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Abstract

Geochemical proxies of sea surface temperature (SST) and seawater pH (pHsw) in scleracti-

nian coral skeletons are valuable tools for reconstructing tropical climate variability. How-

ever, most coral skeletal SST and pHsw proxies are univariate methods that are limited in

their capacity to circumvent non-climate-related variability. Here we present a novel multi-

variate method for reconstructing SST and pHsw from the geochemistry of coral skeletons.

Our Scleractinian Multivariate Isotope and Trace Element (SMITE) method optimizes recon-

struction skill by leveraging the covariance across an array of coral elemental and isotopic

data with SST and pHsw. First, using a synthetic proxy experiment, we find that SMITE SST

reconstruction statistics (correlation, accuracy, and precision) are insensitive to noise and

variable calibration period lengths relative to Sr/Ca. While SMITE pHsw reconstruction statis-

tics remain relative to δ11B throughout the same synthetic experiment, the magnitude of the

long-term trend in pHsw is progressively lost under conditions of moderate-to-high analytical

uncertainty. Next, we apply the SMITE method to an array of seven coral-based geochemi-

cal variables (B/Ca, δ11B, Li/Ca, Mg/Ca, Sr/Ca, U/Ca & Li/Mg) measured from two Bermu-

dan Porites astreoides corals. Despite a <3.5 year calibration period, SMITE SST and pHsw

estimates exhibit significantly better accuracy, precision, and correlation with their respec-

tive climate targets than the best single- and dual-proxy estimators. Furthermore, SMITE

model parameters are highly reproducible between the two coral cores, indicating great

potential for fossil applications (when preservation is high). The results shown here indicate

that the SMITE method can outperform the most common coral-based SST and pHsw recon-

structions methods to date, particularly in datasets with a large variety of geochemical vari-

ables. We therefore provide a list of recommendations and procedures for users to begin

implementing the SMITE method as well as an open-source software package to facilitate

dissemination of the SMITE method.
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1 Introduction

Tropical sea surface temperature (SST) is a critical component of the climate system, linked to

a multitude of key variables such as atmospheric moisture content and temperature, cloud

cover, and patterns of atmospheric circulation [1]. However, the evolution of tropical SST

prior to and during the industrial era remains uncertain due to poor data coverage and chang-

ing measurement technology [2]. This uncertainty has significant consequences for attempts

to establish a baseline for present-day climate change, impacting our abilities to meet interna-

tionally agreed-upon climate targets [3]. Towards this end, massive reef-building (scleracti-

nian) corals have been extensively utilized to reconstruct variations in SST throughout the

Holocene [4], thereby filling a critical gap in our knowledge with respect to tropical SST

variability.

Over the past several decades, numerous geochemical tracers in scleractinian coral skele-

tons have been calibrated to local environmental parameters [5], which in turn have been used

to reconstruct regional climate variability from seasonal to centennial timescales [6]. Under

ideal conditions, a single coral geochemical proxy is largely a function of the climate target of

interest, with minimal influence from other variables such as coral growth variations, analyti-

cal error, or age model uncertainty. When these conditions are met, coral skeletal geochemis-

try can be used to robustly reconstruct climate targets such as SST, sea surface salinity (SSS),

and seawater pH (pHsw), often at monthly resolution [7–9].

The degree of accuracy, precision, correlation, and reproducibility in any coral-based cli-

mate reconstruction is often a function of many factors, including (but not limited to): how

much natural variability the climate target of interest exhibits in a given location; the uncer-

tainty associated with the chosen observations of the climate target (e.g., in situ SST observa-

tions versus those derived from remote sensing products); the concentrations of the

geochemical proxy in the coral skeleton; how sensitive the geochemical proxy is to the climate

target; whether this sensitivity is consistent, both between coral colonies as well as throughout

the skeleton of an individual colony; the degree to which other internal or external processes

create interference in the relationship between the proxy and the climate target; and whether

the age model error is reasonable within the resolution and length of the climate

reconstruction.

For example, skeletal strontium-to-calcium ratios (Sr/Ca) are the most commonly used

coral-based paleothermometer to date [10, 11]. SST exhibits strong annual cycles even in tropi-

cal oceans (*2˚C, and while in situ observations of SST in the tropical oceans can be scarce,

remote sensing products are becoming increasingly better at capturing SST variations on coral

reefs [12], thereby reducing uncertainty with respect to the climate target. Despite a relatively

low temperature sensitivity [13, * 0.06 mmol mol1˚C1], the high degree of analytical precision

for measuring Sr/Ca using inductively coupled plasma optical emission spectrometry [14,

ICP-OES] often yields high precision Sr/Ca-based SST estimates (e.g. ± 0.16˚C, 1σ). However,

analytical uncertainty for Sr/Ca increases by an order of magnitude when using inductively

coupled plasma mass spectrometry (ICP-MS), particularly when coupled with laser ablation

[15]. This is but one contributing factor to the high degree of uncertainty around the regres-

sion coefficients for the Sr/Ca—SST relationship, which often vary between taxa, regions,

regression techniques, and even different laboratories using similar analytical equipment [13,

16–20]. Uncertainty surrounding the Sr/Ca—SST relationship have also been attributed to bio-

logical controls on Sr uptake into the coral aragonite crystal lattice [21–30]. Recent work also

suggests that nutrient conditions can create substantial non-SST-related variability in coral Sr/

Ca ratios [31]. While much work has gone into improving the reproducibility of coral Sr/

Caderived SST estimates [20, 32–36], the wide distribution of coral Sr/Ca regression
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coefficients often necessitates colony-specific Sr/Ca—SST calibrations, making applications of

coral Sr/Ca paleothermometry to fossil coral material challenging at the present time [37, 38].

In the last decade, calibrations using multiple temperature-sensitive proxies, or multiproxy

calibrations, have been developed specifically to minimize or even circumvent non-SST-

related variability [39–44]. These multiproxy paleothermometers often produce regression

coefficients that are more consistent across corals from different regions and taxa [42, 43, 45].

However, this reproducibility comes at the expense of sampling resolution [42] or reconstruc-

tion skill relative to the best single-proxy estimator from any given location [43–45]. Further-

more, these multiproxy calibration methods have exclusively focused on SST, leaving other

important climate targets such as pHsw untested [46, 47]. This is especially relevant, as the pri-

mary coral geochemical proxy for pHsw is its boron isotopic composition (δ11B). However, it is

becoming increasingly apparent that coral skeletal δ11B ratios are a function of SST, SSS, and

the pH of the coral calcifying fluid (pHcf), which is upregulated by the coral organism and

exhibits increased seasonal variance relative to the pHsw [7, 46–48].

This study presents a novel multiproxy method for reconstructing SST and pHsw across an

array of coral geochemical variables. Utilizing the generalized inverse solution [49, 50], our

novel Scleractinian Multivariate Isotope and Trace Element (SMITE) method leverages covari-

ance across multiple coral variables to improve the correlation, accuracy, and precision of the

reconstruction (henceforth referred to as ‘reconstruction skill’) while yielding reproducible

and mechanistically sensible regression coefficients. We first explain how the SMITE method

applies the generalized inverse solution to calibrate coral geochemical data (or any coral vari-

able) to SST and pHsw. Next, we utilize a synthetic proxy dataset (Sr/Ca, δ18O, and δ11B) where

the climate targets used to create each ‘pseudoproxy’ are known (SST, SSS, pHsw) to explore

the effects of analytical noise (random and autocorrelated) and calibration period length on

both SMITE SST and pHsw reconstructions. Then, as proof-of-concept, we apply the SMITE

method to an array of seven coral variables (B/Ca, δ11B, Li/Ca, Mg/Ca, Sr/Ca, U/Ca & Li/Mg)

measured on two Porites astreoides corals collected from the northern fringing reef of Ber-

muda. These six unique geochemical variables (with the addition of Li/Mg) were chosen to

capture a wide array of potential temperature and pHsw dependencies to maximize covariance

between the coral variable field and the reconstruction targets. We then examine two ways in

which users can exercise control on SMITE reconstruction skill: through selective exclusion of

coral variables in the SMITE method, and through a regularization technique that helps con-

strain SMITE model parameters with minimal impact on reconstruction skill. Finally, based

on these findings, we provide a list of recommendations for new SMITE users while suggesting

key areas where its use would best improve coral-based climate reconstructions.

2 Materials and methods

2.1 SMITE method theory and derivation

Multivariate estimations of any climate target from an array of coral variables (e.g., Sr/Ca,

δ11B, linear extension rate) can be represented as a classic inverse problem:

Ax ¼ b ð1Þ

Where A is a matrix of age-modeled coral variables, with p columns denoting each unique var-

iable and t rows denoting time. Vector b is of length t denoting the climate target across time;

and x is a vector of length p denoting the model parameters that relate A to b. Thus, x contains

the regression coefficients that correspond to each coral variable in the A matrix and its rela-

tionship to b. Ideally, the matrix-vector product, or dot-product, of A and x would yield a per-

fect estimate of the climate target of interest, b.
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If A has an inverse (A0), then x could easily be solved as A0b. Since only square matrices

have inverses, one approach is to calculate the inverse of the square p by p correlation matrix

of A, assign b as a vector of length p containing the correlation coefficients of each coral vari-

able to the climate target, and then solve. However, coral variable data are often highly collin-

ear, and so the model parameters (i.e., the regression coefficients contained in x) estimated by

this approach would be highly unstable and non-reproducible across space and time.

