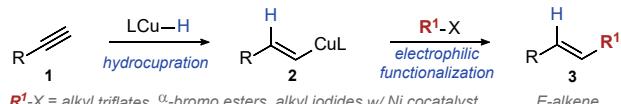


Stereospecific and Regioselective Synthesis of *E*-Allylic Alcohols Through Reductive Cross Coupling of Terminal Alkynes

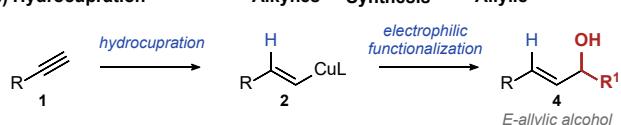
Austin B. Shaff, Langxuan Yang, Mitchell T. Lee, and Gojko Lalic*

Department of Chemistry, University of Washington, Seattle, Washington 98195, United States

ABSTRACT: We have developed a convergent method for the synthesis of allylic alcohols that involves a reductive coupling of terminal alkynes with α -chloro boronic esters. The new method affords allylic alcohols with excellent regioselectivity (anti-Markovnikov) and an *E/Z* ratio greater than 200:1. The reaction can be performed in the presence of a wide range of functional groups and has a substrate scope that complements the stoichiometric alkenylation of α -chloro boronic esters performed using alkenyl lithium and Grignard reagents. The transformation is stereospecific and allows the robust and highly selective synthesis of chiral allylic alcohols. Our studies support a mechanism that involves hydrocupration of the alkyne and cross-coupling of the alkenyl copper intermediate with α -chloro boronic esters. Experimental evidence excludes a radical mechanism of the cross-coupling step and is consistent with the formation of a boron-ate intermediate and 1,2-metallate shift.



INTRODUCTION

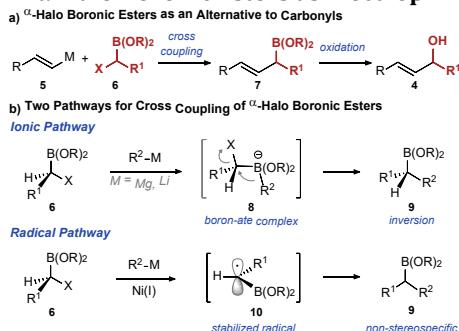

Hydroalkylation of terminal alkynes is a powerful method for making disubstituted alkenes with different substitution patterns and high selectivity.¹⁻⁹ Our group has developed several catalytic hydroalkylation reactions that produce *E*-alkenes using an approach with two key steps (Scheme 1a): first, hydrocupration of an alkyne^{10,11} (1) forms an alkenyl copper intermediate (2) with precise control over the regio- and diastereoselectivity;¹²⁻¹⁸ second, the alkenyl copper intermediate stereospecifically reacts with various alkyl electrophiles, such as alkyl triflates,⁶ α -halo carbonyls,⁸ or alkyl halides in the presence of a metal cocatalyst to yield *E*-alkene products (3).⁷ The successful implementation of this strategy requires identifying alkyl electrophiles that are sufficiently reactive to overcome the relatively low reactivity of alkenyl copper complexes, but do not react with copper hydride complexes.

Scheme 1. Hydrocupration in Transformations of Terminal Alkynes

a) Hydrocupration of Terminal Alkynes in Synthesis of *E*-Alkenes

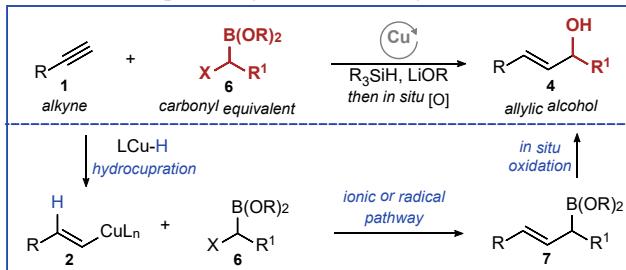
b) Hydrocupration of Terminal Alkynes in Synthesis of *E*-Allylic Alcohols

We have been interested in expanding the hydroalkylation approach to enable synthesis of *E*-alkenes with


simultaneous introduction of a functional group in the allylic position. Allylic alcohols are particularly attractive targets for such a transformation as they are often featured in bioactive molecules and synthetic intermediates.¹⁹ We reasoned that terminal alkynes can be transformed into allylic alcohols with anti-Markovnikov selectivity through hydrocupration and reaction of the alkenyl copper intermediate (2) with an appropriate electrophile (Scheme 1b).

The most intuitive way to access allylic alcohols from the alkenyl copper intermediate is reaction with aldehydes or ketones. Unfortunately, integrating carbonyls into the hydroalkylation approach outlined in Scheme 1a presents several challenges. NHC supported copper hydride complexes involved in formation of the alkenyl copper intermediate efficiently add to carbonyls and promote their reduction.²⁰⁻²³ Another challenge stems from relatively low reactivity of alkenyl copper intermediates. Despite numerous examples of reactions of allylic²⁴⁻³¹ and propargylic^{32,33} copper complexes with carbonyls, we found that under a variety of reaction conditions, stoichiometric reactions between NHC-supported alkenyl copper complexes and aldehydes do not occur (see SI).

α -Halo boronic esters (6) can act as a functional equivalent of carbonyl electrophiles. They can be made directly from aldehydes and ketones³⁴ and provide allylic alcohols (4) after cross-coupling with alkenyl organometallic reagents (5) and *in situ* oxidation (Scheme 2a).³⁵ Furthermore, the key cross-coupling with organometallic compounds can proceed via two distinct mechanisms (Scheme 2b). As Matteson's pioneering work has shown, with nucleophilic organolithium and Grignard reagents, the cross-coupling involves the formation of boron-ate complexes (8) and a subsequent 1,2-metallate shift.³⁶⁻³⁹ Alternatively, transition metal catalyzed cross-coupling reactions involve stabilized


α -boryl radical intermediates⁴⁰⁻⁴³ (**10**) formed through single electron transfer (SET) reduction of α -halo boronic esters.⁴⁴⁻⁴⁸ Even though the same cross coupling product (**9**) is formed in both pathways, mechanistic differences produce two different stereochemical outcomes: the ionic pathway is stereospecific (inversion at the α stereocenter), while the radical pathway leads to the loss of stereochemical information.

Scheme 2. α -Halo Boronic Esters as Electrophiles

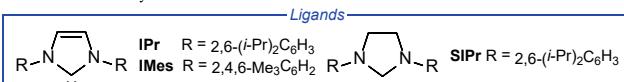
Alkenyl copper complexes are both nucleophilic and capable of SET reduction of activated organohalides.⁸ As a result, both ionic and radical mechanisms offer plausible pathways for coupling with α -halo boronic esters. This creates an opportunity to combine the unique reactivity of α -halo boronic esters with established hydrocupration of alkynes and develop a new method for the synthesis of allylic alcohols. As shown in Scheme 3, allylic alcohols (**4**) would be generated through a convergent reductive cross coupling of terminal alkynes (**1**) and α -halo boronic esters (**6**), followed by *in situ* oxidation.

Scheme 3. Proposed Synthesis of Allylic Alcohols

The importance of allylic alcohols in organic synthesis has prompted the development of numerous approaches for their synthesis.¹⁹ For example, asymmetric synthesis of allylic alcohols can be accomplished through kinetic resolution,⁴⁹ dynamic kinetic resolution,^{50,51} reduction of enones,^{52,53} allylic substitution,^{54,55} or through organocatalytic reactions.⁵⁶ Among methods that result in the formation of a new C-C bond, the most general is the addition of organozinc reagents derived from alkynes through hydrometallation and transmetalation. This approach was pioneered by Oppolzer⁵⁷ and further developed by Walsh,⁵⁸⁻⁶⁰ Seto,^{61,62} Wipf,⁶³ and others.⁶⁴⁻⁶⁶ Other organometallic reagents have also been used, but with less success.⁶⁷⁻⁷⁰

