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ABSTRACT: We have developed a convergent method for the synthesis of allylic alcohols that involves a reductive coupling 
of terminal alkynes with α-chloro boronic esters. The new method affords allylic 
alcohols with excellent regioselectivity (anti-Markovnikov) and an E/Z ratio 
greater than 200:1. The reaction can be performed in the presence of a wide 
range of functional groups and has a substrate scope that complements the stoi-
chiometric alkenylation of α-chloro boronic esters performed using alkenyl lith-
ium and Grignard reagents. The transformation is stereospecific and allows the 
robust and highly selective synthesis of chiral allylic alcohols. Our studies sup-
port a mechanism that involves hydrocupration of the alkyne and cross-coupling 
of the alkenyl copper intermediate with α-chloro boronic esters. Experimental evidence excludes a radical mechanism of the 
cross-coupling step and is consistent with the formation of a boron-ate intermediate and 1,2-metallate shift.  

INTRODUCTION  
Hydroalkylation of terminal alkynes is a powerful method 

for making disubstituted alkenes with different substitution 
patterns and high selectivity.1-9 Our group has developed 
several catalytic hydroalkylation reactions that produce E-
alkenes using an approach with two key steps (Scheme 1a): 
first, hydrocupration of an alkyne10,11 (1) forms an alkenyl 
copper intermediate (2) with precise control over the regio- 
and diastereoselectivity;12-18 second, the alkenyl copper in-
termediate stereospecifically reacts with various alkyl elec-
trophiles, such as alkyl triflates,6 α-halo carbonyls,8 or alkyl 
halides in the presence of a metal cocatalyst to yield E-al-
kene products (3).7 The successful implementation of this 
strategy requires identifying alkyl electrophiles that are suf-
ficiently reactive to overcome the relatively low reactivity 
of alkenyl copper complexes, but do not react with copper 
hydride complexes. 
Scheme 1. Hydrocupration in Transformations of Ter-
minal Alkynes 
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We have been interested in expanding the hydroalkylation 

approach to enable synthesis of E-alkenes with 

simultaneous introduction of a functional group in the al-
lylic position. Allylic alcohols are particularly attractive tar-
gets for such a transformation as they are often featured in 
bioactive molecules and synthetic intermediates.19 We rea-
soned that terminal alkynes can be transformed into allylic 
alcohols with anti-Markovnikov selectivity through hydro-
cupration and reaction of the alkenyl copper intermediate 
(2) with an appropriate electrophile (Scheme 1b).  

The most intuitive way to access allylic alcohols from the 
alkenyl copper intermediate is reaction with aldehydes or 
ketones. Unfortunately, integrating carbonyls into the hy-
droalkylation approach outlined in Scheme 1a presents sev-
eral challenges. NHC supported copper hydride complexes 
involved in formation of the alkenyl copper intermediate ef-
ficiently add to carbonyls and promote their reduction.20-23 
Another challenge stems from relatively low reactivity of 
alkenyl copper intermediates. Despite numerous examples 
of reactions of allylic24-31 and propargylic32,33 copper com-
plexes with carbonyls, we found that under a variety of re-
action conditions, stoichiometric reactions between NHC-
supported alkenyl copper complexes and aldehydes do not 
occur (see SI). 

α-Halo boronic esters (6) can act as a functional equivalent 
of carbonyl electrophiles. They can be made directly from 
aldehydes and ketones34 and provide allylic alcohols (4) af-
ter cross-coupling with alkenyl organometallic reagents (5) 
and in situ oxidation (Scheme 2a).35 Furthermore, the key 
cross-coupling with organometallic compounds can pro-
ceed via two distinct mechanisms (Scheme 2b). As 
Matteson’s pioneering work has shown, with nucleophilic 
organolithium and Grignard reagents, the cross-coupling in-
volves the formation of boron-ate complexes (8) and a sub-
sequent 1,2-metallate shift.36-39 Alternatively, transition 
metal catalyzed cross-coupling reactions involve stabilized 
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α-boryl radical intermediates40-43 (10) formed through sin-
gle electron transfer (SET) reduction of α-halo boronic es-
ters.44-48 Even though the same cross coupling product (9) 
is formed in both pathways, mechanistic differences pro-
duce two different stereochemical outcomes: the ionic path-
way is stereospecific (inversion at the α stereocenter), 
while the radical pathway leads to the loss of stereochemi-
cal information.  
Scheme 2. α-Halo Boronic Esters as Electrophiles 
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Alkenyl copper complexes are both nucleophilic and capa-

