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A B S T R A C T   

Late Oligocene-early Miocene aridification in the retroarc foreland basin adjacent to the southern central Andes was recorded by widespread eolian conditions that 
coincided with accelerated subsidence driven by the main phase of Andean tectonic loading. An extensive eolian dune system, which is rare in most foreland basins, 
indicates specific conditions in terms of climate (aridity), atmospheric circulation, orography, sediment sources, dispersal patterns, and accommodation space. 
Detrital zircon U-Pb geochronological results for eolian sandstones spanning 20 foreland localities in northwestern to west-central Argentina, from 22◦S to 36◦S, 
reveal relatively localized Andean sources rather than regional cratonic provenance. Clastic detritus was largely derived from Phanerozoic igneous and sedimentary 
rocks of the Andean magmatic arc and retroarc fold-thrust belt during initial shortening-induced uplift of hinterland regions such as the Western Cordillera, Principal 
Cordillera, and Frontal Cordillera. This provenance record provides the earliest evidence for major westerly winds, transporting Andean detritus broadly eastward to 
the foreland basin (with common axial northward deflections) during a climate shift marked by the latest Oligocene-earliest Miocene inception of arid conditions. In 
addition to the climatic implications, independent stratigraphic data provide the basis for a compilation of sediment accumulation histories showing that eolian 
deposition was synchronous with accelerated subsidence attributable to enhanced Andean shortening. We propose that accelerated Andean uplift in the latest 
Oligocene-early Miocene generated rain-shadow conditions contemporaneous with increased sediment accommodation in the foreland basin, underscoring the 
important influence of tectonic processes on regional climate.   

1. Introduction 

Eolian depositional systems present valuable opportunities to un
derstand climatic, tectonic, and paleogeographic conditions during 
nonmarine basin evolution. Fundamentally, eolian systems require 
specific climatic scenarios involving low-precipitation and semiarid to 
hyperarid conditions. However, the establishment and long-term pres
ervation of eolian systems in the rock record may have further impli
cations for continental paleogeography, atmospheric circulation, 
weather patterns, sediment provenance dynamics, mountainous topog
raphy, and the creation of sediment accommodation space. In particular, 
tectonic processes are important in defining the orographic effects on 
prevailing winds, the position and scale of sediment source areas, the 
surface exposure of source rock materials, and the regional subsidence 
necessary for sediment deposition and preservation. 

Foreland basins form in active tectonic settings adjacent to large 
contractional orogenic belts. Along convergent plate margins, high 
topography within the subduction-related magmatic arc and retroarc 
fold-thrust belt provides sources of sediment and may form orographic 

barriers that guide regional wind patterns and generate rain shadows 
within the adjacent foreland basin. Nevertheless, sustained eolian sys
tems are rare in most nonmarine foreland basins, which tend to be 
dominated by fluvial or megafan deposition (Horton and DeCelles, 
2001; Leier et al., 2005; Hartley et al., 2010). Reports of large-scale 
eolian deposition in foreland settings commonly involve uncertainties 
over the tectonic, accommodation, and provenance configurations (e.g., 
Bjerrum and Dorsey, 1995; Allen et al., 2000; Starck and Anzótegui, 
2001; Tripaldi and Limarino, 2005; Coutand et al., 2006; Carrapa et al., 
2012; Capaldi et al., 2019; Garzanti et al., 2022). 

In South America, an extensive eolian succession marks a pivotal 
shift in the Cenozoic evolution of the retroarc foreland basin adjacent to 
the southern central Andes. In northern to central Argentina (Fig. 1), the 
latest Oligocene to earliest Miocene defines a change from slowly sub
siding or isolated subbasins to a contiguous regional foreland basin. 
Corresponding basin fill is mostly associated with deposition of mud, 
sand, and gravel in ephemeral (overbank) fluvial, braided fluvial, fluvial 
megafan, and alluvial fan environments (Jordan and Alonso, 1987; 
Jordan et al., 1993, 1996, 2001; Limarino et al., 2001; Vergés et al., 
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2001; Siks and Horton, 2011; Levina et al., 2014). However, a remark
able belt of eolian sandstones is distributed extensively along the eastern 
flank of the Andes between 22◦S and 36◦S (Fig. 1). 

Despite the difficulties in dating these non-fossiliferous eolian 

deposits, geochronological evidence data point to a principally ~24–16 
Ma age range spanning the latest Oligocene through early Miocene 
(Fig. 2) (Dávila and Astini, 2007; Zambrano et al., 2011; del Papa et al., 
2013a, 2013b; Ciccioli et al., 2014a; Levina et al., 2014; Horton et al., 

Fig. 1. Shaded relief map of the southern central Andes and adjacent retroarc foreland basin of northern and central Argentina showing zones with eolian basin fill 
(yellow shading), inferred connections (light yellow shading), and no eolian deposits (green ruled pattern). Representative stratigraphic sections are defined for 
foreland Sites 1–20 (Figs. 2–4), with schematic stratigraphic cross sections for basin transects (A) ~25.5◦S and (B) ~30◦S (Figs. 5 and 6). Basin segments include: (1) 
NW: northwest; (2) CW: west-central; (3) Cu: Cuyo; (4) Nq: Neuquén. Major eolian units include: Tr: Tranquitas Formation; SL: San Lorenzo Formation; Vi: Viz
cachera Formation; RS: Río Seco Formation; Tt: Tintín member of Angastaco Formation; Tb: Tambería Formation; Va: Vallecito Formation; C: Cuculí Formation; P: 
Pachaco Formation; Ma: Mariño Formation. AP: Agua de la Piedra Formation. 
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2016; Fosdick et al., 2017; Reat and Fosdick, 2018; Capaldi et al., 2020). 
The regional synchroneity and comparable stratigraphic position at the 
base of a thick synorogenic succession suggest that distinct sedimentary, 
tectonic, and/or climatic conditions prevailed for a ~1500 km N–S 
distance along the basin axis. This eolian record coincided with accel
erated Andean crustal shortening, raising questions about how eolian 
processes may be related to tectonic, topographic, and climatic forcings, 
with further interactions among weathering, erosion, and transport in an 
arid climate, as well as competition between sediment supply and basin 
subsidence. 

In this study, we report on widespread eolian sedimentation within 
the Andean retroarc foreland basin of northern and central Argentina. 
Past studies have identified middle to late Cenozoic eolian deposits over 
various segments of the foreland basin (e.g., Candiani et al., 2011; 
Dávila et al., 2004; Furque et al., 2003; Milana, 1993; Starck and Ver
gani, 1996; Pérez, 2001; Starck and Anzótegui, 2001; Tripaldi and 
Limarino, 2005; Dávila and Astini, 2003; Marengo et al., 2019; Ciccioli 

et al., 2023). Here we present an integrated view of the stratigraphic 
distribution, provenance, and significance of the principal eolian units. 
The areal distribution and time interval of eolian deposition may indi
cate an important climatic phase possibly triggered by global climatic 
variations or regional tectonic activities associated with deformation 
advance and topographic growth of the Andes mountains. The purpose 
of this paper is to provide a perspective on uppermost Oligocene-lower 
Miocene eolian conditions in the context of the Andean foreland basin, 
synthesize available age constraints and stratigraphic correlations, and 
present information about provenance and sediment accommodation. 

2. Geologic framework 

The Andean retroarc foreland basin is the product of flexural subsi
dence driven by shortening and thickening of South American conti
nental lithosphere. Initial mountain building is commonly linked to 
accelerated westward motion of the South America plate (e.g., Coney 

Fig. 2. Stratigraphic profiles and radiometric age constraints for eolian-bearing Cenozoic successions from 20 localities in the Andean foreland basin of northern and 
central Argentina. Stratigraphic charts (above) and vertical profiles (below) show the principal eolian units, underlying and overlying units, available age constraints, 
and corresponding references. 
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and Evenchick, 1994; Maloney et al., 2013; Horton, 2018a), as recorded 
by the Late Cretaceous activation of an incipient fold-thrust belt in 
far-western segments of the Andean orogenic system. The zone of early 
Andean shortening and its corresponding foreland basin have been 
largely overprinted or removed by later deformation, magmatism, and 
erosion. Such a fragmentary structural and stratigraphic record has led 
to considerable discussion over the timing and controls on pre-Neogene 
deformation and basin development (Boll and Hernández, 1986; Jordan 
and Alonso, 1987; Yrigoyen, 1993; Jordan et al., 1993, 2001; Ramos, 
1999; Starck, 2011; DeCelles et al., 2011; Siks and Horton, 2011; del 
Papa et al., 2013a, 2013b; Fosdick et al., 2017; Horton, 2018b; Capaldi 
et al., 2020; Giambiagi et al., 2022; Mackaman-Lofland et al., 2022). 

Although debate persists over early Andean orogenesis, there is 
broad consensus that principally Neogene-age structures and nonmarine 
strata recorded the main phase of Andean shortening and sediment 
accumulation in the flexural foreland basin spanning northern and 
central Argentina (Figs. 1 and 2). Along a well-known orogenic transect 
at 30–32◦S (Fig. 3), an earliest Miocene onset of enhanced shortening is 
consistent with the activation of thrust and reverse faults in the Principal 
Cordillera along the Chile-Argentina border and the eastward-adjacent 
Frontal Cordillera (Ramos et al., 1996, 2002; Pérez, 2001). These 
faults accommodated E-W shortening and commonly reactivated pre
existing normal faults originally formed during earlier extension of 
Triassic-Jurassic and late Eocene-Oligocene age (Ramos, 1996; Cris
tallini and Ramos, 2000; Giambiagi et al., 2003; Mackaman-Lofland 
et al., 2019, 2020). 

