof. For any k = (k1,--- ,kq) € K and a; € A", using the decompo-

sition G = HATK, we can find h = (hy, -+ ,hq) € H, as € AT and
= (fy,...,44) € K such that

eti/2 0 e’i /2 0
k(02 0 ) =h (€02 0 0) 6 (4.16)
for all i = 1,...,d, where t = (t;)1<i<q and s = (s;)1<i<q.- From Lemma
4.13(1), we then have s; < t;. Since ¢|+ > 0, we have
Y(s) < ().

Hence if a; € A;/C,R’ then we have ag € A;;R' Furthermore, if as & X., we

have s; > Ry(¢/+/d) for each i and hence £ € K.M by Lemma 4.13(2). Since
K. M = MK, and M C H, this proves the lemma. O

Further refinement. The following lemma appears in [24, Prop. 4.7] for
the case d = 1, and this implies the general d-case as the computations can
be reduced to each component.

Lemma 4.17. [24, Prop. 4.7] There exists ¢’ > 1 such that for all small
enough € > 0, and a € A"

aK.M C H(aAg/E)Ng/E.
Using Lemma 4.17, we obtain.

Lemma 4.18. For any € > 0 and a bounded subset E C C?, there exists a
compact subset Z = Z(E,D,e) C H\G such that

By(E,R) C H\HDy grAp-N_p+ UH\H(A" — D)KN_pU Z,
e
Proof. Since D is a closed cone contained in inta™, D N X, is a compact

subset. Therefore Z := H\H(D N X.)KN_g is a bounded subset of H\G.
Note that by Lemma 4.15 and Lemma 4.17

KA C H(A:/;R —X)K.UHX.K
C HDypK.UH(AT —D)K UH(DNX.)K (4.19)
C HDw,RAZ’sNZ’s U I‘I(AJr — D)K UH(DNX,)K. (4.20)
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The claim now follows from the definition of By (E, R). O

Corollary 4.21. For any ¢ > 0, there exist 1 = q1(F,D,e) > 0 and
0 =10(y) such that

#([elT,NBy(E, R)) < #([e]0,NBy(E, R)) < #([e]TyNBy(Ey., R+Le))+q1.

Proof. The first inequality is trivial. For the second inequality, choose a
slightly smaller closed cone Dy C int D such that £, — {0} C int Dy and set
€ = at —Dy . Note that Dy r — (Do)y,rAr: is a bounded set and hence
applying Lemma 4.18 to the cone Dy shows

By(E,R) C H\HDygN_p+ UH\HEKN_pUZ'
e

for some compact set Z' C H\G. Applying Proposition 3.9 with S = KN_g
gives the desired conclusion. . O

5. MIXING AND EQUIDISTRIBUTION WITH UNIFORM BOUNDS

We fix a positive I',-critical linear form ¢ € a* and the (I',,%)-PS mea-
sure v, given by Lemma 2.10. In this section, we recall the results of [4]
and [5] on mixing (Proposition 5.6) and equidistribution (Proposition 5.8),
with emphasis placed on their uniformity aspects that are crucial in our
application.

Burger-Roblin measures mP? and mBR+. Recall that P = Stabg (oo, - - - , 00)
denotes the product of upper triangular subgroups. We also denote by
P = Stabg(0, - -+ ,0) the product of lower triangular subgroups.

For g € G, its visual images are defined by

gt:==gPcF and g :=gPeF.

Let F®?) denote the unique open G-orbit in F x F under the diagonal action,
that is, 7&) = {(¢",97) : g € G}.

The map

gM = (97,97, b = By-(0,90))
gives a homeomorphism G/M ~ F ) x a, called the Hopf parametrization
of G/M. We define a locally finite Borel measure ﬁLBR on G/M as follows:
for g = (g%, 97,b) € F? x q,
dﬁLER(g) — ¥(By+(0,90))+20 (B, (0,90)) dvy(gt)dme(g™)db, (5.1)

where m, is the unique K-invariant probability measure on F, db is the
Lebesgue measure on a, and o is the linear form on a defined by

oty - tg) =t1+ -+ tg. (5.2)
By abusing notation slightly, we will also use fngR to denote the corre-
sponding M-invariant measure on G induced by ng. The measure MER is

left I' -invariant and induces an N-invariant locally finite measure on I')\G,
which we denote by mER.
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Similarly, but with a different parameterization g = (g%, 9~,b = B4+ (0, g0)),
we define the following N-invariant locally finite Borel measure on G:

dng* (g) = 29 (By+(0,90))+4(6,— (0,90)) dmy (g™ )diy (g™ )db. (5.3)
We have the following decomposition (see (4.8) of [5]).
Lemma 5.4. For f € C.(PN),

ngU) = / </ f(namn) dh) e ¥lloga) ¥ (B, —(0m0)) gy g dvy(n™),
NAM \JN

where dm, da, div denote the Haar measures for M, A, N, respectively.