To bypass the issue of collinearity, the SMITE method utilizes the generalized inverse, or

pseudoinverse, solution [49, 50] to calculate model parameters for SST and pHsw estimates

from a non-specific array of coral variables. It begins by performing a singular value decompo-

sition [51, 52] on the coral variable field.

Aa ¼ USVT ð2Þ

Where Aa is a matrix of age-modeled z-score normalized (μ = 0, σ = 1) coral variables, with p
columns denoting each variable and t rows denoting time. According to the SVD, Aa can be

decomposed into three orthogonal matrices: U, S, and V, where U and V contain basis vectors

spanning the data space and the column space, respectively. They are thus column-orthogonal

to each other, and each contain the loadings or eigenvectors of the coral variable field. The

diagonal matrix S contains the singular values of the coral variable field in descending order,

representing the variance explained by each eigenvector (or percent variance explained, when

normalized by the sum of the diagonal). The SVD and the eigendecomposition, a perhaps

more familiar technique that is often used during Empirical Orthogonal Function analysis

[53], yield identical results when applied to the covariance matrix of a particular data field. In

this case, the eigenvalues calculated from the eigendecomposition are identical to the singular

values calculated from the SVD, and the eigenvectors are identical to the U and V matrices.

However, the SVD offers a number of additional benefits over the eigendecomposition, one of

which is that it can be applied to non-square matrices [54]. Therefore, all information between

coral variables is retained when calculating SMITE model parameters utilizing the SVD.

As mentioned before, A0 cannot be determined because A is not square, and calculating the

inverse of the covariance matrix of A creates collinearity and violates one of the basic assump-

tions of regression (independent predictor variables). However, we have shown that the z-

score normalized coral variable field matrix Aa can be decomposed into three orthogonal

matrices, for which an inverse does exist. Thus, a generalized inverse, or ‘pseudoinverse’, of

the A matrix (A†) can be calculated by rearranging the terms of the decomposed A matrix.

Ay ¼ VS�1UT ð3Þ

Consequently, a pseudoinverse solution [55] can be calculated from the dot-product of A†

and b.

xy ¼ Ayb ¼ VS�1UTb ð4Þ

Where x† is a vector of length p containing the SMITE model parameters for each unique coral

variable. Henceforth, we will simply refer to the x† vector as SMITE model parameters. We

will refer to the specific value of each SMITE model parameter as its ‘x† value’. Thus, the dot-

product of the z-score normalized coral variable field matrix and SMITE model parameters

yield normalized estimates of the climate target of interest.

Aaxy ¼ b̂a ð5Þ
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These can then easily be converted to absolute estimates using the standard deviation (σ)

and mean (μ) of the climate target in the calibration dataset.

b̂ ¼ ðb̂a∗sbÞ þ mb ð6Þ

Importantly, the pseudoinversion of the A matrix and the calculation of x† assumes that the

columns of A exhibit a linear relationship to b. In the case of coral SST proxy data, the assump-

tion of linearity often holds within a particular temperature range [56]. However, if nonlinear-

ity is observed in a particular variable’s relationship to the climate target of interest, it may be

necessary to transform the coral variable prior to its entry into the A matrix so that it exhibits a

more linear relationship to the climate target of interest.

Prior to calculating SMITE model parameters in Eq 4, higher order singular values (i.e.,

ones describing less variance in the dataset) and their corresponding basis vectors in U and V
can be ‘truncated’ from the pseudoinverse of the coral variable field.

AyT
¼ VTS

�1

T UT
T ba ð7Þ

Where subscript T denotes that the corresponding matrix has had certain columns removed

or truncated. This is a common regularization technique used in Principal Components

Regression [57]. The accuracy, precision, correlation, and reproducibility of any SMITE recon-

struction can vary depending on the level of regularization implemented (see sections 3.2.2

and 4.2). Ideally, this step is taken to remove singular values that are close to zero and prevent

the SMITE method from overfitting the model to random noise and or variability not related

to the climate target of interest. We provide guidance for choosing the optimum level of regu-

larization in section 3.

The procedure for reconstructing SST or pHsw from an array of coral variables using the

SMITE method is listed below, along with a procedural diagram (Fig 1).

1. Age-modeled coral variables are arranged into a matrix with columns denoting each coral

variable and rows denoting time (A).

2. A subset of A is created for calibration (Ac).

3. Ac is z-score normalized (Aac; mean-subtracted, divided by the standard deviation).

4. SST is (if necessary) resampled to the same frequency as the coral variable data and z-score

normalized (ba).

5. An SVD is performed on Aac to yield three orthogonal matrices, U, S, and V (Eq 2).

6. (OPTIONAL) The U, S, and V matrices are truncated to remove higher order singular val-

ues (Eq 7).

7. SMITE model parameters (x†) are calculated by rearranging the terms of the SVD (Eq 4).

8. Aac and x† are dot-multiplied to yield predicted climate target anomalies during the calibra-

tion period (b̂a)(Eq 5). To yield predicted climate anomalies for the entire length of the

record, A must be z-score normalized using the mean and standard deviation of the calibra-

tion dataset (Aa) before it is dot-multiplied to x†.

9. Predicted climate target anomalies are converted to absolute climate target estimates (b̂)

using the mean and standard deviation from the calibration dataset (Eq 6).

PLOS ONE Reconstructions of SST and seawater pH using the novel SMITE method

PLOS ONE | https://doi.org/10.1371/journal.pone.0305607 June 25, 2024 5 / 32

https://doi.org/10.1371/journal.pone.0305607


Fig 1. Procedural diagram for implementing the SMITE method on a coral variable dataset.

https://doi.org/10.1371/journal.pone.0305607.g001
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2.2 Synthetic pseudoproxy dataset

We created three synthetic ‘pseudoproxies’ (Sr/Ca, δ18O, δ11B) with various amounts of envi-

ronmental information encoded into each, based on their theoretical dependence on SST, SSS

and pHsw (Fig 2). Because we created this dataset with three coral variables and three potential

climate targets, this is considered a square system (i.e., the number of predictor variables

equals the number of unknown variables), which is important when considering regularization

(see sections 3.2.2 and 4.2). The means by which we calculated these three synthetic pseudo-

proxies are highly idealized, meaning that each pseudoproxy has a near-perfect relationship

with its corresponding climate target(s). However, the uncertainty in each proxy’s relationship

to the climate target is considered in our experimental design, which examines how uncer-

tainty in reconstructed SST and pHsw estimates increases as the degree of Gaussian and auto-

correlated noise increases. The magnitude of Gaussian noise and autocorrelation considered

in our experiment (Table 1) is beyond the typical range observed in most coral-based paleocli-

mate studies [16, 58, 59]. We expect therefore that all linear sources of uncertainty, and their

subsequent impacts on SST and pHsw estimates, are accounted for in this conservative analysis.

The minimum uncertainty for each synthetic pseudoproxy was taken from the literature as

Fig 2. Monthly time series of three synthetic pseudoproxies (B) calculated from environmental information spanning the 20th century off the east

coast of Australia (A) [62, 63]. The gray shaded region in each panel, which is barely visible, indicates the minimum (analytical) uncertainty associated

with each pseudoproxy. All three pseudoproxies exhibit an idealized relationship with their corresponding environmental variable(s) of interest (Sr/

Ca * SST; δ18O * SST + SSS; δ11B * SST + SSS + pHsw).

https://doi.org/10.1371/journal.pone.0305607.g002

Table 1. Mean (μ), standard deviation (σ), range of analytical errors (�), and correlation coefficients (r) for all synthetic proxies to each environmental variable.

Synthetic Proxy μ σ �min − �max (RSD) r − SST r − SSS r − pHsw

Sr/Ca (mmol/mol) 8.98 0.12 0.009–0.180 (0.1–1.9%) −1.00 0.68 0.54

δ18O (‰) −5.49 0.51 0.10–0.21 (1.8–3.7%) −0.98 0.80 0.50

δ11B (‰) 22.90 0.66 0.18–0.62 (0.78–2.68%) −0.92 0.63 0.82

https://doi.org/10.1371/journal.pone.0305607.t001
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analytical uncertainty. For synthetic Sr/Ca values, this was taken to be 0.009 mmol/mol, or

approximately 0.1% RSD [14]. For synthetic δ18O values, we used an analytical uncertainty of

0.1‰ [60]. For synthetic δ11B values, analytical uncertainty was taken to be 0.09‰ [61].

Monthly SST and pHsw data from the Great Barrier Reef (18.5˚S, 149.5˚E) between 1900

and 2000 were acquired from Lenton et al. (2016) [62], a 20th century reconstruction of SST,

SSS and pHsw across the Great Barrier Reef (n = 1212). SSTs ranged from 21.83˚C to 29.69˚C

(μ = 25.92˚C ± 1.91, 1σ), with a minor but significant warming trend of 0.08˚C per decade

(p < 0.0001). Seawater pH ranged from 8.09 to 8.21 (μ = 8.16 ± 0.03) and exhibits two signifi-

cant negative trends pre-1950 (0.004 units per decade) and post-1950 (0.014 units per decade).