The tectonic history recorded in the west-central segment of the 
foreland basin at 28–32◦S (Fig. 1, CW basin segment) is matched by 
similar patterns to the north and south. To the north, in northwestern 
Argentina at 22–26◦S (Fig. 1, NW basin segment), early Andean short
ening in the western Andes, including the Western Cordillera and Puna 
plateau, was followed by the main phase of shortening farther east in the 
Eastern Cordillera, Santa Barbara system, and Subandean Zone (Hain 

et al., 2011; Kley and Monaldi, 2002; Coutand et al., 2006; Starck, 2011; 
Siks and Horton, 2011; DeCelles et al., 2011, 2015; del Papa et al., 2010, 
2013a, 2013b, 2021; Giambiagi et al., 2022). To the south, in western 
Argentina at 33–36◦S, the Cuyo and Neuquén regions (Fig. 1, Cu and Nq 
basin segments) contain records of limited shortening accommodated 
within narrow fold-thrust systems defined by hybrid thin- and 
thick-skinned geometries with common inversion structures (Ramos 
et al., 1996; Giambiagi et al., 2012; Boll et al., 2014; Fuentes et al., 2016; 
Horton et al., 2016). 

These basin segments (Fig. 1, CW, NW, Cu, and Nq) form part of an 
integrated retroarc foreland basin containing a 2–4 km thick strati
graphic succession that recorded cratonward advance of proximal 
western and distal eastern basin margins. This succession is considered 
for 20 localities, hereafter referred to as Sites 1–20 (Fig. 2). Nearly all 
parts of the basin express an upward coarsening package (Fig. 3) 
indicative of progradational clastic facies belts, from distal to proximal 
depositional settings. Although initially developed as a contiguous 
feature, the foreland basin has been compartmentalized by subsequent 
shortening in the fold-thrust belt (e.g., Siks and Horton, 2011; Levina 
et al., 2014) and intraplate regions such as the Santa Barbara system and 
Sierras Pampeanas (Ramos et al., 2002; Horton et al., 2022a, 2022b). 
This structural disruption of the original basin has exposed basin fill in 
multiple positions in orogen-parallel (N–S) and orogen-normal (E-W) 
transects. Where sufficient exposure and age control exists, individual 
facies belts can be traced from the older western components to pro
gressively younger eastern counterparts (e.g., Capaldi et al., 2020). 

The Neogene-Quaternary record is dominated by nonmarine clastic 
facies (Fig. 3). Volumetrically, most depocenters consist of sandy 
braided fluvial and muddy ephemeral fluvial deposits, with subordinate 
conglomeratic alluvial fan and fluvial megafan deposits in proximal 
western localities. Eolian facies are limited to lower stratigraphic levels 
but span a ~1500 km distance along the basin axis. These eolian de
posits, which constitute a wide range of named stratigraphic units 

Fig. 3. Idealized stratigraphic profiles of proximal and distal settings of the retroarc foreland basin adjacent to the southern central Andes. Although both profiles 
show upward coarsening, note the lateral variations in thickness, facies, and depositional systems, with eolian deposits showing considerable lateral continuity. 
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(Fig. 2), share a principally latest Oligocene-early Miocene age and 
overall stratigraphic position (a) conformably over Paleogene strata that 
accumulated under slow subsidence regimes or, alternatively, (b) above 
a basal unconformity over Mesozoic or Paleozoic units. Upsection, 
eolian facies are typically replaced by progradational fluvial and alluvial 
fan deposits (Figs. 2–4). 

The eolian stratigraphic packages display a large geographic distri
bution, potentially >100,000 km2, from 22◦S to 36◦S (Fig. 1). Although 
the duration likely varied locally, most available age control suggests up 
to 8 Myr of prolonged desert conditions coeval over large areas during 
the early evolution of the Neogene foreland basin. The areal distribution 
of desert conditions suggests that eolian facies were developed over a 
range of different structural settings in the Andean foreland, with some 
localities situated in proximal realms and others distal to the topo
graphic front of the Andean fold-thrust belt. 

Despite the regional coherence of uppermost Oligocene-lower 
Miocene eolian packages (Fig. 2), anomalous zones of locally older 
and younger eolian deposition occurred in several restricted areas. This 
includes eolian deposits of probable late Eocene-early Oligocene age in 
the Manantiales basin at 32◦S (Site 18 Areniscas Chocolate unit; Pinto 
et al., 2018; Mackaman-Lofland et al., 2020; Suriano et al., 2023) and in 
the northern Bermejo basin at 29–31◦S (within the Puesto La Flecha 
Formation at Sites 10-15; Fosdick et al., 2017; Limarino et al., 2002, 
2016; Reat and Fosdick, 2018), as well as late Miocene eolian units in 
the Vinchina-Quebrada Santo Domingo areas at 28–29◦S (Sites 9–10) 
Santo Domingo and Toro Negro Formations; Astini et al., 2009; Dávila 
and Astini, 2003, 2007; Ciccioli et al., 2014b; Marengo et al., 2019). 

3. Sedimentology and stratigraphy 

The stratigraphic and sedimentologic framework for upper 
Oligocene-lower Miocene eolian deposits reflects common features 
across 20 localities within the retroarc foreland basin of Argentina 
(Figs. 1–3, Sites 1–20). Analysis of several key stratigraphic sections 
(Fig. 4) and assessments of depositional processes illustrate the eolian 
depositional record in the context of precursor basin conditions and the 
ensuing main phase of foreland basin accommodation. The data span 
many localities (including type sections of individual formations) in 
central and northern Argentina from ~22◦S to 36◦S. Sediments were 
deposited in a contiguous foreland basin, with a representative E-W 
(orogen-normal) stratigraphic profile (Fig. 3) that is reflected by specific 
units defined for stratigraphic sections at ~26◦S (Figs. 5, 6A) and ~30◦S 
(Fig. 6B). For simplicity we present the stratigraphic and sedimentologic 
information according to different segments of the basin from north to 
south (Fig. 1, NW, CW, Cu, and Nq basin segments). 

3.1. Northwest Argentina 

The northwestern basin segment (22–26◦S) contains thick sections of 
Cenozoic foreland basin fill exposed in the Eastern Cordillera, Santa 
Barbara system, and Subandean Zone (Fig. 1). Although part of an 
originally contiguous basin, these deposits are currently exposed in 
disconnected valleys, which has led to a complex lithostratigraphic 
nomenclature for the Salta, Tucumán, and Jujuy provinces of Argentina 
(Fig. 2, Sites 1–6). Nevertheless, the deposits can be placed in an inte
grative perspective involving two components (Fig. 3): (A) a thin but 
regionally extensive package of early foreland basin fill and (B) an 
overlying thick package of coarse-grained deposits representing the 

Fig. 4. A series of stratigraphic sections and depositional ages for the retroarc foreland basin adjacent to the southern central Andes, levelled at the base of the eolian 
stratigraphic interval (yellow shading). Note the lateral variations in the thicknesses of eolian deposits and the host succession. Stratigraphic sections (localities 
shown in Figs. 1 and 2): Site 2: Valle Grande oil well (Grosso et al., 2013). Site 4: Monte Nieva, Calchaquí Valley (Starck and Vergani, 1996; DeCelles et al., 2011). 
Sites 11–12: La Cueva-Las Juntas (Tripaldi, 2012; Ciccioli et al., 2014a). Site 16: Talacasto (Levina et al., 2014); Site 19: Cuyo-Cacheuta (Irigoyen et al., 2000). Site 
20: Malargüe-Sosneado (Horton et al., 2016). 
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main phase of sediment accumulation. 
The early foreland basin fill is of of chiefly Eocene-Oligocene age and 

consists of an upward coarsening succession of generally purple to brick- 
red facies dominated by mudrock deposited in distal fluvial environ
ments, principally overbank settings with considerable pedogenic 
development, with local lacustrine environments (DeCelles et al., 2011; 
del Papa et al., 2013a, 2013b). Upsection, the overlying thick package of 
sandstone and conglomeratic facies defines continued latest Oligocene 
to Quaternary accumulation in more proximal sectors of the foreland 
basin (Hernández et al., 1996, 2005; Reynolds et al., 2001; Echavarria 

et al., 2003; Calle et al., 2018). 
The upper stratigraphic package recorded large-scale eastward 

advance of the foreland basin, with progradation of fluvial, fluvial 
megafan, and alluvial fan depositional systems over precursor eolian 
deposits (Fig. 4, Sites 2–3). In northernmost Argentina, eolian facies 
occupy the base of the progradational succession, as represented in the 
Cianzo syncline (Site 1, 23.1◦S) and correlative Tres Cruces succession 
by the lower Casa Grande Formation (Figs. 1 and 2; Boll and Hernández, 
1986; Siks and Horton, 2011), and the Valle Grande area (Site 2, 23.6◦S) 
by the San Lorenzo Formation or “Areniscas de Garganta” (Rosario et al., 

Fig. 6. Schematic time-stratigraphic cross sections for orogen-normal E-W transects across the retroarc foreland basin (A) at ~26◦S (modified from Starck and 
Vergani, 1996) and (B) at ~30◦S (modified from Horton et al., 2022a,b). The sections show different depositional facies (colors) and stratigraphic units (labels), with 
eolian deposits restricted to lowermost basin fill in proximal to medial settings. Note the upward coarsening and progressive advance (and onlap) of depositional 
systems toward the distal eastern basin margin. 