We note that in Lemma 5.4, dm is normalized to be a probability measure
on M, da is normalized to be compatible with the restriction of the Killing
form on the lie algebra of A, and dn is equivalently given by the density 7
e2P(B+ (O’ho))dyo(hﬂ where vy denotes the unique K-invariant probability
measure on JF.

Patterson-Sullivan measure ,ulrjfm H\H,p [5, Definition 8.7]. We define a
measure uiﬁw on H as follows: for ¢ € C.(H), let

e = [

/ ¢(hp)€w(ﬁh+(07hp0)) dp dl/w(h“'),
heH/HNP JpeHNP

where dp is a right-Haar probability measure on H N P (note that H N P is
compact for the pair (G, H) we are considering); for h € H/H N P, h™ is
well-defined and independent of the choice of a representative. The measure
defined above is I'y N H-invariant: for any v € I'y N H, fy*yl;flb = ,ull'fw.
Therefore, if I',)\I',H is closed in I',)\G, d/‘%ip induces a locally finite Borel
measure on I',)\I',H ~I', N H\H, which we denote by MESHH\H#}.

The skinning constant of I'y N H\H with respect to v is defined as the
total mass:

PS
sk, (H) = [lornmm m,ll € 10,00]. (5.5)
Uniform mixing. We fix the unique unit vector u = w,, € int £, such that

h(u) = ®p(u)
provided by Lemma 2.10.
Since the cone a™ is contained in the closed half space {1y > 0} and
¥(u) > 0, at can be parameterized by the map
RZO x kery — a
(s,w) — su+ +/sw.
The following mixing result is due to [6, Thm. 3.4] and [4, Thm. 1.4 &

Thm. 1.5]: the uniform bound as stated in the second part is crucial in our
application as remarked before.



TORUS COUNTING 21

Theorem 5.6. There exists an inner product (-,-)« on a and k,¢ > 0 such
that for any fi, fo € Ce(T')\G) and w € kerp,

s—+00

lim s(d-D/2e20—) (suytsw) / fi(@ exp(suy + vow)) fol)de
r,\G

= ke TOmBR(FymE (f2)

) . _ NwllE = (w,uy)? :
where I : ker ¢ — R>q is given by I(w) = Tz Moreover, there exist

50, > 0 and C" = C'(f1, f2) > 0 such that for all (s,w) € (sp,00) x ker)
with suy + /sw € at, we have:

s(d=1)/2(20—4)(suy++/50) / f1(z exp(suy + Vsw)) fa(z)dz| < C'e W),
r\G
(5.7)

Uniform equidistribution. Using Theorem 5.6, the following equidistri-
bution result can be obtained as in [5, Proposition 8.11] and using a partition
of unity argument for ¢.

Proposition 5.8. Assume that I'yH s closed, let f € C.(I',)\G) and ¢ €
Ce(Tp,NH\H). For any w € ker, we have

lim s(@=D/2Co—¥)(suytvsw) / f([h] exp(suy + v/sw))d(h) dh
S——+00 T\, H

p\lp

= e M mPR () i g (0) - (5.9)

where k,0 > 0 and I : keryp — R>q are given by Theorem 5.6. Moreover,
there exists C" = C"(f, ®),s0 > 0 such that for all (s,w) € (sp,00) x ker 1)
with su + /sw € a™,
§(d=1)/2(20—) (st +/5) / SR exp(suy + v/5w))d(h) dh| < C"e1),
H
(5.10)

6. THE MEASURE wy,

Fix a positive I',-critical linear form ¢ € a* and the (I',,1)-PS measure
vy, given by Lemma 2.10.

Definition 6.1. We define a locally finite Borel measure wy, = wr, 4 on c
as follows: for all f € C.(CY),

wo$)= [ FEOonD (),

For each small € > 0, let ¢° € C’C(NEAEMeNe) be a non-negative function
such that [ ¢ ®° dg = 1 where dg is a Haar measure on G and for any z € ce,
set

#5(g) = /M & (gmns) dm,
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where dm is a probability Haar measure on M.
The main goal of this section is to establish Corollary 6.5, which roughly
says

/_E mBR(62) dz ~ wy(E).

Let E Cc C? be a fixed bounded Borel set and ¢ > 0 be small enough so
that

A.M.N.N_gN, C NAMN.
For all z € C?, define 5, € C.(CY) by

D5 (2) = ¢(nyg) dg = £(n.g) dg.
% (2) /N g0y /N g g dg

Recalling the definition of EF from (4.4), we have
Lemma 6.2. For all z € C¢,
1p-(n.) < ®x(z) < Lp+(ns).