Although SSS data are also available from this dataset for the same time interval, these data

simply repeat the same annual cycle of SSS throughout the 20th century with no interannual

or decadal variability. To better reproduce long-term changes in SSS, we used SSS data from

the ORA20C dataset [63] from the same location and time interval. This dataset extends back

through the 20th century and is an advanced data assimilation product that tunes the output

of the European Center for Medium-range Weather Forecasts twentieth century reanalysis,

ERA-20C, to in situ observations. SSS variations from this location in the ORA20C dataset

exhibit a highly skewed left distribution (μ = 33.69 ± 0.43 psu), with values ranging from 31.61

to 34.17 due to episodic freshwater runoff events.

According to hindcast archived data from the CSIRO Environmental Modelling Suite

implemented by the Australian Institute of Marine Science (https://research.csiro.au/cem/

software/ems/), SSS in this region between 2010 and 2022 ranged from 34.7 to 35.6 psu and

exhibit a slightly skewed left distribution (μ = 35.23 ± 0.16 psu). We acknowledge that the dis-

tributions of ORA20C and CSIRO SSS are statistically distinct from one another, both in

terms of mean and variance (p < 0.001). However, the purpose of including SSS in the syn-

thetic experiment is to create interference in both synthetic δ18O and δ11B values for recon-

structing SST and pHsw, respectively. Thus, there are two important aspects of SSS that we

wish to reproduce for the purposes of this experiment: long-term variability (interannual to

decadal), and the covariance between SSS and SST. The ORA20C SSS dataset for this region

exhibits substantial interannual and decadal-scale variability, while the Lenton et al. (2016) SSS

dataset exhibits none. With respect to covariance, the CSIRO dataset shows that SST and SSS

are moderately anti-correlated in this region (r = −0.58). SST and SSS data from Lenton et al.

(2016) exhibit a slightly weaker anti-correlation (r = −0.53), while SST data from Lenton et al.

(2016) and ORA20C SSS exhibit a slightly stronger anti-correlation (r = −0.68). Since

ORA20C SSS exhibits both long-term variability and similar covariance to SST as the observed

CSIRO data, we chose to use the ORA20C SSS dataset for our synthetic experiment.

Synthetic Sr/Ca ratios were calculated as a function of SST using the mean slopes and inter-

cepts for the Sr/Ca * SST relationship from Corrège (2006) [13].

Sr=Cac ¼ �0:0607ð0:0090ÞSST þ 10:553ð0:292ÞSSS ð8Þ

Where SST is sea surface temperature in degrees Celsius. Synthetic Sr/Ca (Sr/Cac) ratios ran-

ged from 8.75 to 9.23 mmol/mol (μ = 8.98 mmol/mol ± 0.12).

Synthetic δ18O values were calculated as a function of both SST and SSS using equation 1

from Thompson et al. (2011) [64].

d
18Oc ¼ �0:22SST þ 0:27SSS ð9Þ

The regression slopes for SST and SSS were chosen using the same criteria from Thompson

et al. (2011). The SST slope is the organic slope of the δ18O and SST relationship, while the SSS
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slope is based on basin-scale seawater δ18O and SSS regression estimates [65]. Synthetic δ18O

values ranged from −6.74 to −4.52‰(μ = −5.49 ± 0.51‰).

Synthetic δ11B values were calculated as a function of SST, SSS and pHcf. They were deter-

mined by rearranging the pH-dependent equation from Zeebe and Wolf-Gladrow (2001) [48]

to solve for the boron isotope ratio of carbonate (δ11Bc).

d
11Bc ¼ pKB � log

d
11Bsw � d

11Bc

d
11Bc � d

11Bsw þ 1000ða � 1Þ

� �

ð10Þ

Where the boron isotope ratio of seawater (δ11Bsw) is 39.61‰ [66], and the mass fraction factor

between boric acid and borate ion (α) is 1.0272 [67]. The negative log of the dissociation con-

stant between boric acid and borate ion (pKB) is a function of both temperature and salinity

[68]. We therefore calculated pKB at each time interval by taking the negative log of the KB

equation from Dickson (1990) [68]. The values of pKB ranged between 8.56 and 8.64 given a

temperature range between 21.83 and 29.69˚C and a salinity range between 31.61 and 34.17

psu.

These calculations yield synthetic δ11B values between 18.30 and 19.64‰, which is expected

given the pH of seawater. However, corals upregulate their internal pH relative to seawater

[46] while also often exhibiting increased seasonal variance [69]. Thus, to yield synthetic δ11B

values consistent with those observed in coral aragonite, we calculated pHcf from pHsw using

equation 13 from D’Olivo et al. (2019) [7].

pHcf ¼ 0:49pHsw þ 4:93 � 0:02SST ð11Þ

Note that the temperature sensitivity of synthetic δ11B values is realized in its dependence

on both pKB as well as pHcf as specified in Eq 11. Meanwhile, the salinity sensitivity of synthetic

δ11B values is only realized in its dependence on pKB. Synthetic δ11B values ranged from 22.21

—24.10‰ (μ = 23.17‰± 0.41).

2.3 P. astreoides application study

2.3.1 Coral sampling and sample preparation. In November 2014 a 5 cm diameter core

was sampled from two P. astreoides colonies (1B and 3B, respectively) located on Hog Reef,

Bermuda (32.457˚N, 64.835˚W), at a depth of 10 and 12 m using a 1 horsepower hand-held

pneumatic air drill with a custom made 5-by-15 cm diamond core bit (Fig 3). Corals were sam-

pled as close to the National Oceanographic and Atmospheric Administration’s PMEL

MAPCO2 buoy moored at Hog Reef as possible (within 5 m). After sampling, voids in the

coral skeleton were filled with cement plugs to prevent boring organisms from inhabiting the

holes, and to encourage further coral growth. Cores were then transported to the University of

Southampton for geochemical analyses. The outer tissue layers of each coral core were

removed using a WaterPik before being left to soak in pure ethanol for 5 minutes followed by

deionised water. A clean sintered diamond cut-off wheel was used to cut the cores into *7

mm thick slabs, both of which were then divided into two sections. Each section was polished

using a rotary diamond grinder followed by silicon carbide grinding paper down to 4 μm.

Samples were cleaned over two days in a solution of 20% H2O2 and 2.0 M NH3 before being

rinsed, ultrasonicated for 10 minutes, then rinsed again in 18.2 MO (ultrapure) water and left

to dry in a flow box. Finally, the topmost sections containing the most recent growth were

mounted onto glass slides in preparation for geochemical analyses.

2.3.2 Geochemical analysis. Geochemical analyses were carried out at the Geochemistry

laboratory, School of Ocean and Earth Sciences, University of Southampton. Elemental analy-

ses (Li, B, Mg, Ca, Sr, U) were performed on an Agilent (Agilent Technologies Inc., CA, USA)
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8900 Triple Quadrupole ICP-MS coupled to an Elemental Scientific Lasers (Bozeman, MT,

USA) NWR193 excimer laser ablation system with a TwoVol2 ablation chamber. On-peak

blank corrections based on the mean intensities of preceding and succeeding blank measure-

ments were applied offline, as was instrumental drift and mass bias corrections which

employed sample-standard bracketing with coral reference material JCp-1 (Porites sp. coral)

using the values published by Hathorne et al. (2013b) [40]. Samples and standards were ablated

in line mode, with sample analyses ablating the same tracks previously used for the δ11B analy-

ses (see below). Standard analysis consisted of approximately 285 integration cycles of 0.42 s.

Samples were analyzed along 30 parallel and adjoining tracks amounting to *6 mm long tran-

sects that each consisted of *1400 integration cycles of 0.42 s. Operating conditions are

detailed in Table 2. Reference material PS69/318–1, a cold-water calcitic scleraxonian octo-

coral coral, was ablated throughout the analytical session as a guide to accuracy, internal preci-

sion, and external reproducibility (n = 10). Internal precision, expressed as 2 standard errors

(SE) of the mean of 1200 integration cycles, was �7% for B/Ca, Mg/Ca, and Sr/ Ca, and �16%

for Li/Ca, U/Ca and Li/Mg. External reproducibility, expressed as 2σ of the mean of the 10

Fig 3. Collection site of P. astreoides corals 1B and 3B on the northern fringing reef of Bermuda. The yellow diamond indicates the location of National

Oceanographic and Atmospheric Administration’s PMEL MAPCO2 buoy moored at Hog Reef (32.457˚N, 64.835˚W), meters from where corals 1B and 3B

were cored. The red diamond indicates the location of the Bermuda Atlantic Time-series Study (BATS) sampling station (*32.67˚N, 64.17˚W. The red

box on the inlayed map indicates the borders of the larger map. Bathymetry data displayed was collected from the National Oceanographic and

Atmospheric Association via the open-source R package ggOceanMaps [70]. Shoreline data are republished from [71] under a CC BY license, with

permission from Dr. Walter H.F. Smith, original copyright 1996.

https://doi.org/10.1371/journal.pone.0305607.g003
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analyses, was <6% for B/Ca, Mg/Ca, Sr/ Ca and Ba/Ca, 12% for Li/Ca and Li/Mg, and 29% for

U/Ca. Mean accuracy was within 10% of solution values for all ratios except Li/Mg which was

within 11% [72].

