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Abstract

Geochemical proxies of sea surface temperature (SST) and seawater pH (pHs,) in scleracti-
nian coral skeletons are valuable tools for reconstructing tropical climate variability. How-
ever, most coral skeletal SST and pHs,, proxies are univariate methods that are limited in
their capacity to circumvent non-climate-related variability. Here we present a novel multi-
variate method for reconstructing SST and pHs,, from the geochemistry of coral skeletons.
Our Scleractinian Multivariate Isotope and Trace Element (SMITE) method optimizes recon-
struction skill by leveraging the covariance across an array of coral elemental and isotopic
data with SST and pHs,,. First, using a synthetic proxy experiment, we find that SMITE SST
reconstruction statistics (correlation, accuracy, and precision) are insensitive to noise and
variable calibration period lengths relative to Sr/Ca. While SMITE pHys,, reconstruction statis-
tics remain relative to 5''B throughout the same synthetic experiment, the magnitude of the
long-term trend in pHy,, is progressively lost under conditions of moderate-to-high analytical
uncertainty. Next, we apply the SMITE method to an array of seven coral-based geochemi-
cal variables (B/Ca, 5''B, Li/Ca, Mg/Ca, Sr/Ca, U/Ca & Li/Mg) measured from two Bermu-
dan Porites astreoides corals. Despite a <3.5 year calibration period, SMITE SST and pHs,
estimates exhibit significantly better accuracy, precision, and correlation with their respec-
tive climate targets than the best single- and dual-proxy estimators. Furthermore, SMITE
model parameters are highly reproducible between the two coral cores, indicating great
potential for fossil applications (when preservation is high). The results shown here indicate
that the SMITE method can outperform the most common coral-based SST and pHs,, recon-
structions methods to date, particularly in datasets with a large variety of geochemical vari-
ables. We therefore provide a list of recommendations and procedures for users to begin
implementing the SMITE method as well as an open-source software package to facilitate
dissemination of the SMITE method.
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1 Introduction

Tropical sea surface temperature (SST) is a critical component of the climate system, linked to
a multitude of key variables such as atmospheric moisture content and temperature, cloud
cover, and patterns of atmospheric circulation [1]. However, the evolution of tropical SST
prior to and during the industrial era remains uncertain due to poor data coverage and chang-
ing measurement technology [2]. This uncertainty has significant consequences for attempts
to establish a baseline for present-day climate change, impacting our abilities to meet interna-
tionally agreed-upon climate targets [3]. Towards this end, massive reef-building (scleracti-
nian) corals have been extensively utilized to reconstruct variations in SST throughout the
Holocene [4], thereby filling a critical gap in our knowledge with respect to tropical SST
variability.

Opver the past several decades, numerous geochemical tracers in scleractinian coral skele-
tons have been calibrated to local environmental parameters [5], which in turn have been used
to reconstruct regional climate variability from seasonal to centennial timescales [6]. Under
ideal conditions, a single coral geochemical proxy is largely a function of the climate target of
interest, with minimal influence from other variables such as coral growth variations, analyti-
cal error, or age model uncertainty. When these conditions are met, coral skeletal geochemis-
try can be used to robustly reconstruct climate targets such as SST, sea surface salinity (SSS),
and seawater pH (pHs,,), often at monthly resolution [7-9].

The degree of accuracy, precision, correlation, and reproducibility in any coral-based cli-
mate reconstruction is often a function of many factors, including (but not limited to): how
much natural variability the climate target of interest exhibits in a given location; the uncer-
tainty associated with the chosen observations of the climate target (e.g., in situ SST observa-
tions versus those derived from remote sensing products); the concentrations of the
geochemical proxy in the coral skeleton; how sensitive the geochemical proxy is to the climate
target; whether this sensitivity is consistent, both between coral colonies as well as throughout
the skeleton of an individual colony; the degree to which other internal or external processes
create interference in the relationship between the proxy and the climate target; and whether
the age model error is reasonable within the resolution and length of the climate
reconstruction.

For example, skeletal strontium-to-calcium ratios (Sr/Ca) are the most commonly used
coral-based paleothermometer to date [10, 11]. SST exhibits strong annual cycles even in tropi-
cal oceans (~ 2°C, and while in situ observations of SST in the tropical oceans can be scarce,
remote sensing products are becoming increasingly better at capturing SST variations on coral
reefs [12], thereby reducing uncertainty with respect to the climate target. Despite a relatively
low temperature sensitivity [13, ~ 0.06 mmol mol'°C'], the high degree of analytical precision
for measuring Sr/Ca using inductively coupled plasma optical emission spectrometry [14,
ICP-OES] often yields high precision Sr/Ca-based SST estimates (e.g. + 0.16°C, 10). However,
analytical uncertainty for Sr/Ca increases by an order of magnitude when using inductively
coupled plasma mass spectrometry (ICP-MS), particularly when coupled with laser ablation
[15]. This is but one contributing factor to the high degree of uncertainty around the regres-
sion coefficients for the Sr/Ca—SST relationship, which often vary between taxa, regions,
regression techniques, and even different laboratories using similar analytical equipment [13,
16-20]. Uncertainty surrounding the Sr/Ca—SST relationship have also been attributed to bio-
logical controls on Sr uptake into the coral aragonite crystal lattice [21-30]. Recent work also
suggests that nutrient conditions can create substantial non-SST-related variability in coral Sr/
Ca ratios [31]. While much work has gone into improving the reproducibility of coral Sr/
Caderived SST estimates [20, 32-36], the wide distribution of coral Sr/Ca regression
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coefficients often necessitates colony-specific Sr/Ca—SST calibrations, making applications of
coral Sr/Ca paleothermometry to fossil coral material challenging at the present time [37, 38].

In the last decade, calibrations using multiple temperature-sensitive proxies, or multiproxy
calibrations, have been developed specifically to minimize or even circumvent non-SST-
related variability [39-44]. These multiproxy paleothermometers often produce regression
coefficients that are more consistent across corals from different regions and taxa [42, 43, 45].
However, this reproducibility comes at the expense of sampling resolution [42] or reconstruc-
tion skill relative to the best single-proxy estimator from any given location [43-45]. Further-
more, these multiproxy calibration methods have exclusively focused on SST, leaving other
important climate targets such as pHy,, untested [46, 47]. This is especially relevant, as the pri-
mary coral geochemical proxy for pH, is its boron isotopic composition (5''B). However, it is
becoming increasingly apparent that coral skeletal 5''B ratios are a function of SST, SSS, and
the pH of the coral calcifying fluid (pH,¢), which is upregulated by the coral organism and
exhibits increased seasonal variance relative to the pHy, [7, 46-48].

This study presents a novel multiproxy method for reconstructing SST and pHy,, across an
array of coral geochemical variables. Utilizing the generalized inverse solution [49, 50], our
novel Scleractinian Multivariate Isotope and Trace Element (SMITE) method leverages covari-
ance across multiple coral variables to improve the correlation, accuracy, and precision of the
reconstruction (henceforth referred to as ‘reconstruction skill’) while yielding reproducible
and mechanistically sensible regression coefficients. We first explain how the SMITE method
applies the generalized inverse solution to calibrate coral geochemical data (or any coral vari-
able) to SST and pHy,,. Next, we utilize a synthetic proxy dataset (Sr/Ca, 5'%0, and 6''B) where
the climate targets used to create each ‘pseudoproxy’ are known (SST, SSS, pHyy) to explore
the effects of analytical noise (random and autocorrelated) and calibration period length on
both SMITE SST and pHy,, reconstructions. Then, as proof-of-concept, we apply the SMITE
method to an array of seven coral variables (B/Ca, §''B, Li/Ca, Mg/Ca, Sr/Ca, U/Ca & Li/Mg)
measured on two Porites astreoides corals collected from the northern fringing reef of Ber-
muda. These six unique geochemical variables (with the addition of Li/Mg) were chosen to
capture a wide array of potential temperature and pHy, dependencies to maximize covariance
between the coral variable field and the reconstruction targets. We then examine two ways in
which users can exercise control on SMITE reconstruction skill: through selective exclusion of
coral variables in the SMITE method, and through a regularization technique that helps con-
strain SMITE model parameters with minimal impact on reconstruction skill. Finally, based
on these findings, we provide a list of recommendations for new SMITE users while suggesting
key areas where its use would best improve coral-based climate reconstructions.

2 Materials and methods
2.1 SMITE method theory and derivation

Multivariate estimations of any climate target from an array of coral variables (e.g., Sr/Ca,
8''B, linear extension rate) can be represented as a classic inverse problem:

Ax=1b (1)

Where A is a matrix of age-modeled coral variables, with p columns denoting each unique var-
iable and t rows denoting time. Vector b is of length t denoting the climate target across time;
and x is a vector of length p denoting the model parameters that relate A to b. Thus, x contains
the regression coefficients that correspond to each coral variable in the A matrix and its rela-
tionship to b. Ideally, the matrix-vector product, or dot-product, of A and x would yield a per-
fect estimate of the climate target of interest, b.
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If A has an inverse (A’), then x could easily be solved as A’b. Since only square matrices
have inverses, one approach is to calculate the inverse of the square p by p correlation matrix
of A, assign b as a vector of length p containing the correlation coefficients of each coral vari-
able to the climate target, and then solve. However, coral variable data are often highly collin-
ear, and so the model parameters (i.e., the regression coefficients contained in x) estimated by
this approach would be highly unstable and non-reproducible across space and time.