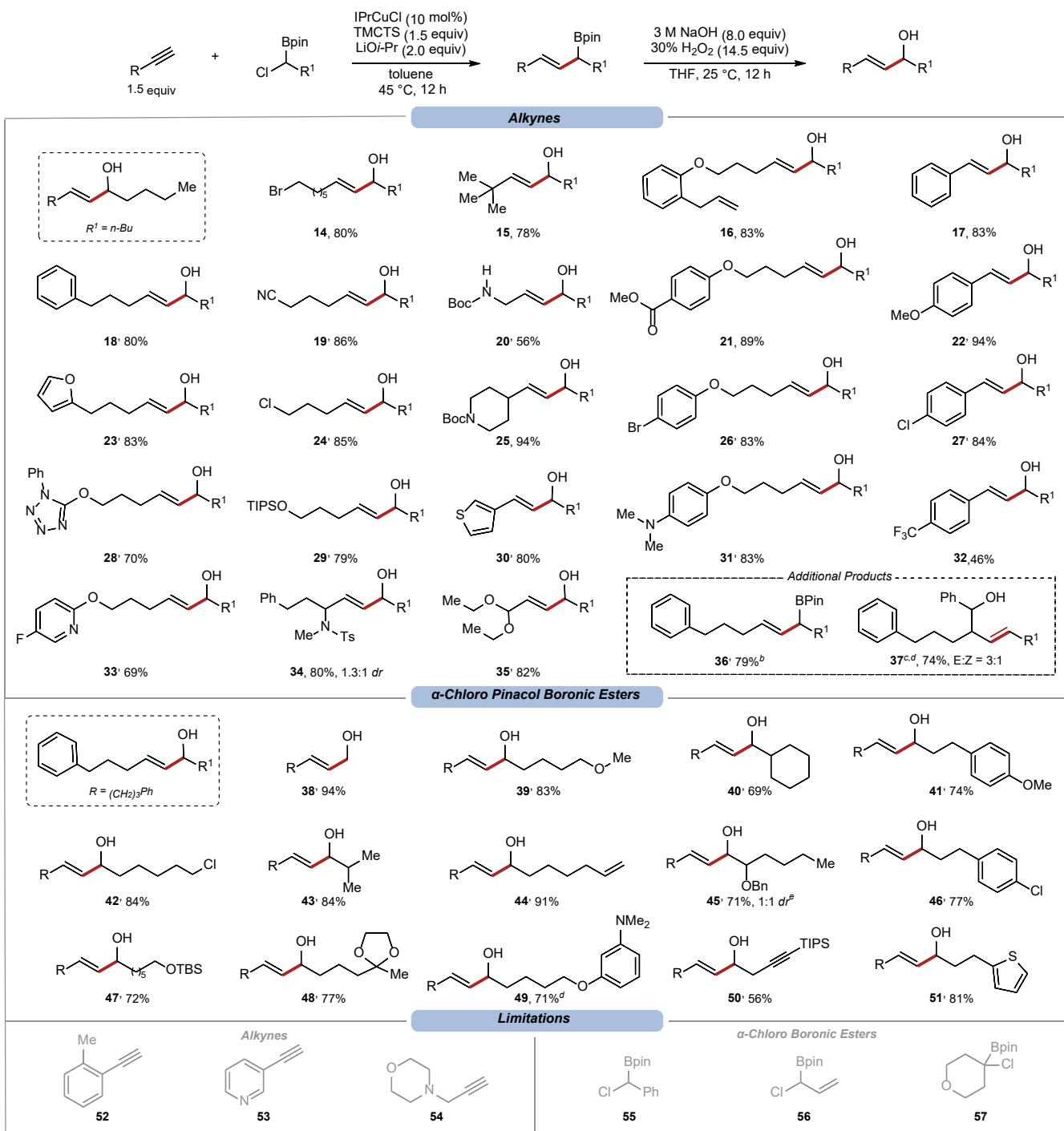
The key feature of the transformation shown in Scheme 3 is that it avoids stoichiometric formation of alkenyl metal reagents from alkynes. The benefits of using alkynes directly have been amply demonstrated^{71,72} through the

pioneering work of Jamison,^{73,74} Montgomery,⁷⁵⁻⁸¹ Krische,^{82,83} and others⁸⁴⁻⁸⁶ on reductive cross coupling of alkynes with carbonyls. Their approach has provided excellent results in asymmetric synthesis of allylic alcohols starting with internal alkynes.^{73,81,83,86} Although terminal alkynes have also been used in these reactions,⁷⁷⁻⁸⁰ unlike internal alkynes, they have not been amenable to applications in asymmetric synthesis of allylic alcohols.^{76,81} We set out to address this challenge by pursuing the development of the asymmetric anti-Markovnikov reductive cross coupling of terminal alkynes and α -halo boronic esters.⁸⁷ In the process, we aimed to resolve the underlying mechanistic ambiguity (ionic vs radical) of the reaction and exploit the stereochemical consequences of the actual mechanism.


RESULTS AND DISCUSSION

Reaction Development. Following the approach outlined in Scheme 3, we developed a copper-catalyzed reductive coupling of alkynes and α -halo boronic esters (Table 1). The best results were obtained using IPrCuCl as the precatalyst, tetramethylcyclotetrasiloxane (TMCTS) as the hydride source, and $\text{LiO}i\text{-Pr}$ as the turnover reagent (entry 1). A modest excess of alkyne (1.5 equiv) relative to the α -chloro Bpin (pin = pinacolato) was used in the reaction.

Table 1. Reaction Development


entry	change from standard conditions	yield
1	none	88%
2	SIPrCuCl instead of IPrCuCl	78%
3	IMesCuCl instead of IPrCuCl	19%
4	PMHS instead of TMCTS	79%
5	DMMS instead of TMCTS	24%
6	$\text{NaO}i\text{-Pr}$ instead of $\text{LiO}i\text{-Pr}$	43%
7	LiOt-Bu instead of $\text{LiO}i\text{-Pr}$	76%
8	LiOMe instead of $\text{LiO}i\text{-Pr}$	0%
9	THF instead of toluene	31%
10	benzene instead of toluene	87%
11	isooctane instead of toluene	77%
12	25 °C instead of 45 °C	47%
14 ^b	$\text{Cl}(\text{CH}_2)\text{Bpin}$ instead of 11	94%
15 ^b	$\text{Br}(\text{CH}_2)\text{Bpin}$ instead of 11	58%
16 ^b	$\text{I}(\text{CH}_2)\text{Bpin}$ instead of 11	0%

^aYield determined by GC using internal standard. R = n-Butyl. ^bProduct was **13-H** with R=H.

The results in Table 1 show how different reaction parameters affect the yield of the desired product. The highest yields were obtained with copper catalysts supported by IPr and SIPr ligands. IMes, which is closely related to IPr and SIPr, only afforded 19% of **13** (entries 2 and 3). The identity of the silane was critical to the success of the reaction.

Table 2. Substrate Scope

^aYields of isolated products are reported. Reactions performed on 0.5 mmol scale. ^bAllylic boronic ester isolated without oxidation (see SI). ^cReaction of **36** with benzaldehyde. ^dReactions performed on 0.25 mmol scale. ^eStarting α -chloro boronic ester was a 1:1 mixture of diastereoisomers.

While cyclic tetramer TMCTS and closely related PMHS (PMHS = polymethylhydrosiloxane) showed good reactivity, structurally similar monomeric silanes like DMMS (DMMS = dimethoxy(methyl)silane) gave diminished yields (entries 4 and 5). Other silanes gave little or no desired product (see SI, Table S3). Lithium isopropoxide and lithium *tert*-butoxide both worked well as turnover reagents (entries 1 and 7) but changing the counter ion to sodium produced inferior results (entry 6). Lithium methoxide also performed poorly, possibly due to low solubility (entry 8). At lower temperature (25 °C), only 47% yield of the product was formed after 12 h (entry 12), and the reaction required 3 days to complete (see SI). Less sterically demanding

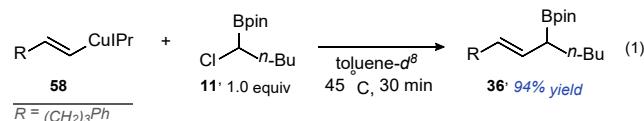
Cl(CH₂)Bpin performed better than **11** (entry 14). Interestingly, more reactive α -bromo and α -iodo boronic esters performed worse as substrates in the reaction (entries 15 and 16).