ble of SET reduction of activated organohalides.8 As a result, 
both ionic and radical mechanisms offer plausible pathways 
for coupling with α-halo boronic esters. This creates an op-
portunity to combine the unique reactivity of α-halo bo-
ronic esters with established hydrocupration of alkynes and 
develop a new method for the synthesis of allylic alcohols. 
As shown in Scheme 3, allylic alcohols (4) would be gener-
ated through a convergent reductive cross coupling of ter-
minal alkynes (1) and α-halo boronic esters (6), followed by 
in situ oxidation.  
Scheme 3. Proposed Synthesis of Allylic Alcohols  
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The importance of allylic alcohols in organic synthesis has 

prompted the development of numerous approaches for 
their synthesis.19 For example, asymmetric synthesis of al-
lylic alcohols can be accomplished through kinetic resolu-
tion,49 dynamic kinetic resolution,50,51 reduction of 
enones,52,53 allylic substitution,54,55 or through organocata-
lytic reactions.56 Among methods that result in the for-
mation of a new C-C bond, the most general is the addition 
of organozinc reagents derived from alkynes through hy-
drometallation and transmetalation. This approach was pi-
oneered by Oppolzer57 and further developed by Walsh,58-60 
Seto,61,62 Wipf,63 and others.64-66 Other organometallic rea-
gents have also been used, but with less success.67-70 

The key feature of the transformation shown in Scheme 3 
is that it avoids stoichiometric formation of alkenyl metal 
reagents from alkynes. The benefits of using alkynes di-
rectly have been amply demonstrated71,72 through the 

pioneering work of Jamison,73,74 Montgomery,75-81 
Krische,82,83 and others84-86 on reductive cross coupling of 
alkynes with carbonyls. Their approach has provided excel-
lent results in asymmetric synthesis of allylic alcohols start-
ing with internal alkynes.73,81,83,86 Although terminal alkynes 
have also been used in these reactions,77-80 unlike internal 
alkynes, they have not been amenable to applications in 
asymmetric synthesis of allylic alcohols.76,81 We set out to 
address this challenge by pursuing the development of the 
asymmetric anti-Markovnikov reductive cross coupling of 
terminal alkynes and α-halo boronic esters.87 In the process, 
we aimed to resolve the underlying mechanistic ambiguity 
(ionic vs radical) of the reaction and exploit the stereochem-
ical consequences of the actual mechanism. 

RESULTS AND DISCUSSION  
Reaction Development. Following the approach outlined 

in Scheme 3, we developed a copper-catalyzed reductive 
coupling of alkynes and α-halo boronic esters (Table 1). The 
best results were obtained using IPrCuCl as the precatalyst, 
tetramethylcyclotetrasiloxane (TMCTS) as the hydride 
source, and LiOi-Pr as the turnover reagent (entry 1). A 
modest excess of alkyne (1.5 equiv) relative to the α-chloro 
Bpin (pin = pinacolato) was used in the reaction.  
Table 1. Reaction Development 
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The results in Table 1 show how different reaction param-

eters affect the yield of the desired product. The highest 
yields were obtained with copper catalysts supported by IPr 
and SIPr ligands. IMes, which is closely related to IPr and 
SIPr, only afforded 19% of 13 (entries 2 and 3). The identity 
of the silane was critical to the success of the reaction. 

Table 2. Substrate Scope 
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While cyclic tetramer TMCTS and closely related PMHS 
(PMHS = polymethylhydrosiloxane) showed good reactiv-
ity, structurally similar monomeric silanes like DMMS 
(DMMS = dimethoxy(methyl)silane) gave diminished yields 
(entries 4 and 5). Other silanes gave little or no desired 
product (see SI, Table S3). Lithium isopropoxide and lith-
ium tert-butoxide both worked well as turnover reagents 
(entries 1 and 7) but changing the counter ion to sodium 
produced inferior results (entry 6). Lithium methoxide also 
performed poorly, possibly due to low solubility (entry 8). 
At lower temperature (25 °C), only 47% yield of the product 
was formed after 12 h (entry 12), and the reaction required 
3 days to complete (see SI). Less sterically demanding 

Cl(CH2)Bpin performed better than 11 (entry 14). Interest-
ingly, more reactive α-bromo and α-iodo boronic esters per-
formed worse as substrates in the reaction (entries 15 and 
16). 