To bypass the issue of collinearity, the SMITE method utilizes the generalized inverse, or
pseudoinverse, solution [49, 50] to calculate model parameters for SST and pHy,, estimates
from a non-specific array of coral variables. It begins by performing a singular value decompo-
sition [51, 52] on the coral variable field.

A, =USV" (2)

Where A, is a matrix of age-modeled z-score normalized (¢ = 0, 0 = 1) coral variables, with p
columns denoting each variable and t rows denoting time. According to the SVD, A, can be
decomposed into three orthogonal matrices: U, S, and V, where U and V contain basis vectors
spanning the data space and the column space, respectively. They are thus column-orthogonal
to each other, and each contain the loadings or eigenvectors of the coral variable field. The
diagonal matrix S contains the singular values of the coral variable field in descending order,
representing the variance explained by each eigenvector (or percent variance explained, when
normalized by the sum of the diagonal). The SVD and the eigendecomposition, a perhaps
more familiar technique that is often used during Empirical Orthogonal Function analysis
[53], yield identical results when applied to the covariance matrix of a particular data field. In
this case, the eigenvalues calculated from the eigendecomposition are identical to the singular
values calculated from the SVD, and the eigenvectors are identical to the U and V matrices.
However, the SVD offers a number of additional benefits over the eigendecomposition, one of
which is that it can be applied to non-square matrices [54]. Therefore, all information between
coral variables is retained when calculating SMITE model parameters utilizing the SVD.

As mentioned before, A’ cannot be determined because A is not square, and calculating the
inverse of the covariance matrix of A creates collinearity and violates one of the basic assump-
tions of regression (independent predictor variables). However, we have shown that the z-
score normalized coral variable field matrix A, can be decomposed into three orthogonal
matrices, for which an inverse does exist. Thus, a generalized inverse, or ‘pseudoinverse’, of
the A matrix (A;) can be calculated by rearranging the terms of the decomposed A matrix.

A =VS'U" (3)

Consequently, a pseudoinverse solution [55] can be calculated from the dot-product of A;
and b.

z, =Ab=VS'U"Db (4)

Where x; is a vector of length p containing the SMITE model parameters for each unique coral
variable. Henceforth, we will simply refer to the x; vector as SMITE model parameters. We
will refer to the specific value of each SMITE model parameter as its ‘x; value’. Thus, the dot-
product of the z-score normalized coral variable field matrix and SMITE model parameters
yield normalized estimates of the climate target of interest.

Az, = Ea (5)
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These can then easily be converted to absolute estimates using the standard deviation (o)
and mean (y) of the climate target in the calibration dataset.

b= (b*a,) + 1, (6)

Importantly, the pseudoinversion of the A matrix and the calculation of x; assumes that the
columns of A exhibit a linear relationship to b. In the case of coral SST proxy data, the assump-
tion of linearity often holds within a particular temperature range [56]. However, if nonlinear-
ity is observed in a particular variable’s relationship to the climate target of interest, it may be
necessary to transform the coral variable prior to its entry into the A matrix so that it exhibits a
more linear relationship to the climate target of interest.

Prior to calculating SMITE model parameters in Eq 4, higher order singular values (i.e.,
ones describing less variance in the dataset) and their corresponding basis vectors in Uand V
can be ‘truncated’ from the pseudoinverse of the coral variable field.

ATT = VTS;I U]T:ba (7)

Where subscript T denotes that the corresponding matrix has had certain columns removed
or truncated. This is a common regularization technique used in Principal Components
Regression [57]. The accuracy, precision, correlation, and reproducibility of any SMITE recon-
struction can vary depending on the level of regularization implemented (see sections 3.2.2
and 4.2). Ideally, this step is taken to remove singular values that are close to zero and prevent
the SMITE method from overfitting the model to random noise and or variability not related
to the climate target of interest. We provide guidance for choosing the optimum level of regu-
larization in section 3.

The procedure for reconstructing SST or pHy,, from an array of coral variables using the
SMITE method is listed below, along with a procedural diagram (Fig 1).

1. Age-modeled coral variables are arranged into a matrix with columns denoting each coral
variable and rows denoting time (A).

2. A subset of A is created for calibration (A,).
3. A_is z-score normalized (A,; mean-subtracted, divided by the standard deviation).

4. SST is (if necessary) resampled to the same frequency as the coral variable data and z-score
normalized (b,).

5. An SVD is performed on A, to yield three orthogonal matrices, U, S, and V (Eq 2).

6. (OPTIONAL) The U, S, and V matrices are truncated to remove higher order singular val-
ues (Eq 7).

7. SMITE model parameters (x;) are calculated by rearranging the terms of the SVD (Eq 4).

8. A, and x; are dot-multiplied to yield predicted climate target anomalies during the calibra-

tion period (Ea)(Eq 5). To yield predicted climate anomalies for the entire length of the
record, A must be z-score normalized using the mean and standard deviation of the calibra-
tion dataset (A,) before it is dot-multiplied to x;.

9. Predicted climate target anomalies are converted to absolute climate target estimates (b)
using the mean and standard deviation from the calibration dataset (Eq 6).
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Steps | - IV: Age-modeled coral data (A: @)
are arranged into a matrix with columns
denoting each coral variable (p) and rows
denoting time (t). A subset of A is created
for calibration (A ). A _is z-score normalized
(A u=0,0=1).The climate target (@) is
resampled to the same frequency as the
coral data and z-score normalized (b,).

StepsV-VI:

A singular value
decomposition
(SVD) is performed
onA_toyieldthree
orthogonal matrices (tc X p) (tc X p)
©) VU, S,andV (Eq. 2).

High order singular values

can be truncated (| ) to (p X p)
minimize noise (Eq. 7).

* x] [V IS]

U] [b,]

Py
Step VII: SMITE model para- P.l@ 88—)8 OQ.
meters (@), or x,, are calcu-
lated by rearranging the
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Steps VIII - IX: A is z-score normalized using the mean and /@@

standard deviation from the calibration dataset (A ). SMITE
model parameters (x,) are dot-multiplied to A, to yield
predicted climate target anomalies (b )(Eq. 5; @). Predicted |
climate target anomalies can then be converted to absolute t?
climate target estimates using the mean and standard
deviation from the calibration dataset (Eq. 6). (t X p)

terms of the SVD (Eq. 4). ' ' (tc x1)
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Fig 1. Procedural diagram for implementing the SMITE method on a coral variable dataset.

https://doi.org/10.1371/journal.pone.0305607.9001
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Fig 2. Monthly time series of three synthetic pseudoproxies (B) calculated from environmental information spanning the 20th century off the east
coast of Australia (A) [62, 63]. The gray shaded region in each panel, which is barely visible, indicates the minimum (analytical) uncertainty associated
with each pseudoproxy. All three pseudoproxies exhibit an idealized relationship with their corresponding environmental variable(s) of interest (Sr/

Ca ~ SST; 8'0 ~ SST + SSS; 6"'B ~ SST + SSS + pHgy).

https://doi.org/10.1371/journal.pone.0305607.9002

2.2 Synthetic pseudoproxy dataset

We created three synthetic ‘pseudoproxies’ (Sr/Ca, §'°0, 6''B) with various amounts of envi-
ronmental information encoded into each, based on their theoretical dependence on SST, SSS
and pHy,, (Fig 2). Because we created this dataset with three coral variables and three potential
climate targets, this is considered a square system (i.e., the number of predictor variables
equals the number of unknown variables), which is important when considering regularization
(see sections 3.2.2 and 4.2). The means by which we calculated these three synthetic pseudo-
proxies are highly idealized, meaning that each pseudoproxy has a near-perfect relationship

with its corresponding climate target(s). However, the uncertainty in each proxy’s relationship

to the climate target is considered in our experimental design, which examines how uncer-
tainty in reconstructed SST and pHy, estimates increases as the degree of Gaussian and auto-
correlated noise increases. The magnitude of Gaussian noise and autocorrelation considered
in our experiment (Table 1) is beyond the typical range observed in most coral-based paleocli-
mate studies [16, 58, 59]. We expect therefore that all linear sources of uncertainty, and their
subsequent impacts on SST and pHy,, estimates, are accounted for in this conservative analysis.

The minimum uncertainty for each synthetic pseudoproxy was taken from the literature as

Table 1. Mean (u), standard deviation (o), range of analytical errors (), and correlation coefficients (r) for all synthetic proxies to each environmental variable.

Synthetic Proxy u [

Sr/Ca (mmol/mol) 8.98 0.12
3"%0 (%o0) -5.49 0.51
6''B (%o) 22.90 0.66

https://doi.org/10.1371/journal.pone.0305607.t001

€min — €max (RSD)
0.009-0.180 (0.1-1.9%)
0.10-0.21 (1.8-3.7%)
0.18-0.62 (0.78-2.68%)

r - SST r — SSS
—-1.00 0.68
—-0.98 0.80
—-0.92 0.63

r = pHsw
0.54
0.50
0.82
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analytical uncertainty. For synthetic Sr/Ca values, this was taken to be 0.009 mmol/mol, or
approximately 0.1% RSD [14]. For synthetic §'*0 values, we used an analytical uncertainty of
0.1%o [60]. For synthetic 5"'B values, analytical uncertainty was taken to be 0.09%o [61].