Substrate Scope. Using our optimized conditions, we explored the scope of the reaction. After *in situ* oxidation of the allylic boronic esters, various allylic alcohols were obtained in good yields (Table 2). In general, we observed only the *E* isomer of the allylic alcohols in ¹H NMR of the crude reaction mixtures. Careful GC analysis of the crude reaction mixture containing product **18** using authentic samples of *E* and *Z* isomers confirmed an *E/Z* ratio greater than 200:1

(see SI for details). Alkynes containing alkyl bromides (**14**), alkyl chlorides (**24**), nitriles (**19**), esters (**21**), protected amines (**25**), protected alcohols (**29**), aryl chlorides (**27**), aryl bromides (**26**), sulfonamides (**34**), and acetals (**35**) were well tolerated. The presence of mildly acidic Boc-protected primary amine (**20**) was not detrimental for the reaction, although the yield of the desired product was diminished. Aryl acetylenes with electron-donating (**22**) and mildly electron-withdrawing (**27**) functional groups performed well, while the presence of a strongly electron-withdrawing group (**32**) resulted in a diminished yield. The reaction also tolerated alkynes with sterically demanding alkyl substituents (**15**). Several heterocycles could successfully be incorporated into the alkyne substrates, including furans (**23**), tetrazoles (**28**), thiophenes (**30**), and fluoro pyridines (**33**).

Allylic boronic ester **36** can be isolated after careful column chromatography in 79% yield. This allows a range of other products to be accessed using established transformations of allylic boronic esters.⁸⁸⁻⁹⁰ In some instances, crude allylic boronic ester can be used directly in subsequent transformations. For example, when benzaldehyde is added to the crude reaction mixture containing **36**, transposed homoallylic alcohol **37** is obtained in 74% overall yield.

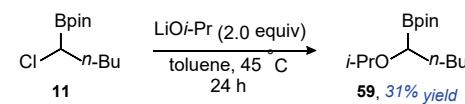
We also investigated the reactivity of various α -chloro Bpins and found that their functional group compatibility is similar to the selectivity observed in reactions of functionalized alkynes. The unsubstituted α -chloro boronic ester (**38**) gave an excellent yield, while additional substitution at the β position of boronic esters (**43** and **45**) resulted in lower yields.

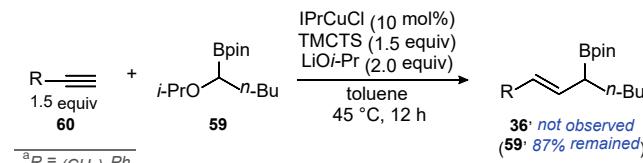

We noted several limitations of the new reaction. Ortho-substituted aryl alkynes (**52**) and alkynes containing strongly coordinating groups (**53**, **54**) gave low yields of allylic alcohol products. α -Chloro boronic esters containing aryl (**55**) or alkenyl (**56**) substituents at the α -carbon provided no allylic alcohol product. Similarly, α , α -dialkyl- α -halo boronic esters (**57**) did not afford the expected tertiary allylic alcohols, indicating the negative effect of steric hindrance on the reaction.

Comparison with stoichiometric alkenylation of α -chloro boronic esters. The catalytic alkenylation reaction of α -chloro boronic esters is a complement and not a replacement for the stoichiometric reactions performed using alkenyl lithium or Grignard reagents. An excellent recent study by Kazmaier et al.⁹¹ has shown that consistently high yields in stoichiometric alkenylation reactions are observed when at least one of the reactants is sterically hindered. Tri-substituted, *Z*-disubstituted, and 2-alkenyl organometallic reagents generally perform well. With less hindered organometallic reagents, only sterically hindered α -chloro boronic esters perform well. The trends we observed in the catalytic reaction are complementary: less hindered α -chloro boronic esters perform the best and *E*-alkenyl fragments are delivered.

Reaction Mechanism. We had two main goals in mind when exploring the reaction mechanism. First, we wanted to establish if the alkenyl copper complex is a catalytic intermediate in the reaction. Second, we wanted to determine if the cross coupling of the alkenyl copper and α -chloro

boronic esters proceeds through a radical or ionic mechanism. Establishing the exact mechanism was important because of the differences in the stereochemical outcomes of the two pathways and implications that would have on the synthesis of chiral allylic alcohols.

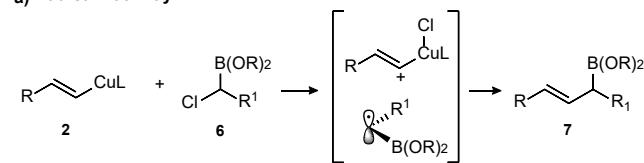

Initial mechanistic experiments focused on presumed intermediates in the catalytic reaction. In a stoichiometric experiment, we found that reacting alkenyl copper complex **58** with α -chloro boronic ester **11** quickly produces allylic boronic ester **36** (eq 1). This result supports the proposed involvement of an alkenyl copper intermediate and its reaction with α -chloro boronic esters.


We also examined α -alkoxy boronic esters as possible intermediates in the reaction. As expected, $\text{LiO}i\text{-Pr}$ reacts with α -chloro boronic ester **11** at 45 °C to produce α -alkoxy boronic ester **59** (Scheme 4a).⁹² However, the reaction is slower than the catalytic hydroalkylation reaction performed at the same temperature and affords only 17% of **59** after 12 h, and 31% after 24 h. Furthermore, when used as a substrate in a catalytic reaction, α -isopropoxy boronic ester **59** did not afford the desired product (Scheme 4b) with 87% of **59** remaining after 12 h. Together, these results make α -isopropoxy boronic esters unlikely intermediates in the reaction.

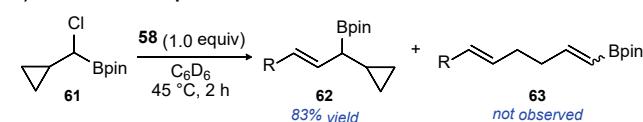
Scheme 4. α -Alkoxy Boronic Esters as Intermediates

a) α -Alkoxy Boronic Ester Formation

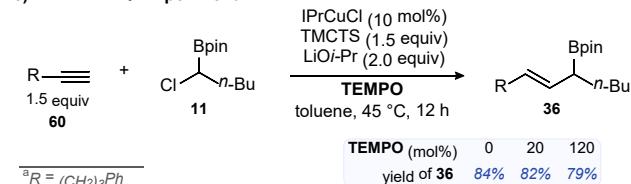
b) α -Alkoxy Boronic Esters in Hydroalkylation Reaction^a



Next, we focused on exploring the mechanism of the key reaction between the alkenyl copper intermediate and the electrophile. A plausible radical mechanism involving SET reduction of α -chloro boronic esters by the alkenyl copper intermediate is presented in Scheme 5a. α -Chloro boronic esters have been shown to undergo SET reduction⁴⁴⁻⁴⁸ to form the stabilized alkyl radical. At the same time, alkenyl copper complex (**2**) is known to reduce α -bromo carboxylic esters through SET.⁸


To evaluate the relevance of the proposed radical mechanism, we performed radical clock and radical trap experiments. Alkenyl copper **58** reacts with cyclopropyl α -chloro Bpin (**61**) to produce only the unarranged product **62** in 83% yield (Scheme 5b). We also found that up to 120 mol% of TEMPO can be added to the catalytic reaction without a significant decrease in the yield of the allylic boronic ester (Scheme 5c). The results of the two experiments are inconsistent with the SET mechanism and the formation of free radical intermediates.^{93,94}

Scheme 5. Radical Mechanism

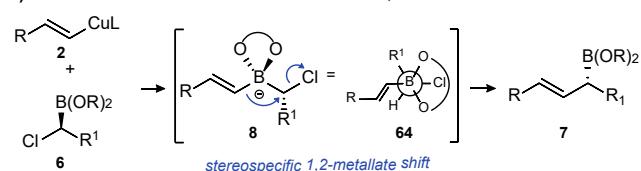

a) Radical Pathway

b) Radical Clock Experiment^a

c) Radical Trap Experiment^a

^aR = (CH₂)₃Ph

An alternative mechanistic hypothesis for the cross coupling is presented in Scheme 6a. The addition of alkenyl copper (2) to the α -chloro boronic ester (6) forms a boron-ate complex (8). This complex undergoes a 1,2-metallate shift exclusively through a conformation with antiperiplanar arrangement of the migrating alkenyl group and the leaving group at the α carbon (see 64).³⁸ As a result, the cross coupling is stereospecific and proceeds with the inversion of configuration at the α -carbon.