Boron isotope analyses were performed on a Thermo Scientific Neptune Plus MC-ICP

mass spectrometer coupled to an Elemental Scientific Lasers NWR193 excimer laser ablation

system with a TwoVol2 ablation chamber, broadly following previously described analytical

protocols [59, 73]. Data were collected in static mode, with 10B and 11B measured on the L3

and H3 Faraday cups, both of which were installed with 1012O resistors. The laser system was

again operated in line mode, with standard measurements consisting of 100 integration cycles

of 2.194 s (100–120 μm laser beam diameter) and sample measurements consisting of *282

integration cycles of 2.194 s (150 μm laser beam diameter). Prior to data collection, standards

and samples were ablated to remove any surface contamination (laser power density of *2 J

cm-2, laser repetition rate of 10 Hz, laser tracking speed of 200 μm s-1). Dynamic blank correc-

tions were applied cycle by cycle assuming a linear relationship between preceding and suc-

ceeding blank measurements (each consisting of 22 integration cycles of 2.194 s); instrumental

mass bias was corrected by sample-standard bracketing with glass reference material NIST

SRM610 and the isotope composition published by le Roux et al. (2004) [74] and Standish

et al. (2019) [59]; and matrix interferences from scattered ions [59] were corrected based on

the power-relationship between δ11B inaccuracy and 11B/Cainterference for pressed pellets of car-

bonate reference materials JCp-1 and JCt-1 (Tridacna gigas), and where Cainterference was

Table 2. Typical operating conditions for laser ablation ICP-MS analysis.

δ11B isotope analysis Trace element analysis

Instrument

Mass Spectrometer Thermo Scientific Neptune Plus multi-

collector inductively coupled plasma mass

spectrometer

Agilent 8900 Triple Quadrupole inductively

coupled plasma mass spectrometer

Laser Ablation

System

Elemental Scientific Lasers NWR193 excimer

laser ablation system with a TwoVol2

ablation chamber

Elemental Scientific Lasers NWR193 excimer

laser ablation system with a TwoVol2

ablation chamber

RF Power 1400 W 1550 W

Cones Nickel skimmer (X) and jet sample Standard nickel sample cone and XT

skimmer

Gas Flows

Cooling gas (argon) 16 l min−1 13 l min−1

Auxiliary gas

(argon)

0.7 l min−1 0.8 l min−1

Make-up gas

(argon)

1.0 l min−1 0.6 l min−1

Ablation cell carrier

gas (helium)

0.85–1.00 l min−1 0.5 l min−1

Additional gas

(nitrogen)

0.004–0.007 l min−1 0.01 l min−1

Ablation

Conditions

Laser power density *4 J cm−2 *1.8 J cm−2

Laser repetition rate 12 Hz 5 Hz

Laser beam size 100–150 μm diameter 150 μm diameter

Laser tracking speed 10 μm s−1 10 μm s−1

Ablation mode Line Line

https://doi.org/10.1371/journal.pone.0305607.t002
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measured at m/z of 10.10 on the L2 Faraday cup. All corrections were applied offline. Standard

data were screened, with cycles falling outside 2σ of the mean removed. Internal reference

material PS69/318–1 was ablated throughout the analytical session as a guide to internal preci-

sion, external reproducibility, and accuracy. Internal precision, expressed as 2SE of the mean

of the 100 integration cycles, was �0.4‰. The mean δ11B of the repeat analysis (n = 18) was

13.61 ± 0.54‰(2σ), consistent with a solution measurement of 13.83 ± 0.29‰ [59].

2.3.3 Age model and environmental reconstructions. For each coral we combined 10

adjoining and parallel laser transects into a single time series for each geochemical variable

by averaging data in depth space. We report the uncertainty on the mean for each measure-

ment as the SE of the 10 parallel laser transects. An age model was then constructed based

firstly upon consideration of an x-ray image showing density banding and the date of collec-

tion. This was then refined by tuning annual variations in Sr/Ca to SST, where minima, max-

ima, and mid-points were considered contemporaneous with SST maxima, minima, and

mid-points, respectively. Using this method, we calculate that data from coral 1B ranges

from June 2010 to April 2013, and data from coral 3B ranges from June 2010 to September

2013.

We created an in situ SST and pHsw dataset ranging throughout the study period (May

2010 to September 2013) by combining two independent in situ environmental datasets

from the northern fringing reef of Bermuda. The first dataset (from January 2011 to Septem-

ber 2013) was acquired from the National Oceanographic and Atmospheric Administration

PMEL MAPCO2 buoy moored at Hog Reef (32.457˚N, 64.835˚W). Corals 1B and 3B grew

several meters away from the Hog Reef Buoy, which has been continuously measuring sea-

water partial pressure CO2, SSS and SST since 2011 with only minor interruptions (https://

www.pmel.noaa.gov/co2/story/Hog+Reef). A continuous record of SST and pHsw was calcu-

lated from these data by assuming a constant seawater alkalinity of 2357 μmol/kg [75] for

most of the study interval (July 2011 to March 2013) and solving the full carbonate system

using alkalinity and the partial pressure of CO2 using the seacarb package in R [76]. This

assumption is justified because both CO2 and pHsw are determined by the alkalinity / dis-

solved inorganic carbon ratio [77], therefore using a range of alkalinity from 2300 to 2400

μmol/L (the range observed by Courtney et al., 2017 [75]) changes our estimate of pHsw by

only 0.015 pH units.

To extend our environmental data beyond the interval covered by the Hog Reef Buoy to the

bottom of our time series, we utilized a second dataset consisting of shipboard SST and pHsw

data acquired from the Bermuda Atlantic Time-series Study [78, BATS; 32.67˚N, 64.17˚W],

which has been measuring SST and pHsw at monthly intervals since 1983. Due to both the dis-

continuous nature of the BATS data, and the lack of Hog Reef data prior to 2011, we estab-

lished a linear model between BATS and Hog Reef SST (n = 41, r = 0.78, p < 0.001) as well as

BATS and Hog Reef pHsw (n = 41, r = 0.83, p < 0.001). We then created an in situ SST and

pHsw calibration dataset by combining the predicted values of Hog Reef data (when BATS data

was available) and observed Hog Reef data (when BATS data was not available).

Finally, we calculate Sr/Ca-derived SST estimates for corals 1B and 3B using ordinary least

squares regression, and we calculate δ11B-derived pHsw using Eqs 10 and 11. To estimate pKB,

we use our combined BATS and Hog Reef in situ SST dataset, as well as SSS data from BATS

alone. SSS on Hog Reef is relatively invariant, and there is little offset between Hog Reef SSS

and BATS SSS. Missing SSS values from the BATS dataset (3 out of 40 months) were linearly

interpolated between adjacent months for the purposes of generating a continuous pKB

dataset.
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2.4 Error assessments

We use three metrics to quantitatively compare SMITE SST and pHsw estimates with those

derived from Sr/Ca ratios and δ11B values, respectively: the correlation coefficient (r), the root-

mean squared error (RMSE), and the standard error of prediction (SEP). Each metric provides

a measure of the correlation, accuracy, and precision of the reconstruction, respectively. The

SEP is defined as the uncertainty in derived SST estimates based on the uncertainty in both the

climate target (SST, pHsw) as well as the uncertainty in the corresponding coral variable(s).

Given that our SST measurements are derived from, or modeled after, temperatures derived

from in situ loggers, uncertainty for temperature was fixed at 0.02˚C (https://www.onsetcomp.

com/products/data-loggers/u22-001). Uncertainty for our pHsw measurements were fixed at

0.02 units. Uncertainty for SSS measurements (used in calculating pKB for δ11B-derived pHsw

estimates) were based on BATS CTD measurements and also fixed at 0.02 psu.

The SEP for each climate target reconstruction is calculated using a bootstrap Monte Carlo

approach. At each iteration (i = 1,. . .,10000), each individual measurement in both the coral

variable and climate target fields are randomly resampled from a normal distribution with a

mean equal to the given variable/climate target value (μi) and a standard deviation equal to the

specified error (si). Model parameters are then estimated from the perturbed coral variable

and climate target fields, and SST/pHsw estimates for each data point are stored. The 95% con-

fidence interval for each predicted value is determined from the distribution of predicted val-

ues derived from each Monte Carlo iteration. The SEP is then determined as the average

distance from the mean to the upper and lower bounds of the 95% confidence interval, divided

by 1.96 [79]. The 95% confidence interval for the SEP itself is then defined as the standard

deviation of the SEP throughout each calibration dataset, multiplied by 1.96.

3 Results

3.1 Synthetic study

We utilized our synthetic proxy dataset (Sr/Ca, δ18O, δ11B) to assess the relative impact of

Gaussian noise on SMITE SST and pHsw reconstructions (Fig 4). The top panels (A-B) show

the SMITE SST and pHsw reconstructions relative to their respective climate targets through-

out the 20th century as we progressively increased Gaussian noise by relative standard devia-

tion (RSD). The bottom panels (C-D) show the maximum and minimum RMSE (translucent

regions) and SEP (opaque regions) for SMITE SST and pHsw estimates (black), Sr/Ca SST

(orange) and δ11B pHsw (green) at each noise increment. We emphasize that the mean value of

each synthetic proxy measurement exhibits the ideal relationship with the climate target, while

the upper and lower bounds of the 95% confidence interval for each measurement (which

increases as Gaussian noise increases) represent maximum deviation from the ideal. The mini-

mum RMSEs depicted in Fig 4C and 4D (lower bounds of the translucent regions) are calcu-

lated from the idealized mean values of each measurement. In practice, these minimum

RMSEs would be achieved under two conditions: a perfect relationship between the proxy and

the climate target, and a near-limitless number of repeat sample analyses.