Fig. 5. Stratigraphic profile at ~25.5◦S depicting contrasting facies and depositional systems within the northwestern basin segment (Sites 3–4) of the retroarc 
foreland of the southern central Andes. Eolian deposits are limited to lowermost basin fill in proximal to medial settings. Note the dominance of coarse-grained 
alluvial-fan/fluvial deposits in proximal (western) settings and restriction of playa lake deposits to more distal (eastern) settings. Modified from Starck and Ver
gani (1996) and Starck and Anzótegui (2001). 
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2008; Starck and Schulz, 2017). Farther north, at 22–23◦S, these orange 
cross-bedded eolian sandstones become light gray due to diagenetic 
alteration of the Tranquitas Formation (Starck et al., 2018). This eolian 
interval is capped by fluvial deposits of regional extent, including the 
Valle Grande Formation in the west and the “Terciario Subandino” unit 
in the east (Hernández et al., 1996, 2005; Siks and Horton, 2011). 

Farther south, multiple exposures across an E-W profile at ~26◦S 
(Fig. 5) enable proximal to distal correlations of the progradational 
package across the basin (Fig. 6A). In the Calchaquí Valley (Site 4, 
25.4◦S), the progradational package encompasses the Angastaco For
mation, which presents a lower sandy eolian Tintin Member and an 
upper sandy/gravelly fluvial/alluvial fan Las Flechas Member (del Papa 
et al., 2013a, 2013b). To the east, in the Lerma Valley (Site 3, 25.6◦S), 
the eolian facies persist into the Río Seco Formation but the proximal 
fluvial/fan facies pass into ephemeral fluvial deposits of the Jesús María 
Formation. Farther eastward these units grade distally into playa or 
playa-lake deposits of the Anta Formation. The lateral continuity of the 
eolian units (Tintin Member of Angastaco Formation, Rio Seco, San 
Lorenzo, and Tranquitas Formations) point to an extensive desert 
composed of dune fields and sand sheets, with limited development of 
muddy interdune areas. 

The geographic distribution of the eolian units is well constrained, 
and was likely confined to the Miocene foredeep (Fig. 1 and 6A). In the 
north, eolian facies pinch out due to onlap and stratigraphic condensa
tion against local basin margins near the Bolivian border (Starck et al., 
2018). In more-proximal zones to the west, progressive thinning of 
eolian facies and a lateral change to fluvial and alluvial-fan facies is 
observed in the Cianzo, Angastaco and Pucará areas. In the south and 
southeast, eolian deposits are replaced by playa and playa-lake facies 
(Anta Formation and its southern equivalent, the San José Formation), a 
transition preserved in the Calchaquí Valley (near Cafayate) and Lerma 
Valley (near Alemanía). 

Geochronological data help define the depositional ages of the eolian 
sandstones and related units (Figs. 2 and 4). In the Calchaquí Valley, an 
early Miocene age is confirmed by a 21.0 ± 0.8 Ma zircon U-Pb age from 
an intercalated tuff in the Tintin area (del Papa et al., 2013a, 2013b). 
Similarly, a 22–19 Ma range for the youngest detrital zircon U-Pb ages is 
reported for sandstones in the Pucará and Angastaco areas (Carrapa 
et al., 2012; Galli et al., 2014). To the east, tuff horizons in the Tonco 
area yield slightly younger zircon U-Pb ages of 17.5 ± 0.1 Ma and 17.3 
± 0.2 Ma (Payrola et al., 2020). These ages are consistent with generally 
Oligocene ages for underlying deposits, including a maximum age of 
28.7 ± 1.9 Ma (apatite fission track) reported for a cobble ~60 m below 
the eolian interval in the Monte Nieva area (DeCelles et al., 2011). 
Collectively, the available age constraints indicate a ca. 22 to 17 Ma age 
for major eolian deposition in these sectors (Sites 1–4) of the Eastern 
Cordillera, Santa Barbara system, and Subandean Zone. 

West of this sand desert, a zone of comparable eolian facies has been 
described in the Puna Plateau (Sites 5–6). Eolian-bearing units include 
the Vizcachera Formation (lower member) in the Arizaro basin (Site 5; 
DeCelles et al., 2015; Vandervoort et al., 1995) and the Quiñoas (upper 
member) and Chacras Formation adjacent to the Salar de Antofalla 
(Kraemer et al., 1999; Voss, 2002). As in the east, eolian sandstones were 
progradationally overlain by fluvial/alluvial-fan facies followed by 
shaley and evaporitic facies. K–Ar and U-Pb results for several inter
bedded ashes define age spans of ca. 24–18 Ma and ca. 21–16 Ma for 
eolian sedimentation in the Antofalla and Arizaro localities, respectively 
(Kraemer et al., 1999; DeCelles et al., 2015). 

3.2. West-central Argentina 

The west-central basin segment (28–32◦S) contains well- 
documented Miocene eolian facies within both the Precordillera (the 
frontal segment of the Andean fold-thrust belt) and the flanking Sierras 
Pampeanas region in the eastern foreland (Fig. 1). The eolian deposits 
persist along strike over a ~500 km N–S distance, across the Catamarca, 

La Rioja and San Juan provinces of Argentina. However, thin- and thick- 
skinned shortening has structurally disrupted the original foreland 
basin, resulting in many separate Cenozoic outcrop belts (Fig. 2, Sites 
7–18). Although discrete stratigraphic units were commonly defined 
and restricted to individual outcrop belts, age determinations from 
magnetostratigraphic, fission-track, 40Ar/39Ar, and U-Pb geochrono
logical methods have enabled chronostratigraphic correlations over 
large distances (e.g., Johnson et al., 1986; Reynolds et al., 1990; Jordan 
et al., 1990, 1993, 1996, 2001; Tabbutt, 1990; Dávila and Astini, 2007; 
Zambrano et al., 2011; Melchor et al., 2013; Vizán et al., 2013; Ciccioli 
et al., 2014a; Levina et al., 2014; Collo et al., 2017; Fosdick et al., 2017; 
Galli et al., 2017; Capaldi et al., 2020; Plonka et al., 2023). 

The thickest and most complete successions are preserved in the 
north (Sites 7–12; Fig. 2), near 28–30◦S at: (A) Fiambalá and Corral 
Quemado (Site 7, 27.7◦S); (B) Sierra de Famatina (Site 8, 28.7◦S); (C) 
Vinchina (Sierra de los Colorados) (Site 9, 28.7◦S); Quebrada Santo 
Domingo area (Site 10, 28.5◦S); (C) La Cueva (Site 11, 29.2◦S), and (D) 
Las Juntas, including La Flecha and Troya localities (Site 12, 29.4◦S) 
(Fig. 6B). Among these sites, the Vinchina region is distinguished by an 
exceptional, 0.5–1 km thick interval of stacked eolian sandstones within 
the lower Miocene Vallecito Formation (Tripaldi and Limarino, 2005; 
Tripaldi, 2012; Ciccioli et al., 2010, 2011), which is overlain by an 
upward coarsening 5–8 km thick package of fluvial and alluvial-fan 
facies of the middle Miocene Vinchina Formation (Jordan et al., 1993; 
Tripaldi et al., 2001; Limarino et al., 2001; Stevens Goddard et al., 
2020). 

In the south, a correlative lower Miocene eolian succession can be 
traced across multiple thrust sheets within the Precordillera segment of 
the fold-thrust belt (Sites 13–18). Along a broad swath at 30–32◦S, 
including exposures near the city of San Juan, cross-bedded eolian 
sandstones have been assigned various stratigraphic names. The Valle
cito Formation is identified in the Precordillera at 30–31◦S, including: 
(A) Huaco (Site 13, 30.2◦S); (B) Rio Francia (Site 14, 30.6◦S); and (C) Rio 
Azul (Site 15, 30.7◦S). Other eolian units identified in the Precordillera 
include the Cuculí Formation (lower member) in the Talacasto area (Site 
16, 31.0◦S), a well-exposed, up to 600 m thick eolianite that rests un
conformably on Paleozoic strata (Milana, 1993; Levina et al., 2014; 
Bracco et al., 2015). Within the Rio San Juan Valley, similar facies have 
been described for the Pachaco Formation (Site 17, 31.3◦S; Cevallos and 
Milana, 1992; Milana et al., 1993). 

The eolian deposits of west-central Argentina represent dune fields, 
sand sheets, or an integrated erg over an estimated >30,000 km2 area. 
There are no definitive data demonstrating a physical connection be
tween the eolian facies at 28–32◦S with age-equivalent eolian deposits of 
the northwestern basin at 22–26◦S. Thus, the original depositional zones 
may have been separated by a spatial gap of up to ~250 km where no 
eolian facies are preserved. This eolian gap contains Miocene fluvial and 
lacustrine facies that unconformably rest on Precambrian to lower 
Paleozoic igneous or metamorphic basement. West of the Precordillera, 
the Manantiales basin of the Frontal Cordillera contains eolian deposits 
of the “Areniscas Chocolate” within the lowermost Chinches Formation 
(Site 18, 32.0◦S), which rests unconformably on Permian-Triassic 
igneous and sedimentary rocks (Jordan et al., 1996; Ramos, 1996; 
Pérez, 1995, 2001). 