Proof. Trivially, 0 < ®,(2) < 1. If z € EZ, then n; 'N. C N_g, hence

0= [ gz [ sy = [ a1

On the other hand, if z ¢ EX, then n;'N. N N_g = (), hence ¢*(n.g) = 0
for all g € N_gM AN by uniqueness of the NAM N decomposition, giving
®%(2) =0. O

We now relate the Burger-Roblin measure of ¢* and Patterson-Sullivan
measure of ®¢ .

Proposition 6.3. There exist C,c > 0 such that for all sufficiently small
€ > 0, we have

(1- oy < [

RER(G5) dz < (1+ Cz) oy (D5, ).
_E ce

Proof. By Lemma 5.4, we have

/Eng(d)i) = /E /M /N /AMN ¢* (nramisin:)

x e~¥oga) Y(Br(0mr0)) gy din da dvy (') dm dz

= / (/ ¢° (nramnm, ) e~ V18 Dz dn dm da) dwy(2'),
cd AMNN_g

where all the densities appearing in the expression are those of the corre-
sponding Haar measures, except for dvy, and dwy,. Note that if ¢°(namnn.) #
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0, then namnn, € N.A.M_N., hence
amin EAMN N (n_lN N, exp (Adn_z(log(AgMENe))))
C AMN N (n n, c/aAc/sMc'ch'g)
= Au MoK, (6.4)

for some ¢ > 1 depending only on E. Decomposing the Haar measure dg
on G according to AM NN and then restricting to Ay My No.N_g gives

e~ V108 2 div dmda = (1 + O(e)) dg
since a € Ay and dg = dzdndmda for g = amnn, [14, Ch. 8. Hence

/ mpR(¢5) dz = (1+ O(e) /Cd/AMNN ¢*(nzg) dg dwy(2),

with the implied constant depending only on E. Now using the maxi-
mum of || Ady, || over z € £E together with the NAMN decomposition
of exp (Adnfz(log(AcrgMcrchxa))) as above gives the existence of ¢ >
such that

N,EC*EAEMENE - Ac’aMc’aNc’eNfE C N,E;rsAcaMcaNca'

Combined with (6.4), for every 2z’ € C% we have

/ ¢ (nug)dg S/ ~ ¢°(nxg)dg S/ ¢ (nzg)dg,
N__- AMN AMNN_pg N_, AMN

ce

giving the desired inequality. ([
Combining Lemma 6.2 and Proposition 6.3 gives the following result.

Corollary 6.5. There exist C,c > 0 such that for all € > 0 sufficiently
small,

(1—06) W¢( (1+C)€ / m ¢8)dz < (1+CE) wl/’(E(1+c)s)

7. EQUIDISTRIBUTION IN AVERAGE.

We fix a positive I',-critical ¢ € a*, vy and u = wuy, continuing the
notations from sections 4 and 5. We also fix a closed cone D C int a™ such
that int D D £, — {0} and set D := expD as in (4.10) and (4.11). Recall
the notation By (E,R) = H\HK Dy rN_g for a bounded subset E C C?,
and k, £ > 0 given by Theorem 5.6.

The main goal of this section is to prove the following main technical
ingredient of the proof of Theorem 1.7, using Proposition 5.8.

Theorem 7.1. For any f € C.(I',)\G) and a bounded measurable subset
E C C¢ such that wy(OF) = 0,

Rlim e~ / / f(Tphg)d[h]dlg] = Cvaw/ ng(fz) dz
—00 By(E,R) FpmH\H —E
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h . fskr,y(H) ot (w)
where Crpw T fkew dw) and f, € C.(T')\G) is defined
by f.(x fM xmny) dm.

In the above, d[g] denotes the G-invariant measure on H\G which is

compatible to Haar measures dg and dh on G and H respectively, that is,
for any f € C.(G),

fi100= f o (J, sorn)

Integral computation. For each w € ker ), let Qr(w) C (0,00) be defined
as

Qr(w) :={s € Rsg : su++/sw € A:;’R}. (7.2)

Since ¥ (w) = 0, we compute that for all R > 0, Qr(w) is an interval of the
form

QR(w) = (Oa mR)

The uniform bound in Proposition 5.8 enables us to use the dominated
convergence theorem to prove the following result.