Monthly SST and pHy, data from the Great Barrier Reef (18.5°S, 149.5°E) between 1900
and 2000 were acquired from Lenton et al. (2016) [62], a 20th century reconstruction of SST,
SSS and pHy,, across the Great Barrier Reef (n = 1212). SSTs ranged from 21.83°C to 29.69°C
(u=25.92°C £ 1.91, 10), with a minor but significant warming trend of 0.08°C per decade
(p < 0.0001). Seawater pH ranged from 8.09 to 8.21 (4 = 8.16 + 0.03) and exhibits two signifi-
cant negative trends pre-1950 (0.004 units per decade) and post-1950 (0.014 units per decade).
Although SSS data are also available from this dataset for the same time interval, these data
simply repeat the same annual cycle of SSS throughout the 20th century with no interannual
or decadal variability. To better reproduce long-term changes in SSS, we used SSS data from
the ORA20C dataset [63] from the same location and time interval. This dataset extends back
through the 20th century and is an advanced data assimilation product that tunes the output
of the European Center for Medium-range Weather Forecasts twentieth century reanalysis,
ERA-20C, to in situ observations. SSS variations from this location in the ORA20C dataset
exhibit a highly skewed left distribution (¢ = 33.69 + 0.43 psu), with values ranging from 31.61
to 34.17 due to episodic freshwater runoff events.

According to hindcast archived data from the CSIRO Environmental Modelling Suite
implemented by the Australian Institute of Marine Science (https://research.csiro.au/cem/
software/ems/), SSS in this region between 2010 and 2022 ranged from 34.7 to 35.6 psu and
exhibit a slightly skewed left distribution (4 = 35.23 + 0.16 psu). We acknowledge that the dis-
tributions of ORA20C and CSIRO SSS are statistically distinct from one another, both in
terms of mean and variance (p < 0.001). However, the purpose of including SSS in the syn-
thetic experiment is to create interference in both synthetic 5'*0 and 8''B values for recon-
structing SST and pHy,, respectively. Thus, there are two important aspects of SSS that we
wish to reproduce for the purposes of this experiment: long-term variability (interannual to
decadal), and the covariance between SSS and SST. The ORA20C SSS dataset for this region
exhibits substantial interannual and decadal-scale variability, while the Lenton et al. (2016) SSS
dataset exhibits none. With respect to covariance, the CSIRO dataset shows that SST and SSS
are moderately anti-correlated in this region (r = —0.58). SST and SSS data from Lenton et al.
(2016) exhibit a slightly weaker anti-correlation (r = —0.53), while SST data from Lenton et al.
(2016) and ORA20C SSS exhibit a slightly stronger anti-correlation (r = —0.68). Since
ORA20C SSS exhibits both long-term variability and similar covariance to SST as the observed
CSIRO data, we chose to use the ORA20C SSS dataset for our synthetic experiment.

Synthetic Sr/Ca ratios were calculated as a function of SST using the mean slopes and inter-
cepts for the Sr/Ca ~ SST relationship from Correge (2006) [13].

Sr/Ca, = —0.0607(0.0090)SST + 10.553(0.292)SSS (8)

Where SST is sea surface temperature in degrees Celsius. Synthetic Sr/Ca (Sr/Ca,) ratios ran-
ged from 8.75 to 9.23 mmol/mol (¢ = 8.98 mmol/mol + 0.12).

Synthetic §'%0 values were calculated as a function of both SST and SSS using equation 1
from Thompson et al. (2011) [64].

00, = —0.228ST + 0.27SSS (9)

The regression slopes for SST and SSS were chosen using the same criteria from Thompson
etal. (2011). The SST slope is the organic slope of the §'0 and SST relationship, while the SSS
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slope is based on basin-scale seawater 5'*0 and SSS regression estimates [65]. Synthetic 5'°0
values ranged from —6.74 to —4.52%o(y = —5.49 + 0.51%o).

Synthetic §''B values were calculated as a function of SST, SSS and pH.,y. They were deter-
mined by rearranging the pH-dependent equation from Zeebe and Wolf-Gladrow (2001) [48]
to solve for the boron isotope ratio of carbonate (6"B,).

5113 _ 5113
5"'B, — "B, + 1000(a — 1))

6"'B, = pK, — log( (10)
Where the boron isotope ratio of seawater (6"B,,) is 39.61%o [66], and the mass fraction factor
between boric acid and borate ion (e) is 1.0272 [67]. The negative log of the dissociation con-
stant between boric acid and borate ion (pKp) is a function of both temperature and salinity
[68]. We therefore calculated pKj at each time interval by taking the negative log of the Kp
equation from Dickson (1990) [68]. The values of pKp ranged between 8.56 and 8.64 given a
temperature range between 21.83 and 29.69°C and a salinity range between 31.61 and 34.17
psu.

These calculations yield synthetic §''B values between 18.30 and 19.64%o, which is expected
given the pH of seawater. However, corals upregulate their internal pH relative to seawater
[46] while also often exhibiting increased seasonal variance [69]. Thus, to yield synthetic 5B
values consistent with those observed in coral aragonite, we calculated pH from pHj,, using
equation 13 from D’Olivo et al. (2019) [7].

pH, = 0.49pH,, + 4.93 — 0.025ST (11)

Note that the temperature sensitivity of synthetic ''B values is realized in its dependence
on both pKp as well as pH_as specified in Eq 11. Meanwhile, the salinity sensitivity of synthetic
5"'B values is only realized in its dependence on pKp. Synthetic 6''B values ranged from 22.21
—24.10%0 (4 = 23.17%0+t 0.41).

2.3 P. astreoides application study

2.3.1 Coral sampling and sample preparation. In November 2014 a 5 cm diameter core
was sampled from two P. astreoides colonies (1B and 3B, respectively) located on Hog Reef,
Bermuda (32.457°N, 64.835°W), at a depth of 10 and 12 m using a 1 horsepower hand-held
pneumatic air drill with a custom made 5-by-15 cm diamond core bit (Fig 3). Corals were sam-
pled as close to the National Oceanographic and Atmospheric Administration’s PMEL
MAPCO?2 buoy moored at Hog Reef as possible (within 5 m). After sampling, voids in the
coral skeleton were filled with cement plugs to prevent boring organisms from inhabiting the
holes, and to encourage further coral growth. Cores were then transported to the University of
Southampton for geochemical analyses. The outer tissue layers of each coral core were
removed using a WaterPik before being left to soak in pure ethanol for 5 minutes followed by
deionised water. A clean sintered diamond cut-off wheel was used to cut the cores into ~7
mm thick slabs, both of which were then divided into two sections. Each section was polished
using a rotary diamond grinder followed by silicon carbide grinding paper down to 4 ym.
Samples were cleaned over two days in a solution of 20% H,0, and 2.0 M NHj before being
rinsed, ultrasonicated for 10 minutes, then rinsed again in 18.2 MQ (ultrapure) water and left
to dry in a flow box. Finally, the topmost sections containing the most recent growth were
mounted onto glass slides in preparation for geochemical analyses.

2.3.2 Geochemical analysis. Geochemical analyses were carried out at the Geochemistry
laboratory, School of Ocean and Earth Sciences, University of Southampton. Elemental analy-
ses (Li, B, Mg, Ca, Sr, U) were performed on an Agilent (Agilent Technologies Inc., CA, USA)
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Fig 3. Collection site of P. astreoides corals 1B and 3B on the northern fringing reef of Bermuda. The yellow diamond indicates the location of National
Oceanographic and Atmospheric Administration’s PMEL MAPCO2 buoy moored at Hog Reef (32.457°N, 64.835°W), meters from where corals 1B and 3B
were cored. The red diamond indicates the location of the Bermuda Atlantic Time-series Study (BATS) sampling station (~32.67°N, 64.17°W. The red
box on the inlayed map indicates the borders of the larger map. Bathymetry data displayed was collected from the National Oceanographic and
Atmospheric Association via the open-source R package ggOceanMaps [70]. Shoreline data are republished from [71] under a CC BY license, with
permission from Dr. Walter H.F. Smith, original copyright 1996.

https://doi.org/10.1371/journal.pone.0305607.g003

8900 Triple Quadrupole ICP-MS coupled to an Elemental Scientific Lasers (Bozeman, MT,
USA) NWR193 excimer laser ablation system with a TwoVol2 ablation chamber. On-peak
blank corrections based on the mean intensities of preceding and succeeding blank measure-
ments were applied offline, as was instrumental drift and mass bias corrections which
employed sample-standard bracketing with coral reference material JCp-1 (Porites sp. coral)
using the values published by Hathorne et al. (2013b) [40]. Samples and standards were ablated
in line mode, with sample analyses ablating the same tracks previously used for the §''B analy-
ses (see below). Standard analysis consisted of approximately 285 integration cycles of 0.42 s.
Samples were analyzed along 30 parallel and adjoining tracks amounting to ~6 mm long tran-
sects that each consisted of ~ 1400 integration cycles of 0.42 s. Operating conditions are
detailed in Table 2. Reference material PS69/318-1, a cold-water calcitic scleraxonian octo-
coral coral, was ablated throughout the analytical session as a guide to accuracy, internal preci-
sion, and external reproducibility (n = 10). Internal precision, expressed as 2 standard errors
(SE) of the mean of 1200 integration cycles, was <7% for B/Ca, Mg/Ca, and Sr/ Ca, and <16%
for Li/Ca, U/Ca and Li/Mg. External reproducibility, expressed as 20 of the mean of the 10
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Table 2. Typical operating conditions for laser ablation ICP-MS analysis.