Substrate Scope. Using our optimized conditions, we ex-
plored the scope of the reaction. After in situ oxidation of 
the allylic boronic esters, various allylic alcohols were ob-
tained in good yields (Table 2). In general, we observed only 
the E isomer of the allylic alcohols in 1H NMR of the crude 
reaction mixtures. Careful GC analysis of the crude reaction 
mixture containing product 18 using authentic samples of E 
and Z isomers confirmed an E/Z ratio greater than 200:1 



 

(see SI for details). Alkynes containing alkyl bromides (14), 
alkyl chlorides (24), nitriles (19), esters (21), protected 
amines (25), protected alcohols (29), aryl chlorides (27), 
aryl bromides (26), sulfonamides (34), and acetals (35) 
were well tolerated. The presence of mildly acidic Boc-pro-
tected primary amine (20) was not detrimental for the re-
action, although the yield of the desired product was dimin-
ished. Aryl acetylenes with electron-donating (22) and 
mildly electron-withdrawing (27) functional groups per-
formed well, while the presence of a strongly electron-with-
drawing group (32) resulted in a diminished yield. The re-
action also tolerated alkynes with sterically demanding al-
kyl substituents (15). Several heterocycles could success-
fully be incorporated into the alkyne substrates, including 
furans (23), tetrazoles (28), thiophenes (30), and fluoro 
pyridines (33). 

Allylic boronic ester 36 can be isolated after careful col-
umn chromatography in 79% yield. This allows a range of 
other products to be accessed using established transfor-
mations of allylic boronic esters.88-90 In some instances, 
crude allylic boronic ester can be used directly in subse-
quent transformations. For example, when benzaldehyde is 
added to the crude reaction mixture containing 36, trans-
posed homoallylic alcohol 37 is obtained in 74% overall 
yield.  

We also investigated the reactivity of various α-chloro 
Bpins and found that their functional group compatibility is 
similar to the selectivity observed in reactions of function-
alized alkynes. The unsubstituted α-chloro boronic ester 
(38) gave an excellent yield, while additional substitution at 
the β position of boronic esters (43 and 45) resulted in 
lower yields. 

We noted several limitations of the new reaction. Ortho-
substituted aryl alkynes (52) and alkynes containing 
strongly coordinating groups (53, 54) gave low yields of al-
lylic alcohol products. α-Chloro boronic esters containing 
aryl (55) or alkenyl (56) substituents at the α-carbon pro-
vided no allylic alcohol product. Similarly, α, α-dialkyl-α-
halo boronic esters (57) did not afford the expected tertiary 
allylic alcohols, indicating the negative effect of steric hin-
drance on the reaction. 

Comparison with stoichiometric alkenylation of α-
chloro boronic esters. The catalytic alkenylation reaction 
of α-chloro boronic esters is a complement and not a re-
placement for the stoichiometric reactions performed using 
alkenyl lithium or Grignard reagents. An excellent recent 
study by Kazmaier et al.91 has shown that consistently high 
yields in stoichiometric alkenylation reactions are observed 
when at least one of the reactants is sterically hindered. Tri-
substituted, Z-disubstituted, and 2-alkenyl organometallic 
reagents generally perform well. With less hindered organ-
ometallic reagents, only sterically hindered α-chloro bo-
ronic esters perform well. The trends we observed in the 
catalytic reaction are complementary: less hindered α-
chloro boronic esters perform the best and E-alkenyl frag-
ments are delivered.  

Reaction Mechanism. We had two main goals in mind 
when exploring the reaction mechanism. First, we wanted 
to establish if the alkenyl copper complex is a catalytic in-
termediate in the reaction. Second, we wanted to determine 
if the cross coupling of the alkenyl copper and α-chloro 

boronic esters proceeds through a radical or ionic mecha-
nism. Establishing the exact mechanism was important be-
cause of the differences in the stereochemical outcomes of 
the two pathways and implications that would have on the 
synthesis of chiral allylic alcohols.  