An early Miocene age for eolian deposition is confirmed by zircon U- 
Pb ages for sandstones and tuffaceous horizons, listed here from north to 
south. In the Fiambalá area (Site 7), detrital zircon U-Pb results provide 
maximum depositional ages (MDAs) of 23.9 ± 1.0 and 23 ± 1 Ma for 
eolian deposits, with MDAs of 16.2 ± 4.6 Ma and 15.4 ± 0.5 Ma for 
overlying fluvial deposits (Carrapa et al., 2008; Safipour et al., 2015; 
Deri et al., 2019, 2021). For the widespread Vallecito Formation (Sites 
9–15), a broad range of possible ages is defined by MDAs of the un
derlying Puesto La Flecha Formation (ca. 38–32 Ma; Jordan et al., 1993; 
Fosdick et al., 2017) and the overlying Vinchina and Cerro Morado 
Formations (ca. 18–12 Ma; Limarino et al., 2002; Ciccioli et al., 2014a; 
Capaldi et al., 2020; Mackaman-Lofland et al., 2022). Direct ages from 
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the Vallecito Formation include MDAs of 19.4 ± 0.7 Ma and 18.6 ± 0.4 
Ma in the Vinchina area (Site 9; Collo et al., 2011; Stevens Goddard and 
Carrapa, 2018) and 22.3 ± 1.6 Ma age near La Cueva-Las Juntas (Sites 
11–12; Mackaman-Lofland et al., 2022). MDA results for lower to in
termediate levels of the eolian succession in the Talacasto and Pachaco 
areas (Sites 16–17) range from 24.0 ± 1.2 Ma to 19.0 ± 0.6 Ma. 
Recognizing the potential for spatial variability, we tentatively infer an 
age range of 24–16 Ma for eolian deposition in the west-central basin 
segment, similar to Ciccioli et al. (2023). 

3.3. Cuyo and Neuquén basin segments 

The Cuyo and Neuquén basin segments (33–36◦S) of the Mendoza 
province include eolian facies comparable to the northwestern 
(22–26◦S) and west-central (28–32◦S) segments of the Andean foreland 
basin in Argentina. However, in contrast to the more-northern zones, the 
Andean orogenic belt is considerably narrower in the south (Fig. 1). This 
contrast is mostly the product of the southward termination of the 
Precordillera, the ~100 km wide frontal segment of the fold-thrust belt 
at 28–33◦S. Thus, in the south, the orogen is mostly defined by the 
Principal Cordillera and southern continuations of the Frontal Cordillera 
in the form of the Malargüe and Neuquén fold-thrust systems (Ramos 
et al., 1996, 2002; Giambiagi et al., 2012). 

At 33–34◦S, the Cuyo basin or Cacheuta basin, locally (Site 19, 
33.1◦S), contains a thick Neogene succession with eolian facies exposed 
in lower levels (Fig. 2) (Irigoyen et al., 2000; Buelow et al., 2018). In this 
region, near the city of Mendoza, eolian strata cap a fine-grained 
Paleogene interval of principally mudstones and associated pedogenic 
deposits. In turn, the eolian deposits are overlain by a progradational 
package of fluvial and alluvial-fan sandstones and conglomerates. The 
lower Miocene eolian deposits and middle Miocene fluvial deposits are 
included within a unified Mariño Formation. The eolian facies of the 
Mariño Formation are situated ~150 km from the nearest correlative 
eolian outcrops to the north (Site 17, Pachaco Formation), permissive of 
a potential gap in the early Miocene eolian sand dune fields and sand 
sheets (Fig. 1). 

Depositional continuity of age-equivalent eolian facies has been 
confirmed in hydrocarbon wells throughout the Mendoza province 
south of 33◦S. These subsurface deposits have been traced southward 
into eolian exposures of the northern continuation or Malargüe segment 
of the well-known Neuquén basin (Figs. 1 and 2). In the Sosneado region 
(Site 20, 35.1◦S), the Agua de la Piedra Formation contains eolian 
sandstone facies equivalent to the lower Mariño eolianites (Site 19). 
Outcrops of the Agua de la Piedra eolian deposits can be traced as far 
north as ~34.5◦S, along the Diamante River at the foothills of the 
Frontal Cordillera. The lower Miocene record south of Malargüe has 
been mostly exhumed (Fuentes et al., 2016; Fuentes and Horton, 2020), 
so the southern depositional limit of the eolian facies is unknown. 

Detrital zircon U-Pb ages for the eolian interval of the Mariño For
mation in the Cuyo-Cacheuta area (Site 19) provide MDAs of 19.2 ± 0.3 
Ma to 17.6 ± 0.3 Ma, with a 15.6 ± 1.0 Ma MDA for overlying non- 
eolian deposits of the upper Mariño Formation (Buelow et al., 2018). 
These ages are consistent with age constraints from magnetostrati
graphic and 40Ar/39Ar results for the overlying middle to upper Miocene 
(ca. 16–8 Ma) succession (Irigoyen et al., 2000). Correlative sandstones 
from the northern Neuquén basin (Malargüe fold-thrust belt) (including 
Sosneado, Site 20) yield similar U-Pb age constraints. The Agua de la 
Piedra Formation, which contains an eolian interval up to 200 m thick, 
exhibits MDAs ranging from 19.5 ± 0.4 Ma to 15.7 ± 0.6 Ma (Horton 
et al., 2016; Horton and Fuentes, 2016; Fuentes and Horton, 2020). An 
age range of ca. 20–16 Ma is interpreted as the main phase of eolian 
conditions in this 33–36◦S segment of the foreland basin. 

3.4. Basin chronostratigraphy 

Existing chronostratigraphic data are consistent in identifying an 

early Miocene age, and possibly latest Oligocene age, for eolian facies 
spanning the Andean foreland basin of central and northern Argentina 
(Figs. 1 and 2). The deposits occupy a remarkably similar stratigraphic 
position within the basin, at the base of a succession with a precursor 
fine-grained distal mudstone facies and an overlying very thick fluvial 
succession of sandstone and conglomerate (Figs. 3 and 4). These ages 
indicate a phase of deposition under arid conditions centered around 
23–17 Ma, with a maximum depositional duration from ca. 24 to 16 Ma, 
which approximately corresponds to the early Miocene sub-epoch. 

Although some of the analyzed eolian intervals show shorter dura
tions, this may reflect local variations in accommodation near proximal 
or distal basin margins during the early stages of regional desert con
ditions. This explanation seems appropriate for the distal eastern sectors 
of the basin, where a delayed onset of sediment accumulation can be 
inferred from the progressive onlapping relationship of eolian deposits 
onto pre-Mesozoic basement (Fig. 6). Alternatively, a shorter duration of 
eolian deposition may be the product of lateral facies variations, with 
replacement of eolian dunes by local fluvial or playa/playa lake systems 
developed under comparable arid conditions. 

In addition to widespread early Miocene eolian deposition, restricted 
zones of older and younger eolian deposition have been identified 
locally. This includes eolian deposits of probable late Eocene-early 
Oligocene age in the Manantiales basin (Site 18; Pinto et al., 2018; 
Mackaman-Lofland et al., 2020; Suriano et al., 2023), and northern 
Bermejo basin (Sites 10-15; Fosdick et al., 2015; Limarino et al., 2000, 
2016; Reat and Fosdick, 2018), and late Miocene age in the 
Vinchina-Quebrada Santo Domingo areas (Sites 9–10; Dávila and Astini, 
2003, 2007; Amidon et al., 2016; Ciccioli et al., 2005, 2014b; Marengo 
et al., 2019). 

4. Sediment provenance 

New and recently published detrital zircon U-Pb geochronological 
results, sandstone petrography, and paleocurrent measurements provide 
critical information on the provenance of the extensive eolian interval. 
Here we present background information on the U-Pb geochronological 
method, a regional summary of potential sediment source areas, and 
then a synthesis of new and published U-Pb ages and sandstone com
positions for upper Oligocene-lower Miocene eolian deposits. The po
tential source areas include the magmatic arc to the west, the different 
segments of the fold-thrust belt, and uplifted basement blocks along 
basin margins in the foreland region. For eolian deposits, the prove
nance results implicate a series of local Andean sources and the 
magmatic arc, with little to no input from basement sources in the 
eastern foreland. 

4.1. Detrital zircon U-Pb geochronology: methods 

U-Pb geochronological analyses were conducted on detrital zircon 
grains from five samples. Following traditional physical and chemical 
mineral density separation techniques (including water table, heavy 
liquid and magnetic separation), a selection of inclusion-free zircon 
grains of variable size and shape were randomly selected and analyzed 
for U-Pb geochronology on the Element2 LA-ICPMS (laser-ablation 
inductively coupled plasma mass spectrometer). Samples ADP225, 
ADP224, and SSN224 were analyzed as polished mounts at the Uni
versity of Arizona LaserChronCenter (Gehrels et al., 2008). Samples 
AZL01 and AZL02 were analyzed as grain mounts at the University of 
Texas (Capaldi et al., 2020). We report new U-Pb geochronological re
sults with measured age uncertainties of 1–2% (1σ error). We use 
206Pb/238U ages for zircons younger than 1200 Ma and 206Pb/207Pb ages 
for zircons older than 1200 Ma. Individual analyses were filtered such 
that results displaying >20% discordance or >5% reverse discordance 
were excluded from further consideration. Results for individual sam
ples are represented as kernel density estimations (KDEs) with a band
width of 15 Myr and histogram age bins with 25 Myr bin widths. Detrital 
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zircon U-Pb geochronological data are reported for all samples (Sup
plemental File S1). 