4"'B isotope analysis Trace element analysis

Instrument

Mass Spectrometer | Thermo Scientific Neptune Plus multi- Agilent 8900 Triple Quadrupole inductively
collector inductively coupled plasma mass coupled plasma mass spectrometer
spectrometer

Laser Ablation Elemental Scientific Lasers NWR193 excimer | Elemental Scientific Lasers NWR193 excimer

System laser ablation system with a TwoVol2 laser ablation system with a TwoVol2
ablation chamber ablation chamber

RF Power 1400 W 1550 W

Cones Nickel skimmer (X) and jet sample Standard nickel sample cone and XT

skimmer

Gas Flows

Cooling gas (argon) | 161 min~" 131 min~"

Auxiliary gas 0.7l min™" 0.8 min™"

(argon)

Make-up gas 1.0 I min™’ 0.6 L min™"

(argon)

Ablation cell carrier | 0.85-1.00 1 min™" 0.5 min™"

gas (helium)

Additional gas 0.004-0.007 1 min™" 0.01 1 min™"

(nitrogen)

Ablation

Conditions

Laser power density | ~4 ] cm > ~1.8]cm™>

Laser repetition rate | 12 Hz 5Hz

Laser beam size 100-150 ym diameter 150 ym diameter

Laser tracking speed | 10 ym s™' 10pyms™"

Ablation mode Line Line

https://doi.org/10.1371/journal.pone.0305607.t1002

analyses, was <6% for B/Ca, Mg/Ca, Sr/ Ca and Ba/Ca, 12% for Li/Ca and Li/Mg, and 29% for
U/Ca. Mean accuracy was within 10% of solution values for all ratios except Li/Mg which was
within 11% [72].

Boron isotope analyses were performed on a Thermo Scientific Neptune Plus MC-ICP
mass spectrometer coupled to an Elemental Scientific Lasers NWR193 excimer laser ablation
system with a TwoVol2 ablation chamber, broadly following previously described analytical
protocols [59, 73]. Data were collected in static mode, with 198 and ''B measured on the L3
and H3 Faraday cups, both of which were installed with 10'?Q resistors. The laser system was
again operated in line mode, with standard measurements consisting of 100 integration cycles
0f2.194 s (100-120 ym laser beam diameter) and sample measurements consisting of ~ 282
integration cycles of 2.194 s (150 ym laser beam diameter). Prior to data collection, standards
and samples were ablated to remove any surface contamination (laser power density of ~2 ]
cm™?, laser repetition rate of 10 Hz, laser tracking speed of 200 ym s™). Dynamic blank correc-
tions were applied cycle by cycle assuming a linear relationship between preceding and suc-
ceeding blank measurements (each consisting of 22 integration cycles of 2.194 s); instrumental
mass bias was corrected by sample-standard bracketing with glass reference material NIST
SRM610 and the isotope composition published by le Roux et al. (2004) [74] and Standish
et al. (2019) [59]; and matrix interferences from scattered ions [59] were corrected based on
the power-relationship between §''B inaccuracy and ''B/Cajyerference for pressed pellets of car-
bonate reference materials JCp-1 and JCt-1 (Tridacna gigas), and where Cainerference Was
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measured at m/z of 10.10 on the L2 Faraday cup. All corrections were applied offline. Standard
data were screened, with cycles falling outside 20 of the mean removed. Internal reference
material PS69/318-1 was ablated throughout the analytical session as a guide to internal preci-
sion, external reproducibility, and accuracy. Internal precision, expressed as 2SE of the mean
of the 100 integration cycles, was <0.4%o. The mean 5''B of the repeat analysis (n = 18) was
13.61 + 0.54%0(20), consistent with a solution measurement of 13.83 + 0.29%o [59].

2.3.3 Age model and environmental reconstructions. For each coral we combined 10
adjoining and parallel laser transects into a single time series for each geochemical variable
by averaging data in depth space. We report the uncertainty on the mean for each measure-
ment as the SE of the 10 parallel laser transects. An age model was then constructed based
firstly upon consideration of an x-ray image showing density banding and the date of collec-
tion. This was then refined by tuning annual variations in Sr/Ca to SST, where minima, max-
ima, and mid-points were considered contemporaneous with SST maxima, minima, and
mid-points, respectively. Using this method, we calculate that data from coral 1B ranges
from June 2010 to April 2013, and data from coral 3B ranges from June 2010 to September
2013.

We created an in situ SST and pHy,, dataset ranging throughout the study period (May
2010 to September 2013) by combining two independent in situ environmental datasets
from the northern fringing reef of Bermuda. The first dataset (from January 2011 to Septem-
ber 2013) was acquired from the National Oceanographic and Atmospheric Administration
PMEL MAPCO2 buoy moored at Hog Reef (32.457°N, 64.835°W). Corals 1B and 3B grew
several meters away from the Hog Reef Buoy, which has been continuously measuring sea-
water partial pressure CO,, SSS and SST since 2011 with only minor interruptions (https://
www.pmel.noaa.gov/co2/story/Hog+Reef). A continuous record of SST and pH,, was calcu-
lated from these data by assuming a constant seawater alkalinity of 2357 ymol/kg [75] for
most of the study interval (July 2011 to March 2013) and solving the full carbonate system
using alkalinity and the partial pressure of CO, using the seacarb package in R [76]. This
assumption is justified because both CO, and pHy, are determined by the alkalinity / dis-
solved inorganic carbon ratio [77], therefore using a range of alkalinity from 2300 to 2400
pumol/L (the range observed by Courtney et al., 2017 [75]) changes our estimate of pHy,, by
only 0.015 pH units.

To extend our environmental data beyond the interval covered by the Hog Reef Buoy to the
bottom of our time series, we utilized a second dataset consisting of shipboard SST and pHy,,
data acquired from the Bermuda Atlantic Time-series Study [78, BATS; 32.67°N, 64.17°W],
which has been measuring SST and pHy,, at monthly intervals since 1983. Due to both the dis-
continuous nature of the BATS data, and the lack of Hog Reef data prior to 2011, we estab-
lished a linear model between BATS and Hog Reef SST (n =41, r = 0.78, p < 0.001) as well as
BATS and Hog Reef pHy,, (n =41, r =0.83, p < 0.001). We then created an in situ SST and
pH,,, calibration dataset by combining the predicted values of Hog Reef data (when BATS data
was available) and observed Hog Reef data (when BATS data was not available).

Finally, we calculate Sr/Ca-derived SST estimates for corals 1B and 3B using ordinary least
squares regression, and we calculate 5''B-derived pHy,, using Eqs 10 and 11. To estimate pKj,
we use our combined BATS and Hog Reef in situ SST dataset, as well as SSS data from BATS
alone. SSS on Hog Reef is relatively invariant, and there is little offset between Hog Reef SSS
and BATS SSS. Missing SSS values from the BATS dataset (3 out of 40 months) were linearly
interpolated between adjacent months for the purposes of generating a continuous pKp
dataset.
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2.4 Error assessments

We use three metrics to quantitatively compare SMITE SST and pHg,, estimates with those
derived from Sr/Ca ratios and 8''B values, respectively: the correlation coefficient (r), the root-
mean squared error (RMSE), and the standard error of prediction (SEP). Each metric provides
a measure of the correlation, accuracy, and precision of the reconstruction, respectively. The
SEP is defined as the uncertainty in derived SST estimates based on the uncertainty in both the
climate target (SST, pHy,,) as well as the uncertainty in the corresponding coral variable(s).
Given that our SST measurements are derived from, or modeled after, temperatures derived
from in situ loggers, uncertainty for temperature was fixed at 0.02°C (https://www.onsetcomp.
com/products/data-loggers/u22-001). Uncertainty for our pHy, measurements were fixed at
0.02 units. Uncertainty for SSS measurements (used in calculating pKj for 8''B-derived pHy,,
estimates) were based on BATS CTD measurements and also fixed at 0.02 psu.

The SEP for each climate target reconstruction is calculated using a bootstrap Monte Carlo
approach. At each iteration (i = 1,...,10000), each individual measurement in both the coral
variable and climate target fields are randomly resampled from a normal distribution with a
mean equal to the given variable/climate target value (¢;) and a standard deviation equal to the
specified error (s;). Model parameters are then estimated from the perturbed coral variable
and climate target fields, and SST/pHy,, estimates for each data point are stored. The 95% con-
fidence interval for each predicted value is determined from the distribution of predicted val-
ues derived from each Monte Carlo iteration. The SEP is then determined as the average
distance from the mean to the upper and lower bounds of the 95% confidence interval, divided
by 1.96 [79]. The 95% confidence interval for the SEP itself is then defined as the standard
deviation of the SEP throughout each calibration dataset, multiplied by 1.96.