Conversely, the maximum RMSEs (the upper bounds of translucent regions) are calculated

from the average RMSE between the upper and lower bounds of the 95% confidence interval

for each reconstruction. They are thus representative of how high RMSEs could be, given a cer-

tain level of noise and disregarding the benefits of repeat sample analysis. Therefore, the maxi-

mum and minimum RMSEs for each reconstruction method represent two extremes. Given a

certain level of noise, any study would exhibit RMSEs closer to one or extreme or the other

depending on the quality of the ‘true’ relationship between the proxy and the climate target, as
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well as how many repeat analyses could be conducted on a particular sample. A companion

assessment examining the effect of autocorrelated noise is available in the supplemental mate-

rial (S1 and S2 Figs), which shows far less impact than Gaussian noise except for at very high

values of the lag-1 autocorrelation coefficient (>0.9).

We observe from the similarities between SMITE SST estimates and ‘true’ SST in Fig 4A

(red and black lines, respectively), as well as the shallow slope of the SEP and RMSE in

response to noise in Fig 4C, that SMITE SST estimates in the synthetic dataset are highly

robust to even exceptionally high levels of Gaussian noise. For synthetic Sr/Ca SST, the SEP

and the maximum RMSE exhibit a linear relationship with Gaussian noise, which is expected

given the linearity between synthetic Sr/Ca ratios and SST. At low levels of noise (< +0.2%

RSD), SMITE follows this same pattern of linearity between reconstruction statistics and

noise. However, as noise continues to increase, the slope of SMITE’s reconstruction statistics

shoals, leading to significant improvements in SMITE SST reconstructions relative to Sr/Ca

alone. This shallowing of the reconstruction statistics in response to noise can be directly

Fig 4. SMITE SST and pHsw reconstructions for the 20th century (A-B), and reconstruction statistics for SMITE SST, Sr/Ca SST (C), SMITE pHsw,

and δ11B pHsw (D) across various levels of Gaussian noise. (A-B) Each panel represents the factor by which Gaussian (analytical) was increased in terms

of relative standard deviation (RSD). Black lines represent the SMITE reconstruction for the 20th century at each noise increment. Colored lines represent

the climate targets over the same period (SST = red, pHsw = green). (C-D) The RMSE (translucent shaded region) and SEP (opaque shaded region) for SST

and pHsw estimates derived from the SMITE method are black, while the colored regions represent the RMSE and SEP for Sr/Ca SST (orange) and δ11B

pHsw (green). Like the panels in A and B, the x-axis represents the factor by which Gaussian (analytical) noise was increased in terms of RSD. The upper

and lower bounds of each shaded region represent the maximum and minimum values for the RMSE and SEP at each noise increment.

https://doi.org/10.1371/journal.pone.0305607.g004
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attributed to SMITE’s increasing dependence on δ18O as noise increases (Fig 5), which in turn

is due to the improved sensitivity of synthetic δ18O as a paleothermometer relative to Sr/Ca at

higher noise levels.

For the synthetic pHsw reconstructions (Fig 4B and 4D), δ11B reconstruction statistics also

exhibit a linear relationship with increasing noise levels, like the reconstruction statistics

observed from synthetic Sr/Ca SST. The rapid increase in pHsw reconstruction error at the

first noise increment (+0% RSD) can be explained by the higher baseline uncertainty for syn-

thetic δ11B (0.40% RSD) relative to Sr/Ca (0.10% RSD), and the 0.1% RSD increase at each

noise increment thereafter. We also observe that SMITE pHsw SEP and maximum RMSEs

remain well below that of δ11B alone, with the difference in reconstruction skill increasing as

noise increases. This remains true at all noise increments, even as SMITE model parameters

remain preferentially weighted towards δ11B (Fig 5B).

However, we note two key differences between the synthetic SST and pHsw reconstructions.

First, we observe that when no noise is implemented into the system, synthetic δ11B pHsw esti-

mates outperform those derived from SMITE by a small margin. This is due to the idealized

relationship between synthetic δ11B values and pHsw, which follows Eqs 10 and 11. Conversely,

SMITE simply treats δ11B as linearly correlated with pHsw and considers its covariance with

Sr/Ca and δ18O. Thus, SMITE makes no assumptions regarding the relationship between pHsw

and pHcf nor changes pKB, which would confound the pHsw signal due to interference from

SST and SSS. SMITE only considers the uncertainties in the coral variable field, which we have

defined at each noise increment as a percent-RSD increase from baseline uncertainty. Second,

SMITE pHsw estimates are far less skillful than SMITE SST estimates, particularly when con-

sidering the long-term trend as noise levels increase (Fig 4A and 4B).

The loss in both long-term and short-term variance for SMITE pHsw estimates results from

the compounding effects of relatively high uncertainty in synthetic δ11B, as well as the distribu-

tion of SMITE model parameters. Unlike SST (which is encoded in all three synthetic vari-

ables), information associated with pHsw is only reflected in synthetic δ11B. Thus, SMITE is

Fig 5. Synthetic SMITE model parameters for SST (A) and pHsw (B) as Gaussian noise is increased from minimum (analytical) uncertainty in terms

of relative standard deviation (RSD). The color of each line denotes the proxy associated with each model parameter (orange = Sr/Ca, blue = δ18O, green

= δ11B). The shaded region around each line indicates the 95% confidence interval associated with that model parameter.

https://doi.org/10.1371/journal.pone.0305607.g005
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fully dependent on synthetic δ11B to capture the long-term trend in pHsw. At the first noise

increment, the long-term trend in SMITE pHsw estimates (*0.085 units) is approximately

70% of the long-term pHsw trend (*0.12 units). Nearly 0.02 pH units of this 0.035-unit dis-

crepancy can be explained by the uncertainty in synthetic δ11B (0.18‰ at the first noise incre-

ment). The remaining discrepancy of 0.015 pH units can be explained by the fact that δ11B

only contributes to 57% of SMITE pHsw estimates at the first noise increment (Fig 5B). The

remaining 43% are divested into synthetic Sr/Ca and δ18O, both of which exhibit virtually no

long-trend. Thus, only a fraction of the long-term trend in pHsw captured by synthetic δ11B is

propagated through the SMITE model. As noise increases throughout the experiment, the sum

of the SMITE model parameters decreases, uncertainty in synthetic δ11B values continues to

rise, and the resulting SMITE pHsw reconstruction exhibits progressively smaller variance.

Despite the loss of long-term variance, SMITE still yields more accurate and precise predic-

tions of pHsw at all noise increments where noise is present relative to synthetic δ11B alone.

This is due to the large 95% confidence interval associated with synthetic δ11B pHsw estimates

once noise is introduced into the system, which is propagated by the uncertainty in synthetic

δ11B, SST and SSS (which influence pKB and pHcf), and pHsw. However, as mentioned before,

the negative effects of the large confidence interval in synthetic δ11B can be mitigated by repeat

sample analysis. Thus, given a certain number of repeat analyses according to the central limit

theorem, it is possible for both synthetic δ11B pHsw and synthetic Sr/Ca SST estimates to out-

perform estimates derived from SMITE, since minimum SMITE RMSEs remain higher than

both throughout the experiment. However, in practice, this would require both an idealized

relationship between the proxy and the climate target in addition to repeat sample analyses.

We also assessed how SMITE model parameters varied with different calibration period

lengths (Fig 6). In this experiment, we fixed the noise level at +0% RSD (baseline uncertainty)

and increased the calibration period for the SMITE method from 5 to 100 years in five-year

increments. For the SST reconstruction, x† values for each SMITE model parameter remain

fixed at -0.92 (Sr/Ca), -0.08 (δ18O), and -0.01 (δ11B) throughout the course of the experiment.

Fig 6. Synthetic SMITE model parameters for SST (A) and pHsw (B) as the calibration period is increased from five to one hundred years in five-year

increments. The color of each line denotes the proxy associated with each x† value (orange = Sr/Ca, blue = δ18O, green = δ11B). The shaded region around

each line indicates the 95% confidence interval associated with that model parameter.

https://doi.org/10.1371/journal.pone.0305607.g006
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This suggests that SMITE SST model parameters are stable with only five years of calibration

data (the first increment we tested). Conversely, model parameters for the SMITE pHsw recon-

struction take approximately 30 years to stabilize due to high levels of uncertainty. Again, this

is likely because δ11B is the only synthetic proxy in this dataset that is sensitive to pHsw, and

the long-term trend in pHsw increases in magnitude halfway through the 20th century.