4.2. Potential sediment sources 

The dominant sediment source regions for the Oligocene-Miocene 

eolian systems of the southern central Andean foreland include the 
Andean magmatic arc and incipient retroarc fold-thrust belt to the west 
and South American cratonic rocks that comprise the Sierras Pampeanas 
to the east (Fig. 7). These source regions yield distinctive detrital zircon 
geochronology age distributions and sandstone composition provenance 
signatures that can be readily distinguished from one another. 

Fig. 7. Geologic map of the southern central Andes highlighting major sediment sources (from Servicio Geológico Minero SEGEMAR, 1999; 2012; Sernageomin, 
2003), and paleocurrent measurements (black triangles) at Site locations (numbered black circles). 
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Here we describe diagnostic age groups representative of sediment 
provenance signatures recorded by detrital zircon U-Pb analyses from 
basement terranes (440–1450 Ma), Gondwanan magmatism (380–200 
Ma), and Andean arc magmatism (200–0 Ma). Proterozoic aged zircons 
(~925–1450 Ma) may have been sourced from numerous Sunsás 
metamorphic basement units that presently crop out across the Sierras 
Pampeanas and Arequipa-Antofalla basement blocks, and is ubiquitous 
in most Ordovician to Permian sedimentary sequences deformed within 
the Andean fold-thrust belt (Ramos, 2004; Rapela et al., 2016). The 
Eastern Sierras Pampeanas (550–725 Ma) age group is initially sourced 
from metasedimentary rocks (e.g., Puncoviscana Formation) and 
commonly recycled from Carboniferous to Permian strata in the Andean 
fold-thrust belt (Fosdick et al., 2015; Capaldi et al., 2017, 2020) and 
Cambrian-Ordovician strata of the Eastern Cordillera (Calle et al., 2023). 
Cambrian to Ordovician ages (550–440 Ma) are derived from igneous 
rocks throughout the western Sierras Pampeanas and Puna plateau 
(Fig. 7). This group involves the dominant 515–550 Ma age peak orig
inally from igneous-metamorphic rocks of the Pampean magmatic arc 
presently exposed in the Sierras de Córdoba (Rapela et al., 2016) and 
440–505 Ma Famatinian continental arc rocks (Otamendi et al., 2017; 
Rapela et al., 2018) and subsequent 385–435 Ma metamorphic assem
blages associated with accretion of the Cuyania terrane (Coira et al., 
1982; Astini et al., 1995). Recycled Famatinian and Pampean age 
components are derived from Silurian-Devonian and 
Carboniferous-Permian sedimentary units in the Precordillera 
fold-thrust belt (Capaldi et al., 2017) and are ubiquitous in the 
Cambrian-Ordovician strata of the Eastern Cordillera (Calle et al., 2023). 

Late Devonian to Early Carboniferous (380–320 Ma) magmatism was 
expressed as widely distributed (>500 km) granitic plutons emplaced 
during extensional conditions (Dahlquist et al., 2018; Moreno et al., 
2020). Carboniferous-Triassic zircon ages are derived from intrusive and 
volcanic rock sources throughout the Chilean Coastal Cordillera, Frontal 
Cordillera, and Principal Cordillera (Fig. 7). These rocks include the 
290–310 Ma Elqui-Limari and Colanguil batholiths (Hervé et al., 2014; 
del Rey et al., 2016), 240–285 Ma granitoids and silicic volcanic rocks of 
the Choiyoi igneous province (Mpodozis and Kay, 1992; Kleiman and 
Japas, 2009; Sato et al., 2015), and 240-200 Ma Upper Triassic volcanic 
and volcaniclastic rocks (Oliveros et al., 2018). Additional sources of 
Permian-Triassic age components include recycled Jurassic to Creta
ceous sedimentary deposits in the Principal Cordillera (Mackaman-Lof
land et al., 2019) and Triassic strata from the Eastern Cordillera (Calle 
et al., 2018). 

East-dipping subduction generated the Jurassic to Cenozoic Andean 
magmatic arc (200–0 Ma), which is defined by north-trending belts 
involving principally granite/granodiorite intrusions and andesite vol
canic rocks. These belts young systematically eastward from Jurassic 
(190–140 Ma) and Cretaceous (125–65 Ma) rocks along the Chilean 
coast, to Paleocene–Eocene (65–35 Ma) and Eocene–Oligocene (35–25 
Ma) units along the western flank of the Principal Cordillera, and finally 
Miocene (25–5 Ma) volcanic rocks in the eastern Principal Cordillera, 
Frontal Cordillera, and Argentine foreland (Kay et al., 1991; Haschke 
et al., 2006; Jones et al., 2016; Balgord, 2017; Capaldi et al., 2021). 
Primary sources of the Andean arc age components are likely derived 
from erosional unroofing of Jurassic to Paleogene intra-arc and retroarc 
basin deposits (Fig. 7; Capaldi et al., 2017; Garzanti et al., 2022). 

Petrography of modern river and Holocene eolian dune sand can be 
leveraged to identify provenance signatures of the Andean arc, fold- 
thrust belt, and craton sources in the retroarc of Argentina between 28 
and 36◦S (Tripaldi et al., 2010; Garzanti et al., 2021, 2022). Eolian sands 
derived from cratonic basement assemblages are predominately 
composed of ~50% quartz and ~40% feldspar (plagioclase) with ~10% 
lithic fragments. Whereas eolian sands derived from the Andean arc and 
fold-thrust belt exhibit a progressive southward increase in lithic frag
ments (volcanic > sedimentary > metamorphic) components and cor
responding decrease in quartz (Garzanti et al., 2022). 

4.3. Detrital zircon U-Pb geochronology: results 

Vallecito Formation samples AZL01 and AZL02 from the Rio Azul 
area (Site 15) show similar age distributions that are dominated by a late 
Oligocene to early Miocene (20–32 Ma) age peak (Fig. 8). Rio Azul 
samples record a minor age peak spanning Permian-Triassic (200–280 
Ma) and Devonian-Permian (280–380 Ma) age groups. Agua de la Piedra 
Formation samples collected from Sosneado (Site 20) in the Malargüe 
region display multi-modal age distributions that include: a scattered 
distribution of young Andean arc ages with a minor amount of 
Oligocene-Miocene ages and Cretaceous-Paleocene ages; a strong 
Jurassic age peak around 170 to 200 Ma; significant amount of ages 
within the Permian-Triassic (200–280 Ma) and Devonian-Permian 
(280–380 Ma) age groups with a peak around 255–270 Ma; and a 
diffuse tail of Cambrian-Ordovician (440–550 Ma), Eastern Sierras 
Pampeanas (550–725 Ma), and Sunsás (925–1450 Ma) ages. Collec
tively, the eolian sandstones samples exhibit similar detrital zircon age 
distributions amongst sampled collected from each depocenter (Fig. 8 
and S1), allowing us to group individual samples into composite age 
distributions based on depocenter regions. 

4.4. Provenance of eolian sandstones 

Detrital zircon U-Pb age populations and paleocurrent measurements 
reveal sediment provenance variations in eolian deposition and provide 
insight into late Oligocene-Miocene erosion and along-strike evolution 
of different segments of the Andean foreland basin. Paleocurrent mea
surements from 10 Sites (Fig. 7) record major westerly winds, trans
porting Andean detritus broadly eastward to the foreland basin with 
common axial northward deflections (Cevallos and Milana, 1992; Tri
paldi and Limarino, 2005; Siks and Horton, 2011; Galli et al., 2014; 
DeCelles et al., 2015; Horton et al., 2016; Fosdick et al., 2017; Buelow 
et al., 2018; Capaldi et al., 2020; Mackaman-Lofland et al., 2020). 

New and previously published data from the following eolian- 
bearing rock units across 11 sites are compiled and plotted as U-Pb 
age distributions (Fig. 9): Casa Grande Formation in the Cianzo area 
(Site 1; Siks and Horton, 2011); Angastaco Formation in the Calchaquí 
section (Site 4; Carrapa et al., 2012; Galli et al., 2014); Vizcachera 
Formation in the Arizaro basin (Site 5; DeCelles et al., 2015); Vallecito 
Formation at the Las Juntas locality (Site 12; Mackaman-Lofland et al., 
2022), Huaco and Rio Francia (Sites 13–14; Fosdick et al., 2017), Rio 
Azul (Site 15; this study), and Talacasto areas (Site 16); the Pachaco 
Formation in the Pachaco section (Site 17; Levina et al., 2014); Mariño 
Formation in the Cuyo (Cacheuta) basin (Site 19; Buelow et al., 2018); 
and Agua de la Piedra Formation in the Sosneado area of the Malargüe 
basin (Site 20; Horton et al., 2016; this study). Further information on 
these eolian sandstone samples is provided in Supplemental File S2 and 
individual KDEs are plotted in Supplemental File S3. 