3 Results
3.1 Synthetic study

We utilized our synthetic proxy dataset (Sr/Ca, 5'°0, 6''B) to assess the relative impact of
Gaussian noise on SMITE SST and pHy,, reconstructions (Fig 4). The top panels (A-B) show
the SMITE SST and pHj,, reconstructions relative to their respective climate targets through-
out the 20th century as we progressively increased Gaussian noise by relative standard devia-
tion (RSD). The bottom panels (C-D) show the maximum and minimum RMSE (translucent
regions) and SEP (opaque regions) for SMITE SST and pHy,, estimates (black), Sr/Ca SST
(orange) and 5"'B pHyy (green) at each noise increment. We emphasize that the mean value of
each synthetic proxy measurement exhibits the ideal relationship with the climate target, while
the upper and lower bounds of the 95% confidence interval for each measurement (which
increases as Gaussian noise increases) represent maximum deviation from the ideal. The mini-
mum RMSEs depicted in Fig 4C and 4D (lower bounds of the translucent regions) are calcu-
lated from the idealized mean values of each measurement. In practice, these minimum
RMSEs would be achieved under two conditions: a perfect relationship between the proxy and
the climate target, and a near-limitless number of repeat sample analyses.

Conversely, the maximum RMSEs (the upper bounds of translucent regions) are calculated
from the average RMSE between the upper and lower bounds of the 95% confidence interval
for each reconstruction. They are thus representative of how high RMSEs could be, given a cer-
tain level of noise and disregarding the benefits of repeat sample analysis. Therefore, the maxi-
mum and minimum RMSEs for each reconstruction method represent two extremes. Given a
certain level of noise, any study would exhibit RMSEs closer to one or extreme or the other
depending on the quality of the ‘true’ relationship between the proxy and the climate target, as
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and 6''B pHs,, (D) across various levels of Gaussian noise. (A-B) Each panel represents the factor by which Gaussian (analytical) was increased in terms
of relative standard deviation (RSD). Black lines represent the SMITE reconstruction for the 20th century at each noise increment. Colored lines represent
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https://doi.org/10.1371/journal.pone.0305607.9004

well as how many repeat analyses could be conducted on a particular sample. A companion
assessment examining the effect of autocorrelated noise is available in the supplemental mate-
rial (S1 and S2 Figs), which shows far less impact than Gaussian noise except for at very high
values of the lag-1 autocorrelation coefficient (>0.9).

We observe from the similarities between SMITE SST estimates and ‘true’ SST in Fig 4A
(red and black lines, respectively), as well as the shallow slope of the SEP and RMSE in
response to noise in Fig 4C, that SMITE SST estimates in the synthetic dataset are highly
robust to even exceptionally high levels of Gaussian noise. For synthetic Sr/Ca SST, the SEP
and the maximum RMSE exhibit a linear relationship with Gaussian noise, which is expected
given the linearity between synthetic Sr/Ca ratios and SST. At low levels of noise (< +0.2%
RSD), SMITE follows this same pattern of linearity between reconstruction statistics and
noise. However, as noise continues to increase, the slope of SMITE’s reconstruction statistics
shoals, leading to significant improvements in SMITE SST reconstructions relative to Sr/Ca
alone. This shallowing of the reconstruction statistics in response to noise can be directly
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attributed to SMITE’s increasing dependence on §'®0 as noise increases (Fig 5), which in turn
is due to the improved sensitivity of synthetic §'*O as a paleothermometer relative to Sr/Ca at
higher noise levels.

For the synthetic pHy, reconstructions (Fig 4B and 4D), §''B reconstruction statistics also
exhibit a linear relationship with increasing noise levels, like the reconstruction statistics
observed from synthetic Sr/Ca SST. The rapid increase in pHy,, reconstruction error at the
first noise increment (+0% RSD) can be explained by the higher baseline uncertainty for syn-
thetic 6*'B (0.40% RSD) relative to Sr/Ca (0.10% RSD), and the 0.1% RSD increase at each
noise increment thereafter. We also observe that SMITE pHy,, SEP and maximum RMSEs
remain well below that of 6''B alone, with the difference in reconstruction skill increasing as
noise increases. This remains true at all noise increments, even as SMITE model parameters
remain preferentially weighted towards §''B (Fig 5B).

However, we note two key differences between the synthetic SST and pHy, reconstructions.
First, we observe that when no noise is implemented into the system, synthetic 5''B pHy, esti-
mates outperform those derived from SMITE by a small margin. This is due to the idealized
relationship between synthetic 5''B values and pH,, which follows Eqs 10 and 11. Conversely,
SMITE simply treats 5''B as linearly correlated with pHy,, and considers its covariance with
Sr/Ca and 8"®0. Thus, SMITE makes no assumptions regarding the relationship between pHg,
and pH,¢ nor changes pKp, which would confound the pH, signal due to interference from
SST and SSS. SMITE only considers the uncertainties in the coral variable field, which we have
defined at each noise increment as a percent-RSD increase from baseline uncertainty. Second,
SMITE pHy, estimates are far less skillful than SMITE SST estimates, particularly when con-
sidering the long-term trend as noise levels increase (Fig 4A and 4B).

The loss in both long-term and short-term variance for SMITE pHy,, estimates results from
the compounding effects of relatively high uncertainty in synthetic 8''B, as well as the distribu-
tion of SMITE model parameters. Unlike SST (which is encoded in all three synthetic vari-
ables), information associated with pHy, is only reflected in synthetic 8"'B. Thus, SMITE is
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fully dependent on synthetic 5''B to capture the long-term trend in pHy. At the first noise
increment, the long-term trend in SMITE pHj,, estimates (~ 0.085 units) is approximately
70% of the long-term pHy,, trend (~0.12 units). Nearly 0.02 pH units of this 0.035-unit dis-
crepancy can be explained by the uncertainty in synthetic 5''B (0.18%o at the first noise incre-
ment). The remaining discrepancy of 0.015 pH units can be explained by the fact that 5''B
only contributes to 57% of SMITE pHy, estimates at the first noise increment (Fig 5B). The
remaining 43% are divested into synthetic Sr/Ca and §'®0, both of which exhibit virtually no
long-trend. Thus, only a fraction of the long-term trend in pHy,, captured by synthetic §''B is
propagated through the SMITE model. As noise increases throughout the experiment, the sum
of the SMITE model parameters decreases, uncertainty in synthetic §''B values continues to
rise, and the resulting SMITE pHy,, reconstruction exhibits progressively smaller variance.
Despite the loss of long-term variance, SMITE still yields more accurate and precise predic-
tions of pH, at all noise increments where noise is present relative to synthetic 5''B alone.
This is due to the large 95% confidence interval associated with synthetic 5''B pH,, estimates
once noise is introduced into the system, which is propagated by the uncertainty in synthetic
8"'B, SST and SSS (which influence pK and pH), and pH,,. However, as mentioned before,
the negative effects of the large confidence interval in synthetic 5''B can be mitigated by repeat
sample analysis. Thus, given a certain number of repeat analyses according to the central limit
theorem, it is possible for both synthetic 6''B pHy,, and synthetic Sr/Ca SST estimates to out-
perform estimates derived from SMITE, since minimum SMITE RMSEs remain higher than
both throughout the experiment. However, in practice, this would require both an idealized
relationship between the proxy and the climate target in addition to repeat sample analyses.
We also assessed how SMITE model parameters varied with different calibration period
lengths (Fig 6). In this experiment, we fixed the noise level at +0% RSD (baseline uncertainty)
and increased the calibration period for the SMITE method from 5 to 100 years in five-year
increments. For the SST reconstruction, x; values for each SMITE model parameter remain
fixed at -0.92 (Sr/Ca), -0.08 (6'®0), and -0.01 (6"'B) throughout the course of the experiment.
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Fig 7. Z-score normalized monthly-averaged coral variable data (black lines) from P. astreoides corals 1B (left) and 3B (right). In situ normalized SST
(orange lines) and pHj, (green lines) are plotted inside each panel to show each proxy’s relative correlation to the climate target. Data from coral 1B were
assigned ages between June 2010 and April 2013 (n = 35). Data from coral 3B were assigned ages between June 2010 and September 2013 (n = 40).

https://doi.org/10.1371/journal.pone.0305607.9007

This suggests that SMITE SST model parameters are stable with only five years of calibration
data (the first increment we tested). Conversely, model parameters for the SMITE pHy, recon-
struction take approximately 30 years to stabilize due to high levels of uncertainty. Again, this
is likely because 5''B is the only synthetic proxy in this dataset that is sensitive to pHg,, and
the long-term trend in pHj,, increases in magnitude halfway through the 20th century.