3.2 Application study

Seven coral skeletal geochemical variables (B/Ca, Li/Ca, Mg/Ca, Sr/Ca, U/Ca, δ11B + Li/Mg)

were measured and age-modeled from both Bermudan P. astreoides corals between June 2010

and September 2013 (Fig 7). For ease of interpretation, each coral variable was z-score normal-

ized (black lines) and plotted alongside mean-standardized SST (orange lines) and pHsw

Fig 7. Z-score normalized monthly-averaged coral variable data (black lines) from P. astreoides corals 1B (left) and 3B (right). In situ normalized SST

(orange lines) and pHsw (green lines) are plotted inside each panel to show each proxy’s relative correlation to the climate target. Data from coral 1B were

assigned ages between June 2010 and April 2013 (n = 35). Data from coral 3B were assigned ages between June 2010 and September 2013 (n = 40).

https://doi.org/10.1371/journal.pone.0305607.g007
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(green line). The mean and variance of each coral variable, their respective analytical errors,

and their correlations to both SST and pHsw are provided in S1 Table. In both coral cores (1B

and 3B), Sr/Ca and Li/Mg ratios exhibit the strongest individual correlations to SST (Sr/Ca, r =

−0.85 and −0.77; Li/Mg, r = −0.83 and −0.85). B/Ca also exhibits moderately strong correla-

tions with SST in both corals (r = −0.75 and −0.77, respectively). For pHsw, Sr/Ca and Li/Mg

also emerge as the strongest pHsw indicators, likely due to the moderate anti-correlation of

SST and pHsw at this site (r = −0.85).

SMITE SST and pHsw reconstructions for corals 1B and 3B are shown in Fig 8 (red lines

and shaded region). For comparison, we also plot Sr/Ca-derived SST estimates (calculated

using ordinary least squares regression) and δ11B-derived pHsw (calculated using Eq 10). Note

that for the SMITE reconstructions, we have performed a regularization procedure that slightly

reduces reconstruction skill as a tradeoff for reduced uncertainty in SMITE model parameters

(Eq 7). For an in-depth discussion on the effects of this regularization procedure, see sections

3.2.2 and 4.2. For all reconstructions, the SMITE method is more accurate (RMSE), precise

(SEP), and better correlated to each climate target (r2) than the best or most common single-

proxy estimators.

Fig 8. SMITE-derived SST (A-B) and pHsw (C-D) estimates (red lines) from corals 1B (left) and 3B (right) compared to in situ SST and pHsw (blue

lines). SST and pHsw estimates from the best or most common single-proxy estimators in these corals are plotted as dashed lines in each panel (SST = Sr/

Ca; pHsw = δ11B). The gray shaded region indicates the 95% confidence interval for each SMITE reconstruction. SMITE reconstruction statistics are listed

at the bottom of each panel, with the equivalent statistics for Sr/Ca- and δ11B-derived estimates given in parentheticals.

https://doi.org/10.1371/journal.pone.0305607.g008
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Between corals 1B and 3B, SMITE SST estimates are 5 and 6 times more precise and 21%

and 33% more accurate than those derived from Sr/Ca. Importantly, this notable improvement

in reconstruction skill is not fully realized in the r2 value, where SMITE SST estimates in coral

1B are only marginally better than those derived from Sr/Ca. For the pHsw reconstructions

between corals 1B and 3B, the SMITE method is 7 and 6 times more precise and 5 times more

accurate than δ11B. This vast improvement can largely be attributed to the relatively poor per-

formance of δ11B as a proxy for pHsw in these systems, particularly in coral 1B. However, while

Li/Mg is the strongest pHsw proxy in both corals, it is not often used for pHsw reconstructions

given its known dependence on temperature [56]. Regardless, we still observe large improve-

ments in SMITE pHsw estimates relative to Li/Mg pHsw estimates, with 5 times better precision

and 33% and 50% better accuracy in SMITE than from Li/Mg (S2 Table). We reiterate that this

improvement is not fully realized in the correlation coefficient alone, where SMITE and Li/

Mg-derived pHsw estimates are comparable.

Next, we compare SMITE model parameters between corals 1B and 3B to assess their repro-

ducibility (Fig 9). All SMITE model parameters in both the SST and pHsw reconstructions are

highly reproducible between corals, exhibiting x† values that are nearly identical and/or within

error of each other. Notably, the uncertainty in each SMITE model parameter tends to

decrease as the absolute x† value increases. For reproducibility, it is crucial that variables with

the highest x† values (i.e., have the strongest impact on the reconstruction) are statistically

indistinguishable from one another between corals. Indeed, we see this is the case for the

SMITE SST reconstruction, where x† values associated with Li/Ca, Li/Mg, Mg/Ca, Sr/Ca, and

U/Ca are nearly identical between corals. Consequently, SMITE SST estimates are highly

reproducible between corals, exhibiting significantly better correlations, accuracy, and preci-

sion than the relatively more direct Sr/Ca method (Fig 10A and 10B). We also find that SMITE

pHsw model parameters exhibit very similar x† values between Li/Ca, Li/Mg, Sr/Ca, and U/Ca.

This results in highly skillful SMITE cross-compared pHsw estimates that exhibit similar corre-

lations with superior precision and accuracy relative to those derived from Li/Mg (Fig 10C and

Fig 9. SMITE model parameters for each coral variable corresponding to the SMITE SST reconstruction (A) and pHsw reconstruction (B). The

loadings for each coral (1B & 3B) are indicated by the orange and blue colors, respectively. Error bars represent the 95% confidence interval for each

loading.

https://doi.org/10.1371/journal.pone.0305607.g009
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10D). While this is a relatively small sample size (two corals over a few annual cycles), the level

of reproducibility of both the SMITE SST and pHsw reconstructions between corals is highly

encouraging and warrants more rigorous testing in future studies.

3.3 User-based approaches for modifying SMITE reconstruction skill

3.3.1 Systematic inclusion of coral variables on the SMITE SST reconstruction. An

intuitive procedure that new SMITE users might implement to optimize reconstruction skill

would be to selectively exclude certain coral variables. Therefore, we applied the SMITE

method to every possible combination of 2–7 coral variables (n = 120) in the two Bermudan

corals and examined the subsequent impact on the correlation (r), accuracy (RMSE), and pre-

cision (SEP) of the SMITE SST reconstruction (Fig 11). This experiment was performed with

no regularization implemented (Eq 7). We also provide a complimentary analysis regarding

SMITE pHsw reconstructions in the supplemental information (S3 Fig).

Throughout the experiment, two notable patterns emerge. First, we observe a small but sta-

tistically significant trend (p < 1e−9) towards higher r-values and lower RMSEs for both corals

as more variables are added to the SMITE method. Second, we note that there are certain

Fig 10. SMITE-derived SST (A-B) and pHsw (C-D) estimates (red lines) compared to in situ SST and pHsw (blue lines) when using regression

coefficients derived from the opposite corals. SST and pHsw estimates from the best single-proxy estimators in these corals are plotted as dashed lines in

each panel (SST = Sr/Ca; pHsw = Li/Mg). The gray shaded region indicates the 95% confidence interval for each SMITE reconstruction. SMITE

reconstruction statistics are listed at the bottom of each panel, with the equivalent statistics for Sr/Ca- and Li/Mg-derived estimates given in parentheticals.

https://doi.org/10.1371/journal.pone.0305607.g010
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combinations of coral variables that yield poorer quality reconstructions, indicated by ‘spikes’

in each of the reconstruction statistics. These spikes are particularly noticeable in coral 1B,

which interestingly coincide with when both Li/Mg and Sr/Ca are excluded from the model

(Panels A and B, red points). Furthermore, we note that the magnitude of these spikes

decreases significantly as more coral variables are added to the SMITE SST reconstruction.

3.3.2 Regularization through truncation of singular values. SMITE method users can

reduce uncertainty in SMITE model parameters by removing, or ‘truncating’, higher order (or

less dominant) singular values from the coral variable field dataset (Eq 7). Here we demon-

strate the effects of sequentially truncating singular values on the coral 1B SMITE SST and

pHsw reconstructions (Fig 12). The singular values of both Bermudan coral datasets are shown

in S4 Fig, and a complimentary regularization analysis of coral 3B is provided in S5 Fig. At

first glance, regularization has similar effects between the SMITE SST and pHsw reconstruc-

tions. With each singular value truncated, uncertainty with respect to each SMITE model

parameter is reduced, the correlation coefficient and SEP decrease, and the RMSE increases.

In short, regularization compromises accuracy and correlation in exchange for precision and

reduced uncertainty in SMITE model parameters. The optimum level of regularization

depends on two factors. First, the size of the coral dataset determines how many singular val-

ues can be truncated. Thus, a dataset with a greater number of variables offers greater control

over how much information users could omit from the calibration. Second, regularization

may vary depending on how information related to the climate target of interest is spread

among the singular values.

It is important to note that results from the synthetic dataset are shown with no regulariza-

tion implemented (section 1). With only three coral variables in the dataset (Sr/Ca, δ18O, δ11B)

Fig 11. The correlation coefficient (r; A and D), the root-mean-square-error (RMSE; B and E), and standard error of prediction (SEP; C and F) for

each SMITE SST reconstruction from the Bermudan P. astreoides corals through every combination of the seven coral geochemical variables

(n = 120). The left side of each plot begins with only two coral variables (B/Ca and δ11B). Each line then tracks the corresponding reconstruction statistic as

variables are systematically replaced and added to the SMITE SST reconstruction. Each line thus ends on the final value of each reconstruction statistic

when all seven coral variables are used.

https://doi.org/10.1371/journal.pone.0305607.g011
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and three potential climate targets (SST, SSS, pHsw), only one singular value can be truncated

from the synthetic dataset. As expected, truncating the highest order singular value in the syn-

thetic dataset results in greatly reduced uncertainty in SMITE model parameters that, in the

case of SST, are more stable across noise treatments. However, we also observe a significant

reduction in reconstruction skill. This is likely because in a square system such as this (i.e., an

equal number of climate targets and predictor variables), important climate information could

be stored in even the highest order singular value. Therefore, we recommend only implement-

ing truncation in overdetermined systems, where the number of coral variables is significantly

higher than the number of climate targets.