Initial mechanistic experiments focused on presumed in-
termediates in the catalytic reaction. In a stoichiometric ex-
periment, we found that reacting alkenyl copper complex 
58 with α-chloro boronic ester 11 quickly produces allylic 
boronic ester 36 (eq 1). This result supports the proposed 
involvement of an alkenyl copper intermediate and its reac-
tion with α-chloro boronic esters. 

CuIPr
R R

+

58 11, 1.0 equiv

n-Bu

Bpin

36, 94% yield

Cl

Bpin

n-Bu toluene-d8
 
45 °C, 30 min

(1)

R = (CH2)3Ph  
We also examined α-alkoxy boronic esters as possible in-

termediates in the reaction. As expected, LiOi-Pr reacts with 
α-chloro boronic ester 11 at 45 °C to produce α-alkoxy bo-
ronic ester 59 (Scheme 4a).92 However, the reaction is 
slower than the catalytic hydroalkylation reaction per-
formed at the same temperature and affords only 17% of 59 
after 12 h, and 31% after 24 h. Furthermore, when used as 
a substrate in a catalytic reaction, α-isopropoxy boronic es-
ter 59 did not afford the desired product (Scheme 4b) with 
87% of 59 remaining after 12 h. Together, these results 
make α-isopropoxy boronic esters unlikely intermediates in 
the reaction.  
Scheme 4. α-Alkoxy Boronic Esters as Intermediates  
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Next, we focused on exploring the mechanism of the key 

reaction between the alkenyl copper intermediate and the 
electrophile. A plausible radical mechanism involving SET 
reduction of α-chloro boronic esters by the alkenyl copper 
intermediate is presented in Scheme 5a. α-Chloro boronic 
esters have been shown to undergo SET reduction44-48 to 
form the stabilized alkyl radical. At the same time, alkenyl 
copper complex (2) is known to reduce α-bromo carboxylic 
esters through SET.8 

To evaluate the relevance of the proposed radical mecha-
nism, we performed radical clock and radical trap experi-
ments. Alkenyl copper 58 reacts with cyclopropyl α-chloro 
Bpin (61) to produce only the unrearranged product 62 in 
83% yield (Scheme 5b). We also found that up to 120 mol% 
of TEMPO can be added to the catalytic reaction without a 
significant decrease in the yield of the allylic boronic ester 
(Scheme 5c). The results of the two experiments are incon-
sistent with the SET mechanism and the formation of free 
radical intermediates.93,94  



 

Scheme 5. Radical Mechanism 
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An alternative mechanistic hypothesis for the cross cou-

pling is presented in Scheme 6a. The addition of alkenyl cop-
per (2) to the α-chloro boronic ester (6) forms a boron-ate 
complex (8). This complex undergoes a 1,2-metallate shift 
exclusively through a conformation with antiperiplanar ar-
rangement of the migrating alkenyl group and the leaving 
group at the α carbon (see 64).38 As a result, the cross cou-
pling is stereospecific and proceeds with the inversion of 
configuration at the α-carbon. 

To probe this alternative mechanistic hypothesis, we in-
vestigated the reaction with a single enantiomer of α-chloro 
boronic ester 65 (>99% ee, >95:5 dr), prepared using α-
pinane diol as a chiral auxiliary (Scheme 6). The R configu-
ration of the obtained allylic alcohol (R)-18 indicates inver-
sion of configuration at the α-carbon of the boronic ester 
(see SI). There is also strong support for the stereospecific-
ity of the reaction. The enantiomeric ratio of the allylic alco-
hol (R)-18 (98:2) reflected the diastereomeric ratio of the 
starting α-chloro boronic ester (>95:5). Furthermore, the 
chiral auxiliary alone had no effect on reaction selectivity: a 
1:1 mixture of diastereoisomeric α-chloro boronic esters 
produced racemic allylic alcohol 18 (Scheme 6b). Overall, 
the stereochemical outcomes of these experiments are fully 
consistent with an ionic mechanism involving boron-ate 
formation and stereospecific 1,2-metallate shift.95  