To probe this alternative mechanistic hypothesis, we investigated the reaction with a single enantiomer of α -chloro boronic ester 65 (>99% ee, >95:5 dr), prepared using α -pinane diol as a chiral auxiliary (Scheme 6). The R configuration of the obtained allylic alcohol (R)-18 indicates inversion of configuration at the α -carbon of the boronic ester (see SI). There is also strong support for the stereospecificity of the reaction. The enantiomeric ratio of the allylic alcohol (R)-18 (98:2) reflected the diastereomeric ratio of the starting α -chloro boronic ester (>95:5). Furthermore, the chiral auxiliary alone had no effect on reaction selectivity: a 1:1 mixture of diastereoisomeric α -chloro boronic esters produced racemic allylic alcohol 18 (Scheme 6b). Overall, the stereochemical outcomes of these experiments are fully consistent with an ionic mechanism involving boron-ate formation and stereospecific 1,2-metallate shift.⁹⁵

With evidence pointing to the ionic mechanism, we searched for evidence supporting the formation of the boron-ate complex in stoichiometric reactions of alkenyl copper intermediate with various boronic esters. Monitoring stoichiometric reactions of alkenyl copper intermediate (58) with α -isopropoxy boronic ester 59 or allylic boronic ester 36 by *in situ* ¹H and ¹¹B NMR showed no change of the starting materials even at 90 °C (Scheme 7a). Similarly, monitoring a stoichiometric reaction of 58 and α -chloro boronic ester 11 in toluene-*d*⁸ at temperatures between -50 °C and 25 °C (Scheme 7b) did not provide definitive evidence for the formation of the boron-ate intermediate (see SI).

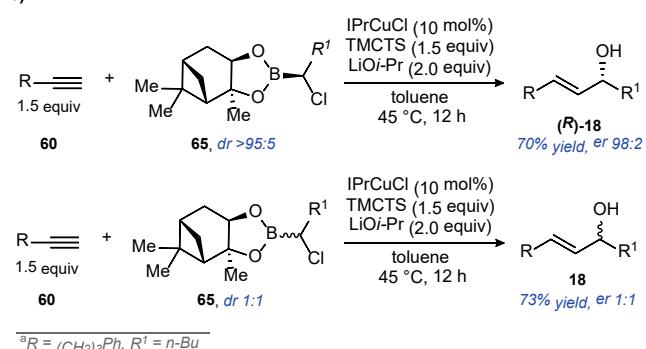
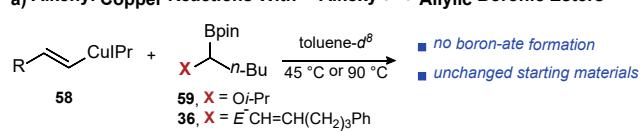

Scheme 6. Ionic Mechanism

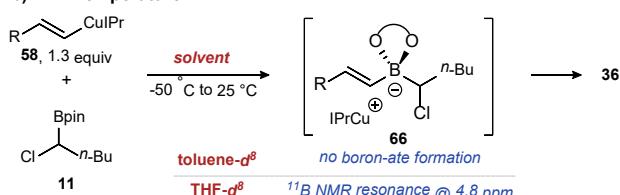
Table 3. Synthesis of Enantioenriched Allylic Alcohols

a) Ionic Pathway - Boron-ate Formation and 1,2-Metallate Shift

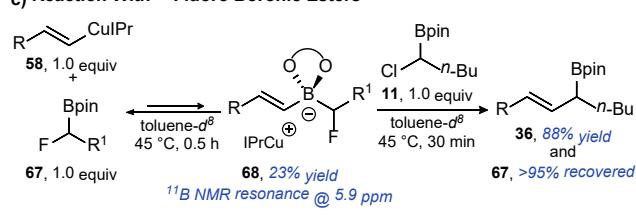
b) Reactions of Chiral α -Chloro Boronic Esters^a

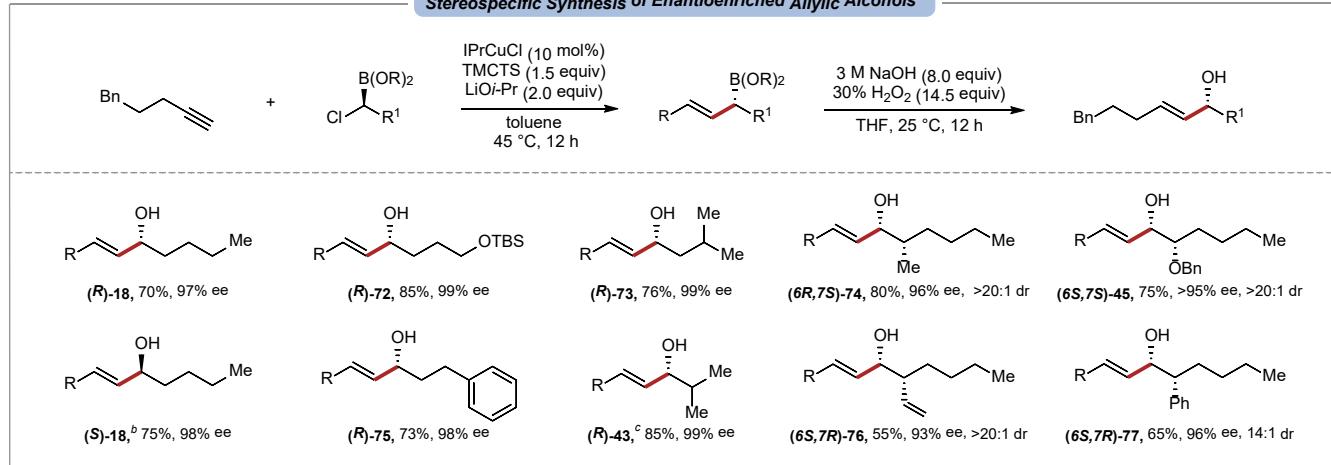


^aR = (CH₂)₃Ph, R¹ = n-Bu

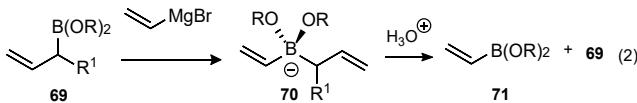

However, the same experiment performed in THF-*d*⁸ provided evidence consistent with the presence of a low concentration of boron-ate intermediate 66 within the temperature range (broad resonance in ¹¹B NMR at 4.8 ppm). These results support reversible, though unfavorable, boron-ate formation in a reaction of α -chloro boronic esters. Presumably, the higher dielectric constant of THF (ϵ =7.6 for THF vs ϵ =2.4 for toluene) increases the concentration of 66. Furthermore, in a reaction with α -fluoro boronic ester 67, we saw evidence of the boron-ate formation in 23% yield within 30 min (Scheme 7c). The balance of the starting materials remained unchanged after an additional 2 h.

Scheme 7. Boron-ate Complex Formation


a) Alkenyl Copper Reactions With α -Alkoxy and Allylic Boronic Esters^a

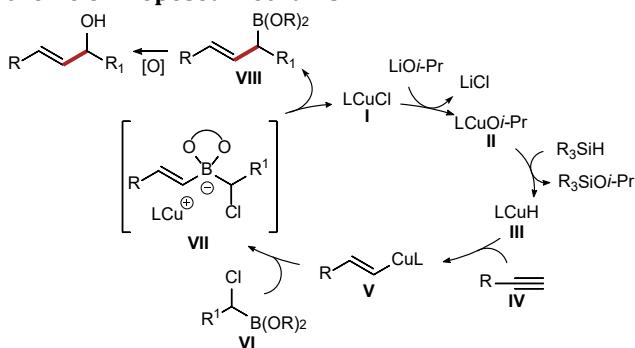

b) Low Temperature Reactions With α -Chloro Boronic Esters^a

c) Reaction With α -Fluoro Boronic Esters^a



^aR = (CH₂)₃Ph, R¹ = (CH₂)₂C₆H₄(4-OMe)

Upon addition of α -chloro boronic ester **11** to the reaction mixture containing boron-ate complex **68**, we observed full recovery of the α -fluoro boronic ester **67** and the formation of cross-coupling product **36**. These results argue for a reversible and thermodynamically unfavorable formation of the boron-ate complex **68**.