Lemma 7.3. For f € C.(I',\G), ¢ € C.(H) and a bounded measurable
subset E C C?, define for each w € ker,

pr(w) :e_R//Q ( sdgle%(wr\/gw)/ [2(Lphexp(su+y/sw))p(h) dhds dz.
rR(W H

Then

(1) limp_e0 pr(w) = *;Hw e~ [ mBR(f.)dz and
(2) pr(w) < Ce™ @) for some C' = C(f,E,qb) > 0.

Proof. For simplicity, set ¢, = ® ( ) in this proof. For all sufficiently large
R > 0, we may rewrite pr(w)

R/cu
—eR/ / e J(s,w,z)dsdz

:// e J(s' + R/cy,w, z) ds dz
EJ—-R/cu

where
J(S, w, z) = 3(112;16(20—_1#)(8“4—\/&0) / fZ(th exp(su + \/EQU))d)(h) dh.

By Proposition 5.8, J(s,w, z) — ket (w)

m R(f£)ub3(4) as s — oo and
J(s,w,z) < C"e W)

where C" = C"(sup,ep f2, ¢) is as in Proposition 5.8. Hence (1) follows
from the dominated convergence theorem as R — oco. Assertion (2) follows
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from the bound
0

pr(w) < Vol(E) / e J(s+ R/cy,w, z)ds
—R/cu

by setting C = é Vol(E)C". O

Proof of Theorem 7.1. Without loss of generality, we may assume that
f >0. For [g] € H\G, set

FH ((g)) = / F(Thg) dh.
T,NH\H

By Proposition 3.4, and using the expression of g with respect to the gener-
alized Cartan decomposition G = HAT K, we can choose ¢ € C.(I', N H\H)
depending only on the support of f and E such that

A () = / £-(Tphg)o(h) dh (7.4)
T,NH\H

for all z € E. This will allow us to apply Proposition 5.8 directly to fII.
Furthermore, by Proposition 3.9(1), the support of ,ullffm H\H. is compact,

so we may additionally assume that ¢ = 1 on the support of ullffm H\H, and
hence skr, (H) = /,Lllfme\Hw(qb). By Proposition 3.9(2),

/ £ ([g]) dlg) < oc.

H\H(A+—D)KN_g

Since d[an.] = €**Odt dz where o(t) = Z?:l t;, we deduce from Lemma
4.18 and the inclusion By (F, R) C By(E, R) that

im su e_R H
lim sup /B )

R—o00
< limsupe / A (Jagn.))e?® dt dz. (7.5)
R—00 —ELJA p,.

Since M C H, we have

M (anz]) =7 (Imamn.]) = 7 ([agmn.])
— / £ (jamns]) dm = £7 ([aq)).
M

We now compute the upper limit in (7.5).
Using (7.2) and (7.4) together with the fact that ¢ = su + /sw on a™
d

hence dt = s°% dsdw, we first rewrite (7.5) as limsupp_, o fkewa(w) dw
where

pr(w) = €_R/ / 8%62”(8“+\/§w)ff([exp(su ++/sw)])dsdz
~Ef JQryee(w)

_ e_R/ / S%eza(suﬁ/gw) / f-(T hexp(su + Vsw))p(h) dhds dz.
~Ef JQrye(w) LpNH\H
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Applying Lemma 7.3 by replacing R with R + fe and E with —EZ, by
the dominated convergence theorem,

lim pr(w) dw = / lim pgr(w)dw
ker ¢ ke

R—o0 1 R—o0

PS ¢
_ KMFPQH\H,1/;(¢)€ ) / e~ W) quy / my(f2) dz
(I)P(u) ker v —EZ; ’

Altogether, we have thus obtained

fmsp e [ /] < e [ mi )
: :

R—00 Ef
g

Similarly, but applying Lemma 4.18 to Ew(E[E,R — le) and Dy = exp Dy
where Dy is a cone such that £, — {0} C int Dy C Dy C D, we have

lim inf eR/ fH([g]) dlg] > Cr, ees/ ng(fZ) dz
R By(E,R) -E

—00

Note that by Corollary 6.5, we have
(1 — CE) ww / m (Z)E dZ < (1 + C‘S) ww (E(—ii—&—c)s)

for all sufficiently small € > 0. Since wy,(9F) = 0, taking ¢ — 07 completes
the proof.

8. PROOF OF THE MAIN COUNTING THEOREM
In this section, we prove the following main theorem of this paper.

Theorem 8.1. Let P be a I',-admissible torus packing. For any positive
linear form 1 € a*, there exist a constant cy, = cpy > 0 such that for any
bounded measurable subset E C C* with boundary contained in a proper real
algebraic subvariety, we have

lim e %% Ng(P,, E) = cy wy(E). (8.2)

R—o0

Example 8.3. Note that Vol(T) = (27)%~7®T) since o(ty, - ,tq) =
t1 + --- 4+ t4. Hence, we have

Nr(P,0,E) = #{T € P : Vol(T) > (2n)% %, TNE # 0}.