3.2 Application study

Seven coral skeletal geochemical variables (B/Ca, Li/Ca, Mg/Ca, St/Ca, U/Ca, §''B + Li/Mg)
were measured and age-modeled from both Bermudan P. astreoides corals between June 2010
and September 2013 (Fig 7). For ease of interpretation, each coral variable was z-score normal-
ized (black lines) and plotted alongside mean-standardized SST (orange lines) and pHg,
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Fig 8. SMITE-derived SST (A-B) and pHy,, (C-D) estimates (red lines) from corals 1B (left) and 3B (right) compared to in situ SST and pHg;, (blue
lines). SST and pH,, estimates from the best or most common single-proxy estimators in these corals are plotted as dashed lines in each panel (SST = Sr/
Ca; pHy,, = 6''B). The gray shaded region indicates the 95% confidence interval for each SMITE reconstruction. SMITE reconstruction statistics are listed
at the bottom of each panel, with the equivalent statistics for Sr/Ca- and &' 'B-derived estimates given in parentheticals.

https://doi.org/10.1371/journal.pone.0305607.9008

(green line). The mean and variance of each coral variable, their respective analytical errors,
and their correlations to both SST and pHg,, are provided in S1 Table. In both coral cores (1B
and 3B), Sr/Ca and Li/Mg ratios exhibit the strongest individual correlations to SST (Sr/Ca, r =
—0.85 and —0.77; Li/Mg, r = —0.83 and —0.85). B/Ca also exhibits moderately strong correla-
tions with SST in both corals (r = —0.75 and —0.77, respectively). For pHy,, Sr/Ca and Li/Mg
also emerge as the strongest pHy, indicators, likely due to the moderate anti-correlation of
SST and pHy,, at this site (r = —0.85).

SMITE SST and pHg,, reconstructions for corals 1B and 3B are shown in Fig 8 (red lines
and shaded region). For comparison, we also plot Sr/Ca-derived SST estimates (calculated
using ordinary least squares regression) and &''B-derived pHy, (calculated using Eq 10). Note
that for the SMITE reconstructions, we have performed a regularization procedure that slightly
reduces reconstruction skill as a tradeoff for reduced uncertainty in SMITE model parameters
(Eq 7). For an in-depth discussion on the effects of this regularization procedure, see sections
3.2.2 and 4.2. For all reconstructions, the SMITE method is more accurate (RMSE), precise
(SEP), and better correlated to each climate target (r?) than the best or most common single-
proxy estimators.
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Fig 9. SMITE model parameters for each coral variable corresponding to the SMITE SST reconstruction (A) and pHj,, reconstruction (B). The
loadings for each coral (1B & 3B) are indicated by the orange and blue colors, respectively. Error bars represent the 95% confidence interval for each
loading.

https://doi.org/10.1371/journal.pone.0305607.9009

Between corals 1B and 3B, SMITE SST estimates are 5 and 6 times more precise and 21%
and 33% more accurate than those derived from Sr/Ca. Importantly, this notable improvement
in reconstruction skill is not fully realized in the r* value, where SMITE SST estimates in coral
1B are only marginally better than those derived from Sr/Ca. For the pHy,, reconstructions
between corals 1B and 3B, the SMITE method is 7 and 6 times more precise and 5 times more
accurate than §''B. This vast improvement can largely be attributed to the relatively poor per-
formance of 8''B as a proxy for pHy,, in these systems, particularly in coral 1B. However, while
Li/Mg is the strongest pH,, proxy in both corals, it is not often used for pHy,, reconstructions
given its known dependence on temperature [56]. Regardless, we still observe large improve-
ments in SMITE pHg,, estimates relative to Li/Mg pHy, estimates, with 5 times better precision
and 33% and 50% better accuracy in SMITE than from Li/Mg (S2 Table). We reiterate that this
improvement is not fully realized in the correlation coefficient alone, where SMITE and Li/
Mg-derived pH, estimates are comparable.

Next, we compare SMITE model parameters between corals 1B and 3B to assess their repro-
ducibility (Fig 9). All SMITE model parameters in both the SST and pHj,, reconstructions are
highly reproducible between corals, exhibiting x; values that are nearly identical and/or within
error of each other. Notably, the uncertainty in each SMITE model parameter tends to
decrease as the absolute x; value increases. For reproducibility, it is crucial that variables with
the highest x; values (i.e., have the strongest impact on the reconstruction) are statistically
indistinguishable from one another between corals. Indeed, we see this is the case for the
SMITE SST reconstruction, where x; values associated with Li/Ca, Li/Mg, Mg/Ca, Sr/Ca, and
U/Ca are nearly identical between corals. Consequently, SMITE SST estimates are highly
reproducible between corals, exhibiting significantly better correlations, accuracy, and preci-
sion than the relatively more direct Sr/Ca method (Fig 10A and 10B). We also find that SMITE
pHy,y model parameters exhibit very similar x; values between Li/Ca, Li/Mg, Sr/Ca, and U/Ca.
This results in highly skillful SMITE cross-compared pH, estimates that exhibit similar corre-
lations with superior precision and accuracy relative to those derived from Li/Mg (Fig 10C and
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Fig 10. SMITE-derived SST (A-B) and pHy,, (C-D) estimates (red lines) compared to in situ SST and pHj,, (blue lines) when using regression
coefficients derived from the opposite corals. SST and pHg,, estimates from the best single-proxy estimators in these corals are plotted as dashed lines in
each panel (SST = Sr/Ca; pHy,, = Li/Mg). The gray shaded region indicates the 95% confidence interval for each SMITE reconstruction. SMITE
reconstruction statistics are listed at the bottom of each panel, with the equivalent statistics for Sr/Ca- and Li/Mg-derived estimates given in parentheticals.

https://doi.org/10.1371/journal.pone.0305607.g010

10D). While this is a relatively small sample size (two corals over a few annual cycles), the level
of reproducibility of both the SMITE SST and pHy, reconstructions between corals is highly
encouraging and warrants more rigorous testing in future studies.

3.3 User-based approaches for modifying SMITE reconstruction skill

3.3.1 Systematic inclusion of coral variables on the SMITE SST reconstruction. An
intuitive procedure that new SMITE users might implement to optimize reconstruction skill
would be to selectively exclude certain coral variables. Therefore, we applied the SMITE
method to every possible combination of 2-7 coral variables (n = 120) in the two Bermudan
corals and examined the subsequent impact on the correlation (r), accuracy (RMSE), and pre-
cision (SEP) of the SMITE SST reconstruction (Fig 11). This experiment was performed with
no regularization implemented (Eq 7). We also provide a complimentary analysis regarding
SMITE pHy,, reconstructions in the supplemental information (53 Fig).

Throughout the experiment, two notable patterns emerge. First, we observe a small but sta-
tistically significant trend (p < 1e—9) towards higher r-values and lower RMSEs for both corals
as more variables are added to the SMITE method. Second, we note that there are certain
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Fig 11. The correlation coefficient (r; A and D), the root-mean-square-error (RMSE; B and E), and standard error of prediction (SEP; C and F) for
each SMITE SST reconstruction from the Bermudan P. astreoides corals through every combination of the seven coral geochemical variables

(n = 120). The left side of each plot begins with only two coral variables (B/Ca and §''B). Each line then tracks the corresponding reconstruction statistic as
variables are systematically replaced and added to the SMITE SST reconstruction. Each line thus ends on the final value of each reconstruction statistic
when all seven coral variables are used.

https://doi.org/10.1371/journal.pone.0305607.g011

combinations of coral variables that yield poorer quality reconstructions, indicated by ‘spikes’
in each of the reconstruction statistics. These spikes are particularly noticeable in coral 1B,
which interestingly coincide with when both Li/Mg and Sr/Ca are excluded from the model
(Panels A and B, red points). Furthermore, we note that the magnitude of these spikes
decreases significantly as more coral variables are added to the SMITE SST reconstruction.

3.3.2 Regularization through truncation of singular values. SMITE method users can
reduce uncertainty in SMITE model parameters by removing, or ‘truncating’, higher order (or
less dominant) singular values from the coral variable field dataset (Eq 7). Here we demon-
strate the effects of sequentially truncating singular values on the coral 1B SMITE SST and
pHs reconstructions (Fig 12). The singular values of both Bermudan coral datasets are shown
in S4 Fig, and a complimentary regularization analysis of coral 3B is provided in S5 Fig. At
first glance, regularization has similar effects between the SMITE SST and pHy,, reconstruc-
tions. With each singular value truncated, uncertainty with respect to each SMITE model
parameter is reduced, the correlation coefficient and SEP decrease, and the RMSE increases.
In short, regularization compromises accuracy and correlation in exchange for precision and
reduced uncertainty in SMITE model parameters. The optimum level of regularization
depends on two factors. First, the size of the coral dataset determines how many singular val-
ues can be truncated. Thus, a dataset with a greater number of variables offers greater control
over how much information users could omit from the calibration. Second, regularization
may vary depending on how information related to the climate target of interest is spread
among the singular values.