The reactions of the alkenyl copper intermediate with various boronic esters provide a mechanistic basis for understanding the differences in the scopes of this catalytic reaction and the stoichiometric alkenylation with organolithium and Grignard reagents (see above). Kazmaier has recently shown that the main side reaction in stoichiometric alkenylation is the addition of the organometallic reagent to the allylic boronic ester product (eq 2).⁹¹ Protonolysis of the resulting boron-ate complex (**70**) at the end of the reaction provides a mixture of the desired allylic boronic ester (**69**) and the undesired vinyl boronic ester (**71**). As a result, good yields in stoichiometric reactions are realized only with substrates that can sterically impede the formation of boron-ate complex **70**.

We found that the alkenyl copper intermediate does not react with allylic boronic esters, or if it does, the reaction is reversible and thermodynamically unfavorable (see Scheme 7a). As a result, the main side reaction described by Kazmaier does not occur in the copper-catalyzed transformation,⁹⁶ extending the scope to less sterically demanding substrates.

Based on our mechanistic investigation and the established chemistry of copper hydride complexes, we suggest the formation of allylic alcohols proceeds through the mechanism shown in Scheme 8. The process starts with the formation of copper hydride (**III**) through transmetalation of copper alkoxide with a silane,¹⁰ followed by the formation of alkenyl copper complex (**V**) through hydrocupration of the terminal alkyne.¹⁰ Addition to α -chloro boronic ester forms boron-ate complex (**VII**). Finally, 1,2-metallate shift, and subsequent oxidation, produce the desired allylic alcohol.

Scheme 8. Proposed Mechanism

Application to Stereospecific Synthesis of Allylic Alcohols. Our mechanistic studies suggest that the new reaction can be applied in the robust and highly selective synthesis of chiral allylic alcohols from terminal alkynes. We demonstrated that the stereochemistry of the starting materials fully controls the absolute configuration and enantiomeric excess of the allylic alcohols. The required enantioenriched α -chloro boronic ester can be accessed in several ways using different starting materials.⁹⁷ A highly selective asymmetric synthesis from alkyl boronic esters was originally discovered by Matteson⁹⁸ and developed by others⁹⁹ and relies on chiral auxiliaries. Jacobsen¹⁰⁰ recently reported an approach based on enantioselective catalytic 1,2-metallate shift, while the method reported by XU³⁴ uses carbonyls as starting materials. Finally, enantioselective hydrogenation also provides access to highly enantioenriched α -chloro boronic esters.¹⁰¹

In practice, we found Matteson's synthesis of chiral α -chloro boronic esters using readily available and affordable α -pinanediol to be highly selective and easy to execute. A range of chiral α -chloro Bpinane esters (pinane = pinane diol) were prepared by this method and used in the hydroalkylation reaction to provide chiral allylic alcohols (Table 3). Boronic esters with branching in the β and γ positions gave excellent selectivity (**43** and **73**). Even boronic esters with linear alkyl substituents reacted with excellent selectivity. This is particularly attractive given that enantioenriched dialkyl allylic alcohols are difficult to access by direct alkenylation of linear unbranched aldehydes.¹⁰² Products **18**, **72**, and **75** were all obtained in high stereoselectivity and yield,

showcasing the utility of our method. Furthermore, access to both (+)-and (-) isomers of pinane diol auxiliary allowed us to prepare *R* and *S* enantiomers of alcohol **18**. Enantioenriched α -chloro Bpin esters performed as well as Bpinane esters, providing **43** in excellent enantioselectivity. Finally, Matteson's homologation method allowed the synthesis of highly enantioenriched allylic alcohols containing two stereocenters with high diastereoselectivity (**45**, **74**, **76**, and **77**).

CONCLUSIONS

In conclusion, we have developed a method for the convergent synthesis of allylic alcohols directly from terminal alkynes. This transformation involves reductive cross coupling of an alkyne with an α -chloro boronic ester followed by *in situ* oxidation of the boronic ester to an alcohol. The process is highly selective for the *E*-alkene and tolerates a broad range of functional groups. Experimental studies support a mechanism that involves hydrocupration of the alkyne and formation of the alkenyl copper intermediate. Cross coupling of the intermediate with an α -chloro boronic ester involves boronic formation and 1,2-metallate shift. The overall process is stereospecific and proceeds with inversion at the stereocenter of the α -chloro boronic ester, allowing for the convenient synthesis of enantioenriched allylic boronic ester products. This reaction integrates hydro-metallation and boron-ate chemistry eschewing the need for stoichiometric organometallic reagents to form the boron-ate complex.

ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge on the ACS Publications website. Experimental procedures, results of mechanistic experiments, and product characterization (pdf).

AUTHOR INFORMATION

Corresponding Author

* lalic@chem.washington.edu

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding Sources

NSF award number 2102231
NIH S10 OD030224-01A1

ACKNOWLEDGMENT

We acknowledge an NIH grant (#NIH S10 OD030224-01A1) for providing instrument support for this work.

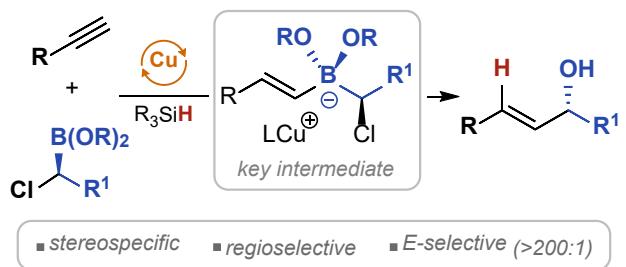
REFERENCES

- (1) Lu, X.-Y.; Liu, J.-H.; Lu, X.; Zhang, Z.-Q.; Gong, T.-J.; Xiao, B.; Fu, Y. 1,1-Disubstituted Olefin Synthesis via Ni-Catalyzed Markovnikov Hydroalkylation of Alkynes with Alkyl Halides. *Chem. Commun.* **2016**, *52*, 5324.
- (2) Till, N. A.; Smith, R. T.; MacMillan, D. W. C. Decarboxylative Hydroalkylation of Alkynes. *J. Am. Chem. Soc.* **2018**, *140*, 5701.
- (3) Yu, L.; Lv, L.; Qiu, Z.; Chen, Z.; Tan, Z.; Liang, Y.-F.; Li, C.-J. Palladium-Catalyzed Formal Hydroalkylation of Aryl-Substituted Alkynes with Hydrazones. *Angew. Chem. Int. Ed.* **2020**, *59*, 14009.
- (4) Cheung, C. W.; Zhurkin, F. E.; Hu, X. Z-Selective Olefin Synthesis via Iron-Catalyzed Reductive Coupling of Alkyl Halides with Terminal Arylalkynes. *J. Am. Chem. Soc.* **2015**, *137*, 4932.
- (5) Wang, Z.; Yin, H.; Fu, G. C. Catalytic Enantioconvergent Coupling of Secondary and Tertiary Electrophiles with Olefins. *Nature* **2018**, *563*, 379.
- (6) Uehling, M. R.; Suess, A. M.; Lalic, G. Copper-Catalyzed Hydroalkylation of Terminal Alkynes. *J. Am. Chem. Soc.* **2015**, *137*, 1424.
- (7) Hazra, A.; Chen, J.; Lalic, G. Stereospecific Synthesis of *E*-Alkenes through Anti-Markovnikov Hydroalkylation of Terminal Alkynes. *J. Am. Chem. Soc.* **2019**, *141*, 12464.
- (8) Hazra, A.; Kephart, J. A.; Velian, A.; Lalic, G. Hydroalkylation of Alkynes: Functionalization of the Alkenyl Copper Intermediate through Single Electron Transfer Chemistry. *J. Am. Chem. Soc.* **2021**, *143*, 7903.
- (9) Lee, M. T.; Goodstein, M. B.; Lalic, G. Synthesis of Isomerically Pure (*Z*)-Alkenes from Terminal Alkynes and Terminal Alkenes: Silver-Catalyzed Hydroalkylation of Alkynes. *J. Am. Chem. Soc.* **2019**, *141*, 17086.
- (10) Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Synthesis, Structure, and Alkyne Reactivity of a Dimeric (Carbene)copper(I) Hydride. *Organometallics* **2004**, *23*, 3369.
- (11) Fujihara, T.; Semba, K.; Terao, J.; Tsuji, Y. Regioselective Transformation of Alkynes Catalyzed by a Copper Hydride or Boryl Copper Species. *Catal. Sci. Technol.* **2014**, *4*, 1699.
- (12) Semba, K.; Fujihara, T.; Xu, T.; Terao, J.; Tsuji, Y. Copper-Catalyzed Highly Selective Semihydrogenation of Non-Polar Carbon-Carbon Multiple Bonds using a Silane and an Alcohol. *Adv. Synth. Catal.* **2012**, *354*, 1542.
- (13) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Copper-Catalyzed Highly Regio- and Stereoselective Directed Hydroboration of Unsymmetrical Internal Alkynes: Controlling Regioselectivity by Choice of Catalytic Species. *Chem. Eur. J.* **2012**, *18*, 4179.
- (14) Bidal, Y. D.; Lazreg, F.; Cazin, C. S. J. Copper-Catalyzed Regioselective Formation of Tri- and Tetrasubstituted Vinylboronates in Air. *ACS Catal.* **2014**, *4*, 1564.
- (15) Shi, S.-L.; Buchwald, S. L. Copper-Catalysed Selective Hydroamination Reactions of Alkynes. *Nat. Chem.* **2015**, *7*, 38.
- (16) For related borocupration of alkynes see references 16, 17, and 18. Takahashi, K.; Ishiyama, T.; Miyaura, N. A Borylcopper Species Generated from Bis(Pinacolato)Diboron and Its Additions to α,β -