Since o € a* is positive, Theorem 1.5 is a special case of Theorem 8.1,
with 071 (p) = 6o, cp = (2m)%cp » and wy = wr, o

The proof of the following lemma is postponed until the final section
(Theorem 9.2).

Lemma 8.4. For any bounded measurable subset E C C* with OF contained
in a proper real algebraic subvariety, we have wy(0F) = 0.
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Since every homothety class of a positive linear form can be represented
by a positive I',-critical linear form (Lemma 2.9) and d; = 1 for critical
linear forms, Theorem 8.1 follows from Lemma 8.4 and the following.

Proposition 8.5. For any positive I',-critical linear form 1 € a* and any
bounded measurable subset E C C¢ with wy,(OE) = 0, we have

lim e B Np(P, o, E) = ¢y wy(E
Rl € R( 7¢7 ) Cy ¢( )
for some constant cy, > 0.

Special case: P =T',Ty. We will first prove Proposition 8.5 for the special
case when P = I',Ty. This will allow us to apply the results obtained in
previous sections.

Let D be as defined in (4.10), and for any R > 0, Ar denote the R-
neighborhood of e in A. Fix closed cones D C inta® such that

L,—{0} CintD~, D~ — {0} CintD, and D — {0} C int D*.
Let D* = exp D* and Ry > 0 be such that
D™ — Ag, C () Da, J (D - Ag,)a c D.
acA; acAy
Recall the definitions of Di, » and EF from (4.4) and (4.11). Now defining
B)(E,R) :== H\HK D, p)N_E
By (E,R)” = H\HKD[;%R)N*E; and

BZ)(E,R)Jr = H\HKD[—;BO,R)N—EJ’ (8.6)
where D[jj%o R) = Di r — ARy, we have the following inclusions.

Lemma 8.7. [24, Lemma 6.3] For all ¢ > 0 small enough, there exists a
neighbourhood O; C G of the identity such that for all R > Ry,

Bj(E,R—¢)” C B}(E,R)O: C Bj(E,R+¢)".
We will now use the sets By (E,R =+ £)* to obtain the asymptotic of
#([e]T, N Bf})(E, R)). Define functions Fp, and F;’i on I')\G by

Fr(lg]) == Z g9 (i,r) (H79),
Ye(TpNH\Tp
and
Fello) = Y. lp:(prie:(H9). (88)
YETpNH)\T
Note that

and by Lemma 8.7, we have

F(l9)) < Fr(le]) < F" ([9))
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for all [g] € [e]O; and all € small enough and less than the injectivity radius
of [e] € I',)\G. Now fix any non-negative function ¢* € C.([e]O¢) such that
J ¢°(lg)) d[g] = 1 where d[g] is a Haar measure on I',)\G. Then

(FR~¢%) < Fr(le) < (Fg", ¢%). (8.10)
where (Y1,102) = fpﬁ\G ¥1([g])12([9])d[g] whenever the integral converges.
We will use Theorem 7.1 to estimate the integrals <F]€%’i, @) (cf. [24, (6.6),
p. 30] and [5, Proposition 9.10]).

Proposition 8.11. For any € > 0 small enough, we have
+ R+ BR
(Fp™,¢%) ~ cye 6/_Ei my(¢5)dz  as R — oo,

£

where the constant ¢y, = cr, y s giwen in Theorem 7.1.

Proof. Using unfolding, we have

(Fi, 67) = / > Ipymreer(H9) | 6°(l9) dg
PG\ ye(r,nENT,

— [ tnenes (He)o (o)) dg
T'p,NH\G

-/ [ ohg)an) i)
B (B,R+e)* \JT,NH\H

Since the set difference between By (E, R + e)* and Bp: 4 (EX,R +¢) is
bounded independent of R, Theorem 7.1 then gives the claimed identity. [

Proof of Proposition 8.5 when P =T ,Ty. Note that the set difference be-

tween BY(E,R) and Bp ,(FE, R) is bounded independent of R. Hence, by
) W

Proposition 4.8 and Corollary 4.21,

liminf e~ ##([e]T, N BS,(EQ, R)) < liminf e ENgR(P, 4, E)
R—o0 R—o0

< limsup e ENg(P, 1, B) < limsup e "4 ([e]T, N BS,(E&Z,H)E, R+ 0¢)).
R—oo R—o0
Let g = (£’ +2)e. The above computation, combined with (8.9), (8.10) and
Proposition 8.11 gives

cwe_so/ ) mg’R(d)iO) dz < hRHi}OI})f e BNg(P, v, E)
B,
<limsupe ENg(P, 4, E) < Cwego/ ’WER(@O) dz.
R—o0 - ;LO

Corollary 6.5 now gives

cpe (1 — Ceg) wy (E(_2+c)so) < HRHLio%f e_RNR(P’ V. E)

< limsup e_RNR(P, Y, E) < cype (14 Ceg) wy (E(;JFC)EO).