Detrital zircon age distributions for eolian sandstones from the 
northwestern basin (Cianzo, Arizaro, and Calchaqui sites) display pro
nounced Cambrian-Ordovician (440–550 Ma), Eastern Sierras Pampea
nas (550–750 Ma), and Sunsás (925–1450 Ma) ages (Fig. 9). These 
Precambrian to earliest Paleozoic age components are commonly not 
present in basin segments to the south (28–36◦S). These older zircons 
were largely sourced from Cambrian to Ordovician stratigraphic units 
found throughout the Eastern Cordillera (Calle et al., 2023). The pres
ence of eroded material from the Eastern Cordillera in the northern 
retroarc basin is consistent with structural reconstructions for the broad 
segment of the central Andes that document a late Oligocene (~28–24 
Ma) phase of increased shortening and thrust front propagation (Carrapa 
and DeCelles, 2015; Anderson et al., 2017, 2018). 

The zircon U-Pb age distributions for the eolian Vallecito and 
Pachaco Formations in the west-central basin include a significant 
amount of Permian-Triassic (200–280 Ma) and Devonian-Permian 
(280–380 Ma) ages (Fig. 9). These pre-Cenozoic ages indicate erosion 
of pre-Andean intrusive and extrusive igneous rocks in addition to 
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recycling of Jurassic to Paleogene basin deposits across the Principal 
Cordillera. Apatite fission track dates from the Principal Cordillera at 
28–32◦S reveal earliest Miocene exhumational cooling of the Principal 
Cordillera (Rodríguez et al., 2018) that coincides with initial retroarc 
foreland basin development (Jordan et al., 1993; Levina et al., 2014; 
Capaldi et al., 2020). 

Farther south, the Mariño Formation in the Cuyo depocenter displays 
age distributions similar to the Vallecito Formation with a prominent 
Permian-Triassic age component, but also contains a minor Mesozoic 
age component and spread of older (>400 Ma) ages. The Agua de la 
Piedra Formation from the Malargüe depocenter exhibits a unique 
detrital zircon age distribution with Cretaceous and Jurassic ages in 
addition to a prominent Permian-Triassic age peak. In the southern basin 
segment, eolian sediment was derived from Mesozoic strata incorpo
rated into the Malargüe fold-thrust belt during the early Miocene 
(Horton et al., 2016; Fuentes et al., 2016). 

Along-strike comparisons of paleocurrents and detrital zircon age 
signatures highlight several trends during widespread eolian deposition. 
First, the consistent influence of the Andean magmatic arc as a regional 
source of sediment is indicated by ubiquitous Mesozoic-Cenozoic ages 
and northeast-directed eolian paleocurrents. Second, minimal direct 
input from eastern cratonic regions is suggested by the diminished 
proportion of Precambrian age signatures. Third, and most significantly, 
the presence of several distinct age populations restricted to particular 
segments of the foreland basin reveals a spatial segregation of local 
sediment sources along strike within the Andean fold-thrust belt. 

The along-strike variations in eolian sediment sources detected by 
detrital zircon geochronological data are supported by previously re
ported sandstone petrographic results (Fig. 10). Sandstone data from the 

northwestern basin segment (Sites 1–5; 22–26◦S) include the Casa 
Grande, Angastaco, and Rio Seco Formations, which consist of high 
proportions of polycrystalline quartz and metamorphic lithic fragments 
indicative of Eastern Cordillera metasedimentary sources (Siks and 
Horton, 2011; Galli et al., 2014, 2023). The Vizcachera Formation 
(Arizaro basin) has similar compositions as the regionally extensive 
Vallecito Formation of the central-western basin segment (Sites 6–18; 
28–32◦S), where all samples exhibit greater amounts of feldspar and 
volcanic lithic fragments, with correspondingly less quartz than than the 
northwestern basin segment (DeCelles et al., 2015; Fosdick et al., 2017; 
Reat and Fosdick, 2018; Tamagno et al., 2018). The increased volcanic 
component likely reflects erosion of the magmatic arc province of the 
Principal Cordillera. In the southern basin segment (Sites 19-20), 
sandstones from the Mariño and Agua de la Piedra Formations from 
the Cuyo (Cacheuta) and Malargüe (northern Neuquén) areas exhibit 
severely reduced quartz content and the highest amount of volcanic 
lithic fragments (Arcila Galledo, 2010; Buelow et al., 2018). This 
immature sediment was derived principally from the adjacent magmatic 
arc and associated strata incorporated into the narrow fold-thrust belt at 
33–36◦S. 

At a regional scale, the sandstone petrographic results show a 
tremendous along-strike variation in provenance that can be related to 
the position of the magmatic arc, the width of the fold-thrust belt, and 
the timing of earliest thrust-belt development. We suggest that the 
spatial proximity to the magmatic arc explains the compositional 
immaturity and high proportions of volcanic lithic fragments, at the 
expense of quartz, in more southern areas with a narrow fold-thrust belt. 
In northern areas, the combination of earlier (Eocene-Oligocene) 
shortening, a much wider fold-thrust belt spanning the Puna plateau and 

Fig. 8. Comparative plot of detrital zircon U-Pb age distributions for new sandstone samples from the Rio Azul (Site 15) and Malargüe-Sosneado (Site 20) localities. 
Age distributions are depicted as kernel density estimates (KDEs, with 15 Myr bandwidth) and age histograms (25 Myr bin width) with emphasis on key age 
components (color shading). 
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Eastern Cordillera, and a greater distance from active magmatic sources 
collectively promoted deposition of more mature sandstones with high 
proportions of quartz relative to feldspar and lithic fragments. 

5. Sediment accumulation history and tectonic significance of 
eolian deposits 

Integration of sediment accumulation records from 8 sites within the 
Andean foreland basin (Fig. 11) indicates a strikingly similar subsidence 
history for the lower Miocene eolian interval. For each locality, a single 

Fig. 9. Comparative plot of detrital zircon U-Pb age distributions for Oligocene-Miocene eolian sandstones from northwestern (Sites 1–5), west-central (Sites 6–18), 
and southern (Sites 19–20) basin segments. Age distributions are depicted as kernel density estimates (KDEs, with 15 Myr bandwidth) and age histograms (25 Myr 
bin width) with emphasis on key age components (color shading). 
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sediment accumulation curve shows stratigraphic thickness (or depth) 
over time. Each curve represents new and available information on 
stratigraphic thickness (undecompacted) and depositional age (Johnson 
et al., 1986; Reynolds et al., 1990; Starck, 2011; Horton and Fuentes, 
2016; Buelow et al., 2018; Fuentes and Horton, 2020; Capaldi et al., 
2020; Mackaman-Lofland et al., 2022). 

Comparison of the sediment accumulation history with the timing of 
eolian deposition indicates a distinct and recurring theme in the tectonic 
evolution of the basin. Specifically, the eolian facies are consistently 
located at, or very near, the base of the main foreland basin succession 
(Figs. 2–6). As discussed above, eolian conditions persisted for several 
millions of years, with a maximum duration from ~24 to ~16 Ma. In the 
sediment accumulation plots, this phase of eolian deposition coincided 
with the roughly 23–18 Ma onset of rapid sediment accumulation across 
proximal (western) sectors of the studied retroarc region. More specif
ically, the eolian facies are located in the convex-upward part of the 
sediment accumulation curve that defines the narrow transition from an 
early period of slow accumulation or non-deposition (Horton and 
Fuentes, 2016; Fuentes and Horton, 2020) to the main phase of rapid 
flexural subsidence (Jordan et al., 2001). This situation can be traced 
within the western basin exposures for ~1500 km along strike, parallel 
to the north-trending Andean orogenic belt, suggestive of a correlation 
between regional climatic and tectonic conditions. 

The preferential occurrence of eolian facies during the early phase of 
rapid subsidence could be construed as an indicator of a sediment- 
starved or underfilled basin situation, wherein subsidence and accom
modation surpass sediment accumulation. This interpretation may 
further suggest that the arid conditions necessary for eolian deposition 
also prevented sufficient sediment supply to the high-accommodation 
basin, such that alluvial-fan and fluvial deposits were restricted to the 
proximal basin margin adjacent to the orogenic front. The lack of 
throughgoing rivers for the vast majority of the basin meant that sedi
ment input from waterlain processes was replaced by eolian deposition, 
with a net accumulation rate lower than the available accommodation. 
If this starved basin model is correct, then the sediment accumulation 
plots (Fig. 11) represent the minimum amount of subsidence rather than 
the total value of accommodation generated. 

6. Discussion 

Stratigraphic, provenance, and sediment accumulation histories 
reveal a huge desert with pervasive eolian conditions in northern and 

central Argentina during latest Oligocene through early Miocene time. 
The Andean retroarc region from 22◦ to 36◦S (Fig. 1) was characterized 
by eolian sand dunes and sand sheets with intermittent ephemeral 
fluvial systems in interdune settings. Regional chronostratigraphic cor
relations indicate a principally ~24 to 16 Ma age range for eolian con
ditions (Figs. 2–4), contemporaneous with the regional establishment of 
an integrated foreland basin system during pronounced shortening and 
growth of the retroarc fold-thrust belt. 

Long-lived eolian conditions in foreland basins are uncommon and 
likely require a combination of specific factors in terms of aridity (low 
precipitation), atmospheric circulation, orography, sediment dispersal, 
and sediment accommodation space. Here we consider the climatic and 
tectonic context for eolian processes in the southern central Andes and 
adjacent foreland (over a ~1500 km N–S distance and likely >100,000 
km2 depositional area), with implications for Andean paleogeography, 
sediment source areas, prevailing winds, and regional subsidence 
patterns. 