Fig 12. The effects of truncating singular values from coral 1B on the SMITE SST and pHsw reconstruction. The x-axis in each plot denotes the number

of singular values truncated. Each plot thus shows the progressive effects from no truncation (left) to maximum truncation (right). Truncation occurs from

the highest (least dominant) singular values to the lowest (most dominant) singular values. The first two singular values can never be truncated. Colors

distinguish the results from the SST reconstructions (orange) versus the pHsw reconstructions (green). (A) SMITE model parameters, or x† values, at each

successive level of truncation. Rows denote the SMITE model parameter. The colored bar within each plot indicates the x† value of the corresponding

SMITE model parameter at a given level of truncation. Error bars for each x† value denote the 95% confidence interval based on a Monte Carlo approach.

(B—D) The correlation coefficient (r; B), the standard error of prediction (SEP; C), and the root-mean-square-error (RMSE; D) at each successive level of

truncation.

https://doi.org/10.1371/journal.pone.0305607.g012
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4 Discussion

Here we used a variety of data types to assess the quality of SST and pHsw estimates derived

from the SMITE method, a novel multivariate calibration method that leverages covariance

across a coral variable field to optimize reconstruction skill. Using two Bermudan P. astreoides
corals as a proof-of-concept, we show that SMITE SST and pHsw estimates are more accurate

and precise than those derived from the best single-proxy estimators in each system. Further-

more, we find a high degree of inter-colony reproducibility in SMITE model parameters, and

consequently reconstruction skill, when the SMITE method is applied to two corals that were

collected near one another under identical environmental conditions. The reproducibility of

SMITE model parameters across cores, which is achieved at higher levels of regularization (i.e.,

more singular values truncated), suggests that this method may hold great promise for applica-

tion to the fossil record (i.e., when no calibration data are available for a particular core). In

this section, we will discuss why the inclusion of different coral variables and regularization

exhibit their observed effects on the accuracy, precision, correlation, and reproducibility of

each reconstruction in the Bermuda coral datasets. As we examine the effects of these user-

controlled procedures, we will use the results from the synthetic proxy studies to better inform

our discussion of their effects on reconstruction skill. We conclude this section with a list of

recommendations for those who wish to implement the SMITE method in their own datasets.

4.1 Properties of the coral variable field and their effects on SMITE

reconstruction skill

Our findings in this study suggest that the quality of the SMITE reconstruction is contingent

on both the quality and quantity of coral variables included in the reconstruction. The quantity

effect is most clearly observed in the systematic inclusion experiment, where SMITE recon-

struction skill improves as more coral variables are added to the SMITE dataset. However,

there is a sense of ‘diminishing returns’ with how much the reconstruction improves after a

certain threshold. The exact position of this ‘threshold’ warrants more rigorous testing in

future studies. We observe the effect of coral variable quality in this same systematic inclusion

experiment, specifically in the ‘baseline’ stability of the SMITE reconstruction (i.e., the overall

variance of the reconstruction statistics throughout the experiment). We hypothesize that this

baseline stability is a function of the coral variables with the strongest relationship to the cli-

mate target. For coral 1B, the presence of two robust SST proxies (Sr/Ca and Li/Mg) leads to

many different combinations of variables that produce strong SMITE SST reconstructions.

Therefore, the main source of variance in the correlation and accuracy of the reconstructions

is observed when neither Sr/Ca nor Li/Mg are included in the reconstruction (red dots, Fig

11). While SMITE SST reconstructions for coral 3B still exhibit a high degree of skill through-

out the course of the experiment, the greater variability we observe in the baseline SST recon-

struction may be due to the relatively poorer performance of Sr/Ca, since Li/Mg remains a

strong SST proxy in both corals.

We see further evidence for the importance of both the quantity and quality of the coral var-

iables in the SMITE dataset when we consider how Gaussian noise impacts the synthetic proxy

dataset. At a noise factor of 0, we observed how Sr/Ca and δ11B were the greatest contributors

to the SMITE SST and pHsw reconstructions, respectively (Fig 5). This is logical, as synthetic

Sr/Ca and δ11B exhibit the strongest correlations with SST and pHsw, respectively. As noise

increased, the SMITE SST reconstructions maintained a high level of skill due to the additional

presence of δ18O as a very strong and sensitive SST proxy. However, SMITE pHsw estimates

did not capture the long-term trend after only a relatively small increase in noise. This stark

contrast in reconstruction skill is due to the presence of multiple strong SST proxies in the

PLOS ONE Reconstructions of SST and seawater pH using the novel SMITE method

PLOS ONE | https://doi.org/10.1371/journal.pone.0305607 June 25, 2024 23 / 32

https://doi.org/10.1371/journal.pone.0305607


synthetic dataset (Sr/Ca and δ18O), with the added benefit of δ18O being very robust to analyti-

cal noise. Conversely, synthetic δ11B exhibits only a moderate correlation with pHsw (r2 =

0.68). Because SMITE treats δ11B as linearly correlated to pHsw and does not consider the rela-

tionship between pHsw and pHcf nor changes in pKB, SMITE pHsw reconstructions were signif-

icantly less skillful than the SST reconstructions. Therefore, even though we used the same

exact calibration scheme for both climate target reconstructions, the stronger and more

numerous SST proxies in the synthetic dataset result in stronger SMITE SST reconstructions

relative to pHsw.

4.2 The effects of truncation on SMITE reconstruction skill

SMITE reconstruction skill is also dependent on the degree of regularization, or the number of

singular values truncated from the coral variable field (Eq 7; Fig 12). The underlying principle

behind the SMITE method is that information associated with the climate target is encoded as

covariance between the coral variables. Thus, climate target information is spread out between

the singular values of the coral variable dataset. For coral 1B, we find multiple lines of evidence

suggesting that most of the SST information is stored in the lower order, or dominant, singular

values (i.e., singular values in which SST describes a large portion of variance in the data).

First, the x† value for most SMITE model parameters remains relatively constant at all levels of

regularization, with U/Ca and δ11B as the exception. Second, accuracy and correlation decrease

linearly from 0–4 singular values truncated, after which the values continue to decrease less

linearly. We also note a significant reduction in SMITE model parameter uncertainty at this

same level of truncation. These observations suggest that removing the upper four singular val-

ues (i.e., truncation level 4) removes a significant amount of non-SST-related variability from

the system, thus preventing SMITE from overfitting model parameters to potential noise. We

find further evidence for this interpretation when examining the singular values of the coral

1B dataset (S4 Fig), where we observe a subtle drop-off between the third singular value (74%

cumulative variance explained) and the fourth singular value (82% cumulative variance

explained). This drop-off also exists in the coral 3B dataset, with only minor differences in

cumulative variance explained (69% and 80%, respectively). All these lines of evidence suggest

that, for both the 1B and 3B SMITE SST reconstructions, the optimum trade-off of reconstruc-

tion skill and model parameter uncertainty occurs once the higher four singular values are

truncated. Thus, this was the chosen level of regularization for both the 1B and 3B SMITE SST

reconstructions in section 2.

For the SMITE pHsw reconstruction, we find that pHsw information is also likely stored in

the lower order singular values. However, we note that the only SMITE pHsw model parame-

ters that do not change significantly throughout the experiment are Li/Mg, Mg/Ca, and Sr/Ca.

These model parameters also have the least amount of uncertainty associated with them at

each level of truncation. We also observe that the same shift in model parameter uncertainty

and reconstruction skill that occurs in the SMITE SST reconstructions occurs in the SMITE

pHsw reconstructions at the exact same level of truncation (4). This finding further supports

that the higher four singular values contain non-climate-related variability, specifically pHsw

in this case. Thus, we truncated the higher four singular values for the SMITE pHsw recon-

structions in section 2 as well. However, we speculate that the higher degree of uncertainty in

SMITE pHsw model parameters indicates that covariance in this particular coral variable field

is not as strongly influenced by pHsw as it is by SST.
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4.3 Recommendations for implementers of the SMITE method

The results presented in this study show that SMITE SST and pHsw estimates are more accu-

rate, precise, and better correlated to in situ SST and pHsw than those derived from the best or

most-commonly-used single- and dual-proxy estimators. Furthermore, SMITE model param-

eters are highly reproducible between both Bermudan corals, and synthetic SMITE SST model

parameters are stable across a large range of calibration periods (in this study, 5 to 100 years).

The stability and reproducibility of the SMITE method makes it a promising candidate for fos-

sil coral applications, where model parameters derived from modern cores would be applied

to fossil material. Moreover, the SMITE method is computationally inexpensive and can be

readily implemented into any paleoclimate reconstruction where multivariate coral data is

available. Therefore, we provide here a list of recommendations for those who wish to utilize

the SMITE method in their own datasets. Within this list, we provide some promising direc-

tions and potential limitations of the SMITE method for future studies.