R—o0
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Since wy,(0F) = 0 by Lemma 8.4, the regularity of wy, gives
lim cye®® (14 Ce)wy (EE;JFC)E) = cywy(E),

e—0t

completing the proof. O

General case. Without loss of generality, we may assume that P consists
of a single I',-orbit; hence let P = I')T" be a I',-admissible torus packing.
We write

T= gOT07
where go = n,,a4,; here zg is the vector consisting of the centers of the circles
of T and ty = logrg where 19 = (r1,...,r4) are the corresponding radii. Set

Fgo = galfpgo.

Note that

Np(P,,E)=#{T" €T, T : T'NE # ( and ¢(v(T")) < R}

=#{T' €Tyg9oTp : T'NE # 0 and ¢(v(T")) < R}

=#{T' € T9T, : goT' N E # 0 and ¥ (v(goT")) < R} .

=#{ye P NHN\IY : g0y 'ToNE # 0 and 1(v(g0y ' T0)) < R} .
Similarly to Proposition 4.8, we can obtain the following estimate of Nr(P, ¢, F)
in terms of By(EE, R).

Proposition 8.12. For any ¢ > 0, there exists qo = qo(P,e) > 0 such that
for any R > 0 and any bounded measurable subset E C C%, we have

# ([T NBy(EZ, R)go) —qo0 < Nr(P, %, E) < #([e]lNBy(ET, R)go)+qo-

Note that I'Y is also a self-joing of convex cocompact representations. Let
AJ and £ denote its limit set and limit cone, respectively. It is immediate
from the definition that

AP = go'A, and LY = L,.
Now, writing go = (90,1, - , go,4), the homeomorphisms in (2.3) associated
to I'Y’ can be written as 9. 11 figoq (1 <i<d). A direct computation shows

that T is T',-admissible if and only if Ty is I'}’-admissible. Hence, we can
apply the results obtained in previous sections for a new subgroup I'J°.

Transition from T') to T'9’. Let ®3° = ®rgo denote the growth indicator

function associated to I'}”. The following lemma is standard and can be
proved using [1, Lem. 4.6], [30, Lem. 3.1.6] and the definition of ®,.

Lemma 8.13. We have
@go =®,.
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Since 1 is T'p-critical, it follows from Lemma 8.13 that 1 is I')’-critical.
The unique unit vectors, as provided by Lemma 2.10 remain the same,
regardless of whether we view ¢ as a I'j-critical linear form or I'9°-critical
linear form. Let Vio denote the (I'9’,)-PS probability measure supported

on AY’. Define a measure ﬁio on C% via the formula

AP (z) = e P0m ) d((go) 1) 2).
Lemma 8.14. We have:

’VVQO
P
A

1%

Proof. Since the support of szo is AY = gy 'A,, we have

(90)*”{7,0 (Ap) = Vio (go_lAp) =1
g

Therefore, v ¢° is also supported on A,. Furthermore, for any v € I',, we
have

d’}/*ﬁgjo (z) = e_w(ﬁw—l (.90 O))d’}/* (90)*7/5,0 (Z)
— e~ ¥(B:(v 0790 O))d(QO)*(go_l’YgO)*VfLO (2)
- ot 0,0

V(By-1 (90 790 ))d(go)*l/gjo(z)

— ¥(B2(790 0,7 0)) g¥(B=(90 0,790 0)) ¥ (8= (0,90 "))dﬁfj}(’ (2)

— ¢~ ¥(B=(v 0790 0)) ¢

— ¥(B2(0:90 9)) ¥ (B=(90 0,790 0)) ¥ (B=(790 0,7 0))d;5)0 (2)

)

= ew(ﬁz (0,y 0))d’yvf/7)0 (Z)

1.e.
=90
dyi;;ﬁ (2) = e~ ¥(B=(v 0:0)
dl/w
g0

This shows that IZ%OI is a (I'y,1)-PS probability measure. By [17, Thm.
Yy

1.3], vy is the unique (I'y, ¢)-PS probability measure, and hence the lemma
is proved. [l

Let wy, ,» denote the measure defined as in (6.1), associated to ')’ and 1.
Using Lemma 8.14, we can now show the following result.

Lemma 8.15. There exists cqy > 0 such that
waou (90 E) = gy wy(E)

for all Borel sets E C C®.