The sustained aridity over this large region can be evaluated in the 
context of two perspectives. First, arid conditions may be the product of 
global or regional climate variations mostly independent of Andean 
tectonic processes. In this case, aridification would be unrelated to any 
shifts in deformation and exhumation of sediment source areas within 
the Andes. Alternatively, aridification may reflect rain-shadow devel
opment and changes in atmospheric circulation governed by rapid 
topographic growth during the main phase of shortening and deforma
tion advance in the Andean orogenic belt. 

6.1. Regional climatic processes 

The southern central Andes have remained at similar latitudes over 
the past 20–30 Myr, on the basis of plate reconstructions showing a 
nearly due westward motion of the South American plate (Maloney 
et al., 2013; Horton, 2018a). The retroarc study region at 22–36◦S is 
situated within the broad transitional zone between easterly trade winds 
at low latitudes (generally 0–30◦S) and westerly winds at mid latitudes 
(generally 30–60◦S). The precise boundary between these two zones is 
subject to variations in the size and configuration of the continent and 
adjacent ocean basins, as well as topographic variations within the 
continent (e.g., Horton, 1999; Montgomery et al., 2001; Strecker et al., 
2007; Viale et al., 2019). 

Global climate change near the Oligocene-Miocene boundary pro
vides a potential mechanism for the abrupt appearance of desert 

Fig. 10. Sandstone modal petrographic data from Oligocene-Miocene eolian deposits. Tectonic provenance fields from Dickinson, 1985: Q-quartz, 
Qm-monocrystalline quartz, F-feldspar, L-lithic fragments, Lt-total lithic fragments (including chert). 
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conditions in the study region. Although the Oligocene is widely 
regarded as a period of global cooling in relationship to the opening of 
Drake Passage and the growth of a significant Antarctic ice sheet, 
climate records for latest Oligocene to early Miocene time show 
considerable variability (Zachos et al., 1997; Pfuhl and McCave, 2005; 
Liebrand et al., 2017). In South America, it is possible that such varia
tions, potentially linked to atmospheric CO2, orbital forcing, or 
ice-climate feedbacks may have triggered increases in surface temper
ature that promoted aridification and protracted early Miocene eolian 
deposition in the retroarc region of northern and central Argentina. 

A subsequent shift in regional climate during the Middle Miocene 
Climatic Optimum (MMCO) may have promoted global warming that 
was potentially manifest in continental regions by enhanced seasonality 
and the establishment or intensification of monsoon conditions (Stein
thorsdottir et al., 2021). In the southern central Andes, such conditions 
would have inhibited eolian processes within this segment of the adja
cent Andean foreland basin, consistent with the approximate termina
tion of widespread eolian conditions at ~17–16 Ma (Fig. 2). 

Similar mechanisms may be envisioned for isolated eolian deposits 
within older and younger basin fill, potentially linked to global climatic 
episodes. However, the emphasis of this study is the more-extensive 
regional desert conditions that commenced near the Oligocene- 
Miocene boundary. We infer that global or regional climate change 
may have impacted the study area through a reduction in precipitation 
and modification of prevailing winds, but would have had little to no 
impact on Andean topography, the location and composition of sedi
ment source regions, or the magnitude of accommodation space within 
the foreland basin. 

6.2. Regional tectonic processes 

A combination of complementary tectonic processes in the southern 
central Andes may be responsible for sustained desert conditions that led 
to eolian deposition across large swaths of the retroarc foreland. First 
and foremost, rapid topographic growth during a documented period of 
enhanced shortening may have triggered the development of a rain 
shadow across the foreland basin. Although paleoelevation constraints 
are limited, we speculate that the growing topography exceeded the 
threshold conditions required to change regional atmospheric circula
tion. These thresholds likely include a combination of maximum and 
mean elevation of the orogenic belt, internal relief, and the width or 
breadth of high topography. An increased height and width of the An
dean orogen would be expected as direct consequences of the enhanced 
rates and magnitudes of shortening and topographic advance in the 
early Miocene (e.g., Jordan et al., 1993, 2001; DeCelles et al., 2015; 
Giambiagi et al., 2022; Horton et al., 2022a; Mackaman-Lofland et al., 
2022). 

Second, increased shortening and deformation propagation into 
eastern retroarc regions would have provided fresh exposure of sedi
mentary and igneous rocks within the growing orogen in close proximity 
to the foreland basin. Prior to the early Miocene, many detrital prove
nance datasets point to the Andean magmatic arc as a dominant source 
of sediment (Arcila Gallego, 2010; Horton et al., 2016; Fosdick et al., 
2017; Buelow et al., 2018; Horton, 2018b; Reat and Fosdick, 2018; 
Tamagno et al., 2018). In contrast, younger basin fill shows the 
appearance and volumetric dominance of materials eroded from the 
fold-thrust belt, primarily composed of pre-Andean igneous and sedi
mentary rocks (Jordan et al., 1993, 1996; Pérez, 2001; Ciccioli et al., 

(caption on next column) 

Fig. 11. Sediment accumulation plots for Cenozoic basin sites (Figs. 1 and 2) in 
the retroarc foreland basin of northern Argentina. The ruled pattern indicates 
the eolian interval in each locality. In yellow, the estimated time span for the 
regional eolian event. Source of the basin history curves for each site: 3: Starck, 
2011; 4: this work; 9, 12 and 13: Mackaman-Lofland et al., 2022; 16: Levina 
et al., 2014; Capaldi et al., 2020; 19: Buelow et al., 2018; 20: Fuentes and 
Horton, 2020. 
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2014b; Siks and Horton, 2011; Galli et al., 2014; Levina et al., 2014; 
DeCelles et al., 2015; Capaldi et al., 2020; Mackaman-Lofland et al., 
2019; 2020; Suriano et al., 2017; Plonka et al., 2023). 

Third, the requisite tectonic loading that accompanied increased 
shortening and crustal thickening in the early Miocene would have 
driven rapid generation of accommodation space in the foreland basin 
(e.g., Jordan et al., 1993, 2001; Capaldi et al., 2020; Mackaman-Lofland 
et al., 2022). Among other effects, this enhanced subsidence would have 
promoted preservation rather than redistribution of eolian sediments. 
Further, the eolian deposits recorded in the foreland stratigraphic record 
should be considered as a volumetric minimum in an underfilled basin, 
as it is likely that additional accommodation space existed but was not 
filled with sediment. 

6.3. Reconstruction of tectonics, subsidence, and paleogeography 

The latest Oligocene-early Miocene marks the inception of the main 
phase of Andean shortening and pronounced eastward advance of the 
fold-thrust belt. By inference, the initial construction of high topography 
in the orogenic belt at these latitudes induced aridification in a rain 
shadow that encompassed the retroarc foreland basin to the east. We 
present a three-step reconstruction (Fig. 12) that accounts for the latest 
Oligocene-early Miocene phase of eolian deposition and the preceding 
and ensuing development of the foreland basin. 

Sediment accumulation records from 8 localities (Fig. 11) provide a 
sound basis for a synthesis of the sediment accumulation history of the 
retroarc foreland (Fig. 12A). This history involves three discrete phases 
of subsidence. Phase 1 involves severely limited retroarc subsidence 
with accumulation of a very thin stratigraphic section represented 
principally by Paleocene to lower Oligocene clastic deposits (Horton and 

Fig. 12. (A) Schematic sediment accumulation plot and (B) paleogeographic maps depicting the three major stages in the middle to late Cenozoic evolution of the 
retroarc foreland basin of northern Argentina: (1) Paleogene accumulation of distal (fine-grained) retroarc facies during slow subsidence (shallow curve, red/purple); 
(2) deposition of eolian sandstone facies during latest Oligocene-early Miocene acceleration of subsidence (broad inflection in curve, yellow) with sediments 
transported by north-northeast wind s (Fig. 7); and (3) middle to late Miocene deposition and eastward progradation of thick alluvial fan to fluvial deposits during 
rapid subsidence (steep curve, brown). The depositional facies (and colors) correspond to time-stratigraphic basin transects (Fig. 6). 
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Fuentes, 2016; Horton, 2018a, 2018b). Phase 2 represents the inception 
of enhanced flexural accommodation, as represented by a several-fold 
increase in accumulation rates in the latest Oligocene to early 
Miocene. Phase 3 is defined by continued rapid accumulation of a thick 
middle Miocene to Quaternary succession. 

The three phases are also characterized by contrasting depositional 
facies. Slow accommodation during Phase 1 was marked by accumula
tion of distal (fine-grained) facies in overbank fluvial and pedogenic 
environments with local lacustrine conditions. Phase 2 involved wide
spread deposition of eolian sandstone facies, both in proximal and distal 
sectors of the basin. Phase 3 recorded deposition and eastward pro
gradation of thick alluvial fan to fluvial deposits during rapid 
subsidence. 

Schematic paleogeographic maps show major components of the 
aforementioned three-step history (Fig. 12B, Phases 1–3). Emphasis is 
placed on the position and eastward advance of the Cenozoic magmatic 
arc, retroarc fold-thrust belt, and adjacent foreland basin. Within the 
foreland basin, the paleogeographic reconstructions highlight changes 
in depositional systems, sediment dispersal directions, and the overall 
position and width of the basin relative to the growing Andean orogenic 
belt.  