- Unsaturated Carbonyl Compounds and Terminal Alkynes. *J. Organomet. Chem.* **2001**, *625*, 47.
- (17) Lee, Y.; Jang, H.; Hoveyda, A. H. Vicinal Diboronates in High Enantiomeric Purity through Tandem Site-Selective NHC–Cu-Catalyzed Boron–Copper Additions to Terminal Alkynes. *J. Am. Chem. Soc.* **2009**, *131*, 18234.
- (18) Jang, H.; Zhugralin, A. R.; Lee, Y.; Hoveyda, A. H. Highly Selective Methods for Synthesis of Internal (α -) Vinylboronates through Efficient NHC–Cu-Catalyzed Hydroboration of Terminal Alkynes. Utility in Chemical Synthesis and Mechanistic Basis for Selectivity. *J. Am. Chem. Soc.* **2011**, *133*, 7859.
- (19) Lumbroso, A.; Cooke, M. L.; Breit, B. Catalytic Asymmetric Synthesis of Allylic Alcohols and Derivatives and their Applications in Organic Synthesis. *Angew. Chem. Int. Ed.* **2013**, *52*, 1890.
- (20) Albright, A.; Gawley, R. E. Application of a C_2 -Symmetric Copper Carbenoid in the Enantioselective Hydrosilylation of Dialkyl and Aryl-Alkyl Ketones. *J. Am. Chem. Soc.* **2011**, *133*, 19680.
- (21) Teci, M.; Lentz, N.; Brenner, E.; Matt, D.; Toupet, L. Alkylfluorenyl Substituted N-Heterocyclic Carbenes in Copper(I) Catalysed Hydrosilylation of Aldehydes and Ketones. *Dalton Trans.* **2015**, *44*, 13991.
- (22) Díez-González, S.; Nolan, S. P. Copper, Silver, and Gold Complexes in Hydrosilylation Reactions. *Acc. Chem. Res.* **2008**, *41*, 349.
- (23) Bagherzadeh, S.; Mankad, N. P. Extremely Efficient Hydroboration of Ketones and Aldehydes by Copper Carbene Catalysis. *Chem. Commun.* **2016**, *52*, 3844.
- (24) Li, C.; Liu, R. Y.; Jesikiewicz, L. T.; Yang, Y.; Liu, P.; Buchwald, S. L. CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and Applications. *J. Am. Chem. Soc.* **2019**, *141*, 5062.
- (25) Zhong, F.; Pan, Z.-Z.; Zhou, S.-W.; Zhang, H.-J.; Yin, L. Copper(I)-Catalyzed Regioselective Asymmetric Addition of 1,4-Pentadiene to Ketones. *J. Am. Chem. Soc.* **2021**, *143*, 4556.
- (26) Li, C.; Shin, K.; Liu, R. Y.; Buchwald, S. L. Engaging Aldehydes in CuH-Catalyzed Reductive Coupling Reactions: Stereoselective Allylation with Unactivated 1,3-Diene Pronucleophiles. *Angew. Chem. Int. Ed.* **2019**, *58*, 17074.
- (27) Russo, V.; Herron, J. R.; Ball, Z. T. Allylcopper Intermediates with N-Heterocyclic Carbene Ligands: Synthesis, Structure, and Catalysis. *Org. Lett.* **2010**, *12*, 220.
- (28) Tsai, E. Y.; Liu, R. Y.; Yang, Y.; Buchwald, S. L. A Regio- and Enantioselective CuH-Catalyzed Ketone Allylation with Terminal Allenes. *J. Am. Chem. Soc.* **2018**, *140*, 2007.
- (29) Meng, F.; Jang, H.; Jung, B.; Hoveyda, A. H. Cu-Catalyzed Chemoselective Preparation of 2-(Pinacolato)boron-Substituted Allylcopper Complexes and their In Situ Site-, Diastereo-, and Enantioselective Additions to Aldehydes and Ketones. *Angew. Chem. Int. Ed.* **2013**, *52*, 5046.
- (30) Kawai, J.; Chikkade, P. K.; Shimizu, Y.; Kanai, M. In situ Catalytic Generation of Allylcopper Species for Asymmetric Allylation: Toward 1H-Isochromene Skeletons. *Angew. Chem. Int. Ed.* **2013**, *52*, 7177.
- (31) Chikkade, P. K.; Shimizu, Y.; Kanai, M. Catalytic Enantioselective Synthesis of 2-(2-Hydroxyethyl)indole Scaffolds via Consecutive Intramolecular Amido-Cupration of Allenes and Asymmetric Addition of Carbonyl Compounds. *Chem. Sci.* **2014**, *5*, 1585.
- (32) Yang, Y.; Perry, I. B.; Lu, G.; Liu, P.; Buchwald, S. L. Copper-Catalyzed Asymmetric Addition of Olefin-Derived Nucleophiles to Ketones. *Science* **2016**, *353*, 144.
- (33) Meng, F.; Haeffner, F.; Hoveyda, A. H. Diastereo- and Enantioselective Reactions of Bis(pinacolato)diboron, 1,3-Enynes, and Aldehydes Catalyzed by an Easily Accessible Bisphosphine–Cu Complex. *J. Am. Chem. Soc.* **2014**, *136*, 11304.
- (34) Wang, D.; Zhou, J.; Hu, Z.; Xu, T. Deoxygenative Haloboration and Enantioselective Chloroboration of Carbonyls. *J. Am. Chem. Soc.* **2022**, *144*, 22870.
- (35) Kabalka, G. W.; Shoup, T. M.; Goudgaon, N. M. Sodium Perborate: a Mild and Convenient Reagent for Efficiently Oxidizing Organoboranes. *J. Org. Chem.* **1989**, *54*, 5930.
- (36) Thomas, S. P.; French, R. M.; Jheengut, V.; Aggarwal, V. K. Homologation and Alkylation of Boronic Esters and Boranes by 1,2-Metallate Rearrangement of Boron Ate Complexes. *Chem. Rec.* **2009**, *9*, 24.
- (37) Matteson, D. S.; Mah, R. W. H. Neighboring Boron in Nucleophilic Displacement. *J. Am. Chem. Soc.* **1963**, *85*, 2599.
- (38) Aggarwal, V. K.; Fang, G. Y.; Ginesta, X.; Howells, D. M.; Zaja, M. Toward an Understanding of the Factors Responsible for the 1,2-Migration of Alkyl Groups in Borate Complexes. *Pure Appl. Chem.* **2006**, *78*, 215.
- (39) Matteson, D. S. α -Halo Horonic Esters: Intermediates for Stereodirected Synthesis. *Chem. Rev.* **1989**, *89*, 1535.
- (40) Walton, J. C.; McCarroll, A. J.; Chen, Q.; Carboni, B.; Nziengui, R. The Influence of Boryl Substituents on the Formation and Reactivity of Adjacent and Vicinal Free Radical Centers. *J. Am. Chem. Soc.* **2000**, *122*, 5455.
- (41) Pasto, D. J. Radical Stabilization Energies of Disubstituted Methyl Radicals. A Detailed Theoretical Analysis of the Captodative Effect. *J. Am. Chem. Soc.* **1988**, *110*, 8164.
- (42) Quiclet-Sire, B.; Zard, S. Z. Radical Instability in Aid of Efficiency: A Powerful Route to Highly Functional MIDA Boronates. *J. Am. Chem. Soc.* **2015**, *137*, 6762.
- (43) Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L. Bond Dissociation Energies and Radical Stabilization Energies Associated with Substituted Methyl Radicals. *J. Phys. Chem. A* **2001**, *105*, 6750.
- (44) Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G. C. A General, Modular Method for the Catalytic