Proof. By Definition 6.1,

_ (B —1 _(o,n —1_0))
waowlgs L E) = /E d(g0) g (2) = /E e it 0D g0 90 (2).
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Now writing as seen above gy = n.,as,, we thus have by Lemma 8.14

o 71nza o -~
wo(9p ' E) = /E oot 290 12010 9)) (8. (0,90 0)) A (2)

= |Dio‘ / ¥ (B=(90 0omzazy 0)) g¥(B=(0,90 0)) dvy(2)
E

= |53;0| / ¥ (Bz(0:nza1g 0)) o =9 (B2 (0,12 0)) dwy (2)
E

1 [ et one )
E
_ e oo, D) (1)
e (),
as desired. i

Next, let mrq0 v = mg0 b denote the Burger-Roblin measure associated

to I')” and the hnear form . Denote the right G-action on functions on
I'9\G by (g- f)([h]) = f([hg]) and let G be the e-neighborhood of e in G.
For any ¢¢ € C.(I')°\G) whose support is contained in [e]G, we have the
following.

Lemma 8.16. For all small enough € > 0,

[ i)y az = e [ il (o)

Proof. Denote the I')° -invariant lift of mgo » 1o G by ﬁm};’ORw. We will use
the G = KAN decomposition to write

dmgO w(kau) = ¢~ V08a) gy, g cfgo(k:) (8.17)

by [5, Lem. 4.9], where the measure 7} on K is defined by

/ F(k) dv% (k /K . / F(km) dm dv (k")

for all f € C(K). For any f € C.(G), and measurable L C C¢, using the
fact that g9 = n,,a,, we have

/_ Mgy (90 - £)- dz—/ / /fgmnzgo dmgt,(g) dmdz
—/ZO //f(gmnzato)dmgol?w(g)dmdz

20(to) / / (gag,mn.) dm w(g)dmdz.
a—y, (z0—L)
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From (8.17), we obtain

/G F (gargmn.) dinPR (g) = /K

= eQU(tO)/ ) f(k:aatoumnz)efw(loga)dudadﬁff(k:)
KAN

_ f(kauag,mn.) e Y1089 gy, dg dﬁfpo (k)
AN

This gives
~BR ~ BR
[, o )z = [ () a

0

proving the claim. O

Proof of Proposition 8.5 for the general case. We define a counting function
that we again denote by Fg, on I'°\G by

Fr(lg]) = Z Lp9(£,R) (79);
YETZNH)\IE
We have:
# ([e]0 0 BY(E, R)go) = (g5 - Fr)([e]). (8.18)
Let By (E, R)* be as in (8.6) and O. be as in Lemma 8.7. Set now
Fir(lo) = Y Lpimre(09). (8.19)
YETRONH)\TZ
Then

(90" Fz )(9)) < (90" - Fr)((e) < (g5 - F")(lg)
for all g € O.. Thus, choosing a non-negative ¢° € C.(I'y"\G) with support
in [e]O. such that [¢°([g]) d[g] = 1 gives

<F}€277790 . ¢6> < FR([QO]) < <F}E€+ago : ¢6> (820)
Similarly as in Proposition 8.11, we have
Fifn- )~ e [ ml (o)) (521)

as R — oo, where ¢ = Cro0 -
Similarly to the proof for the special case, from Corollary 4.21, Proposition
8.12, (8.18), (8.20) and (8.21), we obtain for g9 = (¢' + 2)e,

et [ B (e 60)) ds < Hppinte NP 0.

< limsupe fNg(P,y,E) < ce /E+ mgg%((go - ¢%).) dz.

R—o0 AR
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Applying Lemma 8.16 and Corollary 6.5 gives

ew(tO)(l — Ceo) Wy (961 E(E—I—c)eo) = /Ei mg]lgol?w((go ) d)so)z) dz

—E¢,

< "1 4 Ceo) wgy (95" E(EJrC)EO)'

We now use Lemma 8.15 to change wy, 4 to wy and then taking e — 0 as in
the case T' =T} gives

lim e ®Ng(P,v, E) = co wy(E)
R—o0

for some positive constant ¢y > 0. Since the left-hand side of the above
equation does not depend on the choice of gy, we in fact have that ¢y cannot
depend on gg either, proving the theorem. O

On Remark 1.9(2). There exists a unique vector v = ur, € (Rzo)d such
that ®,(u) = max{®,(v) : [jv]| < 1}, called the direction of the maximal
growth of I',. Moreover, u € int £, ([33], [29]). Let 1) = 1), be as defined in
Lemma 2.10. Then for all w € ker ), the subset

Qr(w) = {s € Ry : |su+ Vsw| < R} (8.22)

is an interval of the form (0,%( — [lw||? + \/[|w[* + 4R?)). Then using [5,
Lem. 9.4] substituting Lemma 7.3, our proof yields the following:

Jim e UIT e P |w(T)|| < R, TNE #0} = ¢y’ wy(ENA,) (8.23)
—00

where ép, = ®,(u) and ¢y’ > 0.