(1) Paleogene (Fig. 12B, Phase 1). A low-accommodation retroarc 
basin was fed sediment principally from the Andean magmatic 
arc. A narrow fold-thrust belt is inferred, but was likely subjected 
to a range of tectonic regimes, including neutral-stress conditions 
or low-magnitude extension, strike-slip, or shortening conditions. 
Flexural subsidence, albeit limited, was likely related to topo
graphic loading by the magmatic arc and small-scale fold-thrust 
structures. Deposition involved distal fluvial, fluvial overbank, 
pedogenic, and limited lacustrine deposition.  

(2) Latest Oligocene-early Miocene (Fig. 12B, Phase 2). The inception 
of large-magnitude shortening, as defined by the growth and 
eastward advance of the fold-thrust belt, was accompanied by 
eastward advance of arc magmatism and the initiation of rapid 
flexural subsidence in the foreland basin. This phase is marked by 
widespread eolian conditions in the form of large sand dunes or 
an erg system. Aridification linked to topographic growth may 
have promoted eolian deposition within a sediment-starved or 
underfilled foreland basin with a high ratio of accommodation to 
sediment supply.  

(3) Middle Miocene–Quaternary (Fig. 12B, Phase 3). Continued rapid 
flexural subsidence in the retroarc foreland was driven by further 
shortening and topographic loading within the migrating fold- 
thrust belt. Facies changes indicate pronounced progradation of 
fluvial, fluvial megafan, and alluvial fan depositional systems. 
The cessation of widespread eolian conditions may have coin
cided with a shift in climate conditions (namely the onset of the 
Middle Miocene Climatic Optimum) and a drastically increased 
supply of synorogenic sediment that exceeded the rapid genera
tion of accommodation space and resulted in regional pro
gradation of coarse-grained clastic facies belts. 

7. Conclusions 

A widespread eolian depositional system defined the initiation of 
major subsidence in the Andean retroarc foreland during the main phase 
of Andean orogenesis in the southern central Andes. Systems of eolian 
dunes, sand sheets, and ergs are rare in foreland basins, suggesting a 
combination of favorable conditions during latest Oligocene to early 
Miocene sedimentation in the foreland basin of Argentina at 22–36◦S. 
These conditions were related to: (1) climate—with foreland aridifica
tion and widespread desert conditions; (2) paleogeographic context—in 
terms of latitudinal controls and topographic highs that guide prevailing 

winds and generate possible rain shadows; and (3) tectonic proc
esses—in the form of crustal loading and the generation of accommo
dation space. New and previously published paleocurrent 
measurements, detrital zircon U-Pb data, and sandstone petrography for 
uppermost Oligocene-lower Miocene eolian sandstones from northern 
and central Argentina indicate the regional establishment of broadly 
westerly winds, consistent with a provenance record involving contri
butions from principally Phanerozoic rocks in the Andes rather than 
cratonic regions to the east. Exhumation of the Andean magmatic arc 
and retroarc fold-thrust belt resulted from shortening, thickening, and 
uplift of regions that today form the high-elevation hinterland, 
including: (a) the Western Cordillera, Puna plateau and Eastern 
Cordillera of northern Argentina at 22–26◦S; and (b) the Principal 
Cordillera and Frontal Cordillera of western Argentina at 26–36◦S. In
dependent structural and stratigraphic records for a latest Oligocene to 
early Miocene onset of major Andean shortening and enhanced sediment 
accumulation suggest that tectonically regulated topographic growth 
and rain shadow development were essential to the inception and 
persistence of eolian depositional conditions across the foreland basin. 
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Gómez, J.S., 2008. Dynamics of deformation and sedimentation in the northern 
Sierras Pampeanas: An integrated study of the Neogene Fiambalá basin, NW 
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estratigráficas de las formaciones Quebrada de los Colorados y Angastaco 
(Paleógeno-Neógeno), valles Calchaquíes, Salta (Argentina): significado en el 
análisis de la cuenca del Grupo Payogastilla. Lat. Am. J. Sedimentol. Basin Anal. 20, 
51–64. 

D. Starck et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0895-9811(23)00570-9/sref1
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref1
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref1
https://doi.org/10.1016/j.jsames.2016.05.013
https://doi.org/10.1016/j.jsames.2016.05.013
https://doi.org/10.1130/GES01433.1
https://doi.org/10.1002/2018TC005132
https://doi.org/10.1002/2018TC005132
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref5
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref5
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref5
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref6
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref6
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref6
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref7
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref7
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref7
https://doi.org/10.1130/L546.1
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref9
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref9
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref9
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref10
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref10
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref11
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref11
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref11
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref11
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref12
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref12
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref12
https://doi.org/10.1130/L709.1
https://doi.org/10.1306/13622132m1173777
https://doi.org/10.1016/j.jsames.2023.104286
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref16
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref16
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref16
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref16
https://doi.org/10.1016/j.epsl.2017.09.001
https://doi.org/10.3389/feart.2019.00298
https://doi.org/10.3389/feart.2019.00298
https://doi.org/10.1029/2019TC005958
https://doi.org/10.1130/GES02346.1
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref21
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref21
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref21
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref22
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref22
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref22
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref22
https://doi.org/10.1111/j.1365-2117.2011.00519.x
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref24
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref24
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref25
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref25
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref25
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref26
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref26
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref26
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref27
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref27
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref27
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref27
https://doi.org/10.1016/j.jsames.2014.09.005
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref29
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref29
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref29
https://doi.org/10.1016/j.jsames.2023.104456
https://doi.org/10.1016/j.jsames.2023.104456
https://doi.org/10.1016/0012-8252(82)90042-3
https://doi.org/10.1029/2010TC002841
https://doi.org/10.1029/2010TC002841
https://doi.org/10.1111/bre.12163
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref34
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref34
https://doi.org/10.1111/j.1365-2117.2006.00283.x
https://doi.org/10.1111/j.1365-2117.2006.00283.x
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref36
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref36
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref36
https://doi.org/10.1007/s00531-018-1615-9
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref38
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref38
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref38
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref39
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref39
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref39
https://doi.org/10.1016/j.jsames.2004.04.001
https://doi.org/10.1029/2011TC002948
https://doi.org/10.1029/2011TC002948
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref42
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref42
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref42
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref44
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref44
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref44
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref44
https://doi.org/10.1016/j.jsames.2009.06.004
https://doi.org/10.1016/j.jsames.2009.06.004
https://doi.org/10.1111/bre.12589
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref46
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref46
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref46
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref46
http://refhub.elsevier.com/S0895-9811(23)00570-9/sref46


Journal of South American Earth Sciences 134 (2024) 104758

18

del Rey, A., Deckart, K., Arriagada, C., Martínez, F., 2016. Resolving the paradigm of the 
late Paleozoic–Triassic Chilean magmatism: Isotopic approach. Gondwana Res. 37, 
172–181. 

Deri, M., Ciccioli, P.L., Amidon, W., Marenssi, S.A., 2019. Estratigrafía y edad máxima de 
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Juan y La Rioja, 1:250,000, Boletín, 259. Instituto de Geología y Recursos Minerales, 
Servicio Geológico Minero Argentino, 77 p.  

Galli, C.I., Coira, B., Alonso, R., Reynolds, J., Matteini, M., Hauser, N., 2014. Tectonic 
controls on the evolution of the Andean Cenozoic foreland basin: Evidence from 
fluvial system variations in the Payogastilla Group, in the Calchaquí, Tonco and 
Amblayo Valleys, NW Argentina. J. S. Am. Earth Sci. 52, 234–259. 

Galli, C.I., Alonso, R.N., Coira, L.B., 2017. Integrated stratigraphy of the Cenozoic 
Andean foreland basin (northern Argentina). In: Ambrosino, G.A. (Ed.), Seismic and 
Sequence Stratigraphy and Integrated Stratigraphy. InTech Open Access, 
pp. 129–156. https://doi.org/10.5772/intechopen.69985. 

Galli, C.I., Alonso, R.N., Coira, B.L., 2023. Paleoenviromental evolution of the Cenozoic 
foreland basin to intermontane basins in the Eastern Cordillera, North-Western 
Argentina. J. S. Am. Earth Sci. 130 https://doi.org/10.1016/j.jsames.2023.104582. 

Garzanti, E., Capaldi, T., Vezzoli, G., Limonta, M., Sosa, N., 2021. Transcontinental 
retroarc sediment routing controlled by subduction geometry and climate change 
(Central and Southern Andes, Argentina). Basin Res. 33, 3406–3437. https://doi. 
org/10.1111/bre.12607. 
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Moreno, J.A., Dahlquist, J.A., Morales Cámera, M.M., Alasino, P.H., Larrovere, M.A., 
Basei, M.A.S., Galindo, C., Zandomeni, P.S., Rocher, S., 2020. Geochronology and 
geochemistry of the Tabaquito batholith (Frontal Cordillera, Argentina): geodynamic 
implications and temporal correlations in the SW Gondwana margin. J. Geol. Soc. 
London 177, 455–474. https://doi.org/10.1144/jgs2019-062. 

Mpodozis, C., Kay, S.M., 1992. Late Paleozoic to Triassic evolution of the Gondwana 
margin: Evidence from Chilean Frontal Cordilleran batholiths (28 to 31◦S). Geol. 
Soc. Am. Bull. 104, 999–1014. 
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