It is important to note that results from the synthetic dataset are shown with no regulariza-
tion implemented (section 1). With only three coral variables in the dataset (Sr/Ca, 5'%0, 6'"'B)
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Fig 12. The effects of truncating singular values from coral 1B on the SMITE SST and pHj,, reconstruction. The x-axis in each plot denotes the number
of singular values truncated. Each plot thus shows the progressive effects from no truncation (left) to maximum truncation (right). Truncation occurs from
the highest (least dominant) singular values to the lowest (most dominant) singular values. The first two singular values can never be truncated. Colors
distinguish the results from the SST reconstructions (orange) versus the pHg,, reconstructions (green). (A) SMITE model parameters, or x; values, at each
successive level of truncation. Rows denote the SMITE model parameter. The colored bar within each plot indicates the x; value of the corresponding
SMITE model parameter at a given level of truncation. Error bars for each x; value denote the 95% confidence interval based on a Monte Carlo approach.
(B—D) The correlation coefficient (r; B), the standard error of prediction (SEP; C), and the root-mean-square-error (RMSE; D) at each successive level of
truncation.

https://doi.org/10.1371/journal.pone.0305607.9012

and three potential climate targets (SST, SSS, pHyw), only one singular value can be truncated
from the synthetic dataset. As expected, truncating the highest order singular value in the syn-
thetic dataset results in greatly reduced uncertainty in SMITE model parameters that, in the
case of SST, are more stable across noise treatments. However, we also observe a significant
reduction in reconstruction skill. This is likely because in a square system such as this (i.e., an
equal number of climate targets and predictor variables), important climate information could
be stored in even the highest order singular value. Therefore, we recommend only implement-
ing truncation in overdetermined systems, where the number of coral variables is significantly
higher than the number of climate targets.
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4 Discussion

Here we used a variety of data types to assess the quality of SST and pHy,, estimates derived
from the SMITE method, a novel multivariate calibration method that leverages covariance
across a coral variable field to optimize reconstruction skill. Using two Bermudan P. astreoides
corals as a proof-of-concept, we show that SMITE SST and pHy,, estimates are more accurate
and precise than those derived from the best single-proxy estimators in each system. Further-
more, we find a high degree of inter-colony reproducibility in SMITE model parameters, and
consequently reconstruction skill, when the SMITE method is applied to two corals that were
collected near one another under identical environmental conditions. The reproducibility of
SMITE model parameters across cores, which is achieved at higher levels of regularization (i.e.,
more singular values truncated), suggests that this method may hold great promise for applica-
tion to the fossil record (i.e., when no calibration data are available for a particular core). In
this section, we will discuss why the inclusion of different coral variables and regularization
exhibit their observed effects on the accuracy, precision, correlation, and reproducibility of
each reconstruction in the Bermuda coral datasets. As we examine the effects of these user-
controlled procedures, we will use the results from the synthetic proxy studies to better inform
our discussion of their effects on reconstruction skill. We conclude this section with a list of
recommendations for those who wish to implement the SMITE method in their own datasets.

4.1 Properties of the coral variable field and their effects on SMITE
reconstruction skill

Our findings in this study suggest that the quality of the SMITE reconstruction is contingent
on both the quality and quantity of coral variables included in the reconstruction. The quantity
effect is most clearly observed in the systematic inclusion experiment, where SMITE recon-
struction skill improves as more coral variables are added to the SMITE dataset. However,
there is a sense of ‘diminishing returns” with how much the reconstruction improves after a
certain threshold. The exact position of this ‘threshold’ warrants more rigorous testing in
future studies. We observe the effect of coral variable quality in this same systematic inclusion
experiment, specifically in the ‘baseline’ stability of the SMITE reconstruction (i.e., the overall
variance of the reconstruction statistics throughout the experiment). We hypothesize that this
baseline stability is a function of the coral variables with the strongest relationship to the cli-
mate target. For coral 1B, the presence of two robust SST proxies (Sr/Ca and Li/Mg) leads to
many different combinations of variables that produce strong SMITE SST reconstructions.
Therefore, the main source of variance in the correlation and accuracy of the reconstructions
is observed when neither Sr/Ca nor Li/Mg are included in the reconstruction (red dots, Fig
11). While SMITE SST reconstructions for coral 3B still exhibit a high degree of skill through-
out the course of the experiment, the greater variability we observe in the baseline SST recon-
struction may be due to the relatively poorer performance of Sr/Ca, since Li/Mg remains a
strong SST proxy in both corals.

We see further evidence for the importance of both the quantity and quality of the coral var-
iables in the SMITE dataset when we consider how Gaussian noise impacts the synthetic proxy
dataset. At a noise factor of 0, we observed how Sr/Ca and &''B were the greatest contributors
to the SMITE SST and pH,, reconstructions, respectively (Fig 5). This is logical, as synthetic
Sr/Ca and &''B exhibit the strongest correlations with SST and pHs,, respectively. As noise
increased, the SMITE SST reconstructions maintained a high level of skill due to the additional
presence of §'°0 as a very strong and sensitive SST proxy. However, SMITE pHj,, estimates
did not capture the long-term trend after only a relatively small increase in noise. This stark
contrast in reconstruction skill is due to the presence of multiple strong SST proxies in the
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synthetic dataset (Sr/Ca and 6'°0), with the added benefit of 5'®0 being very robust to analyti-
cal noise. Conversely, synthetic 6''B exhibits only a moderate correlation with pHy,, (r* =
0.68). Because SMITE treats 6B as linearly correlated to pHy, and does not consider the rela-
tionship between pHy,, and pH nor changes in pKg, SMITE pHy, reconstructions were signif-
icantly less skillful than the SST reconstructions. Therefore, even though we used the same
exact calibration scheme for both climate target reconstructions, the stronger and more
numerous SST proxies in the synthetic dataset result in stronger SMITE SST reconstructions
relative to pHgy.

4.2 The effects of truncation on SMITE reconstruction skill

SMITE reconstruction skill is also dependent on the degree of regularization, or the number of
singular values truncated from the coral variable field (Eq 7; Fig 12). The underlying principle
behind the SMITE method is that information associated with the climate target is encoded as
covariance between the coral variables. Thus, climate target information is spread out between
the singular values of the coral variable dataset. For coral 1B, we find multiple lines of evidence
suggesting that most of the SST information is stored in the lower order, or dominant, singular
values (i.e., singular values in which SST describes a large portion of variance in the data).
First, the x; value for most SMITE model parameters remains relatively constant at all levels of
regularization, with U/Ca and 8''B as the exception. Second, accuracy and correlation decrease
linearly from 0-4 singular values truncated, after which the values continue to decrease less
linearly. We also note a significant reduction in SMITE model parameter uncertainty at this
same level of truncation. These observations suggest that removing the upper four singular val-
ues (i.e., truncation level 4) removes a significant amount of non-SST-related variability from
the system, thus preventing SMITE from overfitting model parameters to potential noise. We
find further evidence for this interpretation when examining the singular values of the coral

1B dataset (54 Fig), where we observe a subtle drop-oft between the third singular value (74%
cumulative variance explained) and the fourth singular value (82% cumulative variance
explained). This drop-off also exists in the coral 3B dataset, with only minor differences in
cumulative variance explained (69% and 80%, respectively). All these lines of evidence suggest
that, for both the 1B and 3B SMITE SST reconstructions, the optimum trade-off of reconstruc-
tion skill and model parameter uncertainty occurs once the higher four singular values are
truncated. Thus, this was the chosen level of regularization for both the 1B and 3B SMITE SST
reconstructions in section 2.

For the SMITE pHy, reconstruction, we find that pHy,, information is also likely stored in
the lower order singular values. However, we note that the only SMITE pH,,, model parame-
ters that do not change significantly throughout the experiment are Li/Mg, Mg/Ca, and Sr/Ca.
These model parameters also have the least amount of uncertainty associated with them at
each level of truncation. We also observe that the same shift in model parameter uncertainty
and reconstruction skill that occurs in the SMITE SST reconstructions occurs in the SMITE
pHs, reconstructions at the exact same level of truncation (4). This finding further supports
that the higher four singular values contain non-climate-related variability, specifically pHy,
in this case. Thus, we truncated the higher four singular values for the SMITE pHy,, recon-
structions in section 2 as well. However, we speculate that the higher degree of uncertainty in
SMITE pHj,, model parameters indicates that covariance in this particular coral variable field
is not as strongly influenced by pH, as it is by SST.
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4.3 Recommendations for implementers of the SMITE method

The results presented in this study show that SMITE SST and pHg,, estimates are more accu-
rate, precise, and better correlated to in situ SST and pHg,, than those derived from the best or
most-commonly-used single- and dual-proxy estimators. Furthermore, SMITE model param-
eters are highly reproducible between both Bermudan corals, and synthetic SMITE SST model
parameters are stable across a large range of calibration periods (in this study, 5 to 100 years).
The stability and reproducibility of the SMITE method makes it a promising candidate for fos-
sil coral applications, where model parameters derived from modern cores would be applied
to fossil material. Moreover, the SMITE method is computationally inexpensive and can be
readily implemented into any paleoclimate reconstruction where multivariate coral data is
available. Therefore, we provide here a list of reccommendations for those who wish to utilize
the SMITE method in their own datasets. Within this list, we provide some promising direc-
tions and potential limitations of the SMITE method for future studies.