We remark that whereas Lemma 7.3 relied on the uniformity in the mixing
Theorem 5.6, [5, Lem. 9.4] did not need such uniformity. The reason is that
for each w € ker 1), the amount of time the trajectory s — su++/sw spends
in the set {v € a* : ||v]] < R} is much less than the time it spends in
{v € a’ : ¥ (v) < R} to the extent that when viewed from a proper scale, it
gives rise to an L'-function on ker 1.

9. PS-MEASURES ARE NULL ON ALGEBRAIC VARIETIES

In this section, we prove that v,(S) = 0 for any proper real algebraic
subvariety S of C?. Since wy is absolutely continuous with respect to vy, it
follows that wy(0E) = 0 whenever E has boundary contained in a proper
real algebraic subvariety, and in particular, Lemma 8.4 follows.

We will in fact prove this in a more general setup, which we now explain.

Let G be any connected semisimple linear real algebraic group. Let
P = MAN < G be a minimal parabolic subgroup with a fixed Langlands
decomposition. Let a denote the Lie algebra of A. Let i denote the opposi-
tion involution on a. We remark that the opposition involution is non-trivial
if and only if G has a simple factor of type A,, (n > 2), Dayp41 (n > 2) and
Es [35, 1.5.1]. For instance, when G is a product of rank one groups, i is
trivial.
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A Borel probability measure v on F = G/P is called a (T, ¢)-conformal
measure for a linear form ¢ € a* if for all v € I" and £ € F,
drysv
dv
where 3 denotes the a-valued Busemann map [5, Def. 2.3]. When supported

on the limit set A, it is called a (I",¢)-PS-measure.
We recall the following result: consider the diagonal action of I" on F x F.

(&) = eﬂb(ﬁg(%@))’

Proposition 9.1. [18, Prop. 6.3] Let I' < G be a Zariski-dense Anosov
subgroup of G (with respect to P). Let ¢ € a* be a linear form. Let v and
v; be respectively (I',v) and (I',% o i)-PS measures. Then (F X F,v X vi,)
is '-ergodic.

Theorem 9.2. Let I' < G be a Zariski-dense Anosov subgroup of G. For
any (I',1)-PS measure v for some ¢ € a* with 1) oi =1, we have

v(S)=0
for any proper real algebraic subvariety S of F.
Theorem 9.2 follows from the following by Proposition 9.1.

Theorem 9.3. Let ' < G be a discrete subgroup and v be a (T',v)-PS
measure for some ¥ € a* such that the diagonal T'-action on (F X F,v X v)
s ergodic. Then

v(S)=0

for any proper real algebraic subvariety S of F.

Proof. Suppose the theorem is false. Let S be a proper subvariety of F
with v(S) > 0 and of minimal dimension. We may assume without loss of
generality that S is irreducible.

Since (v x v)(S x S) = v(S) x v(S) > 0 the I-ergodicity of v x v implies
that I'(S x S) must have full v x v-measure. Since for any vy € I, (v xv)(S x
70.5) > 0, there must exist v € I' such that (SNvS)N (7S xS) has positive
v x v-measure. This implies that v(SN~S) > 0 and v(y0SN~S) > 0. Since
S is an irreducible variety, for any v € I', either S = S or the dimension
of S N~S is strictly smaller than that of S, and hence v(S N ~S) = 0.
Therefore S = vS = ¢S. Since g was arbitrary, it follows that 'S = §; a
contradiction to the Zariski-density of I'. ([l

We deduce the following corollary when G is of rank one. In this case,
G = Isom™*(X) for a rank one symmetric space X and F is equal to the
geometric boundary of X. For a non-elementary discrete subgroup I' < G of
divergence type (e.g., geometrically finite), there exists a unique I'-conformal
measure, say vr, of dimension equal to the critical exponent ér and the
diagonal I-action on (F x F,vr X vr) is ergodic [32, Thm. 1.7]. Therefore
we obtain



TORUS COUNTING 35

Corollary 9.4. Let G be of rank one and I' < G be a Zariski-dense discrete
subgroup of divergence type. Then vp(S) = 0 for any proper real algebraic
subvariety S of F.

This corollary was obtained in [8] when G = SO(n,1) and I' < G is
geometrically finite.
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