With evidence pointing to the ionic mechanism, we 
searched for evidence supporting the formation of the bo-
ron-ate complex in stoichiometric reactions of alkenyl cop-
per intermediate with various boronic esters. Monitoring 
stoichiometric reactions of alkenyl copper intermediate 
(58) with α-isopropoxy boronic ester 59 or allylic boronic 
ester 36 by in situ 1H and 11B NMR showed no change of the 
starting materials even at 90 °C (Scheme 7a). Similarly, 
monitoring a stoichiometric reaction of 58 and α-chloro bo-
ronic ester 11 in toluene-d8 at temperatures between -50 °C 
and 25 °C (Scheme 7b) did not provide definitive evidence 
for the formation of the boron-ate intermediate (see SI). 
Scheme 6. Ionic Mechanism 
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However, the same experiment performed in THF-d8 pro-

vided evidence consistent with the presence of a low con-
centration of boron-ate intermediate 66 within the temper-
ature range (broad resonance in 11B NMR at 4.8 ppm). These 
results support reversible, though unfavorable, boron-ate 
formation in a reaction of α-chloro boronic esters. Presum-
ably, the higher dielectric constant of THF (ε=7.6 for THF vs 
ε=2.4 for toluene) increases the concentration of 66. Fur-
thermore, in a reaction with α-fluoro boronic ester 67, we 
saw evidence of the boron-ate formation in 23% yield 
within 30 min (Scheme 7c). The balance of the starting ma-
terials remained unchanged after an additional 2 h. 
Scheme 7. Boron-ate Complex Formation 
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c) Reaction With α-Fluoro Boronic Estersa

aR = (CH2)3Ph, R1 = (CH2)2C6H4(4-OMe)

58

CuIPr
R

+
58, 1.3 equiv

11
Cl

Bpin

n-Bu

 
-50 °C to 25 °C

b) Low Temperature Reactions With α-Chloro Boronic Estersa

R
B n-Bu

Cl

OO

IPrCu

THF-d8

solvent

no boron-ate formation

36

66
toluene-d8

11B NMR resonance @ 4.8 ppm

 
 

Table 3. Synthesis of Enantioenriched Allylic Alcohols 
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(R)-18, 70%, 97% ee

OH
Me

R

(S)-18,b
 
75%, 98% ee

OH
Me

R

OH
Me

Me

R

OH

Me

Me

R

OH

R

OH

Me
OBn

R

OH

Me
Me

(6R,7S)-74, 80%, 96% ee,  >20:1 dr (6S,7S)-45, 75%, >95% ee, >20:1 dr(R)-73, 76%, 99% ee

(R)-43,c
 
85%, 99% ee(R)-75, 73%, 98% ee

R

OH

Me

R

OH
OTBS

(R)-72, 85%, 99% ee

(6S,7R)-76,
 
55%, 93% ee, >20:1 dr

R

OH

Me
Ph

(6S,7R)-77, 65%, 96% ee, 14:1 dr

Bn +
R1

OH

R1Cl

B(OR)2

Bn

IPrCuCl (10 mol%)
TMCTS (1.5 equiv)
LiOi-Pr (2.0 equiv)

toluene 
45 °C, 12 h

3 M NaOH (8.0 equiv)
30% H2O2

 
(14.5 equiv)

THF, 25 °C, 12 hR R1

B(OR)2

Stereospecific Synthesis of Enantioenriched Allylic Alcohols

aYields of isolated products are reported. Reactions performed on 0.5 mmol scale. Enantiomeric excess of allylic alcohols determined by chiral HPLC. Boronic ester of (+)-pinanediol was used. R = 

(CH2)3Ph.
 bBoronic ester of (-)-pinanediol was used with the opposite absolute configuration at the α

 
carbon. cBpin ester was used.

Upon addition of α-chloro boronic ester 11 to the reaction 
mixture containing boron-ate complex 68, we observed full 
recovery of the α-fluoro boronic ester (67) and the for-
mation of cross-coupling product 36. These results argue 
for a reversible and thermodynamically unfavorable for-
mation of the boron-ate complex 68.  

The reactions of the alkenyl copper intermediate with var-
ious boronic esters provide a mechanistic basis for under-
standing the differences in the scopes of this catalytic reac-
tion and the stoichiometric alkenylation with organolithium 
and Grignard reagents (see above). Kazmaier has recently 
shown that the main side reaction in stoichiometric alkenyl-
ation is the addition of the organometallic reagent to the al-
lylic boronic ester product (eq 2).91 Protonolysis of the re-
sulting boron-ate complex (70) at the end of the reaction 
provides a mixture of the desired allylic boronic ester (69) 
and the undesired vinyl boronic ester (71). As a result, good 
yields in stoichiometric reactions are realized only with 
substrates that can sterically impede the formation of bo-
ron-ate complex 70. 