Include as many coral variables as possible. While it may seem counterintuitive to include
coral variables that are weakly associated with the climate target, our results show that SMITE
reconstruction skill increases as the number of predictor variables increases. Additionally,
increasing the number of coral variables pushes the system towards overdetermination, which
increases flexibility when it comes to choosing the appropriate level of regularization. How-
ever, our results also indicate that SMITE reconstruction skill is contingent upon the perfor-
mance of the best predictors of the climate target. We therefore recommend users carefully
examine the relationship between each coral variable and the climate target(s) prior to imple-
menting the SMITE method (e.g., via scatter plots, covariance structure, etc.). Coral variables
may need to be transformed for optimum results, as the SMITE method is a linear regression
and thus assumes linearity between the predictor variables and the climate target. Therefore,
certain coral variables that exhibit a non-linear relationship to the climate target (e.g., Li/Mg to
SST over wide temperature ranges) may need to be transformed prior to entry in the calibra-
tion dataset.

Optimum regularization. Given the high level of uncertainty in SMITE model parameters
when no singular values are truncated, we recommend users implement some level of regulari-
zation when applying the SMITE method in an overdetermined system (i.e., more coral vari-
ables than climate targets). Our results show that, even at high levels of regularization in such
an overdetermined system, there is a minimal trade-off in reconstruction skill for large
improvements in SMITE model parameter uncertainty, which in turn results in better repro-
ducibility between corals. Future studies could apply the SMITE method to fossil coral material
and potentially improve upon existing reconstructions. To determine the optimum level of
regularization, users should qualitatively assess the distribution of the singular values in the
coral dataset. Users should also systematically assess the reconstruction skill and model param-
eter uncertainty at each level of truncation (e.g., Fig 12). We recommend implementing regu-
larization at the point when (a) the uncertainty associated with SMITE model parameters
decreases significantly; and (b) when there is an inflection point in the distribution of the sin-
gular values (for the Bermuda corals, this occurred at ~70% cumulative variance explained).

The degree of improvement in SMITE reconstruction skill over conventional calibra-
tion methods depends on the quality of the calibration dataset. Without regularization, it is
mathematically impossible for the SMITE method to perform worse than the single best linear
predictor of the climate target in any coral variable dataset. This is because as the performance
of the best predictor in the dataset improves, SMITE utilizes that information and improves
accordingly. However, our results indicate that, to a point, the magnitude of the improvement
in SMITE reconstruction skill over conventional univariate regression techniques increases as
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the quality of the coral dataset decreases. If the best predictor for the climate target in the coral
variable dataset is very robust (e.g., Sr/Ca to SST in coral 1B), then SMITE’s improvement on
that reconstruction will be modest. In contrast, SMITE drastically improves the reconstruction
for datasets where the best predictor variable is relatively weak (e.g., 8''B to pHy, in the syn-
thetic dataset), or where the signal-to-noise ratio is relatively low (e.g., Sr/Ca to SST in the syn-
thetic dataset when analytical noise is increased). This is extremely promising for potential
SMITE SST reconstructions implemented on tropical corals utilizing ICP-MS methods, where
the annual SST range is relatively small ( ~2-3°C) and where the analytical uncertainty for Sr/
Ca is many factors higher than for ICP-OES. However, we acknowledge that the impact of
noise on a tropical coral variable dataset may not scale linearly (as modeled in the synthetic
experiment) due to increased age-model uncertainties when the annual SST range is subdued.
These nonlinear processes could influence the robustness of SMITE reconstructions. Thus
future work is needed to address the utility of SMITE SST reconstructions using tropical cor-
als. Additionally, for climate targets such as pHy,, where the linear correlation to a coral vari-
able is relatively poor and covariance associated with the climate target may not be as
pronounced, we speculate that users will need to be more strategic in which coral variables are
included in the SMITE calibration dataset. Which specific coral variables are included for
SMITE pHy,, reconstructions in particular should be rigorously tested in future studies.

Further testing is needed for the SMITE method’s ability to capture long-term trends in
PHsy Using the synthetic dataset, we show that SMITE SST model parameters are insensitive
to the length of the calibration period between 5 and 100 years (in five-year increments). Con-
versely, SMITE pH, loadings did not stabilize until 30 years of calibration data were available.
This is an unrealistic calibration period length for most coral-based pHy,, reconstruction.
Unfortunately, SMITE pHg,, reconstructions calculated prior to the 30-year calibration period
fail to capture the long-term trend in pHyy. This could be due to the complications associated
with SMITE treating 5''B as a linear proxy for pHg, and not accounting for variability in pKp,
which is both temperature and salinity dependent. Alternatively, it could be due to the rapid
decrease in pHy,, partway through the 20th century. While it is encouraging that SMITE pH,,
estimates were highly skillful and reproducible between the Bermuda corals, this could be due
to either the strong covariance of pHy,, and SST at Hog Reef (r* = 0.82), or the relatively small
sample size of the Bermuda coral dataset. Thus, it cannot be ruled out that significant changes
in long-term trends may further complicate the SMITE pHy,, reconstruction, at least in square
systems when little-to-no regularization can be implemented. Furthermore, the P. astreoides
coral datasets in this study were relatively short (35 and 40 months, respectively), and the syn-
thetic dataset is highly idealized in its relationships between the synthetic proxies and the
reconstruction targets. Additional testing of the SMITE method is needed on multi-decadal
coral datasets at lower sampling resolutions (e.g., annual rather than monthly), which could
elucidate how SMITE can help with broader climate interpretations.

SMITER—an open-source package in R for implementing the SMITE method on coral
datasets. The SMITE method is computationally inexpensive and can be readily performed on
a variety of statistical software programs. However, we aim to facilitate rapid dissemination of
the SMITE method with the release of the open-source SMITER package in R (https://
hphughescraft.github.io/SMITER). The SMITER package gives researchers a user-friendly tool
to implement the SMITE method in their own datasets, which could quickly advance the com-
munity’s understanding of SMITE’s utility on tropical corals and its ability to capture long-
term trends in pHy,, as well as how the method performs on longer datasets with coarser sam-
pling resolution. Furthermore, application of the SMITE method on the large (and growing)
number of existing coral records will generate an equally large number of SMITE model
parameters. These model parameters can be independently assessed to determine the extent of
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the SMITE method’s reproducibility among corals of varying taxa and location. Such repro-
ducibility-focused research questions could ultimately improve coral-based paleoclimate
reconstructions on fossil material.

Supporting information

S1 Fig. Reconstruction statistics for SMITE SST, Sr/Ca SST (A), SMITE pH,,, and "B
pHsw (B) across various levels of autocorrelated noise. The RMSE (translucent shaded
region) and SEP (opaque shaded region) for SST and pHg,, estimates derived from the SMITE
method are black, while the colored regions represent the RMSE and SEP for Sr/Ca SST
(orange) and 5"'B pHgy (green). The x-axis represents the factor by which autocorrelated
noise was increased in terms of RSD. The upper and lower bounds of each shaded region rep-
resent the maximum and minimum values for the RMSE and SEP at each noise increment.
(TIF)

S$2 Fig. Synthetic SMITE model parameters for SST (A) and pHsw (B) as the lag-1 autocor-
relation coefficient of the noise term is increased. The color of each line denotes the proxy
associated with each model parameter (orange = Sr/Ca, blue = §'°0, green = §''B). The shaded
region around each line indicates the 95% confidence interval associated with that model

parameter.
(TIF)

S$3 Fig. The correlation coefficient (r; A and D), the root-mean-square-error (RMSE; B and
E), and standard error of prediction (SEP; C and F) for each SMITE pHy, reconstruction
from the Bermudan P. astreoides corals through every combination of the seven coral geo-
chemical variables (n = 120). The left side of each plot begins with only two coral variables
(B/Ca and 8''B). Each line then tracks the corresponding reconstruction statistic as variables
are systematically replaced and added to the SMITE pHy,, reconstruction. Each line thus ends
on the final value of each reconstruction statistic when all seven coral variables are used.

(TIF)

S4 Fig. The singular values from the two Bermudan P. astreoides corals. The red error bars
around each point indicate the 95% confidence interval estimated using a bootstrap Monte
Carlo approach.

(TIF)

S5 Fig. The effects of truncating singular values from coral 3B on the SMITE SST recon-
struction. The x-axis in each plot denotes the number of singular values truncated. Each plot
thus shows the progressive effects from no truncation (left) to maximum truncation (right).
Truncation occurs from the highest (least dominant) singular values to the lowest (most domi-
nant) singular values. The first two singular values can never be truncated. Colors distinguish
the results from the SST reconstructions (orange) versus the pHy, reconstructions (green). (A)
SMITE model parameters, or x; values, at each successive level of truncation. Rows denote the
SMITE model parameter. The colored bar within each plot indicates the x; value of the corre-
sponding SMITE model parameter at a given level of truncation. Error bars for each x; value
denote the 95% confidence interval based on a Monte Carlo approach. (B—D) The correlation
coefficient (r; B), the standard error of prediction (SEP; C), and the root-mean-square-error
(RMSE; D) at each successive level of truncation.

(TIF)

S1 Table. Mean (u), standard deviation (o), analytical error (¢), and correlation coefficient
(r) to SST and pHy,, for each coral variable measured in both Bermudan P. astreoides
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corals (1B and 3B).
(DOCX)

S2 Table. Reconstruction statistics for pHy,, reconstructions in both Bermudan P.
astreoides corals (1B and 3B).
(DOCX)
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