- Asymmetric Synthesis of Alkylboronate Esters. *Science* **2016**, *354*, 1265.
- (45) Sun, S.-Z.; Martin, R. Nickel-Catalyzed Umpolung Arylation of Ambiphilic α -Bromoalkyl Boronic Esters. *Angew. Chem. Int. Ed.* **2018**, *57*, 3622.
- (46) Sun, S.-Z.; Börjesson, M.; Martin-Montero, R.; Martin, R. Site-Selective Ni-Catalyzed Reductive Coupling of α -Haloboranes with Unactivated Olefins. *J. Am. Chem. Soc.* **2018**, *140*, 12765.
- (47) Zheng, P.; Zhou, P.; Wang, D.; Xu, W.; Wang, H.; Xu, T. Dual Ni/Photoredox-Catalyzed Asymmetric Cross-Coupling to Access Chiral Benzylidene Boronic Esters. *Nature Communications* **2021**, *12*, 1646.
- (48) Lou, Y.; Qiu, J.; Yang, K.; Zhang, F.; Wang, C.; Song, Q. Ni-Catalyzed Reductive Allylation of α -Chloroboronic Esters to Access Homoallylic Boronates. *Org. Lett.* **2021**, *23*, 4564.
- (49) Johnson, R. A. S., K. B. In *Catalytic Asymmetric Synthesis*; Ojima, I., Ed.; Wiley-VCH: New York, 1993, p 103.
- (50) Huerta, F. F.; Minidis, A. B. E.; Bäckvall, J.-E. Racemisation in Asymmetric Synthesis. Dynamic Kinetic Resolution and Related Processes in Enzyme and Metal Catalysis. *Chem. Soc. Rev.* **2001**, *30*, 321.
- (51) Pàmies, O.; Bäckvall, J.-E. Combination of Enzymes and Metal Catalysts. A Powerful Approach in Asymmetric Catalysis. *Chem. Rev.* **2003**, *103*, 3247.
- (52) Noyori, R.; Ohkuma, T. Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. *Angew. Chem. Int. Ed.* **2001**, *40*, 40.
- (53) Corey, E. J.; Helal, C. J. Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts: A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method. *Angew. Chem. Int. Ed.* **1998**, *37*, 1986.
- (54) Lu, Z.; Ma, S. Metal-Catalyzed Enantioselective Allylation in Asymmetric Synthesis. *Angew. Chem. Int. Ed.* **2008**, *47*, 258.
- (55) Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylation: Applications in Total Synthesis. *Chem. Rev.* **2003**, *103*, 2921.
- (56) Jiang, H.; Holub, N.; Anker Jørgensen, K. Simple Strategy for Synthesis of Optically Active Allylic Alcohols and Amines by Using Enantioselective Organocatalysis. *Proc. Natl. Acad. Sci. U.S.A.* **2010**, *107*, 20630.
- (57) Oppolzer, W.; Radinov, R. N. Catalytic Asymmetric Synthesis of Secondary (E)-Allyl Alcohols from Acetylenes and Aldehydes via (1-Alkenyl)Zinc Intermediates. Preliminary Communication. *Helv. Chim. Acta* **1992**, *75*, 170.
- (58) Chen, Y. K.; Lurain, A. E.; Walsh, P. J. A General, Highly Enantioselective Method for the Synthesis of d and L α -Amino Acids and Allylic Amines. *J. Am. Chem. Soc.* **2002**, *124*, 12225.
- (59) Lurain, A. E.; Walsh, P. J. A Catalytic Asymmetric Method for the Synthesis of γ -Unsaturated β -Amino Acid Derivatives. *J. Am. Chem. Soc.* **2003**, *125*, 10677.
- (60) Kerrigan, M. H.; Jeon, S.-J.; Chen, Y. K.; Salvi, L.; Carroll, P. J.; Walsh, P. J. One-Pot Multicomponent Coupling Methods for the Synthesis of Diastereo- and Enantioenriched (Z)-Trisubstituted Allylic Alcohols. *J. Am. Chem. Soc.* **2009**, *131*, 8434.
- (61) Sprout, C. M.; Richmond, M. L.; Seto, C. T. A Positional Scanning Approach to the Discovery of Dipeptide-Based Catalysts for the Enantioselective Addition of Vinylzinc Reagents to Aldehydes. *J. Org. Chem.* **2005**, *70*, 7408.
- (62) Richmond, M. L.; Sprout, C. M.; Seto, C. T. Enantioselective Addition of Vinylzinc Reagents to Aldehydes Catalyzed by Modular Ligands Derived from Amino Acids. *J. Org. Chem.* **2005**, *70*, 8835.
- (63) Wipf, P.; Ribe, S. Zirconocene-Zinc Transmetalation and in Situ Catalytic Asymmetric Addition to Aldehydes. *J. Org. Chem.* **1998**, *63*, 6454.
- (64) Wu, H.-L.; Wu, P.-Y.; Uang, B.-J. Highly Enantioselective Synthesis of (E)-Allylic Alcohols. *J. Org. Chem.* **2007**, *72*, 5935.
- (65) Soai, K.; Takahashi, K. Asymmetric Alkenylation of Chiral and Prochiral Aldehydes Catalysed by Chiral or Achiral Amino Alcohols: Catalytic Diastereoselective Synthesis of Protected Erythro-Sphingosine and Enantioselective Synthesis of Chiral Diallyl Alcohols. *J. Chem. Soc., Perkin Trans. 1* **1994**, 1257.
- (66) Ji, J.-X.; Qiu, L.-Q.; Yip, C. W.; Chan, A. S. C. A Convenient, One-Step Synthesis of Optically Active Tertiary Aminonaphthol and Its Applications in the Highly Enantioselective Alkenylations of Aldehydes. *J. Org. Chem.* **2003**, *68*, 1589.
- (67) Ruan, L.-X.; Sun, B.; Liu, J.-M.; Shi, S.-L. Dynamic Kinetic Asymmetric Arylation and Alkenylation of Ketones. *Science* **2023**, *379*, 662.
- (68) Huang, Y.; Huang, R.-Z.; Zhao, Y. Cobalt-Catalyzed Enantioselective Vinylation of Activated Ketones and Imines. *J. Am. Chem. Soc.* **2016**, *138*, 6571.
- (69) Tomita, D.; Wada, R.; Kanai, M.; Shibasaki, M. Enantioselective Alkenylation and Phenylation Catalyzed by a Chiral CuF Complex. *J. Am. Chem. Soc.* **2005**, *127*, 4138.
- (70) Shono, T.; Harada, T. Catalytic Enantioselective Synthesis of Secondary Allylic Alcohols from Terminal Alkynes and Aldehydes via 1-Alkenylboron Reagents. *Org. Lett.* **2010**, *12*, 5270.
- (71) Holmes, M.; Schwartz, L. A.; Krische, M. J. Intermolecular Metal-Catalyzed Reductive Coupling of Dienes, Allenes, and Enynes with Carbonyl Compounds and Imines. *Chem. Rev.* **2018**, *118*, 6026.
- (72) Ortiz, E.; Shezaf, J.; Chang, Y.-H.; Krische, M. J. Enantioselective Metal-Catalyzed Reductive Coupling of Allenes with Carbonyl Compounds and Imines:

- Convergent Construction of Allylic Alcohols and Amines. *ACS Catal.* **2022**, *12*, 8164.
- (73) Miller, K. M.; Huang, W.-S.; Jamison, T. F. Catalytic Asymmetric Reductive Coupling of Alkynes and Aldehydes: Enantioselective Synthesis of Allylic Alcohols and α -Hydroxy Ketones. *J. Am. Chem. Soc.* **2003**, *125*, 3442.
- (74) Standley, E. A.; Tasker, S. Z.; Jensen, K. L.; Jamison, T. F. Nickel Catalysis: Synergy between Method Development and Total Synthesis. *Acc. Chem. Res.* **2015**, *48*, 1503.
- (75) Oblinger, E.; Montgomery, J. A New Stereoselective Method for the Preparation of Allylic Alcohols. *J. Am. Chem. Soc.* **1997**, *119*, 9065.
- (76) Chaulagain, M. R.; Sormunen, G. J.; Montgomery, J. New N-Heterocyclic Carbene Ligand and Its Application in Asymmetric Nickel-Catalyzed Aldehyde/Alkyne Reductive Couplings. *J. Am. Chem. Soc.* **2007**, *129*, 9568.
- (77) Malik, H. A.; Sormunen, G. J.; Montgomery, J. A General Strategy for Regiocontrol in Nickel-Catalyzed Reductive Couplings of Aldehydes and Alkynes. *J. Am. Chem. Soc.* **2010**, *132*, 6304.
- (78) Liu, P.; Montgomery, J.; Houk, K. N. Ligand Steric Contours to Understand the Effects of N-Heterocyclic Carbene Ligands on the Reversal of Regioselectivity in Ni-Catalyzed Reductive Couplings of Alkynes and Aldehydes. *J. Am. Chem. Soc.* **2011**, *133*, 6956.
- (79) Jackson, E. P.; Malik, H. A.; Sormunen, G. J.; Baxter, R. D.; Liu, P.; Wang, H.; Shareef, A.-R.; Montgomery, J. Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings. *Acc. Chem. Res.* **2015**, *48*, 1736.
- (80) Jackson, E. P.; Montgomery, J. Regiocontrol in Catalytic Reductive Couplings through Alterations of Silane Rate Dependence. *J. Am. Chem. Soc.* **2015**, *137*, 958.
- (81) Wang, H.; Lu, G.; Sormunen, G. J.; Malik, H. A.; Liu, P.; Montgomery, J. NHC Ligands Tailored for Simultaneous Regio- and Enantiocontrol in Nickel-Catalyzed Reductive Couplings. *J. Am. Chem. Soc.* **2017**, *139*, 9317.
- (82) Patman, R. L.; Chaulagain, M. R.; Williams, V. M.; Krische, M. J. Direct Vinylation of Alcohols or Aldehydes Employing Alkynes as Vinyl Donors: A Ruthenium-Catalyzed C-C Bond-Forming Transfer Hydrogenation. *J. Am. Chem. Soc.* **2009**, *131*, 2066.
- (83) Ortiz, E.; Chang, Y.-H.; Shezaf, J. Z.; Shen, W.; Krische, M. J. Stereo- and Site-Selective Conversion of Primary Alcohols to Allylic Alcohols via Ruthenium-Catalyzed Hydrogen Auto-Transfer Mediated by 2-Butyne. *J. Am. Chem. Soc.* **2022**, *144*, 8861.
- (84) Cai, Y.; Zhang, J.-W.; Li, F.; Liu, J.-M.; Shi, S.-L. Nickel/N-Heterocyclic Carbene Complex-Catalyzed Enantioselective Redox-Neutral Coupling of Benzyl Alcohols and Alkynes to Allylic Alcohols. *ACS Catal.* **2019**, *9*, 1.
- (85) Check, C. T.; Jang, K. P.; Schwamb, C. B.; Wong, A. S.; Wang, M. H.; Scheidt, K. A. Ferrocene-Based Planar Chiral Imidazopyridinium Salts for Catalysis. *Angew. Chem. Int. Ed.* **2015**, *54*, 4264.
- (86) Li, Y.-L.; Zhang, S.-Q.; Chen, J.; Xia, J.-B. Highly Regio- and Enantioselective Reductive Coupling of Alkynes and Aldehydes via Photoredox Cobalt Dual Catalysis. *J. Am. Chem. Soc.* **2021**, *143*, 7306.
- (87) Two examples of cobalt-catalyzed reductive cross coupling of terminal alkynes and α -halo boronic esters with ant-Markovnikov selectivity have been reported by Yao Fu et al. in an excellent study of the cobalt-catalyzed hydroalkylation of alkynes. See: Li, Y.; Liu, D.; Wan, L.; Zhang, J.-Y.; Lu, X.; Fu, Y. Ligand-Controlled Cobalt-Catalyzed Regiodivergent Alkyne Hydroalkylation. *J. Am. Chem. Soc.* **2022**, *144*, 13961.
- (88) García-Ruiz, C.; Chen, J. L. Y.; Sandford, C.; Feeney, K.; Lorenzo, P.; Berionni, G.; Mayr, H.; Aggarwal, V. K. Stereospecific Allylic Functionalization: The Reactions of Allylboronate Complexes with Electrophiles. *J. Am. Chem. Soc.* **2017**, *139*, 15324.
- (89) Chausset-Boissarie, L.; Ghozati, K.; LaBine, E.; Chen, J. L.-Y.; Aggarwal, V. K.; Cradden, C. M. Enantiospecific, Regioselective Cross-Coupling Reactions of Secondary Allylic Boronic Esters. *Chem. Eur. J.* **2013**, *19*, 17698.
- (90) Edelstein, E. K.; Namirembe, S.; Morken, J. P. Enantioselective Conjunctive Cross-Coupling of Bis(alkenyl)borates: A General Synthesis of Chiral Allylboron Reagents. *J. Am. Chem. Soc.* **2017**, *139*, 5027.
- (91) Kinsinger, T.; Kazmaier, U. Application of Vinyl Nucleophiles in Matteson Homologations. *Org. Lett.* **2022**, *24*, 3599.
- (92) Matteson, D. S.; Majumdar, D. α -Chloro Boronic Esters from Homologation of Boronic Esters. *J. Am. Chem. Soc.* **1980**, *102*, 7588.
- (93) Beckwith, A. L. J.; Bowry, V. W.; Ingold, K. U. Kinetics of Nitroxide Radical Trapping. 1. Solvent Effects. *J. Am. Chem. Soc.* **1992**, *114*, 4983.
- (94) Bowry, V. W.; Ingold, K. U. Kinetics of Nitroxide Radical Trapping. 2. Structural Effects. *J. Am. Chem. Soc.* **1992**, *114*, 4992.
- (95) We cannot exclude the direct S_N2 mechanism. However, studies of the mechanism with other organometallic reagents favor the mechanism involving boronate intermediate.
- (96) It is interesting to note that we do not see further reaction of the allylic boronic ester in the presence of the copper catalyst and an alkoxide promoter. We suspect that fast transmetalation of copper alkoxide with a silane outcompetes the transmetalation with allyl boronic esters.
- (97) Wang, D.; Xu, T. Recent Advances in the Preparation and Asymmetric Transformation of α -Haloboron Compounds. *Synlett* **2023**, *34*, A.
- (98) Matteson, D. S.; Ray, R. Directed Chiral Synthesis with Pinanediol Boronic Esters. *J. Am. Chem. Soc.* **1980**, *102*, 7590.
- (99) Elgendi, S.; Claeson, G.; Kakkar, V. V.; Green, D.; Patel, G.; Goodwin, C. A.; Baban, J. A.; Scully, M. F.; Deadman, J. Facile Routes to 1-Halo-1-alkyl Boronic Esters as


Precursors for Novel Thrombin Inhibitors. *Tetrahedron* **1994**, *50*, 3803.

(100) Sharma, H. A.; Essman, J. Z.; Jacobsen, E. N. Enantioselective Catalytic 1,2-Boronate Rearrangements. *Science* **2021**, *374*, 752.

(101) Gazić-Smilović, I.; Casas-Arcé, E.; Roseblade, S. J.; Nettekoven, U.; Zanotti-Gerosa, A.; Kovačević, M.; Časar, Z. Iridium-Catalyzed Chemoselective and

Enantioselective Hydrogenation of (1-Chloro-1-Alkenyl) Boronic Esters. *Angew. Chem. Int. Ed.* **2012**, *51*, 1014.

(102) Methods described in references 57-70 rarely feature examples of simple unbranched *E*-allylic alcohols being formed. In a few instances where formation of such products is described, they are obtained with substandard selectivity (<90% ee) and in lower yields (for example, see references 59, 62, and 70).