B

R1

ORRO

B(OR)2

B(OR)2

R1
+

MgBr

69 70

H3O
(2)69

71  
We found that the alkenyl copper intermediate does not 

react with allylic boronic esters, or if it does, the reaction is 
reversible and thermodynamically unfavorable (see 
Scheme 7a). As a result, the main side reaction described by 
Kazmaier does not occur in the copper-catalyzed transfor-
mation,96 extending the scope to less sterically demanding 
substrates. 

Based on our mechanistic investigation and the estab-
lished chemistry of copper hydride complexes, we suggest 
the formation of allylic alcohols proceeds through the mech-
anism shown in Scheme 8. The process starts with the for-
mation of copper hydride (III) through transmetalation of 
copper alkoxide with a silane,10 followed by the formation 
of alkenyl copper complex (V) through hydrocupration of 
the terminal alkyne.10 Addition to α-chloro boronic ester 
forms boron-ate complex (VII). Finally, 1,2-metallate shift, 
and subsequent oxidation, produce the desired allylic alco-
hol. 

Scheme 8. Proposed Mechanism 

LCuOi-Pr
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Application to Stereospecific Synthesis of Allylic Alco-

hols. Our mechanistic studies suggest that the new reaction 
can be applied in the robust and highly selective synthesis 
of chiral allylic alcohols from terminal alkynes. We demon-
strated that the stereochemistry of the starting materials 
fully controls the absolute configuration and enantiomeric 
excess of the allylic alcohols. The required enantioenriched 
α-chloro boronic ester can be accessed in several ways us-
ing different starting materials.97 A highly selective asym-
metric synthesis from alkyl boronic esters was originally 
discovered by Matteson98 and developed by others99 and re-
lies on chiral auxiliaries. Jacobsen100 recently reported an 
approach based on enantioselective catalytic 1,2-metallate 
shift, while the method reported by XU34 uses carbonyls as 
starting materials. Finally, enantioselective hydrogenation 
also provides access to highly enantioenriched α-chloro bo-
ronic esters.101  

In practice, we found Matteson’s synthesis of chiral α-
chloro boronic esters using readily available and affordable 
α-pinanediol to be highly selective and easy to execute. A 
range of chiral α-chloro Bpinane esters (pinane = pinane 
diol) were prepared by this method and used in the hydroal-
kylation reaction to provide chiral allylic alcohols (Table 3). 
Boronic esters with branching in the β and γ positions gave 
excellent selectivity (43 and 73). Even boronic esters with 
linear alkyl substituents reacted with excellent selectivity. 
This is particularly attractive given that enantioenriched di-
alkyl allylic alcohols are difficult to access by direct alkenyl-
ation of linear unbranched aldehydes.102 Products 18, 72, 
and 75 were all obtained in high stereoselectivity and yield, 



 

showcasing the utility of our method. Furthermore, access 
to both (+)-and (-) isomers of pinane diol auxiliary allowed 
us to prepare R and S enantiomers of alcohol 18. Enantioen-
riched α-chloro Bpin esters performed as well as Bpinane 
esters, providing 43 in excellent enantiopurity. Finally, 
Matteson’s homologation method allowed the synthesis of 
highly enantioenriched allylic alcohols containing two ste-
reocenters with high diastereoselectivity (45, 74, 76, and 
77). 

CONCLUSIONS 
In conclusion, we have developed a method for the conver-

gent synthesis of allylic alcohols directly from terminal al-
kynes. This transformation involves reductive cross cou-
pling of an alkyne with an α-chloro boronic ester followed 
by in situ oxidation of the boronic ester to an alcohol. The 
process is highly selective for the E-alkene and tolerates a 
broad range of functional groups. Experimental studies sup-
port a mechanism that involves hydrocupration of the al-
kyne and formation of the alkenyl copper intermediate. 
Cross coupling of the intermediate with an α-chloro boronic 
ester involves boronic formation and 1,2-metallate shift. 
The overall process is stereospecific and proceeds with in-
version at the stereocenter of the α-chloro boronic ester, al-
lowing for the convenient synthesis of enantioenriched al-
lylic boronic ester products. This reaction integrates hydro-
metallation and boron-ate chemistry eschewing the need 
for stoichiometric organometallic reagents to form the bo-
ron-ate complex. 
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