Include as many coral variables as possible. While it may seem counterintuitive to include

coral variables that are weakly associated with the climate target, our results show that SMITE

reconstruction skill increases as the number of predictor variables increases. Additionally,

increasing the number of coral variables pushes the system towards overdetermination, which

increases flexibility when it comes to choosing the appropriate level of regularization. How-

ever, our results also indicate that SMITE reconstruction skill is contingent upon the perfor-

mance of the best predictors of the climate target. We therefore recommend users carefully

examine the relationship between each coral variable and the climate target(s) prior to imple-

menting the SMITE method (e.g., via scatter plots, covariance structure, etc.). Coral variables

may need to be transformed for optimum results, as the SMITE method is a linear regression

and thus assumes linearity between the predictor variables and the climate target. Therefore,

certain coral variables that exhibit a non-linear relationship to the climate target (e.g., Li/Mg to

SST over wide temperature ranges) may need to be transformed prior to entry in the calibra-

tion dataset.

Optimum regularization. Given the high level of uncertainty in SMITE model parameters

when no singular values are truncated, we recommend users implement some level of regulari-

zation when applying the SMITE method in an overdetermined system (i.e., more coral vari-

ables than climate targets). Our results show that, even at high levels of regularization in such

an overdetermined system, there is a minimal trade-off in reconstruction skill for large

improvements in SMITE model parameter uncertainty, which in turn results in better repro-

ducibility between corals. Future studies could apply the SMITE method to fossil coral material

and potentially improve upon existing reconstructions. To determine the optimum level of

regularization, users should qualitatively assess the distribution of the singular values in the

coral dataset. Users should also systematically assess the reconstruction skill and model param-

eter uncertainty at each level of truncation (e.g., Fig 12). We recommend implementing regu-

larization at the point when (a) the uncertainty associated with SMITE model parameters

decreases significantly; and (b) when there is an inflection point in the distribution of the sin-

gular values (for the Bermuda corals, this occurred at *70% cumulative variance explained).

The degree of improvement in SMITE reconstruction skill over conventional calibra-

tion methods depends on the quality of the calibration dataset. Without regularization, it is

mathematically impossible for the SMITE method to perform worse than the single best linear

predictor of the climate target in any coral variable dataset. This is because as the performance

of the best predictor in the dataset improves, SMITE utilizes that information and improves

accordingly. However, our results indicate that, to a point, the magnitude of the improvement

in SMITE reconstruction skill over conventional univariate regression techniques increases as
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the quality of the coral dataset decreases. If the best predictor for the climate target in the coral

variable dataset is very robust (e.g., Sr/Ca to SST in coral 1B), then SMITE’s improvement on

that reconstruction will be modest. In contrast, SMITE drastically improves the reconstruction

for datasets where the best predictor variable is relatively weak (e.g., δ11B to pHsw in the syn-

thetic dataset), or where the signal-to-noise ratio is relatively low (e.g., Sr/Ca to SST in the syn-

thetic dataset when analytical noise is increased). This is extremely promising for potential

SMITE SST reconstructions implemented on tropical corals utilizing ICP-MS methods, where

the annual SST range is relatively small (*2–3˚C) and where the analytical uncertainty for Sr/

Ca is many factors higher than for ICP-OES. However, we acknowledge that the impact of

noise on a tropical coral variable dataset may not scale linearly (as modeled in the synthetic

experiment) due to increased age-model uncertainties when the annual SST range is subdued.

These nonlinear processes could influence the robustness of SMITE reconstructions. Thus

future work is needed to address the utility of SMITE SST reconstructions using tropical cor-

als. Additionally, for climate targets such as pHsw where the linear correlation to a coral vari-

able is relatively poor and covariance associated with the climate target may not be as

pronounced, we speculate that users will need to be more strategic in which coral variables are

included in the SMITE calibration dataset. Which specific coral variables are included for

SMITE pHsw reconstructions in particular should be rigorously tested in future studies.

Further testing is needed for the SMITE method’s ability to capture long-term trends in

pHsw. Using the synthetic dataset, we show that SMITE SST model parameters are insensitive

to the length of the calibration period between 5 and 100 years (in five-year increments). Con-

versely, SMITE pHsw loadings did not stabilize until 30 years of calibration data were available.

This is an unrealistic calibration period length for most coral-based pHsw reconstruction.

Unfortunately, SMITE pHsw reconstructions calculated prior to the 30-year calibration period

fail to capture the long-term trend in pHsw. This could be due to the complications associated

with SMITE treating δ11B as a linear proxy for pHsw and not accounting for variability in pKB,

which is both temperature and salinity dependent. Alternatively, it could be due to the rapid

decrease in pHsw partway through the 20th century. While it is encouraging that SMITE pHsw

estimates were highly skillful and reproducible between the Bermuda corals, this could be due

to either the strong covariance of pHsw and SST at Hog Reef (r2 = 0.82), or the relatively small

sample size of the Bermuda coral dataset. Thus, it cannot be ruled out that significant changes

in long-term trends may further complicate the SMITE pHsw reconstruction, at least in square

systems when little-to-no regularization can be implemented. Furthermore, the P. astreoides
coral datasets in this study were relatively short (35 and 40 months, respectively), and the syn-

thetic dataset is highly idealized in its relationships between the synthetic proxies and the

reconstruction targets. Additional testing of the SMITE method is needed on multi-decadal

coral datasets at lower sampling resolutions (e.g., annual rather than monthly), which could

elucidate how SMITE can help with broader climate interpretations.

SMITER—an open-source package in R for implementing the SMITE method on coral

datasets. The SMITE method is computationally inexpensive and can be readily performed on

a variety of statistical software programs. However, we aim to facilitate rapid dissemination of

the SMITE method with the release of the open-source SMITER package in R (https://

hphughescraft.github.io/SMITER). The SMITER package gives researchers a user-friendly tool

to implement the SMITE method in their own datasets, which could quickly advance the com-

munity’s understanding of SMITE’s utility on tropical corals and its ability to capture long-

term trends in pHsw, as well as how the method performs on longer datasets with coarser sam-

pling resolution. Furthermore, application of the SMITE method on the large (and growing)

number of existing coral records will generate an equally large number of SMITE model

parameters. These model parameters can be independently assessed to determine the extent of
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the SMITE method’s reproducibility among corals of varying taxa and location. Such repro-

ducibility-focused research questions could ultimately improve coral-based paleoclimate

reconstructions on fossil material.

Supporting information

S1 Fig. Reconstruction statistics for SMITE SST, Sr/Ca SST (A), SMITE pHsw, and δ11B

pHsw (B) across various levels of autocorrelated noise. The RMSE (translucent shaded

region) and SEP (opaque shaded region) for SST and pHsw estimates derived from the SMITE

method are black, while the colored regions represent the RMSE and SEP for Sr/Ca SST

(orange) and δ11B pHsw (green). The x-axis represents the factor by which autocorrelated

noise was increased in terms of RSD. The upper and lower bounds of each shaded region rep-

resent the maximum and minimum values for the RMSE and SEP at each noise increment.

(TIF)

S2 Fig. Synthetic SMITE model parameters for SST (A) and pHsw (B) as the lag-1 autocor-

relation coefficient of the noise term is increased. The color of each line denotes the proxy

associated with each model parameter (orange = Sr/Ca, blue = δ18O, green = δ11B). The shaded

region around each line indicates the 95% confidence interval associated with that model

parameter.

(TIF)

S3 Fig. The correlation coefficient (r; A and D), the root-mean-square-error (RMSE; B and

E), and standard error of prediction (SEP; C and F) for each SMITE pHsw reconstruction

from the Bermudan P. astreoides corals through every combination of the seven coral geo-

chemical variables (n = 120). The left side of each plot begins with only two coral variables

(B/Ca and δ11B). Each line then tracks the corresponding reconstruction statistic as variables

are systematically replaced and added to the SMITE pHsw reconstruction. Each line thus ends

on the final value of each reconstruction statistic when all seven coral variables are used.

(TIF)

S4 Fig. The singular values from the two Bermudan P. astreoides corals. The red error bars

around each point indicate the 95% confidence interval estimated using a bootstrap Monte

Carlo approach.

(TIF)

S5 Fig. The effects of truncating singular values from coral 3B on the SMITE SST recon-

struction. The x-axis in each plot denotes the number of singular values truncated. Each plot

thus shows the progressive effects from no truncation (left) to maximum truncation (right).

Truncation occurs from the highest (least dominant) singular values to the lowest (most domi-

nant) singular values. The first two singular values can never be truncated. Colors distinguish

the results from the SST reconstructions (orange) versus the pHsw reconstructions (green). (A)

SMITE model parameters, or x† values, at each successive level of truncation. Rows denote the

SMITE model parameter. The colored bar within each plot indicates the x† value of the corre-

sponding SMITE model parameter at a given level of truncation. Error bars for each x† value

denote the 95% confidence interval based on a Monte Carlo approach. (B—D) The correlation

coefficient (r; B), the standard error of prediction (SEP; C), and the root-mean-square-error

(RMSE; D) at each successive level of truncation.

(TIF)

S1 Table. Mean (μ), standard deviation (σ), analytical error (�), and correlation coefficient

(r) to SST and pHsw for each coral variable measured in both Bermudan P. astreoides
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